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Abstract
Background Epidemiological studies have shown inverse association between intelligence and coronary artery disease 
(CAD) risk, but the underlying mechanisms remain unclear.
Methods Based on 242 SNPs independently associated with intelligence, we calculated the genetic intelligence score (gIQ) 
for participants from 10 CAD case–control studies (n = 34,083) and UK Biobank (n = 427,306). From UK Biobank, we 
extracted phenotypes including body mass index (BMI), type 2 diabetes (T2D), smoking, hypertension, HDL cholesterol, 
LDL cholesterol, measured intelligence score, and education attainment. To estimate the effects of gIQ on CAD and its related 
risk factors, regression analyses was applied. Next, we studied the mediatory roles of measured intelligence and educational 
attainment. Lastly, Mendelian randomization was performed to validate the findings.
Results In CAD case–control studies, one standard deviation (SD) increase of gIQ was related to a 5% decrease of CAD 
risk (odds ratio [OR] of 0.95; 95% confidence interval [CI] 0.93 to 0.98; P = 4.93e–5), which was validated in UK Biobank 
(OR = 0.97; 95% CI 0.96 to 0.99; P = 6.4e–4). In UK Biobank, we also found significant inverse correlations between gIQ 
and risk factors of CAD including smoking, BMI, T2D, hypertension, and a positive correlation with HDL cholesterol. The 
association signals between gIQ and CAD as well as its risk factors got largely attenuated after the adjustment of measured 
intelligence and educational attainment. The causal role of intelligence in mediating CAD risk was confirmed by Mendelian 
randomization analyses.
Conclusion Genetic components of intelligence affect measured intelligence and educational attainment, which subsequently 
affect the prevalence of CAD via a series of unfavorable risk factor profiles.
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Introduction

Epidemiological studies have shown an inverse associa-
tion between intelligence score and risk of coronary artery 
disease (CAD) [1, 2]. Higher intelligence is also inversely 
associated with risk factors of CAD, like smoking and 
obesity [3–5]. Moreover, there is evidence for association 
between higher intelligence and longer educational attain-
ment [6, 7] which may be an important mediator in reduc-
ing CAD risk [8]. However, the mechanisms linking higher 
intelligence with a decreased risk of CAD remain unclear.

Genome wide association studies (GWAS) have iden-
tified large numbers of genetic variants, typically single 
nucleotide polymorphisms (SNPs), associated with a wide 
range of complex traits providing opportunities of explor-
ing the relationships between traits. Polygenic risk scores 
defined as sum of trait-associated SNPs weighted by effect 
size derived from large-scale GWAS measure the liabil-
ity of individuals developing such traits [9, 10]. Thereby 
polygenic risk scores become an important genetic tool 
for studying association between traits [8, 11]. Two-sam-
ple Mendelian randomization (MR) is another genetic 
method of accessing causal relationships among traits 
which requires summary statistics of GWAS instead of 
full individual level genotype data and phenotypic meas-
urements [12].

Savage et  al. performed genome-wide association 
meta-analysis in 269,867 individuals and identified 242 
SNPs independently associated with intelligence [13]. We 
used the statistics of these intelligence SNPs to perform 
both regression analysis of the individual-level polygenic 
score and two-sample MR analysis to study the associa-
tion between intelligence and CAD risk, and to explore 
potential pathways from a higher genetic intelligence score 
to lower CAD risk.

Methods

Cohorts description of individual‑level genotype 
data

Individual level genotype data were collected from ten 
case–control studies of CAD as discovery set [14–21]. 
All participants were of European descent, mostly from 
the Germany and UK. The replication set was from UK 
Biobank [22] which includes genotypes of 487,409 indi-
viduals derived from two different genotyping array 
platforms.

The data of UK Biobank were also applied to character-
ize interplay between intelligence and risk factors of CAD 

including body mass index (BMI), type 2 diabetes (T2D), 
HDL cholesterol, LDL cholesterol, hypertension, and 
smoking behavior. These traits were either self-reported 
or extracted from hospital episodes or death registries as 
reported by UK Biobank [22]. Intelligence scores were 
measured in UK Biobank through a 13-item verbal-
numeric reasoning test designed to assess the ability of 
solving problems that require logic and reasoning abil-
ity, independent of acquired knowledge (field ID 20016). 
The total range of intelligence as measured by this score 
was from 0 to 13 arbitrary unit. Details of corresponding 
studies, data preprocessing and traits definition of data 
from UK Biobank are shown at Supplementary Notes and 
Table S1.

