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Zusammenfassung

Die Trajektorienplanung ist eine zentrale Aufgabe für autonome Mobilitätsanwendungen.
Eine besondere Herausforderung ist die sichere Trajektorienplanung für Fahrzeuge in kri-
tischen Verkehrsszenarien mit mehreren statischen und dynamischen Objekten. In einem
kritischen Verkehrsszenario sollte eine sichere Trajektorie so geplant werden, dass eine Kol-
lision vermieden und falls dies nicht mehr möglich ist, die Folgen gemildert werden. Für
solche Aufgaben werden traditionell modellbasierte Algorithmen genutzt, weil ein genaues
Verständnis der Modelle, die Aktoren in sicherheitskritischen Anwendungen steuern, von
entscheidender Bedeutung ist. Für komplexe Planungsaufgaben sind modellbasierte Algo-
rithmen allerdings sehr rechenintensiv und können nicht im Fahrzeug eingesetzt werden,
weil bordeigenen Rechenressourcen begrenzt sind.

Die meisten Algorithmen des maschinellen Lernens sind, obwohl sie in der Regel im Ver-
gleich zu modellbasierten Ansätzen sehr effizient in Bezug auf die Rechenressourcen sind,
nicht interpretierbar, da es sich um rein datenbasierte Methoden handelt. Hybride Algo-
rithmen, eine Kombination von maschinellen Lernverfahren und physikalischen Modellen,
eröffnen jedoch einen neuen Weg, um die Nachteile rein datenbasierter Methoden zu um-
gehen und gleichzeitig ihre Vorteile zu nutzen.

Diese Arbeit schlägt hybride Methoden des maschinellen Lernens für die sichere Trajek-
torienplanung in kritischen Verkehrsszenarien vor. Zwei neue modellbasierte Algorithmen,
nämlich Augmented CL-RRT und Augmented CL-RRT+, werden durch Erweiterung des
sampling-basierten Rapid-exploring Random Tree (RRT) Algorithmus entwickelt. Diese
Algorithmen planen sichere Trajektorien unter Berücksichtigung der fahrdynamischen Ei-
genschaften von Fahrzeugen. Sie sind probabilistisch vollständig, das heißt, dass die Wahr-
scheinlichkeit keine gültige Trajektorie zu finden, falls es eine gibt, asymptotisch gegen
Null geht, je länger das Verfahren läuft. Daher wird ein 3D Convolutional Neural Network
verwendet, um das Sampling so zu beinflussen, dass die Algorithmen schneller konver-
gieren. Weil die sampling-basierten Algorithmen nicht wiederholbar sind, d. h. es kann
sein, dass für die gleiche Verkehrssituation unterschiedliche Trajektorien berechnet wer-
den, wird in der Arbeit auch ein anderer hybrider Lernalgorithmus eingeführt, der gene-
rative maschinelle Lernverfahren nutzt. Es handelt sich auch um einen hybriden Lernal-
gorithmus, der einen mit Fahrzeugtrajektorien trainierten Variational Autoencoder mit
einem deterministischen Optimierungsverfahren zum Finden sicherer Trajektorien kombi-
niert. Die Simulationsergebnisse mit vielen tausend kritischen Verkehrsszenarien in einer
Matlab-Simulationsumgebung zeigen, dass die erforderliche Rechenzeit für hybride maschi-
nelle Lernalgorithmen im Vergleich zu den entsprechenden modellbasierten Verfahren bei
gleicher Vorhersageleistung um ein Mehrfaches reduziert wird. Diese Arbeit schlägt auch
verschiedene Methoden vor, um die erforderlichen Rechenressourcen für die Umsetzung
der Algorithmen in eingebetteten Systemen zu reduzieren und präsentiert Ergebnisse der
Implementierung auf verschiedenen Hardware-Plattformen.





Abstract

Trajectory planning is a central task for autonomous mobility applications. A special chal-
lenge is the safe trajectory planning for vehicles in critical traffic scenarios with multiple
static and dynamic objects. In a critical traffic scenario, a safe trajectory should be planned
in such a way that it avoids a collision and, if this is no longer possible, it mitigates the
consequences. Traditionally, model-based algorithms are used for such tasks, because an
accurate understanding of the models that control actuators in safety-critical applications
is important. For complex planning tasks, however, model-based algorithms are very com-
putationally intensive and cannot be used in the vehicles, because on-board computing
resources are limited.

Most machine learning algorithms, although they are usually very efficient in terms of com-
puting resources compared to model-based approaches, are not interpretable because they
are purely data-based methods. However, hybrid algorithms, a combination of machine
learning methods and physical models, open up a new way to avoid the disadvantages of
purely data-based methods and at the same time take advantage of their benefits.

This work proposes hybrid machine learning methods for safe trajectory planning in crit-
ical traffic scenarios. Two new model-based algorithms, namely Augmented CL-RRT and
Augmented CL-RRT+, are developed by extending the sampling-based Rapid-exploring
Random Tree (RRT) algorithm. These algorithms plan safe trajectories taking into ac-
count the vehicle dynamics characteristics. They are probabilistically complete, i. e., the
probability of not finding a valid trajectory, if one exists, asymptotically approaches zero as
long as the procedure is running. Therefore, a 3D Convolutional Neural Network is used to
influence the sampling such that the algorithms converge faster. Since the sampling-based
algorithms are not repeatable, i. e., it is possible that different trajectories are computed
for the same traffic situation, another hybrid learning algorithm using generative machine
learning is introduced in this work. It is also a hybrid learning algorithm, which combines
a Variational Autoencoder trained with vehicle trajectories with a deterministic optimi-
sation method to find safe trajectories. The simulation results with many thousands of
critical traffic scenarios in a Matlab simulation environment show that the computing time
required for hybrid machine learning algorithms is reduced several times compared to the
corresponding model-based methods for the same prediction performance. This thesis
also proposes different methods to reduce the computational resources required for the
realisation of the proposed algorithms in embedded systems and presents results of their
implementation on different hardware platforms.





Chapter 1

Introduction

The usage of hybrid machine learning algorithms for safe trajectory planning in critical
traffic-scenarios is the main topic of this thesis. Section 1.1 describes the motivation of
this work. Section 1.2 defines the aim of this work and presents the proposed methodology
briefly. The set of requirements for the safe trajectory planning in particular for the vehicles
in critical traffic-scenario is described in Section 1.3. Finally, Section 1.4 illustrates the
outline and major contributions of this thesis.

1.1 Motivation

There is a tremendous increase in road traffic in recent years, which has created new
challenges for vehicle manufacturers for transporting people and goods from one place
to another quickly and most importantly, safely. It increases the risk of road fatalities.
The Global status report on road safety 2018, launched by World Health Organisation in
December 2018, highlights that the number of annual road traffic deaths has reached 1.35
million and it is now the leading killer of people aged 5-29 years. To ensure the reduction
in road traffic fatalities, a goal of Vision Zero has been introduced in many countries to
achieve a system with no deaths or serious injuries in road traffic.

The introduction of exteroceptive sensors like radar, camera, lidar, etc. in vehicles, has
opened new possibilities to increase the comfort and safety by developing new vehicle safety
functions. Adaptive Cruise Control (ACC), Lane Assistant, Autonomous Emergency Brak-
ing (AEB) are some of the vehicle comfort and safety functions that use these sensors. The
introduction of such safety functions in modern vehicles has steadily reduced injury and
death rates [KHB09]. Nevertheless, these functions represent only initial steps for the long
term plan of Vision Zero goal. To achieve the this goal, a significant challenge that needs
to be addressed is the collision avoidance in critical traffic-scenarios with multiple static
and dynamic objects. Here, the critical traffic-scenarios mean the traffic-scenarios in which
a severe collision cannot be avoided by the already available vehicle safety systems such as
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1.2. Aim and Proposed Methodology

AEB and the criticality measure exceeds the defined threshold. If the collision is unavoid-
able, then the trajectory should be modified such that the predicted severity of injury is
the lowest. Such trajectory planning needs accurate dynamics modelling of road traffic-
participants, a prediction algorithm for collision detection, appropriate estimations of the
severity of injury and efficiency in terms of implementation so that the algorithms run in
real-time. These algorithms can be part of the autonomous intervention in manually driven
cars or of fully-autonomous vehicles for avoiding a collision in critical traffic-scenarios.

The importance of these algorithms can be stated from the self-driving test program of
GM Cruise Chevy Bolt crash in late 2017, that was a part of the self-driving test program
of General Motors, with a motorcyclist after it aborted a lane change manoeuvre [Wes].
As the Bolt initiated the lane-change manoeuvre, the gap it was trying to enter closed
rapidly due to a braking lead vehicle in the adjacent lane. The motorcyclist, who was
lane-splitting, moved forward beside the Bolt and blocked the return manoeuvre. The Bolt
was stuck in a dilemma whether to collide with the motorcycle or to crash into a car in the
adjacent lane. Here, many possibilities are available such as the merging might have been
possible with a more aggressive driving style or a slightly delayed abort might have been
enough time to avoid colliding with the motorcyclist. This tight interaction of decision
making is still a big challenge in self-driving cars.

In order to reduce the complexity of this task, the decision-making problem for self-driving
vehicles is traditionally split into two parts. The first part is the behaviour planning which
plans the type of manoeuvre such as change lane, follow lane, etc. for the self-driving vehicle
in the given traffic-scenario. The discretization of the behaviour is based on the assumption
that the vehicle is in the semi-structured environment and performs predefined manoeuvres.
It is then followed by planning the actual trajectory for the selected behaviour with low-level
controllers. The selection of the manoeuvre from the predefined list of manoeuvres limits
the possibilities for vehicles. This is especially not desired in critical traffic-scenarios where
standard driving manoeuvres are not always sufficient to avoid the collision. On the other
hand, the trajectory planning algorithm should consider maximum possible manoeuvres
in the continuous state-space to increase the chances of avoiding a collision. Therefore,
there is a need for developing specific algorithms for finding safe trajectories in critical
traffic-scenarios.

1.2 Aim and Proposed Methodology

This work aims to research and develop efficient safe trajectory planning algorithms for
vehicles in critical traffic-scenarios with multiple static and dynamic objects. Such al-
gorithms are computationally very intensive because of the underlying complexity of the
task, as well as the requirement of solving differential equations of vehicle dynamic models.
Therefore, there is no algorithm for this task that works in real-time with limited onboard
computational resources proposed in the literature. Also, the vehicle may enter a critical
traffic-scenario where it cannot avoid a collision. In such cases, it should follow a trajectory
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that will lead to a mitigation of the collision. Therefore, the trajectory planning algorithm
should include an estimation of the severity of injury.

Machine learning methods offer a possibility to describe the complicated relationship be-
tween multiple input-output systems with lower computing resources. However, they are
often seen as “Black-Box” as they are purely data-based methods. Some machine learning
algorithms like decision trees, linear regression are interpretable, however their capacity
to describe the complex relationship is limited. With the increase in the capacity of the
machine learning algorithm, its interpretability decreases. As a result, they are not used
in complicated safety-critical applications. However, hybrid machine learning methods, a
combination of machine learning methods and physical models, open a new way to work
around the disadvantages of the pure data-based methods while simultaneously exploiting
their advantages.

The main objective of this work is the development of new hybrid machine learning meth-
ods for vehicle safety application and their practical implementation. The challenging task
of trajectory planning for vehicles in critical traffic-scenarios is taken as the primary appli-
cation for developing these methods. However, these methods can be adapted and used for
trajectory planning for industrial and medical robots, drones, etc. The primary evaluation
criteria for these proposed methods include safety and low resource consumption.

The basic idea of the planned combination of the machine learning algorithms and physical
models in this work is symbolically shown in the Fig. 1.1. The algorithms use the predic-
tions of other traffic-participants as the input. The sampling-based algorithms, that are
most popular among many other trajectoryy planning algorithm [BIS09], for safe trajec-
tory planning include the vehicle dynamic model as a constraint. They perform uniform
or random sampling when used without machine learning algorithms. The task of machine
learning algorithms is to merely assist these algorithms by learning a prior in order to
bias the sampling towards promising regions that will lead to a reduction in the conver-
gence time. This way, the final trajectory is still planned with algorithms based on vehicle

x

y

t

Uniform
Sampling

Learned Prior
for Sampling

Planned
Trajectory

Predictions of
Traffic-Participants

Search Based
Algorithm

Machine Learning

Traffic-scenario

Figure 1.1: Trajectory Planning for Collision Avoidance.
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dynamic models. The proposed algorithms are an effective combination of exploration
property of random sampling-based search algorithms with the exploitation of gained ex-
perience learned through machine learning algorithms.

The main research results of this work include:

� Methodology for the accurate trajectory planning with vehicle dynamic models;

� Consideration of the severity of injury while planning safe trajectories;

� Methodology for hybrid machine learning methods in safety-critical applications like
trajectory planning with low resource consumption;

� Evaluation of the methodology through implementation on an automotive microcon-
troller.

1.3 Requirement Definition for Safe Trajectory Planning

Apart from being a very complex problem, safe trajectory planning is a safety-critical ap-
plication that has its particular requirements. This section lists these requirements. These
requirements are divided into functional and embedded (non-functional) implementation
requirements. Although the functional requirements for trajectory planning will change
from one domain to another, the non-functional requirements are generally applicable to
all domains.

Functional requirements describe what a system should do with regard to the desired
functionality. In this work, the functional requirements for trajectory planning for vehicle
safety applications are defined as follows:

� Criticality estimation of the traffic-scenario: In a first step, a traffic-scenario must
be categorized as critical for the EGO vehicle in order to initiate the trajectory
planning algorithm. The EGO vehicle is the vehicle in which the trajectory planning
algorithm is running.

� Computation of collision-free trajectories: In the second step, collision-free trajec-
tories for the EGO vehicle must be computed. Collision-free trajectories are the path
followed by a vehicle as a function of time in the time interval [t0, t0 +τ ] (e. g. τ = 4s)
without a collision. The EGO vehicle should be able to follow such a trajectory
with a simultaneous intervention in both the lateral and longitudinal dynamics. It
is because the trajectories resulting alone from full braking, as the ones that can
be realized by an AEB system, are not enough to avoid collisions in many critical
traffic-scenarios.

� Prediction of the severity of injury: For unavoidable collisions or when trajectory
planning algorithms do not converge, a trajectory with low severity of collision must
be computed for the collision mitigation.

4
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� Selection of best trajectory: The best trajectory should be selected from all the com-
puted trajectories based on the criteria that reflect the aspects safety (e. g. collision-
free), the severity of injury (e. g. low collision speed), comfort (low accelerations
during the manoeuvre), etc. The overall safety algorithm should also include a fail-
safe strategy when it cannot find a collision-free or a trajectory with a nonsevere
collision.

These functional requirements have been implemented in the sampling-based trajectory
planning algorithms described in Chapter 3.

Embedded implementation requirements describe the properties the trajectory planning
algorithms should have in order to implement them in vehicles for safety applications.
They are summarized below:

� Efficiency: The trajectory planning algorithms should be efficient so that they should
run in real-time on an automotive microcontroller.

� Interpretability: This means that the precise understanding of the models control-
ling vehicle actuators while planning and following the trajectory in critical traffic-
scenarios is necessary. This requirement of interpretability arises, especially when
safety-critical applications use black-box methods such as machine learning algo-
rithms.

� No dynamic memory allocation: For embedded applications, especially safety-critical
applications like trajectory planning in complex traffic-scenarios, dynamic memory
allocation is not allowed [Hol06]. It is because many coding errors stem from mishan-
dling of memory allocation, like attempting to allocate more memory than physically
available, forgetting to free memory or continuing to use memory after it was free,
etc.

� Low variance/worst-case execution time: The resources available on an automotive
microcontroller are limited. Therefore, it is essential to know how much computa-
tional resources should be assigned for correct functional behaviour. In real-time
systems, the typically used criterion is worst-case execution time. It is the maximum
length of time possible for the execution of an algorithm. The worst-case execution
criterion is not suitable for the trajectory planning algorithms proposed in this work
are probabilistically complete, i. e., they guarantee a solution only in an infinite time.
Assigning large computational resources are not recommended because they will be
wasted in scenarios where less computational resources are enough. Therefore, the
desirable property for a random sampling algorithm apart from high convergence
speed is to have low variance in the required execution time. Apart from this, a
maximum limit in terms of computational resources (time or number of samples)
still have to defined.
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1.4 Outline and Major Contributions of the Thesis

This thesis can be divided into three parts. The first part with Chapter 2 and Chapter
3 focusses on the theory of vehicle dynamics and sampling-based trajectory planning al-
gorithms that include vehicle dynamic constraints, respectively. The second part, which
consists of Chapters 4 and 5, deals with the theory of machine learning and its combi-
nation with sampling-based trajectory planning algorithms, respectively. The final part,
i. e., Chapter 6 provides a comparative analysis of all the proposed trajectory planning
algorithms and proposes further optimization techniques for reducing the required compu-
tational resources. It also summarizes the embedded implementation results of a proposed
trajectory planning algorithm in various hardware platforms. The following journal papers
and peer-reviewed conference papers are published as part of this thesis.

� In [CBKM16], the trajectory planning algorithm titled the Augmented CL-RRT al-
gorithm is proposed. This algorithm uses predefined longitudinal acceleration pro-
files and random sampling in the lateral dynamic intervention of the vehicle to find
collision-free trajectories.

� In [CBU16], the algorithm Hybrid Augmented CL-RRT, which combines a 3D con-
volutional neural network with the Augmented CL-RRT for faster convergence, is
proposed. It also describes the method for estimating the severity of the injury
within the Augmented CL-RRT algorithm.

� In [CBU17], the Augmented CL-RRT algorithm is extended with random sampling
for longitudinal acceleration profiles instead of using predefined longitudinal accel-
eration profiles. This newly formed algorithm is named the Augmented CL-RRT+
algorithm, which is again combined with a 3D convolutional neural network for faster
convergence.

� In [CBU18], an unsupervised algorithm is proposed for the generation of reference
trajectories, which is then combined with a deterministic optimization algorithm for
finding safe trajectories. This deterministic approach is further combined with the
Augmented CL-RRT+ algorithm for planning safe trajectories.

� In [CAHBU19], machine learning based methods for replacing computationally in-
tensive modules of trajectory planning algorithms and multiple analytical methods
for reducing the computational complexity of 3D convolutional neural network are
presented to make the proposed algorithms in earlier papers suitable for the imple-
mentation in an automotive microcontroller.

� In [CAHBU20], multiple alternative architectures of deep learning algorithms are
presented and compared with the 3D convolutional neural network.

6



Chapter 1. Introduction

1.5 Notations

Throughout this thesis, vectors and matrices are denoted by lower and upper case bold
letters, respectively. Random variables are written using sans serif fonts. The symbol “*”
denotes element-wise multiplication, ⊙ represents Hadamard product, ⊗ is the symbol for
the outer product, Ex is the expectation with respect to x, || . || is the norm of a vector
and | . | represents the absolute value. The symbol ∇ indicates the gradient while e{.} is
the unit vector along the corresponding axis in the subscript. O is the Landau symbol. A
list of the most important symbols that are used in the thesis can be found in Appendix
8.2.5. Expressions are emphasized by writing them in italic type.
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Chapter 2

Dynamic Models and Controllers

Dynamic models are widely used in control and trajectory planning algorithms to approx-
imate the behaviour of road traffic-participants in response to control actions. A high
fidelity model may accurately reflect the response of the vehicle, but the added detail
complicates the trajectory planning. Therefore, many trajectory planning algorithms use
only models with sufficient details to find an optimal solution. These models work well in
normal operating conditions. However, they are not accurate enough with harsh control
actions that are usually required in critical traffic-scenarios. An accurate behaviour is nec-
essary in critical traffic-scenarios as an inaccurate behaviour due to the low fidelity model
might lead to a fatal collision. Therefore, the compromise concerning the fidelity of the
vehicle dynamic model in critical traffic-scenarios, which is the focus of this work, is not
recommended.

The outline of this chapter is as follows: Section 2.1 presents the most commonly used
models of road traffic-participants followed by their validation procedure and results de-
scribed in Section 2.2. Section 2.3 proposes longitudinal and lateral dynamic controllers
for the road traffic-participants. Finally, Section 2.4 illustrates the self-developed simula-
tion environment in which all these dynamic models and controllers are implemented. The
purpose of this simulation environment is to simulate traffic-scenarios and generate data
necessary for training the machine learning algorithms described in Chapter 5.

2.1 Dynamic Models

This section describes different dynamic models for the road traffic-participants.

2.1.1 Vehicle Coordinate Frame

Vehicle modelling begins with the notion of vehicle configuration, that represents its pose
or position. The equations of motion for vehicle dynamics are usually expressed in a local

9



2.1. Dynamic Models

vehicle orthogonal Cartesian coordinate frame B(Cxyz), attached to the vehicle at the
center of gravity C as shown in the Fig. 2.1. The x-axis is the longitudinal axis passing
through C and directed towards forward direction of the vehicle. The y-axis goes laterally
to the left from the viewpoint of the driver and the z-axis is perpendicular to both x- and
y-axis opposite to the gravitational acceleration g on a flat road. Vehicle orientation is
shown with three angles: roll angle about the x-axis, pitch angle about the y-axis, and yaw
angle about the z-axis as shown in the Fig. 2.2. However, the vehicle is considered as a rigid
body and the dynamics of the rigid body is considered as a planar motion [Jaz08]. The
planar model is applicable whenever the forward, lateral and yaw velocities are important
and are enough to examine the behaviour of a vehicle. Another essential angle related to
vehicle dynamics is the sideslip angle β. It is an angle the velocity v of the vehicle makes
with the x-axis of the vehicle about the z-axis.

The position and orientation of the vehicle coordinate frame B(Cxyz) is measured with
respect to the grounded fixed orthogonal Cartesian coordinate frame G(OXYZ). The
vehicle coordinate frame is called the body or local coordinate frame and the grounded
frame is called the global or inertial coordinate frame. The analysis of vehicle motion is
equivalent to expressing the position and orientation of the body coordinate frame in a

G

B

C

Fy

vy

vx

Fxβ

v
y x

ψ

r

X

y

Figure 2.1: Vehicle Coordinate Frames.
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rollyaw
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Figure 2.2: Six Degrees of Freedom for the Vehicle.

global coordinate frame [Jaz08].

2.1.2 Rigid Body Dynamics

The principles of rigid body dynamics, as well as the Newton-Euler equations of motion
that describe the translational and rotational motion of the rigid body under the action
of external forces, are reviewed in this section. The Newton-Euler equations of motion are
further used to derive differential equations of vehicle dynamics.

Derivative Transformation Formula

The analysis of the body coordinate frame movement in the global coordinate frame de-
scribes the vehicle dynamics. Therefore, it is necessary to find a relation between two rela-
tively moving coordinate frames. This relation expressing the transformation of derivative
from one coordinate frame to the other is called as the derivative transformation formula.
The time derivative of a vector depends on the coordinate frame in which the derivative is
taken. For example, the time derivative of a position vector rP of the point P on a rigid
body in the global coordinate frame is denoted as

Gd

dt
rP . (2.1)

The left superscript on the derivative symbol indicates the frame in which the derivative is
taken. The position vector rP can be expressed in the body and global coordinate frames
as

BrP = xex + yey + zez, (2.2)

and
GrP = XeX + YeY + ZeZ, (2.3)

respectively. Here, (ex, ey, ez) and (eX, eY, eZ) are the unit vectors along the coordinate
axes of the body and the global coordinate frame, respectively. The time derivative of

11



2.1. Dynamic Models

a vector is simple if the vector is expressed in the same coordinate frame in which the
derivative is taken, because the unit vectors are constant and scalar coefficients are the
only time variables. Therefore, the derivative of BrP in body coordinate frame B is

Bd

dt
BrP = BvP = ẋex + ẏey + żez (2.4)

and the derivative of GrP in global coordinate frame G is

Gd

dt
GrP = GvP = ẊeX + ẎeY + ŻeZ. (2.5)

However, when the point P is moving in frame B while B is rotating in G, the derivative
of the BrP in the global coordinate frame G is

Gd

dt
BrP =

Gd

dt
(xex + yey + zez), (2.6)

= ẋex + ẏey + żez + x
Gd

dt
ex + y

Gd

dt
ey + z

Gd

dt
ez. (2.7)

Using the expression from Eq. 2.4, the above equation is changed to

Gd

dt
BrP =

Bd

dt
BrP + x

Gd

dt
ex + y

Gd

dt
ey + z

Gd

dt
ez. (2.8)

As the velocity of any rotating vector with fixed length is the cross product of instantaneous
angular velocity B

GωB and the vector itself, the above equation can be converted as

Gd

dt
BrP =

Bd

dt
BrP + xB

GωB × ex + yB
GωB × ey + zB

GωB × ez, (2.9)

=
Bd

dt
BrP + B

GωB × (xex + yey + zez), (2.10)

=
Bd

dt
BrP + B

GωB × BrP . (2.11)

This result is utilized to define the generalized transformation of the differential operator
from body to global coordinate frame such that

Gd

dt
B⊡ =B

G ⊡P =
Bd

dt
B ⊡ + B

GωB × B ⊡ . (2.12)

The final result B
G⊡P shows the global time derivative expressed in the body frame. The

vector ⊡ might be any vector. This equation is called the derivative transformation formula
and it relates the time derivative of a vector as it would be seen from global frame G to its
derivative as seen in frame B. This equation can be applied to any vector for derivative
transformation between two relatively moving coordinate frames.

12



Chapter 2. Dynamic Models and Controllers

Newton-Euler Dynamics for Rigid Vehicle

The Newton-Euler equations of motion describe the combined translational and rotational
dynamics of a rigid body. It is a relation between the motion of the center of gravity of
the rigid body and the sum of forces and torques acting on a rigid body. The application
of a force system is emphasized by Newton’s second law of motion, which is also called
Newton’s equation of motion. It states that the global rate of change of linear momentum
Gp is equal to the global applied force GF and mathematically it is defined as

GF =
Gd

dt
Gp =

Gd

dt
(mGvB), (2.13)

where GvB is the velocity of the rigid body expressed in the global coordinate frame.
Applying the derivative transformation formula from Eq. 2.12, the force can be expressed
in the body coordinate frame B as

B
GF = mB

Gv̇B +mB
GωB × B

GvB. (2.14)

Using this equation, the x,y and z components of the force B
GF can be calculated asFx

Fy

Fz

 =

mv̇x +m(ωyvz − ωzvy)
mv̇y +m(ωxvz − ωzvx)
mv̇z +m(ωxvy − ωyvx)

 . (2.15)

Similarly, the components of the applied moment on the vehicle can be calculated by
extending the second law of motion to include a rotational motion. This extension is called
Euler’s equation of motion. It states that the global rate of change of angular momentum
GL is equal to global applied moment GM . Mathematically, it is represented as

GM =
Gd

dt
GL. (2.16)

Again applying the derivative transformation formula from Eq. 2.12, the applied moment
in body coordinate frame can be expressed as

B
GM = BL̇ + B

GωB × BL. (2.17)

The angular momentum of a rigid body rotating about an axis passing through the origin
of the local reference frame is in fact the product of the inertia tensor of the object and
the angular velocity. Therefore, by replacing angular momentum BL with BI B

GωB, where
BI isth inertia tensor, the above expression becomes

B
GM = BI B

Gω̇B + B
GωB × BI B

GωB. (2.18)

Also, it can be assumed that the body-coordinate frame is the principal coordinate frame
of vehicle so that it has a diagonal matrix for the moment of inertia such that

BI =

Ix 0 0
0 Iy 0
0 0 Iz

 , (2.19)
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2.1. Dynamic Models

where Ix, Iy and Iz are the moment of inertia of the vehicle around x-, y- and z-axis,
respectively. Therefore, the x,y and z components of the applied moment B

GM areMx

My

Mz

 =

Ixω̇x − (Iz − Iy)ωyωz

Iyω̇y − (Ix − Iz)ωxωz

Izω̇z − (Ix − Iy)ωxωz

 . (2.20)

As the vehicle is considered a rigid body with planar motion, only three degrees of freedom
are considered. This includes the translational velocity along the x- and y-axis and the
rotational velocity around the z-axis. Therefore, apart from the lateral and longitudinal
translational forces Fx and Fy and the torque Mz, all other components of the applied force
and moment are considered zero. With these assumptions the force, momentum, velocity,
angular velocity and angular acceleration vectors become

BF =

Fx

Fy

0

 , BM =

 0
0
Mz

 , Bv̇ =

v̇xv̇y
0

 , B
GωB =

 0
0
ωz

 , B
Gω̇B =

 0
0
ω̇z

 . (2.21)

Substituting the vectors from Eq. 2.21 and Eq. 2.19 in Eq. 2.15 and Eq. 2.20, the equations
of motion for the vehicle are converted into

Fx = mv̇x −mψ̇vy, (2.22)

Fy = mv̇y +mψ̇vx, (2.23)

Mz = ψ̈Iz. (2.24)

2.1.3 Nonlinear Two-Track Model

In this section, a nonlinear two-track vehicle dynamic model in a planar motion is de-
scribed. A two-track vehicle dynamic model assumes that the vehicle is a rigid body and
incorporates the effects of all individual tire forces and moments on the vehicle. Fig. 2.3
presents the planar view of a vehicle that shows important parameters of the vehicle nec-
essary to describe the nonlinear two-track model. The vehicle coordinate system has three
unit vectors ex, ey and ez. The vehicle center of gravity is denoted by C and is modelled
to lie on the road plane. The vehicle has a track-width w and the wheel-base ℓ. The steer-
ing angle of the wheels with respect to the longitudinal axis of the vehicle are δi and the
forces Fxi and Fyi are acting on each wheel, where the subscript i ∈ {fl, fr, rl, rr} indicates
whether it is the front left (fl), front right (fr), rear left(rl), or rear right(rr).

Derivation of Differential Equations

The two-track vehicle dynamic model is described by three coupled differential equations,
where the state variables are the velocity v, the sideslip angle β and yaw rate ψ̇. These

14
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Figure 2.3: Planar View of the Vehicle Adapted from [Bot17].

differential equations can be formulated from the forces and moments acting on the rigid
vehicle. Using the expressions from Eq. 2.22, 2.23 and 2.24, these forces can be expressed
in the body coordinate frame B as∑

i

Fxi = mv̇x −mψ̇vy, (2.25)

∑
i

Fyi = mv̇y +mψ̇vx, (2.26)

∑
i

B
Gri × B

GFi = Iz
B
Gω̇B (2.27)

where,
∑

i Fxi and
∑

i Fyi are the sum of x- and y-components of all forces acting on the
vehicle, respectively. The position vector B

Gri is the lever arm for the force B
GFi with respect

to center of gravity C of the vehicle.

By substituting the values for vx and vy as v cos(β) and v sin(β), the Eq. 2.25 and 2.26
become ∑

i

Fxi = m
(
v̇ cos(β)− v(β̇ + ψ̇) sin(β)

)
, (2.28)

∑
i

Fyi = m
(
v̇ sin(β) + v(β̇ + ψ̇) cos(β)

)
, (2.29)

15



2.1. Dynamic Models

respectively. Resolving v̇ and β̇ by multiplying Eq. 2.28 with cos(β) and Eq. 2.29 with
sin(β) followed by their addition, the resulting equation is

cos(β)
∑

i

Fxi + sin(β)
∑

i

Fyi = mv̇
(
sin2(β) + cos2(β)

)
, (2.30)

which upon simplification becomes

v̇ = 1
m

(
cos(β)

∑
i

Fxi + sin(β)
∑

i

Fyi

)
. (2.31)

Substituting v̇ in Eq. 2.29, the derivative of the sideslip angle becomes

β̇ = 1
mv

(
cos(β)

∑
i

Fxi − sin(β)
∑

i

Fyi

)
− ψ̇. (2.32)

The equation for the yaw rate can also be derived from Eq. 2.27. The left-hand side of the
Eq. 2.27 is equivalent to adding the moments resulting from the applied forces on each tire.
The moment can be calculated using the product of applied force and its position vector.
By individually calculating the moment acting on each tire and subsequently adding, the
total moment acting on the vehicle can be calculated. Substituting this in Eq. 2.25, the
equation for the yaw rate results into

Izψ̈ =
(
ℓf(Fyfl + Fyfr) + w

2 (Fxfr − Fxfl)− ℓr(Fyrl + Fyrr) + w

2 (Fxrr − Fxrl)
)
, (2.33)

ψ̈ = 1
Iz

(
ℓf(Fyfl + Fyfr) + w

2 (Fxfr − Fxfl)− ℓr(Fyrl + Fyrr) + w

2 (Fxrr − Fxrl)
)
. (2.34)

The x- and y-components of all forces acting on the vehicle are the addition of respective
components of forces acting on each tire, if other forces stemming from wind, spoilers, etc.
are ignored. Therefore, they are described as∑

i

Fxi = Fxfl + Fxfr + Fxrl + Fxrr, (2.35)∑
i

Fyi = Fyfl + Fyfr + Fyrl + Fyrr. (2.36)

The forces Fxij and Fyij acting on individual tire can be expressed as

Fxij = Fℓij cos(δij)− Fsij sin(δij), (2.37)

Fyij = Fℓij sin(δij) + Fsij cos(δij), (2.38)

where Fsij is the side force acting on the tire parallel to the rotational axis of the tire while
Fℓij is the longitudinal force acting on the tire in the forward direction perpendicular to
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the Fsij. Using the Eq. 2.35, 2.36, 2.37, 2.38, the first differential equation, Eq. (2.31), can
be rewritten as

v̇ = 1
m

(
Fℓfl cos(δfl)cos(β)−Fsfl sin(δfl)cos(β)+Fℓfr cos(δfr)cos(β)−Fsfr sin(δfr)cos(β)

+Fℓrl cos(δrl) cos(β)−Fsrl sin(δrl) cos(β)+Fℓrr cos(δrr) cos(β)−Fsrrsin(δrr)cos(β)
+Fℓfl sin(δfl) sin(β)+Fsfl cos(δfl) sin(β)+Fℓfr sin(δfr) sin(β)+Fsfr cos(δfr)sin(β)

+Fℓrl sin(δrl)sin(β)+Fsrlcos(δrl) sin(β)+Fℓrrsin(δrr)sin(β)+Fsrr cos(δrr)sin(β)
)
. (2.39)

Eq. 2.39 can be simplified by taking into account that
cos(α) cos(β) + sin(α) sin(β) = cos(α− β)− sin(α) sin(β) + sin(α) sin(β) = cos(α− β) and

− sin(α) cos(β) + cos(α) sin(β) = − sin(α− β)− cos(α) sin(β) + cos(α) sin(β) such that

v̇ = 1
m

(
Fℓfl cos(δfl − β) + Fℓfr cos(δfr − β)− Fsfl sin(δfl − β)

− Fsfr sin(δfr − β) + Fℓrl cos(δrl − β) + Fℓrr cos(δrr − β)

− Fsrl sin(δrl − β)− Fsrr sin(δrr − β)
)

(2.40)

By performing similar steps, the second differential equation, i. e., Eq. 2.32, can also be
reformulated as

β̇ = 1
mv

(
Fℓfl sin(δfl − β) + Fℓfr sin(δfr − β) + Fsfl cos(δfl − β)

+ Fsfr cos(δfr − β) + Fℓrl sin(δrl − β) + Fℓrr sin(δrr − β)

+ Fsrl cos(δrl − β) + Fsrr cos(δrr − β)
)
− ψ̇. (2.41)

Finally, the third differential equation, Eq. 2.34, can be rewritten, using the Eq. 2.37 and
Eq. 2.38, as

ψ̈ = 1
Iz

(
ℓf
(
Fℓfl sin(δfl) + Fℓfr sin(δfr) + Fsfl cos(δfl) + Fsfr cos(δfr)

)
+ w

2
(
Fℓfr cos(δfr)− Fℓfl cos(δfl)− Fsfr sin(δfr) + Fsfl sin(δfl)

)
− ℓr

(
Fℓrl sin(δrl) + Fℓrr sin(δrr) + Fsrl cos(δrl) + Fsrr cos(δrr)

)
+w

2
(
Fℓrr cos(δrr)−Fℓrl cos(δrl)−Fsrr sin(δrr)+Fsrl sin(δrl)

))
(2.42)

The three equations 2.40, 2.41 and 2.42 describe the quantities v, β and ψ̇ which are used
to estimate the vehicle dynamics. Therefore, the state vector for the vehicle dynamics can
be expressed as

ẋ =

 v̇

β̇

ψ̈

 = f(v, β, ψ̇, Fℓij, Fsij, δij). (2.43)
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Tire Dynamics

From the state vector in Eq. 2.43, that describes the vehicle dynamics, it is clear that
knowledge about the forces arising from the interaction between the tires and the road sur-
face is of vital importance to evaluate the dynamics of the vehicle. The force transmission
between tire and road surface takes place through the friction between tire contact patch
and road. Therefore, the amount of the force which can be transferred is dependent on the
frictional properties of the tire and roadway. This section explains the procedure for the
calculation of these forces.

