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Abstract

In reliability analysis with numerical models, one is often interested in the sensitivity of the probability of
failure estimate to changes in the model input. In the context of multi-uncertainty, one whishes to separate
the effect of different types of uncertainties. A common distinction is between aleatory (irreducible) and
epistemic (reducible) uncertainty, but more generally one can consider any classification of the uncertain
model inputs in two subgroups, type A and type B. We propose a new sensitivity measure for the probability
of failure conditional on type B inputs. On this basis, we outline a framework for multi-uncertainty-driven
reliability sensitivity analysis. A bi-level surrogate modelling strategy is designed to efficiently compute the
new conditional reliability sensitivity measures. In the first level, a surrogate is constructed for the model
response to circumvent possibly expensive evaluations of the numerical model. By solving a sequence of
reliability problems conditional on samples of type B random variables, we construct a level 2-surrogate
for the logarithm of the conditional probability of failure, using polynomial bases which allow to directly
evaluate the variance-based sensitivities. The new sensitivity measure and its computation are demonstrated
through two engineering examples.

Keywords: Reliability-Oriented Sensitivity Analysis, Multi-Uncertainty, Surrogate Modelling, Rare Event
Simulation, Decision Support

1. Introduction

Reliability analysis is concerned with the evaluation of the probability of failure of an engineering system.
The system can be described probabilistically in terms of the input random vector Θ with joint cumulative
distribution function (CDF) FΘ and a deterministic model Y mapping each Θ to an output Y = Y(Θ). The
performance of the system can be assessed in terms of its limit-state function g. The limit-state function
defines the failure modes of a system and by convention takes values below 0 in the failure domain, which
is a subset of the entire input variable space ΩΘ. The system probability of failure is given by [1]

P(F ) = EΘ [I(g(Θ) ≤ 0)] =

∫

ΩΘ

I[g(θ) ≤ 0]πΘ(θ)dθ, (1)

where the indicator function I equals 1 on the failure domain {θ ∈ Ωθ : g(Θ) ≤ 0} and 0 on its complement
and πΘ is the joint probability density of Θ.

Standard Monte Carlo methods fail to efficiently solve Eq. (1) if P(F ) is very small, which is typically
the case for failure probabilities. Methods which are specifically designed to solve Eq. (1) for very small
P(F ) are referred to as structural reliability methods (SRM). SRM can be categorized into approximation
(e.g. FORM, SORM [2]) and sampling methods (e.g. importance sampling [3, 4], line sampling [5], subset
simulation [6] and sequential importance sampling [7, 8]), both of which can be combined with surrogate
modelling (e.g. [9, 10]).

To account for different types of uncertainties (i.e. multi-uncertainty), we consider a segmentation of the

Preprint submitted to Reliability Engineering & System Safety March 14, 2019



random input vector in two disjunct subsets Θ = [ΘA,ΘB ]T . The variables ΘB can be interpreted as
epistemic (sometimes also termed reducible) and the variables in ΘA as aleatory (irreducible). Irrespective
of the interpretation of ΘB , we aim at explicitly quantifying its influence on P(F ). This is e.g. useful to
identify those inputs in ΘB whose uncertainty should be reduced by means of additional data in order to
increase the accuracy of the reliability analysis.

Figure 1 illustrates our framework for reliability analysis and updating in the presence of multi-uncertainty.
To obtain information on the potential influence of each component of ΘB on the reliability analysis, we
consider the probability of failure conditional on ΘB [11]:

PF (θB) = P(F |ΘB = θB)

= EΘA
[I(g(ΘA,ΘB) ≤ 0)|ΘB = θB ]

=

∫

ΩΘA

I[g(θA,θB) ≤ 0]fΘA|ΘB
(θA|θB)dθA. (2)

Note, that PF (θB) is a scalar function of the outcome of a random vector and hence is itself a random
variable. A similar way of handling uncertainty separation is presented under the term ’second-order prob-
ability’ in the program package Dakota [12] and is also discussed by other authors [11, 13].
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Figure 1: Framework for reliability sensitivity analysis in the presence of multi-uncertainty. The model Y is subject to
irreducible (ΘA) and reducible (ΘB) probabilistic inputs. Estimates of the distribution of the probability of failure conditional
on ΘB , π̂PF

, may be obtained through repeated reliability analyses fixed at different θB . Thus, π̂PF
is subject to change

when updating components of ΘB . The proposed reliability sensitivities quantify the obtainable variability reduction in PF

resulting from uncertainty reduction (e.g. through Bayesian updating) in the components of ΘB . In this way, they allow for
an informed selection of data acquisition measures.

In the literature, a variety of metrics for quantifying sensitivities with respect to different quantities of
interest can be found. They can be grouped according to scope (local [14] vs. global importance), moment-
dependence (e.g. variance-based [15, 16, 17, 18] vs. distribution-based [19, 20]) and considered inputs
(deterministic parameters [21] vs. random variables [15, 16, 17, 18]). A good overview over global sensitiv-
ity measures is given in [22] and [23].

Most often, these measures are computed for the outcome of the numerical model. In contrast, reliability-
oriented sensitivity analysis is concerned with determining the sensitivity of the output of a reliability

2



analysis to the model inputs. Many approaches dedicated to reliability-oriented sensitivities are concerned
with determining local derivative-based sensitivity measures for deterministic model parameters in the limit-
state function (LSF) [21] or deterministic distribution parameters of the input [24, 25, 26, 13]. Alternatively,
[27] computes failure probability histograms conditional on design parameters (LSF or distribution param-
eters) by artificially consdering them as random variables. These histograms can be used to compute global
sensitivity measures for the parameters. When using approximative reliability methods like FORM/SORM,
reliability sensitivities are obtained from the analysis in form of the component (or α-) values of the de-
sign point (or most probable point of failure) [2, 28]. These can be interpreted as global, variance-based
sensitivity indices of the first-(FORM) and second-(SORM) order Taylor expansions of g around the design
point[28] in standard-normal space. Recently, [29] extended this idea to account for a mixture of several
significant points and regions along the hypersurface g = 0 by means of a Gaussian mixture (GM) model
through defining a participation factor for each of the regional design point contributions of the GM com-
ponents. [20] compute variance-based sensitivities for the indicator function I(g ≤ 0) and show, that this is
equivalent to computing the moment-independent sensitivity measure proposed in [19] for the probability of
failure. They use a surrogate model to relax the computational cost induced by the sampling-based sensi-
tivity computation approach. Along the same lines, [30] also use a surrogate (Kriging) modelling approach
when computing variance-based sensitivities for the probability of failure conditional on uncertain distri-
bution parameters of the input variables. [31] compute variance-based sensitivity indices for a probability
of failure conditional on distribution parameters using importance sampling and the FAST algorithm for
estimating the sensitivity indices. Alternative sensitivity measures for rare event probabilities include the
use of quantiles [32] or perturbation of input densities [33] to globally quantify influence of model inputs on
rare event probabilities.