Intelligence associated variants

Savage et al. performed GWAS meta-analysis of 14 inde-
pendent epidemiological cohorts of European descent and 
reported 242 independent SNPs with genome-wide signifi-
cant association (P < 5e–8) to intelligence scores [13]. We 
estimated effect size for each SNP from GWAS summary 
statistic table using method by Zhu et al. [23]. Details are 
shown at Supplementary Notes and Table S2.

Statistics

The summary statistics of 242 independent SNPs of intelli-
gence were applied to calculate the individual-level weighted 
genetic score of intelligence for each study. Firstly, each var-
iant was given a value from 0 to 2 according to the presence 
of the intelligence allele in the imputed genotype data of 
each participant, which was then multiplied with the effect 
size of the variant on intelligence. For variants with missing 
genotypes in the imputed data, the reference allele frequency 
was applied. Then we summed these values of 242 variants 
for each participant as the polygenic score of intelligence, 
namely the genetic intelligence score (gIQ). Afterwards, the 
continuous gIQ was standardized into z-scores with mean of 
0 and standard deviation (SD) of 1. By logistic regression 
analyses, we estimated effects of gIQ on CAD risk for each 
study separately. To control the bias due to population strati-
fication or different genotyping platforms, the first two prin-
ciple components for 10 CAD studies were added as adjust-
ments of the regression model. In UK Biobank, because of 
more complex population structure, we employed top five 
principle components and array platforms for this data set. 
Lastly, the fixed-effect size meta-analysis was performed 
to estimate the combined effects across all CAD studies. 
Based on gIQ, all individuals were evenly separated into 
low, medium and high groups to study the distribution of 
cases and controls along with increasing gIQ.
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Albeit the gIQ reflects intelligence at first place, the 
SNPs utilized in this score may be pleiotropic and thus 
affects other traits [24–26]. Seven of 242 intelligence SNPs 
were reported to be associated with educational attainment 
through a large scale GWAS cohort which detected 1271 
education-associated SNPs [27]. We thus re-evaluated the 
association between gIQ and CAD risks after exclusion of 7 
SNPs overlapping with educational attainment to estimate 
the direct effects of intelligence.

In UK Biobank, we estimated effects of gIQ on meas-
ured intelligence, educational attainment, risk factors of 
CAD including BMI, T2D, smoking, HDL cholesterol, 
LDL cholesterol and hypertension. Definitions of these traits 
are shown at Supplementary Notes and Table S3. Logistic 
regression was applied to binary traits like T2D, smoking, 
hypertension; and linear regression was for continuous traits 
like measured intelligence, educational attainment, BMI, 
HDL cholesterol, and LDL cholesterol. Top five principle 
components and array platforms were used as adjustment of 
regression models. We also studied phenotypical association 
of measured intelligence with educational attainment and 
CAD incidence in UK Biobank. Additionally, to avoid the 
genetic influence of education derived from genetic over-
laps between intelligence and education, we re-estimated 
the effects of intelligence on CAD and its risk factors by 
eliminating seven overlapping SNPs [27].

Two‑sample Mendelian randomization analysis

Mendelian randomization (MR) is a method using genetic 
variants as instruments to study causal relationships between 
exposures and outcomes [28]. We introduced the multivari-
able two-sample MR analysis to investigate the direct casual 
effects of intelligence and educational attainment on CAD 
and its risk factors. This approach taking GWAS summary 
statistics as input measures effects of one standard devia-
tion (SD) change in intelligence or educational attainment. 
As bias can be introduced in two-sample MR when using 
genetic consortia that have partially overlapping sets of 
participants, we selected consortia without overlaps. The 
GWAS summary statistics of CAD and its risk factors, edu-
cational attainment were acquired from CARDIoGRAM-
plusC4D (CAD) [17], GIANT (BMI) [29], TAG (smok-
ing) [30], GLGC (HDL cholesterol, LDL cholesterol) [31], 
SSGAC (educational attainment) [27], and DIAGRAM 
(T2D) [32]. Elaborate description of these five studies can 
be found at Supplementary Notes and Table S4.

