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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Burkhard Rost
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academic advice, Jun for knowing everything, Leo for (without knowing) teaching me
to never complain, Felix for keeping the bar high, Flo for his computational support,
Ines for fruitful outlier discussions, Xueqi for her proactivity, and Nils and Vangelis for
contributing to the amazing atmosphere we have developed in the lab. You make the
lab a very special place. Also, to my students, especially Michaela for everything and
the Danielas for helping me keep the much-needed latin spirit. Finally, I’d like to ac-
knowledge all the other members of the Gagneurlab and the different people that I’ve
met and have influenced my PhD from the Technical University of Munich and Gene
Center.

The collaborators from the HelmholtzZentrum München were crucial for my PhD.
Specially, I’d like to thank Dr. Holger Prokisch, who always made time to meet me
and gave promptly and precise feedback. From his group, many thanks goes to Laura,
my first collaborator, who taught me about cellular respiration and that “everyone can
party, but few can party and work”. Also, to Mirjana, co-author in many finished,
on-going, and hopefully future projects, not just for the smooth collaboration, but also
friendship. Last, but not least, to Robert for his fast and accurate replies, as well as
Sarah, Agnieszka, and the rest of the Prokisch lab. Also, to all my other collaborators,
including the clinicians who gathered the samples.

I cannot thank enough my graduate school, QBM. Without it, I wouldn’t have even
applied, much less landed in Munich. Filiz and Mara did a great job with it. Also,
through it, I got to know wonderful people with whom I shared science and laughter
these years: Andrea, Laia, Rahmi, Linda, Madlin, and Ellie.

Lastly, I’d like to thank all the friends with whom I traveled and partied during these
years, thus keeping balance in life. To my parents, sister, niece, grandparents, uncles, and
whole family. Talking to you regularly makes me feel like home. This thesis is dedicated
to my niece so that when she reads it, she becomes proud and inspired. Finally, to my
girlfriend Gosia for her love, and the Fijo lek family for their selfless support and care.

iii





Summary

Pinpointing the genetic cause of a rare disorder is crucial for diagnosis and developing
treatments. However, DNA sequencing alone leaves most individuals with a suspected
rare disorder undiagnosed. In this thesis, I will present algorithms that I developed in-
tegrating DNA sequencing, RNA sequencing, and robustly assessing cellular respiration
to increase the diagnostic rate of genetic disorders.

I developed an end-to-end workflow that implements state-of-the-art statistical meth-
ods to detect aberrant expression, splicing, and mono-allelic expression to support RNA
sequencing-based diagnostics. The workflow includes preprocessing and quality control
steps, as well as plots and advice, to further analyze the individual results. It also
assesses if DNA and RNA samples originated from the same individual do match. It
includes guidance on the minimum number of samples, sequencing depth, and how sam-
ples from different centres can be combined to robustly detect outliers. The workflow is
available online.

Oxygen consumption rates (OCR) provide quantification of cellular respiration which
is a widely-used metric to evaluate individuals with mitochondrial disorders. I developed
a novel statistical method, OCR-Stats, that robustly estimates OCR levels and tests
between the levels of two samples across multiple within and between-assays replicates. I
showcased how it served as a functional assay to delineate a new disease-gene association
and diagnose patients.

Altogether, this work has directly helped to diagnose 37 patients and to discover sev-
eral new disease-gene associations. Moreover, the software is increasingly being adopted
by various genetic centres across the world.
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1 Introduction

1.1 Rare and mitochondrial diseases

This thesis describes how to use gene expression and functional assays to help diagnos-
ing individuals with rare disorders which were inconclusive after DNA sequencing. I
showcase this by using a cohort of individuals with a suspected mitochondrial disorder.
This chapter describes what are rare disorders, how DNA has been used to diagnose
individuals suffering from them, the current advances in RNA-seq in the field, what
defines a mitochondrial disorder, and how to quantify cellular respiration.

1.1.1 Rare diseases

In Europe, a rare disease is defined as a life-threatening, chronically debilitating condi-
tion affecting less than 1 in 2,000 people [7]. There exist between 6,000 and 8,000 rare
diseases [8]. Between 6 and 8% of the European population is affected by a one of them,
of which presumably 80% have a genetic cause [9]. Therefore, though individually rare,
collectively they are common. Two-thirds of rare diseases are disabling, three-quarters
affect children, over half are life-limiting, most have no treatment, and almost all have
an enormous negative impact on the individual well-being [10].

One of the main goals of rare disease research is to find the genetic cause, which
consists of pinpointing the variant(s) that are originating the disease in the affected
individual. It is estimated that the genetic cause of at least one-third of rare diseases has
not been discovered yet [11]. Discovering the genetic cause can then lead to establishing
a treatment. The treatments can be of various types, for example, drugs, vitamins,
coenzymes, and even transplants [12]. So far, treatments have been developed for only
6% of rare diseases, of which fewer than 1% are curative [13]. As the ultimate goal of
rare disease research is to reach a 100% diagnosis rate and provide treatment for each
disease, there are still a lot of research opportunities in this field.

1.1.2 Genetic diagnosis of rare disorders

One of the first steps in genetic diagnosis (also known as molecular diagnosis) is to
sequence the DNA of the affected individual, in order to detect the variants. Then
the variants go through a scoring process that takes into account their frequency in
the population, predicted consequence, known pathogenicity, or inheritance mode (Fig.
1.1). The ideal scenario is to obtain rare, high-impact, biallelic variants, whose mode of
inheritance and gene matches the affected individual’s phenotypes, and that have been
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1 Introduction

already reported to cause the same (or a similar) disease [14]. In the case of previously
unreported variants or genes, further functional validation is required.

Figure 1.1: Variant filtering. Flux diagram of a variant filtering pipeline. It narrows down
the number of candidate variants using: allele frequency, functional consequence,
relevant genes, inheritance mode, and clinical phenotype. Adapted from [14].

If the disease is dominant, a mutation in only one allele suffices to cause the disease.
This mutation is usually de novo, which means that it is present for the first time in
the affected individual, instead of being inherited from one parent. On the contrary,
if the disease is recessive, variants in both alleles need to be present for the disease to
manifest. These variants can be either in the same position (homozygous) or in different
positions but of the same gene (compound heterozygous) (Fig. 1.2).

Figure 1.2: (Bi)allelic variants. Examples of heterozygous, homozygous, and compound
heterozygous variants. The horizontal lines represent the alleles and the red stars
the variants.

Not only variant-level information is important, but also gene-level. Variants in
genes already known to cause disease are prioritized. OMIM is a comprehensive cata-
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1.1 Rare and mitochondrial diseases

logue of genes and phenotypes, and the relationships between them [8]. As of August
2020, there are 3,936 genes associated with a single-gene disorder, which are responsi-
ble for over 6,200 phenotypes. Both the number of genes and phenotypes registered
in OMIM increase every year [8]. As the whole set of genes known to cause dis-
eases might be too general, other more specific disease-gene lists are generally used
to prioritize variants. For example, the Developmental Disorder Gene-to-Phenotype
database (https://www.ebi.ac.uk/gene2phenotype) maintains a list of genes con-
firmed to cause a developmental disorder [15]. Also, the Paracelsus Medical University
Salzburg maintains a list of currently 341 genes known to cause mitochondrial disorders
subsetted by each pathway or complex that they affect (Fig. A.1). These specialized
lists usually categorize the genes as ‘confirmed’ or ‘probable’ (or similar terms) and
emphasize that they are not yet complete [16, 15, 17, 18].

1.1.3 DNA sequencing

DNA sequencing was conventionally done using Sanger sequencing [19]. Sanger se-
quencing is a so-called first-generation DNA sequencing method developed in 1977. It
allows to sequence a single (or few) candidate(s) gene with a single base resolution.
Therefore, it is oblivious to the discovery of new disease genes and its success depends
heavily on the clinician correctly identifying the candidate gene(s) based on the clin-
ical presentation. Next-generation sequencing (NGS) emerged as a high-throughput,
cost-efficient approach. Within the NGS techniques, whole-genome sequencing (WGS)
gives an overview of the entire genome. An alternative approach is to sequence only the
exonic regions, called whole-exome sequencing (WES). The accuracy, robustness, cost,
and handling of NGS makes it a widely used alternative approach to the direct Sanger
sequencing [20]. NGS rapidly began to be used to search for Mendelian disease genes in
an unbiased manner as they do not require a priori knowledge of gene(s) responsible for
the disease [21, 22]. Yet, Sanger sequencing keeps being essential in clinical genomics for
at least two purposes. First, it is used to confirm the NGS findings and inspect variant
segregation in the parents, as results can be obtained within hours. Second, it provides
a means to access regions that are poorly covered by NGS (especially WES) [23].

In 2010, the first successful application of WES to discover a disease causal gene was
published [24]. Since 2013, WES and WGS have led to the discovery of nearly three
times as many genes as conventional approaches, but this rate of discovery appears to be
declining (Fig. 1.3). One of the main limitations of WES is that it misses many genomic
regions, which leads to not detecting known disease-causal variants [22]. Although this
can be overcome with WGS, its detection of more than 3.4 million single-nucleotide
variants (SNVs) per individual hampers variant prioritization [25].

The clinical implementation of WES revolutionized genetic diagnostics, nevertheless
the diagnostic rates rarely surpass 40% [26, 14, 27, 28, 29]. Inconclusive WES can be
partially attributed to the challenges concerning variant detection and prioritization.
Regarding variant detection, copy-number and structural variants are not well captured
by WES, and variants that reside in the untargeted non-coding regions are not captured.
Regarding variant prioritization, pipelines for analyzing DNA sequences still have much

3
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1 Introduction

Figure 1.3: Disease genes discovered per year. Number of genes known to cause a
disease discovered per year, stratified by the technology used to discover them,
either conventional (Sanger) or NGS. Data taken from [11].

room for improvement in terms of sequence alignment, variant calling, and functional
annotation and prediction, especially for, once again, copy-number and structural vari-
ants [11]. Indeed, Shamseldin et al. showed that the theoretical maximum yield of WES
is much higher than what is experienced in practice, suggesting that the causal variants
in the majority of WES-negative cases can indeed be identified by improved variant
filtration rather than increased coverage [30]. This also explains why moving to WGS
has increased the diagnosis rate, but only to around 40% - 60% [31].

Another reason that leads to a lack of diagnosis is not being able to properly character-
ize the disease. This can be due to complex pathomechanisms or phenotypes. Complex
pathomechanisms arise when the disorders are not following a Mendelian inheritance,
such as polygenic disorders. Patients with complex phenotypes are difficult to assign
to a disease category. For example, a cohort of 109 patients admitted in the Radboud
Medical Center was split into two: a homogeneous group with a very high suspicion of
mitochondrial disease, and a heterogeneous one composed of suspected mitochondrial
or neurological diseases. The molecular diagnosis was 57% for the homogeneous group,
compared to 39% of the heterogeneous group [32]. Similarly, a cohort of 40 patients
from The Children’s Hospital in Sydney was split into very likely mitochondrial disease,
likely, and less likely, with diagnosis rates of 71%, 47%, and 33%, respectively [33].

This suggests that alternative, complementary technologies should be developed and
implemented to further improve diagnostics, like transcriptome sequencing.
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1.1 Rare and mitochondrial diseases

1.1.4 RNA sequencing

NGS also allowed the advent of RNA sequencing (RNA-seq). This technology allows
us to quantify mRNAs and alternative splicing events for gene expression analysis and
discover novel RNA variants and splice sites [34]. It quickly replaced its predecessor
technology, microarrays [35], which relied upon existing knowledge of genomic sequence,
had high background levels due to cross-hybridization, and had limited dynamic range
of detection and challenging comparison of results across experiments [34].

One reason to study the transcriptome is that up to 30% of disease-causing variants
impact the RNA and fall within the non-coding regions [36, 37]. Of those, around
one third affects splicing [38]. Although many in silico tools have been developed to
predict the effect of a variant on splicing, functional validation is required for diagnostics.
Similarly, even though stop and frameshift variants that are not located in either the
first or last exon are predicted to truncate the resulting mRNA and protein, this is
not always the case [39, 40]. Finally, half of the synonymous variants of conserved
alternatively spliced exons are under selection pressure, suggesting a functional role on
the transcript [41]. Without conclusive validation, the identified variants remain as
variants of unknown significance (VUS). Almost 2,000 VUS are located in direct splice
sites [42]. A form of validation can be to detect whether the variant causes aberrant
expression or splicing, which can be done via RNA-seq.

In 2017, two groups independently and simultaneously systematically used RNA-seq
to help diagnose WES-unsolved individuals with rare disorders. The first study, by
Cummings et al., detected aberrant splicing in 50 patients with neuromuscular disorders
which led to the diagnosis of 17 of them (35%) [43]. The other one by colleagues from
my group and collaborators, Kremer et al., also used aberrant splicing, plus aberrant
expression and mono-allelic expression of a rare variant which led to the diagnosis of
10% of WES-unsolved in a cohort of 105 individuals with a suspected mitochondrial
disorder (Figs. 1.4, 1.5) [44].

These pioneering works opened the avenue for other groups to venture into using this
technology in the diagnosis setting. Nevertheless, they left many questions open:

• Do the statistical methods used to detect aberrant events scale well with an in-
creasing number of samples?

• Are methods specifically designed to detect aberrant events needed, or do methods
designed to detect alternative or differential events suffice?

• What is the minimum number of samples needed to properly detect aberrant
events?

• Is it possible to combine RNA-seq samples with controls from other centers, tech-
nologies, or tissues?

• Can this approach be extended to other disorders?

• Does calling variants in RNA-seq data add value with respect to calling variants
in WES?
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Figure 1.4: Using RNA-seq to diagnose rare disorders. First, RNA-seq is performed.
Then, it goes through counting, quality control, and filtering steps. Afterwards,
genes with aberrant expression, splicing, or allele-specific expression are detected.
In some cases, functional validation, such as proteomics, can lend additional
support to these diagnoses.

• Does the choice of tissue influence the analysis?

The works of Frésard et al. [45] and Gonorazky et al. [46] in 2019 aimed to answer
some of them. Frésard et al. gathered RNA-seq data from whole blood from 143 in-
dividuals. 94 of those were affected by one of 16 different rare diseases and 49 were
unaffected family members. Aberrant expression and splicing analysis led to the diag-
nosis of 6 individuals with a neurological phenotype. The study also concluded that
using more (external) controls helps to better detect aberrant expression by perform-
ing an enrichment of case under-expression outliers in loss-of-function sensitive genes
[45]. Gonorazky et al. showed that blood was not an optimal tissue to detect aberrant
events in genes associated with muscular disorders. They implemented variant calling in
RNA-seq data and transdifferentiated fibroblasts into myoblasts which better reflected
the muscle transcriptome. They achieved a diagnosis in 9 out of 25 cases [46].
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1.1 Rare and mitochondrial diseases

Figure 1.5: Timeline of studies enhancing the value of RNA-seq in diagnostics.
Timeline showing the 4 studies in which RNA-seq was systematically used to
diagnose patients with rare disorders, including their different novel contributions,
the 2 methodological studies to detect outliers, and the protocol to describe and
automate the steps. N: number of samples, DR: diagnostic rate.

All these studies have paved the way for RNA-seq to become a complementary tool
for DNA sequencing in diagnostics [47, 48].

1.1.5 Aberrant Expression

Expression outliers are genes whose expression in a sample lies outside its physiological
range and is aberrantly higher or lower with respect to other samples from the same
population (Fig. 1.6). One possible cause is the existence of a premature stop codon
that causes the mRNA to be degraded [49]. Systematically using aberrant expression
to detect potentially disease-causal genes have been used successfully in three studies
[44, 45, 46]. In the first one, the method DESeq [50] was used in a 1 vs. rest fashion
on counts normalized for technical biases, sex, and biopsy site, per gene [44]. Outliers
were defined as those genes with | Z-score | > 3 and Hochberg-adjusted P value < 0.05.
This yielded a median of one expression outlier per sample. The limitations of that
approach were that DESeq is a method designed for differential expression and the
correction of the counts was performed using known confounders, therefore oblivious to
latent ones. In the second one, a regression model was performed and then residuals
were centered and scaled to generate Z-scores [45]. Outliers were defined as those with
| Z-score | ≥ 2. They found an average of 343 outliers per sample. The counts were
previously normalized by regressing out significant surrogate variables found by SVA.
This normalization accounts for latent effects, but no multiple testing was performed,
which resulted in the high number of outliers per sample. The third one also used a
Z-score approach and reported as outliers the genes whose expression was 2-fold change
or higher versus the mean of a control group [46]. This approach lacks normalization and
needs a control group from the same tissue as the affected samples. Even though neither
approach was optimal, it allowed the different groups to identify pathogenic variants
which led to the diagnosis of affected individuals.

Motivated by the lack of a specialized method to detect expression outliers, my group
decided to develop one called OUTRIDER [5] (Fig. 1.5, section 2.1.4). Simulations and
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Figure 1.6: Outlier overview. Schema showing the differences in the experimental designs
for differential expression analyses and outlier detection analyses. In differential
expression, two populations are compared against each other, while in outlier
detection, only one population is assumed and each value is tested if it. Adapted
from [5].

enrichment analysis of rare variants among expression outliers showed that OUTRIDER
outperformed methods that used Z-scores on counts normalized using PEER [51] and
PCA.

1.1.6 Aberrant Splicing

Aberrant splicing can take different forms such as exon skipping, exon elongation, exon
truncation, exon creation, and intron retention (Fig. 1.7). It can be caused by variants
in the canonical splice sites, but also by variants in the less defined splicing regulatory
sequences such as the exonic and intronic splicing enhancers [52]. All four studies from
Figure 1.5 used aberrant splicing to diagnose samples, as well as other low-throughput
studies [53, 54, 55].

Three other methods have been used to detect aberrant splicing, which are (i) an
adaptation of the differential splicing test LeafCutter [56] used in the Kremer et al.
study [44], (ii) a cutoff based approach used in the Cummings et al. [43] and Gonorazky
et al. [46] studies, and (iii) a Z-score based method used in the Frésard et al. study
[45]. The first one constructs intron clusters and tests for differential usage between one
sample and all others, instead of aberrant splicing events. Moreover, it does not control
for sample covariation. The second one defines aberrant splicing events as novel introns
in genes with enough reads in the affected individual but not (or almost not) appearing
in a control cohort, after applying local normalization. The two main caveats are that it
depends on arbitrary cut-offs and may fail to recognize aberrant splicing events in weak
splice sites [57]. The third one does correct for covariation but uses a Z-score approach
which does not offer any control for false discovery rate and can be inaccurate in splice
sites with low reads. Having in mind these limitations, my lab opted to develop a new
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1.1 Rare and mitochondrial diseases

Figure 1.7: Alternative splicing events. Diagram showing 5 different types of aberrant
splicing. In dark blue the canonical exons and in light blue the aberrations. The
gene model is shown below in gray.

method called FRASER [6]. It uses a denoising autoencoder and fits a beta-binomial
distribution on the counts of each junction (section 2.1.4). FRASER not only addressed
the aforementioned issues but is also able to detect intron retention [6].

1.1.7 Mono-allelic expression

MAE refers to the expression of a single allele out of the two alleles of a gene, which
could be due to genetic or epigenetic silencing of the other allele. When assuming a
recessive mode of inheritance, single heterozygous rare variants are not prioritized after
DNA sequencing. However, MAE of a single heterozygous rare variant in an affected
individual is consistent with a recessive mode of inheritance. Therefore, detecting MAE
of a rare variant has led to diagnose rare disorders [44, 45, 46, 54, 58]. Rare disorders
can also arise due to de novo mutations in haploinsufficient genes [59, 60], in which case
MAE of either the reference or alternative allele can help highlight those genes.

Detecting mono-allelically expressed genes relies on counting the reads aligned to
each allele at genomic positions of heterozygous variants. Several methods have been
developed to detect MAE in the context of rare diseases, among which are the ones
described by Kremer et al. [44], and more recently ANEVA-DOT [58]. On the one
hand, Kremer et al. used a negative binomial test with a fixed dispersion for all genes.
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On the other hand, ANEVA-DOT implements a binomial-logit-normal test with gene-
specific variance, with the caveat that due to insufficient training data, estimates of that
variance have been computed so far for only 4,962 genes (in median), depending on the
tissue of interest [58]. As using ANEVA-DOT would result in losing more than half of
the tested genes, I opted for the training data-independent negative binomial test. The
steps to test for MAE are shown on Figure 1.8.

Figure 1.8: Steps to test for MAE. Counts of the alternative allele (y-axis) vs. counts of
the reference allele (x-axis), on four different steps to detect MAE, per sample.
First, variants with low expression are removed. Second, variants with a higher
expression of the alternative allele are considered. Third, a significance test is
performed. Fourth, rare variants are prioritized.

1.1.8 Mitochondrial disorders

Mitochondrial disorders are a type of metabolic disease characterized by defects in the
oxidative phosphorylation (OXPHOS) pathway [61], which is the pathway responsible
for generating energy (see 2.1.5). Their most common clinical symptoms are ataxia,
hearing loss, optic atrophy, epilepsy, encephalopathy, and stroke-like episodes, [62]. Mi-
tochondrial disorders encompass all the challenges of rare diseases: present a wide variety
of symptoms across a broad range of organs and tissues (Fig. 1.9), arise at any age, have
any mode of inheritance, and can be caused by variants in either nuclear or mtDNA
genes [63]. It is estimated that 15% - 25% of the cases are caused by variants in the
mtDNA [64, 65]. They occur at a rate of 1 in 5,000 births [66]. To date, pathogenic
variants have been described in more than 340 genes [16]. Even though the number of
mitochondrial disease-associated genes discovered per year has decreased since 2014, the
total number still continues to grow (Fig. 1.10).
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Figure 1.9: Phenotypic spectrum of mitochondrial disorders. Common clinical man-
ifestations of mitochondrial disorders. Taken from [67].