In this contribution, we introduce a reliability-oriented sensitivity measure that is based on the variance
decomposition of the logarithm of the conditional probability of failure, defined in Eq. (2). The proposed
measure enables the quantification of the influence of the type B (reducible inputs), which may consist of
either input variables or uncertain distribution parameters thereof, on the magnitude of the probability of
failure (Figure 1). To efficiently compute the proposed reliability sensitivities, we introduce a 2-level surro-
gate based approach. In the first level, a surrogate of the model response is constructed and is further used to
compute the probability of failure conditional on samples of the type B-variables. The resulting conditional
probability estimates are further used to construct a polynomial basis surrogate model of the logarithm
of the conditional probability of failure. The coefficients of the level-2 surrogate can be post-processed to
compute an estimate of the sought sensitivity indices.

The structure of the paper is as follows: In Section 2, we discuss the basics of global sensitivity analy-
sis and introduce the new reliability sensitivity index. In Section 3, we present polynomial basis surrogate
modelling (polynomial chaos expansions (PCEs) and low-rank approximations (LRAs)) and their relation
to global sensitivity measures. Section 4 outlines a two-level framework for the surrogate-driven estimation
of the novel reliability sensitivities, which is subsequently tested on two numerical examples in Section 5.
The studied examples consist of a 12-dimensional elastic truss structure and a 87-dimensional wind turbine
monopile foundation in plastically behaving soil. Section 6 contains a discussion of the presented method
and an outlook on possible extensions and improvements of the introduced framework.

2. Global Reliability Sensitivity Analysis

The sensitivity measures ptoposed here for reliability belong to the realm of variance-based sensitivity
methods. After a brief introduction of the underlying idea of variance-based sensitivity indices for arbitrary
quantities of interest, we move on to their application to reliability. We discuss the computational cost
of these newly introduced indices when estimated with classical Monte Carlo-based (MC) approaches and
thereby motivate a surrogate-driven computational approach, which is discussed in the next section.
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2.1. Variance-Based Sensitivity Analysis
Consider a d-dimensional standard uniform random vector U ∼ Ud(0, 1), representing the input uncer-

tainty of some model, and an output quantity of interest (QOI) Q = f(U), with f : [0, 1]d → R.
Variance-based sensitivity indices rely on estimating the contribution of a single (first-order index) or a

combination of the inputs U (n-th order index, n being the number of variables considered in the combina-
tion) to the output variance of the QOI. These fractions can be found by projecting the QOI on an orthogonal
functional basis, which leads to a unique representation of f , namely the Sobol’-Hoeffding decomposition
[15]

f(U) = f0 +

d∑

i=1

fi(Ui) +

d∑

i=1

d∑

j=i+1

fij(Ui, Uj) + · · ·+ f12...d(U). (3)

Here, all basis functions have zero mean except for f0 = E[Q]. If Q depends on pairwise independent inputs
with arbitrary distribution with known marginal CDFs, FΘi

, an isoprobabilistic transformation can be used
to generalize Eq. (3). This transformation is given by T : Θi → FΘi(Θi), 1 ≤ i ≤ d, and the transformed
decomposition is obtained by setting U = T (Θ) in Eq. (3). By virtue of the orthogonality property, the
variance of f is merely the sum of the partial variances of all the basis functions. The partial variance
corresponding to a set of inputs indicated by the index set A ⊆ {1, 2, . . . , d} is found as the variance of fA.
The corresponding Sobol’ index is then defined by the ratio

SQ,A =
V[fA]

V [f ]
. (4)

Note, that the Sobol’ index measures the variance fraction that originates from a particular combination of
variables exclusively without considering interaction of ΘA with Θ∼A, where ∼ denotes the complement of
A over the total set {1, 2, ..., d}. [16] defined the total-effect indices, which measure the partial variances of
all basis functions including ΘA:

STQ,A =

∑
I⊇A

V[fI ]

V [f ]
. (5)

Alternatively, both Sobol’ and total-effect indices can be cast in terms of variances of conditional expectations
as [23]:

SQ,A =
VΘA [EΘ∼A [Q|ΘA]]

V [Q]
,

STQ,i =
EΘ∼A [VΘA [Q|Θ∼A]]

V [Q]
(6)

= 1− VΘ∼A [EΘA [Q|Θ∼A]]

V [Q]
.

2.2. The proposed reliability sensitivity indices
In order to define variance-based sensitivities related to the reliabilty of a system one has to choose

Q appropriately. In reliability analysis, the quantity of interest is the failure event F and the associated
probability of failure. Since F is defined via the indicator function of the failure domain, [20] propose to
compute importance rankings through the variance decomposition of the indicator function I(g ≤ 0). They
do so by means of a surrogate modelling technique to avoid the slow convergence of standard MC-estimators
in cases where the QOI is a rare event.
Within the multi-uncertainty setting, we propose to perform the variance decomposition of the conditional
probability of failure defined in Eq. (2), i.e. More precisely, we propose using

Q = logPF (ΘB), (7)
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where log indicates the logarithm to the base 10. This can be understood as a measure for the magni-
tude of the conditional probability of failure. In this way, we focus the sensitivity analysis on possibly
substantial/magnitude-altering changes in the estimate of P (ΘB). Note that the concepts introduced in the
following can be generalized to any quantity of interest that can be cast in terms of the expectation of a
functional (e.g. any moment of Y ). Consider now an arbitrary subset of ΘB which is denoted by ΘB and
its complement Θ∼B such that ΘB = {ΘB,Θ∼B}. The novel sensitivity indices for the variable subset ΘB
are given by

SlogPF ,B =
VΘB [EΘ∼B [logPF |ΘB]]

V [logPF ]
, (8)

STlogPF ,B = 1− VΘ∼B [EΘB [logPF |Θ∼B]]

V [logPF ]
. (9)

Substituting Eq. (2) in the above, we arrive at the following expressions for the novel sensitivity indices:

SlogPF ,B =
VΘB [EΘ∼B [log {EΘA

[I(g ≤ 0)|ΘB ]} |ΘB]]

VΘB
[log {EΘA

[I(g ≤ 0)|ΘB ]}] (10)

STlogPF ,B = 1− VΘ∼B [EΘB [log {EΘA
[I(g ≤ 0)|ΘB ]} |Θ∼B]]

VΘB
[log {EΘA

[I(g ≤ 0)|ΘB ]}] . (11)

While these expressions appear cumbersome, they exhibit key features of the new indices:

1. The variance decomposition of the total variance contributed by ΘB rather than Θ is performed,
which is reflected by the normalizing constants in Eqs. (10) & (11).

2. Due to the expectation EΘA
, the employed QOI is smooth on ΩΘB

. In particular, it is non-binary as
opposed to the QOI underlying the indices proposed by [20].

3. The log-transformation of the conditional probability of failure focusses the reliability analysis on the
probability of failure magnitude. From a numerical perspective, this is beneficial due to the additional
smoothing of the the quantity of interest.