To address the influence of genetic overlaps between 
education and intelligence, we eliminated seven SNPs 
that are both associated with intelligence and educational 
attainment in MR analysis. Three MR methods including 
inverse-variance-weighted average (IVW) [33], MR-egger 
[34] and weighted median [35] were applied. Relationships 

significant (P < 0.05) in at least two of three methods were 
identified to be reliable and shown by IVW results. Lastly, 
sensitivity analysis of effects of intelligence and educational 
attainment on CAD were performed by excluding SNPs 
that were moderately associated with risk factors of CAD 
(P < 0.001) from intelligence SNPs and education SNPs 
respectively. Details are shown at Supplementary Notes.

Results

Effect of gIQ on the risk of CAD

Ten case–control studies of CAD with 16,144 CAD cases 
and 17,939 controls were included in this study. Majority of 
participants were from the Germany and UK. Individual-
level genotype data and elaborate phenotype data from UK 
Biobank were used as validating set containing 20,310 CAD 
cases which were defined by either self-reported, or hospital 
episode and death registry data, and 406,996 controls. (Sup-
plementary Notes and Table S1). For each cohort, we gener-
ated gIQ based on 242 SNPs reported to be genome-wide 
significantly associated with intelligence [13].

The score in participants of the 10 CAD studies was nor-
mally distributed (Fig. S1). Meta-analysis using fixed-effect 
size model indicated relative decrease of CAD risk by 5% 
(95% confidence interval [CI], 0.93 to 0.98; P = 4.93e–5) 
along with per 1-SD increase in gIQ (Fig. 1). When indi-
viduals were equally grouped into a low, medium and high 
group of gIQ, risk of CAD steadily decreased with an odds 
ratio (OR) of the high group vs low group being 0.89 (95% 
CI 0.84 to 0.93; P = 6.2e–6, Fig. 2).

Data from the UK Biobank confirmed the inverse asso-
ciation between gIQ and CAD risk with an OR = 0.97 (95% 
CI 0.96 to 0.99; P = 6.4e–4, Fig. 1). The risk of high gIQ 
group was 7% lower than the low gIQ group (P = 0.0005) 
in UK Biobank. As expected, the association between gIQ 
and CAD risk was abolished after adjustment for measured 
intelligence defining measured intelligence as an intermedi-
ary trait between gIQ and CAD risk (Fig. 3).

Bidirectional association between intelligence 
and education

In UK Biobank, we found that 1-SD increase of gIQ 
increased measured intelligence score by 0.29 unit 
(P < 1e–10) and prolonged years spent in school by 0.45 year. 
In addition, one more year spent in school increased the 
measured intelligence score by 0.16 unit (P < 1e–10). Vice 
versa, one unit increase in measured intelligence prolonged 
years spent in school by 0.98 year (P < 1e–10). Both the 
measured intelligence and educational attainment had 
inverse effects on CAD risk. See results in Table S5.
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Effects of gIQ on risk factors of CAD

We next asked, in UK Biobank data, whether the association 
between gIQ and CAD risk was mediated by traditional risk 
factors of CAD, and whether such effects were dependent of 
measured intelligence and educational attainment. We found 
strong associations of gIQ with BMI, smoking, T2D, HDL 
cholesterol, and hypertension (Fig. 3). The effects of gIQ on 
CAD risk factors were largely attenuated after adjustment for 
measured intelligence or educational attainment (Fig. 3 and 
Table S6), suggesting that measured intelligence and edu-
cational attainment mainly mediated associations between 
gIQ and these risk factors. The analyses after removal of 
seven SNPs overlapping between intelligence and educa-
tional attainment obtained quantitatively and qualitatively 
similar effects of gIQ on CAD and its risk factors (Fig. S2).

We also studied the mediatory roles of these risk factors 
on the association between gIQ and CAD risk by apply-
ing them as adjustments to the regression model. Adjusting 
for individual risk factor or risk factors combined mark-
edly attenuated association signal between gIQ and CAD 
risk (Fig. S3), indicating these risk factors were involved in 
mediating the association between gIQ and CAD risk.