Brush Tire Model
The Brush Tire Model [Pac06] explains the creation of forces between the road and tire.
This model considers that a part of the contact area of the tire to the ground show sliding
friction while another part of the contact area shows adhesion at the same time. The
formation of the longitudinal forces can be described through the shear deformation of
tire profile elements and the friction behaviour between the tire and road. The profile
element, while transporting through the contact patch, adheres to the road surface for
a certain time. This creates a speed difference, which results in a longitudinal slip. As
long as the tire adheres to the road surface, the profile element gets distorted. Assuming
that the distortion acts like a linear spring, the locally transmitted longitudinal force can
be calculated and the integration of the force on the whole contact patch will give the
total longitudinal force. The relative velocity between the tire and surface, that is the
speed the distortion of profile elements sets in, is responsible for the longitudinal forces.
Indirectly, the longitudinal slip can be used to determine the longitudinal forces on the tire
Fℓij. Fundamentally one can assume that the profile elements exhibit similar deformation
characteristics in the lateral direction as well that results in lateral forces on tire Fsij.

The slip for one direction can be defined as the velocity difference between transversal
and rotational velocity for that direction divided by a reference velocity. Longitudinal slip
describes the state of motion of a driven, braked or non-driven rolling vehicle. In an ideal
tire, the velocity of the contact patch should be equal to the tire speed. In a real tire, this
is not the case. For a driven (accelerated) wheel, the transversal velocity vℓij is smaller
than rotational velocity ωijrij of the tire. In this case, the longitudinal slip is

sℓij = ωijrij − vℓij

ωijrij

. (2.44)

On the other hand, the longitudinal slip for a decelerating wheel, for which the translational
velocity vℓij is higher than rotational velocity ωijrij of the tire, is

sℓij = vℓij − ωijrij

vℓij

. (2.45)

Summarizing both Eq. 2.44 and Eq. 2.45 one can write

sℓij = ωijrij − vℓij

max(|vℓij|, |ωijrij)|
, (2.46)
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where ωij is the angular velocity and rij the radius of the of the ijth tire. A positive slip
indicates wheels are spinning while negative slip indicates they are skidding.

The lateral slip of a tire is the sideways motion of a tire which occurs when the sideways
forces of tire are greater than its frictions resistance. This can occur, for instance, in
cornering. The side slip is defined as [Pac06]

ssij = vsij

vℓij

. (2.47)

The expression for the lateral slip is derived from the Fig. 2.4. A tire that is acted upon
by the lateral force Fsij gets a velocity component vsij lateral to the rolling direction. The
angle formed between the longitudinal axis and the velocity of the tire vij at the contact
point is called as slip angle αij. Hence, according to the Fig. 2.4

tan(αij) = vsij

vlij

, (2.48)

where, vsij and vlij are the lateral and longitudinal component of the velocity of the tire
to the rolling direction, respectively. The variable tan(αij) is also know as the lateral slip
or skew slip. In normal driving condition |αij| < 120.

Calculation of Slip Values
Longitudinal slip cannot be measured. Therefore, it is estimated by Eq. 2.46. The slip an-
gles αij for all tires, required for calculating the lateral slip, can be calculated geometrically

δij

exij

eℓij

αij

vij

vxij

vyij

vℓij

vsij

esij

Figure 2.4: Velocities for the ijth Tire Adapted from [Bot17].
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from Fig. 2.4 as follows:

tan(δij − αij) = vyij

vxij
, (2.49)

αij = δij − arctan
(
vyij

vxij

)
. (2.50)

By applying the derivative transformation formula, the velocity vij can be calculated as

vij = v + ω × rC,ij, (2.51)

where rC,ij is the radius of the rotation for the ijth tire with respect to the center of gravity
of the vehicle and v is the velocity vector in the center of gravity. From this expression,
the components of velocity vxij and vyij are calculated for each tire and substituted in
Eq. 2.50. The resulting expressions for slip angles of all tires are

αfl = δfl − arctan
(
v sin(β) + ℓfψ̇

v cos(β)− w
2 ψ̇

)
, (2.52)

αfr = δfr − arctan
(
v sin(β) + ℓfψ̇

v cos(β) + w
2 ψ̇

)
, (2.53)

αrl = δrl − arctan
(
v sin(β)− ℓrψ̇

v cos(β)− w
2 ψ̇

)
, (2.54)

αrr = δrr − arctan
(
v sin(β)− ℓrψ̇

v cos(β) + w
2 ψ̇

)
. (2.55)

Magic Tire Formula
For small slip values, both the longitudinal force Flij and the side force Fsij can be modelled
to grow linearly with the corresponding slip. If the slip gets larger the static friction changes
into a sliding friction for an increasing number of profile elements located in the area of the
tire that touches the road and the resulting force between the road and the tire exceeds
the maximum possible force Fmax which corresponds to the maximum adhesion coefficient
µmax. At very high slip values, the transferred force decreases to the value Fslide, which
occurs during sliding and remains constant. Fig. 2.5 shows this nonlinear mapping between
the slip and forces.

The Magic Tire Formula [Pac06] is designed to provide a realistic tire characteristics curve
that can easily fit to measured data by adjusting some parameters. This is an empirical
formula as it does not have any particular physical basis. The simplified Magic Tire
formulae that give good approximated mapping of longitudinal and lateral forces of tire to
their corresponding slips are

Fℓij = Fzijµℓij sin
(
cℓij arctan

(
bℓij

sℓij

µℓij

))
, (2.56)

Fsij = Fzijµsij sin
(
csij arctan

(
bsij

ssij

µsij

))
, (2.57)
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Figure 2.5: Force as a Function of Slip Adapted from [Bot17].

where Fzij is the vertical force on the ijth tire while µℓij and µsij are the friction coefficients
in the longitudinal and lateral direction of the tire, respectively. The tire parameters
cℓij, bℓij, csij, bsij are constants that can be adapted to fit a specific tire.

Superposition of Longitudinal and Lateral Forces
Pure longitudinal forces will be transmitted by tire only during purely straight line driving
and pure lateral forces will be transmitted by tire only during cornering with constant veloc-
ity. In general driving situations, the longitudinal and lateral forces are overlapped. When
longitudinal and side forces appear at the same time the computation must be adapted
to take into account the magnitude of the resulting force. According to the Coulomb law,
this resulting force must be smaller than µmaxFzij such that√

F 2
ℓij + F 2

sij < µmaxFzij, (2.58)

This means the maximum transmissible lateral force decreases with the application of a
longitudinal force. In order to consider the superposition effects during driving situations,
in which both longitudinal and lateral slip occur, an absolute slip saij and and angle Ψaij
are introduced as

saij =
√
s2

ℓ + tan(α2
ij), (2.59)

Ψaij = arctan

(
tan(αij)
slij

)
. (2.60)

The absolute force Faij in direction Ψaij is then calculated as

Faij =

√√√√ s2
lij

s2
aij

F 2
lij + (tan(αij))2

s2
aij

F 2
sij. (2.61)
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The computation of resulting longitudinal forces F
(new)
lij and lateral forces F

(new)
sij represented

as

F
(new)
ℓij = Faij cos(Ψaij), (2.62)

F
(new)
sij = Faij sin(Ψaij). (2.63)

Vertical Forces and Accelerations
The vertical force Fzij, required for calculating the longitudinal and lateral forces using
Eq. 2.56 and 2.57, depends on the accelerations in x- and y-direction of the vehicle and
the weight of the vehicle. Acceleration and deceleration of the vehicle generate a pitch
moment, whereas driving in a curve generates a roll moment. The vertical forces Fzij on
the vehicle axle are influenced by these moments. Therefore, these forces also need to be
taken into consideration while modelling vehicle dynamics. Fig. 2.6a illustrates the vertical
forces acting on the tires due to a longitudinal acceleration/deceleration B

Gax while Fig. 2.6b
indicates the vertical forces acting on the tires due to the lateral acceleration B

Gay generated
while turning on a left curve.
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Figure 2.6: Forces on Tires Depend on x- and y-Acceleration Adapted from [Bot17].

The moments acting on the vehicles in the Fig. 2.6a can be balanced in center of gravity
C of the vehicle such that

Fzrℓr − Fzfℓf − hcm
B
Gax = 0, (2.64)

where Fzr and Fzf are the total vertical force acting on the rear and front axle of the vehicle,
respectively. Rearranging the Eq. 2.64, the expression for the force Fzr can be obtained as

Fzr = ℓf

ℓr

Fzf + hC

ℓr

m B
Gax. (2.65)

Also, the vertical forces in Fig. 2.6a can be balanced to the weight of the vehicle to get

Fzr + Fzf = mg. (2.66)

By combining the Eq. 2.65 and Eq. 2.66, the force Fzr can also be expressed as

Fzr = ℓf

ℓr

mg − ℓf

ℓr

Fzr + hC

ℓr

m B
Gax, (2.67)

Fzr = ℓf

ℓ
mg + hC

ℓ
m B

Gax. (2.68)
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Substituting the Eq. 2.68 in Eq. 2.66, the force Fzf can be calculated as

Fzf = mg − Fzr, (2.69)

= ℓr

ℓ
mg − hC

ℓ
m B

Gax. (2.70)

The Eq. 2.68 and Eq. 2.70 can be rewritten as

Fzr =
(
ℓf

ℓ
m+ hC

ℓ

B
Gax
g

)
g, (2.71)

Fzf =
(
ℓr

ℓ
mg − hC

ℓ

B
Gax
g

)
g, (2.72)

respectively. From these equations the virtual masses for front and rear axle can be defined
as

mf = m

(
ℓr

ℓ
− hC

ℓ

B
Gax
g

)
, (2.73)

mr = m

(
ℓf

ℓ
+ hC

ℓ

B
Gax
g

)
, (2.74)

respectively. Similar steps can be performed on the Fig. 2.6b. The moments from Fig. 2.6b
can also be balanced in center of gravity C such that

Fzrl
w

2 − Fzrr
w

2 + hcmr
B
Gay = 0, (2.75)

Fzrl = Fzrr −
2hC

w
mr

B
Gay. (2.76)

Also, balancing of vertical forces acting on the vehicle from Fig. 2.6b gives

Fzrl + Fzrr = mrg. (2.77)

By combining the Eq. 2.76 and Eq. 2.77, the force Fzrl can be expressed as

Fzrl = mrg − Fzrl −mr
2hC

w
B
Gay (2.78)

= mr

(
1
2g −

hC

w
B
Gay

)
. (2.79)

By substituting the expression for mr from Eq. 2.74, the force Fzrl becomes

Fzrl = m

(
ℓf

ℓ
+ hC

ℓ

B
Gax
g

)(
1
2g −

hC

w
B
Gay

)
. (2.80)

In a similar way, the other tire forces in z-direction can be computed as

Fzrr = m

(
ℓf

ℓ
+ hC

ℓ

B
Gax
g

)(
1
2g + hC

w
B
Gay

)
, (2.81)
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Fzfl = m

(
ℓr

ℓ
− hC

ℓ

B
Gax
g

)(
1
2g −

hC

w
B
Gay

)
, (2.82)

Fzfr = m

(
ℓr

ℓ
− hC

ℓ

B
Gax
g

)(
1
2g + hC

w
B
Gay

)
. (2.83)

The accelerations B
Gax and B

Gay are available from sensors in vehicles, but they can also be
computed using Eq. 2.28 and Eq. 2.29 such that

B
Gax =

(
v̇ cos(β)− v

(
β̇ + ψ̇

)
sin(β)

)
, (2.84)

B
Gay =

(
v̇ sin(β) + v

(
β̇ + ψ̇

)
cos(β)

)
. (2.85)

The vertical forces acting on each tire of the vehicle, calculated using the Eq. ??, can be
introduced in the Magic-Tire formula in Eq. EqMagicTire to compute the forces on the
tires depending on the accelerations acting on the vehicle.

2.1.4 Single-Track Kinematic Model

Single-Track Kinematic Model is a vehicle dynamic model, shown in Fig. 2.7 which consid-
ers constraints such as

Ẋ = v cos(θ, (2.86)

Ẏ = v sin(θ), (2.87)

θ̇ = v

ℓ
tan(δ), (2.88)

ax,min ≤ ax ≤ ax,max, (2.89)

∥ δ ∥≤ δmax, (2.90)

∥ δ̇ ∥≤ δ̇max. (2.91)

The input to the model are steering angle δ and the longitudinal acceleration ax. The
maximum steering angle and maximum slew rate is given by δmax and δ̇max, respectively.
ax,min and ax,max are the minimum and maximum bounds of the longitudinal acceleration.

2.1.5 Decoupled x- and y-Dynamics

The assumption for this dynamic model is that the dynamics in x- and y-directions are
decoupled. Therefore, it is used for pedestrian movement simulation only. The dynamic
equations of motion of this model are

v̇x(t) = aX(t), (2.92)

Ẋ(t) = vX(t), (2.93)

v̇y = aY(t), (2.94)

Ẏ(t) = vY(t). (2.95)
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Figure 2.7: Single-Track Kinematic Model.

2.2 Validation of Vehicle Dynamic Models

In the literature, many vehicle dynamic models ranging from simple models like the single-
track kinematic model to complex models like the nonlinear two-track model, are proposed.
Although simple models require low computation time, they are not accurate enough,
especially for the harsh vehicle manoeuvres required in critical traffic-scenarios. Therefore,
it is necessary to investigate different vehicle dynamic models and their suitability for the
given problem.

The vehicle dynamic models need to be validated against the real vehicle data for two
reasons. Firstly, to find the parameter values which cannot be directly measured, such
as parameters for Magic Tire Formula and, secondly for evaluating the accuracy of the
models. Therefore, the data for different manoeuvres with a vehicle, a Audi A6 Avant
(2013), was measured on the test-track. The vehicle was equipped with external GPS
sensors to determine the position of the vehicle during the entire manoeuvre. In addition,
access to the vehicle CAN bus made it possible to measure vehicle data, such as speed,
acceleration, steering angle, from internal sensors. All technical specifications of the Audi
A6 Avant such as dimensions, center of gravity locations, which is necessary for vehicle
dynamic models are also measured. These details are mentioned in 8.1. The parameters
used for the Magic Tire Formula, as well as other parameters required in the two-track
model, such as the coefficient of friction, are estimated with the help of the measured
data for one manoeuvre and subsequently validated against measurement data for other
manoeuvres.
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Figure 2.8: Step Steering Input Manoeuvres.

Figure 2.9: Double Lane Change Manoeuvres.
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For the validation of the dynamic models, two manoeuvres are analysed: step steering input
and double lane change. During the step steering input manoeuvre, the vehicle moves with
constant velocity with zero steering angle input and at a specific time instant the steering
angle value is changed abruptly to a constant value. On the other hand, in double lane
change manoeuvre, as the name suggests, the vehicle does a double lane change with a
constant velocity. The unknown parameters are estimated using data from a step steering
input manoeuvre and then validated against all available data. As input data for the
geometric model and the two-track model, the start position (X- and Y- coordinates) of
the vehicle, as well as speed and steering angle over a period of time, are used. The vehicle
position from the simulation is compared with the reference vehicle position measured by
GPS sensors. An example of the simulation results for each of the manoeuvres is shown
in Fig. 2.8 and 2.9. The graphs show the result of the nonlinear two-track model and
the single-track model with comparison to the reference trajectory (GPS measurements).
This comparison shows that, as expected, the two-track model is more accurate than the
single-track model. Therefore, it is decided to use the two-track model as the basis for safe
trajectory planning.

2.3 Dynamic Controllers

This section describes controllers for vehicles to follow a desired trajectory. The task of
the controllers is to calculate the inputs, namely steering angle and vehicle speed, for the
vehicle models. The calculation of the steering angle values for a curved path is dependent
on the vehicle speed. Therefore, the longitudinal dynamic controller calculates the desired
vehicle speed which is followed by the lateral dynamic controller that computs the steering
angle values. These inputs for the vehicle motion, i. e., the vehicle speed and the steering
angle values are calculated at every time-step successively, so that they adapt to the newly
encountered situations.

These controllers are applicable for both nonlinear two-track model and single-track kine-
matic model. Therefore, they are used for the simulation and control of the EGO vehicle,
other vehicles as well as for the bicycles.

2.3.1 Longitudinal Dynamic Controller

To drive in urban traffic, a vehicle has to adapt its speed to the other road users, ensure a
safe distance to other traffic participants, and perform lane changes and turning manoeu-
vres. An essential part of the vehicle control system is a longitudinal controller for vehicle
acceleration and deceleration. A goal of the vehicle longitudinal dynamic controller in many
critical traffic-scenarios is to reduce the relative velocity to zero when the distance between
the vehicle and the collision object reaches a predefined value of ddesired. This change in
velocity of the vehicle is controlled by changing the longitudinal slip values of the four tires
Sl,f l, Sl,fr, Sl,rl, Sl,rr for the nonlinear two-track model and by directly calculating the value
of longitudinal acceleration ax in case of the single-track kinematic model.
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Assuming that at time instance t, the distance between the collision object and the EGO
vehicle is d(t), the goal of the controller is to reach the relative velocity of zero after a
certain time. In order to achieve this smoothly, the controller calculates a desired relative
velocity vrel,desired at every instance. The value of vrel,desired is influenced by the current
and the desired distance between the vehicle and the collision object d(t) and ddesired,
respectively. It is calculated with a P-controller with an expression

vrel,desired(t) = Kv(d(t)− ddesired), (2.96)

where Kv is the tuned proportionality gain. The slip values required for attaining the
vrel,desired(t) are calculated by another P-controller such that

Sl,f l = −Kl(vrel(t)− vrel,desired(t)), (2.97)

where Kl is the proportionality gain. The other slip values , Sl,fr, Sl,rl, Sl,rr are also calcu-
lated with the same equation.

2.3.2 Lateral Dynamic Controller

In order to follow the desired trajectory, the steering angle has to be changed based on
the desired trajectory curve, the lateral deviation between the vehicle position and the
desired trajectory, and also the velocity of the vehicle. Human drivers preview the path
and change the steering angle accordingly. The change in the steering angle is different
at different speeds. In order to follow the desired trajectory, human drivers start steering
from an earlier position when the velocity of the vehicle is higher and vice versa. This is an
intuition behind the pure pursuit controller [Cou92]. The pure pursuit control is a method
of geometrically determining the curvature that will drive the vehicle to a chosen reference
point pref . It is a point on the path that is one look-ahead distance from the current vehicle
position. An arc that joins the current point and the goal point is constructed. The chord
length of this arc is the look-ahead distance.
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Figure 2.10: Lateral Dynamic Controller.

A predictive controller is developed to follow a trajectory given a current speed v(t) using
the concept of the pure pursuit controller. The difference is in the definition of the look-
ahead distance. As the input is the reference trajectory to this controller, the look-ahead
distance is calculated along the reference trajectory to find the goal point pref and no
arc needs to be constructed. Also, it is adaptive based on the current speed v(t) of the
vehicle. Fig. 2.10 illustrates the functionality of this controller. Initially, the controller finds
the path point (x′, y′) closest to the center of gravity of the vehicle and then defines the
reference point pref along the reference trajectory at a look-ahead distance from this point.
Further it calculates the yaw angle ψref at the reference point. Finally, two P-controllers
for following deviations are used to calculate the steering angle values:

� The offset doffset between the actual location of the center of gravity of the vehicle
and the reference position pref ,
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� The difference between the yaw angle of the vehicle ψ at the current position and the
yaw angle of the trajectory at reference point ψref .

2.4 Simulation Environment

Humans can learn many remarkably complex skills that exceed the proficiency and ro-
bustness of even the most sophisticated robots. However, they also draw on a lifetime of
experience, learning multiple years how to interact with the world around us. Requiring
such a lifetime of experience for a learning-based autonomous system is quite demanding
as the they would need to operate continuously, autonomously, and initially at a low level
of proficiency before they become useful. This is especially impossible in safety-critical
situations like autonomous driving. The creation of separate infrastructure for testing
of autonomous vehicles is also costly. Therefore, safety-critical autonomous systems are
trained initially in simulation environments until they get a minimum level of proficiency
before putting them in a test or real environment.

Simulating many years of autonomous systems interaction is quite feasible with modern
parallel computing, physics simulation, and rendering technology. Moreover, the result-
ing data comes with automatically-generated annotations. The challenge with simulated
training is that even the best available simulators do not perfectly capture reality. Models
trained purely on synthetic data fail to generalize to the real world, as there is a discrepancy
between simulated and real environments, in terms of both visual and physical properties.
In fact, the more the fidelity of simulations, the more efforts have to be spent in order to
build them.

The difficulty of transferring simulated experience into the real world is often called the
“reality gap”. This reality gap prevents to repeat the simulated robotic performance into
effective real-world performance. Visual perception often constitutes the most significant
part of this reality gap. In this work, the proposed algorithms make abstraction from per-
ception layer, i. e, it considers sensor processing is already done and it receives complete
information of the surrounding. Here, the reality gap that needs to be considered is be-
tween simulated vehicle dynamics and real vehicle dynamics. Therefore, it is necessary to
validate the vehicle dynamic models used for the trajectory planning algorithm. This can
be achieved by validating the vehicle dynamic model used in simulation with real vehicle
data, as explained in Section 2.2.

For this work, a simulation environment TrafficSim [Ami18] has been developed from
scratch in Matlab. The reason for developing and using an own simulation environment
is that it provides full control over the use of vehicle models and controllers and it is the
basis for devoloping algorithms that are designed to run on automotive microcontrollers.
Since one of the final goals is the embedded implementation of the algorithms, the vehicle
models and controllers can also be ported to an automotive microcontroller. Also, the
simulation environment is developed such that the traffic-scenario generation is easy and
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can be automated. This is very useful for machine learning algorithms, which need a huge
amount of data. As the trajectory planning algorithms described in Chapter 3 are also
implemented in the simulation environment, the data is also automatically annotated and
labelled. The simulation environment uses the validated models for the simulation, which
is essential for training the machine learning algorithms.

Summary
In the first part of this chapter, the dynamic models for different road traffic-participants
are described. Later, these models were validated against real data and the results are
presented. This validation procedure showed that the nonlinear two-track vehicle dynamic
model was most suitable for planning safe trajectories in critical traffic-scenarios. Finally,
the self-developed simulation environment for the purpose of simulation of critical traffic-
scenarios and data generation was presented briefly.
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Chapter 3

Sampling-Based Trajectory Planning
Algorithms

This chapter introduces two model-based trajectory planning algorithms that plan a safe
trajectory in critical traffic-scenarios with multiple static and dynamic objects. These al-
gorithms are modified versions of already proposed algorithm CL-RRT, a path planning
algorithm of the MIT-team in the DARPA challenge in 2007. Therefore, these algorithms
are named as the Augmented CL-RRT and Augmented CL-RRT+. These two variants
will be compared with each other for many critical traffic-scenarios in the simulation envi-
ronment.

The overview of this chapter is as follows: Section 3.1 describes the primary types of tra-
jectory planning algorithms. It also presents a literature survey for the Rapidly-exploring
Random Tree trajectory planning algorithm as this algorithm is the basis of the proposed
trajectory planning algorithms in this work. Section 3.2 defines the specific problem for the
trajectory planning algorithm in critical traffic scenarios with multiple static and dynamic
objects. The Time-To-Collision criteria for the detection of the critical traffic-scenarios is
described in Section 3.3. Section 3.4 provides a brief description of the CL-RRT algorithm,
while Section 3.5 and 3.6 illustrates the details of the proposed Augmented CL-RRT and
Augmented CL-RRT+ algorithm. Finally, Section 3.7 summarizes and compares the sim-
ulation results for critical traffic-scenarios with the Augmented CL-RRT and Augmented
CL-RRT+ algorithm.

3.1 Background

The goal of safe trajectory planning is to produce a continuous set of actions for a robot,
which is a vehicle in this work, for the time interval [t0, t0 + τ ] from the the start state
sinit ⊂ S to goal state sgoal ∈ S in state-space S avoiding collisions with obstacles defined
by obstacle region Sobs ∈ S. Apart from collision avoidance constraints, nonholonomic con-

33



3.1. Background

straints, which arise in the context of the vehicle trajectory planning, need to be considered.
These nonholonomic constraints are expressed in the form

ṡ = f(s,u), (3.1)

in which u is the control input to the robot. The vector ṡ denotes the derivative of the
robot state with respect to the time. The representation in Eq. 3.1 encodes a dynamical
model. Many trajectory planning algorithms have been proposed in the robotics com-
munity. They are broadly classified into the following categories: grid-based algorithms,
artificial potential field based Algorithms, reward-based algorithms, and sampling-based
algorithms. These are described along with their advantages and disadvantages in the
following sections.

3.1.1 Grid-Based Algorithms

In grid-based approaches, a grid is overlaid in the robot surrounding to enable discretization
of the state-space and action-space. The most popular algorithms in this category for static
environments are A* [HNR68] and its variants [KLF05, SD13]. D* [Ste94] and its variants
[KL02, FS06] are grid-based algorithms for trajectory planning in dynamic environments.
These algorithms aim to find a path from a starting state sinit to the goal state sgoal

having the least cost. A cost function is typically defined for the behaviour of the robot
in particular situations. A graph is generated starting from sinit. This graph extends one
of its edge in every iteration towards an adjacent cell. The decision towards which cell
the path is to be extended, is taken based on two aspects. First, the cost of the already
planned path from sinit to that cell. Second, an estimate of the cost required to extend the
path to the goal state sgoal. Specifically, the path is selected that minimizes

f(n) = g(n) + h(n), (3.2)

where n is the cell towards which the path is to be extended, g(n) is the cost of the path
from the starting cell to cell n and h(n) is a heuristic function that estimates the cost
of the cheapest path from cell n to sgoal. The heuristic function h(n) is problem-specific.
Algorithms terminate when the path it chooses to extend is a path from sinit to sgoal or if
there are no paths eligible to be extended. D* and its variants quickly replan paths with
a movement of an object in the surrounding of the robot. These algorithms suitable for
trajectory planning in an environment with dynamic objects.

Although these algorithms have shown positive results, they need a discretized state-space
and a discretized action-space. Therefore, they have limited suitability to vehicle trajectory
planning. To overcome this limitation the resolution of the grids can be made very fine.
However, the number of cells in grid grows exponentially as the dimension of state-space
grows, which in turn also increases the computation time for finding a safe trajectory. This
makes grid-based algorithms inappropriate for planning trajectories in multidimensional
state-spaces.
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3.1.2 Artificial Potential Field Based algorithms

The artificial potential field method [Kha85] assumes the robot moving in an artificial force
field. The total potential U has two components: attractive potential Uatt and repulsive
potential Urep. The goal position produces an attractive force which makes the robot move
towards it. This potential can be modelled to suit a certain application or requirement.
The most commonly used attractive potential Uatt is

Uatt(s) = 1
2ξad(s, sgoal)2, (3.3)

where d(s, sgoal) is the distance between the robot position s and the goal position sgoal

and ξa is the positive scaling factor for the attractive potential. The attractive force F ,
defined as the negative gradient of the attractive potential, becomes

Fatt(s) = −∇Uatt(s) = ξad(s, sgoal). (3.4)

Thus, the attractive force decreases towards zero as the robot moves towards the goal.

In order to avoid the collision with an obstacles while the robot is moving towards the goal,
a repulsive potential Urep is generated, which is inversely proportional to the distance from
the robot to obstacles such that the repulsive force is pointing away from obstacles. An
example of the repulsive force is

Urep(s) =


1
2ξr

(
1

d(s,sobs) −
1
d0

)
, if d(s, sobs) <= d0

0, otherwise,
(3.5)

where d(s, sobs) is the shortest distance between the robot and the obstacle, d0 is largest
distance from the obstacle where it generates the negative potential, ξr is the positive
scaling factor for the repulsive potential. The negative gradient of the repulsive potential,
i. e., the negative force is

Frep = −∇Urep(s)

=

ξr( 1
d(s,sobs) −

1
d0

) 1
d2(s,sobs)∇d(s, sobs), if d(s, sobs) <= d0

0, otherwise.

(3.6)

The total force applied to the robot is the addition of attractive and repulsive force and
it determines the motion of the robot. The path planned with this resulting force is not
necessarily a drivable path for the vehicle as no vehicle constraints are considered. Also,
when the attractive force is equal and opposite of the repulsive force, the resultant potential
force acting on the robot is zero and it gets trapped in local minima or oscillations. Also,
it is challenging to plan paths in narrow spaces using potential field methods. It is because
the cumulative repulsive force of two objects becomes very high. Even if it plans a path,
the method is prone to oscillations [KB91]. Planning a trajectory through narrow spaces
is vital for vehicle trajectory planning, especially in the critical traffic-scenarios with many
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static and dynamic objects. There are some potential field approaches for vehicle trajectory
planning [WM03, SPK11, RHN16] proposed in the literature, but they are limited to either
static environments or environments with a single dynamic obstacle. Therefore, artificial
potential field methods are not further considered for this work.

3.1.3 Reward-Based algorithms

Reward-based algorithms are based on choosing the best action in each state of the robot
over the entire planning duration to get the maximum reward. These algorithms assume
that the robot receives a positive or negative reward based on the action it takes. The
reward function is defined such that the robot obtains the desired behaviour. A simple
reward function for safe trajectory planning will provide a positive reward after reaching
the goal while it will give a negative reward for colliding with other objects. The robot aims
to choose a series of actions such that it receives the highest cumulative reward. These
algorithms use the mathematical framework of the Markov decision process, which forms
the basis of reinforcement learning as well.

These methods work better with discrete state-space and action-spaces. As the state-space
or action-space grows, more complex models are needed. The combination of reinforcement
learning with deep learning approaches, namely deep Q-learning, has been successful in
achieving good results. A well-known example of this is Alpha-Go, developed by Deepmind,
which beat the Go world champion. The point to note here is that Go has a huge state-
and action-space, but they are still discrete. For a vehicle trajectory planning algorithm
both are continuous. Go is only a two-player problem with each player playing in turns
and the player wins by defeating the other player. Also, there is no constraint on the
available computational resources and the real-time capability is not a requirement. On the
other hand, the vehicle trajectory planning problem consists of many participants moving
simultaneously and it has to be solved in real-time with limited available computational
power. Thus, also this approach will not be considered further in this work.

3.1.4 Sampling-Based algorithms

These algorithms sample random robot states in the robot surrounding and retain only
those states which are in the free space, i. e., in the space which is not occupied by other
objects. The only two deterministic states are sinit and sgoal. These algorithms construct
a roadmap between these states. If the road connecting any two of the sampled random
states is collision-free, then it is added to the roadmap. If a path in the roadmap connects
the initial robot state sinit and final robot state sgoal, then the planner is successful.

Many sampling-based methods for path planning are probabilistically complete, i. e., they
will always find the collision-free path, if it exists, given infinite time. However, if it does
not find a path, the reason for it is not definitive. It means either there is no possible
collision-free path or the algorithm did not sample enough random robot states.
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Another advantage of these algorithms is that they work well in high-dimensional state-
spaces because unlike other algorithms, their run-time is not exponentially dependent on
the dimension of the state-space. There are two popular sampling-based path planning
algorithms: Probabilistic Roadmaps Planner and Rapidly-exploring Random Tree.

Probabilistic Roadmap Planner

The Probabilistic Roadmap Planner (PRM) is a type of sampling-based path planning
algorithm. It consists of two phases: a construction and a query phase. These two phases
are shown in the Fig. 3.1. In the construction phase, a roadmap is built. First, many
random robot states are sampled and only the robot states which lie in free space are
retained and others are ignored. Then, each random state is connected to some neighbors,
typically either the k-nearest neighbors or all neighbors less than some predetermined
distance. Among these connections, only the connections which are not intersecting other
objects are retained. Finally, the robot states and connections are added to the graph until
the roadmap is dense enough. In the query phase, the sinit and sgoal states to the nearest
robot state are connected in the graph and an optimal path by a graph search algorithm
such as the Dijkstra’s algorithm [Dij59] is found. The proof of probabilistic completeness
of the probabilistic algorithm is shown in [HLK06].

sinit

sgoal sgoal

sinit

Figure 3.1: Construction and Query Phase of the Probabilistic Roadmap Planner.

Probabilistic roadmaps require many local connections to be made between the sampled
robot states, therefore it is difficult to use them for robots like vehicles with nonholonomic
constraints. Thus, they will not be considered further in this work.