Variants in genes encoding each of the following are known to cause mitochondrial
disorders [68]:

• subunits or assembly factors of each of the five respiratory chain complexes (RCCs),

• proteins required for mtDNA replication, transcription, and translation,

• proteins needed for the generation or transport of substrates in reactions upstream
of the OXPHOS (e.g., Krebs cycle),

• cofactors of OXPHOS or other enzymes of energy metabolism, and

• proteins important for the homeostasis of mitochondria.

Physiological consequences of defective OXPHOS include decreased adenosine triphos-
phate (ATP) production, NAD+/NADH imbalance, increased reactive oxygen species
(ROS) production, and impairment of the pathways feeding into OXPHOS such as the
Krebs cycle and the fatty acid β-oxidation [63, 69]. One of the most informative tests
of mitochondrial function is the quantification of cellular respiration since it directly
reflects the impairment of the OXPHOS pathway [70] and depends on many sequential
reactions leading to it [71]. Therefore, quantifying it can lead to the confirmation of the
initial clinical diagnosis, more precise identification of the severity of the dysfunction,
or the comparison with another sample (e.g., a control, the same sample after a certain
treatment).

In mitochondrial disorders, Sanger sequencing provides a diagnostic rate of only 11%
[72]. The implementation of WES (including mtDNA) yields a diagnostic rate of 28 -
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Figure 1.10: Mitochondrial disease genes discovered per year. Number of genes known
to cause a mitochondrial disease discovered per year. The first mitochondrial
disease gene was discovered in 1988. Discoveries increase after 2010 where NGS
begins to be used in diagnostics. Data taken from [16].

59% across different cohorts worldwide [32, 73, 74, 75, 76]. A recent application of WGS
to a mitochondrial disease cohort led to a likely molecular diagnosis of 67% [33], which
even though is higher than the success rate of WES, it is still not 100%.

1.1.9 Quantifying oxygen consumption rates

OCR was classically measured using a Clark-type electrode, which is time-consuming,
limited to whole cells in suspension and high yield, and does not allow the automated in-
jection of compounds [77]. It involved experimenting with isolated mitochondria, which
is ineffective because the cellular regulation of mitochondrial function is removed during
isolation [78]. In the last few years, a new technology that calculates oxygen concen-
trations from fluorescence in a microplate assay format was developed by the company
Seahorse Bioscience [79]. It allows simultaneous measurements of both OCR and extra-
cellular acidification rate (ECAR) in multiple cell lines and conditions at different time
points, reducing the amount of required sample material and increasing the throughput
[80]. OCR and ECAR are measured using the Seahorse XF Analyzer in 96-well (or 24-
well) plates at multiple time steps under three consecutive treatments, which allows for
the estimation of different bioenergetics. This approach is label-free and non-destructive,
so the cells can be retained and used for further assays [81]. Procedures describing the
Seahorse technology addressed experimental aspects such as sample preparation [82, 83],
number of cells to seed [83, 84], and compound concentration in different organisms
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[71, 82, 85]. However, studies regarding statistical best practices for determining OCR
levels and testing them against others are lacking.

1.2 Aims and scope of this thesis

The contributions of this thesis are improved diagnostics rates using omics profiling and
quantitative cellular phenotyping. This is showcased on mitochondrial disorders with i)
advanced RNA-seq based diagnostics workflows and ii) quantitative cellular respiration
assays.

Development of a computational pipeline to detect aberrant events in
RNA-seq data

Pipelines to compute aberrant events from RNA-seq data are lacking. Also, as it is
a new field, best practices regarding the preprocessing of raw data are missing. Setting
them up can take many months in which patients are awaiting diagnosis.

I created a modular, scalable pipeline able to robustly generate expression outliers from
raw sequencing files. It integrates state-of-the-art methods to detect aberrant expression
and includes quality control steps. It includes a protocol to guide the user throughout
all the steps. I showcase an example of the application of the pipeline into a cohort
of hundreds of patients from the Undiagnosed Diseases Network where it drastically
reduced the time to process the samples from months to days.

Assess the added value of RNA-seq over WES
In the study of Kremer et al., 5 out of 48 WES-negative patients with mitochondrial

disorders (10%) were solved with the help of RNA-seq. This cohort grew in size and
complexity by adding other tissues, diseases, switching to strand-specific technology, and
receiving samples from different countries.

Integrating new samples, expertise, specialized methods to detect expression and splic-
ing outliers, implementing a more precise method to perform allelic counting, and calling
variants in RNA-seq data we were able to diagnose 28 new samples, yielding a total of
33 out of 217 WES-unsolved. This translated into a diagnosis rate of 15%. Finally, I
study the gene expression of various disease gene lists in different tissues from the GTEx
cohort to aid researchers in selecting the best tissue.

Development of a statistical method to compute and test OCR on a multi-
assay cohort

One of the main advantages of the Seahorse technology is that it allows us to measure
the same cell line in multiple well replicates inside a plate. Nevertheless, the variation
between plates is larger than the one within. Most studies where it is used report
comparisons inside plates only.

I developed a statistical method that takes into account both the intra- and inter-
plate variation to compute OCR and test between samples and benchmark it against
the method provided by Seahorse. I show an application of OCR testing to functionally
validate the candidate gene in two patients with mitochondrial disorders.
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2 Background

This chapter describes the basics of DNA and RNA, in order to later explain how
variants are called and prioritized, and how gene expression can be used in the context
of diagnostics. It includes a mathematical section on how outliers are computed from
count data. It also describes cellular respiration and the mitochondrial stress test used to
quantify it. Finally, it presents the computational frameworks Snakemake and wBuild.

2.1 Biological Background

2.1.1 DNA

The genetic information of humans and most living organisms is encoded in a double-
helix-shaped molecule called deoxyribonucleic acid (DNA). DNA is composed of smaller
molecules called nucleotides. There are four different DNA nucleotides, each defined
by a specific nitrogenous base: adenine (A), thymine (T), cytosine (C), and guanine
(G) [86]. The human genome, which is the complete set of nucleic acid sequences, is
composed of over 3 billion nucleotides. These are organized into 23 chromosome pairs
(each inherited from one parent) located inside the nucleus of every cell, and in a circular
DNA molecule found within each mitochondrion [87]. Chromosomes can be further
subdivided into genes (Fig. 2.1). Each gene contains genetic information that encodes
for a specific function. Currently, around 60,000 genes are known, out of which around
20,000 encode information to synthesize a protein (so-called protein-coding genes) [88].
Every person has two copies of each gene, called alleles, one inherited from each parent.
Genes are composed of two genomic regions: exons and introns. Exons are the regions
of the gene that encode for mature RNA, while introns are removed through a process
called splicing (Fig. 2.1) [86].

The Human Genome Project successfully sequenced more than 99% of the human
genome by April 2003 [89]. Since then, efforts to create a so-called reference genome
have undergone. The latest one, GRCh38, was released in 2014 and continues to evolve.
The nucleotides of each individual can be compared to this reference genome.

Variation in the human genome can take several forms. Single-nucleotide variants
(SNVs) are those where one nucleotide is different in an individual with respect to the
reference genome. Alternatively, larger-scale variation includes insertions or deletions of
multiple nucleotides. In most cases, genetic variants have no effect. But, sometimes, they
can be harmful: one base pair missing or changed may result in a damaged protein, or
increased or reduced amount of the protein, with serious consequences for the individual’s
health. Genetic variants are passed from one generation to the next, which explains why
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Figure 2.1: Central dogma of molecular biology. DNA is packed in chromosomes. Each
chromosome is composed of genes. Genes are transcribed into precursor mRNA.
Afterwards, only exonic regions (in blue) are kept, and intronic regions (in red) are
spliced out forming messenger RNA (mRNA). This mRNA is later translated into
a protein. Adapted from: https://frank.itlab.us/photo_essays/wrapper.

php?nephila_2002_dna.html.

some families are more susceptible to certain diseases. If both alleles have a variant
in the same position, the variant is called homozygous. If only one allele harbors the
variant, then it is called heterozygous.

2.1.2 Variant calling and annotation

Variant calling refers to the process of identifying an individual’s variants derived from
either DNA or RNA sequencing. SAMtools [90] or GATK [91] offer functions for this
purpose. Amplification biases, software errors, and mapping artifacts can lead to many
false-positive calls. It is important, therefore, to filter variants according to their quality
scores, number of reads supporting the alternative allele, and whether they belong to a
SNP cluster or repeat masked region [92]. They are stored in standardized (variant call
format, VCF) files [93]. They can be annotated (using, e.g., the Variant Effect Predictor
(VEP) [94]) according to their:

• functional consequence (Fig. 2.2).

• conservation scores: e.g., CADD that integrates multiple annotations by contrast-
ing variants that survived natural selection with simulated mutations [95] or SIFT
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which uses sequence homology to predict whether a substitution affects protein
function [96].

• frequency in the population using scores from, e.g., The Genome Aggregation
Database (gnomAD) [97] or the 1000 Genomes Project [98].

Figure 2.2: Variant consequences. Gene model showing different locations and conse-
quences of variants. Adapted from: https://m.ensembl.org/info/genome/

variation/prediction/predicted_data.html. Not all consequences are
shown.

Regarding pathogenicity, a variant can be classified as ‘pathogenic’, ‘likely pathogenic’,
‘of unknown significance’, ‘likely benign’, or ‘benign’, depending on a certain series of
evidence scores described in the ACMG standards and guidelines for the interpretation
of sequence variants [99]. ClinVar, the most widely used public archive of reports of the
relationships among human variations and phenotypes [42], uses these terms.

Variants can also be classified according to their consequence, as proposed by Ensemble
[100]. The consequences are split into 4 categories depending on their impact: high,
moderate, low, or modifier. The following will be mentioned throughout this thesis:

• splice-site: variant changing the 2 base region at either end of the intron

• stop (also called nonsense): variant changing at least one base of a codon, resulting
in a premature stop codon

• frameshift: insertion or deletion which is not a multiple of 3, causing a disruption
of the translational reading frame

• missense: variant changing at least one base, resulting in a different amino acid
sequence

• splice-region: variant either within 1-3 bases of the exon or 3-8 bases of the intron

• synonymous: variant where there is no change in the encoded amino acid

• UTR: variant either in the 5’ or 3’ untranslated regions (UTRs)

• intronic: variant in the intronic region
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• intergenic: variant upstream or downstream of genes

Protein-truncating variants (PTVs) are variants predicted to shorten the coding se-
quence of genes [101]. They include stop, splice-site, frameshift variants, as well as large
deletions. They are expected to have large effects on transcription and, therefore, on
gene function [101].

2.1.3 RNA-sequencing

Genes are transcribed (i.e., converted) into single-stranded RNA molecules known as
messenger RNA (mRNA). The full range of mRNAs is called the transcriptome. RNA-
seq has emerged as a technique to quantify the transcriptome by deeply sequencing it
and recording how frequently each gene is represented in the sequenced sample [102].
RNA is isolated from the cell and converted into a library of fragmented complemen-
tary DNA (cDNA) using reverse polymerase [34]. These fragments are sequenced using
high-throughput techniques (e.g., Illumina sequencing) that are able to generate several
million reads in one run [34]. Subsequently, the reads are mapped to a reference genome,
allowing the identification of transcribed regions and their expression levels [34].

The mapped reads can be assigned to genomic regions. Reads that fully overlap
exonic regions (A and B from Fig. 2.3) are aggregated by gene, which results in a genes
× samples matrix composed of counts ki,j. These are the input for the statistical method
to detect expression outliers, OUTRIDER.

Figure 2.3: Types of RNA-seq reads. Schematic of a gene model showing how RNA-seq
reads can either: be fully aligned to an exon (A), span two exons via splicing (B),
or be aligned to an exon-intron boundary (C). Exons are represented as boxes
and introns as lines.

Reads spanning from one exon to another (split reads), and reads overlapping an exon-
intron boundary (non-split reads) can also be quantified and aggregated by junction (Fig.
2.3). These are then converted into the intron-centric metrics percent-spliced-in (Ψ) and
splicing efficiency (θ) shown in Figure 2.4 [103]. The Ψ index is computed as the ratio
between reads mapping to the given intron and all split-reads sharing the same donor
or acceptor site, respectively:

ψ5(D,A) =
n(D,A)∑
A′ n(D,A′)

and ψ3(D,A) =
n(D,A)∑
D′ n(D′, A)

(2.1)
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where n(D,A) is the number of split reads mapping to the intron spanning from donor
D to acceptor A. To detect partial or full intron retention, the splicing efficiency metric
is used. It is defined as the ratio of all split-reads and the full read coverage at a given
splice site:

θ5(D,A) =

∑
A′ n(D,A′)∑

A′ n(D,A′) + n(D)
and θ3(D,A) =

∑
D′ n(D′, A)∑

D′ n(D′, A) + n(A)
(2.2)

where n(D) denotes the number of reads spanning the exon-intron boundary at the
donor splice site D and n(A) the number of reads spanning the exon-intron boundary
at the acceptor site A.

Figure 2.4: Splicing metrics. Schematic showing how the different reads are converted into
the splicing metrics ψ and θ. D: donor site, A: acceptor site. In this case, ψ5

is computed as the number of reads spanning from donor D to acceptor A (in
red) divided by those reads plus the ones spanning from D to A′ (in blue). θ5
is computed as the number of reads spanning from donor D to both acceptors
A and A′ (red and blue) divided by those reads plus the ones that overlap the
exon-intron boundary (in orange). Adapted from [6].

These metrics are the input for the statistical method to detect splicing outliers
FRASER.

The computational tools to compute these counts are explained in section A.1.1.

2.1.4 Denoising autoencoders to detect outliers

Autoencoders are machine learning models introduced to find low-dimensional represen-
tations of high-dimensional data [104]. They achieve this by learning certain features
from the data distribution by encoding it into a hidden representation h and decoding
it afterwards [104]. A subclass of autoencoders called denoising autoencoders is used
to reconstruct corrupted high-dimensional data by exploiting correlations in the data
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[105]. This property is used by OUTRIDER and FRASER to control for the common
covariation observed in gene expression [5, 6].

OUTRIDER detects expression outliers from gene-level counts [5]. The gene counts
are assumed to follow a negative binomial (NB) distribution. Specifically, we assume
that the count ki,j of gene j = 1, . . . , p in sample i = 1, . . . , n follows a NB distribution
with a mean µi,j equal to the expected count ci,j and dispersion θj:

P (ki,j = NB(ki,j|µi,j = ci,j, θj).

The expected count ci,j is the product of the sample-specific size factor si and the
exponential of the factor yi,j. Size factors are robust estimates of the variations in
sequencing depth [106]. The yi,j factor captures covariations across samples and is
modeled using the following autoencoder:

yi = hiWd + b,

hi = x̃iWe

(2.3)

where We is the encoding matrix and Wd is the decoding matrix, hi is the encoded
representation of dimension q, and b is a bias term.

The input of the autoencoder are the gene-centered, log-centered, size-factor normal-
ized counts, i.e.,

x̃i,j = xi,j − x̄j

xi,j = log
ki,j + 1

si

The encoder and decoder matrices are initialized using principal component analysis,
the bias is set to the mean of the log-transformed, size-factor normalized counts, and the
dispersions are estimated using the method of moments. The autoencoder is then fitted
by iterating the following 3 steps: first the encoder matrix updated, second the decoder
matrix is updated, and third the dispersions are refitted per gene. The final encoder and
decoder matrices are then used to compute the expected counts ci,j. Having estimated
the expected counts and the dispersions, one can then test the null hypothesis that the
count ki,j follows a NB distribution. This can be done using the following formula that
computes two-sided P -values:

Pi,j = 2 min{1

2
,

kij∑
k=0

NB(k|µi,j = ci,j, θj),
∞∑

k=kij

NB(k|µi,j = ci,j, θj)} (2.4)

Multiple testing is then performed using Benjamini Yekutieli false discovery rate
(FDR) method [107], which holds under positive dependence caused by gene co-expression.
Expression outliers are defined as the gene-sample combinations with a FDR ≤ 0.05.
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FRASER detects aberrant splicing using the intron-centric metrics ψ5, ψ3, and θ
(Fig. 2.4) [6]. For each of them, the distribution of the numerator, conditioned the
denominator, is modeled using the beta-binomial (BB) distribution. Specifically, for
ψ5, the split read count ki,j of the intron j = 1, . . . , p in sample i = 1, . . . , N follows a
BB distribution with a sample-intron-specific proportion expectation µi,j and an intron-
specific correlation parameter ρj:

P (ki,j) = BB(ki,j|ni,j, µi,j, ρj),

where ni,j corresponds to the total number of split reads having the same donor site
(acceptor site for ψ3) as intron j. The parameters µi,j and ρi,j are fitted following a
similar autoencoder procedure as done for aberrant expression fully described in Mertes
et al. [6]. P -values are computed using a similar formula as eq. 2.4, but adapted to
a BB distribution. Two multiple testing steps are performed, one at the junction level
using Holm’s method, and another at the gene level using Benjamini-Yekutieli’s method
[107]. ∆Ψ values are calculated as the difference between the observed ψi,j and the
expectations µi,j. Splicing outliers are defined as the gene-sample combinations with a
FDR ≤ 0.10 and |∆Ψ| ≥ 0.3.

2.1.5 Cellular respiration

Cellular respiration is a metabolic process that converts the energy derived from sugars,
carbohydrates, fats, and proteins into a high-energy molecule called adenosine triphos-
phate (ATP) [86]. It is composed of three subprocesses: glycolysis, Krebs cycle, and
oxidative phosphorylation (OXPHOS). Figure 2.5 gives an overview of it.

During glycolysis, a glucose molecule is converted into pyruvate [86]. Also, two
molecules of ATP and two molecules of NADH (a compound capable of storing high
energy electrons) are produced. This process occurs in the cytosol. No molecular oxy-
gen is used during glycolysis.

Pyruvate is then imported into the mitochondrion where it is decarboxylated to pro-
duce acetyl-CoA, which is needed for the second step. Krebs cycle (also known as citric
acid or tricarboxylic acid) comprises nine enzymatic conversions that produce NADH
and FADH2 (a compound similar to NADH) [86].

NADH and FADH2 transfer electrons to the electron transport chain. The electron
transport chain is composed of four complexes located in the inner mitochondrial mem-
brane through which electrons flow horizontally, while pumping protons into the inter-
membrane space (Fig. 2.5). These protons are then pumped into the mitochondrial
matrix via complex V (or ATP synthase) generating 32 molecules of ATP. After the
protons flow to the matrix, they are combined with oxygen. This last process is referred
to as oxidative phosphorylation [86].

2.1.6 Mitochondrial stress test

Upon its introduction, the Seahorse XF Analyzer swiftly replaced its predecessor meth-
ods to quantify oxygen consumption rates (OCR) because it allowed real-time simulta-
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Figure 2.5: Cellular respiration. (A) During glycolysis, the first step of cellular respi-
ration, pyruvate is generated from glucose inside the cytosol. (B) Pyruvate is
imported into the mitochondria and is an input of the Krebs cycle, the second
step of cellular respiration. This in turn generates NADH, and FADH2, which are
the input of OXPHOS, the third and last step of cellular respiration. Adapted
from [71].

neous measurements of many inter-plate replicates including the automatic injection of
up to four chemical compounds [77, 80]. The standard mitochondrial stress test con-
sists of estimating OCR at three different time points at initial conditions and after the
injection of three compounds. This allows not only to estimate basal respiration but
also other five bioenergetics: ATP production, proton leak, maximal respiration, spare
capacity, and non-mitochondrial respiration (Fig. 2.6).

Under basal conditions, respiratory chain complexes I–IV use energy derived from elec-
tron transport to pump protons across the inner mitochondrial membrane. The gener-
ated proton gradient is subsequently harnessed by complex V to generate ATP. Injecting
oligomycin blocks the proton translocation through complex V, represses ATP produc-
tion, and prevents the electron transport throughout complexes I–IV due to the unex-
ploited gradient, thus, generating ATP-ase independent OCR only (Figs. 2.5 and 2.6).
The administration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP),
an ionophore, subsequently dissipates the gradient uncoupling electron transport from
complex V activity and increases oxygen consumption to a maximum level (Figs. 2.5 and
2.6). Finally, mitochondrial respiration is completely halted using rotenone, a complex
I inhibitor. There is still some remaining oxygen consumption that is independent of
electron transport chain activity (Fig. 2.6).
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Figure 2.6: Mitochondrial stress test. OCR levels (y-axis) versus time (x-axis). Injec-
tion of the three compounds oligomycin, FCCP, and rotenone delimits four time
intervals within each of which OCR is roughly constant.

2.2 Computational Background

Most of the analysis for this thesis, as well as the program OCR-Stats, were done using
the programming language R. DROP is built as a Python package using R and bash
scripts on top of the workflow management frameworks Snakemake and wBuild. R,
Python, and bash are well-known programs; therefore, in this section, I describe only
Snakemake and wBuild.

2.2.1 Snakemake

Snakemake (https://snakemake.readthedocs.io/en/stable) is a workflow manage-
ment system to create data analyses guaranteeing reproducibility, automation, and scal-
ability [108]. Snakemake workflows consist of rules that describe how to create output
files from the respective input files. These output files are created by defining instruc-
tions in shell, Python, or R code. Every time the workflow is executed, Snakemake
computes the dependencies among all scripts and data files. Then, it checks if either a
data file or a script was modified or added. If a script was added or modified, Snakemake
will execute it, together with the downstream steps. If a data file was added or modified,
Snakemake will execute any script using it, and all the downstream scripts in cascade.
Moreover, Snakemake allows the usage of multiple scheduling systems or parallel back-
ends (multi-core server or clusters under, eg., SGE or SLURM) to efficiently use HPC
systems and run executions in parallel by automatically determining parallel parts in
the workflow.
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2.2.2 wBuild

wBuild (https://wbuild.readthedocs.io) is a framework that automatically creates
Snakemake dependencies, workflow rules based on R markdown scripts and compiles
the analysis results into a navigable HTML page. All information needed such as input,
output, number of threads, and even Python code is specified in a YAML header inside
the R script file, thereby keeping code and dependencies together.
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3 Detection of RNA outliers Pipeline

The methodology, results, and figures presented in this chapter are part of the manuscript
“Detection of RNA Outliers pipeline” from Yépez et al. 2020 [2]. The author’s contribu-
tions are included in it. In short, I conceived the idea with the help of Christian Mertes
and Julien Gagneur. Christian Mertes, Michaela Müller, Ines Scheller, and Daniela
Andrade helped with the computational pipeline.