Mendelian randomization validation

To substantiate our observations, we performed multi-
variable two-sample MR analysis taking intelligence or 

Fig. 1  Association of gIQ and CAD risk. The genetic intelligence 
score was calculated in 10 case-controls studies of CAD and UK 
Biobank respectively. Logistic regression was performed to evalu-
ate the association between gIQ and CAD risks in each study. Fixed-

effect size meta-analysis was performed to combine all studies. Forest 
plot shows regression result in each study and the overall effect size. 
The gIQ was inversely associated with CAD risk

Fig. 2  Distribution of cases and controls according to gIQ. Individu-
als in 10 CAD studies were evenly grouped into a low (score = 1), 
medium (score = 2) and high (score = 3) group according to their gIQ. 
The OR is incidence of CAD relative to low group. Risk of CAD 
decreases along the increases of gIQ
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educational attainment as exposures, CAD and its risk fac-
tors as outcomes. The estimates of the direct effects on out-
comes for intelligence and education were generally in a 
consistent direction (Fig. 4). 1-SD increase of intelligence 
resulted in decrease of CAD risk by 25% (OR = 0.75; 95% 
CI 0.69 to 0.81; P < 1e–10), decrease of BMI by 0.1 kg/m2 
(95% CI − 0.16 to − 0.14; P = 1.02e–3), decrease of T2D 
risk by 15% (OR = 85; 95% CI 0.77 to 0.95). A SD increase 
in the education years resulted in decrease of risk of CAD 
by 38% (OR = 0.62; 95% CI 0.58 to 0.66; P < 1e–10), 
decrease of BMI by 0.32 kg/m2 (95%CI − 0.37 to − 0.27; 
P < 1e–10), increase of HDL cholesterol by 0.19 mmol/L 
(95% CI 0.14 to 0.25; P < 1e−10), decrease of the risk 
of smoking by 43% (OR = 0.57; 95%CI 0.501 to 0.642; 
P < 1e–10), and decrease of T2D risk by 47% (OR = 0.53; 
95%CI 0.49 to 0.57; P < 1e–10). The effects of educational 
attainment on CAD and its risk factors displayed the same 
direction as intelligence but were stronger in magnitude. 
See details at supplementary notes and Table S7.

Lastly, MR sensitivity analysis were performed for 
intelligence and educational attainment respectively. For 
intelligence, SNPs moderately associated (P < 0.001) with 
CAD (n = 5), BMI (n = 45), and HDL cholesterol (n = 5) 
were removed from intelligence SNPs. The sensitivity 
analysis showed 1-SD increase in intelligence to decrease 
the risk of CAD by 22% (OR for IVW method of 0.78; 95% 
CI 0.72 to 0.84; P = 5.6e–10). Same as intelligence, SNPs 
moderately associated (P < 0.001) with CAD (n = 13), 
BMI (n = 155), HDL cholesterol (n = 6), LDL cholesterol 
(n = 5), and smoking (n = 2) were removed from education 
SNPs. The sensitivity analysis showed 1-SD increase in 
education years to decrease the risk of CAD by 34% (OR 
for IVW method of 0.66; 95%CI 0.62 to 0.70; P < 1e–10). 
Results are shown at Table S8.

Fig. 3  Associations of gIQ with CAD and it risk factors including 
BMI, smoking, T2D, HDL cholesterol, LDL cholesterol, and hyper-
tension in UK Biobank. The OR for BMI is shown as logarithm of 
the linear regression coefficient. ‘Adjusted’ indicates the regression 
model between gIQ and trait after adjustment for measured intelli-

gence (IQ), or length of school years completed (Edu), or neither of 
the two (No). The gIQ had inverse effects on BMI, T2D, smoking, 
and hypertension and a positive effect on HDL cholesterol. The asso-
ciation signals were largely attenuated by measured intelligence and 
educational attainment
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Discussion

Epidemiological studies have revealed that increased intel-
ligence correlates with reduced CAD risk [1, 2]. Consist-
ently, our study shows that 1-SD increase of gIQ based on 
accumulated effects of genetic variants associated with intel-
ligence, results in 5% decrease in the risk of CAD. The CAD 
risk in the high group of gIQ is relatively lower by 11% than 
in the low group. The observation was replicated in the UK 
Biobank. Interestingly, the inverse association got largely 
attenuated after adjustment for measured intelligence and 
educational attainment supporting the hypothesis that these 
traits play a role in modulating CAD risk.