Rapidly-exploring Random Tree

A Rapidly-exploring Random Tree (RRT) algorithm is designed for efficiently searching
nonconvex high-dimensional spaces [Lav98] that have both collision constraints and differ-
ential constraints. It is an iterative sampling algorithm in which a tree of robot states is
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constructed by incremental extension of the tree T using randomly drawn samples. The
key idea behind this algorithm is to bias the exploration towards the unexplored parts of
the space by sampling points in the state space and incrementally pulling the tree towards
them.

The basic steps in the tree T construction, for a given robot initial state sinit, with K
iterations are shown in Algorithm 3.1. These steps are visualised in the Fig. 3.2. Initially,
sinit is added as the first state to the tree T . A random state, srand ∈ S , is selected
in each iteration. Step 4 finds the closest state snear to srand which was added to the T
in earlier iterations. If it is the first iteration, then the tree T has only the state sinit.
Therefore, the nearest state in the first iteration is always sinit. In subsequent iterations,
it uses a predefined distance metric to find the nearest neighbour from multiple states in
the tree T . Typically, the Euclidean distance is used as the distance metric. An input
u is selected to extend the tree T towards srand from snear for a predefined period of
∆t to get the new state snew. Here, the extension is performed using the holonomic or
nonholonomic constraints, such as in Eq. 3.1. Also other constraints like collision avoidance
can be included in the algorithm . Hence, for the new state snew, the edge connecting the
snew and snear is checked for collisions and it returns success upon no collisions and then
this new state is added to the tree T . This procedure is continued till either the number
of samples exceeds a predefined threshold or one of the states found in K iteration is sgoal.
While adding the robot state snew to the tree T , other information such as the state snear

and the corresponding input u of the robot required to move from snear to snew is also
stored, to trace back the trajectory from sgoal, once it is found.

sinit

srand

sgoal

sinit

srand

sgoal

sinit

sgoal

Figure 3.2: Steps in Constructing T .

Additionally to having a simple way of constructing the T , the RRT algorithm also has a
desirable property of being biased towards places not yet visited. An RRT algorithm can
be considered a Monte-Carlo way of biasing search into the largest Voronoi regions. At
each iteration, the probability of a state, being selected for the extension, is proportional
to the volume of its Voronoi region. Hence, the search is biased toward those nodes with
the largest Voronoi regions. It enables the rapid exploration with the RRT algorithm.
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Algorithm 3.1 Generate_RRT(sinit)

1: T .init(sinit);
2: for k = 0 to K do
3: srand ← RANDOM STATE();
4: snear ← NEAREST NEIGHBOUR(T , srand);
5: u← SELECT INPUT(snear, srand);
6: snew, success← NEW STATE(snear, u,∆t);
7: if success then
8: T .add vertex(snew);
9: T .add edge(snew, snear,u);
10: end if
11: end for
12: RETURN T ;

Even with the uniform distribution sampling strategy, the RRT algorithm will be able
to find a safe trajectory with nonholonomic constraints, if it exists, at the cost of a slow
convergence rate. This is, of course, given that there is no restriction on the number of
iterations. This property of RRT is called as probabilistic completeness. The proof for
probabilistic completeness of RRT is given in [KSL+19].

The other hyperparameters in the RRT algorithm are the distance metric and the time
interval ∆t for the tree extension in one iteration. These two parameters define the edge
between two states of T . Typical values for these parameters are challenging to find and
are dependent on the application. Generally, smaller edges provide more flexibility to find
very complicated trajectories even in state-spaces with nonconvex obstacle regions, but
then RRT algorithm suffers from high convergence time. On the other hand, the RRT
algorithm with larger edges might not even be able to find a safe trajectory in cases where
the RRT algorithm could have found a safe trajectory with small edges. Therefore, domain
knowledge is vital to decide the length of edges in the RRT algorithm.

In comparison to PRM, RRT is always able to maintain a connected structure irrespective of
the number of states. PRM suffers in performance because many extra edges are generated
in attempts to form a connected roadmap. RRT works with single nearest neighbour
queries, while PRM requires more expensive k-nearest neighbour queries. This leads to
a lower number of collision checks, which are one of the most expensive operations in
trajectory planning. With all these desirable properties, the RRT algorithm is a very
attractive algorithm for vehicle trajectory planning in critical traffic-scenarios.

3.1.5 Survey of RRT Algorithm Variants

There is vast literature about RRT algorithms as many variants of this algorithm have been
proposed. These approaches are divided into separate categories based on the different
settings (e. g. sampling strategy) in the RRT algorithm. Usually, a variant of the RRT
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algorithm combines different settings. Therefore they are classified based on the primary
setting change, which is significantly different from other RRT algorithm variants.

Sampling Strategy

The most common criteria for creating RRT variants is defining a new sampling strategy.
The basic RRT algoritfhm was proposed with uniform sampling schemes. This is a draw-
back, especially in scenarios having narrow free spaces as the probability of sampling in
narrow spaces is also low. Also, because of the randomness in its nature, the convergence
time for the RRT algorithm with uniform sampling can be high with comparison to deter-
ministic planning algorithms even in scenarios with wide free spaces. Therefore, many sam-
pling strategies have been suggested to overcome these shortcomings. In [WAS99, HK00],
sampling along the medial axis of free space is suggested for finding an optimal path such
that the samples have maximum clearance from Sobs. On the other hand, [AW96] proposes
sampling on Sobs to find the paths in narrow passages quickly.Heuristically Guided RRT
[US03] includes heuristics in the RRT algorithm expansion step so that randomly sampled
states are probabilistically added in proportion to their heuristic value to the tree. The goal
biasing, in which a goal state is deterministically sampled in fixed intervals, is introduced
in [KL00]. A significant reduction in planning time is achieved in [Yan13, KKY+16] by
increasing the density of sampling around the goal region once the tree approaches it. In
[KLY14], a methodology is presented for defining sampling clouds for allocating promising
samples and refining them after the initial solution is found. Fast Marching Tree [JP13]
uses a marching method to search a batch of samples in order of increasing cost-to-come,
similar to Dijkstra’s algorithm [Dij59].

Heuristic

In this section, methods that refine the trajectory found by an RRT algorithm to achieve
lower cost/planning time are summarized. RRT*, an asymptotically optimal variant of
RRT, is proposed in [KF11]. This algorithm improves the path within the given planning
time. However, the algorithm provides no guarantees on reaching an optimal solution under
certain criteria and time constraints. This property is known as asymptotic optimality. In
literature, many other variants have been proposed to reduce the computation time for
finding an optimal solution.

Karaman et al. [KWP+11] and Akgun and Stilman [AS11] both use heuristics to accelerate
the convergence of RRT*. Karaman et al. [KWP+11] remove states whose current cost-to-
come to a particular state plus a heuristic estimate of cost-to-go to the goal from the same
state is higher than the current solution. Akgun and Stilman [AS11] reject samples that
are heuristically estimated to be unable to provide a better solution. Kiesel et al. [KBR12]
first calculated a heuristic by solving a coarse discretization of the planning problem with
Dijkstra’s algorithm, which is then used to bias RRT* sampling to the regions of the
problem domain where solutions were found. A similar approach is used in [BBS13] using
the A* algorithm. RRT# [AT13] uses heuristics in dynamic environments to limit the tree
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to regions of the problem domain that can improve an existing solution. Anytime RRT deals
with a lack of computational time for path improvement by generating an initial suboptimal
solution [FS06] and then improving the solution in the remaining time. Waypoint caches
are also used to guide replanning with anytime RRT [ZWWW09]. The proposed planner
in [Von18] first solves a simplified version of the problem that is achieved, e.g., by reducing
the geometry of the robot. This approximate solution is then used to guide the search in
the state-space for a less relaxed version of the problem. All approaches, mentioned in this
section, avoid unnecessary computational effort but do not influence the initial search as
heuristics are not applied until a solution is found. This means these algorithms require at
least an initial approximate solution to apply heuristics.

Replanning

As Sobs changes, especially in dynamic environments, the planned paths may become in-
valid. In such situations, a new path has to be planned. The information gathered from the
path planning in past can be used to replan the path efficiently. ERRT [BV03] maintains
the location of the discarded states as well as waypoint cache, and bias the search based on
this information. It is motivated by the assumption that if the algorithm is updated at a
high frequency, only a small percentage of the original tree needs to be modified. Planning
a new trajectory from scratch every time is very expensive. Therefore, many variants of
the RRT algorithm have been proposed to replan the path by pruning or updating the tree.
Dynamic RRT [FKS06] builds on the idea that it is more efficient to repair the existing
tree than to rebuild an entirely new one. Unlike ERRT, only the colliding configurations
and their child nodes are discarded in an efficient manner. Reconfigurable Random Forests
(RRF) provided a framework for managing trees by discarding states in changed Sobs and
colliding paths. This leads to the emergence of separate trees, which then planner attempts
to reconnect. Multipartite RRT [ZKB07] combines the strategy of biasing the search to-
wards discarded configurations, similar to ERRT. It also rebuilds the tree, like Dynamic
RRT and maintains separate detached forests, like RRF. RRTX [OF16] is a motion replan-
ning algorithm for real-time navigation through a dynamic environment. After finding the
shortest path for a specific configuration, the RRTX algorithm replans the path to a goal
by continually repairing it as changes to the state-space are detected. However, the first
shortest path is found offline and finding this path by taking into account the predicted
motion of objects is not the focus of RRTX.

Local Planning and Smoothing

Smoothing techniques rely on using a curve to interpolate or fit the given waypoints. Du-
bin’s path [BBSL94] is commonly used for nonholonomic vehicles that are bound by a
minimum turning radius [KFT+08]. They combine circular arcs and straight lines to gen-
erate optimal paths. However, the curvature of the path may not be continuous. Curvature
continuous paths were proposed using Clothoids in [KH89]. Clothoids have no closed-form
solution and thus provide computational challenges to synthesize in real-time [MW04].
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Bezier curves were proposed for smoothing [YS10] and were used for local planning in
SRRT [YGS13, Yan13]. In [NMC10], seventh order Bezier curves are used to find smooth
trajectories that do not violate the kinematic constraints of the vehicle. B-spline interpo-
lation was used to generate smooth trajectories for an RRT planner in dynamic driving
scenarios [MBS06a, SDSS09, GYZ+17]. The local modification support was exploited by
generating a feasible path and then subsequent local adjustments are performed to ensure
dynamic feasibility. The main advantage of using splines is that the kinodynamic planning
is limited to a lower-dimensional space, thus making the planning in real-time possible.

Multiple Trees

Multiple RRTs can also be constructed simultaneously and connected to each other for
finding collision-free paths. In this section, RRT variants generating multiple trees are
mentioned. RRT-Connect [KL2000] uses two trees to perform a bidirectional search. One
tree is rooted at the start, whereas the other is at the goal. The search is complete
when the two trees are connected. In [ESJ16], B-spline parameterized curves are used for
bidirectional search. Triple RRT [WXL+10] and Multiple RRT [ZKB07, HWL17] generates
two trees from start and goal configurations and more trees from a narrow region which is
identified using the bridge test. A problem arises when attempting to connect two trees
for differentially constrained systems where the local planning is not a simple straight line.

Machine Learning

In this section, the applications of machine learning algorithms, for making the subtasks
of the RRT algorithms more efficient, are described. NoD-RRT [LCLX18] uses a neural
network to predict the cost between two given states considering nonlinear constraints for
the tree expansion. An approach for efficient sampling-based on learning a Q-function
to avoid obstacles is presented in [HL18]. In [PHCM18] a fully convolutional neural net-
work predicts the paths to be learned from expert demonstrations, which is further refined
with RRT* algorithm. Randomized statistical path planning [DK07] shows a formulation
to extract motion primitives from training data and outlines possibilities of how machine
learning can be used to learn heuristics. DeepSMP [QY18] encodes the raw point cloud
data using a contractive autoencoder and uses this encoding as an input to another neural
network along with the start and goal robot states to generate feasible samples for com-
puting collision-free paths with the RRT algorithm. A learned Gaussian Mixture Model
distribution is used for the biased-sampling in learned free spaces [HL16] to decrease the
number of collision checks drastically for the trajectory planning with the RRT algorithm.
Biased sampling in free spaces might increase the probability of finding collision-free states,
but it is not necessarily a good sampling strategy for the long term trajectory planning,
which requires a long chain of collision-free states. sRapidly Exploring Learning Trees
[SMW17] learns the cost functions of Optimal Rapidly Exploring Random Trees (RRT*)
from demonstration, thereby making inverse learning methods applicable to more complex
tasks. A nonlinear parametric model is trained to learn the distance metric [PA15] with
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nonlinear constraints between states of RRT essential to choose the nearest state of the
sample.

Kinodynamic Planning

Kinodynamic planning deals with the kinematic, nonholonomic or dynamic constraints
imposed on the robotic system such as a vehicle. The previously presented planners
were purely geometric, considering only the feasibility of the path. In comparison to
the sampling-based planners like the RRT algorithm, deterministic planners usually suffer
from high computational cost with kinodynamic constraints.

In some variants of the RRT algorithm, path planning and kinodynamic constraints are
decoupled as explained in the Section 3.1.5 where planners generate a path that relaxes all
kinodynamic constraints followed by trajectory modification to obey the constraints.

Closed-Loop RRT (CL-RRT) [KTF+09] runs a forward simulation using a vehicle model
to compute the predicted trajectory whose feasibility is checked against the vehicle and
environmental constraints. It uses a drivability map, which is regularly updated to check
the validity of nodes and edges of the tree. The algorithm takes into account the vehicle
dynamics by using a controller. It considers a complete stop as a safe state at the end of a
trajectory. In critical traffic situations with many dynamic obstacles, this might not be the
right choice since zero velocity does not necessarily imply a safe state. CL-RRT# leverages
idea from RRT# to combine with CL-RRT to generate better quality trajectories using
closed-loop predictions with dynamic constraints. [KTF+09] presents a methodology for
finding an informed subset of samples for differential constraints to improve the efficiency
of the RRT algorithm.

There are several issues about kinodynamic planning. It is inherently a high dimensional
problem and the state equation of the system must be known. Discarding kinodynamic
constraints during planning may lead to highly suboptimal solutions that involve compli-
cated manoeuvres. In worst cases, the robot may not be able to execute the planned paths,
resulting in unrecoverable situations that lead to a collision. For some systems, attempting
to accurately model all the effects overcomplicates the model and increase the planning
space dimensions and the search complexity.

Planning in a state-space that has narrow corridors is one of the challenges in the planning
path problem with an RRT algorithm. Kinodynamic constraints limit the motion of the
robot, essentially creating narrow passages in the state-space. The state-space is, tradi-
tionally, defined into free and obstacle state-space. The free space becomes narrower with
kinodynamic constraints if states those are unreachable and states from which a collision
is unavoidable are removed from free space. High dimensional planning, combined with
narrow free passages, leads to a significant increase in the convergence time of the RRT
algorithm. Therefore, kinodynamic planning has been limited to simulation-based plan-
ning applications. It is observed that the planning time can reach several minutes in some
simulation scenarios [LJJK01].
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Limitations of RRT variants

A huge number of RRT algorithm variants have been proposed for solving different robotics
problems successfully, yet the applications of RRT algorithms have not been researched,
especially in vehicle trajectory planning in critical, complex traffic-scenarios with many
static and dynamic road traffic-participants. The possibility of consideration of vehicle
dynamic constraints in the path planning task and the need of comparatively low com-
putational resources for planning trajectories in a high dimensional state-space makes the
RRT algorithm very attractive for the vehicle trajectory planning application. However, it
is still not used for the vehicle safe trajectory planning because of the several disadvantages
associated with it.

The most crucial thing in vehicle trajectory planning, especially in a critical traffic-scenario,
is the safety than the comfort of the vehicle occupants. The RRT algorithm is a probabilis-
tically complete algorithm, but it cannot guarantee to find a safe path in real-time. For
critical-traffic scenarios with many static and dynamic objects, the need for computational
resources is even higher. This is because the trajectories need to be planned in narrow
spaces, which is difficult with the RRT algorithm, as explained in the previous section.
Also, the trajectories need to be planned with simultaneous interventions in the lateral and
longitudinal dynamics. This increases the action-space for the RRT algorithm, and thus
the computation time. Very few variants of the RRT algorithm [MBS06b, OF16, KFT+08]
have been proposed which use simultaneous intervention in lateral and longitudinal dy-
namics of the vehicle, but they either require controllers with high computing power or a
lot of precomputation.

Equipping vehicles with controllers having high computing powers such as GPU is only pos-
sible for high-end vehicles. Even if the vehicle has onboard controllers with high computing
power, it cannot be guaranteed to find the collision-free path with the RRT algorithm in
the provided time. The vehicle may have reached a state from which the collision cannot
be avoided. There is no simple fail-safe state for a vehicle, such as in many other robotics
applications, where a complete stop is a fail-safe state. No RRT algorithm variant suggests
what the vehicle should do in such situations.

There are various heuristics and sampling strategies that have been proposed for decreasing
the computation time for path planning with an RRT algorithm, but they are very scenario-
specific and require at least an initial approximate solution. A small change in the scenario
can make those heuristic or sampling strategies ineffective, sometimes making the problem
more difficult.

Another challenging aspect with planning paths with multiple dynamic road-participants
are paths that look safe at one instance may not be in a future instant. Some RRT
algorithm variants replan the path by pruning and rewiring the RRT. This is not a good
idea, especially in safety-critical applications like vehicle trajectory planning. The safe
path should be planned by considering the future behaviour of other traffic-participants.
Otherwise, the vehicle may enter into a situation from which it is not possible to escape.
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All of these drawbacks of the RRT algorithm, particular requirements of vehicle trajec-
tory planning and the unavailability of a suitable RRT algorithm variant or, in general, a
trajectory planning algorithm, necessitate the extension of the RRT algorithm.

3.2 Problem Formulation for Vehicle Safe Trajectory Plan-

ning

The primary objective of this work is to plan a safe trajectory for the EGO vehicle in critical
traffic-scenarios with multiple static and dynamic objects. Generally, a safe trajectory
means finding a collision-free trajectory. However, a collision may be unavoidable in a
particular traffic-scenario, even with the combination of lateral and longitudinal dynamics
interventions. This is especially possible in critical traffic-scenarios, where many dynamic
objects create narrow free spaces. Sometimes, the trajectory planning algorithms fail to
find a collision-free trajectory because of insufficient computational resources. In any of
these cases, a trajectory should be planned such that it mitigates the severity of injury.
Therefore, this work extends the definition of finding a safe trajectory as either finding a
collision-free trajectory or a trajectory with predicted low severity of injury if a collision-free
trajectory is not found.

The aim of the trajectory planning algorithm in this work is an autonomous intervention
in only critical traffic-scenarios. Critical traffic-scenarios are defined as scenarios in which
a collision is predicted for the EGO vehicle in the time interval [t0, t0 + tp] and it cannot be
avoided by full braking. The exclusion of traffic-scenarios where a collision can be avoided
by full braking is because of the presence of the Autonomous Emergency Braking system
in modern vehicles. Therefore, the focus of the trajectory planning problem is on traffic-
scenarios, where simultaneous intervention in the lateral and longitudinal dynamics of the
vehicle is necessary for the collision avoidance/mitigation.

The task of safe trajectory planning does not end by planning a collision-free trajectory
for a specified time interval. The trajectory planning algorithm can bring the EGO vehicle
from one critical state to another critical state. For example, the EGO vehicle may avoid
a collision by steering and changing the lane, but it may lead to a vehicle state that can
hardly be controlled after the steering manoeuvre. Therefore, the end position of the
planned trajectory also has to be evaluated. The task of the trajectory planner should
be to plan a trajectory from one critical state to a safe state from which the driver or a
software module in autonomous driving software for comfortable driving can take control
of the vehicle easily. Therefore, a trajectory should be chosen such that it is collision-free
for a longer time interval than the one for which the trajectory is planned.

In this work, a two-dimensional space is assumed for modelling a robot state in a traffic-
scenario. The vehicle has nonlinear dynamics as in the Eq. 3.1

ṡ(t) = f(s(t),u(t)), (3.7)
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where u(t) ∈ Rm is the m-dimensional control input at time t and s(t) ⊂ R2 represents
the set of points occupied by the vehicle at time instance t. The initial state at t0 is given
by s(t0). The path-planning problem implies the design of the control input u(t) over a
finite prediction time-horizon of length τ1, i. e., t ∈ [t0, t0 + τ1]. The set of constraints like
bounds on the control input, static and dynamic obstacle avoidance or rules imposed by
the road must be taken into account when computing u(t), so that the resulting s(t) is
collision-free, i. e., s(t) ∈ Sfree(t), where Sfree(t) expresses the road area in R2 which is not
occupied by other objects at prediction-time t. To plan drivable trajectories, a nonlinear
two-track model, as presented in Chapter 2, is used as the dynamic constraint function f
in the Eq. 3.7.

A prediction time-horizon of approximately τ1 ≈ 2 seconds is a suitable value for performing
avoidance manoeuvre in most critical traffic-scenarios. In order to make sure that the
trajectory is collision-free for a longer time interval than it is planned, a longer prediction
time-interval [t0, t0 + τ ] is considered. This prediction interval is broken down into two
subintervals [t0, t0 + τ1] and [t0 + τ1, t0 + τ ]. The collision-free trajectories are planned
in the first subinterval and the ease of controlling the vehicle in the second subinterval
without a collision towards the goal is taken as one of the measures for the final selection
of the collision-free trajectory found in first subinterval.

Therefore, the problem of trajectory planning in critical traffic-scenarios is stated as follows.
If a critical traffic situation is identified, find multiple control inputs u(t) so that resulting
trajectories, which are sequences of states s(t), are collision-free, i. e., s(t) ∈ Sfree(t) for
t ∈ [t0, t0 + τ1], and estimate the level of safety of the resulting trajectories in the interval
[t0 +τ1, t0 +τ ]. If no collision-free trajectory is found, then estimate the level of safety from
the predicted severity of injury along the found trajectories. Finally, choose the control
input with the highest level of safety.

3.3 Detection of Critical Traffic Scenarios

As mentioned in Section 3.2, the proposed trajectory planning algorithms are activated
only in the critical traffic-scenarios in which a collision cannot be avoided just by brak-
ing. Therefore, it needs to be detected if a traffic-scenario is critical in the first place.
The Time-To-Collision (TTC) criticality criteria is used for defining the criticality of the
traffic-scenario. If a collision of the EGO vehicle is detected with any other road traffic-
participant within a TTC of two seconds in the future and it cannot be avoided by braking,
then the scenario is said to be a critical traffic-scenario. Road traffic-participants include
static objects like parked vehicles, trees, buildings or any other dynamic objects like other
vehicles, pedestrians, bicycles, etc.

In order to detect a future collision for the EGO vehicle, the predictions of other road
traffic-participants are necessary. There are numerous motion models proposed in the
literature. They are classified into linear motion models and curvilinear motion models
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[SRW08]. Linear motion models assume constant velocity or constant longitudinal accel-
eration. Although these models are simpler, they are only applicable on straight roads
as they assume only straight motions and do not take rotations, especially yaw rate into
account. Curvilinear motion models, on the other hand, take into account the rotations
around the z-axis. They are further divided into types based on the state variables such
as velocity, acceleration or steering angle. From a geometrical point of view, nearly all
curvilinear models are assuming that the vehicle is moving on a circular trajectory.

The curvilinear motion models describe the motion of road vehicles accurately only for
small prediction intervals (≈ 0.5s). It is because they consider only current values of
vehicle parameters and not the details of the road infrastructure. Also, for pedestrians and
bicyclists, suitable motion models need to be defined. Therefore, it is assumed in this work
that vehicles tend to follow their lane with constant velocity and pedestrians travel linearly
towards their current direction of travel with constant velocity. These are fair assumptions
for the time interval of 4 seconds, which is the total time (τ) for which the trajectory
is planned. Predictions with these assumptions generate the future positions sobj,n(t) of
obstacles in the vicinity of the EGO vehicle for the next τ seconds. A collision between
the EGO vehicle and the nth object at time t occurs if the indicator function

Iobj(t) =

1, if s(t)⋂Sobj(t) ̸= ∅
0, otherwise,

(3.8)

or

Iroad(t) =

1, if s(t)⋂Sroad(t) ̸= ∅
0, otherwise,

(3.9)

have the value 1 for any value of t ∈ [t0, t0 + τ ]. Fig. 3.3 shows further steps in the
detection of a critical traffic-scenario. The difference between the time instance tc, when a
collision is identified, and the current time instance t0 is the TTC. If the TTC is less than
2 seconds, and the collision cannot be avoided just by full braking, then the traffic-scenario
is considered as a critical traffic-scenario. Here, it is assumed that the EGO vehicle is
equipped with sensors that give the information about the current state of other obstacles
like their position, velocity, acceleration, yaw angle, etc. and also the road infrastructure
details like road width, curvature, etc.

3.4 Closed-Loop RRT

The trajectory planning algorithm needs to plan trajectories with simultaneous interven-
tions in the lateral and longitudinal dynamics of the vehicle to avoid/mitigate the collisions
in critical traffic-scenarios. As explained in Section 3.1.4, the RRT algorithm is suitable as
it can plan accurate trajectories with complex vehicle dynamic models such as the nonlin-
ear two-track model explained in Chapter 2. However, it suffers from lots of limitations,
as described in Section 3.1.5. In order to overcome these limitations, different variants of
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Figure 3.3: Detection of Critical Traffic-Scenario in this Work.

the RRT algorithm are proposed in this work. These variants are generated by introducing
extensions to an already proposed variant of the RRT algorithm, namely closed-loop RRT
(CL-RRT) [KTF+09]. It is a path planning algorithm developed by Team MIT in the
2007 DARPA Urban Challenge. The novelty of this algorithm lies in the use of closed-loop
prediction in the framework of the RRT algorithm. Unlike the standard RRT algorithm,
a reference input r to the controller is sampled. It is used to generate the input u that
is used for the forward simulation using the vehicle model in the loop while extending the
tree to find new robot states snew. A pure pursuit controller with simple PI controllers
for calculating the steering and speed commands is used. The feasibility of the predicted
trajectory is checked against obstacles and environmental constraints using the drivability
map in which it maintains the environment occupancy information. The main advantages
of the forward simulation are that it can easily incorporate any nonlinear control law and
nonlinear vehicle dynamics, and the resulting trajectory is dynamically feasible. The flow
diagram for the CL-RRT algorithm is shown in Fig. 3.4. This diagram shows how the tree is
extended in one iteration to find the new state snew. The blue box shows the framework of
the controller and the vehicle dynamic model, which uses the reference r at each time-step
to extend the trajectory from snear towards srand. Finally, the found new state snew and
the edge from snear to snew is checked for the collisions using the drivability map.
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Figure 3.4: Flow Diagram for the Closed-Loop RRT Algorithm.

The reference input r is defined as a piecewise linear path for simplicity. The speed profile of
the vehicle is always defined in the same way with three segments: initial ramp up, coasting,
and ramp down, such that the vehicle comes to a stop at the end as this algorithm assumes
that the stopped vehicle is safe. This is not true in critical traffic-scenarios especially with
multiple dynamic objects which can collide with the stopped EGO vehicle. The limitations
imposed on defining the reference path and speed profile also limit the possibilities of finding
a safe trajectory in narrow free spaces of critical traffic-scenarios. Also, this algorithm uses
the nonlinear bicycle model as vehicle model, which does not define the vehicle dynamics
as detailed as a nonlinear two-track model. Therefore, the planned trajectory may not be
followed accurately, especially in harsh manoeuvres.

In order to account for dynamic objects, the CL-RRT algorithm maintains a drivability map
which is regularly updated. The validity of robot states in the CL-RRT is continuously
checked against this drivability map and invalid robot states are discarded. In traffic-
scenarios having multiple dynamic objects, this will lead to a frequent discarding of robot
states. This happens since those states can become critical states in future time-steps.
Often discarding the robot states in the tree is not efficient as computational resources
used to find them are wasted.

Alg. 3.2 shows the pseudo-code for the CL-RRT algorithm. The changes in the CL-RRT
algorithm with respect to the basic RRT algorithm are highlighted in the pseudo-code. It is
clear from this code that the CL-RRT algorithm plans the trajectory from the start to the
end of the vehicle manoeuvre at every time-step. Therefore, it continuously updates the
states in the tree T at each time-step. The continuous planning or replanning of a collision-
free trajectory is not the focus of this work. The aim is the autonomous intervention when
the EGO vehicle encounters a critical traffic-scenario. It requires the ability to plan the
trajectory entirely from scratch at a particular time-step with the limited computational
resources available. It is also worth to mention that the team MIT used a Car-PC having
high computational resources for running the CL-RRT algorithm.

Because of all the above reasons, the CL-RRT algorithm is not suitable for safe trajectory
planning in critical traffic-scenarios. Howerver, it contains a closed-loop controller and
a vehicle dynamic model, which allows to plan drivable trajectories with nonholonomic
constraints of the vehicle. Therefore, this work proposes new variants of the RRT algorithm
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Algorithm 3.2 CL_RRT(T )

1: DrivabilityMap, T ← UPDATE STATES(T );

2: for k = 0 to K do
3: srand ← RANDOM STATE();

4: r, snear ← SAMPLE INPUT(T , srand);
5: snew ← CONTROLLER (snear, r,∆t);
6: success← CHECK CONSTRAINS(DrivabilityMap);

7: if success then
8: T .add vertex(snew);
9: T .add edge(snew, snear,u);
10: end if
11: end for
12: RETURN T ;

by extending the CL-RRT algorithm.

3.5 Augmented CL-RRT Algorithm

The Augmented CL-RRT (ARRT) algorithm is the first variant of the RRT algorithm
developed by extending the CL-RRT algorithm. It uses the basic framework of the CL-
RRT algorithm comprising the controller and vehicle dynamic model for the extension of
the tree in every iteration. As described in Section 3.2, the safe trajectory planning problem
is divided into two time intervals [t0, t0 + τ1] and [t0 + τ1, t0 + τ ]. The first time interval
is used for the planning of safe trajectories while the estimation of the level of safety of
those trajectories is done in the second time interval. Apart from this, there are several
extensions introduced in the ARRT algorithm to make it suitable for trajectory planning
in critical traffic-scenarios. Some of these extensions are indicated in different colors in the
Fig. 3.5. The corresponding algorithmic steps for this extension are marked in the same
colors as in Alg. 3.3. These extensions are described in detail in the following sections.

3.5.1 Temporal Drivability Map Sfree(t)
The CL-RRT algorithm plans the trajectory using the drivability map generated using the
recent measurements from the environment. The drivability map is updated continuously
as new measurements are received, which is again used to update the states in the tree.
It does not anticipate the behaviour of other road traffic-participants for planning trajec-
tories. This approach works well in static environments and, to some degree, in dynamic
environments where objects are moving at very low velocity.
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Figure 3.5: Flow Diagram for the Augmented CL-RRT Algorithm.

In critical-traffic scenarios with dynamic objects moving with high velocity, a safe trajectory
needs to be planned using the predictions of other traffic-participants. This ensures that
the planned trajectory is also safe in the future and the vehicle is not entering a false
safe state which later becomes even more critical when the vehicle actually arrives in that
state. The predictions of other road traffic-participants calculated for detecting the critical
traffic-scenarios in Section 3.3 are also considered for planning safe trajectories. These
predictions are used to construct a temporal drivability map Sfree(t), which defines the
free space available for driving, at time instances t ∈ [t0, t0 + τ ]. Denoting the area Sroad in
R2 that is covered by the road, the free space Sfree(t) available at time t in an environment
with total Nobj road traffic-participants is given as

Sfree(t) = Sroad \
Nobj⋃
n=1

sobj,n(t),

= Sroad \ Sobj,

(3.10)

where sobj,n(t) ∈ S is the area occupied by the predictions of the nth object at time instance
t.

3.5.2 Augmented Robot States in the Tree T
In the CL-RRT algorithm, the position of the vehicle defines the states in the tree. However,
as described in the previous section, not just the position, but also the time at which the
vehicle reaches that particular state is of vital importance in critical traffic-scenarios. If
the EGO vehicle reaches these states, a little early or a little late, it might lead to a
collision. Therefore, the robot states snew found during the extension of the tree should
be collision-free for the particular time instance at which the vehicle is predicted to reach
there. Along with the robot states, the trajectory joining the state snew to the tree should
also be collision-free. The temporal drivability map is used for this collision checking. The
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Algorithm 3.3 Augmented CL_RRT(sinit,vinit)

1: sgoal ← GOAL SELECTION (Sfree,vinit)
2: for n = 0 to N do
3: Tn.init(sinit);
4: ax,n ← ACCELERATION PROFILE(n);

5: for k = 0 to K do
6: srand ← RANDOM STATE();

7: sref , snear ← SAMPLE INPUT(T , srand);
8: aref (t)← REFERENCE ACCELERATION(ax,n, t);

9: snew ← FIND STATE (snear, sref , aref (t),∆t);
10: success← CHECK CONSTRAINS(sfree(t));
11: if success then
12: Tn.add vertex(snew);
13: Tn.add edge(snew, snear,u);
14: else
15: severity ← CHECK SEVERITY(snew, sobj,)
16: if severityislow then
17: Tn.add vertex(snew);
18: Tn.add edge(snew, snear,u);
19: Tn.add severity(severity);
20: end if
21: end if
22: end for
23: end for
24: T ∗ ← COMPARE TREES(T1, . . . , TN)
25: RETURN T ∗;

calculation of the time to reach a particular robot state is possible because of the use of
vehicle dynamic models for the extension of the tree.