Remarkably, when decomposing the conditional probability of failure directly instead of its log-transformation,
the Sobol’ indices of the indicator function are recovered up to a factor (see Appendix A). In the following
section, we discuss common problems when tackling reliability sensitivities with sampling methods. There-
after, in Section 3, we introduce the means to circumvent sampling almost entirely in the computation of
the novel sensitivity indices.

2.3. Monte-Carlo estimators
[17] and [18] provide Monte Carlo-estimators for the expressions in Eqs. (6). Based on a set of ns d-

dimensional Θ-samples, ns · (d + 2)/2 model evaluations are necessary to compute them, where ns is the
samples size required by the analysis. A reasonable estimate for ns is the number of samples required for the
MC-estimation of E[Q] at a prescribed accuracy. These estimators may be intractable if a model evaluation
is computationally expensive, d is large or Q is given by a failure event with small associated probability of
failure. In the last case, intractability arises from the required amount of samples (i.e. evaluations of the
g-function) to accurately estimate E[Q]. It is ≈ 100/P(F ) when the allowed coefficient of variation of the
estimator is 10%. Therefore, when typically P(F ) is very small, ns becomes prohibitively large.

For the novel sensitivity indices, the computational burden would amount to a multiple of what is needed
for the computation of sensitivity indices of the indicator function of g. This is due to the need to solve
Eq. (2) ns · (d + 2)/2 times, which may in turn require many g-evaluations per solution. Conversely, com-
puting the indices associated with Q = I(g ≤ 0) requires a single g-evaluation at each sample to determine
whether g ≤ 0. Therefore, the computational effort scales approximately as the average number of g-calls
necessary to solve Eq. (2) at constant ns (although, at convergence, ns would likely be considerably smaller
compared to the case where Q = I(g ≤ 0)). However, the smoothness in our choice of Q is key to an entirely
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surrogate-driven sensitivity computation, which facilitates the use of only a small fraction of the samples
required in the sampling-based procedure. Two types of surrogate models have been tested and are detailed
in the subsequent section.

3. Polynomial Basis Surrogate Modelling

Let Θ be a random vector on the outcome space Rd with joint CDF FΘ whose elements are mutually
independent and Y = Y(Θ), with Y : Rd → R. If Y has finite mean-square, i.e. EΘ[Y(Θ)2] <∞, then the
function Y belongs in a Hilbert space H on which an inner product of any two functions g, h ∈ H is defined
as

〈g(θ), h(θ)〉H = EΘ[g(Θ)h(Θ)] =

∫

Rd

g(θ)h(θ)πΘ(θ)dθ, (12)

where πΘ(θ) is the joint probability density function (PDF) of Θ. g and h are orthogonal if

〈g(θ), h(θ)〉H = EΘ[g(Θ)h(Θ)] = 0. (13)

Note, that if g and h can be written as products of univariate functions of the components of Θ, the following
holds:

〈g(θ), h(θ)〉H =

d∏

i=1

EΘi [gi(Θi)hi(Θi)]. (14)

Given a complete and orthonormal basis of H, {hi(θ), i ∈ N}, Y may be expressed as a linear combination
of the basis functions:

Y = Y(Θ) =

∞∑

i=0

aihi(Θ). (15)

Then, since Y ∈ H, the approximation

Ŷ = Ŷ(Θ) =

p∑

i=0

aihi(Θ) (16)

asymptotically (p → ∞) converges to Y in the mean-square sense. For d = 1, a possible choice of basis
functions related to certain standard distribution types of πΘ are known polynomial families {ψi(θ), i =
0, ..., p}, which are identified by means of the Askey scheme [34]. This lays the foundation for both PCEs
and LRAs. They differ with respect to how the multi-dimensional base polynomials are defined and how the
expansion coefficients ai are determined. For d > 1, due to Eq. (14), multi-dimensional basis polynomials
Ψk can be easily constructed as products of the one-dimensional canonical polynomials ψ(i)

k .

3.1. Polynomial Chaos Expansions

Given the polynomial family of the i-th input θi up to pi-th order {ψ(i)
j (θi), j = 0, ..., pi}, the j-th

multi-dimensional basis function reads

Ψj(θ) =

d∏

i=1

ψ(i)
αji

(θi), (17)

where α contains all combinations of d-dimensional index sets each assigning a polynomial order to each
input θi such that the total polynomial order |αj | =

∑d
i=1 αji ≤ p, 0 ≤ j ≤ P − 1. The number of basis

functions P is given by

P =

(
d+ p

p

)
(18)

and the PCE format reads

ŶPCE(Θ) =

P−1∑

j=0

aj

d∏

i=1

ψ(i)
αji

(Θi). (19)
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The coefficients a are identified through a projection of Y onto the space spanned by {Ψj , j = 0, ..., P−1}. In
this work,we evaluate a using an ordinary least-squares (OLS) approach, which approximates the projection
of Y onto the PCE basis [35]. Consider a set of ns samples X of the input random vector Θ called the
experimental design and corresponding Y-evaluations Y , where X ∈ Rns×d and Y ∈ Rns×1. We call
the collection E = {X,Y } the training set. The data matrix Ψ collects the evaluation of each of the
multi-dimensional basis polynomials at each point in X

Ψ = Ψj(x
(i)), 1 ≤ i ≤ ns, 1 ≤ j ≤ P, (20)

where x(i) is the i-th row of X. The vector of all P PCE-coefficients a is then obtained by regressing Y on
Ψ which gives

a = (ΨTΨ)−1ΨTY . (21)

Equation (18) indicates a fast growth of the OLS problem size with increasing dimension d. This motivates
the use of sparse PCE methods, which are also applied in this work. Sparse PCE reduces P by penalizing
the number of terms in the PCE through solving a regularized least-squares problem [36]. In this way, the
method elicits a minimal number of basis functions such as to best explain the output variance.

3.2. Canonical Decomposition
Low-rank approximations have been introduced originally to represent high-dimensional tensors by means

of lower-dimensional tensors [37]. A specific format of such approximations are canonical decompositions,
in which tensors are approximated by means of a linear combination of products of one-dimensional tensors
[38]. The idea extends to continuous spaces where a multivariate function is approximated by a linear
combination of products of univariate functions:

ŶLRA(Θ) =

r∑

j=1

aj

d∏

i=1

pi∑

k=1

zijkψ
(i)
k (Θi). (22)

Therein, an additional set of coefficients z appears, which can be efficiently determined by solving reduced,
univariate least squares problems over the directions i = 1, ..., d repeatedly (while keeping all remaining
directions constant in each step; this is often referred to as alternating least squares). In a second step, the
coefficients a are determined via OLS. A detailed description of the procedure is given in [39] and [40]. The
number of cofficients in the canonical decomposition is O((p + 1) · d · r) assuming a constant polynomial
degree p in all dimensions. This linearity in d is remarkable and explains the advantage this format offers
over classical PCE where the coefficients grow factorially with the dimension as described in Eq. (18).