Our study also shows the inverse effects of gIQ on health-
related outcomes including BMI, smoking, T2D, hyperten-
sion, and a positive effect on HDL cholesterol, which are 
well-known for their influences on CAD risk [36–40]. Same 
as for CAD, these association signals appear to be largely 
mediated by measured intelligence and educational attain-
ment. It can be concluded that these risk factors mediate 
the association between gIQ and CAD risk individually and 
collectively.

Our study confirms that intelligence and educational 
attainment are genetically and phenotypically associated 
with each other [6, 7]. Like in the present study, a recent 
study by our group states that educational attainment is 
inversely associated with CAD risk which appears to be 

mediated by risk factors such as BMI and smoking [8, 26]. 
Interestingly, our current study indicates that the effects of 
educational attainment on CAD and its risk factors are quan-
titatively stronger than respective effects of intelligence. All 
these findings indicate that improving educational attain-
ment can have potential benefits in improving decision-mak-
ing regarding health-relevant lifestyle factors and reducing 
risk of CAD and other health-related outcomes.

Polygenic risk score and two-sample MR are two genetic 
approaches of investigating association between traits. 
Compared with the traditional epidemiologic approach, the 
genetic approach is unlikely to be confounded by lifestyle or 
environmental factors as genotypes are stable over lifetime 
[11]. The utilization of genetic methods is limited, however, 
by false discovery because of horizontal pleiotropy, a phe-
nomenon explained by the fact that variants may affect mul-
tiple traits through different pathways [9, 10]. The complex 
interplay of intelligence and educational attainment caused 
by their genetic roots limits a precise causal relationship 
between intelligence and CAD as well as its risk factors. In 
our study, we aimed to exclude genetic overlaps between 
intelligence and education to highlight putative causal 
effects of intelligence on CAD and its risk factors. Indeed, 
this notion was furtherly confirmed by MR analysis and the 
MR sensitivity analysis after excluding SNPs marginally 
associated with risk factors of CAD from intelligence (or 
education).

There are some limitations in our study. First, the intel-
ligence SNPs utilized in this study were identified from a 
large GWAS meta-analysis based 14 independent epidemio-
logical cohorts of European ancestry [13]. To avoid bias 
due to difference in population genetics, we restricted our 
analysis to cohorts from Germany, UK, and others of Euro-
pean ancestry. Second, there might be other health-related 
or socioeconomic factors that interplay with intelligence and 
CAD risk [26]. Specially, environmental exposures can be 
important confounders of association between intelligence 
and CAD risk. Third, the measured intelligence obtained in 
UK Biobank through a 13-item verbal-numeric reasoning 
test does not equal to real intelligence whose full scopes are 
unspecifiable. Moreover, educational attainment defined as 
years spent in schools in this study has a wide spectrum in 
various countries. Last, the two-sample MR analyses are 
likely to be biased if two studies contains overlapping par-
ticipants or cohorts which are quite common in large-scale 
GWAS meta-analysis [41]. We tried best to choose studies 
that are of European ancestry and have minimal overlaps to 
avoid such bias in two-sample MR analysis.

In conclusion, using genetic approaches, we depicted a 
pathway from gIQ to CAD risk (Fig. 5). The higher gIQ is 
associated with the higher measured intelligence and longer 
educational attainment, both of which appear to reduce the 
prevalence of risk factors of CAD including BMI, smoking, 

Fig. 4  The result of MR analyses. Error bars indicate 95% confidence 
intervals around the estimated effects calculated using multivariable 
two-sample MR. The effects on outcomes for intelligence and edu-
cational attainment were generally in consistent directions. But the 
effects of educational attainment are quantitatively stronger than 
intelligence
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T2D and hypertension, and increase HDL cholesterol, which 
in concert subsequently reduce the prevalence of CAD. 
Moreover, the effects of educational attainment on risk fac-
tors and CAD appear to be stronger than the effects of intelli-
gence. Thus, repetitive campaigns throughout schooling may 
be worthwhile for preventive reasons as they may ameliorate 
the association between gIQ and unhealthy lifestyle.
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