We already saw how RNA-seq is becoming increasingly used for diagnostics of genetic
diseases by detecting aberrant events. This chapter describes a protocol that I developed
to automate the preprocessing and counting of raw sequencing files and subsequent
application of the statistical methods to detect aberrant RNA events on them. I also
describe a procedure to assess the correct assignment of BAM files derived from RNA-
seq and VCF files derived from DNA sequencing from the same individual. Moreover,
I discuss whether it is possible to combine samples from different origins (e.g., cohorts,
tissues, or sequencing depths), which is a big concern for diagnostic centers venturing
into RNA-seq for diagnostics but with a low initial number of samples. I conclude with
an example of an external user who was already using RNA-seq for diagnostics, but after
adopting this pipeline was able to reduce the time for diagnostics from months to days.

3.1 Motivation

Unlike DNA sequencing with well-established pipelines to map, align, or call variants
like GATK [91] or Ensembl [100], the field of RNA-seq in diagnostics of rare disorders
is new and lacks established workflows. Therefore, each group must develop their own
tools to preprocess and analyze data in this context.

The pilot study from my group consisted of 105 fibroblast samples derived from mito-
chondrial disease patients and controls [44]. Since then, the cohort (from now on referred
to as Prokisch and fully described in section A.2.1) has increased by:

• sequencing more samples from different countries in batches of unequal sizes

• including other tissues, mostly blood

• growing samples in galactose (besides the original glucose)

• experimenting with transduced genes

• switching to a strand-specific protocol
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This motivated the creation of a flexible pipeline capable of easily integrating new
samples and handling all these groupings, while minimizing overhead. Figure 3.1 shows
the different analysis groups of the Prokisch samples. Also, as the collaborations with
other groups began to grow, the pipeline needed to be parametrizable in order to be
able to analyze independent datasets. Therefore, the pipeline was designed in such a
way that given raw sequencing files and a text file containing the locations of the files,
groupings, and other parameters, it would generate aberrant expression, splicing, and
MAE results. As such, the Detection of RNA outliers pipeline (DROP) was originated.

Figure 3.1: Number of samples on different analysis groups. “UpSet” intersection plot
where the horizontal bars represent the number of samples on each group, and
the vertical bars the size of the intersection of different groups. One of the bars
corresponds to the original Kremer et al. study. Key: gal: galactose, trans-gene:
transduced gene, fib: fibroblast, jap: Japan, ns: non-strand specific, ss: strand
specific.

3.2 Workflow

The workflow is composed of three main steps: i) preparing the input data, ii) fitting
the models and extracting the results from aberrant expression, aberrant splicing, and
mono-allelic expression (MAE), and iii) analyzing the individual results (Fig. 3.2). The
input data are BAM files, VCF files, a sample annotation table, a configuration file
containing the workflow’s parameters, a human reference genome (FASTA) file, and a
gene annotation (gtf) file. For each of the three modules, DROP generates intermediate
files (e.g., read count matrices), final results, and produces HTML pages for convenient
visualization using the framework wBuild (section 2.2.2). The modules are independent.
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Finally, users can access the objects and results in order to plot and analyze the samples
and genes of interest.

Figure 3.2: DROP overview. Diagram describing DROP’s workflow. As input, DROP
requires a configuration file, a sample annotation file, BAM files from RNA-seq,
and VCF files. DROP processes for each module the input data and generates
count tables, overview plots (e.g. sample covariation heatmap), quality control
plots, and result tables. Finally, users can perform case-by-case analyses with the
help of different visualizations. Taken from [2].

The workflow management framework Snakemake [108] is used to run and monitor
the execution of DROP. By using Snakemake, DROP ensures that the results reflect the
latest scripts and input data files while avoiding unnecessary executions of scripts lying
upstream or parallel to the modifications.

DROP was developed and tested using 100 RNA-seq and WES samples from the GEU-
VADIS project [109]. The results are available under https://www.cmm.in.tum.de/

public/paper/drop_analysis/webDir/html/drop_analysis_index.html. On this
dataset, it took around 4 h to fully run the aberrant expression module, also around
4 h for the aberrant splicing, and around 12 h for the MAE module with 20 available
CPU cores and 96 GB RAM. This performance highly depends on the dataset size,
sequencing depth, and the number of available CPU cores and RAM. DROP is pub-
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3 Detection of RNA outliers Pipeline

licly available as a Python package under https://github.com/gagneurlab/drop, and
its documentation is under https://gagneurlab-drop.readthedocs.io/en/latest/

installation.html. A screenshot of DROP’s index HTML page is found on Figure
A.2.

3.2.1 Input files

The following are the input files needed by DROP:

• BAM files from RNA-seq: The BAM files contain reads that will be used in
all of the modules to generate the read count matrices [90]. They are created by
aligning FASTA files derived from RNA-seq to a reference genome. They must
be aligned using STAR [110] with the default parameters and twopassMode =

‘Basic’ to detect novel splice junctions. The BAM files must be sorted by position
and indexed.

• VCF files from either WES or WGS: VCF files are standardized text files
containing a sample’s variants [93]. They are generated through calling variants
on a BAM file. The VCF files must be compressed and indexed. The genome build
used to align the files derived from DNA sequencing and RNA sequencing must be
the same.

• Config file: file containing different parameters in YAML format [111]. A detailed
description can be found in the DROP documentation.

• Sample annotation: table containing the samples’ information. Each row cor-
responds to a unique pair of RNA and DNA samples derived from the same in-
dividual. An RNA assay can belong to one or more DNA assays, and vice versa.
If so, they must be specified in different rows. Further instructions and examples
can be found in the DROP documentation.

• Reference genome: human reference genome (FASTA) file. It must match the
genome build of the BAM and VCF files. An index (.fai) file must be created in
the same directory where the FASTA file is located.

• Gene annotation: gene annotation (.gtf) file. The latest release from GENCODE
[88], with the right genome build (https://www.gencodegenes.org/human/) is
recommended.

3.2.2 Modules

DROP is composed of three independent modules. In each of them, BAM files are
converted into counts (either whole gene, split, non-split, and allelic). Then, these
counts are merged according to analysis groups, in which the statistical methods are
applied.
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3.2 Workflow

Figure 3.3: Files processing from individual samples to results by groups. Flow
diagram showing how the results are generated for each analysis group. First,
the counting is performed only once per sample. Afterwards, they are merged
and filtered by each group. The statistical modelling is then performed on each
group.

3.2.2.1 Aberrant expression

This module computes expression outliers from BAM files. First, reads fully overlapping
genes are counted for each sample and stored individually. Then, the counts are merged
for each gene annotation and analysis group combination. Genes with low expression are
filtered out. Afterwards, the OUTRIDER fit is run per group, which includes optimiza-
tion of the encoding dimension [5]. Finally, the results are extracted and saved as text
files (Fig. 3.4). The user can specify parameters to control the way reads are counted,
filtered out, and an FDR cutoff. If HPO-encoded phenotypes [112] were provided in the
sample annotation, a column stating whether the outlier genes overlap with the HPO
terms is included in the results table.

To visualize the counting and OUTRIDER fit, two HTML reports are generated.
The first one contains plots summarizing the number of reads counted per sample, size
factors, genes FPKM (Fragments Per Kilobase of transcript per Million) before and after
filtering, and number of expressed genes per sample. The second one contains plots
with the hyperparameter optimization search, number of expression outliers per sample,
heatmaps of the count correlation before and after correction, biological coefficient of
variation; plus the results table. The results table contains different values from the fit
for each sample-gene combination (Table 3.1).

29



3 Detection of RNA outliers Pipeline

Figure 3.4: Aberrant expression workflow. Directed acyclic graph of the Snakemake rules
constituting the aberrant expression module. The two main steps are counting
and running the OUTRIDER fit and results.

3.2.2.2 Aberrant splicing

This module computes splicing outliers from BAM files. First, reads spanning two ex-
ons are counted and stored per sample using an annotation-free algorithm (see section
A.1.1). They are then merged for each analysis group and a splice map containing all
the junctions found in the previous step is created. Reads spanning the exon-intron
boundaries from the newly created map are counted. They are merged into a FRASER
dataset object containing both types of counts. These are then transformed into the
intron-centric metrics ψ and θ, and junctions with low expression and variability are
filtered out. Finally, the FRASER fit is run which includes a search for the hyperpa-
rameters, autoencoder correction, and extraction of the results (Fig. 3.5, [6]).

To visualize the counting and FRASER fit, two HTML reports are generated. The first
one contains plots with the junction expression and variability before and after filtering.
The second one contains plots for each intron-centric metric with the hyperparameter
optimization search, number of splicing outliers per sample, and heatmaps of the logit
correlation before and after correction; plus the results table. The results table contains
different values from the fit for each sample-junction-metric combination (Table 3.2).
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sampleID hgncSymbol padjust normCounts meanCounts FC
HG00103 PKMP5 4.9e-2 100.24 36.26 2.7
HG00106 IARS 1.4e-3 3759.4 5923.7 0.63

Table 3.1: OUTRIDER results table. Extract of the OUTRIDER results table of the test
dataset showing one up and one downregulated case. normCounts correspond to
the OUTRIDER normalized counts of that sample on that gene, while meanCounts
is the mean estimate µ of the negative binomial distribution of that gene. Roughly,
dividing the first by the second gives the fold change (FC).

sampleID hgncSymbol chr start end type padjust deltaPsi
HG00103 CD48 chr1 1606559 1606559 θ 0.04 -.53
HG00106 GBP1 chr1 89519152 89520266 ψ3 4.6e-10 .34
HG00149 ARHGEF6 chrX 13561657 13562876 ψ5 .004 .54

Table 3.2: FRASER results table. Extract of the FRASER results table of the test dataset
showing one θ, one ψ3, and one ψ5 case. deltaPsi corresponds to the difference
between the observed and the expected ψ (or θ).

3.2.2.3 MAE

This module computes MAE from BAM and VCF files. First, allelic counts are generated
per each pair of VCF and BAM files belonging to the same individual. Then, the negative
binomial statistical test is performed per sample. Afterwards, the results are aggregated
by each analysis group (Fig. 3.6). It also performs a quality control check to verify the
correct assignment of DNA and RNA samples (explained on detail in the next section).

An HTML report is generated containing a boxplot with the number of SNVs that are
mono-allelically expressed and rare, and the results table. The results for each sample
contain the allelic counts, the results of the test, and the minor allele frequencies from
gnomAD (Table 3.3).

ID gene chr pos REF ALT refC altC padj altR MAF
NA1923 NOC2 chr1 887989 A G 1 32 .02 0.97 .01

Table 3.3: MAE results table. Extract of the MAE results table of the test dataset. Key:
REF: reference allele, ALT: alternative allele, refC: counts of the reference, altC:
counts of the alternative, altR: alternative allele ratio = altC/(altC+refC), MAF:
minor allele frequency.

3.2.3 DNA-RNA matching

A crucial step when performing multi-omics is to ascertain that all assays performed
on samples obtained from the same individual correspond to each other. Therefore, I
designed a procedure to match the variants derived from DNA and RNA sequencing
which is based on the ideas proposed by t’ Hoen et al. [113] and Lee et al. [114].
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Figure 3.5: Aberrant splicing workflow. Directed acyclic graph of the Snakemake rules
constituting the aberrant splicing module. The two main steps are counting the
junctions and running the FRASER fit and results.

The procedure consists of comparing the BAM files from RNA-Seq with the VCF files
from DNA sequencing at predefined genomic positions of variants that are not in linkage
disequilibrium. The proportion of variants derived from the same individual matching in
the DNA and RNA has to be significantly higher than the one from different individuals,
but will not reach 100% due to MAE and sequencing errors [113]. The procedure is
applied not only to the annotated matching samples but to all combinations in order to
find other possible unannotated matches. A file containing P = 26, 402 positions not in
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Figure 3.6: Mono-allelic expression workflow. Directed acyclic graph of the Snakemake
rules constituting the MAE module. It is composed of two parts, the first one
tests for heterozygous SNVs that are mono-allelically expressed and the second
one matches VCF with BAM files.

linkage disequilibrium is publicly available at: https://www.cmm.in.tum.de/public/

paper/drop_analysis/resource/qc_vcf_1000G.vcf.gz.
The procedure checks for each of the N VCF files for variants at those positions, thus

generating a vector xi = [0/0, 0/1, 1/1, . . . ] of size P , where 0/0 represents no variant,
0/1 heterozygous, 1/1 homozygous variant, and i = 1, . . . , N is a counter for the VCF
files (Fig. 3.7A). Then, it computes the allelic counts at those P positions using all
M BAM files, tests whether they are mono-allelically expressed, and returns a vector
yj = [NA, 0/1, 1/1, 0/0, . . . ] of size P , where 0/0 means a ratio of the alternative
allele (ratioALT) < 0.2, 1/1 that ratioALT > 0.8, 0/1 that 0.2 ≤ ratioALT ≤ 0.8, and
NA that the position was not expressed or had less than 10 reads, and j = 1, . . . , M
is a counter for the BAM files (Fig. 3.7A). Then, it counts the number of elements that
are the same for each combination of vectors xi, yj, and divides it by the length of yj
after removing missing values, thus generating an N ×M matrix (Fig. 3.7B).

The values of this matrix are then plotted in a histogram and a clear cutoff splitting
two groups should emerge. Samples with a higher value than the cutoff do match, and
with a lower value do not match. Mismatching can occur due to, for example, typos
when collecting, labeling, or transferring the samples. It is important not only to correct
them with the proposed procedure but to find the source of the errors.

3.3 Dataset design

Intuitively, samples originating from the same tissue and that were prepared and se-
quenced similarly (using the same reference genome build, aligner, and parameters)
should be analyzed as separate groups. Power analyses have suggested analyzing groups
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Figure 3.7: DNA-RNA matching algorithm. (A) Schematic showing the genotypes ob-
tained by DNA and RNA at different genomic positions. (B) Matrix containing
the percentage of matching DNA and RNA genotypes for all N DNA samples
and M RNA samples. (C) Histogram representation of the matrix in (B) for the
samples from the Prokisch dataset. A value of 0.75 separates the samples that
match with the samples that do not match.

of at least 50 samples for aberrant expression [5] and at least 30 samples for aberrant
splicing [6]. In this section, I discuss whether it is advisable to combine samples from
different cohorts if the original sample size is smaller than the minimum suggested.

One strategy is to combine samples derived from the same tissue but from another
cohort. Simulations detailed below indicate that this setting leads to an increased, yet
manageable, list of reported outliers (less than 10 fold larger in these simulations), with
no strong loss of sensitivity (less than 30%). I simulated the effect of merging RNA-
seq data from one diagnostic lab with RNA-seq data with a public resource (GTEx).
The diagnostic lab samples were the Kremer samples, which are derived from skin fi-
broblast cells [44]. GTEx samples derived from suprapubic skin were used as external
samples. The samples from both cohorts were sequenced not strand-specifically and
aligned to the hg19 genome build. To investigate the effect on calling expression out-
liers, 30 heterogeneous datasets were simulated, each with a sample size equal to the
one of the original Kremer dataset (n = 119). Each heterogeneous dataset consisted
of 102 randomly picked samples from GTEx and the 17 samples of the Kremer dataset
with a confirmed pathogenic PTV that leads to aberrant expression (probably through
nonsense-mediated decay). OUTRIDER could not correct these 30 simulated heteroge-
neous datasets as effectively as it could correct the original Kremer dataset. Suboptimal
OUTRIDER correction is evident from larger correlation values and the Kremer samples
clustering together after correction (Figs. 3.8A-D).

The number of outliers per sample of the 17 Kremer samples increased by around 8
fold in the heterogeneous setting (median of 23 outliers per sample) compared to the
original setting (median of 3 outliers per sample) using the recommended OUTRIDER
FDR cutoff of 0.05. Importantly, more than 70% of those 17 pathogenic outliers were
detected on median (Figs. 3.8E, F). With an FDR cutoff of 0.3, more than 80% of the
17 pathogenic outliers are detected, but at a cost of reporting 67 outliers in median per
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sample. Heterogeneous datasets were also simulated for investigating aberrant splicing
calling, using the 13 Kremer samples with a confirmed pathogenic splicing defect. More
than 75% of those 13 splicing pathogenic outliers were detected in the heterogeneous
datasets, at a cost of obtaining 34 outliers in median per sample, instead of 14 in the
Kremer dataset, using the recommended FRASER FDR cutoff of 0.1 (Figs. 3.9G, H).
Loosening the FDR cutoff to 0.5 did not recover more true positives (Supplementary
Figure 2e). Altogether, this analysis indicates that combining small cohorts with samples
from public resources appears to recover pathogenic aberrant expression events at enough
sensitivity and specificity to be useful for diagnostics.

Expression and splicing patterns are known to differ across tissues [115]. In order to
test the effect of combining samples from different tissues, 100 GTEx samples from whole
blood were combined with 100 samples from either suprapubic skin, skeletal muscle,
cerebellum (brain), or liver. Even though the number of expression and splicing outliers
did not increase when combining blood with other tissues with respect to blood alone,
only 50% of expression outliers and 30% of splicing outliers found in blood were recovered
in the combined datasets (Fig. 3.9). Overall, it is better not to merge samples from
different tissues.

Sequencing costs can be reduced by higher multiplexing, yielding a lower sequencing
depth per sample. To investigate the effect of sequencing depth, reads from the 17
expression true positives and 13 splicing true positives were downsampled to obtain a
sequencing depth of 30 million reads and merged them with the rest of the Kremer
dataset which has a median depth of 86 million reads (Fig. 3.10a). At a lower depth,
less expression and splicing outliers per sample were detected, retrieving 88% of the 17
pathogenic expression outliers, but only 46% of the 13 pathogenic splicing outliers (Fig.
3.10b-d). Calling splicing outliers relies on split reads which requires a higher sequence
depth than calling expression outliers. The recommendation is to have a high sequencing
depth to properly detect aberrant splicing.

Regarding strand-specific and non-strand-specific samples, it is not recommended to
merge them. Reads that overlap two genes lying on different strands will be assigned to
both genes if the sequencing was not strand-specific, while only to the correct gene if it
was strand-specific. Diagnostic labs may encounter further situations not investigated
here (e.g., merging polyA selection with ribo-depleted RNA samples, or FFPE tissues
with fresh frozen tissues). Generally, after running OUTRIDER and FRASER, the
sample correlation heatmaps should be investigated.

3.3.1 Dealing with external count matrices

To overcome the limitation of small sample sizes, DROP is able to integrate precomputed
count matrices with the local samples. These include gene-level counts for the aberrant
expression module, and split counts spanning from one exon to another, and non-split
counts covering exon-intron boundaries for the aberrant splicing module. The location
of these files is included in the sample annotation. Afterwards, a new analysis is created
for samples with matching DROP GROUP and GENE ANNOTATION columns.
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GTEx provides a count matrix with the gene counts and split counts of all its samples
under https://gtexportal.org/home/datasets. Nevertheless, it does not provide
non-split counts (necessary to compute splicing efficiency), plus the data was sequenced
non-strand specifically. Therefore, I contacted various DROP users to share their DROP-
generated count matrices. These files are standardized and ready to be used by other
DROP users. Currently, I have gathered three publicly available datasets (under https:
//github.com/gagneurlab/drop#datasets):

• 119 non-strand specific fibroblasts

• 139 strand specific fibroblasts

• 125 strand specific blood

3.4 Application to a rare disease cohort

The University of California - Los Angeles, part of the Undiagnosed Diseases Network
(UDN) began using RNA-seq to diagnose individuals with different Mendelian diseases
[116]. By implementing the ‘traditional’ approach, they were able to diagnose 7 out of
48 previously WGS negative patients [116]. This approach consists of first identifying
candidate variants via WES/WGS and then manually inspecting them in the transcrip-
tome to determine functional consequences (Fig. 3.11A). Even though effective, it has
many limitations. First, the number of potential candidates via WGS is substantially
high which leads to a long time to manually curate every possible effect. Second, it
requires the identification of candidate variants, which might be missed by WES and
even WGS. Lastly, it prioritizes known disease genes making it less suited for discovery
of novel genes.

The Baylor College of Medicine in Houston, also part of the UDN, adopted this
strategy in a rare disease cohort of 115 rare disease patients with RNA-seq derived from
blood and/or fibroblasts [4]. This led to the diagnosis of 5 out of 83 WES/WGS negative
cases. We began a collaborative work and switched the strategy to a transcriptome-
directed one (Fig. 3.11B). After setting it up, it took less than 1 day to run the aberrant
expression and splicing modules of DROP. All the five cases diagnosed via the traditional
method were found by DROP using the default cut-off parameters. On average, 3-4
aberrantly expressed genes were found per sample on both tissues. An average of 60.7
aberrantly spliced junctions per sample were found in fibroblasts, and 22.5 in blood.
Integration of variant and phenotypic information led to the diagnosis of nine affected
individuals, all with different syndromes and genes (Table 2 of ref [4]). The reasons why
they were previously missed were the following:

• deletion not covered by WES (4 cases)

• deep intronic variants not covered by WES (2 cases)

• variant in the promoter not covered by WES
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3.4 Application to a rare disease cohort

• deletion in a region with common polymorphisms

• direct splice-site variant in a gene not categorized at the moment of the first anal-
ysis (RPL13, described in ref [117])

Even though it could be argued that the last case did not need transcriptome but
simply WES reanalysis, having a small list of candidate genes with aberrant events
speeds up the reanalysis. This collaboration not only led to new diagnoses, but also
helped shaping DROP better by having direct input from an external user.