3.3. Surrogate-Based sensitivity indices
Both PCEs and LRAs can be used to infer first-order and total sensitivity indices directly from the

computed model coefficients. Rather than searching estimates of the expressions in Eqs. (6), the similarity
of the underlying orthogonal Sobol’ decomposition in Eq. (3) with Eqs. (19) and (22) is exploited and the
expressions (4) and (5) can be computed directly. [41] showed that the Sobol’ decomposition of the PCE is
readily obtained by collecting any multi-dimensional orthogonal polynomials depending on identical variable
subsets ΘA into fA(ΘA). Therefore, computing the partial variance of the PCE model associated with a
subset of variables ΘA amounts to summing the squared coefficients of the respective multi-dimensional
basis polynomials in which the elements of ΘA occur (exclusively for Sobol’ indices and collectively for total
indices). The same concept can be applied to LRAs even though the compressed format (product) renders
the evaluation somewhat more tedious. For a given subset of the input variables denoted by the index set
A, we define a boolean index vector IA ∈ {0, 1}d s.t. IAi = 0 if i /∈ A and IAi = 1 if i ∈ A. In the same
way, we define such an index vector for the j-th row of αj s.t. Iαj

i = 0 if αij = 0 and Iαj

i = 1 if αij > 0.
Then, the PCE-based sensitivity indices read [41]:

ŜQ,A =
∑

IA=Iαj ,
1≤j≤P−1

a2
j

/ ∑

1≤j≤P−1

a2
j , ŜTQ,A =

∑

(IA)T Iαj>0,
1≤j≤P−1

a2
j

/ ∑

1≤j≤P−1

a2
j (23)
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and the LRA-based indices [42]:

ŜQ,A =

r∑
j=1

r∑
j′=1

ajaj′
(∏

i/∈A zij,0zij′,0
)(∏

i′∈A

(
pi∑
k=1

zi′jkzi′j′k

))
−

r∑
j=1

r∑
j′=1

ajaj′

(∏d
i=1

(
pi∑
k=1

zijkzij′k

))

r∑
j=1

r∑
j′=1

ajaj′

((∏d
i=1

(
pi∑
k=1

zijkzij′k

))
−
(∏d

i=1 zij,0zij′,0

)) ,

(24)

ŜTQ,A = 1−

r∑
j=1

r∑
j′=1

ajaj′
(∏

i∈A zij,0zij′,0
)(∏

i′ /∈A

(
pi∑
k=1

zi′jkzi′j′k

))
−

r∑
j=1

r∑
j′=1

ajaj′

(∏d
i=1

(
pi∑
k=1

zijkzij′k

))

r∑
j=1

r∑
j′=1

ajaj′
((∏d

i=1 (
∑pi
k=1 zijkzij′k)

)
−
(∏d

i=1 zij,0zij′,0

)) .

(25)

4. Conditional Surrogate-Based Reliability Sensitivities

The computation of sensitivity indices via polynomial surrogates requires the QOI to be sufficiently
smooth. In particular, any attempts to obtain surrogate-based indices of the indicator function of the
failure domain I(g ≤ 0) directly in such a manner must fail due to the discontinuity in I(g ≤ 0). However,
the log-transformed conditional probability of failure is continuous in the space of ΘB so that one may
compute the proposed sensitivity indices with polynomial surrogates. To this end, we devise a two-level
surrogate modelling procedure. Building a surrogate of logPF (level 2) requires an experimental design that
consists of samples of ΘB and the associated probabilities of failure given each of these samples. That is,
one has to solve n2 reliability problems, where n2 is the experimental design size for the final surrogate. An
auxiliary (level 1) surrogate is built for the actual model Y, based on which the reliability computations can
be conducted. This approach is referred to as global in the following. Alternatively, a local surrogate model
may be constructed at each sample of ΘB for solving its associated reliability problem. The local surrogate
has lower-dimensional input compared to the global surrogate because the input space is reduced from ΩΘ

to ΩΘA
, and is therefore cheaper to determine; however, it has to be recomputed for each ΘB-sample.

This approach will be referred to as local. Prior to construction, an isoprobabilistic transformation to an
independent standard-normal space is used, such that both PCEs and LRAs can be consistently constructed
using the the orthogonal polynomial basis with respect to the standard normal probability measure, which
is the Hermite polynomial basis [34].

4.1. Level 1
On the first level, the goal is to construct a surrogate model for the original model Y(Θ), describing the

engineering system.

4.1.1. Global Approach
In the global approach, we evaluate the model at the level 1-experimental design which yields the level

1-training set E1 = {X1,Y1}, where X1 ∈ Rn1×d is drawn from πΘ and Y1 = Y(X1) ∈ Rn1×1 and n1 is the
number of points in E1. The overall number of original model evaluations is thereby limited to n1 because
any subsequent computations, namely the reliability analyses, will be run with the level 1-surrogate. In this
level, any kind of surrogate modelling technique can be utilized to run the reliability analysis. However, the
quality of the reliability sensitivity estimates mostly depends on the quality of the surrogate and the applied
structural reliability method (SRM) in level 1. Thus, tuning the method in this component will yield the
most substantial improvements in estimating the reliability indices. [9] introduced a Kriging-driven Monte-
Carlo sampling approach which enriches the Kriging experimental design according to a learning function
that favors large model uncertainty close to the limit-state hypersurface g = 0 and [43] applied a similar
idea to PCEs. A recently introduced surrogate-driven sequential sampling approach for reliability analysis
explores the failure domain sequentially and reconstructs a surrogate model at each intermediate step in the
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sampling procedure [44]. All of these approaches have been shown to substantially improve the unconditional
reliability estimate.

4.1.2. Local Approach
For nonlinear models, ΩΘB

may contain regions in which the conditional probability of failure becomes
either very small or very large. Global surrogate methods may fail to reconstruct the model accurately in
such regions and thereby introduce an error in the estimator of the proposed sensitivity indices. In such
case, one may instead use cheap local surrogates which are reconstructed at each ΘB-sample. At the i-th
sample θ(i)

B , the local surrogate Ŷ|θ(i)
B (ΘA) is constructed based on a local training set E(i)

1 = {X(i)
1 ,Y

(i)
1 },

where X(i)
1 ∼ πΘA

and Y (i)
1 = Y(X

(i)
1 ,θ

(i)
B ). The local approach is particularly suitable if dB = dim(ΘB) is

large (dB/d→ 1), i.e. most variables are reducible, since then, the resulting conditional reliability problems
are low-dimensional (they are posed on ΩΘA

, which has dimension dA = dim(ΘA) = d − dB). In such
case, the local surrogates depend on a low-dimensional input such that they can be computed using small
experimental designs. A more detailed discussion of computational cost depending on the variable splitting
in ΘA and ΘB is given in Section 4.4.