As the RRT algorithm is iterative, the tree is extended from robot states that were found
in previous iterations. In order to do this using vehicle dynamic models, the parameters
of the robot state from which the extension is carried out need to be known. These
parameters include the physical parameters of the vehicle, including the velocity v, the
steering angle δ, the yaw angle ψ as well the time t when that state was predicted to be
reached. Therefore, this augmented information of each robot state is stored in the tree.
Therefore, this algorithm is named as the Augmented CL-RRT (ARRT).
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3.5.3 Controller Input and Output

The CL-RRT algorithm uses a piecewise linear path and a fixed piecewise linear acceleration
profile as an input to the controller for simplicity. Therefore, the algorithm is also suitable
for finding the safe trajectories only in simple traffic-scenarios with few objects moving
at low velocities. In order to find a safe trajectory in complex, critical traffic-scenarios
with multiple dynamic objects which might be moving with high velocities, the input to
the controller needs to be adapted accordingly. As a nonlinear two-track vehicle dynamic
model is used with the controller, it needs to calculate the input u(t) for the two-track
vehicle dynamic model which comprises of four steering angles of the wheels with respect to
the longitudinal axis of the vehicle δfl(t), δfr(t), δrl, (t), δrr(t) and the four longitudinal slip
values of the tires sl,f l(t), sl,fr(t), sl,rl(t), sl,rr(t), where the letters in the subscript stand for
“front-left”, “front-right”, “rear-left”, and “rear-right”. Thus, the output of the controller,
i. e., the input to the vehicle dynamic model is

u(t) = {δfl(t), δfr(t), δrl(t), δrr(t), sl,f l(t), sl,fr(t), sl,rl(t), sl,rr(t)}. (3.11)

The steering wheel determines the angles in a vehicle, whereas the acceleration or brake
pedal determine the longitudinal slip values. The angle of a tire with respect to the
longitudinal axis of the vehicle is responsible for the lateral force acting at this tire and the
longitudinal slip value is responsible for the longitudinal force acting at the tire. Therefore,
some changes are proposed in the framework of the ARRT algorithm for both lateral and
longitudinal dynamic interventions of the vehicle.

Steering Controller

In the CL-RRT algorithm, a linear reference path joining the random sample sref to its
corresponding nearest state in the tree snear is used as an input for the lateral dynamic
intervention. On the other hand, a random sample sref is generated and used as an input
to the steering controller throughout one iteration in the ARRT algorithm. The four
wheel angles δfl(t), δfr(t), δrl(t), δrr(t) are continuously calculated, while extending the tree
towards this random sample, in closed-loop from the nearest state in the tree snear. This
extension is performed with the two-track vehicle dynamic model that ensures that the
planned trajectory is drivable. If a collision is detected during the extension, the iteration
is discontinued and no state is added to the tree. An exception to this is explained in
Section 3.5.6 in which a state is added to the tree if a collision is with predicted low
severity of injury.

Speed Controller

The steering controller only defines the lateral dynamic intervention, i. e., it just defines
how the vehicle should steer while moving towards the sample sref using a vehicle dynamic
model, but the speed controller defines the speed with which it should move. Unlike the
CL-RRT algorithm, which uses a single fixed piecewise acceleration profile, the ARRT
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algorithm uses multiple piecewise acceleration profiles with the combination of braking,
accelerating and constant velocity. This acceleration profiles define the remaining inputs
in u(t), i, e., the longitudinal slip values of four tires sl,f l(t), sl,fr(t), sl,rl(t), sl,rr(t).

An example of the acceleration profile ai
x is shown in Fig. 3.6. The acceleration profile

contains three intervals. The first and third interval is either constant braking, constant
acceleration or zero acceleration, i. e., constant velocity while the second interval is the
linear transition interval between the first and third interval. The duration and the slope
of the transition interval are dependent on the difference between the acceleration values
in the first and third intervals. The constraint of the maximum allowable jerk jmax is
considered for defining this transition interval, as shown in the Fig. 3.6.
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Figure 3.6: Example of an Acceleration Profile.

3.5.4 Goal Selection

In general, the safe trajectory planning task for robotic systems is decomposed into two
subtasks. The first can be named as the “find-goal” problem, which aims at defining a
safe goal-location for the vehicle [Var93]. The second can be named as “path-planning to
a goal” problem, which has the aim to find a path from the current location to the goal
location. Algorithms for treating the first task of “find-goal” are mainly based on expert
knowledge and are application-specific.

For the problem considered in this work, the goal is actually a region sgoal ⊂ sroad. The
reason behind choosing a region and not a specific goal location is the choice of the ARRT
algorithm as a trajectory planning algorithm. It is difficult to reach the exact goal point
with the random sampling-based algorithm, such as the ARRT algorithm, especially in
a high dimensional continuous state-space. Therefore, the goal region is defined as a
circular region with a diameter of 3 m. Also, a fixed goal location is not suitable in a
dynamic environment where the time at which the vehicle reaches at the goal is also critical.
Therefore, the concept of dynamically changing goals is also introduced as described follow.
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The trajectory planning with the ARRT algorithm is divided into two subintervals of a
long time interval [t0, t0 +τ ]. An initial goal region Sgoal is defined for the ARRT algorithm
at time t0 while extending the tree in the first subinterval [t0, t0 + τ1]. The center of goal
region is chosen from the set of locations, which are the center of lanes, where the center
of gravity of the EGO vehicle will lie at the time instance t0 + τ assuming if it drives
alone on the road with constant velocity. The final goal location is chosen based on two
factors. First one is the closeness of the lane, on which the goal location lies, to the current
lane of the vehicle. T he second factor is if this location is predicted to be collision-free,
i. e., whether it lies in sfree(t0 + τ1). The nearest goal location that is also collision-free
is preferred. Otherwise, if no goal location is predicted as collision-free, then the nearest
location is chosen. This does not affect the planning of safe trajectories adversely as this is
a temporary goal location for the first subinterval. At the start of the second subinterval,
the goal location is revised again in a same way based on the final vehicle state found in
the first subinterval in order to adapt to the chnages in the dynamic environment. Also, it
is not necessary to reach the exact goal location and the aim is to reach in goal region.

3.5.5 Sampling Strategy

The probabilistic completeness of the RRT algorithm is due to the random sampling strat-
egy. However, complete random sampling usually leads to high uncertainty about the time
required to converge. Therefore, some bias or deterministic sampling is often introduced
to expedite the convergence of the RRT algorithm. The ARRT algorithm also uses a mix
of random and deterministic sampling. The use of machine learning algorithms to bias the
sampling of the ARRT algorithm and reduce the convergence time further is explained in
Chapter 5.

In the CL-RRT algorithm, the sampled input to the controller r is a combination of a
linear path and a fixed speed profile as described in Section 3.4. This limits the capability
of the algorithm for finding a safe trajectory in critical traffic-scenarios as the trajectories
those can be generated are limited. As explained in Section 3.5.3, the ARRT algorithm
uses a sample sref for the steering controller and it defines multiple acceleration profiles
for the speed controller. The sample s sref is randomly chosen in all iterations. Therefore,
it does not require indexing with time. However, it defines the state snear in the tree
that is extended in that particular iteration. The input to the speed controller depends
on the time of this state and the chosen acceleration profile. This acceleration profile is
converted into consecutive segments of time duration ∆t and the corresponding segment
whose starting time is the same as the time of snear, referred to as aref (t), is used as input
for the speed controller. It is important to note that the random sampling of sref is done
only in the region of the road sroad between the start state s(t0) and goal state Sgoal.

In order to add some deterministic bias to the sampling of sref , the center of the goal
state Sgoal is deterministically sampled at fixed iterations of the ARRT algorithm. This
is called goal-biased sampling. It helps to keep the direction of the tree extension towards
Sgoal. Also, the possibility of algorithm convergence with goal-biased sampling becomes
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higher once it reaches near to Sgoal. However, the goal-biased sampling is avoided for the
first 20 samples (given that the total number of samples is 100) in order to let the ARRT
algorithm explore the state space without any bias and then every third sample is used for
goal-biased sampling.

3.5.6 Prediction of the Severity of Injury

The prediction of the severity of injuries based on information from exteroceptive sensors
before a collision occurs is a new research area. While the potential of exteroceptive sensors
for the estimation of the severity of injury is explained in many works, mostly summarized
in [KG15], a simple method for the estimation of severity of injury that can be included
in a trajectory planning algorithm is missing. Here, an extension is made to the ARRT
algorithm to find a trajectory with low severity of injury when a collision is unavoidable
or a collision-free trajectory is not found in a specified amount of time.

As explained in Section 3.5.3, when a collision is detected during the extension of the
tree, the corresponding robot state is discarded. Instead of rejecting this state, the ARRT
algorithm checks the predicted severity and stores the robot state in the tree if its predicted
severity of injury is low. Vehicle’s delta-v [Jok93], which is a change in velocity between pre-
collision and post-collision trajectories of a vehicle, is suitable as the best single predictor
of crash severity. However, it requires a detailed model of the crash, which is not the
focus of this work. Therefore, a model from [CJ16] is used for estimating the severity of
the injury. It has developed the generalized relationship between impact speeds, impact
angles, and the severity of injury probability for common crash types based on several
simple assumptions. It defines critical impact speeds vc for different crash types for which
the probability of fatal or severe injury is less than 10% rounded to nearest 5 km/h. These
critical impact speeds are also shown in Table 3.1. As the nonlinear two-track model is
used for estimating vehicle states, the estimated impact velocity and the estimated impact
angle are available for every state in the RRT. If the impact speed is less than the critical
impact speed, then the trajectory is considered as nonsevere. Nonsevere trajectories are
further compared based on the impact velocity, i. e., the trajectories with lower impact
speed are given preference. Although the robot states with a predicted nonsevere collision
are added to the tree, they are not considered in further iterations for the extension of the
tree.

Table 3.1: Approaximate Critical Impact Speeds for Common Crash Types.

Crash-type Critical impact speed (km/h)

Pedestrian-vehicle 20

Frontal crash 30

Side crash 30

Rear crash 55
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This method used for predicting the severity of injury in this work is based on several
simplifications [CJ16]. This is acceptable as the aim of the work is not to provide an
accurate crash prediction model. The goal is to provide a possibility to include the desired
model in the framework of the ARRT algorithm. For example, a sophisticated model for
predicting the severity of injury, such as presented in [MLB+18], can replace the model
proposed by [CJ16].

3.5.7 Criteria for Addition of snew(t+ ∆t) to T
The definition of the function fobj is extended from the definition of the indicator function
Iobj from the Eq. 3.8, such that

fobj(t) =


1, if s(t)⋂Sobj(t) = ∅
2, if s(t)⋂Sobj(t) ̸= ∅ ∧ vr,s(t) < vc

3, otherwise,

(3.12)

where Sobj(t) ⊂ R2 is the area occupied by N objects, i. e.,
⋃N

1 sobj,n(t) and vr,s(t) is the
predicted relative collision velocity at state s(t) between the EGO vehicle and the collision
object. If the collision object is a stationary object then the relative collision velocity vr,s(t)
becomes the absolute velocity of the EGO vehicle. Similarly, the indicator function froad

is obtained by expanding the definition of indicator function from Eq. 3.9 at time t is

froad(t) =


1, if s(t)⋂Snr(t) = ∅
2, if s(t)⋂Snr(t) ̸= ∅ ∧ vr,s(t) < vc

3, otherwise,

(3.13)

where, Snr ⊂ R2 is the area not belonging to the road. The state snew found in an iteration
is added to the tree, if both functions fobj and froad have value of 1 or 2 at each time step
within the extension time interval.

3.5.8 Safe Trajectory Selection

The trajectory planning with the ARRT algorithm is divided into two subintervals of a time
interval [t0, t0 + τ ]. In the first subinterval [t0, t0 + τ1], multiple collision-free trajectories
are found by constructing a tree. While choosing the best trajectory, it is important to
choose a trajectory that leads to a final vehicle state from which the vehicle can easily be
controlled to drive further towards the goal. A maximum steering angle input required for
the vehicle to follow the road safely with constant velocity towards the goal-region Sgoal in
the second subinterval [t0 + τ1, t0 + τ ], from the end position of the trajectories found in
the first subinterval, is predicted. This parameter is named steering effort and is taken as
one of the parameters while choosing the final trajectory.

The ARRT algorithm uses different parameters in preference order safety, steering effort,
and acceleration values for the selection of the final trajectory. If it cannot find a collision-
free trajectory, then the trajectories with a collision are compared solely based on the
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predicted severity of injury and it selects the trajectory with the lowest severity of injury
as the best trajectory for that scenario. If multiple collision-free trajectories are found, then
only those are considered for further comparison. Among these trajectories, it eliminates
the trajectories with high steering effort above the defined threshold or if there is none below
the defined threshold, then it selects the one with lowest steering effort as a label. Finally,
if multiple collision-free trajectories are remaining, then the one with the lowest maximum
absolute acceleration value along each trajectory is selected as the best trajectory.

If it does not find any trajectory without a collision or with nonsevere collision, then the
vehicle breaks sharply as a fail-safe.

3.6 Augmented CL-RRT+ Algorithm

The ARRT algorithm provides a suitable framework for finding safe trajectories in com-
plex, critical traffic-scenarios with multiple static and dynamic objects using simultaneous
interventions in the lateral and longitudinal dynamics. The lateral dynamic intervention
is based on random sampling with uniform distribution, while the longitudinal dynamic
intervention is based on the predefined longitudinal acceleration profiles. Although the
deterministic nature of longitudinal acceleration profiles provide the possibility to find the
trajectories with actuator and comfort constraints, it also simultaneously limits the capa-
bility of the algorithm to find safe trajectories in highly complex traffic-scenarios. It is
because the limited number of predefined acceleration profiles will not cover all the pos-
sible manoeuvres that a vehicle can perform. Therefore, an extension for sampling the
longitudinal acceleration is proposed in the ARRT algorithm and the extended algorithm
is named as the Augmented CL-RRT+ (ARRT+) algorithm. As shown in the Fig. 3.7 and
Alg. 3.3, all other steps in an iteration of the ARRT algorithm remain the same in the
ARRT+ algorithm.
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Figure 3.7: Flow Diagram for the Augmented CL-RRT+ Algorithm.

To understand the extension in the ARRT+ algorithm, some additional notations are
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Algorithm 3.4 Augmented CL_RRT+(sinit,vinit)

1: Sgoal ← GOAL SELECTION (sfree,vinit)
2: for n = 0 to N do
3: Tn.init(sinit);
4: for k = 0 to K do
5: srand ← RANDOM STATE();

6: sref , snear ← SAMPLE INPUT(T , srand);
7: aref (t)← SAMPLE ACCELERATION(anear);

8: snew ← FIND STATE (snear, sref ,aref (t),∆t);
9: success← CHECK CONSTRAINS(DrivabilityMap);
10: if success then
11: Tn.add vertex(snew);
12: Tn.add edge(snew, snear,u);
13: else
14: severity ← CHECK SEVERITY(snew, sobj,)
15: if severityislow then
16: Tn.add vertex(snew);
17: Tn.add edge(snew, snear,u);
18: Tn.add severity(severity);
19: end if
20: end if
21: end for
22: end for
23: T ∗ ← COMPARE TREES(T1, . . . , TN)
24: RETURN T ∗;

defined. A tree T (L) = {s0(t0), s1(t1), . . . , sL(tL)} is generated with the ARRT+ algorithm
which has L different states with s0(t0) being the initial state at t0. A number of states may
have been extended from the same state in the tree T (L). Therefore, the tree T (L) actually
comprises of K different trajectories πk, for k = 1, 2, . . . , K, which are either collision-free
or with a predicted nonsevere collision. In order to explain the strategy for the sampling
of the longitudinal acceleration, all trajectories are represented as πk = {r0, rk

1, . . . , rk
I},

where rk
i−1 is the parent state of rk

i , for i = 1, 2, . . . , I. The first state r0 in every trajectory
πk is the initial state s0(t0) in tree T (L) and rk

i ∈ T (L), for i = 0, 1, . . .. An example of
such representation is shown in Fig. 3.8.
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As every state rk
i is obtained by extension from its parent state rk

i−1 for time ∆t, the time
parameter trk

i
of the state rk

i is

trk
i

= trk
i−1

+ ∆t. (3.14)

3.6.1 Sampling Strategy for the ARRT+ Algorithm

The ARRT+ algorithm samples two random variables to find a state rk
i . First, it sam-

ples the type of accelerations λsample ∈ {λ−, λ+, λc, λ0}, where λ−, λ+, λc, λ0 are negative,
positive, constant, and zero acceleration, respectively. Here, λ− has the highest sampling
probability followed by λc, λ0, and λ+. The algorithm assigns this sampled acceleration
λsample to the type of the acceleration λrk

i
of the state rk

i , if λrk
i−2

= λrk
i−1

or λrk
i−1

= λsample

or λrk
i−1

= λ0. This condition It repeats this procedure till any one of this condition is

satisfied. This constraint is called as the stable profile constraint. This ensures that the
EGO vehicle will not accelerate or decelerate alternatively in small time intervals and same
acceleration type is used for at least two consecutive states. For states rk

i whose parent
node is r0, it does not consider the stable profile constraint as only one past state is present.

Followed by finding λrk
i
, the ARRT+ algorithm samples the acceleration value ark

i
of the

state rk
i uniformly within aλrk

i
,min and aλrk

i
,max, where aλrk

i
,min and aλrk

i
,max are the mini-

mum and the maximum acceleration limits for the λrk
i
, respectively. This ensures that the

acceleration is sampled within actuator limits for the selected λrk
i
. The algorithm further

calculates the acceleration values ark
i−1,rk

i
for travelling from the state rk

i−1, i. e., for a time

interval [trk
i−1
, trk

i
] using an exponential interpolation function of time to get smooth transi-

tion behaviour between states. It derives the resulting jerk values from ark
i−1,rk

i
and checks

if they are less than the maximum allowed jerk. Actuator constraints consist of these ac-
celeration and jerk constraints. If any of the stable profile or the actuator constraints is
not satisfied, then the procedure is repeated from the start. On the other hand, if all the
constraints are satisfied, ark

i−1,rk
i

along with srand is used as the input to find the state rk
i .
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3.7 Comparison Between the ARRT and the ARRT+ Algo-

rithm

Many critical traffic-scenarios on curved road are simulated in the Matlab simulation en-
vironment explained in Section 2.4, by changing initial velocities and initial positions of
road traffic-participants. These scenarios are broadly divided into two categories, 4-object
and 6-object scenarios, based on the number of objects, including the EGO vehicle, in the
traffic-scenario. For both algorithms, 2100 samples (srand) are used to find safe trajectories
in all of these scenarios. The results of the simulation are shown in Table 3.2.

Table 3.2: Comparison Between the ARRT and the ARRT+ Algorithm.

4-object Scenario
(405 Scenarios)

6-object Scenario
(478 Scenarios)

Criteria ARRT ARRT+ ARRT ARRT+

Average
# States

595 210 629 201

Average
Time (Sec.)

6.11 3.59 6.76 4.19

Collision-free
Trajectory Found (%)

98.76 96.79 77.84 90.37

No Safe
Trajectory Found (%)

0 0 0.05 0.09

The results show that the ARRT+ algorithm needs less memory (number of robot states
to be stored) and less time than the ARRT algorithm for finding a safe trajectory. Thus, it
is more efficient in terms of both memory and time. In terms of finding a safe trajectory, it
is significantly better than the ARRT algorithm in 6-object scenarios while slightly worse
in 4-object scenarios. It is due to the increase in the state-space for the random sampling
in the ARRT+ algorithm, which makes it challenging to find collision-free trajectories in
some of the complex traffic-scenarios with the limited number of samples.

Summary
This chapter presented a literature survey of the trajectory planning algorithms along
with their limitations, especially for the problem of safe trajectory planning in critical
traffic-scenarios. Further, it formulated a problem definition for the trajectory planning
task in critical traffic-scenarios and defined the procedure for the detection of the critical
traffic-scenarios. It also presented two variants of trajectory planning algorithms, namely
Augmented CL-RRT and Augmented CL-RRT+, along with details of their extensions to
the original CL-RRT algorithm. Finally, the comparison results based on the simulation
of critical traffic-scenarios with these algorithms show that the Augmented CL-RRT+
algorithm is more efficient and works better in most of the traffic- scenarios.
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Chapter 4

Machine Learning

The field of machine learning is about computers learning a class of tasks without explic-
itly programming their solution but improving their accuracy by feeding the data in the
form of experiences [T.06]. Owing to the advancements in this area, it’s applications are
growing exponentially in different disciplines such as agriculture [LBM+18], finance [dP18],
manufacturing [WWIT16], etc. However, they are still not preferred in safety-critical ap-
plications such as vehicle trajectory planning. Therefore, the focus of this work is the
development of hybrid machine learning algorithms, which are a combination of machine
learning algorithms with physical models, so that they can be used in safety-critical appli-
cations as well. This chapter provides a brief description of the basics of machine learning
algorithms necessary to understand the proposed hybrid machine learning algorithms in
Chapter 5.

The outline of the chapter is as follows: Section 4.1 describes the basic concepts in machine
learning. Section 4.2 explains the different types of supervised neural network algorithms
used in this work. Further, Section 4.3 illustrates unsupervised machine learning algorithms
such as clustering algorithms, autoencoder, variational autoencoder.

4.1 Basic Concepts in Machine Learning

4.1.1 Types of Machine Learning

Machine learning algorithms are broadly classified into three categories. The area of ma-
chine learning in which the output yi is known for the corresponding input xi ∈ Rn, also
called as feature space, in the form of input-output pairs D = {(xi, yi)}N

i=1 to guide the
learning is called supervised learning. Here, D is called the training set and N is the total
number of input-output pair samples. The supervised learning is further divided into two
types based on the type of output variable. If yi is a categorical or nominal variable from
some finite set such that yi ∈ {c1, c2, . . . , cK}, where K is the total number of classes or
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labels, then it is a task of classification to produce a function f : Rn → {c1, c2, . . . , cK}.
On the other hand, when yi ∈ R, i. e., it is a real-valued scalar, then the task is termed as
regression. In such cases, the task of a machine learning algorithm is to create a function
such that f : Rn → R.

The second type of machine learning is unsupervised learning. Here only inputs, i. e.,
D = {xi}N

i=1 are given while the labels are unknown. The goal is to find inherent patterns
in the data. Clustering similar data, anomaly detection, density estimation, generation of
new data samples are some of the applications of unsupervised learning.

The third type is reinforcement learning, which deals with learning agents in an environ-
ment, such that an agent gains a maximum cumulative reward over a fixed time interval
or a number of steps. It differs from supervised learning as the input-output pairs are not
given, but the agent finds them through exploration. Also, reinforcement learning is not
concerned with finding patterns in the data like unsupervised learning.

Primarily, the proposed hybrid machine learning algorithms use supervised and unsuper-
vised learning algorithms. The comparison of this proposed methodology to the framework
of reinforcement learning is described in Section 5.4.6 and the possibility of extending those
methodologies with reinforcement learning algorithms is explained in Chapter 7.

4.1.2 Prediction Error

The mapping function f between the input feature vector x and it’s corresponding label
y is often not deterministic [Vid97]. Therefore, a statistical framework to represent the
stochasticity is defined with x and y as the random variables for x and y, respectively.
The joint probability distribution p(x = xi, y = ck) provides the complete information
about the uncertainty associated with random variables x and y. In order to evaluate the
different mapping functions f and choose the suitable among them, a performance measure
has to be defined. Only reducing the misclassification rate is not a suitable method for
performance measurement as the consequences for two different misclassifications can be
different. Therefore, a loss function L(y, ŷ), which assigns a cost to the prediction ŷ = f(x)
given the true prediction y, is initially defined. In regression task it is usually either the
absolute error | y − f(x) | or the squared error || y − f(x) ||2 whereas in classification task
it is commonly defined as 0/1-loss

L(y, f(x)) =

0, if f(x) = y
1, otherwise.

(4.1)

The performance is measured in terms of a prediction error which is the expectation of
L(y, f(x)) over x, y-space. For regression task the prediction error is calculated as

E(f) = Ex,y{L(y, f(x))} =
�
RN

�
R
L (y, f(x)) p(x = x, y = c)dydx. (4.2)
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For the classification task, this is defined as

E(f) = Ex,y{L(y, f(x))} =
�
RN

K∑
k=1
L (y, f(x)) p(x = x, y = ck)dx. (4.3)

Although the above mentioned loss functions are used only for supervised learning al-
gorithms, they are useful also in reinforcement learning or unsupervised learning. For
example, Q-learning, which is a type of reinforcement learning algorithm, predicts the ex-
pected scalar reward that can be earned by taking a particular action using supervised
learning algorithms. The loss function of regression tasks is used here to evaluate the per-
formance of the algorithm. In autoencoders, a type of unsupervised learning algorithms, a
reconstruction loss equivalent to the regression loss is used. The only difference is that the
input is itself output. Therefore, no additional output labels are necessary.

4.1.3 Bayes Classifier

The optimal solution of machine learning for the classification task is the one which mini-
mizes the prediction error E(f) such that

fB = argmin
f
{E(f)}, (4.4)

where the function fB is called as Bayes classifier.

The mapping function f in case of classification task is a rule set which makes partitions
of the input space RN into regions Rk, such that all points in Rk belong to class ck while
simultaneously no points belonging to class ck lie outside of region Rk. Therefore, the
prediction risk in Eq. 4.3 can be rewritten as

E(f) = Ex,y{L(y, f(x))} =
K∑

k=1

K∑
l=1

�
Rk

L(ck, cl)p(x = x, y = ck)dx. (4.5)

Here, L(y, f(x)) is the cost for assigning a class cl to the input vector x when the true class
is ck. The goal of the classification task is to choose the regions Rk such that the expected
loss defined in Eq. 4.5 is minimized. It implies that for each x,

∑K
l=1 L(ck, cl)p(x = x, y = ck)

should be minimized. This leads to a Bayes classifier

fB(x) = argmin
cl

{ K∑
k=1
L(ck, cl)p(x = x, y = ck)

}
. (4.6)

4.1.4 Curse of Dimensionality

The task of generalizing with a finite number of samples for machine learning algorithms
becomes more difficult with the increase in the dimension of feature space, with each feature
having a range of values. A huge amount of training data is needed to have enough samples
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with each combination of values. The sampling density is proportional to N (1/D), where
N is the size of the training set and D is the dimension of the feature space. Thus, the
feature space becomes sparser with the addition of a dimension to the feature space. This
phenomenon is called as curse of dimensionality.

4.1.5 Model Selection

The model for classification tasks should be selected, which gives the least prediction error
as defined in Eq. 4.3. However, the probability density functions are normally not known
in practical applications. Therefore, an empirical prediction error based on the available
training data D

Eemp(f,D) = 1
N

N∑
i=1
L(yi, f(xi)), (4.7)

is used. However, more important is the generalization error, which is the expected predic-
tion error for untrained or previously unseen samples. Therefore, the generalization error
is approximated with an independent test dataset, which is not used for training the model.
It is possible that the model used for training overfits or underfits the training data D,
which means the model is not able to obtain sufficiently low generalization error. This
generalization error can be controlled by altering the model capacity, which describes how
complex the mapping is, that it can learn. Machine learning algorithms perform best when
the capacity of the model is appropriate to the true complexity of the task they need to
perform and the amount of the data provided.

Fig. 4.1 shows the relation between the model capacity and errors. The training and test
error behave differently with the increase in the model capacity. As the model capacity
increases, both training error and test error decrease to a minimum test error. This is
the underfitting zone. With a further increase in the model capacity, the training error
decreases, but the test error increases. It is because the model has a larger capacity than
the optimal capacity and it overfits the noise in training data. Therefore, this zone is
known as the overfitting zone.

The capacity of the model generally depends on the number of parameters used in the
model. These parameters are divided into two types: hyperparameters and the learned
parameters from data. The hyperparameters are specific settings to control the behaviour
of the model that are not learned on training data. Otherwise, it will always choose a
model capacity that will result in overfitting. To find the optimal set of hyperparameters,
a validation set of samples not included in the training set and test set is used.

4.1.6 Bias and Variance

To better understand its different sources and how it can be reduced, the prediction error
E(f) is decomposed into three types of errors, namely bias Eb(f), variance Ev(f) and a
quantity called irreducible error resulting from the noise. Given a particular learning
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Figure 4.1: Relationship Between Model Capacity and Error.

algorithm, only bias and variance can be influenced by altering the design of an algorithm
to minimize the prediction error. However, these two terms are not independent and a
lower bias results in higher variance and vice versa. This conflict of (supervised) learning
algorithms trying to minimize both these errors simultaneously to generalize well beyond
the training set is termed as the bias-variance tradeoff.

Bias results from the erroneous assumption about the capacity of the learning model. The
error due to bias is taken as the difference between the expected prediction of learning
model fD(x)1 and the bayes classifier fB(x) output considered as the correct value. In
other words, the learning model has high bias if the prediction of the model fD(x) differs
significantly on an average over the datasets, generated from same distribution, from the
predictions of the optimal model fB(x). Mathematically, the bias error Eb(f) is expressed
as

Eb(f) = L(fB(x), fD(x)). (4.8)

The estimator is said to be unbiased if the bias error Eb(f) is zero which implies fB(x) =
E(fD(x)). Similarly, another property of the model important to consider is its variability
for a given data sample. This is the error due to variance Ev(f). A model has high variance
if the prediction of the model fD(x) trained on different datasets, generated from the same

1Here, the learning model is defined as fD(x) instead of f(x) as the suffix D indicates random training
dataset D)
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Figure 4.2: Relationship Between Model Capacity, Bias and Variance.

distribution, differs significantly from its expectation. This is expressed in equation as

Ev(f) = ED (L(fB(x), fD(x))) . (4.9)

Intuitively, high bias indicates underfitting and high variance indicates overfitting. There-
fore, the desirable models are those which manage to keep both bias and variance low.
Fig. 4.2 shows the relation of the model capacity with bias and variance.

The bias-variance decomposition for classification is different from that of regression as the
loss function is defined differently. The different possible bias-variance decompositions are
explained in [Dom00].

4.1.7 No Free Lunch Theorem

The machine learning algorithms are designed to find the best approximation of the map-
ping function f such that the generalization error is small. The No Free Lunch Theorem
states that every classification algorithm has the same average error rate over all possible
data generating distributions, which means there is no single model that performs best for
every problem [WM97]. A model is superior compared to others in a specific domain only
because the assumptions fit particularly well to the data generating distribution of that
domain.
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As a consequence of the no free lunch theorem, the aim of machine learning is not to develop
a universal learning algorithm, but to develop different types of models for different data
distributions that occur in the real world. Also, for each model, there are different algo-
rithms for training which make different speed, accuracy, complexity trade-offs. Therefore,
different models have to be evaluated to find their suitability to the problem at hand.

4.1.8 Evaluation of Machine Learning Algorithms

Confusion Matrix

The confusion matrix is a two-dimensional table used for the visualization of classifier
performance. Each row and column of the matrix represents the total instances in an
actual class and predicted class, respectively. The name stems from the fact that it helps
to understand quickly if the classifier is confusing between classes. Table 4.1 shows a
confusion matrix for two classes c1 and c2.

ŷ = c1 ŷ = c2
y = c1 TN FP
y = c2 FN TP

Table 4.1: Confusion Matrix for Classes c1 and c2.

If c1 is considered as a negative class nad c2 is considered as a positive class, then the
four elements in clockwise direction from upper left corner of the table are defined as true
negative (TN), false positive (FP), true positive (TP), and false negative (FN). The metrics
true positive rate (TPR) or sensitivity and false positive rate (FPR) can be evaluated as

TPR = TP

FN + TP
. (4.10)

FPR = FP

TN + FP
. (4.11)

Also, the estimated accuracy AC of the classifier, which treats both false positive and false
negative error equally, can be found out as

AC = (TN + TP )
(FN + FP + TN + TP ) . (4.12)

If a false positive or false negative error does not cost equally, such that FN = αROCFP ,
where αROC ̸= 1, then a threshold has to be found to adjust the number of false positives
and false negatives such that the total cost is low. Therefore, with different αROC different
threshold have to be found.
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4.1.9 Receiver Operating Characteristic

The ROC curve was first developed by electrical engineers and radar engineers during
World War II for the detection of enemy objects in battlefields. Since then, ROC analysis
has been used in many other fields, including machine learning research. The ROC-curve
provides a way to study the FN -FP trade-off without having to choose a specific threshold.
It is a curve obtained by plotting TPR against FPR using a different set of thresholds.
An example of the ROC curve is shown in Fig. 4.3. Any system can achieve the point
on the bottom left, (FPR = 0, TPR = 0), by setting αROC = 1 and thus classifying
everything as negative; similarly any system can achieve the point on the top right, (FPR =
1, TPR = 1), by setting αROC = 0 and thus classifying everything as positive. If a system
is performing randomly, then any point on the diagonal line TPR = FPR by choosing
an appropriate threshold can be achieved. A system that perfectly separates the positives
from negatives has a threshold that can achieve the top left corner, (FPR = 0, TPR = 1);
by varying the threshold, such a system will coincide with the left axis and then the top
axis.

Cross-Validation

The division of the dataset into a fixed training set and a fixed test set can be problematic
if it results in the test set being small. A small test set implies statistical uncertainty
around the estimated average test error, making it difficult to claim which algorithm works
better on the given task.

When the dataset has thousands of examples, this is not a severe issue. When the dataset
is too small, there are alternative procedures, which allow one to use all of the examples in
the estimation of the mean test error, at the price of increased computational cost. These
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Figure 4.3: Receiver Operating Characteristic Curve.
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procedures are based on the idea of repeating the training and testing computation on
different randomly chosen subsets or splits of the original dataset. The most common of
these is the k-fold cross-validation procedure, in which a partition of the dataset is formed
by splitting it into k non-overlapping subsets. The test error may then be estimated by
taking the average test error across k trials. On trial i, the ith subset of the data is used
as the test set and the rest of the data is used as the training set.

top-i Classification Error

A machine learning algorithm, namely neural networks, predicts a probability distribution
over all the target variables. In this case, the target variable with highest probability
is considered as predicted output. The top-i classification error a criterion to measure
the classification error that uses this property. It tests if the reference class is within i
hypotheses with the highest probability. This criterion is suitable when multiple labels are
to be predicted.

4.1.10 Maximum Likelihood Estimation

Before the evaluation of machine learning algorithms, it is necessary to determine the values
of parameters used in the model. The most common principle used for this is the Maximum
Likelihood Estimation (MLE). It is a method for finding the parameter θ values such that
they maximize the likelihood of producing data x by the model from the observed data
distribution fdata(x). The MLE for θ of observing all data points, i. e., the joint probability
distribution of all observed data points

θML = argmax
θ

pmodel(x|θ), (4.13)

where pmodel(x|θ) is the model distribution given parameters θ. However, generally finding
a joint probability distribution is difficult. Therefore, it is assumed that each generated
data is independent of each other and the total probability of observing all data is the
product of observing each data point individually. Thus, the maximum likelihood can be
modified as

θML = argmax
θ

N∏
i=1

pmodel(xi|θ), (4.14)

where N is the total number of data samples. Still, the product over many probabilities is
inconvenient. To obtain an equivalent but simpler optimization problem, the logarithm of
likelihood is taken to convert the product into sum such that

θML = argmax
θ

N∑
i=1

log pmodel(xi|θ). (4.15)

Although the objective functions are different, the parameters which maximize both ob-
jective functions are the same. By rescaling the objective function with 1

N
, the above
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expression can be can be interpreted as an approximation of the expectation with respect
to the data distribution pdata(x) defined as

θML = argmax
θ

Ex∼pdata(x)pmodel(x|θ). (4.16)

From this equation, it can be interpreted that the MLE tries to minimize the dissimilarity
between the observed data distribution pdata(x) and the model distribution pmodel(x; θ).
The degree of the dissimilarity between these two is measured by the Kullback-Leiber
(KL) Divergence DKL

DKL(pdata(x) ∥ pmodel(x)) = Ex∼pdata(x)(log pdata(x)− log pmodel(xi)). (4.17)

This indicates in order to minimize the KL divergence, i. e., to minimize the difference
between the pdata(x) and pmodel(x), −Ex∼pdata(x)pmodel(x) has to be minimized which is
equivalent to the maximization of Ex∼pdata

pmodel(x) as is Eq. 4.16. Thus, MLE leads to the
minimization of the negative log-likelihood.