Besides this dataset, I and other people from my lab have used DROP to analyze
other cohorts (Table 3.4). In the next chapter I will describe the results obtained in
some of those cohorts with a special focus on one composed of more than 300 samples
from mitochondrial disease patients.

Cohort N Origin Observations
Mitochondrial
disease

> 700 HHZ
Samples from fibroblasts,
blood, and other tissues

Leukemia > 4000 Confidential
Analyzed in smaller sub-
groups

CAD 96 DHZ
32 individuals from 3 differ-
ent tissues

Neurological
disorders

132
MPI of Psychia-
try

Includes SCZ, BD and con-
trols

Neuropsychiatric
disease

466 CommonMind
Includes SCZ, BD and con-
trols

COVID-19 128 DECOI Split in 2 time points

Table 3.4: Disease datasets analyzed using DROP. Key: HHZ: HelmholtzZen-
trum Müenchen, CAD: coronary artery disease, DHZ: Deutsches Herzzentrum
Müenchen, MPI: Max Planck Institute, SCZ: schizophrenia, BD: bipolar disor-
der, DECOI: Deutsche COVID Initiative.
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Figure 3.8: Analysis of a combination of datasets from different centers. (A)
Heatmap of the correlation of row-centered log-transformed read counts between
samples before correction. The dataset consists of 119 fibroblast samples from
Kremer. (B) Same as (A) but after autoencoder correction. (C, D) Same as (A)
and (B) but for a dataset consisting of 17 samples from Kremer and 102 samples
from GTEx skin not-sun-exposed. (E) Number of expression outliers per sample
of the 17 true pathogenic outliers from the Kremer dataset when tested in the
original and in the combined datasets. (F) Proportion of the 17 true pathogenic
expression outliers from Kremer recovered after combining them with GTEx. Dif-
ferent FDR cutoffs used. Each dot represents 1 randomization out of 30. (G)
Same as b) but using the 13 true pathogenic splicing outliers. At an FDR cutoff
of 0.1, the median splicing outliers per sample is 14 for the Kremer dataset and
34 for the combined. (H) Same as (F) but for the 13 true pathogenic splicing
outliers.
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Figure 3.9: Analysis of a combination of different tissues. (A) Heatmap of the corre-
lation of row-centered log-transformed read counts between samples before cor-
rection. The dataset consists of 200 blood samples from GTEx. (B) Same as
(A) but after autoencoder correction. (C, D) Same as (A) and B) but for a
dataset consisting of 100 blood and 100 brain (cerebellum) samples from GTEx.
(E) Proportion of recovered outliers after fitting samples of blood alone and after
combining them with samples from skin not-sun-exposed, skeletal muscle, liver,
and brain cerebellum. Different FDR cutoffs used. (F) Same as (E) but for
splicing outliers. (G) Number of expression outliers + 1 for blood alone and
after combining it with the same tissues as (E). (H) Same as (G) but for splicing
outliers.
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Figure 3.10: Analysis of a combination of different sequencing depths. (a) Distribu-
tion of the total RNA sequencing depth of the samples from the Kremer dataset
(median 86 million reads). (b) Proportion of 17 true pathogenic expression
outliers (and 13 splicing outliers) from the Kremer dataset simulated to have a
sequencing depth of 30 million reads, recovered after combining them with the
rest of the dataset at its original depth depending on FDR cutoffs. (c) Number
of expression outlier genes per sample for the true positives in their original and
30 million read depth, using different FDR cutoffs. (d) Same as (c) but for
splicing outliers.
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3.4 Application to a rare disease cohort

Figure 3.11: Approaches of the application of RNA-seq for Mendelian disease di-
agnostic. (A) Flow diagram of the traditional approach which consists of first
obtaining (many) candidate variants via DNA sequencing and then validating
them through RNA-seq and other functional analysis. (B) Flow diagram of a
transcriptome-directed approach in which aberrant events in the transcriptome
are systematically found and integrated with the genetic results yielding very
few variants in a short amount of time. Adapted from [4].
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4 Using RNA-seq to diagnose genetic
disorders

Most of the content of this chapter is based on a study done jointly with Mirjana Gusic,
with the guidance of Julien Gagneur and Holger Prokisch. The study is yet unpublished.
Clinicians from different institutes helped to gather the data. Mirjana Gusic, Robert
Kopajtich, and Agnieszka Nadel prepared and sequenced the samples. Christian Mertes
helped to obtain and interpret the results. Nicholas Smith developed the RNA-seq variant
calling pipeline.

4.1 Motivation

The study of Kremer et al. led to the diagnose of 5 out of 48 individuals with inconclusive
WES [44]. That means that 43 remained unsolved. Afterwards, variant reprioritization
and WGS led to the diagnosis of two other samples with disease-causal genes NDUFA10
and LPIN1 (Table 4.1). NDUFA10 was found to be aberrantly expressed in one sample
which harboured a homozygous variant in the 5’UTR region that was not prioritized
at that time. Aberrant splicing analysis found an exon to be skipped in LPIN1 in one
sample. Nevertheless no variant was found by WES. WGS revealed a 2 kbp deletion
spanning the aforementioned exon.

Gene Kremer et al. status Current status
TIMMDC1 x2 Diagnosed, AS, AE Same
ALDH18A1 Diagnosed AE, MAE Same
CLPP Diagnosed, AS only AS, AE
MCOLN1 Diagnosed, borderline significant AS, AE
TAZ AS but syn var not prioritized Diagnosed
NDUFA10 AE but UTR var not prioritized Diagnosed
LPIN1 AS but no var found Diagnosed after WGS
SFXN4 – Diagnosed, AS
NDUFAF5 x2 – Diagnosed, AS

Table 4.1: Diagnoses from the Kremer et al. dataset using RNA-seq. Table showing
all the current diagnosed samples from the Kremer et al. cohort using RNA-seq.
Each row corresponds to a gene. It includes the status at the time of that study and
now. Key: AE: significant aberrant expression, AS: significant aberrant splicing,
var: variant, syn: synonymous
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The methods DESeq [50] and LeafCutter [56] were used to call expression and splicing
outliers in Kremer et al. [44]. Nevertheless, they were originally developed to detect
differential expression and alternative splicing, respectively. That motivated my lab
to develop the specialized methods OUTRIDER and FRASER (Fig. 1.5). OUTRIDER
detected aberrant expression in the genes MCOLN1 and CLPP, for which, using DESeq,
were borderline significant and not significant in their respective samples (Table 4.1).
Moreover, FRASER found aberrant splicing in the genes SFXN4 and NDUFAF5 in
two cases, and was the reason TAZ was reprioritized, which later led to their diagnosis
(Table 4.1).

4.2 Results

4.2.1 Cohort description

Since Kremer et al., not only new methods were developed, but also the cohort of
affected individuals grew from 105 to 309 (full description in section A.2.1). 170 samples
were sequenced strand-specifically and the rest non-strand specifically. All individuals
underwent WES analyses, which was inconclusive in 217 (70%) of the cases. On top
of detecting aberrant expression, splicing, and MAE, we developed a pipeline to call
variants in RNA-seq data (Fig. 1.4). This approach led to the genetic diagnosis of 33
cases, which represents 15% of the WES-undiagnosed (Fig. 4.2, Table 4.2). Candidate
disease-genes were identified in 13 individuals (6% of the unsolved) (Fig. 4.2). Candidate
genes are defined as known disease genes matching the symptoms of the individual, but
without a clear genetic diagnosis, or yet undescribed disease genes with identified loss-
of-function variants.

4.2.2 Aberrant expression analysis

After counting the reads fully overlapping genes, 13,990 genes passed the filter in the
strand-specific cohort and 14,265 in the non-strand-specific one. This includes more
than 65% of OMIM genes and 90% of the mitochondrial-disease genes for both technolo-
gies. Aberrant expression was detected using OUTRIDER [5], which yielded a handful
(median=4) of aberrantly expressed genes (Fig. 4.3A).

33% of underexpression outliers are associated to a rare variant, which is a significantly
higher proportion than for overexpression and non-outliers, indicative of a causative
relation (Fig. 4.3B). The depleted transcripts are, as expected, enriched in protein-
truncating variants (PTVs), as illustrated in Fig. 4.3C. A study by GTEx was able to
associate only 2% of outliers to a rare stop variant [118], while in our cohort we observe
12%. This could be due to our more precise method to obtain outliers or that our cohort
is composed of affected individuals, while GTEx of healthy post-mortem donors.

Stratifying expression outliers by gene categories revealed a depletion of loss-of-function
intolerant genes for both over and underexpression outliers (Fig. 4.3D), in agreement with
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Figure 4.1: The (un)predictable effect of variants assessed by RNA-seq. (A) Sum-
mary of variants and their effect on transcript that enabled establishing a genetic
diagnosis in five cases from the pioneer study [44]. (B) Same as (A), but for the
33 currently solved samples. It also shows a candidate variant that was discarded
after not observing a splice defect.

the findings from GTEx [119]. In addition, mitochondrial disease genes are enriched with
underexpression outliers, reflecting the initial clinical diagnosis.

Out of the solved cases with an RNA-defect, 82% were pinpointed as expression out-
liers (Fig. 4.2). Outlier detection supporting the identification of a causative variant
is illustrated in the case of a boy with neonatal-onset leukodystrophy, nystagmus, and
hearing impairment (ID: AF6383). Initial WES analysis was inconclusive, upon which
RNA-seq was performed. UFM1 (MIM: 610553) was identified among 11 downregulated
genes (Fig. 4.3E), a ubiquitin-like protein whose depletion has been associated with hy-
pomyelinating leukodystrophy [120], a phenotype also observed in our individual. The
expression of this gene is the lowest in this sample across the whole cohort (fold change
-40% wrt the median, Fig. 4.3F). Reinspection of WES revealed an initially overseen
3-bp homozygous deletion in the promoter region (c.-273-271delTCA). This pathogenic
ClinVar variant has been described to significantly reduce promoter and transcriptional
activity [120]. This case exemplifies how the detection of aberrant expression enables
the reprioritization of variants located in the poorly defined genomic regions.

More than 660 genes are described as haploinsufficient in humans [121, 122]. In neu-
rodevelopmental disorders, de novo variants are often found in haploinsufficient genes,
or regulatory elements [123, 124]. In three samples from our cohort, a de novo het-
erozygous PTV, with a dominant effect, was found in MEPCE (MIM: 611478) [125],
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Figure 4.2: RNA-seq defects across cases. Number of RNA-seq defects detected via
the three strategies found in samples solved by WES only, RNA-seq, and on
candidates.

SON (MIM: 182465), and CHD1 (MIM: 602118). These genes were called as outliers
with fold changes of 0.56, 0.61, and 0.64, respectively, all above the median of 0.54 for
underexpression outliers. This shows that OUTRIDER is sensitive enough to identify
half regulation as aberrant, which can lead to establishing diagnosis of an autosomal
dominant disease.

4.2.3 Aberrant splicing analysis

Aberrant splicing was detected using FRASER [6], which yielded a median of 23 genes
with at least one aberrantly spliced junction per sample (Fig. 4.4A).

Similar to expression outliers, splicing outliers are enriched in rare variants (Fig. 4.4B).
Further exploring this association, we expectedly observed an enrichment of splice site
variants (in line with studies from GTEx [101, 118]) but also of coding and intronic
variants (Fig. 4.4C). This sheds light on the role of deep intronic variants as splicing
regulators. Variants located more than 100 bp away are becoming more and more
recognized as causes of disease, commonly leading to the inclusion of a cryptic exon due
to the activation of non-canonical splice sites [126].

After stratifying the splicing outlier events by gene classes (Fig. 4.4D), we see an
enrichment of collagen genes. These genes are known to be of increased molecular
diversity, due to the use of two promoters and alternative splicing in a developmental-
stage or cell-type-specific manner [127, 128]. This class of genes has a median of 54 exons,
compared to the median of 18 exons of all expressed genes, making them more susceptible
to alternative splicing. Indeed, genes with more exons than the 95 percentile have an
enrichment of aberrant splicing, while genes with fewer exons than the 5 percentile show
less aberrant splicing. Splicing outliers are also enriched in underexpression outliers.
Aberrant splicing creates isoforms that disrupt the ORF, leading to the introduction
of a premature termination codon and ultimately transcript degradation by nonsense-
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Figure 4.3: Aberrant expression summary. (A) Distribution of expression outliers per
sample. Green and magenta represent overexpression and underexpression out-
liers, respectively, in this and the rest of panels. (B) Proportion of expression
outliers (y-axis) associated with a rare variant. (C) Same as (B), but stratified
by variant classes. (D) Observed over expected number of expression outliers on
different gene categories. Error bars represent 95% confidence intervals of a bi-
nomial test. (E) Gene-level significance (− log10(P ), y-axis) versus Z-score, with
the gene UFM1 among the expression outliers (red dots) of sample AF6383. (F)
Expression of UFM1 shown as normalized counts ranked across all samples, with
the lowest expression in sample AF6383. (G) Schematic depiction of the 3 bp
deletion in the UTR of UFM1. Figure not shown at genomic scale.

mediated decay (NMD) [49]. Around 35% of alternative splicing events create premature
termination codons [129].

Aberrant splicing was proven causative in 19 cases, 13 of them in combination with
an expression defect (Fig. 4.2). We showcase how aberrant splicing detection helped
find the disease causal variant of a male patient with early-onset acute liver failure (ID:
113015R). Initial WES analysis failed to yield any candidate genes, after which RNA-
seq was performed. The gene TWNK (MIM: 60675) was the most promising candidate
among 16 splicing outliers due its function. It encodes for the twinkle mtDNA helicase,
the single DNA helicase used during the mtDNA replication, and synthesis of the nascent
D-loop strands [130]. Numerous pathogenic variants have been described in it, causing,
among others, a hepatocerebral type of the mtDNA depletion syndrome [131]. FRASER
detected a significant deviation from the canonical junction usage of the first intron (Figs.
4.4E,F). 80% of the second exon was truncated by its first 62 nucleotides leading to a
frameshift and premature termination codon (Fig. 4.4G). This led to TWNK to also
be an expression outlier (FC: -60%). Reanalysis of WES revealed a rare homozygous
synonymous variant in the second exon (c.1302C>G, p.Ser434Ser) that was initially
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Figure 4.4: Aberrant splicing summary. (A) Distribution of splicing outliers per sample,
combined and stratified by intron-centric metrics. Purple represents combined
splicing outliers in this and the rest of panels. (B) Proportion of genes which
either were or not a splicing outlier (y-axis) associated with a rare variant. (C)
Same as (B), but stratified by variant classes. (D) Observed over expected num-
ber of splicing outliers on different gene categories. Error bars represent 95%
confidence intervals of a binomial test. (E) Gene-level significance (− log1 0(P ),
y-axis) versus effect, (observed minus expected ψ5, x-axis) for the alternative
splice donor usage in sample 113015R with TWNK among the outliers (in red).
(F) Intron split-read counts (y-axis) against the total donor split-read cover-
age for the first intron of TWNK. (G) Schematic depiction of the c.1302C>G
variant and its consequence on the RNA level and splicing with the premature
terminating codon in red. Figure not shown at genomic scale.

not prioritized. Although the variant does not affect the amino acid composition, it
is positioned 4 nucleotides upstream of the novel splice acceptor site and predicted to
alternate the exonic splicing enhancer [132]. Interestingly, this novel splice junction was
detected at much lower ratios in other control samples, suggesting a normally occurring
leaky splicing. This case exemplifies emerging reports that link synonymous variants to
human diseases and various regulatory processes [133].

4.2.4 Mono-allelic expression analysis

RNA reads assigned to all heterozygous SNVs were counted and subsetted to include
only those with at least 10 counts. This yielded a median of 7,062 SNVs per sample
(Fig. 4.5A). MAE was tested using the negative binomial test described in Kremer et
al. [44]. As expected, MAE is more frequent towards the reference (median = 330) than
towards the alternative allele (median = 82). Subsetting to rare variants yields a median
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of 51 mono-allelic events towards the reference allele and 3 towards the alternative, a
manageable number to follow-up (Fig. 4.5A).

Figure 4.5: Mono-allelic expression summary. (A) Distribution of heterozygous SNVs
per sample for different filtering steps. Heterozygous SNVs detected by WES
with an RNA-seq coverage of at least 10 reads, where MAE is detected, where
MAE of the reference is detected, where MAE of the alternative is detected, and
subsetted for rare variants. (B) Proportion of variants (either rare or common)
that cause MAE of either the alternative or reference allele. (C) Same as (B),
but stratified by variant classes. Frameshift variants are not included as MAE
is called on heterozygous SNVs. (D) Observed over expected number of MAE
events on different gene categories. Error bars represent 95% confidence intervals
of a binomial test. (E) Fold change between alternative (ALT+1) and reference
(REF+1) allele read counts for the sample 103170R compared to the total read
counts per SNV within the sample. In darker tones the rare variants among which
is the disease-causal one. (F) Schematic depiction of the 6.6 kb deletion and the
c.290A>G NFU1 variant and their consequence on the RNA level. Figure not
shown at genomic scale.

I set out to explore whether MAE is more pronounced in rare or in common variants.
17% of rare variants are mono-allelically expressed compared to 6% of common ones (Fig.
4B), in line with a study from GTEx [101]. In both scenarios, MAE of the reference
allele is more frequent than of the alternative one. Nevertheless, this difference increases
from a 3 fold change in common variants, to a fold change of 13 in rare ones (Fig. 4.5B).
Stratifying by class reveals that PTVs exhibit a higher MAE of the reference allele than
the rest of variants but, surprisingly, so do non-coding ones (Fig. 4.5C).

I then focused on gene classes across MAE events (Fig. 4.5D). The highest enrichment
of MAE of rare variants is in underexpression outliers. As expected, there was also
enrichment of MAE in imprinted genes and genes on the X-chromosome, where MAE
is a well-described epigenetic regulatory mechanism [134, 135]. Enrichment of the HLA
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group of genes reflects their origin in the most polymorphic region of the human genome,
which, as expected, only exists in common but not rare variants causing MAE [136].

Detection of MAE helped diagnosing four samples, all in combination with aberrant
expression (Fig. 4.2). One of those is a 13-year old boy with a severe Leigh disease and
complex I deficiency (ID: 103170R). The initial WES analysis was negative. Among
76 aberrant transcriptome events, the gene NFU1 (MIM:608100) was pinpointed as the
most promising to cause the disease. NFU1 encodes for an iron-sulfur cluster scaf-
fold that facilitates their insertion into the subunits of the respiratory chain complexes
[137, 138]. Patients harboring pathogenic biallelic NFU1 variants can present with early-
onset failure to thrive, pulmonary hypertension, encephalopathy, and neurological regres-
sion [139]. MAE analysis found that this sample harbored a mono-allelically expressed
missense variant (c.290A>G (p.Val91Ala)) not previously reported (Figs. 4.5E,F). More-
over, NFU1 was detected as an expression outlier, with a fold change of -40% compared
to the median, confirming the half-regulation. WGS was performed in order to elucidate
the genetic cause of the second allele depletion. This revealed a 6.6 kbp heterozygous
deletion spanning the complete exon 6 (Fig. 4.5G). Segregation analysis revealed that
the missense variant was inherited from the father and the deletion from the mother.
Altogether, this case is a model example of the implementation of different omics tools
to establish a genetic diagnosis.

4.2.5 RNA-seq variant calling

Transcriptome variant discovery can serve as a complementary approach to WES as it
can provide information about UTRs and intronic regions that are usually not covered
by exome-capturing kits [140]. This approach was used to diagnose a sample with a rare
muscular disorder whose variant in the 5’ UTR was not detected by WES [46]. Therefore,
we decided to call variants in our RNA-Seq data following GATK’s best practices [91].
Precision-recall analyses were performed using variants called on WGS and RNA-Seq
on GTEx samples derived from suprapubic skin. The best precision-recall balance was
obtained when excluding regions that have ≥ 3 variants within a 35 bp window, and
variants with less than 3 reads supporting the alternative allele (Fig. A.4). This yielded
a median of 44,183 variants per sample, in comparison to a median of 63,632 variants
called by WES (Fig. 4.6A).

First, I set out to explore whether the variants discovered on the transcriptome differed
substantially from those detected by WES. More variants are called in RNA-seq data
than in WES in the intergenic and the 3’ UTR region (Fig. 4.6B). Moreover, variants
missed by WES are called in RNA-seq data in each region, even coding (Fig. 4.6B),
indicating that RNA-seq can help overcome technical limitations in the detection of
certain variants by WES. Afterwards, I counted the genes that did not pass the bi-allelic
rare variant filter after WES but did pass after combining the WES and RNA-seq variant
calls. A total of 123 mitochondrial disease genes passed this filter (Fig. 4.6C).

RNA-seq variant calling identified the causative variant in nine cases missed by WES,
all deep intronic (Table 4.2). Although these variants could have been detected by
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Figure 4.6: Aberrant expression summary. (A) Number of variants called by WES and
RNA-seq in total and stratified by variant classes. (B) Proportion of variants
called only by WES, only by RNA-seq, and by both technologies, in total and
stratified by variant classes. (C) Distribution of genes that pass the bi-allelic
variant filter after integration of RNA-seq and WES variant calls, but which did
not pass it with WES only. (D) Schematic depiction of the c.2T>C and c.223-
907A>G variants and their consequence on the RNA level with an out-of-frame
ATG in green, and a cryptic exon with the PTC in red, on the gene NDUFAF5.
Figure not shown at genomic scale.

WGS, only one variant present in two cases (NDUFAF5, c.223-907A>C) was previously
reported and could thus be annotated without RNA-seq based validation [141].

