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Abstract

Describing the serial, cross-serial and cross-sectional (conditional) dependence is an

important task in the analysis of multivariate time series. While the classical vector

autoregressive (VAR) model only captures linear dependence, copula functions, intro-

duced by Sklar (1959) enable us to describe the dependence more flexibly. For high

dimensional data, one often uses pair-copula constructions, where the joint copula

density is decomposed using only bivariate copulas, for a more flexible description.

In the literature there are mainly three copula time series models using regular vines

in combination with pair-copula constructions. Regular vines are collections of trees,

enabling us to build a plan for the pair-copula constructions. The two most common

examples are D-vines (each tree is a path) and C-vines (each tree is a star). While

the models of Smith (2015) and Beare and Seo (2015) use D-vines to capture the

cross-sectional dependence and only deviate in the cross-serial connection, the model

developed by Brechmann and Czado (2015) uses a cross-sectional C-vine. A conve-

nient way to store all informations of the copula models (vine structure, copula families

and parameters) is given by the regular vine matrices introduced by Dissman et al. (2012).

In this thesis, we generalise those approaches to the so called R(egular)-T(emporal)-

vine model. On basis of the M-vine model (Beare and Seo (2015)) we will not only

allow for arbitrary regular vines for the cross-sectional dependence structure, but

also for different edges connecting the cross-sectional structures at each time step.

We will analyse the influence on the overall vine structure and come up with an

algorithm yielding the R-vine matrix representation of our R-T-Vine model. Further,

we will show that stationarity as well as the Markov property can easily be imposed to

the new model by constraining the pair-copula models at some edges in our vine structure.

In the empirical part of the master thesis, we will illustrate our model at work.

We consider a data set consisting of monthly log-returns of five selected stock indices. We

will see a clear out-performance of the R-T-vine model versus the classical M-vine model.

Finally, we use this estimated R-T-Vine model for prediction of monthly log-returns and

compare the outcome with the classical M-vine.



Abstract

Eine wichtige Aufgabe in der Analyse multivariater Zeitreihen ist die Beschreibung

der seriellen, seriell übergreifenden und der sektionalen (bedingten) Abhängigkeiten.

Während das klassische autoregressive Vektormodell (VAR) nur die lineare Abhängigkeit

erfasst, ermöglichen die von Sklar (1959) eingeführten Copulafunktionen eine bessere

Beschreibung der Abhängigkeiten. Für eine flexibelere Darstellung hochdimensionaler

Daten werden häufig Paar-Copula Konstruktionen verwendet, bei der die Dichte der

gemeinsamen Copula nur mit Hilfen von bivariaten Copulaen dargestellt wird. In

der Literatur gibt es im Wesentlichen drei Copula-Zeitreihenmodelle, die reguläre

Vine-Strukturen in Kombination mit Paar-Copula Konstruktionen verwenden. Reguläre

Vines sind Sammlungen von Bäumen und können zur Erstellung eines Plans für die

Paar-Copula Konstruktionen verwendet werden. Die bekanntesten Vine-Strukturen sind

D-Vines (jeder Baum ist ein Pfad) und C-Vines (jeder Baum ist ein Stern). Während

die Modelle von Smith (2015) und Beare und Seo (2015) D-Vines verwenden, um die

sektionale Abhängigkeit zu erfassen und nur in den seriell übergreifenden Verbindung

voneinander abweichen, verwendet das von Brechmann und Czado (2015) entwickelte

Model C-Vines. Eine Möglichkeit alle Informationen von Copula-Modellen (Vine-

Strukturen, Copula-Familien und -Parameter) zu speichern, bietet die von Dissman et

al. (2012) eingeführte reguläre Vine-Matrix.