4.1.11 Motivation for Deep Learning

The challenge of generalizing with training traditional machine learning algorithms for high
dimensional data such as image, speech, text data did not prove successful. One thing to
notice in such a kind of data is the presence of a specific input structure. For example,
the images have a 2D spatial structure and speech or text have a temporal structure.
Deep learning algorithms take advantage of this knowledge about the data and encode
these beliefs into the model architecture. It lets them define a strong prior for model
parameters, which play a crucial role in determining where the parameters end up.

4.2 Supervised Learning Algorithms

There are many types of supervised machine learning algorithms, such as support vector
machines, decision trees, random forest, etc. However, only the basics of neural networks
are described in this section as the methodologies proposed in this work focus on only the
usage of neural networks.

4.2.1 Feedforward Neural Networks

A neural network (NN) or feedforward neural network or multilayer perceptron consists of
many connected processors called neurons each producing real-valued activations. The goal
of NN is to approaximate a function f which maps the information from input neurons x
to the probability distribution p(ŷ|x), unlike directly to the class as described in Section
4.1, over output labels for the classification task such that

p(ŷ|x) = [p(y = c1|x = x), . . . , p(y = cK |x = x)]T . (4.18)
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Figure 4.4: Feedforward Neural Network with a Single Hidden Layer.

These models are called feedforward as the information flows through the mapping function
f from input x to the output p(ŷ|x) activating other neurons in the process. There are no
feedback connections in which the output of the model is fed back into itself.

The mapping function f in the NN basically composed of many different functions with
a directed acyclic graph in the form of a chain. Therefore, they are called networks. For
example the NN function f(x) = f 3(f 2(f 1(x))) is a three layer NN with f 1 describing the
first layer of NN having H neurons. Thus, the transformation of input x ∈ RN at first
layer into a vector f 1 ∈ RH

f 1 = σ1(W 1x + b1), (4.19)

where W 1 ∈ RH×N is the weight matrix with the (h, nth) element of the matrix defining
the weighted connection between the hth neuron in the first layer and nth value in input x,
b1 ∈ RH is the bias and σ1 is a nonlinear activation function. In general the transformation
in each layer of a NN with L layers can be defined as

f l = σl(W lf l−1 + bl), (4.20)

where W l is the weighted connection between the lth and (l − 1)th layer, bl is the bias
vector in the lth layer while f 0 and fL defines the input x and output p(ŷ|x), respectively.

The overall number of layers gives the depth of the model. It is from this the terminology
deep learning arises. The mapping function f(x) only defines that the final layer, i. e., the
output layer of a NN must produce the corresponding output y. It does not define the
behaviour of intermediate layers. Therefore, these layers are called hidden layers. Fig. 4.4
shows a NN with one hidden layer.

Finally, these networks are called neural because they are loosely inspired by neuroscience.
Each element of the hidden layer may be interpreted as playing a role analogous to a neuron
in the brain in the sense that it receives inputs from many other units and computes its own
activation value. However, many mathematical and engineering disciplines guide modern
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NN research. Thus, although NNs take inspiration from how the brain works, it is not the
model of the brain.

Most of the NNs are defined with three components: a loss function, an optimization
procedure and the architecture. Any of these components can be replaced independently.
Therefore, a vast number of variants of NNs can be obtained. Finding a suitable combina-
tion of these components to achieve high generalization performance is the aim of building
a NN. In this section, these components are discussed.

Loss Functions

Similar to other machine learning algorithms, the training of a neurual network aims to find
values for the weight parameters W and the bias parameters b such that the loss function
L(y,f(x)) is reduced. These parameters are learned using the backpropagation procedure
described in Appendix 8.2. In most cases, a NN for classification outputs a probability
distribution p(ŷ|x) instead of just correct label y. Therefore, the principle of maximum
likelihood estimation is used which means the cross-entropy between the training data and
model predictions are used as cost function. A one-hot encoded vector y is defined as the
vector with the value one at position k and zeros elsewhere, given the target value is the
class ck. A regularization term such as the weight decay is frequently added to the cost
function to avoid overfitting.

Optimization of NNs

Traditionally, optimization algorithms aim at reducing the defined cost function to a low
value. The optimization algorithms used for the training of NNs and, in general, machine
learning algorithms act indirectly because the goal for machine learning algorithms is to
reduce the generalization error. If the true data distribution is known, then the expectation
can be taken over it and traditional optimization procedures can be applied. However,
the true data distribution is generally not known and only the training set of limited
samples is available. Therefore, machine learning algorithms convert the problem into an
optimization task of minimizing the expected loss on the training set using the empirical
risk minimization as in Eq. 4.7. However, this is prone to overfit as models will simply try
to memorize the training set.

The use of a surrogate loss function and early stopping avoids the problem of overfitting.
The surrogate loss function is an alternative loss function than the actual loss function,
which has more advantages. For example, a negative likelihood of a correct class is used
as a surrogate for 0-1 loss, which is comparatively easier to optimize and it continues to
make the model robust by pushing classes apart even when the 0-1 loss is zero.

Early stopping means halting the optimization procedure before reaching the local mini-
mum. Early stopping criteria is used on a validation set when overfitting begins to occur. It
should be noted that the true loss function instead of the surrogate loss function is used to
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check the criteria for early stopping. This is one of the key differences between traditional
optimization and optimization used in the training machine learning algorithms.

Stochastic Gradient Descent A common problem with NNs is that large training sets
are necessary for good generalization while at the same time training large datasets is also
computationally more expensive. Before deep learning, kernel learning algorithms were the
primary choice for nonlinear models. Many of these algorithms require constructing a kernel
matrix of size N×N , where N is the size of the dataset. This requires a computational cost
of O(N2), which is clearly undesirable for a dataset with millions of samples. The success of
deep learning algorithms lies in finding a scalable way of stochastic gradient descent, which
is an extension of the gradient descent algorithm [Cau47], in learning nonlinear models
with large datasets.

The gradient descent algorithm uses the gradient of the loss L with respect to parameters θ
and reduce the loss function by moving θ in small steps with opposite sign of the derivative.
This method may not be guaranteed to arrive at even a local minimum in a reasonable
amount of time, but it often finds a low value of the cost function quickly enough to
be useful. The loss function used by NNs is often decomposed as a sum of some per-
example loss functions over all training examples. For example, the maximum likelihood
loss function can be written as

L(x, y,θ) = Ex,y∼pdata(x)pmodel(x|θ). (4.21)

The expectation is approximated using the mean loss over all data samples, which is the
unbiased estimator of the expectation as follow:

L(x, y,θ) = 1
N

N∑
i=1
L(xi, yi,θ). (4.22)

This means the gradient descent requires performing the operation

∇θL(x, y,θ) = 1
N

N∑
i=1
∇θL(xi, yi,θ), (4.23)

Algorithm 4.1 Stochastic gradient descent at iteration k

Require: : Learning rate ϵk.
Require: : Initial parameter value θ.
1: while stopping criteria not met do
2: Sample a minibatch of m′ samples from the training set along with their correspond-

ing target
3: Compute a gradient estimate ∇θL′(x, y,θ)
4: Perform parameter update: θ ← θ − ϵk∇θL′(x, y,θ)
5: end while
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with computation cost as O(N). Although this is more efficient than kernel methods, it
is still not realizable with millions or billions of data samples. Stochastic gradient descent
provides a solution to this problem by computing the loss function gradient only with a
small number N ′ ≪ N of examples sampled randomly from the training dataset. Therefore,
this method is also known as the minibatch stochastic gradsient method. This is possible
as stochastic gradient descent is a procedure to compute an unbiased estimate of the
gradient, which can be approximated with a small set of samples. The reason behind
sampling randomly is that samples need to be independent of each other for computing
the unbiased estimate of the expected gradient. The estimate of the gradient becomes

∇θL′(x, y,θ) = 1
N ′

N ′∑
i=1
∇θL(xi, yi,θ) (4.24)

The stochastic gradient descent algorithm then follows the estimated gradient downhill to
update the parameters θ such that

θ ← θ − ϵk∇θL′(x, y,θ), (4.25)

where ϵk is the learning rate, a positive scalar determining the size of the step. This
parameter is gradually decreased over iterations as it approaches a local or global minima.
Thus, its value depends on the number of iteration k. The most important property of
minibatch stochastic gradient descent is that the computation time per parameter update
is independent of the size of the training dataset. Alg. 4.1 describes the steps in the kth

iteration of the stochastic gradient descent.

Stochastic Gradient Descent with Momentum Although SGD is a very successful opti-
mization strategy, learning with it is sometimes slow. This is because it calculates noisy
gradients of the loss function as they are just estimated gradients on a small set of random
samples and not true gradients. Here, the exponentially weighted average method pro-
vides a better estimate than noisy gradients calculated by SGD. Therefore, the method of
momentum [Pol64] is designed to accelerate learning with noisy gradients. This algorithm
accumulates an exponentially decaying moving average of past gradients and continues to
move in their direction. This is also helpful to accelerate learning in cases where high
curvature gradients or consistent gradients with small steps are present.

The name momentum derives from a physical analogy, in which the negative gradient is a
force moving a particle through parameter space, according to the Newton’s laws of motion.
Momentum in physics is mass times velocity. In the momentum learning algorithm, we
assume unit mass, so the velocity vector v may also be regarded as the momentum which
determines the direction and speed at which the parameters move through parameter
space. The velocity is set to an exponentially decaying average of the negative gradient
whose contributions is defined using the hyperparameter αM ∈ [0, 1). The update rule
changes to:

v ← αMv − ϵ∇θL′(x, y,θ), (4.26)
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Algorithm 4.2 Stochastic gradient descent with Momentum at iteration k

Require: : Learning rate ϵk.
Require: : Initial parameter value θ.
1: while stopping criteria not met do
2: Sample a minibatch of m′ samples from the training set along with their correspond-

ing target
3: Compute a gradient estimate ∇θL′(x, y,θ)
4: Compute a velocity update v ← αMv − ϵ∇θL′(x, y,θ)
5: Perform parameter update: θ ← θ + v
6: end while

θ ← θ + v. (4.27)

There are many other methods of gradient descent optimization such as ADAgrad, RM-
SProp, ADAM, second order Newton’s method, which have additional characteristics to
avoid the problem of ending in suboptimal local minima and choosing the correct learning
rate.

Architecture of NNs

Parameter Initialization Strategies Training algorithms for deep learning models are
usually iterative and thus require the user to specify some initial point from which to
begin the iterations. The initial point can determine how quickly learning converges and
whether it converges. Designing improved initialization strategies is a difficult task because
NN optimization is not yet completely understood. Perhaps the only property known with
complete certainty is that the initial parameters need to“break symmetry”between different
units. If two hidden units with the same activation function are connected to the same
input, then these units must have different initial parameters. If they have the same initial
parameters, then a deterministic learning algorithm applied to a deterministic cost and
model will regularly update both of these units in the same way. The goal of having each
unit compute a different function motivates the random initialization of the parameters.
The weights of the network are typically assigned randomly from a Gaussian or uniform
distribution and biases for each unit are chosen constants.

Thus, initializing parameters with θ0 can be considered as imposing a Gaussian or uni-
form prior with mean θ0. If θ0 is close to zero, it suggests that the units more likely do
not interact with each other than they interact. They will interact with each other only
if the loss function indicates a strong interaction between them during the backpropaga-
tion procedure. On the other hand, initializing θ0 with large values suggests strong prior
interaction between units, which is undesirable.

There are some heuristics available for initializing the weights. Most commonly used heuris-
tic for weights of fully-connected layer is normalized initialization [GB10]. The weights are
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initialized for a fully-connected layer with m inputs and n outputs such that

W ∼ U

−
√

6
m+ n

,

√
6

m+ n

 . (4.28)

Activation Functions The activation function σ is used in NNs to add nonlinearity to
the model. Apart from being nonlinear, these activation functions should be derivable, so
that the error can be backpropagated through them using the chain rule during training
the network with the backpropagation procedure. Hidden units in the network accept a
vector of inputs x, compute an affine transformation h = W x + b, and then a nonlinear
element-wise activation function σ(h) is applied. Some of the most popular activation
functions are shown in Fig. 4.5 and are described below:

� Logistic Sigmoid: The sigmoid activation function is σ(h) = 1
1+e−h . These units are

only sensitive to their input when h is near zero. Otherwise, they saturate to a high
positive and high negative value of h. This characteristic is called vanishing gradient
problem. Therefore, they are not much popular nowadays for hidden units in a NN,
but they are used for output units to predict the probabilities for classes, especially
in binary output problems as they output values between 0 and 1.

� Hyperbolic tangent: Hyperbolic tangent function is σ(h) = tanh(h) = 2
1+e−2h . They

look very similar to the sigmoid function. In fact, they are scaled sigmoid functions
such that tanh(h) = 2sigmoid(2h)− 1. The difference is they have a larger gradient
than sigmoid function and the range of the output is [−1, 1]. Like sigmoidal units,
hyperbolic tangent functions also suffer from vanishing gradient problem.

� Rectified linear units: Rectified linear units (ReLU) use the activation function
σ(h) = max(0, h). These units output zero for negative input while it works as
a linear function for positive inputs. Thus the derivatives through a rectified linear
unit remain large whenever the unit is active. The side effect of this is that these units
sometimes suffer from exploding gradient problem in which the gradient becomes too
large.

� Softmax: Softmax functions are most often used as the output of a classifier, to
represent the probability distribution over multiple different classes. It requires not
only that each element of output be between 0 and 1, but also that the entire vector
sums to 1 so that it represents a valid probability distribution. The softmax function
can then exponentiate and normalize h to obtain the desired output. Formally, it
is defined as σ(hi) = ehi∑

j
ehj

. Softmax can be seen as a generalization of sigmoid

function for multiple classes.

4.2.2 Convolutional Neural Networks

Convolutional Neural Networks (ConvNets) are NNs that use convolution in place of general
matrix multiplication in at least one of their layers. Mainly, three types of layers are stacked
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Figure 4.5: Common Activation Functions.

one after another to build ConvNets: convolution layer, pooling layer, and fully-connected
layer.

The convolution layer implements two important ideas to improve a machine learning
system: sparse interaction and parameter sharing [GBC16]. In traditional NN layers,
the interaction between each output and input unit is described by a separate parameter.
The convolution layer has sparse interaction by making the convolution kernels kW smaller
than the input U . This results into fewer number of parameters and operations to compute
the output, decreasing memory and time requirements of the model. Further, every kernel
is slid over the entire input dimension and convoluted. This parameter sharing approach
leads to further reduction in parameters of the model. The convolution layer is usually
followed by a nonlinear activation function σ such as sigmoid, rectified linear unit, etc.
Thus the element at position x, y of the kth feature map kV ∈ Rv1×v2 , having height v1,
width v2, with the filter kW ∈ Rk1×k2 , having height k1 < v1, width k2 < v2, is

kV
xy = σ


kb+

k1−1∑
i=0

k2−1∑
j=0

kWijU
xy
ij

 , (4.29)

where Uxy
ij is the input at position (x + i∆x, y + j∆y). The input for the convolutional

layer, that is not the first layer in the NN, is the output of the previous layer. The point
to note here is that the the filter W is flipped horizontally and vertically first and then
above equation is calculated as per the definition of the convolution [Ahn]. A visualization
of this convolution operation is shown in the Fig. 4.6.
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Figure 4.6: 2D Convolution Operation.

The pooling layer is generally inserted between successive convolution layers. It converts
the convolutional layer output into a number of slices of dimensions k′

1 × k′
2 and finds a

single summary representation for each slice. Thus, it reduces the amount of the parameters
and computation in the network. The most commonly used pooling functions are max-
pooling and average-pooling, which are shown in the Fig. 4.7. The operations performed
to calculate an element in the output of average-pooling is

kP
xy =

∑k′
1−1

i=0
∑k′

2−1
j=0 kV

xy
ij

k′
1k

′
2

, (4.30)

where kV
xy

ij is the input at position (x+ i∆x, y+ j∆y). Similarly, an element in the output
of max-pooling layer is

kP
xy = max

(
kV

x+0,y+0,k V
x+1,y+0, . . . ,k V

x+k′
1,y+k′

2
)
. (4.31)
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Figure 4.7: Pooling Operations.

After several convolution and pooling layers a fully-connected layer follows. The output
layer has generally one neuron per class in the classification task. A softmax function is used
so that each output neuron represents the posterior class probability. The backpropagation
algorithm for ConvNets to learn the parameters is illustrated in Appendix 8.2.5.
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4.2.3 3D ConvNets

In order to extract spatiotemporal features from M, a 3D convolution neural network (3D-
ConvNet) [JXYY10] is used. It performs a 3D convolution in convolutional layers and then
an additive bias b is applied and the result is passed through an activation function σ. As
shown in Fig. 4.8, the value of unit kV

xyt in a kth feature map at position (x, y) and time
t is obtained by

kV
xyt = σ


kb+

k1−1∑
i=0

k2−1∑
j=0

k3−1∑
n=0

kWijnU
xyt
ijn

 , (4.32)

where k1, k2, and k3 are the dimensions of the kernel kW and Uxyt
ijn is the input at position

(x+ i∆x, y + j∆y, t+ n∆t). It also performs a 3D pooling instead of 2D pooling.

x

y

t

Input Kernel Feature Map

Figure 4.8: 3D Convolution Operation.

4.2.4 Recurrent Neural Network

The ConvNets learn the spatial patterns from inputs having a grid-like structure while
the recurrent neural networks (RNN) make use of the sequential structure of the input.
In a traditional NN, we assume that all inputs (and outputs) are independent of each
other. This is primarily a bad idea for applications where the next output depends on
the previous computations, such as in predicting the next word in a sentence. RNNs are
recurrent because they perform the same computation for every element of a sequence,
with the output being dependent on the previous computations. RNNs can be thought
to have a “memory”, which captures information about what has been calculated so far
based on which it makes the inference. Fig. 4.9 shows the basic structure of a RNN for
a sequence with N sequential steps. The representation on the right-hand side shows the
internal loops indicating the “memory” component in RNN. It can be unrolled to get the
full structure of the network on the right-hand side.
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Figure 4.9: The Structure of Recurrent Neural Network with N Sequential Steps.

There are some important parameters from Fig. 4.9, which need to be described to under-
stand RNN better. The vector xt is the input at step t. Here, t can be a time step or just
the sequence step. The vector ht is the hidden or latent state calculated based on previous
latent states and input at the current step such that

ht = σ(Wxhxt + Whhht−1), (4.33)

where σ is result of application of a nonlinear activation function. The vector ht−1, required
to calculate the first hidden state, is usually initialized to zero. This component can be
thought of as the “memory” component of the network as it captures information about
what happened in all the previous steps. Finally, yt is the output at step t. It is a vector
of probabilities over the labels. Therefore, it is calculated as

yt = softmax(Whyht). (4.34)

The noticeable thing about RNN is that it shares parameters across all steps, unlike other
NNs that use different parameters in each layer. The assumption is that the network
is performing the same task at each step irrespective of the inputs. It greatly reduces
the number of parameters. These parameters are also learned by the backpropagation
procedure. As the parameters are shared, the gradient at each output depends on the
calculations of previous steps as well. Therefore, the gradient is summed up over all
previous steps. This procedure is called Backpropagation Through Time. It looks like
RNNs are capable of using the information in arbitrarily long sequences, but in practice,
they suffer from problems like vanishing and exploding gradient. The extensions of RNN,
such as LSTM [HS97] and GRU [CvMG+14], which handle these problems efficiently, are
more popular for problems involving long sequences.
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4.3 Unsupervised Learning Algorithms

4.3.1 Clustering Algorithms

Clustering is classifying samples into groups, also called clusters, such that the samples in
one group are similar to each other and dissimilar to the samples from other groups. A
distance metric measures the similarity or dissimilarity. The most commonly used distance
metric is the Euclidean distance. Typically, clustering algorithms are divided into two
groups: hierarchical and nonhierarchical.

Nonhierarchical clustering methods such as k-means clustering methods as they iteratively
calculate cluster centroids with samples are added or subtracted from the cluster till there is
no reassignment. Hierarchical clustering is a method of cluster analysis which groups data
over a variety of scales by creating a cluster tree called a dendrogram. The dendrogram
is a multilevel hierarchy in which clusters at one level are either combined or further split
into the next level. Based on this property, the hierarchical clustering is classified into two
approaches:

� Agglomerative: In this type, each data sample is assigned to an individual cluster on
the first level of the tree and at each level, the closest pair of clusters are merged.
Therefore, this requires a definition of cluster proximity.

� Divisive: It starts with all the objects grouped in a single cluster. Clusters are divided
or split until each object is in a separate cluster.

Fig. 4.10 shows the direction of both agglomerative and divisive hierarchical clustering and
different levels of the dendrogram with five samples.

Agglomerative methods are more commonly used than divisive methods. They consist
of linkage methods, variance methods, and centroid methods based on the definition of
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cluster proximity. The linkage method is further subdivided into a single, complete and
average linkage method, which measures minimum, maximum and average distance be-
tween samples of the cluster, respectively. Variance methods generate clusters to minimize
the within-cluster variance. In centroid methods, the distance between two clusters is the
distance between their centroids.

4.3.2 Autoencoder

An autoencoder is a NN that consists of two parts, namely encoder and decoder. It is
trained to approximate its input x to the output. The encoder fx|z part converts the input
x to the latent layer z, while the decoder tries to reconstruct the input x from the latent
layer z. The model is trained with the gradient descent method using the reconstruction
error of the input as the loss function. The commonly used loss functions for reconstruction
error are the L1 and L2 norms. The size of the hidden layer z is smaller than the size of
the input x to to obtain a lower dimensional representation of the input. This forces the
model to learn only the most important features. Traditionally, autoencoders were used
for dimensionality reduction, but modern autoencoders have generalized the idea of an
encoder and a decoder beyond deterministic functions to stochastic mappings.

x fx|z z qz|x x̂

Figure 4.11: The Architecture of an Autoencoder.

4.3.3 Variational Autoencoder

A variational autoencoder (VAE) is a type of generative model which deals with learning
the data distribution px(x) from which new data samples of the input x can be generated.
VAE makes the assumption that the input data is generated by a two step random process
using latent variables z, whose values can be sampled from a probability distribution
pz(z). The generative model g(z,θ), parametrized by θ, represents a parametrization of
the likelihood function px|z(x|z,θ) such that

px(x) =
�
px|z(x|z,θ)pzdz, (4.35)

where the prior pz can be a simple distributions like the standard normal distribution or
the Bernoulli distribution. The goal is to find the parameters θ to maximize to maximize
the probability for observing the data in the training set. Eq. 4.35 can be approximated
with the samples of z such that

px(x) = Ez
[
px|z(x|z)

]
. (4.36)

This equation is not practically computable as many samples of z are required and for most
of the samples px|z(x|z) would be negligible, i. e.,px|z(x|z) ≈ 0 . Therefore, the distribution
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Figure 4.12: Structure of Variational Autoencoder.

pz is restricted to a family of simpler distributions in order to approximate it to pz|x . As
this is unknown as well it is learned with model qz|x. This can be achieved by minimizing
the Kullback-Leiber divergence (KL divergence)

DKL(qz|x||pz) = Ez∼qz|x

[
log qz|x(z|x)

pz(z|x)

]
. (4.37)

Applying Bayes rule to Eq. 4.37, the equation can be rewritten as

DKL(qz|x||pz) = Ez∼qz|x

[
log qz|x(z|x)

px|z(x|z)
px(x)
pz(z)

]
. (4.38)

Consequently, reformulating the above equation

log px −DKL(qz|x||pz|x) = Ez∼qz|x

[
log px|z(x|z)

]
−DKL(qx|z||pz). (4.39)

The second term on the right hand side of the above equation, i. e., the KL divergence
between the qz|x and pz|x is intractable as both the distributions are unknown. However, it
is always greater or equal to 0 as per the definition of KL divergence. This means that

Ez∼qz|x

[
log px|z(x|z)

]
−DKL(qx|z||pz). (4.40)

is a lower bound for log px which is tighter the more the model distribution qz|x approaches
the true, but unknown, distribution pz|x. The problem formulation in Eq. 4.35 is changed
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to maximizing the lower bound in Eq. 4.40. This creates two loss functions. First, the
reconstruction error as in simple autoencoders represented by the first term in Eq. 4.40.
By maximizing the likelihood, qz|x is forced to produce z that px|z can reliably decode to
reconstruct the input. The second loss function is the KL divergence between qz|x and pz,
where pz is usually defined as the normal distribution N (0, I). One crucial problem is
training this autoencoder with the backpropagation algorithm because of the presence of
sampling which is not differentiable. This problem is solved by the reparameterization trick
[KW13]. Instead of sampling z ∼ qz|x, a sample ϵ ∼ N (0, I) is chosen and z is calculated
as

z = zµ + ϵzσ, (4.41)

where zµ and zσ are considered to be vectors generated from qz|x. The overall architecture
of VAE including the reparameterization trick and two loss function is shown in Fig. 4.12.

Summary
In the first part of this chapter, basic concepts of machine learning are presented. In later
parts of this chapter, different supervised and unsupervised learning algorithms relevant
for this work are described.
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Hybrid Machine Learning Methods for
Trajectory Planning

The proposed model-based trajectory planning algorithms in Chapter 3, namely ARRT
and ARRT+, are potent algorithms to find safe trajectories in complex, critical traffic-
scenarios. They are probabilistically complete algorithms, which means they will always
find a solution, if it exists, given infinite time. However, these algorithms require high
computational resources to run in real-time. It is because of the complexity of the un-
derlying problem, usage of a highly accurate vehicle dynamic model and the uncertainty
in the nature of the algorithms due to random sampling. These algorithms may not be
able to find a safe trajectory in real-time even if the traffic-scenarios is not complicated
because the random sampling can generate undesirable samples which hamper the fast
convergence. Therefore, these algorithms are not directly realisable in a vehicle where only
limited onboard computational resources are available.

Another inescapable feature of randomized algorithms is their lack of repeatability as no
two runs will execute identically. There is no guarantee that these algorithms will converge
again, in the same way in which they converged previously, given a time constraint. In
trajectory planning, this has both positive and negative implications. The positive thing
is that sometimes the randomized algorithm will be “lucky” and solve a complex problem
very quickly. This might not be the case for a deterministic algorithm. If a deterministic
algorithm performs poorly once, it will always perform poorly for that problem. On the
other hand, the lack of repeatability caused by randomization can easily hide how well the
algorithm performs and can cause flaws to be overlooked. This makes the testing and the
validation of the randomised algorithms harder. With deterministic algorithms, a single
execution is sufficient to find flaws. Hence, working with deterministic algorithms can
result in greater carefulness in both algorithm design and implementation.

Machine learning methods, that are briefly explained in Chapter 4, are considered to be
Black-Box methods as they are purely based on data. Therefore, machine learning have

86



Chapter 5. Hybrid Machine Learning Methods

not found their way in safety-critical applications like safe trajectory planning where the
precise understanding of the models, those defining the control inputs for actuators, is
required.

This work proposes a combination of machine learning methods with sampling-based al-
gorithms to exploit the advantages of both types of methods. The basic idea of the com-
bination is to assist sampling-based methods with machine learning algorithms, such that
a suitable prior for sampling is generated by machine learning. With a suitable prior the
convergence of the sampling-based algorithms can be speeded up. It is acceptable to use
the machine learning methods in such a manner for safety-critical applications because
the final solution is generated by a model-based algorithm that uses sampling and vehicle
dynamic constraints.

The overview of this chapter is as follows: Section 5.1 briefly describes the planned com-
bination of the machine learning algorithms with the sampling-based ARRT and ARRT+
algorithms. It is followed by the literature research of machine learning applications for
the trajectory planning algorithms in Section 5.2. Section 5.3 explains the hybrid machine
learning algorithms for the sampling-based trajectory planning algorithms in detail, while
Section 5.4 illustrates the hybrid machine learning algorithms for a deterministic trajectory
planning algorithm. The simulation results for the comparison of the trajectory planning
algorithms in different critical traffic-scenarios are provided in these sections. Finally, Sec-
tion 5.4.6 presents the similarities and dissimilarities between the proposed hybrid machine
learning algorithms and reinforcement learning algorithms.

5.1 Proposed Combination of Sampling-Based and Machine

Learning Methods

With the above mentioned issues related to complete random sampling, it is clear that
a non-uniform or biased sampling can be more beneficial than uniform sampling. The
primary motivation for non-uniform sampling is simple. If it is possible to determine that
certain regions of the configuration space are more important than others, then one would
like to be able to sample these at a higher frequency, as efficiently as possible. However, it is
very challenging to find how to explore the configuration space with non-uniform sampling.
In general, there are two approaches to non-uniform sampling: importance sampling and
adaptive sampling. Importance sampling is based on the prior belief that solutions will be
found more quickly by concentrating on sampling in certain areas of configuration space.
In adaptive sampling, the distribution from which new samples are drawn is modified based
on information gained from previous samples. This thesis adopts the importance sampling
technique.

As explained earlier, there are disadvantages and advantages associated with both model-
based and machine learning methods. Therefore, hybrid machine learning methods, which
are a combination of model-based and machine learning methods, are proposed in this work
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for safety-critical applications like safe trajectory planning. These methods open a new way
to simultaneously exploit the advantages of machine learning methods and eliminate their
disadvantages by combining them with physical models. Therefore, they can be used in
safety-critical applications like safe trajectory planning. The basic idea of the proposed
combination is to find an approximate solution by machine learning methods and use
this predicted solution as a reference for the fast convergence of model-based sampling
algorithms. Specifically, for the given task of vehicle safe trajectory planning, the concept
of importance sampling is used. Machine learning algorithms generate a prior belief to
change the sampling strategy of the ARRT and ARRT+ algorithms.

The effect of non-uniform sampling on the performance of sampling-based motion planning
algorithms is still an open research question. The experimental results presented in [LL03]
and [GO07] shows that there is no single sampling strategy that outperforms others in
every scenario. Therefore, a general rule-based sampling strategy applicable to all types of
scenarios is difficult to find. It endorses further the use of machine learning algorithms for
deducing the non-uniform sampling strategy.

Machine learning algorithms generate a bias with the ARRT and ARRT+ algorithms in
different ways. The ARRT algorithm uses L longitudinal acceleration profiles ai

x, where
i = 1, . . . , L, sequentially to find multiple safe trajectories. The increase in the number of
acceleration profiles raises the chance of finding safe trajectories in a complex multi-object
dynamic traffic-scenario, but it also raises the computation time. Therefore, a machine
learning algorithm is proposed to predict only the best l out of L acceleration profiles for
a traffic-scenario, and use them with the ARRT algorithm to find safe trajectories. This
combination of the ARRT algorithm with a machine learning algorithm is named as the
Hybrid Augmented CL-RRT (HARRT) algorithm.

The ARRT+ algorithm does not use fixed acceleration profiles. Therefore, in order to
generate a training dataset for machine learning, the safe trajectories from the ARRT+
algorithm in multiple critical traffic scenarios are represented by templates and labels are
assigned to these templates. The trained machine learning algorithm then predicts these
template trajectories and biases the sampling of the ARRT+ algorithm around those tra-
jectories. This hybrid machine learning algorithm is named as the Hybrid Augmented
CL-RRT+ (HARRT+) algorithm. The advantage of these hybrid machine learning ap-
proaches is that the model-based algorithms still find safe trajectories with a reduction in
the convergence time. Section 5.3 describes the HARRT and HARRT+ algorithm in detail.

Even after the combination with machine learning algorithms, the issue of lack of repeata-
bility with the ARRT and ARRT+ algorithm is still present because of the randomness
in their nature. An alternative for this is the combination of machine learning algorithms
with deterministic algorithms for safe trajectory planning. The idea of this combination
is the same. The machine learning algorithm finds an approximate solution and then a
deterministic algorithm adapts this solution as per the defined constraints. Specifically, the
machine learning algorithms generate a reference trajectory, which by taking as an initial
solution, an optimization-based deterministic algorithm modifies this trajectory. This al-
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gorithm is named as the Generative Algorithm for Trajectory Exploration (GATE). Section
5.4 illustrates this algorithm and further its combination with the ARRT+ algorithm.

5.2 Literature Research on Machine Learning for Trajectory

Planning

The use of machine learning algorithms for trajectory planning is not a widely researched
area. In [BIS09], many machine learning algorithms for the subtasks of trajectory planning
are mentioned. However, they are not safety-critical tasks.

The RRT variants which incorporate machine learning algorithms and their limitations are
described in Section 3.1.5. There are some hybrid machine learning algorithms proposed
for board games. AlphaGo [SHM+16] and ExIT [ATB17] are two examples of guided tree
search algorithms with neural networks for the board games Go and Hex, respectively.
Although these approaches are considered breakthroughs in artificial intelligence, they are
still narrow approaches suitable only for games and not real-world applications because
of various reasons. First of all, these algorithms are limited to discrete state-spaces and
action-spaces, which is mostly not valid for real-world robotic applications. Also, these
games involve a fixed number of players, most commonly two, who act in sequence trying
to win by defeating other players without the real-time constraint. On the other hand,
the vehicle trajectory planning in critical traffic-scenario consists of an uncertain number
of participants in with each participant acts to avoid collision with real-time constraints.
There are other differences, such as determinism in the actions of participants and com-
plete observability in the games, which is not available in real-world applications like safe
trajectory planning. However, these are not considered in the scope of the approaches
proposed in this work. A single deterministic prediction of other traffic-participants and
the complete observability of the vehicle surrounding using vehicle sensors is considered.
The assumption about a single hypothesis for the prediction of road traffic-participants is
justified because the prediction time is small and roads are a structured environment in
which the road-participants should follow the rules. The assumption about the complete
observability is also justified because of the introduction of modern sensor technologies like
V2X and exteroceptive sensors such as lidar, radar, camera, etc. in modern vehicles that
provide detailed information of the vehicle surrounding.