Effective surrogate model dimension for input mixtures
When considering both random inputs and uncertain parameters of these inputs at the same time,

one can reduce the effective dimension of the experimental design over which to construct the level 1-
surrogate. Consider a random vector Θ, where Θ2 = M , Θ3 = Σ are uncertain parameters of Θ1 which
is a random variable. The probabilistic model of Θ1, through the conditional CDF FΘ1|M,Σ, establishes an
exact relationship between Θ1, M and Σ. If FΘ1|M,Σ is invertible in Θ1, the following hierarchical sampling
strategy yields a sample from Θ1 based on a sample u = [u1, u2, u3]T from the standard-uniform distribution.

m = F−1
M (u1),

σ = F−1
Σ (u2)), (26)

θ1 = F−1
Θ1|M,Σ(u3|m,σ) = F−1

Θ1|M,Σ

(
u3|F−1

M (u1), F−1
Σ (u2)

)
.

Since the surrogate is constructed in standard-normal space, we use an isoprobabilistic transformation
to compute the corresponding standard-normal sample v1:

v1 = Φ−1 [FΘ1(θ1)] , (27)

where Φ(·) is the standard-normal CDF. Equations (26) & (27) facilitate the construction of a surrogate
model for the marginalized input space, which does not contain M and Σ anymore. In this way, we improve
the surrogate accuracy through replacing what would have been an approximation of the interaction amongst
Θ1, M and Σ with their exact relationship. Instead of marginalizing the input space, one may also work in
the higher-dimensional space and obtain larger experimental designs at no additional computational cost by
sampling [Θ1,M,Σ] from iso-Θ1-surfaces, as done in [45]. Then, the PCE will still approximate the exact
relationship amongst Θ1, M and Σ, though at considerably better accuracy through the larger training set.
The predictive CDF of Θ1, FΘ1 , can be computed via numerical integration, e.g. Monte-Carlo integration:

FΘ1
(θ1) =

∞∫

−∞

∞∫

−∞

FΘ1|M,Σ(θ1|m,σ)πM (m)πΣ(σ)dmdσ

= E
[
FΘ1|M,Σ(θ1|M,Σ)

]
(28)

≈ 1

N

N∑

i=1

FΘ1|M,Σ(θ1|mi, σi), mi ∼ πM , σi ∼ πΣ.
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4.2. Level 2

The level 2-surrogate l̂ogPF is based on the training set E2 = {X2,Y2}, where X2 ∈ Rn2×dB is drawn
from πΘB

, Y2 = logPF (X2) ∈ Rn2×1 and n2 is the number of points in E2. In level 2, we focus on polynomial
basis surrogates, such that no additional (not even surrogate-model-based) sampling is required to obtain
the reliability sensitivities (Section 3). The level 2-surrogate model additionally provides a cheap and
approximate method for updating probability-of-failure-densities. That is, upon obtaining posterior ΘB-
samples through Bayesian updating, the associated posterior failure density (and its mean, the predictive
reliability estimate) can be computed through the analytical function l̂ogPF (ΘB) rather than solving a
reliability problem for each of the posterior samples. The polynomial basis in l̂ogPF is orthogonal with
respect to the prior input joint density. Thus, coefficient-based postprocessing (moments, sensitivities) of
the posterior conditional probability of failure, should be handled with great care.

4.3. The Framework
The analysis proceeds in the following way:

1. Elicit a variable subset of interest ΘB . Obtain n2 ΘB-samples, {θ(i)
B }1≤i≤n2 (e.g. based on latin

hypercube sampling or a low-discrepancy sequence).
2. In case ΘB comprises a mixture of inputs and uncertain parameters thereof, marginalize the input

space according to Eqs. (26), (27) and (28).
3. Select the global or local strategy for the level 1-surrogate.

a) Global
Sample n1 Θ-samples and evaluate the model Y at these samples. Based on these, build the global
level 1-surrogate over ΩΘ, Ŷ.
For each ΘB-sample, use a structural reliability method and the global level 1-surrogate-based limit-
state function ĝ to compute

P̂
(i)
F = EΘA

[
I(ĝ(ΘA,θ

(i)
B ) ≤ 0)

∣∣∣θ(i)
B

]
=

∫

ΩΘA

I(ĝ(θA,θ
(i)
B ) ≤ 0)πΘA|ΘB

(θA|θ(i)
B )dθA.

b) Local
For each ΘB-sample, sample n1 ΘA-samples and evaluate the model Y at these samples. Based on
these, build the local level 1-surrogate over ΩΘA

conditional on θ(i)
B , Ŷ|θ(i)

B and its associated local
limit-state function ĝi(θA) to compute Ŷ|θ(i)

B

P̂
(i)
F = EΘA

[I(ĝi(θA) ≤ 0)] =

∫

ΩΘA

I(ĝi(θA) ≤ 0)πΘA|ΘB
(θA|θ(i)

B )dθA.

4. From the set {θ(i)
B , log(P̂

(i)
F )}i=1,··· ,n2

, build the level 2-surrogate l̂ogPF (ΘB).
5. Obtain variance-based sensitivity indices of l̂ogPF by means of the model coefficients.

The procedure outlined above is also sketched in Figures 2 (global) & 3 (local).

4.4. Computational cost
Figure 4 shows the behaviour of computational cost in both levels when using either a global or a local

or no surrogate strategy at all in level 1. The computational cost is measured in terms of number of Y-
evaluations. To proceed, we make the assumption that the number of samples required to learn a surrogate
model in input dimension d is n = 2 · (d + 1). Note that this is a rather crude assumption and is accurate
only for mildly nonlinear models Y. The number of samples required in level 2, n2 = 2(dB + 1), is the
same in all three versions, though for the global surrogate model, this does not influence the computational
cost. At fixed model dimension d, the global surrogate modelling costs are n1,global = nglobal = 2(d + 1),
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ŜT
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Figure 2: Flow diagram of 2-level surrogate-based conditional reliability sensitivities with global surrogate in level 1.
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Ŷ|X(i)
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2 = log P̂F (X

(i)
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̂logPF

ŜlogPF

ŜT
logPF

Figure 3: Flow diagram of 2-level surrogate-based conditional reliability sensitivities with local surrogates in level 1.

i.e. they are constant, depend only on level 1 and the total dimension and not on dA or dB . For the local
surrogate strategy, the cost in level 1 is given by n1,local = 2(dA + 1) per ΘB-sample. The total cost thus
reads nlocal = n1,local ·n2. When using no level 1-surrogate at all, n2 reliability problems are solved using the
original model Y. In order to estimate the computational cost in the surrogate-free approach, the number of
required Y-evaluations to solve a dA-dimensional reliability problem, n1,Y , has to be estimated. Therein, dA
influences which method should be used to solve the problem. The curve representing this number in Figure
4 is obtained by fitting a polynomial model when assuming [4, 10, 100, 104] required Y-evaluations to solve
a [1, 2, 10, 100]-dimensional reliability problem with constant target probability of failure at a prescribed
accuracy using e.g. [Bisection, FORM, Importance Sampling, Subset Simulation]. The total cost in this
approach is computed as nY = n1,Y · n2.