In dieser Arbeit verallgemeinern wir die Ansätze auf das sogenannte R(egular)-

T(emporal)-Vine-Modell. Auf der Grundlage des M-Vine-Modells (Beare und Seo

(2015)) berücksichtigen wir nicht nur jeden beliebigen regulären Vine für die sektionale

Abhängigkeitsstruktur, sondern auch unterschiedliche Kanten, die diese Strukturen in

den Zeitschritten verbinden. Wir werden den Einfluss auf die Gesamtstruktur des Vines

auswerten und einen Algorithmus entwickeln, der die R-Vine-Matrixdarstellung unseres

R-T-Vine-Modells liefert. Außerdem zeigen wir, dass Stationarität sowie die Markov-

Eigenschaft im neuen Modell einfach umzusetzen sind, indem wir die Paar-Copulae

Modelle für einige Kanten in unserer Vine-Struktur beschränken.

Im empirischen Teil dieser Arbeit wenden wir unser Model auf einen Datensatz an, der aus

monatlichen Log-Returns von fünf ausgewählten Aktienindizes besteht. Gegenüber dem

klassischen M-Vine-Modell werden wir eine deutliche Outperformance sehen. Schließlich

verwenden wir das geschätzte R-T-Vine-Modell zur Vorhersage und vergleichen das

Ergebnis mit dem des klassischen M-Vines.



Contents

1 Introduction 2

2 Mathematical Preliminaries 4

2.1 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Classical Time Series Models . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Introduction to Copulas . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Copula Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Dependence Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Linear Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Kendall’s τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Vine Copula Specification 19

3.1 Regular Vines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Pair Copula Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 General Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 R-Vine Pair Copula Construction . . . . . . . . . . . . . . . . . . . 25

3.3 Matrix Notation of Regular Vines . . . . . . . . . . . . . . . . . . . . . . . 27

4 R-Vine Matrices for Time Series 30

4.1 Introduction into Regular Vine Models for Multivariate Time Series . . . . 30

4.2 Cross-Sectional D-Vine Structure . . . . . . . . . . . . . . . . . . . . . . . 33



CONTENTS i

4.2.1 Classical M-Vine Approach . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Comparison with D-Vine Approach . . . . . . . . . . . . . . . . . . 37

4.3 Cross-Sectional C-Vine Structure . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 COPAR Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Generalised M-Vine Approach for Cross-Sectional C-Vine . . . . . . 42

4.3.3 Deep-Dive Differences COPAR and (Generalised) M-Vine . . . . . . 45

4.4 More General Cross-Sectional R-Vine Structure . . . . . . . . . . . . . . . 50

4.5 Summary and Algorithm for Generalised M-Vine . . . . . . . . . . . . . . 54

5 Generalised M-Vine 58

5.1 Formal Definition of Generalised M-Vines . . . . . . . . . . . . . . . . . . . 58

5.2 Central Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Generalised Temporal Connection 66

6.1 Changing the Temporal Out-Vertex . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Cross-Sectional D-Vine Structure . . . . . . . . . . . . . . . . . . . 67

6.1.2 Cross-Sectional C-Vine Structure . . . . . . . . . . . . . . . . . . . 71

6.1.3 More General Cross-Sectional R-Vine Structure and Tree Building . 74

6.2 Changing the Temporal In-Vertex . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 General Influence on Matrix Representation . . . . . . . . . . . . . 77

6.2.2 Example: General Regular Vine Structure . . . . . . . . . . . . . . 77

6.2.3 Explanation via Tree Building . . . . . . . . . . . . . . . . . . . . . 78

6.3 Changing the Connecting Edges . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Summary and Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4.1 Influence of Changing Connecting Edges on Generalised M-Vines . 84

6.4.2 Generalisation of the Algorithm . . . . . . . . . . . . . . . . . . . . 86

7 R-T-Vine Copula Specification 89

7.1 Respective Copula Vine Specification . . . . . . . . . . . . . . . . . . . . . 89

7.2 Reducing Complexity of the Copula Matrix . . . . . . . . . . . . . . . . . 90



CONTENTS 1

7.2.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.2 Autoregressive Order p . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.3 Example Calculation: Reduction of Complexity . . . . . . . . . . . 94

8 Maximum Likelihood Estimation 96

8.1 Introduction to MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2 Model Specification for R-T-Vine Copula Model . . . . . . . . . . . . . . . 97