The trajectory planning or trajectory prediction problem using machine learning algo-
rithms is not limited to robotic applications. There are other applications for predicting
trajectories such as handwriting generation [Gra13] and predicting basketball trajectories
[SR16]. These approaches use generative models for trajectory generation. Such algorithms
were the motivation for developing a generative model for trajectory planning in this work.

There is simultaneously much interest generated to develop end-to-end learning solution for
trajectory planning. The company NVidia proposed such an approach [BYC+17], which
uses the image of the road as an input for neural networks and outputs steering angle
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values. It tries to make the neural networks interpretable by determining which parts of
the image were relevant for decision making through the relevance layerwise propagation.
Simultaneously, the application of reinforcement learning algorithms is gaining much in-
terest in trajectory planning. However, these approaches are still in the nascent stage and
much research is still needed to be done before they become suitable for high dimensional
continuous state-space and action-space problems like vehicle trajectory planning in critical
traffic-scenarios.

5.3 Hybrid Machine Learning Algorithms with Sampling-

Based Algorithms

This section describes the proposed hybrid machine learning approaches with sampling-
based algorithms, i. e., the ARRT and ARRT+ algorithm. The first part of this section
explains the details of the design and training details of machine learning algorithms,
followed by their actual use in the HARRT and HARRT+ algorithm. Simulation results
are presented to compare the HARRT and HARRT+ algorithms to their corresponding
sampling-based algorithms based on safety and efficiency in terms of computation time.

5.3.1 Machine Learning Algorithm

Data Generation Procedure

The primary need for any machine learning algorithm is lots of data. The Matlab-based
simulation environment described in Section 2.4 is used to design and simulate traffic-
scenarios and generate data. Primarily, the data is generated for two-types of challenging
traffic-scenarios: 1) curved roads and 2) intersections. Many traffic-scenarios are formed
by the combinations of road designs, number and type of road-participants along with the
parameters of their initial state such as velocity, position, etc. For the curved roads, the
radius of curvature is also changed. An example of a traffic-scenario for both road designs
is shown in Fig. 5.1 and Fig. 5.2. The scenarios are simulated using suitable models for road
traffic-participants. For the simulation of the EGO vehicle, the nonlinear two-track vehicle
dynamic model described in Section 2.1.3, for other vehicles and bicycles the single-track
kinematic model explained in Section 2.1.4, while for pedestrians the decoupled lateral
and longitudinal dynamics presented in Section 2.1.5 are used. The predictions of the
road traffic-participants are found based on the assumptions that vehicles tend to follow
the road with a constant velocity and pedestrians travel linearly with a constant velocity.
Only critical traffic-scenarios as described in Section 3.3 are considered for the training of
the machine learning algorithms. A safe trajectory is planned with the ARRT and ARRT+
algorithms in each scenario. These safe trajectories are used later for the training and the
evaluation of the machine learning algorithms.
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Figure 5.1: An Example of Curved Road Scenario.

EGO Vehicle

Other Vehicle

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60

Figure 5.2: An Example of Intersection Scenario.
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Feature Space

The construction of the feature vector is essential for achieving good performance with
machine learning algorithms. For the vehicle safe trajectory planning, the relevant physical
features such as velocity, acceleration, position, etc. of road traffic-participants can be used.
However, the disadvantage of using such features is that the size of the feature vector will
change with the number of road traffic-participants in the surrounding of the EGO vehicle
or with the change in the road infrastructure. A representation of free-space, which is
an important piece of information used by every trajectory planning algorithm, is also
interesting for the definition of a suitable feature vector. Therefore, a traffic-scenario is
converted into a sequence of predicted occupancy grids {Gt1 , . . . ,GtP

} for the prediction
interval [t1, tP ]. Such a sequence is denoted as M. An occupancy grid Gt represents
predicted occupancies of road traffic-participants other than the EGO vehicle at prediction
time t. A scenario is uniquely defined by a sequence of predicted occupancy grids M and
the vector η that represents the EGO vehicle physical parameters such as initial velocity,
initial acceleration, etc. The advantage of choosing such feature representation is that the
size of the input features remains the same even if the number and type of road traffic-
participants or the road infrastructure change.

An example of an occupancy grid Gt of size 20× 40 meters (each cell 1× 1 meter) is shown
in Fig. 5.3. It shows the EGO vehicle position at the initial time t0 and predicted positions
of other road traffic-participants at time t. The cells of the grid occupied by the predictions
of other road traffic-participants and the cells outside of the road surface are assigned a
value 1. Otherwise, they are assigned a value 0, indicating they are free.
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Free Cell
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Figure 5.3: Occupncy grid Gt and EGO Vehicle at Time t0.
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Selection of Machine Learning Algorithms

The sequence of predicted occupancy grids M has a structure similar to a video. A video is
a sequence of two-dimensional images, while M is a sequence of two-dimensional predicted
occupancy grids. Recently, the convolutional neural networks (ConvNets) have shown
tremendous results with image and video classification problems. Therefore, ConvNets
are chosen as a machine learning algorithm in the HARRT and HARRT+ algorithms.
Specifically, 3D-ConvNets are used as the input is three dimensional.

Labeling Procedure

The classification problem requires the data in an input-output pair format. As explained
in the previous section, the input features comprise of a stack of predicted occupancy grids
M and the EGO vehicle physical parameters η. The goal of the machine learning algorithm
is to find a function fγ(M,η) 7→ ŷ with learning parameters γ to minimize the risk R(fγ)
which is defined as

R(fγ) = EM,η,y{L(y,fγ(M,η))}, (5.1)

where L(y, ŷ) = −∑k yk log(ŷk) represents the cross-entropy loss function, with yk and ŷk

being the true and estimated posterior probabilities for the kth class. The risk R(fγ) is
replaced by the empirical risk

Remp(fγ) =
(

1
N

N∑
i=1

(N (yi,fγ(Mi,θi)))
)
, (5.2)

where N is the total number of traffic-scenarios in the training data set. Thus, the param-
eters γ of the classifier are found by minimizing Remp(fγ).

In classification problems, the reference output for 3D-ConvNet is a one-hot encoded vector.
It is a vector of size equal to the total number of classes with all of its elements assigned
a value 0 except the element at the index k, which is assigned a value of 1 given that
the kth label is the true label. These output labels for both the HARRT and HARRT+
algorithms are defined in different ways, such that the labels are suitable for the proposed
hybrid algorithms.

The labels for these machine learning algorithms are derived from the safe trajectories
found by the model-based algorithms ARRT and ARRT+ in critical traffic-scenarios. Both
the ARRT and ARRT+ algorithm can find multiple safe trajectories in a traffic-scenario
and they choose the best trajectory as per the steps defined in Section 3.5.8. The ARRT
algorithm uses sequentially L longitudinal acceleration profiles al

x, where l = 1, . . . , L, with
the random sampling in lateral dynamics to find multiple safe trajectories. The acceleration
profile which finds the best trajectory is defined as the label for that particular scenario.
The one-hot vector of the size L+ 1 (for L acceleration profiles plus a label for no trajorey
found by any acceleration profile) is constructed with the element at kth index assigned
value 1 given that with kth acceleration profile, the best trajectory is found.
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Figure 5.4: Labeling Procedure for HARRT+ Algorithm.

The ARRT+ algorithm also samples in the longitudinal acceleration space and does not
use fixed acceleration profiles. Therefore, the labels are generated differently in the case
of the HARRT+ algorithm. The labeling procedure for the machine learning algorithm
for the HARRT+ algorithm is explained graphically in Fig. 5.4. The best trajectory π∗

n is
found by the ARRT+ algorithm in all the nth scenario {M,η}n, where n = 1, 2, . . . , N .
The trajectory π∗

n can also be approximated as a combination of the longitudinal accel-
eration profiles a∗

x,n and steering wheel angle profiles δ∗
n. The profile for steering wheel

angle is obtained by considering the EGO vehicle as a front-wheel drive vehicle with equal
steering wheel angles for front tires and the profiles of longitudinal acceleration is obtained
considering equal longitudinal slip values for four tires of the vehicle. Since the machine
learning algorithms only predict a trajectory that is used as a reference for biasing the sam-
pling, a more sophisticated modelling for the labelling process is not necessary. Divisive
hierarchical clustering is used to form P clusters c1

a, c
2
a, . . . , c

P
a of longitudinal acceleration

profiles and Q clusters of steering wheel angle profiles c1
δ, c

2
δ, . . . , c

Q
δ based on the Euclidean

distance criteria. Thus, the total number of labels is P times Q. The combination of the
clusters, to which a∗

x,n and δ∗
n belongs, decides the label for a scenario {M,θ}n. Here, the

one-hot vector yn is constructed of size P times Q and the element which represents the
combination of clusters to which the best trajectory belongs is assigned a value 1. Thus,
{M,θ}n is used as an input and yn is used as a label for training a 3D-ConvNet in the
HARRT+ algorithm.

Evaluation Metric

A top-i classification error, which tests if the reference class was within i hypotheses hav-
ing the highest probability, is used in this work. This metric is suitable as the goal of this
work is to find top m classes out of the total L classes. The HARRT algorithm uses only
predicted best top m longitudinal acceleration profiles while the ARRT+ algorithm uses
only predicted best top m cluster combinations of the steering wheel angle and longitudinal
acceleration profiles. The softmax classifier in the 3D-ConvNet architecture gives proba-
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bilities for each class, which are used to get top m classes with the highest probabilities.

3D-ConvNet Architecture

Three 3D-ConvNet models with different architectures are designed by changing the num-
ber of layers and the number of kernels. These are used to train acceleration profile
classifiers for both curved road and intersection road designs. The dimensions of kernels in
the respective convolution layer are not changed and all convolutional layers are followed
by the ReLU activation function and average pooling in all architectures. The architecture
providing best results with the least number of parameters is finally selected.

The results in Table 5.1 shows that networks with two convolution layers and eight filters in
each convolution layer, as shown in Fig. 5.5, have the least top-2 and top-3 errors, and also
have the least number of parameters which makes them most efficient in terms of memory.
This architecture is further used to measure the efficiency of the 3D-ConvNet method with
the top 3 acceleration profiles.

Table 5.1: Comparison of 3D-ConvNet Architectures.

Architecture
1

Convolution
2

Convolution
2

Convolution

Number of Kernels
in Convolutional Layer

8 8 12

Number of
Learnable Parameters

47934 17916 39524

Curved Road

-top-3 (%) error 4.14 2.21 3.89

-top-2 (%) error 18.34 9.32 11.64

Intersection

-top-3 (%) error 17.62 13.72 14.9

-top-2 (%) error 30.13 20.82 26.36

In this architecture, shown in Fig. 5.5, 10 predicted occupancy grids {Gt0+∆t, . . . ,Gt0+τ1}
of the size 30 × 50 meters, each cell of dimension 1 × 1 meter, over the prediction time
interval [t0 + δt, t0 + τ1] are used as input. τ1 and δt are chosen to be 2 seconds and 0.2
seconds, respectively. 3D convolutions with 8 kernels of size 4× 6× 3 (4× 6 in the spatial
dimension and 3 in temporal dimension) are applied to generate 8 sets of feature maps C1
of size 27× 45× 8. The number of trainable parameters in this layer is 584. It is followed
by 3 × 3 × 2 pooling on each feature map of C1 layer to generate the same number of
feature maps with the reduced dimension of 9× 15× 4. There are no trainable parameters
for this layer. In the second convolutional layer, the feature maps C2, with each feature
map of dimension 6 × 12 × 2, is obtained by applying convolutions with 8 kernels of size
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Figure 5.5: 3D-ConvNet architecture used in HARRT Algorithm.

4× 4× 3. The number of trainable parameters for this layer is 392. The number of feature
maps generated is 64 as 8 kernel has applied convolution on 8 P1 feature maps. A 2×3×2
pooling is again performed on each of these feature maps to generate 64 feature maps of
size 3 × 4 × 1. Finally, all these feature maps are vectorized and the EGO vehicle initial
velocity is added as a feature η to form a vector of 769 numbers, which is fully-connected to
the output layer. Here, the EGO vehicle initial velocity is used as in the simulated traffic-
scenarios only this parameter of the EGO vehicle is changed. If other parameters such
as acceleration, size is also changed, then those should be added as well. 22 class-scores,
which correspond to 21 longitudinal acceleration profiles used with the ARRT algorithm
and one for the class ”No safe trajectory found”, are calculated by matrix multiplication
followed by the bias offset and a softmax classifier. The number of trainable parameters in
this final part of the classifier is 16940. The total number of learnable parameters in the
whole network is 17916. Table 5.2 shows the number of learnable parameters in each layer
of the 3D-ConvNet used in the HARRT algorithm.

Table 5.2: Learnable Parameters in 3D-ConvNet.

Layer Number of Parameters

C1 584

P1 0

C2 392

P2 0

FC1 16940

Total 17916

The ConvNet architecture used in the HARRT+ algorithm is the same as the one used in
the HARRT algorithm except with an additional fully-connected layer (FC2) and a change
in the number of output neurons as shown in the Fig. 5.6. 4 clusters of both the longitudinal
acceleration and steering wheel angle profiles are used to form 16 output classes. The
number of learnable parameters in each layer of the 3D-ConvNet is shown in Table 5.3. A
3D-ConvNet is trained for predicting the longitudinal acceleration profile cluster and the
steering wheel angle profile cluster for curved road scenarios. A data for 44692 critical
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Figure 5.6: 3D-ConvNet Architecture for the HARRT+ Algorithm.

traffic-scenarios is generated out of which 80% data is used as the training data and the
remaining 20% as the validation data. The 3D ConvNet achieved the maximum top-3
accuracy of 83.66% on the validation data for the HARRT+ algorithm.

Table 5.3: Learnable Parameters in 3D-Convet.

Layer Number of Parameters

C1 584

P1 0

C2 392

P2 0

FC1 24640

FC2 528

Total 26144

5.3.2 Hybrid Augmented CL-RRT (HARRT) Algorithm

The procedure for finding and choosing a safe trajectory in the HARRT algorithm is
visualized in Fig. 5.7. Initially, when a critical scenario is detected, it is converted into a
sequence of predicted occupancy grids M using suitable models described in ??ChapDMC)
for road traffic-participants. The ARRT algorithm uses all L acceleration profiles, while the
HARRT algorithm uses only predicted m acceleration profiles with the ARRT algorithm
to find safe trajectories from which it selects the best trajectory.
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Figure 5.7: Comparison Between ARRT and HARRT Algorithms.

5.3.3 Hybrid Augmented CL-RRT+ (HARRT+) Algorithm

A biased-sampling procedure might increase the convergence speed of an RRT algorithm.
However, it risks the primary benefits of randomization in the RRT algorithms. Therefore,
a good sampling strategy for search algorithms is the suitable trade-off between randomized
and deterministic sampling. The HARRT algorithm does not have enough randomness in
the sampling of the longitudinal acceleration as only a few predicted predefined longitudinal
acceleration profiles are used. On the other hand, it does not have any bias in the lateral
acceleration apart from some bias towards the goal region Sgoal. The ARRT+ algorithm has
randomness in sampling both the longitudinal and the lateral acceleration. The HARRT+
algorithm uses a trained 3D-ConvNet to predict the longitudinal acceleration cluster ĉp

a

and the steering wheel angle cluster ĉq
δ. Further, it generates a set of waypoints from these

predicted clusters, which it utilizes to bias the sampling in the lateral dynamics of the
vehicle and it also biases the sampling in the longitudinal dynamics of the vehicle using
the predicted cluster ĉp

a. This section describes this biased-sampling strategy in detail.

Generation of Waypoints W

The label yn for an input {M,η}n represents the combination of the longitudinal acceler-
ation cluster cp

a and the steering wheel angle cluster cq
δ. This means that the acceleration

and steering angle profile for the safe trajectory of the scenario {M,θ}n lies in cp
a and

cq
δ, respectively. These clusters contain many profiles for the time interval [t0, t0 + τ1].

As a representation of these clusters, mean values and standard deviations are calculated
[VF04] at every time instant within the time interval [t0, t0 + τ1] and stored in the mean
value vectors µcp

a
, µcq

δ
and in the standard deviation vectors σcp

a
, σcq

δ
. Hence, the labels

can be represented as

yn ⇔ [cp
a, c

q
δ]⇔ [(µcp

a
,σcp

a
), (µcq

δ
,σcq

δ
)]. (5.3)

Waypoints can be generated as shown in the Fig. 5.8 for a scenario {M,η}. A trained 3D-
Convet predicts the label ŷ which can also be represented with (µ̂cp

a
, σ̂cp

a
) and (µ̂cq

δ
, σ̂cq

δ
)

as per the Eq. 5.3. These are used as the input for a single-track kinematic vehicle model
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to generate a trajectory π(µ̂cp
a
, µ̂cq

δ
). A complex two-track vehicle dynamic model is not

necessary as the purpose is to find just waypoints in order to generate a bias for the
sampling-based algorithms. The coordinates of this trajectory at the time-steps t0 + n∆t,
where n = 1, 2, . . . , (τ1/∆t), are stored in a matrix called waypoints, W ∈ R2,n.

{M,η}
Trained

3D-
ConvNet

ŷ

(µ̂cp
a
, σ̂cp

a
)

(µ̂cq
δ
, σ̂cq

δ
)

Vehicle
Model

W

Figure 5.8: Waypoints Geenration.

Biased-Sampling Methods

The sampling of random states srand for the HARRT+ algorithm can be biased by sam-
pling around waypoints W as they represent the approximate trajectory predicted by the
machine learning algorithm. However, the trajectory coordinates in W will serve for the
biased-sampling only in the lateral dynamics of the vehicle. For the biased-sampling in the
longitudinal dynamics, the HARRT+ algorithm samples the longitudinal acceleration ark

i

for the state rk
i based on the means and variances that are computed by the machine learn-

ing algorithm. Instead of sampling uniformly within the possible range of the longitudinal
acceleration values like in the ARRT+, it samples ark

i
from the Gaussian distribution with

mean µ̂cp
a
(trk

i
) and standard deviation σ̂cp

a
(trk

i
) as

ark
i
∼ N (µ̂cp

a
(trk

i
), σ̂cp

a
(trk

i
)), (5.4)

where, the time trk
i

of the new state rk
i is obtained from the time parameter trk

i−1
of the

parent state rk
i−1 from which an extension is made as per Eq. 3.14. The HARRT+ algo-

rithm also checks both stable profile and actuator constraints for the sampled acceleration
value ark

i
as explained in Section 3.6. This simultaneous biased-sampling of states around

waypoints W and the longitudinal acceleration ark
i

is termed as the simultaneous biased-
sampling in lateral and longitudinal dynamics.

Another way of the biased-sampling is based on deterministically sampling center point of
goal region Sgoal instead of the random sample srand and the random acceleration. This
serves as the biased-sampling only in the lateral dynamics of the vehicle and called as
goal-biased sampling.

Sampling Strategy for the HARRT+ Algorithm

The sampling strategy for the HARRT+ algorithm aims to have an suitable trade-off
between randomized and deterministic sampling. There are three phases in this sampling
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procedure shown in Fig. 5.10. In the first phase, it only uses the simultaneous biased-
sampling in lateral and longitudinal dynamics to find the initial states of the tree. It is
because the subsequent growth of the tree largely depends on the initial growth of the tree.
The second phase comprises of the sequential use of the simultaneous biased-sampling in
lateral and longitudinal dynamics, the goal-biased sampling, and the uniform sampling. In
the final phase, this algorithm switches to the uniform sampling and every third sample to
the goal-biased sampling only for every third sample.

The benefit of this sampling strategy can be understood from Fig. 5.9 and 5.11 that show
an example of the trajectory planning using the HARRT+ algorithm with top 2 predictions
of the 3D-ConvNet in the same traffic-scenario. It is a scenario with a two-lane road where
a collision of the EGO vehicle is predicted with a pedestrian crossing the road. The EGO
vehicle is moving witha velocity of 36 km/hr while all other vehicles are moving with a
velocity of 50 km/hr. The trained 3D-Convet predicts the best class which is represented
by µ̂cp

a
and µ̂cp

δ
, shown in Fig. 5.9b and 5.9c in green color, respectively. They are used to

generate a trajectory π(µ̂cp
a
, µ̂cq

δ
) from which waypoints W are obtained. The HARRT+

algorithm is used to get π∗. The acceleration a∗
x and the steering angle δ∗ that are finallyy

found by the HARRT+ algorithm are shown in magenta color in Fig. 5.9b and 5.9c. The
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Figure 5.9: Trajectory Planning with the HARRT+ Algorithm using the Best Prediction.
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Figure 5.10: HARRT+ Algorithm Sampling Strategy.
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plots show the biased-sampling based on the µ̂cp
a
, σ̂cp

a
and µ̂cp

δ
helped in finding a collision-

free trajectory even with strong positive acceleration.

In Fig. 5.11, the second-best prediction from the 3D-ConvNet is used to find a safe tra-
jectory. As it can be seen in Fig. 5.11b, the prediction of µ̂cp

a
is wrong. Even then, the

HARRT+ algorithm converged because of its sampling strategy, which uses the combina-
tion of biased and random sampling, although it needed more samples compared to the
previous case with the best prediction.
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Figure 5.11: Trajectory Planning with the HARRT+ Algorithm using 2nd Best Prediction.

5.3.4 Simulation Results

The proposed hybrid machine learning methods are compared with their corresponding
sampling-based methods using two criteria: efficiency and safety. The efficiency is mea-
sured based on the time and number of random samples required for the execution, and
the safety is measured based on the success rate, i. e., percentage of scenarios in which the
algorithm can find a safe trajectory.

102



Chapter 5. Hybrid Machine Learning Methods

Comparison Between the ARRT and HARRT Algorithm

In total, 1890 random test scenarios for curved roads and 820 random test scenarios for in-
tersection are simulated in the Matlab simulation environment, and the ARRT and HARRT
algorithms are used to find safe trajectories. A maximum of 100 samples is used with every
acceleration profile to find a safe trajectory.

Table 5.4: Comparison Between The ARRT and HARRT Algorithm.

Curved Road Intersection

Criteria ARRT HARRT ARRT HARRT

Average
Samples

1272 109 1868 237

Average
Time (Sec.)

5.0518 0.6230 6.6989 1.3126

Collision-free
Trajectory
Found (%)

100 99.63 60.85 51.95

Nonsevere
Trajectory
Found (%)

0 0.37 39.15 42.37

Table 5.4 shows the results of the simulation with both methods. The average number of
samples required by the ARRT algorithm in the curved road and intersection scenarios is
1272 and 1868, respectively. On the other hand, the HARRT+ algorithm using the 3D-
ConvNet needed only 109 and 237 samples in both road designs on an average. Thus, the
hybrid method shows 11.67 and 7.88 times improvement in terms of the number of samples
required for the safe trajectory planning in the curved road and intersection scenarios,
respectively. Similarly, a comparison for the time required by both methods in the curved
road and intersection scenario shows 8.11 and 5.1 times improvement, respectively. The
time required for constructing a sequence of predicted occupancy grids M is included in
the time required for finding safe trajectories by the hybrid method in order to assure a
fair comparison. As only 3 instead of 21 acceleration profiles are used, a reduction of 7
times in the number of samples and the time is expected. However, suitable acceleration
profiles require much less than 100 samples for finding a collision-free trajectory. Therefore,
the proposed approach shows an improvement of more than 7 times. Only intersection
scenarios show less than 7 times improvement in terms of time required as many samples
lead to collision states, which further requires the computation of the severity of injury as
described in the Section 3.5.6.

Table 5.4 also shows the percentage of scenarios in which both algorithms are able to
find safe trajectories. For the curved road design, the brute force analytical method was
able to find 100% collision-free trajectories. Although the hybrid method is able to find
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a collision-free trajectory in 99.63% scenarios, in the rest of 0.37% scenarios, it can find a
nonsevere trajectory. Similarly, in intersection scenarios, the brute force analytical method
was able to find a safe trajectory in 100% scenarios again, but HARRT was able to find a
safe trajectory in 94.32% scenarios.

Comparison Between the ARRT+ and HARRT+ Algorithm

A number of test traffic-scenarios were simulated with the ARRT+ algorithm and the
HARRT+ algorithm. These test traffic-scenarios are divided into two categories, training
curves test data and non-training curves test data. The training curves test data are the
traffic-scenarios which are different than those in the training and the validation data,
but on the same curves. The non-training curves test data are the traffic-scenarios on
different curves than those used for generating the training and the validation data. 2100
random samples were used for finding a safe trajectory with the ARRT+ algorithm. In
the HARRT+ algorithm, top 3 labels were predicted by a trained 3D-ConvNet and 100
samples were used with each label to find a safe trajectory out of which the first 10 were
used in the first phase, the next 60 in the second phase, and the remaining 30 for the final
phase of the sampling strategy.

Table 5.5: Comparison Between The ARRT+ and HARRT+ Algorithm.

Training Curves
Test data

(994 Scenarios)

Non-Training Curves
Test data

(403 Scenarios)

Criteria ARRT+ HARRT+ ARRT+ HARRT+

Average
# States

163 101 186 112

Average
Time (sec.)

4.06 1.03 4.26 1.27

Collision-free
Trajectory
Found (%)

96.50 95.83 96.66 90.60

No Safe
Trajectory
Found (%)

0 0.80 0.99 1.74

Table 5.5 shows the results of the simulation. The HARRT+ algorithm is more efficient
than the ARRT+ algorithm in terms of both the memory and the computation time and
was equally good as the ARRT+ algorithm in finding safe trajectories for training curves
test data. Although curved roads used for generating non-training curves test data are not
used for generating any training data, the HARRT+ still gives very good results. The time
required for constructing a sequence of predicted occupancy grids M is included in the
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time required for finding safe trajectories by the HARRT+ algorithm in order to assure a
fair comparison.

5.3.5 Drawbacks of the HARRT and HARRT+ Algorithm

The hybrid machine learning algorithms HARRT and HARRT+ use machine learning
algorithms to assist their corresponding sampling-based trajectory planning algorithms
ARRT and ARRT+, respectively. The role of a machine learning algorithm in the HARRT
algorithm is to reduce the possible search space for the ARRT algorithm by predicting the
best acceleration profiles and only using them. It affects the probabilistic completeness
of the ARRT algorithm in case a machine learning algorithm predicts wrong classes, i. e.,
wrong longitudinal acceleration profiles. There are traffic-scenarios in which with only a
fixed longitudinal acceleration profile (e. g. strong breaking profile) a safe trajectory can be
found, but if the machine learning algorithm does not predict this profile, a safe trajectory
will not be found by the HARRT algorithm even though a solution exists.

This drawback of the HARRT algorithm, lacking probabilistic completeness, is solved in the
HARRT+ algorithm. The role of a machine learning algorithm in the HARRT+ algorithm
is to find regions in search space where the probability of finding the final solution is
high. Then the HARRT+ algorithm samples in these regions with high density. Thus,
the HARRT+ algorithm uses a combination of biased and random sampling algorithm.
Therefore, it still has the property of probabilistic completeness even with wrong predictions
of template trajectory π̂t. However, the computation time for finding a safe trajectory will
be high when it predicts a wrong cluster combination because of the wrong bias generation.
Even if a right template trajectory is predicted and the final safe trajectory lies on the
boundary of these clusters, it is still difficult for the HARRT+ algorithm to converge. In
such situations as well, it is observed that the HARRT+ algorithm converges slowly.

Another critical factor for the convergence of RRT algorithms, which is not extensively
researched, is the sequence of sampling. There is an inherent bias in the extension of trees
in regions near the states already presented in the tree, which makes it essential how the
tree is grown in initial iterations. A single wrong extension of the tree in the early stage can
have a significant influence on the success of convergence of the algorithm. The HARRT+
algorithm uses biased samples initially as it assumes that the predicted trajectory by the
machine learning algorithm is close to the final solution. With false prediction, there will be
a wrong bias generated, which in turn puts the trajectory planning algorithm at risk. Also,
finding early states of the tree using biased samples at the tale of the predicted trajectory
is equivalent to the extension of trees using samples generated from wrong bias.

The performance of the HARRT+ algorithm mainly depends on the number of clusters
of the longitudinal acceleration and steering wheel angle profiles. With few clusters, the
size of the clusters grows, which in turn reduces the effect of biased sampling as the safe
trajectory could lie anywhere in the predicted cluster, sometimes at the boundary of the
cluster as well. The biased-sampling would be much more effective with smaller clusters
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provided they are correctly predicted. However, with smaller clusters, the number of
clusters increases, which in turn, also increases the number of output labels for machine
learning. This leads to a lower accuracy of the machine learning algorithm. Otherwise,
a more complex machine learning model needs to be designed to attain the same level of
accuracy, which means an increase in the required computational resources.

The original problems associated with randomized sampling-based algorithms, such as the
uncertainty in finding a solution and the lack of repeatability, exist with both the HARRT
and HARRT+ algorithm as both algorithms still have randomness in their nature. Also,
these algorithms give priority to find feasible trajectory planning and perform optimal tra-
jectory planning only if computational resources are available given a feasible trajectory is
already found1. Feasible trajectories are the collision-free trajectories, and the optimal tra-
jectories are the collision-free trajectories with high comfort (e. g. low acceleration values)
criteria. It is especially problematic when the traffic-scenarios are simple where determinis-
tic algorithms can find an optimal trajectory quickly and sampling-based algorithms either
do not converge or find a very complex safe trajectory with harsh interventions even when
they are not necessary. Therefore, there is a need to investigate if random sampling-based
trajectory planning algorithms can be replaced by a deterministic planning algorithm that
can find the safe trajectories that are not just feasible but also optimal.

5.4 Combination of Machine Learning with Deterministic

Algorithms

All the variants of the RRT algorithm described in previous sections of this chapter make
use of the random sampling strategy with a combination of some deterministic sampling
to find safe trajectories in critical traffic-scenarios. They achieve this by sampling and
incrementing the trajectory iteratively, i. e., by finding small parts of trajectories in each
iteration. In a multidimensional continuous state-space and action-space, this is a hard
problem to solve. Therefore machine learning algorithms are designed to assist the algo-
rithms to sample in promising regions. Still, as the search process is iterative, a wrong
step in one iteration may affect the subsequent iteration adversely. Another approach is to
sample the whole trajectory and modify it gradually in iterations to find the final solution.
This is the motivation for the algorithms proposed in this section.

From the explanation of the drawbacks of the HARRT+ algorithm, it is clear that the final
computation time required for trajectory planning with the HARRT+ algorithm strongly
depends on the quality of the predicted reference trajectory, i. e., the closer the predicted
reference trajectory π̂t in distance and shape to π∗ lesser will be the computation time

1Depending on whether the quality of the solution path is considered, the terms feasible and optimal
are used to describe this path. [PCY+16] Feasible trajectory planning refers to the problem of determining
a trajectory that satisfies some given problem constraints without focusing on the quality of the solution.
In contrast, optimal trajectory planning refers to the problem of finding a trajectory that optimizes some
quality criterion subject to given constraints.
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required to find the final trajectory π∗. It is not possible to find a good quality reference
trajectory in all scenarios with the finite number of template trajectories. Ideally, the ma-
chine learning algorithm should be capable of predicting the trajectory as close as possible
to the final solution, which means there should be many, ideally infinite, template trajec-
tories. This will change the output of machine learning algorithm from a finite number of
labels to a real number, i. e., the machine learning task would change from classification to
regression.

The above requirements motivate the need for an algorithm that can sample trajectories
and modify those trajectories iteratively to find a safe trajectory. Therefore, this section
proposes a generative model for trajectory generation using Variational Autoencoder (VAE)
that can generate many reference trajectories. The different dimensions of the latent vector
z in VAE encode interpretable factors of variations in trajectories. Therefore, the generated
trajectories can be modified by changing the values of these latent variables. This trained
VAE on trajectories also generates targets for the machine learning algorithm, i. e., 3D-
ConvNet regressor, which maps the traffic-scenarios to the latent vector z of the VAE.

5.4.1 Generative Model for Trajectories π

In order to train the VAE for trajectories, 60000 different trajectories for time τ1 (=2
seconds) are generated as the training data using the nonlinear two-track vehicle dynamic
model explained in Section 2.1.3. The plot of these trajectories can be seen in the Fig. 5.12.
The initial velocities were changed in the range 20-50 km/hr. The lateral and longitudinal
dynamic intervention over each trajectory is randomly sampled using actuator and stable
actuator profile constraints similarly as described in Section 3.6. These trajectories are
provided as input to the VAE in the form

π = {rxt0
, rxt0+∆t

. . . , rxτ1
, ryt0

, ryt0+∆t
, . . . , ryτ1

} , (5.5)

Figure 5.12: Randomly Sampled Trajectories for Training the VAE.
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where rxti
and ryti

are the coordinates of the center of gravity of the vehicle at time ti.
Fig. 5.13 shows the architecture of the VAE trained on these trajectories. The encoder
qz|x(z|π) maps trajectories to the latent space mean vector zµ and the standard deviation
vector zσ each having a dimension of 2. As per the reparameterization trick, the samples
z are obtained by sampling ϵ from N (0, 1) and performing the operation zµ + ϵzσ. The
decoder fπ|z(π|z) reconstructs the trajectories using samples generated from zµ and zσ.
The root mean square criteria is used for the reconstruction loss. Also, the trajectories are
normalized before the first layer in the encoder and the output of the decoder is denor-
malized and a smoothing with moving average filter is performed to get final trajectories
π̄. All the layers in encoder and decoder of the VAE use the hyperbolic tangent as an
activation function.
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Figure 5.13: VAE Architecture for Trajectories.

5.4.2 3D-ConvNet Regressor

VAE represents the trajectory as a function parameterized by a finite-dimensional latent
vector z and a suitable path is sought by optimizing over this parameter vector using
nonlinear continuous optimization techniques. This method will converge rapidly to locally
optimal solutions. However, it will not find globally optimal solutions unless an appropriate
initial guess is provided.

The task of the 3D-ConvNet is to predict the value of the continuous variable zµ instead
of predicting only finite class labels as in the HARRT+ algorithm. The 3D-ConvNet uses
{M,η} as the input. The architecture of the 3D-ConvNet is the same as the one used for
the HARRT+ algorithm described in Fig. 5.6, except the output size changed to two. The
loss function calculation criterion is also changed from the cross-entropy to the root mean
square error.

The label generation procedure for the 3D-ConvNet regressor is explained in Fig. 5.14. For
each traffic-scenario M,η}, the best trajectory π∗ is found with the ARRT+ algorithm in
the Matlab simulation environment described in Section 2.4. This trajectory is fed to the
encoder qz|x of trained VAE to find a corresponding zµ which is assigned as a target for
that scenario. In total 44692 curved road critical traffic-scenarios with different radius of
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curvatures, number and type of objects are simulated and corresponding targets are found.