Figure 4 (right-hand side) shows, that both the local surrogate and surrogate-free strategy yield the highest
overall computational cost when dB and dA have similar size, i.e. neither reducible nor irreducible uncer-
tainties dominate the model input. This is due to two counter-acting effects: On the one hand, as the
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n1,local

n1,global

n2

nY

nlocalnglobal

Figure 4: Comparison of global (global) vs. local (local) vs. no (Y) surrogate strategy in level 1 in terms of computational cost
(number of Y-calls) over reducible space dimension dB . Left: cost per level, right: total cost.

effective local surrogate model dimension equals dA, the local strategy requires less samples per surrogate
when dA is small. Similarly, if not using a surrogate at all in level 1, the reliability analysis performed
with the original model will require less model evaluations due to the decreasing dA. On the other hand,
decreasing dA implies an increasing reducible space dimension dB . Thus, in order to build accurate level
2-surrogates, n2 needs to increase as well implying a multiplication of the overall number of required local
surrogates/original-model-based reliability analyses. Here, the global surrogate model seems to be the most
efficient. This, however, is only true when Y is mildly nonlinear. For models that exhibit stronger nonlin-
ear behaviour, preserving the accuracy of the global model may require more model evaluations than the
local strategy. In many application cases, the local strategy could be operated efficiently as the number of
reducible inputs is considerably lower than the number of irreducible inputs dB << dA.

5. Numerical examples

The novel reliability sensitivity indices are investigated and demonstrated through two applications,
namely an elastic truss of moderate dimensionality (12 dimensions) and a monopile foundation in plastic soil
involving a random field model (87 dimensions). Both examples feature both independent input variables as
well as uncertain parameters thereof. The level 1-surrogate is constructed with LRAs which yield consistently
smaller global and conditional (on failure samples) global errors. This is in accordance with the findings of
[40].

5.1. Elastic truss
The truss structure (Figure 5) consists of 13 rods, where horizontal and diagonal rods have log-normally

distributed cross-sections A1, A2 and Young’s moduli E1, E2, respectively. The truss sustains 6 vertical
point loads P1 - P6 which are modelled as Gumbel-distributed [46, 42]. [47] presents results for an analysis
of the original elastic truss with the proposed sensitivity framework. Here an extension of the truss model
featuring hyperparameters is discussed. Namely, the parameters aP , bP of the load Gumbel distribution are
assumed uncertain and log-normally distributed. The mean and coefficient of variation of the load Gumbel
distribution in Table 1 are conditional on the parameters aP (location parameter) and bP (scale parameter):

µP |aP ,bP = µaP + γEµbP (29)

δP |aP ,bP =
π√
6

µbP
µP |aP ,bP

, (30)
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where γE is Euler’s constant. It is further assumed that all point loads share the same distribution
parameters. Table 1 summarizes the probabilistic input models.

The limit-state function is defined by means of a threshold for the maximum vertical truss deflection,
i.e.

g(Θ) = ulim − umax(Θ),

where ulim = {14cm, 16cm, 18cm} are considered, which correspond to system failure probabilities of
P(F ) = {6.2 · 10−3, 1 · 10−3, 1.7 · 10−4} (estimated with Monte Carlo, estimator coefficient of variation
≤ 5%). In view of the Bayesian interpretation of the variable sets ΘA (irreducible) and ΘB (data available,

4m 4m 4m 4m 4m 4m

2m

P1P2P3P4P5P6

umax

E1, A1

E1, A1 E2, A2
E2, A2

Figure 5: 2-D truss example.

reducible), we choose the latter to comprise quantities which are typically reducible by means of mea-
surements (such as material properties) or archive data (such as load hyperparameters). Thus, we select
ΘB = [E1, A1, E2, A2, aP , bP ] and ΘA = [P1, . . . , P6]. For this example, we use the global surrogate mod-

Table 1: Input variable definitions of the elastic truss.

Quantity Distribution Mean µ CoV δ
A1 [m2] Log-Normal 2 · 10−3 0.1
A2 [m2] Log-Normal 1 · 10−3 0.1
E1, E2 [Pa] Log-Normal 2.1 · 1011 0.1
P1 - P6[N ] Gumbel µP |aP ,bP δP |aP ,bP
aP [N ] Log-Normal 46624 0.2
bP [N ] Log-Normal 3375 0.2

elling strategy, as the truss behaves only mildly nonlinear. Both level 1- and level 2-experimental designs
are obtained via latin hypercube sampling. n1 = 200 samples are used to construct the level 1-LRA, while
n2 = 1000 points are used to evaluate the level 2-surrogate. The analysis is repeated 20 times redraw-
ing random level 1-experimental designs which yields the estimator statistics provided in Figures 6 and 7.
These are computed for the difference of the surrogate-based estimator from the direct Monte-Carlo (DMC)
reference solution, i.e.

εQ = Q−QDMC . (31)

All reliability analyses haven been performed with the first-order reliability method (FORM). For the refer-
ence solution, nDMC = 2 · 105 samples have been used implying the solution of 8 · 105 reliability problems
of dimension 6 (since the type B-variable space has dimension 6, see Section 2.3). While both PCE and
LRA-based approaches capture the variable importance ranking correctly, the LRA-based approach performs
slightly but consistently better in the mean compared to the PCE-based approach. The least important
variables E2, A2 are estimated with the smallest error mean and variance, which, however, is due to their
small true magnitude. Intuitively, estimation accuracy and index magnitude should depend on one another
reciprocally; the larger the index the more accurate it is estimated based on a given set of samples. Indeed,
relative to their respective magnitudes, the indices of the most important indices aP and bP are estimated
more accurately.
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Figure 6: logPF first-order Sobol’ indices: mean estimates and errors (n1 = 200, n2 = 1000).
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Figure 7: logPF Total-effect indices: mean estimates and errors (n1 = 200, n2 = 1000).
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5.2. Monopile Foundation
In this example, we consider a finite element model for the interaction of a monopile foundation of an

offshore wind turbine (Figure 8) with stiff, plastic soil. Deterministic parameters of the monopile are its
depth L = 30 m, diameter D = 6 m, wall thickness t = 0.07 m, Poisson ratio ν = 0.3 and Young’s modulus
E = 2.1 ·105 MPa. The uncertain inputs comprise the lateral load H as well as the undrained shear strength
s of the soil and hyperparameters of both quantities. The engineering model setup follows [48] and the
probabilistic model considered there has been modified following [49]. s is considered both uncertain and
increasing in mean with soil depth z. It is thus modelled by a random field with linear mean drift along the
soil depth coordinate z. Given an underlying stationary Gaussian random field s̃(z,Θ)

{s̃(z) : 0 ≤ z ≤ L} ∼ N (0, σs̃),

the non-stationary random field representing the shear strength of the soil can be expressed as

s(z,Θ) = s0 + s1σ
′(z) exp {s̃(z,Θ)}

= s0 + s1γz exp {s̃(z,Θ)} ,

where γ is the soil unit weight, σ′(z) = γz is the effective vertical stress, s0 is the undrained shear
strength at ground level and s1 is the drift parameter governing the mean increase of s with increasing soil
depth. s̃(z,Θ) models the intra-site variability. That is, at a given site with known deterministic s0 and
s1, it describes the inherent variability of the undrained shear strength. In order to describe the inter-site
uncertainty in s, the parameters s0 and s1 are modeled probabilistically as well. The stationary RF s̃ is
taken to be correlated with exponential-type