9 Application: Major Stock Indices 100

9.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.1.1 Log-Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.1.2 Data Tansformation . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Estimation of R-T-Vine Specification . . . . . . . . . . . . . . . . . . . . . 103

9.2.1 Selecting Cross-Sectional Structure . . . . . . . . . . . . . . . . . . 104

9.2.2 Selecting Connecting Edges . . . . . . . . . . . . . . . . . . . . . . 107

9.2.3 R-T-Vine Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.2.4 Outperformance of Classical M-Vine . . . . . . . . . . . . . . . . . 110

9.3 Simulation and Comparison of Results . . . . . . . . . . . . . . . . . . . . 114

10 Wrap-Up 119

A Vine Structure in Higher Sectional and Time Dimensions 121

B R Algorithms 123

List of Figures 125



Chapter 1

Introduction

The concept of copulas which was introduced by Sklar (1959) became a central tool for

modelling multivariate dependence in recent years. The central theorem named after him

proved that any n dimensional joint distribution function can be decomposed into its n

marginal distributions and a copula, describing the joint dependence structure.

Copulas are even known in a broader public due to the appearance in mainstream

media, where the copula formula is accused to be the instrument causing the financial

crisis (see for instance the article ”The formula that felled Wall Street” by Jones (2009)).

Indeed, the (back then) widely used Gaussian copula does not allow for heavy tails and

therefore do not capture extreme events as in the financial crisis accordingly.

A way of receiving more flexible multivariate copulas is the so called pair copula

construction (PCC) developed by Aas et al. (2009). The idea of this construction

goes back to Joe (1996). It uses a factorisation of the joint distribution into bivariate

(conditional) copulas/distributions to create a more flexible multivariate distribution.

However, there are multiple possible PCC’s and one needs a convenient way to organise

them. A graphical tool for organising are regular vines introduced by Bedford and

Cooke (2001)), which are a set of connected trees, being able to describe the marginal

distributions and the coupling of those distributions. A convenient way to store all re-

lated information in so called regular vine matrices was invented by Dissman et al. (2012).

There are several models using PCC in combination with regular vines, so called

regular vine specifications. We are especially interested in models, describing the serial,

cross-serial and cross-sectional dependence among multivariate time series. Three models

of interest are given by the Copula autoregressive (COPAR) (Brechman and Czado

2



CHAPTER 1. INTRODUCTION 3

(2015)), the long D-vine (Smith (2015)) and the M-vine (Beare and Seo (2015)) model.

We intend to develop a new and more general model based on these models within

this thesis. Chapter 2 will cover all mathematical preliminaries of copulas and time

series analysis. In Chapter 3, we will give an introduction into vine copula specification

in general, i.e. the usage of regular vines to organise PCC and the properties of the

regular vine matrices. In the following Chapters 4-6, we will review already existing

models for multivariate time series and develop a more generalised regular vine model

(R-T-Vine model) covering more cross-sectional as well as (cross-)serial possibilities in

the vine structure, describing the overall dependence. These chapters are the core of

this thesis, as we are able to come up with a new vine structure model better fitting

to multivariate time series than the already existing ones. We will further describe the

structure of the R-T-Vine and come up with an algorithm yielding the optimal R-T-Vine

structure. Having this new structure, we formalise the vine specification with the help

of this structure and point the possibilities of reducing the complexity by assuming

stationarity or an autoregressive order p in Chapter 7. In Chapter 8, we will give a

short introduction into (sequential) maximum likelihood estimation used for fitting the

bivariate (conditional) copulas in our model. Finally, we fit our new model to the monthly

returns of five stock indices and compare the model with the M-vine model (Beare and

Seo (2015)) also with respect to prediction.



Chapter 2

Mathematical Preliminaries

2.1 Time Series Analysis

In areas such as economics and finance, a common problem is the analysis of multivariate

time series, where each univariate time series is a component of a vector-valued time

series. With these multivariate time series not only serial, but also (cross-) sectional

dependence is modelled.

We start by giving an introduction into (multivariate) time series in general. This

section is mainly referring to Brockwell, Davis et al. (2016).