One of those two cases was a female patient that presented a mitochondrial disorder
early in infancy, complex I deficiency, general deterioration, and failure to thrive. WES
identified an unreported start-loss heterozygous variant (c.2T>C) in the complex I as-
sembly factor NDUFAF5 (MIM: 612360). This variant disrupts the start codon, with
the next available ATG out-of-frame at position c.30. Pathogenic variants in NDUFAF5
have been associated with an early-onset mitochondrial complex I deficiency, character-
ized by developmental delay, failure to thrive, hypotonia, and seizures [142]. RNA-seq
variant calling revealed an additional, rare intronic variant c.223-907A>C inside the
cryptic exon present in 28% of the transcript (Fig. 4.6D). This 258-nt cryptic exon is in
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frame with exon 1, leading to an extension of the ORF with 31 amino acids before en-
countering a stop codon (Fig. 4.6D). The variant is absent from gnomAD but has been
described in a single patient, resulting in the same aberrant splicing as this case [141].
As stated above, the intronic variant also proved causative in another RNA-seq solved
case from our cohort, where it is in trans with a heterozygous frameshift c.604-605insA.

4.2.6 Overall overview

In diagnostic settings, the value of RNA-seq lies in the functional assessment of often un-
predictable effect of variants (Fig. 4.1), leading to their validation and (re)prioritization.
Although the effect of PTVs is self-evident, if unreported, its functional validation is
necessary before assigning its pathogenicity. Among our cohort, RNA-seq was used to
validate the effect of four PTVs which were not previously described as pathogenic (Fig.
4.1, Table 4.2). Moreover, it was used to discard a rare homozygous splice site variant
in the gene BUB1 (MIM: 602452) as a WES candidate as it did not alter splicing (Fig.
4.7A). Strikingly, as little as 8% of genes with homozygous variants in the direct splice
site did not exhibit any transcript defect, highlighting the need for RNA-seq analysis.

Figure 4.7: Additional cases. (A) Sashimi plot presenting normal splicing on the gene
BUB1 in spite of a homozygous variant in the direct splice-site (B) Schematic de-
piction of the complex pattern of aberrant splicing of MRPL44 in sample 96993R
due to a homozygous splice region variant. (C) Gene expression as gene-level sig-
nificance (−log10(P ), y-axis) versus Z-score, with the causal gene LIG3 among
the expression outliers (red dots), as well as 10 genes encoded by the mtDNA.

Additionally, RNA-seq can be used to quantify different transcript isoforms, especially
useful in cases of aberrant splicing with a complex pattern. This is demonstrated in a case
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with a homozygous splice region variant in the gene MRPL44 (MIM: 611849), leading to
transcript depletion and three alternative isoforms with a premature terminating codon
on each (Fig. 4.7B).

RNA-seq can also help elucidate the consequence of a gene defect on a cellular tran-
scriptome. For example, compound heterozygous variants in the gene LIG3 (MIM:
600940), encoding for DNA ligase III, are affecting the transcript and are disease-causal
in one of our cases (Table 4.2). Apart from pinpointing LIG3 itself, OUTRIDER also
reported significant downregulation of ten mtDNA-encoded genes (Fig. 4.7C), which is
a consequence of disrupted LIG3-dependent mtDNA maintenance.

Finally, out of the 92 WES-diagnosed cases, 29 contained at least one rare PTV. A
transcript defect was detected in 22 out of those 29 cases (Fig. A.3). In two of the seven
cases without a transcript defect, the causal genes were not expressed in fibroblasts.
Other two cases which were solved with the same gene (TXNIP, MIM: 606599) had a
very low fold change (0.1 and 0.22), but the gene had a very high dispersion, which led
to the cases not to be called as outliers. In the last three cases, the PTVs are located
in regions that could escape NMD. In the first one, the PTV is in the first exon, which
decreases the NMD efficiency [143]. The second case is a compound heterozygous of
two frameshift variants, one of which is in the last exon. The third case has a rare
homozygous stop variant 54 bp upstream of the last exon-exon junction, barely passing
the 50 bp rule of escaping NMD [144]. These examples show that the effect of pathogenic
variants need not be captured as aberrant on the transcript level.

4.2.7 Analysis of expressed genes

The samples from the described cohort were derived from fibroblasts. Nevertheless,
more (mitochondrial disease) genes could be expressed on another tissues making them
more useful. I assessed the impact of source material by comparing the gene expression
of different disease categories across 49 tissues from healthy donors from GTEx [115].
Focusing on mitochondrial diseases, all tissues apart from blood express more than 90%
of mitochondrial disease genes, giving the clinicians freedom of choice for the tissue of
investigation (Fig. 4.8A). On the contrary, neurological and neuromuscular disease genes
are expressed higher in the brain and muscle (Fig. 4.8A), respectively, suggesting the
investigation of the affected tissues for such conditions.

Although the RNA-seq scientific community can greatly benefit from the existence of
large, publicly available datasets across multiple tissues and organs, such as GTEx, in the
diagnostic setting clinicians and researchers are usually restricted to clinically-accessible
tissues (CATs) [145]. For that reason, I next focused on blood, lymphocytes, muscle, and
fibroblasts. The majority of disease-genes are expressed in these CATs, and skin-derived
fibroblasts are the most suitable CAT across different disease categories (Fig. 4.8B). This
is consistent with Murdock et al. [4], where fibroblasts express a higher proportion of
disease associated genes than blood in 15 out of 16 categories. Although muscle stands
as the best tissue for the investigation of neuromuscular diseases (Fig. 4.8B), for genetic
diagnosis of other diseases a combination with another CAT is recommended. Similarly
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Figure 4.8: Tissue-specific gene expression. (A) Heatmap showing the proportion of
expressed genes from different categories across all tissues from GTEx. (B) Pro-
portion of expressed genes from different categories in clinical accessible tissues
plus a combination of them. B: blood, F: fibroblasts, L: lymphocytes, M: muscle.

for blood, it should be combined with muscle or fibroblasts, or alternatively to perform
RNA-seq on isolated lymphocytes to increase the power of its transcriptome.

4.3 Aberrant expression analysis in COVID-19 patients

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged and began
to spread at the end of 2019 causing a disease now called COVID-19 [146]. It, most likely,
originated in bats and was transmitted to humans through yet unknown intermediary
animals in Wuhan, China [147]. As of September 19, 2020, there have been 30’369,778
confirmed cases and 948,795 deaths worldwide [148]. Many (perhaps most) of the affected
are asymptomatic [146]. It is more severe in adults, and it is the cause of 10% of all
the deceases in adults older than 40 years (Fig. 4.9A). It is also more severe in people
suffering from comorbidites such as diabetes, hypertension, cancer, or chronic obstructive
pulmonary disease [149] (Fig. 4.9B). Therefore, it is rare that young people without
known comorbidities become severely affected by the virus.

Besides the aforementioned comorbidities, we are interested in investigating whether
there are genetic predispositions to severe COVID-19. For that purpose, we gathered a
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Figure 4.9: Age and comorbidities predispose the impact of SARS-CoV-2. (A)
COVID-19-related deaths among all deaths in United States in the period
01.02.2020 - 05.09.2020 on different age groups. Data from ref [148] (B) Co-
morbidities significantly associated with SARS-CoV-2 impact. HR: hazard ratio,
adjusted with age and smoking status. Taken from ref [149].

set of 106 human RNA-seq samples, out of which 96 were affected by COVID-19 and
10 were unaffected controls. The dataset is fully described in section A.2.2. From these
samples, 79 passed quality control. Running OUTRIDER and FRASER on them led
to a total of 30 expression and 1,043 splicing outliers (Figs. 4.10A,B). The autoencoder
was able to remove the sample covariation (from, e.g., sex, hospital, and affected status,
Figs. 4.10C,D).

Aberrant expression analysis revealed that patient ID: 9109, a 64 year-old male, had 2
underexpression outliers (Fig. 4.11A). One was an antisense gene and the other one gene
PDK3 with a -70% fold change in normalized expression (Figs. 4.11A,B). The protein
encoded by this gene provides the primary link between glycolysis and Krebs cycle. It is
associated with abnormal gait due to lower limb muscle weakness and atrophy [150]. No
variant was found in his transcriptome. Muscle weakness can affect the muscles asso-
ciated with breathing. Many individuals suffering from muscular dystrophy eventually
need to use a breathing assistance device, with respiratory failure being the main cause
of death [151]. Therefore, individuals with (or susceptible to) muscle disorders are likely
to be more severely affected by COVID-19.

Aberrant splicing analysis revealed that patient ID:9088 had one splicing defect (Figs.
4.11C,D). It consisted in skipping exon 9 (out of 10) in half of the reads in the gene
TOR1AIP1 (Fig. 4.11E). Out of the 79 samples, only this showed this exon skipping
event (Fig. 4.11D). This gene is associated with muscular dystrophy [152], making it a
potential candidate. A very poorly covered variant was found in the donor site which
requires further confirmation. We found other splicing outliers in genes potentially
related to the severity of COVID-19, but are not discussed here.

These promising results encourage us to gather more clinical information to better
understand the pathways in which the candidate genes are involved, as well as more
transcriptome data to better model gene expression and obtain new findings.
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4 Using RNA-seq to diagnose genetic disorders

Figure 4.10: Aberrant expression and splicing analysis in a COVID-19 cohort. (A)
Number of expression outliers per sample. (B) Number of splicing outliers per
sample split by metric. (C) Heatmap of the correlation of row-centered log-
transformed read counts between samples before correction. Samples cluster
by origin. (D) Same as (C) but for normalized counts, where the correlation
disappears.
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4.3 Aberrant expression analysis in COVID-19 patients

N Causal gene Var. consequence Reason WES-neg. RNA conclusion
1-3 TIMMDC1 x3 intron (homo) Var not det. AE, AS, RVC
4 CLPP mis (homo) VUS AE, AS
5 NDUFA10 5’UTR (homo) VUS AE
6 MCOLN1 stop; intron Intronic not prior. AE, AS
7 NDUFAF5 fs; intron Intronic not det. AE, RVC
8 LPIN1 del (homo) Del not det. AS
9 TAZ syn (homo) VUS AS
10 ALDH18A1 stop; mis Mis VUS AE, MAE
11 SFXN4 fs; splice Splice not annot. AE, AS, MAE
12 NDUFS4 fs (homo) FS in last exon AE
13 SLC25A42 splice (homo) Var not annot. AS
14 MRPL44 splice region (homo) VUS AE, AS
15 NDUFAF5 start loss; intron Intronic not det. AS, RVC
16 UFM1 promoter (homo) VUS AE
17 PEX1 fs; intron Intronic not det. AE, RVC
18 NDUFA10 5UTR (homo) VUS AE
19 LIG3 stop; intron Intronic not det. AE, RVC
20 C19orf70 fs; intron Intronic not prior. AE, AS
21 MRPL38 mis; 5UTR VUS AE
22 DARS2 splice; intron Intron not prior. AS
23 NFU1 mis; del Del not det. AE, MAE
24 SLC25A4 splice (homo) Var not annot. AE
25 TWNK syn (homo) VUS AE, AS
26 DLD mis; splice Splice not annot. AS
27 MEPCE stop (dom) Var not annot. AE
28 RRM2B mis; intron Intronic not prior. AE, MAE
29 NAXE intron (homo) Var not prior. AE, AS
30 DLD mis Only 1 var AE, MAE
31 MRPS30 intron (homo) Var not det. AE, AS, RVC
32 MRPS25 intron (homo) Var not prior. AE, AS
33 UQCRFS1 splice (homo) Var not annot. AE, AS

Table 4.2: All solved cases with RNA-seq. Table showing all the samples diagnosed via
RNA-seq. It includes the reason why they were not solved via WES and how
RNA-seq contributed to solving them. det: detected, prior: prioritized, annot:
annotated as pathogenic, homo: homozygous, syn: synonymous, fs: frameshift,
dom: dominant, mis: missense, RVC: variant called via RNA-seq.
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4 Using RNA-seq to diagnose genetic disorders

Figure 4.11: Expression and splicing outliers in COVID-19 samples. (A) Gene-level
significance (− log10 P , y-axis) versus Z-score, with PDK3 among expression
outliers (red dots) of sample 9109. (B) Expression of PDK3 shown as nor-
malized counts ranked across all samples, with the lowest expression in 9109.
(C) Gene-level significance (− log10 P , y-axis) versus effect (observed minus ex-
pected ψ3, x-axis) for the alternative splice donor usage in sample 9088 with
TOR1AIP1 among the outliers (in red). (D) Intron split-read counts (y-axis)
against the total acceptor split-read coverage for the last canonical junction of
TOR1AIP1, showing how all the samples use it fully, except for 9088 who only
uses half of it. (E) Sashimi plot showing the exon skipping in half of the reads
of the affected sample 9088 and an unaffected control with canonical splicing.
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5 Statistical testing and application of
OCR

In the Introduction, I described the Seahorse technology to measure oxygen consumption
rates (OCR). Then, I discussed how although many procedures were written describing
it, they mostly addressed experimental aspects instead of data analysis. This chapter
describes OCR-stats, the statistical method I developed to robustly determine OCR
levels and test between samples. It includes best practices of how to seed cells and the
minimum number of well and plate replicates to obtain confident results. The chapter
ends which an application of how different functional assays including cellular respiration
were used to characterize UQCRFS1 as a new disease gene.

5.1 OCR-stats

The methodology, results, and figures presented in this section are part of the manuscript
“OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration ac-
tivities using Seahorse XF Analyzer” from Yépez et al. 2018 [1].

5.1.1 Motivation

As we saw in the Background, the mitochondrial stress test allows us to measure 6
different bioenergetics in 96-well plates at various consecutive time points. Nevertheless,
the sole definition of bioenergetic measures varies between authors, as well as the number
of time points in each interval (usually three time points, but in some cases one [153],
two [154], or four or more [155]), and whether differences [71, 156], ratios [157, 158], or
both [84, 85] should be computed. Consequently, the comparison of results across studies
is difficult. Moreover, statistical power analyses for experimental design are often not
provided. The differences in OCR between biological samples (e.g. patient vs. control,
or gene knockout vs. WT) can be as low as 12%–30% [159, 160, 161]. Therefore, to
design experiments with appropriate power to significantly detect such differences, it is
important to know the source and amplitude of the variation within each sample and to
reduce it as much as possible.

A large dataset of 126 mitochondrial stress tests in 96-well plates was generated by
my collaborators from the Helmholtz Zentrum. They included 203 different fibroblast
cell lines, from which 26 were seeded in more than one plate (Table S1 of ref [1]).
Between 3 and 7 biological samples per plate (median = 4) were seeded. A control
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cell line (normal human dermo fibroblast - NHDF) was seeded in all the plates for the
assessment of potential systematic plate effects. The large number of between-plate and
within-plate replicates allowed to statistically characterize the nature and magnitude of
systematic and random variations in these data. Moreover, the samples and controls
seeded on multiple plates allowed to develop a statistical test that considers the inter-
plate variation. Finally, positive and negative controls from individuals known to have
mitochondrial respiratory defects allowed to benchmark OCR-Stats against the method
proposed by Seahorse.

5.1.2 Estimating OCRs within plates

Before beginning with the analysis, wells were discarded on two bases. First, contami-
nated wells and wells in which the cells got detached were discarded (461 wells, 4.94%).
Second, wells for which the median OCR level did not follow the expected order, namely,
median[OCR(Int 3)] > median[OCR(Int 1)] > median[OCR(Int 2)] > median[OCR(Int
4)], were discarded (977 wells, 10.47%).

A typical curve reflecting the mitochondrial stress test is shown in Figure 5.1A. OCRs
are relatively constant within each time interval, which are created after the injection of
a compound. Nevertheless, when applied to real data, it looks more complicated (Fig.
5.1B). First, outlier data points occurred frequently. Two different types of outliers were
identified: entire series for a well (e.g., well G5) and individual data points (e.g., well
B6 at time point 6). In the latter case, eliminating the entire series for well B6 would
be too restrictive and result in the loss of data from the other 11 valid time points.

Second, systematic and random variations were found to be multiplicative by noticing
a proportional dependence of OCR value and standard deviation between replicates (Fig.
5.1B). Unequal variance can strongly affect the validity of statistical tests and the robust-
ness of estimations. This motivated transforming OCR into the logarithmic scale, where
the dependence between the variance and the mean disappears (Figs. 5.1C-D). This
led to establishing bioenergetic measures based on differences in the logarithmic scale
(that translates into ratios and proportions in the natural scale): ETC-dependent OC
proportion, ATPase-dependent OC proportion, ETC-dependent proportion of ATPase-
independent OC, and maximal over initial OC fold change (Table 5.1).

Third, systematic effects in OCR between wells are evident (e.g., OCR values of well
C6 are among the highest, while OCR values of well B5 are among the lowest at all the
time points in Figure 5.1). Variations in cell number, initial conditions, treatment con-
centrations, or fluorophore sleeve calibration can lead to systematic differences between
wells, referred from now on as well effects. Correction for cell number has been shown
to reduce the well effect [153] and is recommended by the manufacturer. As expected,
there is a significant positive correlation between the median OCR of each time interval
and cell number (Spearman’s ρ ∈ [.32− .47], P < 2.2×10−16 on all intervals, Fig. A.5A).
However, the relationship is not perfect, reflecting important additional sources of varia-
tions and also possible noise in measuring the cell number. Strikingly, dividing OCR by
cell count led to a significantly higher coefficient of variation (standard deviation divided
by the mean) between the replicate wells than without that correction (Fig. A.5B). This
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5.1 OCR-stats

Figure 5.1: OCR behaviour over time. (A) Cartoon illustration of OCR levels (y-axis)
versus time (x-axis) after the injection of three compounds. (B) Typical time
series replicates inside a plate. Behavior of OCR of Fibro-VY-017 over time.
Colors indicate the row and shape the column inside the plate of 12 well replicates.
Variation increases for larger OCR values, OCR has a systematic well effect,
and there are two types of outliers: well-level and single-point. (C) Scatterplot
of standard deviation (y-axis) vs. mean (x-axis) OCR across the three time
replicates of each interval, well, and plate of NHDF showing a positive correlation
(n = 409). (D) Same as (C) but for the logarithm of OCR, where the correlation
disappears. Adapted from [1].

analysis showed that normalization by the division of raw cell counts is insufficient and
motivated to derive another method to capture well effects.

These insights helped shaping a statistical model for OCR within plates. For a given
plate, the logarithm of OCR yw,t of well w at time point t = 1, . . . , 12 is modelled as a
sum of time interval effects, well effects, and noise, i.e.:

yw,t = θb(w),I(t) + βw + εw,t (5.1)

where θb(w),I(t) is the time interval effect of the biological sample in well w in the
interval I(t) = 1, . . . , 4 of time point t (Fig. 5.1A), βw is the relative effect of well w
compared to the reference well, and εw,t is the error. This log linear model is then

fitted using the least squares method, thus obtaining the estimates θ̂b(w),I(t). Afterwards,
outliers are removed as described in the next section. Note that the well effect is modeled
independently for each plate, that is, it corresponds to the effect of a well of a given
plate and not to the effect of a well position shared across plates.
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OCR ratios Abbr. Metric Analogous
ETC-dependent OCR prop. E/I- prop. 1− exp(θEi− θI) Basal respiration
ATPase-dependent OCR
prop.

A/I- prop. 1− exp(θAi− θI)
ATP-linked respi-
ration

ETC-dependent prop. of
ATPase-indep. prop.

E/Ai-
prop.

1−exp(θEi−θAi) Proton leak

Maximal over initial OCR
FC

M/I FC exp(θM − θI)
Spare respiratory
capacity

ETC-dependent OCR prop. M/Ei FC exp(θM − θEi)
Maximal respira-
tion

Not defined as ratio NA NA
Non-mito respira-
tion

Table 5.1: OCR ratios definitions and metrics. Proposed definitions for cellular bioen-
ergetics based on ratios, their abbreviations, equations to compute them, and
analogous measures used in the literature.

5.1.3 Outlier detection

First, well-level outliers are detected using the average magnitude of their residuals.
For each sample s and well w, the mean is computed across time points of its squared
residuals: sw := meant(ε

2
w,t), thus, obtaining a vector s. Outlier wells are those whose

sw > median(s) + 5mad(s), where mad, median absolute deviation, is a robust estima-
tion of the standard deviation (Fig. 5.2A). Deviations by 5 mad from the median were
sufficiently selective in practice. Wells found as outliers are removed and the estimates
θ̂ are recomputed from the remaining wells. This procedure is then iterated until no
more well-level outliers are found. It required eight iterations until no more outliers
were found in all cell lines. Around 16.5% of all the wells were found to be outliers (Fig.
5.2B).

Afterwards, single point outliers are identified using the magnitude of their residuals.
Specifically, data points whose ε2w,t > mediant(ε

2
w,t)+7madt(ε

2
w,t) are classified as outliers

and removed (Fig. 5.2C). This is also an iterative process. It required 19 iterations until
no more single point outliers were found in all cell lines. Around 6.1% of single points
were found to be outliers (Fig. 5.2D).

5.1.4 Inter and intraplate variations

After estimating robust OCR values for each interval, I studied their variation within
and between plates. On the natural scale, it is clear that the interplate variation is
larger (Fig. 5.3A). To compute the intraplate variation, the standard deviation of the
log OCR across all the wells for each plate and interval using only the controls NDHF
is computed. The coefficients of variation in the natural scale are approximated by
taking the exponential of the median across plates of these standard deviations. For
the interplate variation, the median of the log OCR across wells is computed for each
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Figure 5.2: Outlier detection. (A) Number of wells (y-axis) identified as outliers on each
iteration (x-axis). (B) Mean (per well) squared errors distribution for cell line
Fibro-VY-014. Wells beyond the dashed red line (median + 5*MAD) are rec-
ognized as well-level outliers. (C,D) Same as (A) and (B) but for single-point
outliers and cell line Fibro-VY-076. Adapted from [1].

plate and interval using only the controls NHDF. The coefficients of variation are the
exponential of the standard deviation of these medians. As expected, the interplate
variation was higher on all time intervals (Fig. 5.3B).