ρs̃s̃(z
′, z′′) = exp

{
−2|z′ − z′′|

θs̃

}
,

with vertical soil scale of fluctuation θs̃ = 1.9m [50] and standard deviation σs̃ = 0.3 [50, 51]. We assume
the soil to be stiff and plastic according to the classification provided in [52]. There, the specific soil weight
range is given with 17 − 19kN/m3, whence we set γ = 18kN/m3. The mean cohesion range is given with
20−50kN/m2 by [52] while [53] lists the mean range of the undrained shear strength ratio su/σ′ as 0.23−1.4.
We fit log-normal distributions for s0 and s1 by setting the 10 % and 90% quantiles of the distributions
equal to the lower and upper bounds of these ranges. The resulting parameters are detailed in Table 2 along
with uncertain parameters for the load H, namely µH and σH . The mean and coefficient of variation of
the load Gumbel distribution in Table 2 are conditional on the parameters aH (location parameter) and bH
(scale parameter) according to Eqs. (29) and (30). s̃ is simulated by means of the midpoint method. That

Table 2: Input variable definitions of the monopile foundation.

Input Distribution Mean µ CoV δ
ξ [−] Standard-Normal 0 n.d. (Σξξ = In×n)
s0 [kPa] Log-Normal 33.7094 0.3692
s1 [kPa] Log-Normal 0.7274 0.8019
H [kN ] Gumbel µP |aH ,bH δP |aH ,bH
aH [kN ] Log-Normal 2274.97 0.2
bH [kN ] Log-Normal 225.02 0.2

is, the spatial domain [0, L] is discretized with n spatial elements and s̃ is represented by means of n random
variables with joint distribution N (0,Σs̃s̃). The random variables represent the random field values at the
element midpoints. Thus, the covariance matrix Σs̃s̃ is computed by evaluating σ2

s̃ρs̃s̃(z
′, z′′) at the element

midpoints. The number of elements is chosen such that 95% of the inherent RF variability is captured by the
RF discretization, leading to n = 82 in this example. Therefore, the total input dimension is d = 87. As the
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Figure 8: Wind turbine monopile foundation [48].

surrogate modeling approach requires independent inputs, the midpoint random variables are transformed
to independent standard normal random variables, denoted as ξ, by means of the Nataf transform. The
model output Y = Y(Θ) is the maximum occurring stress in the foundation. The limit-state function is
given by

g(Θ) = σcrit − Y(Θ),

where three different stress thresholds σcrit = {80 MPa, 100 MPa, 120 MPa} are considered with cor-
responding system failure probabilities P(F ) = {3.0 · 10−3, 3.6 · 10−4, 8.0 · 10−5} (estimated with MC and
CoV = {0.0409, 0.1187, 0.2500}). For this example, we consider a scenario in which uncertainties about all
the input hyperparameters as well as the inherent variability of the shear strength can be reduced through
additional data, i.e. ΘB = [ξ, aH , bH , s0, s1]. This leaves the inherent load variability as the only remaining
aleatory input, i.e. ΘA = H. This example has proven extremely challenging for common global surrogate
models (polynomial basis surrogates, adaptive kriging surrogates). Therefore, the local surrogate modelling
strategy is chosen, which, in this case, is an efficient choice since the limit-state function to be approximated
at each ΘB-sample is one-dimensional. As little as four training points are necessary per ΘB-sample. Based
on the local surrogate, the corresponding one-dimensional reliability problem can be solved using a bisection-
or Newton-procedure due to the monotonicity of the limit-state-function the same SRM is applied for the
reference solution with the original model Y). Accurate estimates of the conditional reliability sensitivities
are achieved with an overall 2000 evaluations of the limit-state-function for the second example with the
introduced framework. This is a conservative choice and satisfying accuracy may be achieved with a con-
siderably lower number of model evaluations as is evident from Figures 11 & 12.

The algorithm is run 20 times redrawing level 2-experimental designs to compute errors ε arising from
exploring ΩΘB

randomly. These errors are measured against a DMC-based reference solution according
to Eq. (31). The reference solution is based on ns = 20000 independent samples which yields a total of
1.64 ·106 reliability problems since dB = 86. A single reference solution (fixed σcrit) obtained with a Matlab
implementation took approximately 48 hours to complete on 10 Intel Xeon E5-2697 v3 14-core nodes, which
emphasizes the need for surrogate modelling-based estimators. In order to assess the random field influence,
the sum of all first-order indices of the elements of ξ are reported for both the reference solution and the
surrogate-based approach. This is motivated by the impossibility of efficiently estimating a sensitivity index
of order 86 with the MC-methods of [17, 18]. However, the surrogate-based estimators indicate negligible
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Figure 9: logPF first-order Sobol’ indices: mean estimates and errors (n1 = 4 (local), n2 = 2000).

interaction of the elements of ξ (all Sobol’ and total-effect indices are virtually identical) thus justifying this
approximation.

The sensitivities depicted in Figure 9 and 10 summarize the effect of the inherent random field variability in
the order-n-indices of the random vector ξ. The PCE and LRA level 2-surrogates yield similar estimates for
the reliability sensitivities (Figures 9 and 10): The mean soil shear strength gradient s1 is identified as the
most influential input to the monopile reliability analysis across all investigated scenarios. The dominance
of s1 becomes more pronounced at higher critical stress levels. PCE-based sensitivity estimate means are
in slightly better agreement with the reference solution than LRA-based estimates. Moreover, PCE-based
estimates exhibit consistently smaller variability resulting from the random level 2-experimental design. Er-
ror means and variabilities are of comparable magnitude for all computed indices in this example. However,
as discussed for the truss example, indices of larger magnitude should be estimated more accurately at
a given amount of information. This is true when considering the estimation error relative to the index
magnitudes. Then, estimates of the most influential variables s0 and s1 exhibit comparably small variability
due to the random level 2-design of experiments while the less important variables’ estimators prove more
sensitive in this respect. In Figures 11 & 12, the evolution of the error means and variances at different
level 2-experimental design sizes n2 are depicted. The error converges in mean and standard deviation as n2

increases. The error mean apparently is bounded from below which is likely due to a bias in the reference
solution which arises as the MC-estimates are not fully converged at nc = 20000 independent samples. Ulti-
mately, if a decision-maker were to choose whether to acquire data on either of the uncertain model inputs
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Figure 10: logPF Total-effect Sobol’ indices: mean estimates and errors (n1 = 4 (local), n2 = 2000).

and on which input in particular, they should choose s1 according to the introduced reliability sensitivity
framework.
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Figure 11: Sobol’ (left column) and total-effect indices (right column) error mean vs. level 2 experimental design size n2 for
PCE- (upper row) and LRA-based (lower row) at σcrit = 100 MPa.
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Figure 12: Sobol’ (left column) and total-effect indices (right column) error standard deviation vs. level 2 experimental design
size n2 for PCE- (upper row) and LRA-based (lower row) at σcrit = 100 MPa.
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6. Concluding Remarks

In this paper we describe a framework for reliability sensitivity analysis whose core is a novel, variance-
based sensitivity index tailored to reliability analysis in the presence of multi-uncertainty. Multi-uncertainty
refers to a separation of uncertain model inputs in different categories, e.g. aleatory and epistemic. The
interest then lies in expressing the sensitivity of the probability of failure-estimate to the epistemic inputs.
We devise a flexible two-level surrogate modelling approach which allows for a cost-efficient estimation of
the proposed index. The approach relies on either building a global surrogate model over the entirety of
input variables once and for all (global strategy) or on repeatedly recomputing cheaper, lower-dimensional
surrogates (local strategy). An analysis of computational cost for both local and global surrogate modelling
strategy has been carried out in dependence on how the model input is divided in reducible and irreducible.