Definition 2.1. Time Series

A time series is a stochastic process (Xt)t∈T for some index set T . However, the term

is also used for the (partial) realisation, i.e. a set of observations xt at a specific time

t ∈ T0 ⊂ T , of such a process.

Remark 2.2. If (Xt)t∈T respectively (xt)t∈T0 are vector-valued we call such a process

multivariate time series. To indicate when we are talking of a multivariate series we use

the notation (Xt)t∈T .

In general, the time set T could take various values. In this thesis we will work with a

discrete time set T ⊂ R of consecutive time points.

As already mentioned in the introductory chapter we are interested in analysing

and modelling the dependence structure of a multivariate time series, e.g. asset returns,

over time. The joint observation of those asset developments is an example for a

multivariate time series.

4



CHAPTER 2. MATHEMATICAL PRELIMINARIES 5

Example 2.3. Monthly Closing Prices of Selected Indices

The figure below displays the monthly adjusted close prices of the DAX, FTSE, CAC,

Nikkei and S&P500 from beginning of 2008 to mid year 2018.

Figure 2.1: Time series of adjusted monthly prices for five indices from beginning of 2008

until June 2018.

2.1.1 Stationarity

Stationarity is one of the most important properties of stochastic processes in time series

analysis. With stationarity, one obtains properties that are not only valid for individual

times, but are invariant over time. In our generalised vine copula model, stationarity will

significantly reduce the computational effort.

Before we define stationarity, we need to have a look at the second order struc-

ture of multivariate time series. Let us assume we have a d-variate time series, i.e. for

t ∈ T : Xt =


X1t

X2t

...

Xdt

, then the second order structure is given by
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i) the mean vector µt := E[Xt] =


E[X1t]

E[X2t]

...

E[Xdt]

 and

ii) the covariance matrix Γ(t+ h, t) :=


γ11(t+ h, t) . . . γ1d(t+ h, t)

...
. . .

...

γd1(t+ h, t) . . . γdd(t+ h, t)

,

where γij(t+ h, t) := Cov[Xt+h,i, Xt,j].

Definition 2.4. (Weak) Stationarity

We call a (d-variate) time series (Xt)t∈T weakly stationary if:

i) E[|Xit|2] <∞ ∀ t and i,

ii) µt is independent of t and

iii) Γ(t+ h, t) is independent of t for each fixed h.

Remark 2.5. As for the independence of t ∈ T for stationary time series, the notation

µ = µt and Γ(h) = Γ(t+ h, t) ∀t ∈ T is often used.

There is another concept of stationarity, the so called strict stationarity.

Definition 2.6. Strict Stationarity

(Xt)t∈T is strictly stationary if (Xt1 ,Xt2 , ...,Xtn)
d
= (Xt1+h,Xt2+h, ...,Xtn+h)) ∀t1, ..., tn ∈

T, n ∈ N and h such that t1 + h, ..., tn + h ∈ T .

Note that strict always implies weak stationarity. The reversed statement does not hold.

In the case of multivariate normal distribution of all finite dimensional marginals (we call

such a process Gaussian) also the reverse statement is true. In the following example, we

show that for non-Gaussian time series weak does not imply strict stationarity.

Example 2.7. Weak ; Strict Stationarity

Let Xt =

∼ expo(1), t odd

∼ N(1, 1), t even
be independent.

Then, E[Xt] = 1 and Γ(t + h, t) =

1, h = 0

0, h > 0
∀t, h : t ∈ T and t + h ∈ T , i.e. Xt is

weakly stationary. But, clearly, Xt is not strictly stationary as it has different distributions

for t odd and even.
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Example 2.8. The Figure 2.2 below presents two (one-dimensional) time series. The

year-to-date daily closing prices of the DAX in percentage of the starting value and a

Gaussian process with Xt ∼ N (0, 1). The Gaussian process is an example for stationary

time series (fluctuating around the mean 0) the DAX-price-series is non-stationary.

(a) DAX closing (b) Gaussian process

Figure 2.2: Time series of (a) non-stationary DAX closing prices in percentage of the

starting value and (b) stationary Gaussian process.