Variations between plates can arise, for example, due to differences in temperature,
seeding time, growth time, growth medium, or sensor cartridge [71]. Moreover, treat-
ment efficiencies can also vary between plates, but independently from each other. For
example, the concentration of rotenone may differ in one plate. That would affect the
OCR measurements of all the wells on that plate, but only in time interval 4. Next, I
investigated whether the assumption of systematic plate-interval effects held. Indeed,
both biological samples on plate 20140430 have an increase in OCR in interval 1 with
respect to plate 20140428 (Fig. 5.3C). To test whether this tendency held across all the
repeated biological samples, I compared all the replicate pairings with their respective
NHDF controls and found a positive correlation in all the time intervals (Fig. 5.3D),
suggesting a plate-interval effect. These observations show the importance of basing
conclusions from observations across multiple plates and for seeding a control cell line
on every plate.
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Figure 5.3: Intra and interplate variation analysis. (A) Distribution of the OCR in
time interval 3 (x-axis) of NHDF seeded in 5 randomly selected plates (y-axis)
reflecting that the variation between is larger than within. Red line: mean of
OCR across all plates. (B) Coefficient of variation between and within plates of
each time interval. (C) Log of OCR in interval 3 (y-axis) for the cell lines #65126
and NHDF (x-axis), which were seeded in two different plates The similar increase
in OCR from plate 20140128 to 20140430 in both biological samples suggests that
there is a systematic plate-interval effect. (D) Scatterplots of the differences of
the log OCR levels of all possible 2 by 2 combinations of repeated biological
samples across experiments (y-axis) against their respective controls (NHDF)
(x-axis) showing that there is a positive correlation, confirming a systematic
plate-interval effect (n=63). Adapted from [1].

5.1.5 Statistical testing of OCR

This section describes how to test the difference in OCR ratios between two biological
samples across multiple plates. Since there is a remaining systematic effect across in-
tervals at the plate level (Fig. 5.3D) and because of the plate-interval effects, ratios of
OCR levels are used (Table 5.2). Subsequently, for any given OCR ratio (e.g., M/Ei-fold
change), the differences of the OCR log-ratios of a biological sample b versus a control
c are tested using the following linear model:

∆∆θb,p = µb + εb,p (5.2)
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where ∆∆θb,p is one OCR log-ratio difference of interest inside a plate p. This model is
fitted over the complete dataset using linear regression, thus obtaining one value µ̂b per
OCR ratio and biological sample b. Then, it is tested against the null hypothesis µb = 0
to compute p-values and confidence intervals. Fitting this linear model over the complete
dataset gives a robust estimate of the standard deviation of the error term. Applying
this approach, no evidence against the normality and homoscedasticity assumption of
OCR-Stats was found, as the quantile-quantile plots of the residuals aligned well along
the diagonal (Fig. A.6).

OCR ratios Tested differences ∆∆θ
E/I proportion (θI,b − θEi,b)− (θI,c − θEi,c)
A/I proportion (θI,b − θAi,b)− (θI,c − θAi,c)

E/Ai proportion (θAi,b − θEi,b)− (θAi,c − θEi,c)
M/I fold change (θM,b − θI,b)− (θM,c − θI,c)

M/Ei fold change (θM,b − θEi,b)− (θM,c − θEi,c)

Table 5.2: OCR ratio-based differences for statistical testing. Differences ∆∆θ to be
used when testing a biological sample b against a control c on each plate, for each
OCR ratio.

5.1.6 Benchmark

OCR-Stats was benchmarked against the Extreme Differences (ED) method (see Ap-
pendix), which is the default one suggested by Seahorse. OCR-stats statistical testing,
ED plus Wilcoxon test within each plate (within-plate ED), and ED plus Wilcoxon test
across plates (across-plate ED) were applied on 26 cell lines seeded in more than one
plate to obtain the M/Ei-fold change and maximal respiration (MR). Six of these cell
lines (#65126, #67375, #76065, #61818, #67333, #73804) are derived from patients
with rare variants in genes associated with an established cellular respiratory defect,
allowing the assessment of the statistical power of each approach. Additionally, two
cell lines (#73901 and #91410) repeatedly showed no significant respiratory defects in
earlier studies and served as negative controls.

The within-plate ED method reported significantly higher or lower MR for 56 out
of 69 (81.2%) biological samples with respect to the control (Fig. 5.4A). Moreover, the
within-plate ED method reported one or more significant differences for all the 26 cell
lines, and one or more non-significant differences for 11 cell lines (Fig. 5.4B). For two cell
lines, the within-plate ED method returned significant differences with opposite signs
(cell lines #78661, #83109, Fig. 5.4B). These ambiguous results show the importance
of testing using multiple plates and suggest the need for a more robust approach than
the within-plate ED. One approach to evaluate samples measured in multiple plates
is to perform a Wilcoxon test on the ED values averaged per plate (across-plate ED).
However, this requires at least five plate replicates in order to obtain significant results.
Here, one cell line only, #78661, was found to have significantly impaired OCR in this

65



5 Statistical testing and application of OCR

way. For these data, OCR-Stats was much more conservative than within-plate ED and
found only 7 out of 26 (26.9%) cell lines to have aggregated significantly lower M/Ei-
fold change than the control, including all six positive control cell lines (Figs. 5.4A,B).
Moreover, OCR-Stats did not report significant M/Ei-fold changes for the two negative
controls.

Figure 5.4: Benchmark of OCR-stats. (A) Ratio of M/Ei-fold change (y-axis) of all the
cell lines repeated across plates (x-axis) and their respective controls, sorted by
P -value obtained using OCR-Stats. Left of the red dashed line are cell lines with
significantly lower M/Ei-fold change using OCR-Stats. Dots in orange represent
biological samples with significantly lower or higher M/Ei-fold change using the
ED method. Highlighted positive (+) and negative (-) controls. (B) Similar
to (A), but depicting the p-value in logarithmic scale (y-axis) using OCR-Stats.
Red dashed line at P = 0.05. Dots in red represent cell lines with significantly
lower M/Ei-fold change using the OCR-Stats method (C) Coefficient of variation
of replicates across experiments (n = 26) using different methods (x-axis) to
estimate the six bioenergetic measures. In all, except for Spare Capacity, OCR-
Stats with plate-interval effect showed significantly lower variation with respect
to the Extreme Differences method. P -values obtained from a one-sided paired
Wilcoxon test. Adapted from [1].

Furthermore, I computed the coefficient of variation of the six bioenergetic measures
in the natural scale of all the repeated biological samples across plates for the following
methods: i) ED, ii) the log-linear (LL) corresponding to steps 1 and 2 of the OCR-
Stats algorithm, iii) complete OCR-Stats (LL + outlier removal), and iv) OCR-Stats
after correcting for plate effect (OCR-PE). Each step contributed to a decrease in the
coefficient of variation, obtaining final significant reductions of 45% and 29% in basal
and maximal respiration, respectively, from plate-corrected OCR-Stats (OCR-PE) with
respect to ED (P < 0.012, one-sided Wilcoxon test, Fig. 5.4C). Taken together, these
results show that OCR-Stats successfully identifies and decreases the variation within
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and between plates, providing more stable testing results, which translates into fewer
false positives.

5.1.7 Power analysis

Afterwards, the statistical power of OCR-Stats was investigated in this dataset to de-
termine the minimum relative differences that the method is able to significantly detect,
and the minimal number of well replicates needed. The number of wells of the repeated
biological samples were subsetted to 4, 6, 8, 10, 12, 14, and 16 on each plate, after which
the OCR-Stats algorithm and statistical testing were applied to obtain the residuals εb,p
and their standard deviation (Fig. 5.5). These were converted to detectable differences
using the following equation:

exp (1.96
sd(εb,p)√

n
)− 1 (5.3)

Assuming three plates per comparison and 16 wells per plate, these standard devi-
ations allow detecting relative differences of 10% to 15% depending on the considered
log OCR ratios differences for a significance level of 5% (Fig. 5.5, right y-axis). Rela-
tive differences of 10% to 15% are in line with reported detected variations which are
as low as 12% to 30% [159, 160, 161]. This analysis also suggests to seed at least 12
wells per biological sample per plate, since increased standard deviations of the residuals
for numbers of wells smaller than 12 are observed. This power calculation is based on
measurements performed in the Helmholtz Zentrum Munich only. Other laboratories
might have larger or smaller measurement variations. Nonetheless, this procedure could
be used as a guideline for power calculation.

5.1.8 Other normalization considerations

The same number of cells were seeded in all the wells from all the assays the assays
described here. Hence, the variations across wells observed in the cell number at the
end of the experiments are largely overestimated by noise in the measurements. In
other experimental settings in which different numbers of cells are seeded, an offset term
to the model in Eq. 5.1 should be included equal to the logarithm of the seeded cell
number to control for this variation by design. In addition, the Seahorse XF Analyzer
can be used on isolated mitochondria and on isolated enzymes, where a normalization
approach is to divide OCR by mitochondrial proteins or enzyme concentration [80].
However, as described here for cellular assays, robust normalization procedures require
careful analysis.

5.2 Application of OCR-stats

This section is based on the publication by Gusic et al. [3], in which I was involved.
After receiving the OCR measurements from Mirjana Gusic, I performed the statistical
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Figure 5.5: Power analysis. Standard deviation of the residuals from the model in Eq.
5.2 (left y-axis) against the number of wells per biological sample and per plate
(x-axis) for each OCR log-ratio difference. The right y-axis corresponds to the
minimal detectable relative differences using three plates at a 5% significance
level. The 10 data points correspond to random samplings without replacement
of the wells per biological sample and per plate. Adapted from [1].

analysis, plotting, and interpretation of the results. The patients’ clinical and genetic
backgrounds were taken from the publication.

5.2.1 Background

Respiratory chain complex III (CIII), also known as ubiquinol cytochrome c oxidoreduc-
tase, is an enzyme composed of 11 subunits, one encoded by mt-DNA and 10 by nuclear
genes [62]. It is part of the electron transport chain where it passes electrons from co-
enzyme Q to cytochrome c and pumps protons into the mitochondrial matrix [62]. It
harbours three electron-transferring proteins: cytochromes b and c1, and an iron-sulfur
(Fe-S) center [62]. UQCRFS1 (ubiquinol-cytochrome c reductase, Rieske iron-sulfur
polypeptide 1) encodes for the latter. The gene consists of only two exons. The protein
UQCRFS1 is encoded in the cytosol and then imported into the mitochondrial matrix.
Isolated CIII deficiencies are among the least frequently diagnosed mitochondrial dis-
orders, and when found, they are associated with heterogeneous clinical presentations
[62, 162].
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5.2.2 Patients’ description

The study consisted of reporting two cases of unrelated male children with low CIII
activity in fibroblasts, lactic acidosis, fetal bradycardia, hypertrophic cardiomyopathy,
and hair loss. Patient 1 (P1) was the first child of consanguineous parents, born at
term by emergency Caesarean section due to fetal bradycardia. Among his symptoms
at birth were hypothermia, borderline thrombocytopenia, elevated creatine kinase lev-
els, elevated lactate, hearing impairment, and right ventricle hypertrophy. At day 13
this hypertrophic cardiomyopathy had progressed, which eventually led to his decease
at the age of 3.5 months. Patient 2 (P2) is the second child of healthy unrelated par-
ents. The elder brother is also healthy. He was born on the 37th week of gestation by
Caesarean section due to fetal bradycardia. Postnatal symptoms included hypertrophic
cardiomyopathy, ventricular septal defect, persistent fetal circulation, lactic acidosis,
thrombocytopenia, and severe normochromic anemia. The boy’s condition stabilized,
and he was able to walk independently at 23 months of age. Also, language and cognitive
development were adequate for his age. Now, at the age of 9, he displays slightly im-
paired gross and fine motor skills, reduced muscle strength, but normal walking ability.
Clinical and biochemical data suggested a mitochondrial disorder with the autosomal
recessive mode of inheritance.

To elucidate the genetic causes of their diseases, WES was performed on both pa-
tients. The first was performed at the Technical University of Munich, and the second
at the Charité Universitätsmedizin Berlin. The cases were connected via the portal Gen-
eMatcher, a portal designed to connect researchers from around the world who share
an interest in the same gene(s) [163]. On both patients, no likely pathogenic variants
in genes already associated with mitochondrial diseases were identified. The search
spectrum broadened to include all genes that encode a mitochondrial protein, and then
promising variants in the gene UQCRFS1 were identified in both patients. On Patient
1, a rare, homozygous variant was found in the splice-acceptor site (c.251-1G>C). Seg-
regation analysis revealed both parents to be heterozygous carriers of the variant (Fig.
5.6). On Patient 2, two rare heterozygous variants (c.41T>A missense, c.610C>T stop)
were found. Segregation analysis revealed that the mother carries the missense and the
father the stop (Fig. 5.6). The elder brother carries the stop only. All variants affect
highly conserved regions and are absent from gnomAD.

As neither variant was previously reported and the gene had not been associated with
a disease, functional validation is required to establish their pathogenicity and diagnosis.

5.2.3 Using functional assays to validate the genetic findings

OCRs were measured and tested in order to validate the gene’s pathogenicity. Four
96-well plates were seeded with fibroblasts from both patients, a control (NHDF), and
“rescued” samples. Each cell line was seeded in at least two plates, in around 20 wells
per plate. The “rescued” samples were generated by inserting a wild-type cDNA of
UQCRSFS1 into a vector and delivered into the patients’ fibroblasts by lentiviral trans-
duction, as described in ref. [44]. Then, the mitochondrial stress test was performed on
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Figure 5.6: Family pedigrees. (A) Pedigree of family 1 showing how the patient inherited
a splice acceptor variant from each parent. (B) Pedigree of family 2 showing
how the patient inherited a heterozygous variant from each parent at different
positions. Adapted from [3].

them. Figure 5.7 shows the raw data of one of the four plates (the other ones are in the
Appendix, Fig. A.7).

P1 and P2 have lower raw OCRs than the control, and the transduced assays increase
the OCRs on both samples. However, raw values can be confounded by different effects.
For example, cell number measurements were highly variable for the same sample be-
tween wells of the same plate, but mostly, across plates (Fig. 5.8). Moreover, the cell
number of the controls is higher than that of the patients on most plates. An unequal
variance of OCR across the different time intervals is also evident (Fig. 5.8). This
suggests the need for a method that controls for cell number and other multiplicative
effects.

Applying OCR-Stats on these data shows how the maximal over ETC-independent
OCR (M/Ei) fold change is significantly lower for both patients with respect to the
control. When transducing the samples with a healthy copy of UQCRFS1, both their
M/Ei ratios significantly raised, suggesting that the rescue assay worked (Fig. 5.9).
Finally, as the lentiviral transduction overexpresses the wild type, it is expected that
the OCR is even M/Ei than the controls, which is indeed the case (Fig. 5.9).

Other functional assays were also performed to help further validate the gene and the
variants and obtained the following:

• strongly reduced UQCRFS1 on both probands (lower on Patient 1), but not of
other mitochondrial proteins.

• strongly reduced CIII activity (lower on Patient 1), but not ATP synthase (or
complex V) on both probands.

• strong reduction of UQCRFS1 protein inside the mitochondria. Lentiviral trans-
duction of UQCRFS1 in the fibroblasts of Patient 2 restored normal localization.

5.2.4 Using gene expression to validate the genetic findings

RNA-seq was performed on Patient 1 with ID 127289R. As the homozygous variant of
Patient 1 is in the direct acceptor site, it is hypothesized to cause a splicing defect (Figs.

70



5.2 Application of OCR-stats

Figure 5.7: OCR behaviour over time. OCR at different time points following the mito-
chondrial stress test for both patients, a control (NHDF), and both patients with
a WT copy of UQCRFS1 transduced (-T-).

5.10A, B). Indeed, the split reads land 30 bp downstream of the canonical acceptor,
leading to a truncation of the second exon (Fig. 5.10C).

I tested if the alternative splicing in this junction is significant using FRASER and
found that indeed it is among the 14 splicing outliers in this sample, and it is the only
sample in the whole cohort that is not using the canonical acceptor site (Figs. 5.11A,
B). The exon truncation led to the sample being also detected as an expression outlier
with a fold change of 0.47 with respect to the median of all the samples (Figs. 5.11C,
D).
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Figure 5.8: Cell number of samples across different plates. Each dot corresponds
to one well. Number of cells (measured using CyQUANT) per well measured
after the mitochondrial stress test was performed. The initial number of seeded
cells is 20,000.

Figure 5.9: Ratio of in M/Ei fold change between samples. Ratio of maximal over
ETC-independent OCR (M/Ei) between samples. Each dot represents a compar-
ison between samples inside the same plate. In red, tests that are significantly
deviated from 1.
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Figure 5.10: Genotype and splicing pattern of Patient 1. (A) WES coverage of sample
127289R showing both exons of gene UQCRFS1. The gene, which is transcribed
in the negative strand, is depicted below. (B) Acceptor site region of the second
exon showing the homozygous variant in the direct acceptor site. (C) Sashimi
plot of sample 127289R and two representative controls. The controls use the
annotated acceptor site, while the affected sample has an alternative 5’ acceptor
site 30 bp downstream.
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Figure 5.11: Aberrant expression and splicing of Patient 1. (A) Gene-level signifi-
cance (− log10 P , y-axis) versus effect (observed minus expected ψ5, x-axis) for
the alternative splice donor usage in sample 127289R with UQCRFS1 being
the most striking outlier (in red). (B) Intron split-read counts (y-axis) against
the total donor split-read coverage for the first intron of UQCRFS1. (C) Vol-
cano plot of sample 127289R showing gene expression as gene-level significance
(− log10 P , y-axis) versus Z-score, with UQCRFS1 among expression outliers
(red dots). (D) Expression of UQCRFS1 shown as normalized counts ranked
across all samples, with the lowest expression in sample 127289R.
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6.1 Conclusion

WES and WGS have accelerated the diagnostics of known genetic disorders, plus led to
the discovery of new diseases and disease-causal genes. Nevertheless, the rates of new
discoveries are stalling, while at the same time not all individuals receive a diagnosis.
This opened the road for functional assays such as RNA-seq and cellular respiration
to become a complementary companion and increase diagnostic rates. In this thesis, I
present a workflow

I developed DROP, end-to-end workflow composed of three independent modules
to detect aberrant expression, splicing, and mono-allelic expression to support RNA
sequencing-based diagnostics. The workflow includes preprocessing of raw sequencing
files, quality control steps, and the state-of-the-art statistical methods to compute out-
liers. It outputs results tables containing the outliers of each module plus webpage
reports. By leveraging parallel computing infrastructures, results from cohorts of hun-
dreds of samples can be obtained in a few days. DROP is available online and its
implementation by external users has already led to diagnoses.

I addressed the issue of combining samples from different origins. Large sample sizes
(at least 50 per analysis group) are required to properly detect expression outliers. Using
samples from affected individuals and controls from GTEx, I showed that it is possible
to combine samples from different cohorts as long as they were sequenced and processed
in the same manner and originated from the same tissue. Hence, combining different
tissues is not recommended. The input of DROP can either be raw sequencing files,
external count matrices, or a combination of both. Using publicly available data to
boost the effective cohort size will allow centers to venture into RNA sequencing for
diagnostics with a low number of samples. Additionally, I showed that fibroblasts are a
good clinically accessible tissue as most disease genes are expressed there and provide
guidance on how to a priori investigate which tissue expresses the highest amount of
genes of interest.

In the datasets that I have analyzed, the median number of expression outliers rarely
surpasses five per sample. These expression outliers should be interpreted according
to their fold changes. A strong down-regulation (fold-changes < 0.2) probably implies
impaired gene function. Fold-changes of weaker amplitudes should further be investi-
gated. In particular, a fold-change of 0.5 often reflects the loss of expression of one
allele. Inspecting the MAE results may further reveal mono-allelic expression of a rare
variant harbored by the other allele. Similarly, among the different analyzed datasets,
the median number of aberrantly spliced genes per sample is around 25. These aber-
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rant splicing events should be visualized as sashimi plots to detect the nature of the
mis-splicing. The next step is to search for splice-site and splice-region variants that
can explain the defect. However, other variants such as synonymous and deep intronic,
have also been described to activate new splice sites potentially originating from cryptic
exons.

I showcased how to use RNA-seq in interpreting variants in a cohort of 309 individuals
affected with a rare mitochondrial disorder. Analyzing the cohort using DROP and
calling variants in RNA-seq led to the diagnosis of 33 individuals, which represents
15% of the 217 WES-unsolved cases. RNA-seq variant calling was deemed very useful
as it helped identify the disease-causal intronic variants missed by WES in 9 out of
the 33 solved cases. An enrichment of protein-truncating variants was found in both
underexpression and splicing outliers, in agreement with a similar study done by the
GTEx consortium. In addition, loss-of-function intolerant genes were depleted with
expression outliers but mitochondrial disease genes were enriched.

Mitochondrial studies using extracellular fluxes, specifically the XF Analyzer from
Seahorse, are gaining popularity and are finding their way into diagnostics; therefore, it is
of paramount importance to have an appropriate statistical method to estimate the OCR
levels from the raw data. I have developed such a model, the OCR-Stats algorithm, which
includes approaches to control for well and plate-interval effects, and automatic outlier
identification. I demonstrated that OCR comparisons should be performed using ratios
rather than using differences and that the cell lines must be seeded on the same plate, as
this eliminates sources of variation like cell number and well positional and plate-interval
effects. I introduced a linear model, the OCR-Stats statistical testing, and showed
that the results agree with previous results of patients diagnosed with mitochondrial
disorders. The variation in differences of OCR log-ratios for the same biological sample
across plates is large and, consequently, samples should be seeded in multiple plates.
Power analyses showed that OCR-stats can detect relative differences of 10% - 15% and
that the minimum number of well replicates per biological sample in a 96-well plate
should be 12. Different benchmarks showed that OCR-stats outperforms other methods
by reducing the coefficient of variation of the OCR estimates across replicates, and
validating all samples with a confirmed mitochondrial defect. Cellular respiration was
used as another source of functional validation to confirm the pathogenicity of a gene in
two unrelated individuals suffering from a mitochondrial disorder.