{M,η} π∗ zµ
ARRT+ qz|π(z|π)

Figure 5.14: Label Generation using VAE.

The inference procedure for 3D-ConvNet is shown in Fig. 5.15. When a traffic-scenario
{M,η} is encountered, the trained 3D-ConvNet predicts ẑµ. It is directly fed to the
decoder network fπ|z(π|z) of the trained VAE to get the predicted reference trajectory π̂.

{M,η} ẑµ π̂
3D-ConvNet fπ|z(π|z)

Figure 5.15: Inference using VAE.

5.4.3 Generative Algorithm for Trajectory Exploration (GATE)

The trained VAE can generate trajectories by sampling the latent space values and feeding
them to the decoder. Because of the probabilistic nature of VAE, its latent space is contin-
uous unlike in simple autoencoders that use deterministic mapping. This property of VAE
can be used for setting up an optimization procedure to find the optimal latent variable
values z∗, which generates the best trajectory π∗ using the decoder fπ|z(π|z), from the
randomly initialized z. The cost function J is defined as per the application based on crite-
rias such as safety, comfort, etc. As the goal of this work is to find trajectories for collision
avoidance, the area occupied by the EGO vehicle during the whole trajectory should not
intersect with the non-free area, i. e., the area occupied by other road traffic-participants
and the area outside of the road. Simultaneously, the criteria of keeping the distance of
the EGO vehicle to the othe vehicles as large as possible distance is added so that a small
variation in other road participants prediction does not lead to a collision. Therefore, the
optimal z∗ is found such that

z∗ = argmin
z

[J ]

= argmin
z

[∑
t

(Snf (t) ∩ sπ∼Pθ(π|z)(t))− dmin)

]
,

(5.6)

where Snf (t) is the non-free area of the road at time t, i. e., the area outside of the road
and the area within the road occupied by other road participants at time t, sπ∼Pθ(π|z)(t) is
the area occupied by the EGO vehicle at time t along the trajectory π obtained by feeding
z to the decoder fπ|z(π|z) and dmin is the shortest distance between the sπ∼Pθ(π|z)(t) and
Snf (t) over the whole trajectory π in the time interval t = [t0, t0 + τ1]. The first term on
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{M,η} ẑ π̂

argminz J

π̃
3D-ConvNet fπ|z(π|z)

Tune z

Figure 5.16: GATE Algorithm.

the right hand side of Eq. 5.6, is the summation of the intersection of the non-free area
of the road with the EGO vehicle along the trajectory π. The goal is to make this term
zero and increase dmin. The optimization solver used is a Matlab imlementation of the
Nelder-Mead Simplex method [LRWW98].

The final trajectory obtained by this procedure is highly dependent on the initialization of
the latent variable values. With wrong initialization, it may get trapped in a local minima
leading to suboptimal values, which could generate a trajectory with a severe collision.
Therefore, the trained 3D-ConvNet has to predict the initial values of the latent variables
ẑ, to bes already very close to the optimal valuez∗. This whole procedure is shown in
Fig. 5.16 and this algorithm is named as Generative Algorithm for Trajectory Exploration
(GATE).

5.4.4 GATE-ARRT+

Although GATE provides an opportunity to sample trajectories directly, it is not a proba-
bilistically complete algorithm like the RRT algorithm. It is because RRT has randomness
in its nature, while GATE is completely deterministic except the random initialization of
z. It can generate random trajectories by sampling continuously latent values z. However,
this is not sufficient because VAE only learns the approximate training data distribution
and not the true data distribution. The generation capacity of the VAE depends on the
provided training data and the capacity of the model. However, the reference trajectory
generated by GATE can be used to bias the sampling of the ARRT+ algorithm to in-
crease its convergence rate. This combination is named as the GATE-ARRT+ algorithm.
It extracts the waypoints and the acceleration profile from the reference trajectory and
generates biased-samples for both lateral and longitudinal dynamic intervention. It also
uses the same sampling strategy as in the HARRT+ algorithm described in Section 5.3.
As the reference trajectories generated by GATE are in most cases closer to the best tra-
jectories compared to the reference trajectories predicted in the HARRT+ algorithm, the
GATE-ARRT+ algorithm converges usually more rapidly.
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5.4.5 Simulation Results

In order to validate the effectiveness of the proposed vehicle motion planning algorithms,
many different curved-road traffic-scenarios with the different number of objects having
different initial velocities and positions are simulated in the Matlab simulation environ-
ment and safe trajectories with different motion planning algorithms such as ARRT+,
HARRT+, GATE and GATE-ARRT+ are found. The search for a collision-free trajectory
is stopped when a collision-free trajectory is found or when a maximum number of samples
is reached. The maximum number of samples used for the ARRT+ algorithm is set to
2100, as it uses simple random sampling while for the HARRT+ and GATE-HARRT+ 300
samples are used. The number of iterations for the optimization procedure is limited to 10
and 2 with the GATE and GATE-ARRT+ algorithm, respectively. Although the GATE-
ARRT+ algorithm does not necessarily require optimization iterations, they improve the
predicted trajectory and ease the task of the ARRT+ algorithm. The quantitative results
are summarized in Table 5.6. The results show that in scenarios with the fewer objects,
the GATE algorithm is able to find a collision-free trajectory in almost all traffic-scenarios
with the shortest computation time because lots of free space is available. As the number
of objects increases, the free space available decreases, and therefore the GATE algorithm
converges in a lesser number of traffic-scenarios. In such cases, the GATE-ARRT+ algo-
rithm is proven to be more effective. The higher efficiency of the GATE-ARRT+ algorithm
compared to the HARRT+ algorithm is because of the better reference trajectory provided
by the 3D-ConvNet regressor and VAE.

Fig. 5.17a, 5.17b and 5.17c show the safe trajectories planned with GATE-ARRT+,
HARRT+ and GATE in a traffic-scenario where a collision with a pedestrian who is cross-
ing the street is predicted. From these figures, it is clear that the HARRT+ algorithm
required more samples compared to the GATE-ARRT+ algorithm. Also, the final tra-

Table 5.6: Comparison of Vehicle Motion Planning Algorithms.

ARRT+ HARRT+ GATE GATE-ARRT+

# Samples 2100 300 - 300

# Iterations - - 10 2

1-2 Objects
(834 scenarios)

Time (Sec.) 3.33 0.81 0.31 0.45

% Conv. 97.52 96.04 98.92 97.24

3-4 Objects
(1728 scenarios)

Time (Sec.) 3.62 1.08 0.83 0.68

% Conv. 92.99 91.14 72.22 93.17

5-6 Objects
(3625 scenarios)

Time (Sec.) 4.34 1.32 1.15 0.87

% Conv. 89.02 86 57.98 88.02
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jectory (longest black trajectory) found by the GATE-ARRT+ algorithm has a smoother
shape compared to the ones found by HARRT+ and GATE algorithm. This example shows
that a better reference trajectory indeed will lead to a final trajectory with a better quality,
that will be found by the ARRT+ algorithm.

5.4.6 Comparison of Hybrid Machine Learning Algorithms with Rein-
forcement Learning

Reinforcement learning, also an area of machine learning, is about taking suitable actions to
maximize the reward in a particular robot state st. It is employed to find the best possible
behaviour or path it should take in that robot state. Reinforcement learning differs from
the supervised learning in a way that the model is trained with the correct output label
itself, whereas in reinforcement learning, there is no output label, but the agent decides
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Figure 5.17: Trajectory Planning with the GATE-ARRT+, HARRT+ and GATE Algo-
rithms.
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what to do for the given task. In the absence of a training dataset, it learns from its
experience.

The trajectory planning algorithms proposed in this chapter use supervised and unsuper-
vised machine learning algorithms, but the methodology of hybrid machine learning has
also some similarities to reinforcement learning algorithms. Nevertheless, it differs fun-
damentally from reinforcement learning algorithms so that it cannot be categorised as
reinforcement learning. This section explains these similarities and dissimilarities.

The striking common feature between hybrid machine learning algorithms (except GATE)
and reinforcement learning algorithms is that they use the paradigm of ”exploration and
exploitation”. The exploration focuses on new possibilities, whereas exploitation focuses on
old certainties. In general, exploitation is associated with determinism, while exploration is
the randomization. Many reinforcement learning algorithms use ϵ-greedy strategy to find
the optimal trade-off between exploiting and exploring while the hybrid machine learning
algorithms proposed in this work use different sampling strategies based on a combination
of biased and random sampling. The principal of exploring is in both cases a random
choice of an action or a sample. However, there is a fundamental difference in the nature of
exploitation in these two methodologies. The exploitation in reinforcement learning is the
selection of the best possible action in a given state. For the introduced hybrid machine
learning algorithms consist of either sampling close to the predicted solution, as in the
HARRT+ and GATE-ARRT+ algorithm, or picking only a subset of actions like in the
HARRT algorithm.

Most of the literature about the exploration and exploitation trade-off in reinforcement
learning algorithm deals with finding optimal solution. However, the trade-off varies highly
depending on the application. Specifically, for the safe trajectory planning in critical traffic-
scenarios with multiple static and dynamic objects, where each traffic-scenario is different
from one another and the total number of traffic-scenarios is unknown, it is impossible to
find the optimal trade-off that will suit all types of traffic-scenarios. Therefore, the focus of
this work is to use exploration and exploitation differently. The exploitation is the use of
off-line learning from a limited number of traffic-scenarios so that the trajectory planning
algorithms converges rapidly. At the same time, exploration is not about gaining new
knowledge but just exploring new possibilities when the learned rules failed to converge,
e. g., when the traffic-scenario encountered is different from those used when defining off-
line learning rules. Therefore, instead of finding an optimal trade-off between exploration
and exploitation, the proposed hybrid machine learning algorithms define a switch from
exploitation to exploration, i. e., from biased sampling to randomized sampling after a
specified number of iterations/samples if a safe trajectory is not found.

Summary
In the first part of this chapter, a literature survey about machine learning applications
for trajectory planning algorithms is presented. Further, the details of the hybrid machine
learning algorithms, namely HARRT, HARRT+, GATE, GATE-ARRT+, along with sim-
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ulation results, are described. The simulation results show that hybrid machine learning
algorithms are more efficient than their corresponding analytical trajectory planning algo-
rithms without compromising safety. Specifically, the GATE-ARRT+ has shown the best
results in all types of critical traffic-scenarios. Finally, the proposed methodology of hybrid
machine learning algorithms is compared with reinforcement learning algorithms to specify
how the former is different from later.
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Chapter 6

Optimization Methods for Trajectory
Planning Algorithms

The high accuracy of deep neural network algorithms comes at the cost of high computa-
tional complexity. Therefore, computational engines such as GPU, ASIC, FPGA are used
for applications with deep neural network implementations. Therefore, even if the hybrid
machine learning algorithms, such as the HARRT, HARRT+, GATE and GATE-ARRT+
algorithms explained in Chapter 5, reduce the computation time, the total time and mem-
ory requirements are still high for the implementation on an automotive microcontroller.
An efficient embedded implementation of these algorithms is required as the vehicle on-
board microcontroller resources are limited. This chapter proposes machine learning and
analytical approaches for replacing the computationally intensive modules common to all
trajectory planning algorithms proposed in this work. It also presents alternative deep
neural network architectures in order to reduce the computational complexity arising due
to 3D-ConvNets used in all hybrid machine learning algorithms proposed in this work.
These methodologies are exemplarily analysed with the HARRT algorithm, but the same
methods can be used with other algorithms to reduce the required computational resources.

The outline of the chapter is as follows: Section 6.1 presents machine learning algorithms
for replacing the computationally intensive analytical collision checking algorithm while
Section 6.2 describes analytical methods to reduce the required computational resources
by exploiting the design of machine learning and RRT algorithms. Section 6.3 presents the
implementation procedure and measurement results for the HARRT algorithm on various
hardware platforms using the optimization methodologies proposed in Section 6.1 and 6.2.
Finally, Section 6.4 describes alternative machine learning architectures to 3D-ConvNet
and compares them with each other based on the training results in terms of the top-2
accuracy.
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6.1 Machine Learning Algorithms for Collision Checking

The ARRT and ARRT+ algorithms requires a module, which provides information on
whether the vehicle will collide with any of the predictions of other road traffic participants
along the planned trajectory. This module is called continuously with every new EGO
vehicle state s(t) found while growing the tree T .

In order to reduce the time needed for this module, some lazy planning algorithms have
been proposed to delay collision checking until it iss needed [BK00, DSA13, KKY+16].
These algorithm check the collision only once a trajectory connecting the start position
to the goal position is found. Once a collision is detected along the planned trajectory,
the colliding segment is removed and the planning is continued. This methodology of lazy
planning is extended in this work by replacing the computationally intensive modules for
collision checking with machine learning algorithms until a trajectory is planned. Then the
analytical methods are used to check the validity of the planned trajectory.

6.1.1 Machine Learning Based Collision Checking

As explained in Chapter 3, different computationally intensive analytical algorithms such
as collision detection and calculation of the severity of injury, froad and fobj, along with
a vehicle dynamic model are used in each prediction time-step to generate a tree T with
many branches, i. e., many safe trajectories as shown in the Fig. 6.1. As only one safe
trajectory (e. g. red) is selected for the vehicle to follow, the computation time required
for finding other branches is wasted. Also, the number of times the functions froad and fobj

are calculated increases with the number of time steps required to find the final trajectory.
Also, within one call of these function, the collision check is performed for each collision
object and the road boundaries in the EGO surrounding. In summary, the collision check
is performed thousands of times for finding a collision-free trajectory of a few seconds.
Therefore, machine learning algorithms fγ1(x1) 7→ ŷ1 and fγ2(x2) 7→ ŷ2 are proposed
for replacing the functions fobj and froad, respectively. The vectors γ1 and γ2 are the
parameters to learn by minimizing the cross-entropy loss function between the labelled

T

s0(t) s1(t)

s4(t)

s3(t)

s5(t)

s2(t)

s6(t)
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Vehicle Dynamic Model
Collision Detection

Severity of Injury Prediction

3D-ConvNet
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CL-RRT

Figure 6.1: Tree T With Multiple Collsion-Free Trajectories.
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and estimated posterior probabilities of the output. The vectors x1 and x2 are the input
feature vectors for two machine learning algorithms. Although implementing the collision
checks with machine learning algorithms results into a minor reduction in the computation
time in one run, due to the algorithms are called thousands of times for generating the
tree, this results in a significant reduction in the required computation time. Once a safe
trajectory is selected, it is rechecked with analytical algorithms for fobj and froad. This way,
the considerable computation time for analytical algorithms is not wasted on branches of
the tree T , which will not be part of the final selected trajectory.

6.1.2 Feature and Labels for fγ1(x1) and fγ2(x2)
The input features for fγ1(x1) are x1 = [xT

obj, y
T
obj, vr, tobj], where {xobj, yobj} are the x-

and y-coordinates of predictions of the four corners of the collision object in the body
coordinate frame of the EGO vehicle that is in the state s(t), vr is the relative velocity
between the EGO vehicle and the collision object, and tobj is the type of the collision object,
i. e., a pedestrian, bicyclist or vehicle. Here, the position of the EGO vehicle is one of the
positions s(t) along the branches of the tree T whose validity is to be checked. Similarly,
the input features for fγ2(x2) consist of only a fixed number of x- and y-coordinates of
the nearest road outer line points x road,y road from the center of gravity of the vehicle in
the body coordinate frame of the EGO and the EGO velocity v, i. e., x2 = [xT

road, y
T
road, v].

Going outside of the road is considered as colliding with a stationary objects and therefore,
the EGO velocity is considered as the relative collision velocity for calculating the severity
of injury. Fig. 6.2 shows an example of extracted features [xobj, yobj] and [xroad, yroad]. The
outputs y1 and y2 are vectors representing three labels, no collision, predicted nonsevere
collision, and predicted severe collision. When growing a tree T for trajectory planning,
the states for which the predicted outputs of either the function fγ1(x1) and fγ2(x2) are
predicted severe collision are discarded. Otherwise, the states are added to the tree T .
The Matlab neural network toolbox [DB93] is used for training these networks.

xobj

yobj

x

y

(xobj, yobj)

(xroad, yroad)

Figure 6.2: Features for fγ1(x1) and fγ2(x2).

6.1.3 Data Generation

The training samples for fγ1(x1) are generated by randomly sampling different object
locations [xT

obj, y
T
obj] in the body coordinate frame of the EGO vehicle and the relative
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velocity vr. The output labels are found by using the function fobj. The coordinates
[xT

obj, y
T
obj] are randomly sampled such that the center of objects lie only within 10 meters

range from the center of the EGO body coordinate frame as this is a range that is sufficient
to eliminate the need for the collision detection. Similarly, training samples for fγ2(x2) are
generated by using different road infrastructures, i. e., different road structures like curved
roads, straight roads, intersections, etc., EGO velocity v and EGO positions. The labels
for each training sample can be easily evaluated in the simulation.

The machine learning algorithm fγ1(x1) performs the collision detection with each object
in sequence while fγ2(x2) is trained with all types of road infrastructures. Therefore,
they continue to adhere to the HARRT and HARRT+ algorithms principle of using one
algorithm for all types of traffic-scenarios irrespective of the number and type of traffic
participants.

6.1.4 Accuracy for fγ1(x1) and fγ2(x2)

Using the above data generation procedure, 2 million and 1 million training samples are
generated for the machine learning functions fγ1(x1) and fγ2(x2), respectively. For both
algorithms, neural networks with one hidden layer are used for training. 70% of the total
data is used for training and 15% of the data is used for both validation and testing.
The results of training with a different number of neurons in the hidden layer for both
algorithms is shown in Table 6.1.

Table 6.1: Training Results (% accuracy) for fγ1(x1) and fγ2(x2).

fγ1(x1) fγ2(x2)
# of

neurons
Validation

Data
Training
Data

Validation
Data

Training
Data

10 93.3 93.2 97.3 98.7

20 98.2 98.1 99.8 99.7

30 97.7 97.6 99.3 97.3

A neural network with 20 neurons in the hidden layer is selected for implementation as it
gives best results with the validation and training data of both machine learning algorithms
as shown in the confusion matrices in Fig. 6.3 and Fig. 6.4. The class labels 1, 2, 3 in Fig. 6.3
and Fig. 6.4 are for no collision, nonsevere collision, and severe collision, respectively.
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Figure 6.3: Confusion Matrices for Validation and Training Data of fγ1(x1).

Figure 6.4: Confusion Matrices for Validation and Training Data of fγ2(x2)

6.2 Analytical Algorithms for Reducing the Memory

(SRAM)

For safety-critical applications like trajectory planning in complex traffic-scenarios, a dy-
namic memory allocation should be avoided [Hol06], as mentioned in one of the require-
ments for safety-critical application in Section 1.3. The memory required for the 3D-
ConvNets, having an architecture as shown in the Fig. 5.5, will be very high if memory is
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preallocated for the input M, all weights W, and feature maps V in all the convolution
and pooling layers. Also, the processing in the cloud is not desirable due to latency, se-
curity, and communication bandwidth concerns. Therefore, different analytical algorithms
are proposed to reduce the memory requirements for different parts of 3D-ConvNet as well
as the ARRT algorithm. Sections 6.2.1, 6.2.2, 6.2.3 are the methodologies for memory
reduction of 3D-ConvNets and Section 6.2.4 is the methodology for reducing the memory
for generated trees T using the ARRT algorithm.

6.2.1 Iterative ConvNet Features Generation

A 3D-ConvNet architecture comprises of multiple 3D convolutions and 3D pooling layers
generating multiple output feature maps as shown in the Fig. 5.5. In a 3D convolution
layer, the value of the output unit kV

xy at position (x, y) and time t in the kth out of K
output feature maps is obtained by

kV
xyt = σ


kb+

k1−1∑
i=0

k2−1∑
j=0

k3−1∑
n=0

kWijnU
xyt
ijn

 , (6.1)

where, k1, k2, and k3 are the dimensions of the all K kernels kW and Uxyt
ijn is the input at

position (x + i∆x, y + j∆y, t + n∆t). The nonlinear function σ is the ReLU activation
function. Similarly, the value of unit lV

xyt in the lth out of L output feature maps of a 3D
average pooling layer at position (x, y) and time t is obtained by

lP
xyt =

∑k′
1−1

i=0
∑k′

2−1
j=0

∑k′
3−1

n=0 lV
xyt

ijn

k′
1k

′
2k

′
3

, (6.2)

where lV
xyt
ijn is lth out of total L inputs for the pooling layer at position (x + i∆x, y +

j∆y, t + n∆t) and k′
1, k

′
2, and k′

3 are the dimensions of slice of the input over which the
pooling is performed.

Eq. 6.1 shows that for each input for a 3D convolution, the number of output feature maps
is equal to the number of kernels K, while Eq. 6.2 shows that the number of output feature
maps in the pooling layer is equal to the number of input feature maps. As it can be
seen in Fig. 5.5, for a single input M, 8 feature maps are generated in layer C1 using 8
kernels kWC1, k = 1, 2, . . . , 8, followed by a pooling layer P1 which has also 8 output feature
maps. For each output feature map from the P1 layer, further 8 output feature maps are
generated with 8 kernels kWC2, k = 1, 2, . . . , 8, making in total 64 output feature maps for
C2 and also 64 for the P2 layer. Preallocation of memory for all of these feature maps
and kernels will require a huge amount of memory, which is not available in automotive
microcontrollers.

The ConvNet features for the fully connected layer FC are obtained just by the vectorization
of the output feature maps of the layer P2. The Calculation of all the feature maps in all
layers at once for the inference is not necessary. Instead, they can be calculated iteratively
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Figure 6.5: Modified Architecture of 3D-ConvNets

and appended to get the ConvNet Feature for the FC layer. Therefore, buffers BC1, BP 1,
BC2, and BP 2 are created for the layers C1, P1, C2, and P2, respectively. These buffers
designed according to the dimension for a feature map in respective layers. Kernels are
used in sequence to calculate one feature map at the end of the layer P2, so buffers B

kWC1

and B
kWC2 are also defined for the kernels kWC1 and kWC2, respectively. These iteratively

generated output feature maps can be vectorized and appended continuously to get the
ConvNet Features for the FC layer. Fig. 6.5 shows this operational change for calculating
the ConvNet Features in sequential manner with two nested iterations in the red box with
kernels kWC1 and the blue box for kernels kWC2. If parallel processing is used to speed
up the computation of the features, the buffers equal to the number of parallel processors
can be created, which helps to increase the computation speed without assigning memory
to all feature maps.

Table 6.2 shows the difference between the iterative and non-iterative ConvNet Features
generation in terms of the required number of parameters to be stored, and the size of
memory required in the convolution and pooling layers of the 3D-ConvNet.

Table 6.2: Difference Between Non-iterative and Iterative ConvNet Feature Generation

Layer Non-iterative method Iterative method

# Parameters
Memory
(kilobytes)

# Parameters
Memory
(kilobytes)

C1 77760 303.75 9720 37.97

P1 4320 16.88 540 2.11

C2 9216 36 144 0.563

P2 768 3 12 0.047

Total 92064 359.63 10416 40.69

6.2.2 Iterative Convolution of the Input M
As explained in Section 5.3.1, the input M is a sequence of occupancy grids having either
the value 0 or 1 for each cell. Therefore, its data type can be defined as ‘unsigned int’.
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However, the kernels used for the convolution operation have the data type ‘float’ and this
requires the input must also be ‘float’. Even if the input is defined as ‘unsigned int’, the
compiler changes the data type to ‘float’ before performing a convolution operation. As
the input contains 15000 (dimension of 30 × 50 × 10) parameters in total, this results in
a huge memory consumption. As per Eq. 6.1, each unit of a output feature map in the
C1 layer of the 3D-ConvNet is calculated iteratively with a kernel kWC1 convolving over a
part of the input M equal to the dimension of the kernel kWC1. It offers a possibility to
define the input M as ‘unsigned int’ and only copy part of the input into a buffer BM with
equal dimension to the kernel kWC1 with data type ‘float’. Therefore, instead of using
15000 ‘float’ parameters, 15000 ‘unsigned int’ parameters and a buffer BM of dimension
equal to kernel kWC1 with data type ‘float’ are used. This iterative convolution of the
input M, shown in the part of the 3D-ConvNet with the magenta box in Fig. 6.5, results
in a saving of memory equal to 43.66 kilobytes. Apart from this, as there are multiple
repeated convolution operations with the same input patch containing all ones or zeros,
the computation time for convolutions is reduced by reusing these convolution results.

6.2.3 Fully-Connected Layer in Compressed Sparse Column Format

The largest number of parameters of the 3D-ConvNet are in the fully-connected layer FC.
The 768 ConvNet features are generated in sequence due to the use of iterative ConvNet
features generation explained in Section 6.2.1. At every iteration of this procedure, only
12 ConvNet features are generated, which can be appended continuously to the previously
found ConvNet features previously. The weight matrix WF C having the dimension of
22× 769 (16918 parameters) is multiplied with a vector of dimension 769× 1, consisting of
the generated ConvNet features and the EGO velocity, to get a vector of dimension 22× 1
followed by the addition of 22 bias parameters as shown in the Fig. 6.6a. This vectort is
further used as an input for a softmax function to generate 22 class scores. Thus, the total
number of parameters in the FC layer is 16940. Although these parameters are stored in the
FLASH memory of the microcontroller, they are fetched to SRAM during the calculation.
Fetching all 16940 parameters at once requires a lot of memory in SRAM. Therefore, the
multiplication of WF C and ConvNet features is done in a Compressed Sparse Column
(CSC) format [DRM14] as shown in Fig. 6.6b.
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Figure 6.6: Difference Between Normal Fully-Connected Layer and Compressed Sparse
Column Format.

The output of the product is calculated by taking iteratively the parameters in a single
column of WF C at a time in the buffer BWF C

of dimension 22×1 and multiplying it with the
corresponding ConvNet feature which is added to the output continuously to get the class
scores. This part of the 3D-ConvNet architecture is shown as a green box in the Fig. 6.5. It
eliminates the requirement for fetching all 16940 parameters at once but requires memory
equivalent to 22 parameters for the buffer BWF C

and 22 bias parameters saving memory
for 16896 parameters. Also, as a single ConvNet feature is used in each iteration, finding
all 768 ConvNet features at once is not required. Using the iterative ConvNet feature
generation 12 features of the FC layer are iteratively generated as explained in Section
6.2.1. Therefore, the buffer BF C of dimension 12 × 1 is used to store these features. It
also reduces the required number of parameters by 756. Thus, usage of the CSC format
multiplication in the FC layer saves memory equivalent to a total of 17652 parameters
having data type ‘float’, i. e., 68.95 kilobytes.
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6.2.4 Storage of Only One State with Low Severity of Injury

The states in the HARRT algorithm are still added to the tree T even if they are not
collision-free, if the predicted severity of injury at these states is low. It provides an option
of following a trajectory with predicted low severity of a collision, when a collision-free
trajectory is not found at the cost of increasing the number of states to be stored in the
tree, thereby increasing the required SRAM memory. The total number of states in the
tree has to be predefined to preallocate the memory. Storing each state with the predicted
low severity of collision can fill the memory quickly and the algorithm will not be able to
store more collision-free states, even if computation time is available. To avoid this, only
one state with a predicted low severity of the collision is stored. If a new state with even
lower predicted severity of injury is found, then the previously stored state is just replaced.

6.3 Implementation Results in Hardware Platforms

For the implementation of the algorithms, a TMS570LS series Texas Instrument micro-
controller TMS570LS20216, a dSPACE MicroAutobox II and a Raspberry Pi 3 are used.
TMS570LS20216 is an automotive microcontroller certified for the use in IEC 61508 SIL3
safety systems. It has an ARM Cortex-R4F floating-point CPU, which runs with a speed
of 160 MHz and has 2 MB and 160 KB of FLASH and SRAM size, respectively. The small
amount of SRAM available in TMS570LS20216 microcontroller indicates the significance
of the amount of memory reduction obtained by the methodologies described in Section
6.2. The dSPACE MicroAutobox II is a real-time system for performing fast function pro-
totyping. It runs with the speed of 900 MHz and 16 MB RAM while the Raspberry Pi
3 has a frequency 1.2 GHz and 1 GB RAM. The results for the mex-implementation in
Matlab are also presented. The computer used for the mex-implementation measurements
has an Intel Core-i7 processor with 2.8 GHz and 8GB RAM.

The Simulink coder is used to generate the optimized C-code of the Matlab implemen-
tation of the ARRT, HARRT and optimized HARRT with machine learning and analyt-
ical methods proposed in Sections 6.1 and 6.2. This generated code is downloaded to
TMS570LS20216, dSPACE MicroAutobox II, Raspberry Pi 3 and the required amount
of memory (SRAM) and time for execution is measured. The results are summarized in
Tables 6.3 and 6.4.

The results show that the computation time for mex-implementation and dSPACE Mi-
croAutobox is very low, but the computation time for the automotive microcontroller
TMS570LS20216 is still quite high. With parallel processing, many times reductionss is
possible as there is massive scope for parallelization in different parts of the algorithms such
as in predictions of road objects, 3D-ConvNet as well as in the RRT algorithms. Many
approaches are being proposed [PZP17, HZC+17] to make the implementation of convo-
lutional neural networks efficient. Also, another efficient approach [NBS17] with machine
learning methods for prediction of occupancy grids can be used to reduce the computation
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Table 6.3: Required Computational Time in Milliseconds for Trajectory Planning Algo-
rithms.

Method Mex TMS570 MA II Rasp.-Pi

ARRT 28.7410 – 340 800

HARRT 12.5790 – 98 290

+ fγ1(x1) and fγ2(x2) 10.1994 – 47 220

+ Iterative ConvNetFeatures Generation 8.9062 – 36 200

+ Iterative Convolution of the Input M 8.2747 – 19 140

+ FC Layer in CSC Format 8.2747 423 19 140

Table 6.4: Required Computational Memory for Trajectory Planning Algorithms

Method SRAM (KB)

Augmented CL-RRT 374.01

Hybrid Augmented CL-RRT 812.3

+ fγ1(x1) and fγ2(x2) 590.89

+ Iterative ConvNet Features Generation 271.50

+ Iterative Convolution of the Input M 227.84

+ FC Layer in CSC Format 158.893

time.

6.4 Alternative Network Architectures

3D-ConvNet is chosen for extracting features from the input M as it is a suitable model
for extracting the required spatio-temporal features. However, this network requires a high
computational memory. Section 6.1 proposes a few methodologies for reducing the required
computational memory. An alternative approach to reduce the required computational
memory is to choose a different computationally efficient network architecture, which also
learns the spatio-temporal features from the input M.

In 3D ConvNet, the 3D feature maps are generated by using 3D filters, having a smaller
depth dimension than its input depth. These feature maps are not appended like in 2D
ConvNet. In fact, the second convolutional layer performs convolution on each generated
3D feature map individually, as shown in Fig. 5.5. This affects the performance of the net-
work as the spatial feature correlation in different feature maps at a particular time step is
not learned in intermediate layers. Only in the fully-connected layer, all the extracted fea-
tures are combined. However, the fully-connected layer surrenders all the spatio-temporal
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correlation information in the input. Therefore, the used architecture might not be capa-
ble enough and an analysis of other possible architectures is needed. The deep learning
community have proposed many alternative architectures [PC14, LFV+16] for processing
videos. Taking those approaches as motivation, this section proposes few alternative ar-
chitectures that need comparatively low computational resources and do not surrender the
spatio-temporal feature correlation as well.

The recurrent convolutional neural network (Recurrent-CNN) [PC14], as shown in Fig. 6.7,
is a natural selection for learning spatio-temporal features due its suitable architecture. The
weight matrix Wxh represents weights of 2D-ConvNet, which will learn the spatial features
from input occupancy grids while the connection of latent spaces using the weights Whh

will learn the temporal correlation of these spatial features. RNNs share the weights at each
step and the extraction of features from inputs at different time-steps can be parallelized,
which makes them highly computationally efficient. Another advantage for RNNs is that
they do not need a fixed size of the input. As the number of time-steps (10) is small, the
complex LSTM or GRU networks, which eliminate the problem of vanishing and exploding
gradient, are not required.

Gd
t0

(30 × 50)

h0
(16 × 1)

Gd
t1

(30 × 50)

h1
(16 × 1)

Gd
tN

(30 × 50)

hN

(16 × 1)

y
1 × 22

. . .

Wxh Wxh Wxh

Why

Whh Whh Whh

Figure 6.7: Recurrent Neural Network.

With the input data structure M having a fied length of time dimension, it is not necessary
to use RNN as well. An alternative methodology is to extract initially only spatial features
from an individual occupancy grid of M using simple 2D-ConvNet and then combining
those features in a single vector followed by a fully-connected layer that predicts the label.
The weights of 2D-ConvNet can be shared equivalently to the RNN architecture. This is
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Figure 6.8: Autoencoder for Extracting Features z.

achieved by initially training an autoencoder with individual occupancy grids of all data
sample D as input, as shown in Fig. 6.8. The encoder fz|Gd

t
, where t ∈ {t0, . . . , tn} and

d ∈ {1, . . . , D}, is used as a common 2D-ConvNet. The problem with this methodology is
that although a 2D-ConvNet learns the spatial feature correlation, the correlation of the
temporal features is surrendered only in the fully-connected layer. This problem can be
solved by using the 1D-TCN [LFV+16] architecture.

Temporal convolutional neural networks (TCN) is a family of networks for convolutional
sequence prediction. A temporal convolution using 1D filters is applied in [LFV+16] to
capture how the input signals evolve over the course of action for video-based action recog-
nition. Dilated causal convolutions are used in [ODZ+16] for the raw audio generation to
learn long-range temporal dependencies. A convolutional encoder network with soft atten-
tion followed by the LSTM decoder is used in [GAGD17] for language translation. A gated
convolutional network is used for language modeling in [DFAG17]. All these approaches
are for long time series. As the time-steps in the given problem are fixed and short, the
1D-TCN followed by a fully-connected layer is used, as shown in Fig. 6.9.

The weights Whh in RNN represent the same architecture as the encoder fz|Gd
t
. The total

number of learnable parameters (weights and biases) for 1D-TCN architecture is 13992.
Table 6.5 shows the number of weights in each layer of the encoder.

Table 6.5: Learnable Parameters of Encoder fz|Gd
t

or Whh in RNN.