Returning to the indices developments in Example 2.2, we recognize that this time series

does not look stationary. However, if we look at the respective log-returns, as shown in

Figure 2.3, we can see a similar structure as in the Gaussian case mentioned in Example

2.8.
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Figure 2.3: Monthly log-returns of the five indices shown Example 2.3 from beginning of

2008 up to June 2018.

2.1.2 Classical Time Series Models

Next, we will give a short overview on some widely known time series processes.

Autoregressive-Moving Average Processes

We will first define autoregressive (AR), moving average (MA) and their combination

autoregressive-moving average (ARMA) processes.

Definition 2.9. AR/MA/ARMA processes

Let (Zt)t∈T be i.i.d. N (0, σ2) distributed. The time series (Xt)t∈T is called

MA(q) process, if Xt =
∑q

j=1 ψjZt−j,

AR(p) process, if Xt = Zt +
∑p

j=1 φjXt−j or

ARMA(p,q) process, if Xt −
∑p

j=1 φjXt−j = Zt +
∑q

j=1 ψjZt−j.

Remark 2.10. In literature one often uses a short notation of the respective (charac-

teristic) polynomials arising in the definition above, e.g. for the ARMA(p,q) process one

writes Ψq(x) =
∑q

j=1 ψjxt−j and Φp(x) =
∑p

j=1 φjxt−j.
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GARCH Processes

The linear times series models such as ARMA models are not suited for reflecting the

”stylised facts of financial data”, which have been shown in several empirical studies of

financial time series1. The first model capturing those facts was the ARCH- (autoregressive

conditionally heteroscedastic) model developed by Engle (1982). In contrast to the linear

ARMA model for the series (Xt)t∈T , where the conditional variance ht of Xt given {Zs, s <
t} is independent of t and of {Zs, s < t}, Engle proposed to incorporate the sequence

(ht)t∈T into the model. He postulated that

Xt =
√
htet,where et ∼ N(0, 1)iid

and ht (known as the volatility) is related to the past values of X2
t via a relation of the

form,

ht = α0 +

p∑
i=1

αiX
2
t−i,

for some positive integer p, α0 > 0 and αi ≥ 0 for i = 1, ..., p.

This relation was later generalised by Bollerslev (1986) in the so called GARCH

(generalised ARCH) model:

ht = α0 +

p∑
i=1

αiX
2
t−i +

q∑
i=1

βiht−i,

with α0 > 0, αi ≥ 0 for i = 1, ..., p and βi ≥ 0 for i = 1, ..., q.

Remark 2.11. For modelling empirical log-returns of financial data as seen in the pre-

vious section one neglects the normality assumption for et and uses et ∼ iid(0, 1) in-

stead. Especially, one often uses heavier-tailed zero-mean distribution such as Students

t-distribution.

Remark 2.12. In the paper of Brechmann and Czado (2015), the authors use a GARCH

model with skewed Student t innovations to transform the data set of log-returns to

standardised residuals. However, we decided to transform our data directly via a fitted

skewed t-distribution as the conditional variance should also be covered by our general

vine copula model.

Vector Autoregressive Model

After having reviewed the one-dimensional ARMA models we will now introduce the

multidimensional autoregressive case, so called vector autoregressive (VAR) models, which

1See, e.g., Mandelbrot (1963) and Fama (1965)
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are used for modelling many problems arising in economics and finance. Such models

became a standard tool in econometrics when Sims (1980) used them as an alternative to

classical simultaneous equation models.

Definition 2.13. VAR(p) Model

Let (Xt)t∈T be a stationary (d-variate) time series. We call such a time series VAR(p)-

model if for all t ∈ T :

Xt = c+ Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt−p + εt,

where c is a (d dimensional) vector of constants, the observation Xt−i is called the i-th

lag of X, Φ1, ...,Φp are time-invariant d×d matrices and the d dimensional vector of error

terms εt is satisfying:

i) E[εi,t] = 0 ∀t and i,

ii) Cov[εi,t, εj,t] = Σ, where Σ is a positive definite matrix and

iii) Cov[εi,t, εj,t+h] = 0 ∀h 6= 0.