6.2 Discussion

With decreasing costs of sequencing, WES, and eventually WGS, are expected to be
adopted in routine diagnostics. For example, the NHS in England plans to increase
the provision of WGS-based diagnostics from 8,000 to 30,000 samples per month start-
ing 2020 [164]. With more readily sequencing plus integration with other omics and
functional assays, the future of diagnostics of rare disorders seems optimistic. In fact,
the goals of the International Rare Diseases Research Consortium until 2027 are quite
promising [165]:
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1. all patients coming to medical attention with a suspected rare disease will be
diagnosed within 1 year if their disorder is known in the medical literature; all
currently undiagnosable individuals will enter a globally coordinated diagnostic
and research pipeline

2. 1,000 new therapies for rare diseases will be approved

3. methodologies will be developed to assess the impact of diagnoses and therapies
on rare disease patient

Nevertheless, there are still some clinical challenges that need to be improved [11]:

• non-specific clinical presentations (e.g., developmental delay)

• ultra-rare and unrecognized genetic diseases

• lack of ontology encompassing the complete spectrum of human phenotypes

• inconsistent, multidisciplinary approaches to patient evaluation

• inability to account for and compare age-specific or population-specific disease
presentations

• standardization of data-sharing (e.g. for drug development, gene matching)

• biological insight into the function of most genes

• expertise in the analysis of non-coding variants

This thesis aimed at tackling some of them by providing robust methods and pipelines
to compute expression outliers, creating standard count matrices to share across cohorts,
and showcasing how RNA-seq can be used to interpret (non-coding) variants.

Integration of other omics
RNA-seq for diagnostics has its limitations. One of them is the gene of interest not

being expressed in the probed tissue. Another one is that not all disease-causal variants
(e.g. missense) affect the transcript. Proteomics can be used to identify protein-level
changes brought about by these (missense) variants that affect protein stability or post-
translational modifications [47]. Our collaborators from the Helmholtz Zentrum have
begun using large-scale proteomics on the Prokisch dataset described in this thesis which
has led to clarifying the pathological consequence of missense variants. This could give
rise to the development of a statistical method that jointly models gene expression with
protein intensities.

Metabolomics can also be used in diagnostics as they are likely to be very close to the
phenotype [47]. The Undiagnosed Diseases Network (UDN) in the United States has
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incorporated metabolomics to DNA sequencing and has obtained an overall diagnostic
rate of 35% among 382 rare disorder patients with a complete clinical evaluation [12].

Growth of genome assemblies and databases
Better assembly of reference genomes will help to increase the effectiveness of both

DNA and RNA-seq in diagnostics. For DNA, a more precise assembly can help to assign
the right consequence to a variant. This, combined with better variant-effect predictive
models will also help prioritization. Regarding RNA, using a newer version to count
genes (#29 instead of #19) of the annotation provided by Gencode [88] led to 5% more
of OMIM genes being detected in the Prokisch dataset.

Improvements and updates to variant databases like ClinVar or gnomAD are also of
extreme importance. By 2016, the predecessor of gnomAD, the Exome Aggregation
Consortium (ExAC), had gathered WES from over 60,000 individuals of diverse an-
cestries to compute allele frequencies [166]. These frequencies were adopted to define
rare variants. Since then, it has duplicated the number of WES and, more importantly,
now includes more than 15,000 WGS [97]. This led to a higher number of estimated
allele frequencies, especially in intronic regions. Gathering more samples from different
ethnicities will make these frequencies more accurate and cover more genomic positions.

A meta-analysis on ClinVar showed that in the period between May 2016 and Septem-
ber 2017, 179,432 new variants were added to ClinVar [167]. Moreover, 7,615 variants
changed classification, in all possible combinations between pathogenic, benign, VUS,
and conflicting interpretations [167]. Yang et al. tested the classification of the variants
and concluded that 0.5% of ClinVar classifications are erroneous [168]. Nevertheless,
they also show that this misclassification rate is decreasing over time, reflecting a better
understanding of pathogenicity and large sequencing efforts [168].

Extension to common diseases
RNA-seq has been applied to cohorts of rare disorders by calling outliers that can lead

to finding rare variants. Its application in a similar fashion to common diseases remain.
Unlike rare diseases, common diseases are usually caused by a combination of variants
across multiple genes [169]. For example, schizophrenia pathology is hypothesized to be
driven by the interplay of many common and rare genetic variants that act in concert
in neural cell populations [170]. In collaboration with the Max Planck Institute of
Psychiatry, we have analyzed RNA-seq samples derived from individuals suffering from
schizophrenia and bipolar disorder. We found an enrichment of neurodevelopmental
disease genes [17] among the expression outliers, but interpretation and validation of
these results are still pending.

Aberrations in the genome like mutations and karyotype changes are the direct genetic
causes of leukemia and other types of cancer. Common driver mutations in leukemia
have been identified [171]. Yet, rare driver mutations and their pathological mechanism
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are not well understood [171, 172]. Our autoencoder approach to detect outliers accounts
for gene co-expression and focuses on detecting strong effects, which, in this context, can
lead to detecting the driver mutations. In this respect, we have begun analyzing a cohort
of more than 4,000 blood samples derived from individuals suffering from leukemia.

Potential role of on-coding RNAs

Generally, non-protein-coding RNAs (ncRNAs) are discarded by standard WES anal-
yses as potential disease-causal genes. Nevertheless, some have been found to play
critical roles in various biological processes and their dysfunctions have been associated
with a wide range of diseases [173, 174]. For example, recently, nine ncRNAS have
emerged as potent regulators of mitochondrial metabolism [175]. Among them, ncRNA
LINC00116 was found to interact with several complexes to influence mitochondrial
membrane potential, respiration, Ca2+ retention capacity, ROS, and supercomplex lev-
els [176]. Inspired by these cases, on a project not mentioned in this thesis, I correlated
the gene expression of ncRNAs with that of mitochondrial localized genes [177] and
mitochondrial disease genes and oxygen consumption rates from the Prokisch cohort.
LINC00493, later renamed SMIM26, had the highest correlation suggesting a potential
mitochondrial-related function. On-going research on the function of ncRNAs will likely
lead to discovering their roles in disease.

Other uses of RNA-seq

RNA-seq data can be used in diagnostics for other two purposes not discussed in this
thesis. The first one is variant phasing. Due to splicing, variants can be phased over
longer distances than WES or WGS. Phasing is useful in the clinical setting by allowing
to distinguish between compound heterozygotes from variants on the same allele [178].
Variant phasing can greatly be benefited from longer RNA reads. The second one is
gene fusion. Gene fusion happens when, due to chromosomal translocation, inversion,
deletion, or duplication, genetic material from different genes are merged and transcribed
together. Even though gene fusion has been used more extensively in cancer [179, 180],
it has also been recently applied to diagnose patients with congenital [181] and rare
diseases [182]. The integration of these and other tools as DROP modules could be
considered in the future.

All the RNA-seq data presented in this thesis came from bulk RNA-seq. Single-cell
RNA-seq (scRNA-seq) data can help to identify cell-type-specific outliers, especially due
to differentially expressed genes. Statistical methods and software to detect aberrant
expression on scRNA-seq data have already been carried by my lab with promising
results. These could later be introduced as a new module in DROP.
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Data standardization
BAM and VCF files have established themselves as optimal file formats to store se-

quencing and variant data, respectively. This has enabled the easy sharing between
collaborators and the application of the same tools to access or process them. Neverthe-
less, publicly sharing them is usually not straightforward because they contain variant
data. Count matrices do not contain variant data, making them easier to share. How-
ever, for count data, there is still not one global file format. In this thesis, I have tackled
this problem in three ways. First, by designing DROP to allow the user to export the
gene-level, split, and non-split counts (section 2.1.3) in a standard format, alongside
metadata describing the cohort. Second, by designing DROP to be able to take as in-
put these standardized matrices alongside BAM files. Third, by gathering and sharing
three datasets, each of >100 samples, online for download via Zenodo. Research centres
around the world have already used this functionality which will hopefully help them
diagnose cases.

Future of DROP
One of the goals of this thesis was to build a scalable pipeline able to handle hundreds

of RNA-seq samples. The modifications in the pipeline allowed FRASER to handle
up to 900 samples. Nevertheless, it is still not able to handle thousands. Also, the
exact sample size limits of both OUTRIDER and FRASER have not been tested. It
is important to increase the performance and capacity of both methods as cohorts are
expected to grow. Also, GATK’s function to perform the allelic counts [91] takes around
2 h per sample on variants derived from WES, which translates into around 16 h on
variants derived from WGS. Further adaptations to DROP can be made to subset the
WGS to expressed genes or exonic regions before counting.

We plan to establish a community of researchers and clinicians that use RNA-seq for
diagnostics. DROP has already been improved with feedback from external users. A
community will further help to shape DROP to the user’s requirements. Moreover, it
will boost count data sharing.

Finding the right tissue
Gonorazky et al. transformed fibroblasts into myoblasts which better reflected the

muscle transcriptome and led to detecting aberrant splicing events missed by fibroblasts
or blood [46]. Another approach could be to reprogram accessible cells into induced
pluripotent stem cells, where as many as 27,046 genes are expressed [183]. However, such
procedures are more laborious, expensive, and time-consuming than simply extracting
blood.

The usefulness of each tissue to detect the causal aberration needs to be further inves-
tigated. In this thesis, I discussed the percentage of different groups of genes expressed
in various tissues. A study from GTEx comparing the outliers across tissues found that
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only 5% of expression outliers and 8% of splicing outliers are reproduced across the
different tissues [118]. A systematic aberrant expression and splicing analysis across
various tissues from affected samples needs to be carried to determine in which tissues
the causal aberration was detected. For example, in Murdock et al., 6 solved cases were
sequenced both in fibroblasts and blood. RNA-seq from blood failed to identify the
causative defect in half, while none were missed with fibroblasts [4].
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A.1 Appendix: Additional Methods

A.1.1 Counting reads

Counting reads that are paired with mates from the opposite strands (singleEnd =

FALSE) was performed using the summarizeOverlaps function from the GenomicAlign-
ments package [184]. Only reads that fall completely within an exon or span two exons
from the same gene via splicing were considered (mode = intersectionStrict). Reads
that overlap more than one feature were assigned to each of those features instead of
being removed (inter.feature = FALSE). Genes with a 95th percentile FPKM < 1 were
considered to be not sufficiently expressed and filtered out. The used reference genome
was the GRCh37 primary assembly, release 29, of the GENCODE project [185] which
contains 60,829 genes.

Split reads are counted using the summarizeJunctions function from the Genom-
icAlignments package [184], and non-split reads overlapping splice sites are counted
using the featureCounts function from the Rsubread package [186]. Then, they are
converted into the intron-centric metrics percent-spliced-in and splicing efficiency [103].
Afterwards, introns with less than 20 reads in all samples and introns for which the total
number of reads at the donor and acceptor splice site is zero in more than 95% of the
samples are filtered out.

In order to get the allelic counts, first, VCF files from either WES or WGS are subset-
ted to obtain only SNVs using the view command from bcftools [93]. Then, the allelic
counting is performed using the ASEReadCounter function from GATK [91]. A negative
binomial test is applied to the reads using the DESeq2 package [106] fixing the dispersion
parameter to 0.05 as done in Kremer et al. [44].

A.1.2 Obtaining set of positions not in linkage disequilibrium

In order to obtain a set of positions not in linkage disequilibrium, all the variants from
the samples in the test dataset were pooled and subsetted to consider only the ones
in autosomal chromosomes that are not in linkage disequilibrium using the function
snpgdsLDpruning from the R/Bioconductor package SNPRelate [187]. Applying a link-
age disequilibrium threshold of 0.2, we obtained a set of P = 26, 402 variants and their
genomic positions.
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A.1.3 Variant calling in RNA-seq

Variants were called on RNA-Seq data using GATK best practices for RNAseq short vari-
ant discovery (https://gatk.broadinstitute.org/hc/RNAseq-short-variant-discovery-SNPs-Indels-).
Variants with a ratio of quality to depth of coverage < 2, that were strand biased (Phred
scaled fisher exact score > 30), or belonging to a SNP cluster (if 3 or more SNPs are
found within a 35 base window) were filtered out, as suggested by GATK. Furthermore,
variants not contained in a repeat masked region (as defined by RepeatMasker [92]), and
with 3 or more reads supporting the alternative allele were prioritized.

A.1.4 Variant annotation and handling

Variants were annotated for consequence, location, minor allele frequencies (from the
1000 Genomes Project [98], gnomAD [97], and the UK Biobank [188]) and deleteriousness
scores using the Variant Effect Predictor [94] from ensembl. For variants that fell on
multiple transcripts and had therefore multiple consequences, the one with the highest
impact was selected [100]. A variant is considered to be rare if the maximum minor
allele frequency across all cohorts is less than 0.001. ACMG variant (re)classification
was done with the InterVar software tool [189].

A.1.5 Measure of extracellular fluxes using Seahorse XF96

20,000 fibroblast cells were seeded in each well of a XF 96-well cell culture microplate in
80 ml of culture medium, and incubated them overnight at 37◦C in 5% CO2. The four
corners were left only with medium for background correction. Cells were incubated
at 37◦C for 30 min before measurement. OCR were measured an XF96 Extracellular
Flux Analyzer. OCR was determined at four levels: with no additions, and after adding
oligomycin (1 µM), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 0.4
µM), and rotenone (2 µM). After each assay, manual inspection was performed on all
wells using a conventional light microscope.

A.1.6 Cell number quantification

The cell number was quantified using the CyQuant Cell Proliferation Kit (Thermo Fisher
Scientific, Waltham, MA, USA), according to the manufacturer’s protocol. In brief, the
cells were washed with 200 µL PBS per well and frozen in the microplate at -80◦C
to ensure subsequent cell lysis. The cells were thawed and resuspended vigorously in
200 µL of 1x cell-lysis buffer supplemented with 1x CyQUANT GR dye per well. The
resuspended cells were incubated in the dark for 5 min at RT, whereupon fluorescence
was measured (excitation: 480 nm, emission: 520 nm).

A.1.7 Seahorse method to compute OCR

On every plate independently, for each well, in interval 1 take the OCR corresponding
to the last measurement, in intervals 2 and 4 take the minimum, and in interval 3 the

84

https://gatk.broadinstitute.org/hc/RNAseq-short-variant-discovery-SNPs-Indels-


A.2 Appendix: Datasets

maximum OCR value [80]. Then, use the corresponding differences to estimate the
bioenergetic measures. The results are reported per sample as the mean across wells
plus standard deviation or standard error, separately for each plate. This method is
also called Extreme Differences (ED). In the case of inter-plate comparisons, the multi-
plate averaging method takes the mean and standard error of the bioenergetic measures
obtained using the ED method of all the repeated biological samples across plates.

A.2 Appendix: Datasets

A.2.1 Mitochondrial diseases dataset

Throughout the last years, we have accumulated a total of 726 RNA-seq samples from
the HelmholtzZentrum Müenchen. 447 were derived from fibroblasts, 253 from whole
blood, and the rest from other tissues including heart, kidney, liver, muscle, mybolasts,
and renal tubular cells. From the fibroblasts, 339 are derived from individuals with a
suspected mitochondrial disease, 75 are derived from individuals with another genetic
disease, and 33 are unaffected controls. From the fibroblasts, all of them were sequenced
paired-end, 173 were non-strand-specific and 273 were strand-specific. In this thesis, a
subset of this dataset composed of 309 samples from fibroblasts that also have a cor-
responding WES assay was used. Nevertheless, the testing of the outlier methods was
performed in different combinations of the full dataset. The samples were collected in
the following centers: Klinikum Reuchtlingen (Germany), Paracelsus Medical Univer-
sity Salzburg (Austria), Institut Imagine (France), Neurological Institute ‘Carlo Besta’
(Italy), Chiba Children’s Hospital (Japan), Beijing Children’s Hospital (China), Univer-
sitätsklinikum Erlangen (Germany), Wellcome Centre for Mitochondrial Research (UK),
Children’s Memorial Health Institute (Poland), Hospital Cĺınic (Spain).

A.2.2 COVID-19 dataset

In July, 2020, we received a dataset composed of 145 RNA-seq samples originated from
peripheral blood that were collected and sequenced by the University of Bonn. Thomas
Ulas, Martina van Uelft, and Joachim Schultze were our contacts. The samples were
derived from 96 affected individuals with COVID-19 and 10 controls. 39 of the affected
individuals were sequenced twice, with a time difference of 3 days. From the affected
individuals, 54 were from patients admitted in the Radboud Medical Center, Nijmegen,
Netherlands, and 42 in the Attikon University Hospital in Athens, Greece. The samples
were sequenced paired-end and strand-specific.

A.3 Appendix: Additional Figures
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Figure A.1: Mitochondrial disease genes. Mitochondria showing involved structures
and genes. Known disease genes (n = 341) in different parts of the mito-
chondrial energy metabolism. A, coenzyme A; B, biotin; Cu, copper; F, ri-
boflavin/FMN/FAD; Fe, iron; H, heme; IS, iron-sulfur clusters; L, lipoic acid;
M, S-adenosyl-methionine; N, NAD(P)H; Q, coenzyme Q10; T, thiamine py-
rophosphate. Courtesy of Johannes Mayr.
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Figure A.2: Index HTML page of DROP. Screenshot of the main index HTML page of
DROP. It includes links to the different pipelines and tabs for the analyses.
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Figure A.3: RNA-seq study cohort and workflow. RNA-seq was performed on skin-
derived fibroblasts from 309 patients suspected to suffer from a rare disease.
All patients have undergone the WES analysis beforehand, which was inconclu-
sive for 217. Systematic detection of aberrant events and consequent analysis
led to genetic diagnosis in 15% of the WES-undiagnosed cases by establish-
ing a genotype-phenotype association, and pinpoint a candidate gene in 6% of
the WES-undiagnosed cases, suggesting the discovery of novel disease-genes and
more complex pathomechanisms. A transcript defect was also detected in 76%
of the WES-diagnosed cases carrying pathogenic protein-truncating variants.
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Figure A.4: Recall - FDR analysis on variants called by RNA-seq. Average recall
(true positives / all positives) vs. average false discovery rate (false positives /
(false positives + true positives)) of variants detected by RNA-seq in comparison
to variants detected by WGS in 210 samples from suprapubic skin from GTEx.
The average is taken across samples. Colors indicate the variants that passed
(or not) the GATK filters and that were (or not) contained in a repeat masked
region. The minimum numbers represent the reads supporting the alternative
allele. This analysis led us to apply the GATK filters and to consider variants
not in masked regions and with a minimum alternative allele count of 3 where
there is an inflection point in the curve. More stringent restrictions to variant
coverage further reduce the average FDR, which comes at the cost of recall.
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Figure A.5: Normalizing by cell number does not reduce variation. (A) Median (per
well) of OCR (y-axis) vs. cell number (x-axis) of the controls on all experiments
(n = 2,192 on each panel) show that there exists a positive correlation on all
time intervals (I1: ρ = .47, I2: ρ = .45, I3: ρ = .40, I4: ρ = .33, P < 2.2×10−16
for all intervals). (B) Coefficient of variation (y-axis) of well replicates within
plates for raw OCR, and normalized dividing by cell count (x-axis), split for each
time interval. Each point represents a different sample. On all four intervals,
normalization not only did not reduce the coefficient of variation, but increased
it. P -values obtained from double sided Wilcoxon Tests. Adapted from [1].
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Figure A.6: Residuals from the statistical testing follow a normal distribution.
Quantile-quantile theoretical (x-axis) vs. observed (y-axis) plots of the residuals
of OCR-stats statistical testing applied to all OCR ratios. Adapted from [1].
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Figure A.7: Mitochondrial stress test on three plates. OCR vs. time points of samples
from Patients 1 and 2, the control cell line (NHDF), plus a transduced assay of
each sample seeded in three different plates (denoted by their dates).
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other, while in outlier detection, only one population is assumed and each
value is tested if it. Adapted from [5]. . . . . . . . . . . . . . . . . . . . 8

1.7 Alternative splicing events. Diagram showing 5 different types of
aberrant splicing. In dark blue the canonical exons and in light blue the
aberrations. The gene model is shown below in gray. . . . . . . . . . . . 9

1.8 Steps to test for MAE. Counts of the alternative allele (y-axis) vs.
counts of the reference allele (x-axis), on four different steps to detect
MAE, per sample. First, variants with low expression are removed. Sec-
ond, variants with a higher expression of the alternative allele are con-
sidered. Third, a significance test is performed. Fourth, rare variants are
prioritized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Phenotypic spectrum of mitochondrial disorders. Common clinical
manifestations of mitochondrial disorders. Taken from [67]. . . . . . . . 11
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1.10 Mitochondrial disease genes discovered per year. Number of genes
known to cause a mitochondrial disease discovered per year. The first
mitochondrial disease gene was discovered in 1988. Discoveries increase
after 2010 where NGS begins to be used in diagnostics. Data taken from
[16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Central dogma of molecular biology. DNA is packed in chromosomes.
Each chromosome is composed of genes. Genes are transcribed into pre-
cursor mRNA. Afterwards, only exonic regions (in blue) are kept, and in-
tronic regions (in red) are spliced out forming messenger RNA (mRNA).
This mRNA is later translated into a protein. Adapted from: https://

frank.itlab.us/photo_essays/wrapper.php?nephila_2002_dna.html.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Variant consequences. Gene model showing different locations and
consequences of variants. Adapted from: https://m.ensembl.org/info/
genome/variation/prediction/predicted_data.html. Not all conse-
quences are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Types of RNA-seq reads. Schematic of a gene model showing how
RNA-seq reads can either: be fully aligned to an exon (A), span two
exons via splicing (B), or be aligned to an exon-intron boundary (C).
Exons are represented as boxes and introns as lines. . . . . . . . . . . . 18