We demonstrate the novel approach by means of two examples. In the elastic truss example, the sensi-
tivity indices were estimated using a global low-rank approximation in level 1 at a total cost of 200 original
model evaluations. The LRAs are more suitable for global surrogate-driven reliability computations (level 1)
compared to the PCEs, as discussed in [40]. For the geotechnical example, namely a monopile foundation,
a local surrogate modelling approach based on PCEs has been adopted in level 1 yielding a total cost of
8000 original model evaluations. In level 2, the sparse PCEs perform slightly better than the LRA. Sensi-
tivity estimates for both examples were validated with sampling-based reference estimates showing that the
important input’s indices are estimated accurately by the method. While in this paper only two possible
choices for the level 1 surrogate are discussed, virtually any surrogate modelling technique could be applied
here.

6.1. Discussion
The contribution of the proposed sensitivity index is threefold. First, it focusses the sensitivity analysis

on a variable subset that is of interest in the presence of multi-uncertainty and data assimilation applica-
tions. Second, it represents a direct sensitivity measure for the probability of failure magnitude as opposed
to indices based on the indicator function that rank influence on the failure hypersurface shape. Finally, the
new index facilitates the entirely surrogate-driven computation of reliability sensitivities by smoothening
the indicator function discontinuity through an integral formulation.
In accord with intuition, estimators of sensitivity indices with small magnitude exhibit smaller errors
comapred to those of large magnitude. Relative to the magnitude, the opposite is true: At fixed amount of
information (here: the level 1-training set size) the sensitivity indices with larger magnitude are estimated
more reliably. Moreover, the variable importance ranking is accurately captured in all numerical examples.
The problem dimension, which can be handled by the approach is guided by the surrogate modelling
techniques chosen in both levels. Using an arbitrary surrogate model that is capable of addressing high-
dimensional problems in level 1 and LRAs or the recently introduced PLS-driven PCEs [54] in level 2, it is
applicable up to several thousand input variables.
At a fixed accuracy (with respect to Y-model output), the cost of the global surrogate modelling strategy
remains constant irrespective of the fraction of reducible and irreducible uncertainty in the model input.
The same is not true for the local strategy where two counteracting effects lead to the local strategy being
most efficient if either of the uncertainty types dominates the model input. The local modelling strategy is
more flexible and expected to perform well even for strongly nonlinear models, when the global modelling
strategy may deteriorate. In such case, the required number of samples for a sufficiently accurate global
surrogate model may overcompensate the strategy-based savings the global modelling strategy offers and
render the local strategy the better choice. Therefore, the model under consideration should govern the
decision which of either approach is used. Generally, we recommend to apply the local surrogate modelling
strategy when the model under consideration exhibits significant nonlinear behaviour.

6.2. Outlook
The experimental design for the level 1-surrogate dominates the computational cost of the approach.

The accuracy of the overall method is controlled by the capability of the level 1-surrogate to capture the
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tail behaviour of the model response and that of the level 2-surrogate to capture the second moment of its
derived response (the conditional probability of failure). Thus, the level 1-surrogate represents the most
crucial element of the framework both with respect to accuracy and computational cost. Next to the choice
of surrogate, the level 1-performance would likely benefit from a more guided selection of experimental de-
sign points in level 1, which addresses the method’s requirement of surrogates to remain accurate close to
g = 0 rather than minimize global error measures.

Moreover, the introduced sensitivity measure may be connected to decision-oriented sensitivity analysis
and in particular the concept of expected value of partial perfect information (EVPPI). It is known that
the classical first-order variance-based sensitivity measure coincides with the EVPPI for a special decision
context (with a quadratic loss function) [55]. Based on this, the proposed framework may be adapted to
facilitate computation of more relevant loss functions associated within decision analysis, which in turn
promotes its applicability for decision support.
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Appendix A. Connecting the proposed Sobol’ index to its indicator function-based counter-
part

Here, we discuss the connection of the novel sensitivity indices to the the measures proposed by [20].
In particular, we show that the Sobol’ index of the condititonal probability of failure (without logarithmic
transformation) is identical to the Sobol’ index of the indicator function I(g ≤ 0) up to a normalizing
constant. In this case, the quantity of interest reads

Q = PF (θB) = EΘA
[I(g(ΘA,ΘB) ≤ 0)|ΘB = θB ] ,

while in [20], Q = I(g(Θ) ≤ 0) is used. Consider now an arbitrary subset of ΘB which is denoted by ΘB
and its complement Θ∼B such that ΘB = {ΘB,Θ∼B}. The Sobol’ index of Q = PF for the variable subset
ΘB is given by

SPF ,B =
VΘB [EΘ∼B [EΘA

[I(g ≤ 0)|ΘB ] |ΘB]]

VΘB
[EΘA

[I(g ≤ 0)|ΘB ]]
,

while the Sobol’ for Q = I(g(Θ) ≤ 0) reads

SI(g≤0),B =
VΘB

[
EΘA,∼B [I(g ≤ 0)|ΘB]

]

VΘ [I(g ≤ 0)]
.

Here, ΘA,∼B denotes the union of ΘA and Θ∼B. Then, we have

SPF ,B =
1

V[PF ]
VΘB

[∫

ΩΘ∼B

π(θ∼B|ΘB)

∫

ΩΘA

I(g(θA,θ∼B,ΘB) ≤ 0)π(θA|θ∼B,ΘB)dθAdθ∼B

]

=
1

V[PF ]
VΘB

[∫

ΩΘA,∼B

I(g(θA,∼B,ΘB) ≤ 0)π(θA,∼B|ΘB)dθA,∼B

]

=
V[I(g ≤ 0)]

V[PF ]

VΘB

[
EΘA,∼B [I(g ≤ 0)|ΘB]

]

VΘ [I(g ≤ 0)]

=
V[I(g ≤ 0)]

V[PF ]
SI(g≤0),B.
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The rescaling constant connecting the multi-uncertainty Sobol’ index to its indicator function-based
counterpart is the ratio of variance fractions contributed by all the input variables and the type B-variables
only. This result is somewhat intuitive as the multi-uncertainty Sobol’ index is defined with respect to the
variance contributed by the type B-variables only.
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