Normally, one assumes independent identical distributed εt ∼ N (0,Σ).

Remark 2.14. The probably most useful property of VAR(p)-models is its conditional

independence of observations with lag greater than p.

For our full generalised vine copula model, we would need to calculate many parameters.

This number greatly reduces when considering a model fitted to a VAR(p) time series

and/or stationarity. We will discuss this in detail in Chapter 7.

2.2 Copulas

Because VAR models can only capture the linear dependence within the serial and

sectional dependence structure, we are interested in extending those models, using

copulas to describe the dependence structure, in this thesis. Therefore, we also need

an introduction into copulas, which are the canonical statistical tool for statistical

dependence modelling. We will be especially interested in copula density functions and

using those as well as the representation of joint distribution function through their

marginals and copulas to obtain an alternative expression for the joint density function.

Copulas were first introduced by Sklar (1959). One of the central theorems, which
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links joint distribution functions to their marginal distributions via copulas, is

named after him. A further interesting definition of copulas is given in the book

An introduction to copula, published by Nelsen (2006). Besides the link given in Sklar’s

theorem, he defines copulas as multivariate distribution functions whose one-dimensional

marginals are uniformly distributed. This section will be mainly referring to this book

of Nelsen (2006). We will restrict ourselves to the two dimensional case as we can build

higher dimensional dependence structures using the so called pair copula construction,

discussed in Chapter 3.

2.2.1 Introduction to Copulas

First, let us formally define a copula.

Definition 2.15. Copula (Cf. Page 10 Nelsen (2006))

A copula is a function C : [0, 1]2 → [0, 1] with the following properties:

i) ∀u, v ∈ [0, 1] :

C(u, 0) = C(0, v) = 0 and C(u, 1) = u respectively C(1, v) = v (2.1)

ii) ∀u1, v1, u2, v2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2 :

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (2.2)

To better understand this definition, we start by repeating the definitions of marginal and

joint distribution functions.

Definition 2.16. Distribution Function

A distribution function is a function F : R̄→ [0, 1], satisfying:

i) F is non decreasing and

ii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

An important distribution with regard to copulas is the uniform distribution on [0, 1],

that is why we briefly repeat the definition in the following example.

Example 2.17. Uniform Distribution on [0, 1]

U0,1(x) =


0 for x ∈ [−∞, 0)

x for x ∈ [0, 1]

1 for x ∈ (1,∞]
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We will also have to deal with inverses of distribution function. For strictly increasing

distribution functions we can directly compute the ordinary inverse, however, in the other

cases we will need the concept of the quasi-inverse.

Definition 2.18. Quasi-Inverse

Let F be a continuous distribution function. We call

F−1(t) := inf{x|F (x) ≥ t}

the quasi-inverse of F .

With the help of the following theorem we can link each distribution function to the

uniform distribution and vice versa. It will be used (mostly implicit) in this thesis and

was already introduced in 1952 by Rosenblatt.

Theorem 2.19. Probability Integral Tranformation

Let X be a real random variable with continuous distribution function F and U ∼ U0,1.

Then

F (X) = U and F−1(U) ∼ F .

Now, we turn to the multivariate (two-dimensional) case.

Definition 2.20. Joint Distribution Function (Cf. Page 17, Nelsen (2006))

A joint distribution function is a function H : R̄2 → [0, 1] such that:

2-increasingness: ∀x1, y1, x2, y2 ∈ R with x1 ≤ x2 and y1 ≤ y2 :

H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1) ≥ 0 and

Groundeness: H(x,−∞) = H(−∞, y) = 0 and H(∞,∞) = 1 holds.

Especially, H has marginal distributions given by F (x) = H(x,∞) and G(y) = H(∞, y).

Remark 2.21. Obviously, Equations (2.1) and (2.2) imply groundness respectively 2-

increasingness in Definition 2.20.