2.4 Splicing metrics. Schematic showing how the different reads are con-
verted into the splicing metrics ψ and θ. D: donor site, A: acceptor site.
In this case, ψ5 is computed as the number of reads spanning from donor
D to acceptor A (in red) divided by those reads plus the ones spanning
from D to A′ (in blue). θ5 is computed as the number of reads spanning
from donor D to both acceptors A and A′ (red and blue) divided by those
reads plus the ones that overlap the exon-intron boundary (in orange).
Adapted from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Cellular respiration. (A) During glycolysis, the first step of cellular
respiration, pyruvate is generated from glucose inside the cytosol. (B)
Pyruvate is imported into the mitochondria and is an input of the Krebs
cycle, the second step of cellular respiration. This in turn generates
NADH, and FADH2, which are the input of OXPHOS, the third and
last step of cellular respiration. Adapted from [71]. . . . . . . . . . . . . 22

2.6 Mitochondrial stress test. OCR levels (y-axis) versus time (x-axis).
Injection of the three compounds oligomycin, FCCP, and rotenone de-
limits four time intervals within each of which OCR is roughly constant.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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3.1 Number of samples on different analysis groups. “UpSet” inter-
section plot where the horizontal bars represent the number of samples
on each group, and the vertical bars the size of the intersection of dif-
ferent groups. One of the bars corresponds to the original Kremer et al.
study. Key: gal: galactose, trans-gene: transduced gene, fib: fibroblast,
jap: Japan, ns: non-strand specific, ss: strand specific. . . . . . . . . . . 26

3.2 DROP overview. Diagram describing DROP’s workflow. As input,
DROP requires a configuration file, a sample annotation file, BAM files
from RNA-seq, and VCF files. DROP processes for each module the input
data and generates count tables, overview plots (e.g. sample covariation
heatmap), quality control plots, and result tables. Finally, users can
perform case-by-case analyses with the help of different visualizations.
Taken from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Files processing from individual samples to results by groups.
Flow diagram showing how the results are generated for each analysis
group. First, the counting is performed only once per sample. Afterwards,
they are merged and filtered by each group. The statistical modelling is
then performed on each group. . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Aberrant expression workflow. Directed acyclic graph of the Snake-
make rules constituting the aberrant expression module. The two main
steps are counting and running the OUTRIDER fit and results. . . . . . 30

3.5 Aberrant splicing workflow. Directed acyclic graph of the Snakemake
rules constituting the aberrant splicing module. The two main steps are
counting the junctions and running the FRASER fit and results. . . . . 32

3.6 Mono-allelic expression workflow. Directed acyclic graph of the
Snakemake rules constituting the MAE module. It is composed of two
parts, the first one tests for heterozygous SNVs that are mono-allelically
expressed and the second one matches VCF with BAM files. . . . . . . . 33

3.7 DNA-RNA matching algorithm. (A) Schematic showing the geno-
types obtained by DNA and RNA at different genomic positions. (B)
Matrix containing the percentage of matching DNA and RNA genotypes
for all N DNA samples and M RNA samples. (C) Histogram represen-
tation of the matrix in (B) for the samples from the Prokisch dataset. A
value of 0.75 separates the samples that match with the samples that do
not match. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.8 Analysis of a combination of datasets from different centers. (A)
Heatmap of the correlation of row-centered log-transformed read counts
between samples before correction. The dataset consists of 119 fibroblast
samples from Kremer. (B) Same as (A) but after autoencoder correc-
tion. (C, D) Same as (A) and (B) but for a dataset consisting of 17
samples from Kremer and 102 samples from GTEx skin not-sun-exposed.
(E) Number of expression outliers per sample of the 17 true pathogenic
outliers from the Kremer dataset when tested in the original and in the
combined datasets. (F) Proportion of the 17 true pathogenic expression
outliers from Kremer recovered after combining them with GTEx. Dif-
ferent FDR cutoffs used. Each dot represents 1 randomization out of 30.
(G) Same as b) but using the 13 true pathogenic splicing outliers. At an
FDR cutoff of 0.1, the median splicing outliers per sample is 14 for the
Kremer dataset and 34 for the combined. (H) Same as (F) but for the
13 true pathogenic splicing outliers. . . . . . . . . . . . . . . . . . . . . 38

3.9 Analysis of a combination of different tissues. (A) Heatmap of the
correlation of row-centered log-transformed read counts between samples
before correction. The dataset consists of 200 blood samples from GTEx.
(B) Same as (A) but after autoencoder correction. (C, D) Same as (A)
and B) but for a dataset consisting of 100 blood and 100 brain (cere-
bellum) samples from GTEx. (E) Proportion of recovered outliers after
fitting samples of blood alone and after combining them with samples
from skin not-sun-exposed, skeletal muscle, liver, and brain cerebellum.
Different FDR cutoffs used. (F) Same as (E) but for splicing outliers.
(G) Number of expression outliers + 1 for blood alone and after com-
bining it with the same tissues as (E). (H) Same as (G) but for splicing
outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.10 Analysis of a combination of different sequencing depths. (a)
Distribution of the total RNA sequencing depth of the samples from the
Kremer dataset (median 86 million reads). (b) Proportion of 17 true
pathogenic expression outliers (and 13 splicing outliers) from the Kremer
dataset simulated to have a sequencing depth of 30 million reads, recov-
ered after combining them with the rest of the dataset at its original depth
depending on FDR cutoffs. (c) Number of expression outlier genes per
sample for the true positives in their original and 30 million read depth,
using different FDR cutoffs. (d) Same as (c) but for splicing outliers. . . 40

3.11 Approaches of the application of RNA-seq for Mendelian disease
diagnostic. (A) Flow diagram of the traditional approach which consists
of first obtaining (many) candidate variants via DNA sequencing and then
validating them through RNA-seq and other functional analysis. (B)
Flow diagram of a transcriptome-directed approach in which aberrant
events in the transcriptome are systematically found and integrated with
the genetic results yielding very few variants in a short amount of time.
Adapted from [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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4.1 The (un)predictable effect of variants assessed by RNA-seq. (A)
Summary of variants and their effect on transcript that enabled establish-
ing a genetic diagnosis in five cases from the pioneer study [44]. (B) Same
as (A), but for the 33 currently solved samples. It also shows a candidate
variant that was discarded after not observing a splice defect. . . . . . . 45

4.2 RNA-seq defects across cases. Number of RNA-seq defects detected
via the three strategies found in samples solved by WES only, RNA-seq,
and on candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Aberrant expression summary. (A) Distribution of expression out-
liers per sample. Green and magenta represent overexpression and un-
derexpression outliers, respectively, in this and the rest of panels. (B)
Proportion of expression outliers (y-axis) associated with a rare variant.
(C) Same as (B), but stratified by variant classes. (D) Observed over ex-
pected number of expression outliers on different gene categories. Error
bars represent 95% confidence intervals of a binomial test. (E) Gene-
level significance (− log10(P ), y-axis) versus Z-score, with the gene UFM1
among the expression outliers (red dots) of sample AF6383. (F) Expres-
sion of UFM1 shown as normalized counts ranked across all samples, with
the lowest expression in sample AF6383. (G) Schematic depiction of the
3 bp deletion in the UTR of UFM1. Figure not shown at genomic scale. 47

4.4 Aberrant splicing summary. (A) Distribution of splicing outliers per
sample, combined and stratified by intron-centric metrics. Purple rep-
resents combined splicing outliers in this and the rest of panels. (B)
Proportion of genes which either were or not a splicing outlier (y-axis)
associated with a rare variant. (C) Same as (B), but stratified by vari-
ant classes. (D) Observed over expected number of splicing outliers on
different gene categories. Error bars represent 95% confidence intervals
of a binomial test. (E) Gene-level significance (− log1 0(P ), y-axis) ver-
sus effect, (observed minus expected ψ5, x-axis) for the alternative splice
donor usage in sample 113015R with TWNK among the outliers (in red).
(F) Intron split-read counts (y-axis) against the total donor split-read
coverage for the first intron of TWNK. (G) Schematic depiction of the
c.1302C>G variant and its consequence on the RNA level and splicing
with the premature terminating codon in red. Figure not shown at ge-
nomic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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4.5 Mono-allelic expression summary. (A) Distribution of heterozygous
SNVs per sample for different filtering steps. Heterozygous SNVs detected
by WES with an RNA-seq coverage of at least 10 reads, where MAE is
detected, where MAE of the reference is detected, where MAE of the al-
ternative is detected, and subsetted for rare variants. (B) Proportion of
variants (either rare or common) that cause MAE of either the alterna-
tive or reference allele. (C) Same as (B), but stratified by variant classes.
Frameshift variants are not included as MAE is called on heterozygous
SNVs. (D) Observed over expected number of MAE events on different
gene categories. Error bars represent 95% confidence intervals of a bino-
mial test. (E) Fold change between alternative (ALT+1) and reference
(REF+1) allele read counts for the sample 103170R compared to the total
read counts per SNV within the sample. In darker tones the rare variants
among which is the disease-causal one. (F) Schematic depiction of the
6.6 kb deletion and the c.290A>G NFU1 variant and their consequence
on the RNA level. Figure not shown at genomic scale. . . . . . . . . . . 49

4.6 Aberrant expression summary. (A) Number of variants called by
WES and RNA-seq in total and stratified by variant classes. (B) Pro-
portion of variants called only by WES, only by RNA-seq, and by both
technologies, in total and stratified by variant classes. (C) Distribution
of genes that pass the bi-allelic variant filter after integration of RNA-seq
and WES variant calls, but which did not pass it with WES only. (D)
Schematic depiction of the c.2T>C and c.223-907A>G variants and their
consequence on the RNA level with an out-of-frame ATG in green, and
a cryptic exon with the PTC in red, on the gene NDUFAF5. Figure not
shown at genomic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Additional cases. (A) Sashimi plot presenting normal splicing on the
gene BUB1 in spite of a homozygous variant in the direct splice-site
(B) Schematic depiction of the complex pattern of aberrant splicing of
MRPL44 in sample 96993R due to a homozygous splice region variant.
(C) Gene expression as gene-level significance (−log10(P ), y-axis) versus
Z-score, with the causal gene LIG3 among the expression outliers (red
dots), as well as 10 genes encoded by the mtDNA. . . . . . . . . . . . . 52

4.8 Tissue-specific gene expression. (A) Heatmap showing the propor-
tion of expressed genes from different categories across all tissues from
GTEx. (B) Proportion of expressed genes from different categories in
clinical accessible tissues plus a combination of them. B: blood, F: fibrob-
lasts, L: lymphocytes, M: muscle. . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Age and comorbidities predispose the impact of SARS-CoV-
2. (A) COVID-19-related deaths among all deaths in United States in
the period 01.02.2020 - 05.09.2020 on different age groups. Data from
ref [148] (B) Comorbidities significantly associated with SARS-CoV-2
impact. HR: hazard ratio, adjusted with age and smoking status. Taken
from ref [149]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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4.10 Aberrant expression and splicing analysis in a COVID-19 cohort.
(A) Number of expression outliers per sample. (B) Number of splicing
outliers per sample split by metric. (C) Heatmap of the correlation of row-
centered log-transformed read counts between samples before correction.
Samples cluster by origin. (D) Same as (C) but for normalized counts,
where the correlation disappears. . . . . . . . . . . . . . . . . . . . . . . 56

4.11 Expression and splicing outliers in COVID-19 samples. (A)
Gene-level significance (− log10 P , y-axis) versus Z-score, with PDK3 among
expression outliers (red dots) of sample 9109. (B) Expression of PDK3
shown as normalized counts ranked across all samples, with the lowest
expression in 9109. (C) Gene-level significance (− log10 P , y-axis) ver-
sus effect (observed minus expected ψ3, x-axis) for the alternative splice
donor usage in sample 9088 with TOR1AIP1 among the outliers (in red).
(D) Intron split-read counts (y-axis) against the total acceptor split-read
coverage for the last canonical junction of TOR1AIP1, showing how all
the samples use it fully, except for 9088 who only uses half of it. (E)
Sashimi plot showing the exon skipping in half of the reads of the affected
sample 9088 and an unaffected control with canonical splicing. . . . . . 58

5.1 OCR behaviour over time. (A) Cartoon illustration of OCR levels
(y-axis) versus time (x-axis) after the injection of three compounds. (B)
Typical time series replicates inside a plate. Behavior of OCR of Fibro-
VY-017 over time. Colors indicate the row and shape the column inside
the plate of 12 well replicates. Variation increases for larger OCR values,
OCR has a systematic well effect, and there are two types of outliers: well-
level and single-point. (C) Scatterplot of standard deviation (y-axis) vs.
mean (x-axis) OCR across the three time replicates of each interval, well,
and plate of NHDF showing a positive correlation (n = 409). (D) Same
as (C) but for the logarithm of OCR, where the correlation disappears.
Adapted from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Outlier detection. (A) Number of wells (y-axis) identified as outliers on
each iteration (x-axis). (B) Mean (per well) squared errors distribution
for cell line Fibro-VY-014. Wells beyond the dashed red line (median +
5*MAD) are recognized as well-level outliers. (C,D) Same as (A) and (B)
but for single-point outliers and cell line Fibro-VY-076. Adapted from [1]. 63
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5.3 Intra and interplate variation analysis. (A) Distribution of the OCR
in time interval 3 (x-axis) of NHDF seeded in 5 randomly selected plates
(y-axis) reflecting that the variation between is larger than within. Red
line: mean of OCR across all plates. (B) Coefficient of variation between
and within plates of each time interval. (C) Log of OCR in interval 3
(y-axis) for the cell lines #65126 and NHDF (x-axis), which were seeded
in two different plates The similar increase in OCR from plate 20140128
to 20140430 in both biological samples suggests that there is a systematic
plate-interval effect. (D) Scatterplots of the differences of the log OCR
levels of all possible 2 by 2 combinations of repeated biological samples
across experiments (y-axis) against their respective controls (NHDF) (x-
axis) showing that there is a positive correlation, confirming a systematic
plate-interval effect (n=63). Adapted from [1]. . . . . . . . . . . . . . . 64

5.4 Benchmark of OCR-stats. (A) Ratio of M/Ei-fold change (y-axis)
of all the cell lines repeated across plates (x-axis) and their respective
controls, sorted by P -value obtained using OCR-Stats. Left of the red
dashed line are cell lines with significantly lower M/Ei-fold change using
OCR-Stats. Dots in orange represent biological samples with significantly
lower or higher M/Ei-fold change using the ED method. Highlighted
positive (+) and negative (-) controls. (B) Similar to (A), but depicting
the p-value in logarithmic scale (y-axis) using OCR-Stats. Red dashed line
at P = 0.05. Dots in red represent cell lines with significantly lower M/Ei-
fold change using the OCR-Stats method (C) Coefficient of variation of
replicates across experiments (n = 26) using different methods (x-axis) to
estimate the six bioenergetic measures. In all, except for Spare Capacity,
OCR-Stats with plate-interval effect showed significantly lower variation
with respect to the Extreme Differences method. P -values obtained from
a one-sided paired Wilcoxon test. Adapted from [1]. . . . . . . . . . . . 66

5.5 Power analysis. Standard deviation of the residuals from the model in
Eq. 5.2 (left y-axis) against the number of wells per biological sample
and per plate (x-axis) for each OCR log-ratio difference. The right y-
axis corresponds to the minimal detectable relative differences using three
plates at a 5% significance level. The 10 data points correspond to random
samplings without replacement of the wells per biological sample and per
plate. Adapted from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Family pedigrees. (A) Pedigree of family 1 showing how the patient
inherited a splice acceptor variant from each parent. (B) Pedigree of
family 2 showing how the patient inherited a heterozygous variant from
each parent at different positions. Adapted from [3]. . . . . . . . . . . . 70

5.7 OCR behaviour over time. OCR at different time points following the
mitochondrial stress test for both patients, a control (NHDF), and both
patients with a WT copy of UQCRFS1 transduced (-T-). . . . . . . . . 71
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5.8 Cell number of samples across different plates. Each dot cor-
responds to one well. Number of cells (measured using CyQUANT)
per well measured after the mitochondrial stress test was performed. The
initial number of seeded cells is 20,000. . . . . . . . . . . . . . . . . . . 72

5.9 Ratio of in M/Ei fold change between samples. Ratio of maximal
over ETC-independent OCR (M/Ei) between samples. Each dot repre-
sents a comparison between samples inside the same plate. In red, tests
that are significantly deviated from 1. . . . . . . . . . . . . . . . . . . . 72

5.10 Genotype and splicing pattern of Patient 1. (A) WES coverage of
sample 127289R showing both exons of gene UQCRFS1. The gene, which
is transcribed in the negative strand, is depicted below. (B) Acceptor site
region of the second exon showing the homozygous variant in the direct
acceptor site. (C) Sashimi plot of sample 127289R and two representative
controls. The controls use the annotated acceptor site, while the affected
sample has an alternative 5’ acceptor site 30 bp downstream. . . . . . . 73

5.11 Aberrant expression and splicing of Patient 1. (A) Gene-level sig-
nificance (− log10 P , y-axis) versus effect (observed minus expected ψ5,
x-axis) for the alternative splice donor usage in sample 127289R with
UQCRFS1 being the most striking outlier (in red). (B) Intron split-
read counts (y-axis) against the total donor split-read coverage for the
first intron of UQCRFS1. (C) Volcano plot of sample 127289R show-
ing gene expression as gene-level significance (− log10 P , y-axis) versus
Z-score, with UQCRFS1 among expression outliers (red dots). (D) Ex-
pression of UQCRFS1 shown as normalized counts ranked across all sam-
ples, with the lowest expression in sample 127289R. . . . . . . . . . . . . 74

A.1 Mitochondrial disease genes. Mitochondria showing involved struc-
tures and genes. Known disease genes (n = 341) in different parts of the
mitochondrial energy metabolism. A, coenzyme A; B, biotin; Cu, copper;
F, riboflavin/FMN/FAD; Fe, iron; H, heme; IS, iron-sulfur clusters; L,
lipoic acid; M, S-adenosyl-methionine; N, NAD(P)H; Q, coenzyme Q10;
T, thiamine pyrophosphate. Courtesy of Johannes Mayr. . . . . . . . . 86

A.2 Index HTML page of DROP. Screenshot of the main index HTML
page of DROP. It includes links to the different pipelines and tabs for the
analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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A.3 RNA-seq study cohort and workflow. RNA-seq was performed on
skin-derived fibroblasts from 309 patients suspected to suffer from a rare
disease. All patients have undergone the WES analysis beforehand, which
was inconclusive for 217. Systematic detection of aberrant events and con-
sequent analysis led to genetic diagnosis in 15% of the WES-undiagnosed
cases by establishing a genotype-phenotype association, and pinpoint a
candidate gene in 6% of the WES-undiagnosed cases, suggesting the dis-
covery of novel disease-genes and more complex pathomechanisms. A
transcript defect was also detected in 76% of the WES-diagnosed cases
carrying pathogenic protein-truncating variants. . . . . . . . . . . . . . 88

A.4 Recall - FDR analysis on variants called by RNA-seq. Average
recall (true positives / all positives) vs. average false discovery rate (false
positives / (false positives + true positives)) of variants detected by RNA-
seq in comparison to variants detected by WGS in 210 samples from
suprapubic skin from GTEx. The average is taken across samples. Colors
indicate the variants that passed (or not) the GATK filters and that were
(or not) contained in a repeat masked region. The minimum numbers
represent the reads supporting the alternative allele. This analysis led
us to apply the GATK filters and to consider variants not in masked
regions and with a minimum alternative allele count of 3 where there is
an inflection point in the curve. More stringent restrictions to variant
coverage further reduce the average FDR, which comes at the cost of
recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5 Normalizing by cell number does not reduce variation. (A) Me-
dian (per well) of OCR (y-axis) vs. cell number (x-axis) of the controls
on all experiments (n = 2,192 on each panel) show that there exists a
positive correlation on all time intervals (I1: ρ = .47, I2: ρ = .45, I3:
ρ = .40, I4: ρ = .33, P < 2.2 × 10−16 for all intervals). (B) Coefficient
of variation (y-axis) of well replicates within plates for raw OCR, and
normalized dividing by cell count (x-axis), split for each time interval.
Each point represents a different sample. On all four intervals, normal-
ization not only did not reduce the coefficient of variation, but increased
it. P -values obtained from double sided Wilcoxon Tests. Adapted from
[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.6 Residuals from the statistical testing follow a normal distribu-
tion. Quantile-quantile theoretical (x-axis) vs. observed (y-axis) plots of
the residuals of OCR-stats statistical testing applied to all OCR ratios.
Adapted from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.7 Mitochondrial stress test on three plates. OCR vs. time points
of samples from Patients 1 and 2, the control cell line (NHDF), plus a
transduced assay of each sample seeded in three different plates (denoted
by their dates). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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3.1 OUTRIDER results table. Extract of the OUTRIDER results table of
the test dataset showing one up and one downregulated case. normCounts
correspond to the OUTRIDER normalized counts of that sample on that
gene, while meanCounts is the mean estimate µ of the negative binomial
distribution of that gene. Roughly, dividing the first by the second gives
the fold change (FC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 FRASER results table. Extract of the FRASER results table of the
test dataset showing one θ, one ψ3, and one ψ5 case. deltaPsi corre-
sponds to the difference between the observed and the expected ψ (or θ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 MAE results table. Extract of the MAE results table of the test
dataset. Key: REF: reference allele, ALT: alternative allele, refC: counts
of the reference, altC: counts of the alternative, altR: alternative allele
ratio = altC/(altC+refC), MAF: minor allele frequency. . . . . . . . . . 31

3.4 Disease datasets analyzed using DROP. Key: HHZ: HelmholtzZen-
trum Müenchen, CAD: coronary artery disease, DHZ: Deutsches Herzzen-
trum Müenchen, MPI: Max Planck Institute, SCZ: schizophrenia, BD:
bipolar disorder, DECOI: Deutsche COVID Initiative. . . . . . . . . . . 37

4.1 Diagnoses from the Kremer et al. dataset using RNA-seq. Table
showing all the current diagnosed samples from the Kremer et al. cohort
using RNA-seq. Each row corresponds to a gene. It includes the status at
the time of that study and now. Key: AE: significant aberrant expression,
AS: significant aberrant splicing, var: variant, syn: synonymous . . . . . 43
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