Layer Number of Parameters

C1 80

P1 0

C2 584

P2 0

FC1 13328

Total 13992

Table 6.6 provides the comparison between all the presented networks in this section based
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Figure 6.9: FC and 1D-TCN Architecture Networks.

on the accuracy in terms of the top-2 error and the total number of parameters. The
models were trained on the data generated as described in 5.3.1. For FC, 1D-TCN and
RNN models, the number of parameters is the sum of parameters in the encoder network
and the parameters from the rest of the network. There is no significant difference in the
number of parameters in all networks. However the 1D-TCN network provides the best
accuracy on test data.

Table 6.6: Comparison Between Architectures.

3D-CNN FC 1D-TCN RNN

-top-2 (%) error 9.32 11.36 7.75 9.69

# parameters 17916 13992+3542 13992+2926 13992 + 646
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Summary
In the first part of this chapter, some machine learning and analytical approaches for the re-
duction of computational complexity of the hybrid machine learning algorithms along with
their practical implementation in different embedded hardwares are presented. The second
part of this chapter dealt with the comparison of different machine learning architectures
with 3D-ConvNet based on the accuracy.
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Conclusion

This thesis presents hybrid machine learning methods, which are a combination of machine
learning methods and physical models, for safety-critical application with vehicle trajectory
planning for critical traffic-scenarios as a primary example. The basic idea of the combi-
nation is to predict an approximate solution with machine learning algorithms, which is
used as a reference to find the final solution with a vehicle dynamic model. In the first
part of this thesis, the motivation for vehicle trajectory planning in critical traffic-scenarios
along with the aim and proposed methodology are briefly stated. It also lists the general
requirements for vehicle trajectory planning, considering it as a safety-critical application.
The second part of this thesis deals with dynamic models and sampling-based trajectory
planning algorithms. The dynamic models and controllers for road traffic-participants
are presented in Chapter 2. The validation procedure for vehicle dynamic models in this
chapter shows the nonlinear two-track vehicle dynamic model outputs accurate trajecto-
ries also with harsh control actions. Therefore, this model is chosen to be used in the
sampling-based trajectory planning algorithms, namely Augmented CL-RRT (ARRT) and
Augmented CL-RRT+ (ARRT+), described in Chapter 3. These algorithms are extended
from the already proposed algorithm called CL-RRT in order to make them suitable for
critical traffic-scenarios with multiple static and dynamic objects. These algorithms also
include a methodology for estimating the severity of injury so that the trajectories can be
selected to mitigate a collision in case a collision-free trajectory cannot be found. In the
third part of this thesis, the focus shifts towards machine learning. Chapter 4 illustrates
the basics of machine learning, along with the theory of machine learning algorithms used
in this thesis. Then, different hybrid machine learning algorithms are proposed in Chapter
5. Firstly, it presents the Hybrid Augmented CL-RRT (HARRT) and Hybrid Augmented
CL-RRT+ (HARRT+) algorithms, which use 3D convolutional neural networks to bias
the sampling strategies of ARRT and ARRT+ algorithms, respectively. Secondly, it also
explains the algorithm Generative Algorithm for Trajectory Exploration (GATE), which
is a deterministic optimization-based trajectory planning algorithm in combination with
a generative model for vehicle trajectories. This algorithm is further combined with the
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ARRT+ algorithm and named as GATE-ARRT+. The simulation results with multiple
critical traffic-scenarios show that hybrid machine learning algorithms are more efficient
than their corresponding sampling-based algorithms without compromising safety. In the
final chapter, some machine learning and analytical approaches are described to reduce the
required computational resources for the proposed hybrid machine learning algorithms.
The implementation results in various hardware platforms show the real-time capability of
the proposed algorithms.

7.1 Comparative Analysis of Trajectory Planning Algo-

rithms

All the trajectory planning algorithms proposed in this thesis use different sampling or
planning strategies that might be effective in certain types of traffic-scenarios, but at the
same time, theyy can be adverse in other traffic-scenarios for the convergence of the algo-
rithm. Although the different comparisons using simulation results, presented in Chapter
5, show that generally hybrid machine learning algorithms are efficient compared to their
corresponding model-based approaches, a detailed analysis is needed to understand the
suitability of all these algorithms in different types of traffic-scenarios.

In general, the complexity of the traffic-scenario is positively correlated with the number
of road traffic-participants. Therefore, the number of road traffic-participants is changed
in curved road traffic-scenarios. Many critical curved road traffic-scenarios are simulated
and safe trajectories are found using the ARRT, HARRT, ARRT+, HARRT+, GATE and
GATE-ARRT+ algorithm. The generated results are shown in Tables 7.1, 7.2, 7.3. The
second column in these tables present the ARRT algorithm that uses only a constant veloc-
ity profile, i. e., no longitudinal dynamic intervention. Therefore, this column is marked as
ARRT(0) The third column indicates details of the ARRT algorithm the uses 21 different
predefined acceleration profiles. The limit for the number of samples that can be used for
the ARRT(21) and ARRT+ is set to 2100 while for the ARRT(0), HARRT, HARRT+,
GATE-ARRT+ the limit is 300 samples. These results are generated in the Matlab simu-
lation environment explained in Section 2.4 with the implementation of algorithms without
any computational memory or time optimization approaches described in the Chapter 6 as
the purpose of this analysis is not to measure the final required computation time but only
performing the comparative analysis of different trajectory planning algorithms described
in this work.

The following observations can be made from the simulation results:

� The ARRT(0) algorithm finds a collision-free trajectory in a drastically smaller num-
ber of scenarios compared to other trajectory planning algorithms. The reason for
this ineffectiveness is that many critical traffic-scenarios need a simultaneous lateral
and longitudinal dynamic intervention for the EGO vehicle to avoid the collision.
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Table 7.1: Comparison of Trajectory Planning Algorithms: Curved Road Scenarios with 3
Dynamic Objects (Total Traffic-Scenarios: 738).

ARRT
(0)

ARRT
(21)

HARRT ARRT+ HARRT+ GATE GATE-ARRT+

Collision-free
Trajectory
Found

276 691 671 674 652 712 692

No Safe
Trajectory
Found

174 11 19 12 28 11 18

Average
Time (sec.)

1.1221 6.9251 1.1502 6.8428 1.3782 0.3412 0.4931

Standard
Deviation

0.2823 0.7952 0.3759 0.8123 0.2068 0.0713 0.1482

Worst-Case
Time

2.2798 8.9376 2.9342 9.8984 1.9744 1.1532 1.4223

Table 7.2: Comparison of Trajectory Planning Algorithms: Curved Road Scenarios with 4
Dynamic Objects (Total Traffic-Scenarios: 1047)

ARRT
(0)

ARRT
(21)

HARRT ARRT+ HARRT+ GATE GATE-ARRT+

Collision-free
Trajectory
Found

226 801 772 821 843 734 929

No Safe
Trajectory
Found

771 19 28 27 43 69 25

Average
Time (sec.)

0.9361 6.3662 0.855 6.9589 1.1267 0.8117 0.7103

Standard
Deviation

0.2457 1.4651 0.2552 0.9397 0.3257 0.3721 0.2131

Worst-Case
Time

2.4072 12.4313 3.0185 11.4504 2.0035 1.3724 1.532

� The HARRT and HARRT+ algorithms not only reduce the average execution time
but also the variance of execution time compared to their corresponding model-
based trajectory planning algorithms, which is an essential requirement for random
sampling-based search algorithms as mentioned in Section 1.3.

� The average computation time and its variance for finding safe trajectories with all
trajectory planning algorithms increase with the number of objects.
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Table 7.3: Comparison of Trajectory Planning Algorithms: Curved Road Scenarios with 5
Dynamic Objects (Total Traffic-Scenarios: 4275).

ARRT
(0)

ARRT
(21)

HARRT ARRT+ HARRT+ GATE GATE-ARRT+

Collision-free
Trajectory
Found

1127 3334 3276 3862 3819 2282 3770

No Safe
Trajectory
Found

1771 25 41 69 91 134 38

Average
Time (sec.)

1.3703 7.0826 1.3092 7.3710 1.7773 1.2132 0.9321

Standard
Deviation

0.7144 2.7881 0.8269 2.7577 1.0175 0.3231 0.7341

Worst-Case
Time

2.4564 24.0242 4.4709 24.5066 4.3418 1.6312 3.7213

� With the increase in the number of objects, the available free-space reduces. There-
fore, the ARRT+ algorithm, which has more randomness than the ARRT algorithm,
can find collision-free trajectories in more traffic-scenarios.

� In scenarios where no collision-free trajectory can be found, the deterministic nature
of the ARRT algorithm of using a strong braking acceleration profile is more useful
than the random sampling strategy of the ARRT+ algorithm.

� The GATE algorithm converges rapidly and consistently in traffic-scenarios with few
road traffic-participants as more free-space is available and being a fully deterministic
algorithm, there is virtually no variance in the required computational time.

� The GATE-ARRT+ algorithm, provides the best results in comparison to other hy-
brid machine learning algorithms. Only the GATE algorithm is better with traffic-
scenarios having only three objects.

In summary, this comparative analysis shows that the deterministic algorithms give better
performance in traffic-scenarios with a low number of road traffic-participants. In contrast,
the effectiveness of hybrid machine learning algorithms with sampling-based algorithms
increases with the number of road traffic-participants, i. e., as the complexity of traffic-
scenarios increases. The scenarios in which no safe trajectory can be found, a combination
of deterministic full braking with random sampling for the lateral dynamic intervention
prove to be the best strategy for finding a trajectory with a low severity of injury.
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7.2 Contributions and Future Scope

The main contribution of this work is the methodology of hybrid machine learning algo-
rithms, a combination of machine learning and physical models, for safety-critical appli-
cation. The basic idea behind the combination is to find an approximate solution with
machine learning algorithms, which are used as a reference to find a final solution with
dynamic models. Although the primary application for this method presented is safe
trajectory planning in critical traffic-scenarios, it is also suitable for other safety-critical
applications as well.

Specifically, this work presents the hybrid machine learning algorithms HARRT and
HARRT+ combined with two sampling-based trajectory planning algorithms with vehi-
cle dynamic constraints ARRT and ARRT+, respectively. These algorithms also include
a methodology for estimating the severity of injury that enables choosing a trajectory to
mitigate an unavoidable collision. The work also introduces a hybrid machine learning
algorithm GATE that combines a generative model for trajectories with the determinis-
tic optimization-based algorithm for planning safe trajectories. This algorithm is further
combined with the ARRT+ algorithm and named as GATE-ARRT+. Finally, this work
proposes multiple machine learning algorithms and analytical procedures for the optimiza-
tion of computing resources required by these algorithms so that they can be implemented
in a highly resource-constrained automotive microcontroller and run in real-time.

An exciting field for future work is to adapt the hybrid machine learning approach in a
suitable format for probabilistic planning with a reinforcement learning framework. The
similarity and dissimilarity in the proposed and reinforcement learning algorithms are al-
ready described in Chapter 5. The proposed algorithms make some assumptions, e. g.,
that the modern sensors provide complete information about the vehicle surrounding or
that the single hypothesis prediction for other road traffic-participants. The reinforcement
learning algorithms for solving POMDPs (partially observable Markov decision processes)
with probabilistic predictions of road traffic-participants is an interesting alternative for
the algorithms proposed in this thesis.

This work presents multiple sampling-based algorithms with different sampling strategies.
Although these strategies show positive results, there are still many possibilities available.
In particular, the criteria for defining the ratio of biased and random sampling is still
understudied. This work suggests to increase the percentage of random sampling with the
complexity of the scenario and the complexity of the traffic-scenario is correlated with only
the number of road traffic-participants and road infrastructure. Therefore, a detailed study
to understand the complexity of traffic-scenarios with dynamic objects is necessary. Also,
the convergence rate of hybrid machine learning algorithms depends on the quality of the
solution provided by machine learning algorithms as a reference. If the traffic-scenario is
very similar to the traffic-scenario in the training data for the machine learning algorithm,
then it will provide a better solution, which means a biased sampling should be preferred
and vice versa. Therefore, a traffic-scenario comparison methodology is another criteria
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for defining the ratio of biased and random sampling. Apart from this, adaptive sampling
strategies are scarce in trajectory planning algorithms, which makes it a very interesting
field for future work.

This thesis proposes hybrid machine learning methods only for a specific application, i. e.,
safe trajectory planning in critical-traffic scenarios. However, these methods can be eas-
ily modified for trajectory planning in other domains such as medical robots, industrial
automation, etc. The basic idea of the combination of machine learning algorithms for
finding an initial solution and then converging to the final solution with physical models is
applicable for any field with two possible aims: safety and low computational resources.
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Appendix

8.1 Technical Specifications for Audi A6 Avant

Table 8.1: Audi A6 Avant Technical Specifications.

Engine

Capacity 2967 cm3

Maximum Power 230 kW

Maximum Torque 2800 Nm

Highest Speed 250 km/h

Acceleration 0-100 km/h 5.4 s

Weight

Net Weight (According to Datasheet) 1978

Total Weight (with Full Tank) 2485

Weight Measurements While Testing

Front Right 600 kg

Front Left 568 kg

Rear Left 599 kg

Rear Right 545 kg
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a) Side View

b) Top View

c) Front and Rear View

Figure 8.1: The Dimension of Audi A6 Avant from Different Views
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8.2 Backpropagation in Neural Networks

This section explains the theory of backpropagation, which is the way of computing gra-
dients through recursive application of the chain rule in neural networks. The goal of
backpropagation is to compute the partial derivatives of the cost function E with respect
to any weight (or bias) in the neural network. In other words, backpropagation is about
understanding how changing the weights and biases in a network changes the cost function.
This is important to understand, and effectively, to develop and design neural networks.
This section describes some basic terms necessary to understand the backpropagation algo-
rithm, followed by the backpropagation procedure for simple feedforward neural networks,
convolutional neural networks and recurrent neural networks.

8.2.1 Interpretation of the Derivative

The derivative of a function with a real variable measures the sensitivity of its output value
with respect to its input values, i. e., it defines how much the output value will change with
an infinitesimal change in the input. As an example, the derivative of the function f(x) is
computed as

df(x)
dx

= lim
h→0

f(x+ h)− f(x)
h

. (8.1)

There can be multiple parameters, instead of only one, on which function output value
depends. The concept of partial derivatives is used in such cases. A partial derivative of
a function of several variables is its derivative with respect to one of those variables, with
the other variables held constant. For example, the partial derivatives ∂f

∂x1
and ∂f

∂x2
for a

function f(x1, x2) = x1x2 with respect to variables x1 and x2 are

∂f

∂x1
= x2,

∂f

∂x2
= x1. (8.2)

The vector of these partial derivatives is called the gradient of function f(x1, x2), denoted
as ∇f(x1, x2) and expressed as

∇f(x1, x2) =
[
∂f

∂x1
,
∂f

∂x2

]
= [x2, x1]. (8.3)

8.2.2 Chain Rule

A function can be composed of further multiple functions and not just variables. Such a
function is called as composite function. It is indicated as f(g(x)), where f is a function of
the function g(x). The chain rule describes the derivative of such composite functions as

d

dx
[f(g(x))] = f ′(g(x))g′(x). (8.4)

This can also be written as
df

dx
= df

dg

dg

dx
. (8.5)
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In order to understand the practical use of chain rule, consider a simple composite function
f(x1, x2, x3) = (x1+x2)x3. By defining a new function g = (x1+x2), the function f becomes
f = gx3. The partial derivative of the function f with respect to variables x1 using the
chain rule is x3 as df

dg
= x3 and dg

dx1
= 1. Similarly, the partial derivatives of function f

with respect to variables x2 and x3 can be calculated as x3 and (x1 + x2). Therefore, the
gradient of function f is ∇f = [x3, x3, x1 + x2]. This methodology is used to calculate
the derivative of any composite functions by breaking them into simpler functions whose
derivative is easy to calculate or already known.

8.2.3 Vector Function Derivative

In order to understand the vector function derivative, consider the simple equation

f = W x, (8.6)

where f ∈ RM , W ∈ RM×N and x ∈ RN . The derivative of f with respect to x is a
M ×N Jacobian matrix

∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xN

...
. . .

...
∂fM

∂x1
. . . ∂fM

∂xN

 . (8.7)

The individual ith element fi in the vector f can be expressed as

fi =
N∑

n=1
Wi,nxj,

= Wi,1x1 +Wi,2x2 + . . .+Wi,NxN .

(8.8)

The partial derivative of the ith element of f with respect to the jth element in x is
expressed as

∂fi

∂xj

= 0 + 0 + . . .+Wi,j + . . .+ 0 = Wi,j. (8.9)

Using the above expression, all the elements in the Jacobian matrix in Eq. 8.7 can be
replaced and the derivative of f with respect to x becomes

∂f

∂x
=


W1,1 . . . W1,N

...
. . .

...
WM,1 . . . WM,N

 = W . (8.10)

8.2.4 Backpropagation in Feedforward Neural Networks

The feedforward neural network is also a composite function comprised of many functions
represented by layers and activation functions. Therefore, it is possible to apply the chain
rule to neural networks as long as individual operations in the network are derivable. The
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general function representing a layer in neural network having total L layers as per Eq, 4.20
is

f l = σl(W lf l−1 + bl), (8.11)

where W l is the weighted connection between the lth and (l − 1)th layer, bl is the vec-
tor of bias parameters in the lth layer and σl is the nonlinear activation function. The
intermediate quantity (W lf l−1 + bl) calculated for the calculation of f l, is named as zl:

zl = W lf l−1 + bl. (8.12)

Therefore, the Eq. 8.11 can also be written as

f l = σl(zl). (8.13)

In order to compute these partial derivatives, an intermediate quantity, δl
j, which is called

as the neuron error 1 in the jth neuron of lth layer, is first calculated. This is defined as

δl
j = ∂E

∂zl
j

. (8.14)

This expression indicates how a small change in zl
j would affect the cost function E. If

∂E
∂zl

j
is high, then the cost function can be reduced by choosing ∂zl

j such that the sign of

∂E
∂zl

j
is changed. By contrast, if ∂E

∂zl
j

has a value close to zero, the neuron is already near-

optimal state and it cannot contribute any more in decreasing the cost function. Thus, the
expression δl

j is intuitively a measure of the error in the neuron. Therefore, the term δl
j is

defined as the neuron error.

To reiterate, the aim of the backpropagation procedure is to compute partial derivatives
∂E

∂W l
j,k

and ∂E
∂bl

j
for the weights and biases in all l = 1, 2, . . . , L layers. The index j and k here

denote the number of the neuron in lth and (l − 1)th layer to which the respective weight
and bias parameters are associated. The steps in backpropagation are as follows:

� Set the input x as the first activation f 1.

� The feedforward computation of the network for each layer l = 2, 3, . . . , L, i. e.,
compute Eq. 8.12 and Eq. 8.13.

� Calculate output neuron error δL.

� Backpropagate neuron error δl for each layer l = L− 1, L− 2, . . . , 2.

� Calculate the gradients ∂E
∂W l

j,k

and ∂E
∂bl

j

1The term error here has quite different meaning than its meaning in the classification tasks which is
classification failure rate.
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After performing the feedforward computation, the next step is the computation of output
neuron error δL. According to the Eq. 8.14 , the jth component of the neuron error in the
output layer, δL, is given as

δL
j = ∂E

∂zL
j

. (8.15)

Applying the chain rule, the equation changes to

δL
j =

∑
k

∂E

∂fL
k

∂fL
k

∂zL
j

, (8.16)

where the sum is over all neurons in the output layer.
∂fL

k

∂zL
j

is zero for all k ̸= j. Therefore

the Eq. 8.16 simplifies to

δL
j = ∂E

∂fL
j

∂fL
j

∂zL
j

. (8.17)

From Eq. 8.13, the second term on the right side in the above equation can be replaced by
σ′(zL

j ) and the equation becomes

δL
j = ∂E

∂fL
j

σ′(zL
j ). (8.18)

The neuron error can be written in matrix form as

δL = ∇fE ⊙ σ′(zL). (8.19)

Often, the error function used is the cross-entropy loss function

E = −
∑

k

fL
k log f̂L

k , (8.20)

where fL
k and f̂L

k are target and predicted labels. Therefore, Eq. 8.16 can be written as

δL
j = −

∑
k

fL
k

∂ log f̂L
k

∂f̂L
k

∂f̂L
k

∂zL
j

= −
∑

k

fL
k

f̂L
k

∂f̂L
k

∂zL
j

(8.21)

The function f̂L
k is often the softmax function. Therefore, the term

∂f̂L
k

∂zL
j

is given as

∂f̂L
k

∂zL
j

=

−f̂L
k f̂

L
j , k ̸= j,

f̂L
k (1− f̂L

k ), k = j.
(8.22)
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Putting Eq. 8.21 and Eq. 8.22 together, we get

δL
j = −

fL
j

f̂L
j

f̂L
j (1− f̂L

j ) +
∑
k ̸=l

(−f
L
k

f̂L
k

)(−f̂L
k f̂

L
j )

= −fL
j + fL

j f̂
L
j +

∑
k ̸=l

f̂L
k f̂

L
j

= −fL
j + f̂L

j

∑
k

fL
k

(8.23)

As fL
k , the target label, is defined as one-hot vector, then the sum just equals to 1 and we

get a simple expression for the output neuron error as

δL
j = f̂L

j − fL
j . (8.24)

The next step is the core of the backpropagation algorithm in which the neuron error
δL is backpropagated to previous layers, i. e., the calculation of neuron errors δl

j for l =
(L− 1), (L− 2), . . . , 2. In general, the neuron error is backpropagated stepwise from lth to

(l − 1)th layer. Therefore, the Eq. 8.14 is rewritten in terms of δ
(l+1)
k using chain rule such

that

δl
k =

∑
k

∂E

∂z
(l+1)
k

∂z
(l+1)
k

∂zL
j

(8.25)

The first term on the right side in the above equation is δ
(l+1)
k . Substituting this and the

expression for z
(l+1)
k from Eq. 8.12 and 8.13., the equation changes to

δl
k =

∑
k

∂(∑j W
(l+1)
j,k σ(zl

j))
∂zl

j

δ
(l+1)
k

=
∑

k

W
(l+1)
j,k σ′(zl

j)δ
(l+1)
k .

(8.26)

This can be written in matrix form as

δl = (W l+1T
δ

(l+1)
k )⊙ σ′(zl). (8.27)

Once the neuron error is backpropagated till the first layer of the network, the next step
is to calculate the gradients ∂E

∂W l
j,k

and ∂E
∂bl

j
again using the chain rule. The expression for

∂E
∂W l

j,k

with the chain rule is given as

∂E

∂W l
j,k

= ∂E

∂zl
j

∂zl
j

∂W l
j,k

. (8.28)

The first term on the right side of the above equation is the neuron error δl
j. Substituting

this and the expression for zl
j from Eq. 8.12 the equation becomes

∂E

∂W l
j,k

= δl
j

∂(W l
j,kf

(l−1)
k ) + bl

j

∂W l
j,k

= δl
jf

(l−1)
k .

(8.29)
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Basically, this equation suggests that the gradient of the weight is dependent on the activa-
tion of input neuron f

(l−1)
k and the output neuron error δl

j. The consequence of this is that

if the input activation is small, f
(l−1)
k ≈ 0, then the gradient of the weight is also small.

As a consequence of this the weight changes slowly during the gradient descent procedure
which means weight outputs from low activations learn slowly. In similar way, the gradient
for bias can be expressed using the chain rule as

∂E

∂bl
j

= δl
j. (8.30)

8.2.5 Backpropagation in Convolutional Neural Networks

The convolutional neural network (ConvNet) consist of multiple convolution, pooling and
fully connected layers. The backpropagation algorithm for fully connected layer is already
described in the previous section. This section explains the backpropagation algorithm for
convolution and pooling operation.

Convolution Layer

The equation for lth layer out of L layers in ConvNet, which involves convolution operation,
as per in Eq. 4.29 is

V l
xy = σ

bl +
k1−1∑
i=0

k2−1∑
j=0

WijV
l−1

x+i,y+j

 . (8.31)

The intermediate quantity

Z l
xy = bl +

k1−1∑
i=0

k2−1∑
j=0

W l
ijV

l−1
x+i,y+j (8.32)

is defined so that

V l
xy = σ(Z l

xy). (8.33)

Again, the aim of the backpropagation procedure is to find the partial derivatives ∂E
∂W l

j,k

and ∂E
∂bl

j
. The output neuron error δL is calculated similary as in the feedforward neural

network. This error is backpropagated to previous layers. This backpropagated error δl
x,y

is a measure of how the change in pixel Z l
x,y affects the loss function E. Therefore, it is

expressed as

δl
x,y = ∂E

∂Z l
x,y

. (8.34)

Unlike feedforward neural networks, ConvNets have sparse connectivity. Therefore, the
region affected by pixel Z l

x,y in the next layer (l + 1) is bounded by the region of V l+1

having the top left corner pixel and bottom right corner pixel at index (x−k1 +1, y−k2 +1)

145



8.2. Backpropagation in Neural Networks

and (x, y), respectively and denoted as Q. These pixels can also be defined A REGION
using chain rule and sums,

∂E

∂Z l
x,y

=
k1−1∑
i=0

k2−1∑
j=0

∂E

∂Z l+1
x−i,y−j

∂Z l+1
x−i,y−j

∂Z l
x,y

=
k1−1∑
i=0

k2−1∑
j=0

δl+1
x−i,y−j

∂Z l+1
x−i,y−j

∂Z l
x,y

.

(8.35)

The ranges for summation iterators are 0 ⩽ i ⩽ k1 − 1 and 0 ⩽ j ⩽ k2 − 1 and the height
and width of the region Q is defined as x − i and y − j. The second term in Eq 8.35 can
be expanded using the expression in Eq. 8.32

∂Z l+1
x−i,y−j

∂Z l
x,y

= ∂

∂Z l
x,y

bl+1 +
k1−1∑
i′=0

k2−1∑
j′=0

W l+1
i′j′ V l

x−i+i′,y−j+j′


= ∂

∂Z l
x,y

bl+1 +
k1−1∑
i′=0

k2−1∑
j′=0

W l+1
i′j′ σ

(
Z l

x−i+i′,y−j+j′

)
= ∂

∂Z l
x,y

(
bl+1 +W l+1

i′j′ σ
(
Z l

x−i+0,y−j+0

)
+ . . .+W l+1

i′j′ σ
(
Z l

x,y

)
+ . . .

)
= ∂

∂Z l
x,y

(
W l+1

i′j′ σ
(
Z l

x,y

))
= W l+1

ij

∂

∂Z l
x,y

(
σ
(
Z l

x,y

))
= W l+1

ij σ′
(
Z l

x,y

)

(8.36)

Substituting the above expression in Eq. 8.35

∂E

∂Z l
x,y

=
k1−1∑
i=0

k2−1∑
j=0

δl+1
x−i,y−jW

l+1
ij σ′

(
Z l

x,y

)

= rot1800

k1−1∑
i=0

k2−1∑
j=0

δl+1
x+i,y+jW

l+1
ij

σ′
(
Z l

x,y

)
=
(
δl+1

x,y ∗ rot1800(W l+1
)
σ′
(
Z l

x,y

)
.

(8.37)

The convolution operation between input of size v1× v2 and kernel of size k1×k2 produces
an output of size (v1 − k1 + 1) × (v2 − k2 + 1). The gradients for individual weight W l

x,y

can be obtained by applying the chain rule in the following way:

∂E

∂W l
x,y

=
v1−k1∑

i=0

v2−k2∑
j=0

∂E

∂Z l
i,j

∂Z l
i,j

∂W l
x,y

=
v1−k1∑

i=0

v2−k2∑
j=0

δl
i,j

∂Z l
i,j

∂W l
x,y

.

(8.38)
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The second term on the right hand side of the above equation can be expanded by substi-
tuting Eq. 8.32 such that

∂Z l
i,j

∂W l
x,y

= ∂

∂W l
x,y

bl +
k1−1∑
i=0

k2−1∑
j=0

W l
x,yV

l−1
i+x,j+y


= ∂

∂W l
x,y

(
bl +W l

0,0V
l−1

i+0,j+0 + . . .+W l
x,yV

l−1
i+x,j+y + . . .

)
= 0 + . . .+ ∂

∂W l
x,y

(
W l

x,yV
l−1

i+x,j+y

)
+ . . .

= V l−1
i+x,j+y.

(8.39)

Combining Eq. 8.38 and Eq. 8.39, the gradient ∂E
∂W l

x,y
is given as

∂E

∂W l
x,y

=
v1−k1∑

i=0

v2−k2∑
j=0

δl
i,jV

l−1
i+x,j+y

= δl
i,j ∗ V l−1

x,y .

(8.40)

By performing similar computations, the gradient ∂E
∂bl is computed as

∂E

∂bl
=

v1−k1∑
i=0

v2−k2∑
j=0

δl
i,j. (8.41)

Pooling Layer

Although there are no learning parameters in a pooling layer, the error need to be back-
propagated through this layer as well so that the error for previous convolutional layers
can be calculated. In general, a pooling layer converts a block of size k′

1 × k′
2 into a single

unit from which the error is also backpropagated. The equations for max-pooling and
average-pooling operations are rewritten as

V l+1
xy = max(V l

x:x+k′
1,y:y+k′

2
), (8.42)

V l+1
xy =

∑k′
1−1

i=0
∑k′

2−1
j=0 V l

x+i,y+j

k′
1k

′
2

, (8.43)

respectively. The term V l
x:x+k′

1,y:y+k′
2

in the Eq. 8.42 represents the array with elements in

the block of feature map V l with corners x, x + k′
1, y, y + k2. In case of max-pooling, the

error δl+1
x,y in the unit V l+1

x,y is completely assigned to the maximum element from the block
V l

x:x+k′
1,y:y+k′

2
as other units did not contribute anything to it. All other units are assigned

zero error. Therefore, the index of the maximum unit need to be recorded during the

147



8.2. Backpropagation in Neural Networks

forward propagation. This error mathematically is expressed as

∂E

∂V l
x,y

= ∂E

∂V l+1
x,y

∂V l+1
x,y

∂V l
i,j

= δl+1
x,y

∂V l+1
x,y

∂V l
i,j

.

(8.44)

The second term on right hand side of the above equation is calculated using the following
relationship

∂V l+1
x,y

∂V l
i,j

=

1, V l
i,j = max(V l

x+0,y+0, . . . , V
l

x+k1,y+k2),
0, otherwise.

(8.45)

On the other hand, the error δl+1
x,y in the unit V l+1

x,y is multiplied with 1
k′

1k′
2

and assigned to

the whole block responsible for its calculation during forward propagation.
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Nomenclature

B body coordinate frame

C center of the vehicle

D dimensionality of the x

DKL Kullback-Leiber Divergence

G global coordinate frame

I moment of inertia

K the total number of classes

L angular momentum

L total number of longitudinal acceleration profiles

N number of samples in the training dataset D

S a two dimension state-space

Sfree part of the state-space where the vehicle is free to move

Sobs part of state-space occupied by the static and dynamic road traffic-participants

∆t time interval for which the the tree is is extended in one iteration

αM hyperparameter for stochastic gradient descent with momentum

αij tire slip angle for the ijth tire

αROC scaling factor for ROC analysis

β sideslip angle
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Nomenclature

F force

M moment

W weights of the neural network

W l weights of the lth layer of neural network

η EGO vehicle physical parameters

a acceleration

r position vector

s vehicle state

sgoal goal region for the safe trajectory

sinit initial state of the vehicle for the safe trajectory planning algorithm

snear the nearest state in the tree from the sample srand

srand the random sample

u control input to the the vehicle

v velocity

x realization of x

ω angular velocity

θ parameters of machine learning algorithm

θML maximum likelihood estimation for parameters θ

r the reference input to the CL-RRT algorithm

x random variable representing the feature vector

ax longtudinal acceleration

δ steering angle

δij wheel angle for theijth tire
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Nomenclature

ψ̇ yaw rate

ℓ wheel-base

ℓf distance between the center of gravity and front axle of the vehicle

ℓr distance between the center of gravity and rear axle of the vehicle

ϵk learning rate

λ type of acceleration (positive, negative, zero or constant)

M the stack of predicted occupancy grids

B{.} buffer memory allocated for {.}

D training dataset

E prediction risk

Eb bias error

Ev variance error

Eemp empirical prediction risk

Gt the predicted occupancy grid at time t

L(., .) loss function

T the tree generated with RRT algorithm

U uniform distribution

Iobj indicator function for detecting the collision with other road traffic-participants

Iroad indicator function for detecting if the vehicle state is out of the road

D random variable for the training dataset

U total potential

Uatt attractive potential

Urep repulsive potential
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Nomenclature

y random variable representing the output label

µ friction coefficient

∇θ gradient of parameters θ

ψ yaw angle of the vehicle

σ activation function in the neural network

τ total time interval for which the safe trajectory is planned

τ1 time interval for which the RRT algorithm plans the trajectory

v magnitude of the velocity vector v

ck the kth class

cℓ, bℓ, cs, bs constant tire parameters for the magic tire formula

g acceleration due to gravity

m mass

p linearmomentum

pdata data distribution

sℓ tire longitudinal slip

slij lateral slip for theijth tire

slij longitudinal slip for theijth tire

ss tire lateral slip

t time

t0 initial time-step from which the safe trajectory for the vehicle is planned

tc time duration after t0 at which the collision is predicted

w track-width

y realization of y
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[BBS13] M. Brunner, B. Brüggemann, and D. Schulz. Hierarchical rough terrain mo-
tion planning using an optimal sampling-based method. In 2013 IEEE In-
ternational Conference on Robotics and Automation, pages 5539–5544, May
2013.

[BBSL94] Xuan-Nam Bui, J. . Boissonnat, P. Soueres, and J. . Laumond. Shortest path
synthesis for dubins non-holonomic robot. In Proceedings of the 1994 IEEE
International Conference on Robotics and Automation, pages 2–7 vol.1, May
1994.

[BIS09] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA Urban Chal-
lenge: Autonomous Vehicles in City Traffic. Springer Publishing Company,
Incorporated, 1st edition, 2009.

162

http://www.songho.ca/dsp/convolution/convolution.html
http://www.songho.ca/dsp/convolution/convolution.html


Bibliography

[BK00] R. Bohlin and L. E. Kavraki. Path planning using lazy prm. In Proceed-
ings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol-
ume 1, pages 521–528 vol.1, April 2000.

[Bot17] Michael Botsch. Lecture notes to the lecture ”integrated safety and assistance
systems”, 2017.

[BV03] James Bruce and Manuela M. Veloso. Real-time randomized path planning
for robot navigation. In Gal A. Kaminka, Pedro U. Lima, and Raúl Rojas,
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