Thus, a copula is a two-dimensional distribution function. Further, because of equation

(2.1) both marginals are given by

U(x) = C(x, 1) = C(1, x) = x for x ∈ [0, 1],

which can be interpreted (by extending the domain to R̄) as a uniform distribution func-

tion, given in Example 2.17.

Next, we will come to the interpretation of copulas given in Sklar’s theorem.
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Theorem 2.22. Sklar’s Theorem

Let H be a joint distribution function with marginals F and G. Then there exists a copula

C such that ∀x, y ∈ R̄ :

H(x, y) = C(F (x), G(y)). (2.3)

Proof. See Nelsen (2006)

Remark 2.23. This theorem allows us to divide the handling of a multivariate probability

law into the handling of the univariate marginals and the isolated dependence structure

given by the copula.

By combining Sklar’s theorem with the probability integral transform, we can even say

more about the link of copulas and joint distribution functions:

Corollary 2.24. Let (X, Y ) ∼ H, where H is the joint distribution function with

marginals F and G, then we have

(U1, U2) := (F (X), G(Y )) ∼ C.

On the other hand, for all (U1, U2) ∼ C it holds

(X, Y ) := (F−1(U1), G−1(U2)) ∼ H

and

C(u1, u2) = H(F−1(u1), G−1(u2)) ∀u1, u2 ∈ (0, 1).

When investigating the dependence measures in the next section, there will arise bound-

aries for copulas. Therefore, we will need the so called Fréchet-Hoeffding bounds. In the

context of boundaries, the three special cases of copulas of interest are given in the fol-

lowing example.

Example 2.25. Commonotonicity

For u1 and u2 in [0, 1] the copula given by

M2(u1, u2) = min{u1, u2} is called comonotonicity copula,

W2(u1, u2) = max{u1 + u2 + 1, 0} is called countercomonotonicity copula and

Π2(u1, u2) = u1u2 is called product copula.

Fréchet and Hoeffding independently obtained that the counter- and comonotonicty cop-

ula as defined above arise as natural boundaries for each two-dimensional copula.
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Theorem 2.26. Fréchet-Hoeffding Bounds

Let C : [0, 1]2 → [0, 1] be a copula. Then for u1 and u2 in [0, 1], C is bounded by

W2(u1, u2) ≤ C(u1, u2) ≤M2(u1, u2).

Proof. See Nelsen (2006)

The product copula in the above example is also often called ”independence copula” as

it is equivalent to stochastic independence of the respective random variables, as stated

in the following lemma.

Lemma 2.27. The random vector (X, Y ) has stochastically independent components if

and only if its distribution function can be split up into its marginals and the copula Π2.

Proof. Let H denote the joint distribution function of the random vector, F and G the

respective marginals and x, y be in R̄. Then we get:

”⇒”: F (X, Y ) = P(X ≤ x, Y ≤ y)
independence

= P(X ≤ x)P(Y ≤ y) = Π2(F (x), G(y))

”⇐”: P(X ≤ x, Y ≤ y) = F (X, Y ) = Π2(F (x), G(y)) = P(X ≤ x)P(Y ≤ y).

Finally, we have a look at the copula density and how we can use it to rewrite the joint

density function.

Definition 2.28. Copula Density

Let C be a twice partially differentiable copula. The copula density is given by the function

c : [0, 1]2 → [0, 1] defined by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

.

To derive the representation of the joint density function we recall the expression from

Sklar’s theorem:

H(x, y) = C(F (x), G(y)).

Differentiating of both sides yields:

h(x, y) =
∂2C(F (x), G(y))

∂x∂y
chain rule

= c(F (x), G(Y ))f(x)g(y),

where the c, f and g indicate the densities to the distribution function C,F and G,

respectively.
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2.2.2 Copula Families

One can classify copulas in several classes. We will briefly introduce the two most impor-

tant classes in the following: elliptical and Archimedian copulas.

Elliptical Copulas

Elliptical copulas inherit their properties from elliptical distributions. Therefore, we need

to define elliptical distributions.

Definition 2.29. Elliptical Distribution(see Embrechts, Lindskog and McNeil (2001))

LetX be a n-dimensional random vector, µ ∈ Rn, Σ ∈ Rn×n a non-negative definite matrix

and φX−µ the characteristic function of X − µ.

If φX−µ(t) is a quadratic function of form t′Σt), i.e. there exists a function Φ such that

φX−µ(t) = Φ(t′Σt), then X has an elliptical distribution with parameters µ,Σ and Φ.

Two well known examples for elliptical copulas are given by the bivariate Gaussian and

t-copula.

Example 2.30. Bivariate Gaussian Copula

Let X ∼ N2(µ,Σ), then X − µ ∼ N2(0,Σ) with characteristic function φX−µ(t) =

exp{−1
2
tTΣt}, which implies, that the multivariate normal distribution is an elliptical

distribution. We denote the cumulative distribution function by Φ2
Σ.

Hence the bivariate Gaussian copula

C(u1, u2) = Φ2
Σ(Φ−1(u1),Φ−1(u2)),

where Φ−1 denotes the inverse of the one-dimensional cumulative normal distribution

function, is an elliptical copula.

Example 2.31. t-Copula

Let Z ∼ N2(0,Σ) and S ∼ X 2
ν be independent and µ ∈ Rn. Then µ +

√
ν
S
Z = X ∼ tν ,

i.e. X is (elliptically) t-distributed.

The corresponding copula is defined for ν > 0 and is given by:

C(u1, u2) = tν,R(t−1
ν (u1), t−1

ν (u2)),

where Rij = σij/σiiσjj with i, j ∈ {1, 2}.
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Archimedian Copulas

Definition 2.32. Archimedian Copula(see Embrechts, Lindskog and McNeil (2001))

A copula Ch : [0, 1]2 → [0, 1] is called Archimedian copula if it has the functional form:

Ch(u1, u2) = h(h−1(u1), h−1(u1)),

for a suitable non-increasing function h : [0,∞)→ [0, 1] with h(0) = 1 and limx→∞ h(x) =

0.

Example 2.33. Gumbel Copula

Let hθ : [0,∞)→ [0, 1] with h(x) = exp{−x1/θ}, then Ch(u1, u2) = h(h−1(u1), h−1(u1)) =

exp{−[(− ln(u1))θ + (− ln(u2))θ]1/θ} is the Gumbel copula.

Example 2.34. Clayton Copula

Let hθ : [0,∞) → [0, 1] with h(x) = (1 + x)1/θ, then Ch(u1, u2) = (u−θ1 + u−θ2 − 1)−1/θ is

the Clayton copula.

2.3 Dependence Measures

The term (linear) dependence already arose in the previous sections. We now want to

specify it further and highlight why the linear dependence, as covered by the VAR model,

is not enough.

2.3.1 Linear Correlation

When talking about dependence in statistics most people think about linear correlation,

which is indeed often used in practice as it is a widely known tool.

Definition 2.35. Linear correlation

Let X and Y be two random variables with non-zero and finite variances. The linear

correlation is defined as

ρ(X, Y ) :=
Cov(X, Y )√

Var(X)
√
Var(Y )

,

where Cov(·, ·) and Var(·) denote the covariance and respectively the variance of the

random variables.

However, by looking at the following example the shortcomings of correlation as a linear

measure already become quite clear.
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Example 2.36. Let X be a N (0, 1)-distributed random variable. We want to investigate

the correlation between X and X2, which should clearly show dependence, but

ρ(X,X2) =
Cov(X,X2)√

Var(X)
√

Var(X2)
=

E[X3]− E[X]E[X2]√
E[X2]− E[X]2

√
E[X4]− E[X2]2

= 0.

2.3.2 Kendall’s τ

There are of course other important measures/concepts for dependence. We will just

introduce one of those, called Kendall’s τ , which was introduced by Kendall (1938). It

belongs to the class of concordance measures.

Let us start by defining the term concordance, which describes a state in which the single

parts do not contradict each other.

Definition 2.37. Concordant/Discordant pairs

We say the pairs (x1, y1) and (x2, y2) are concordant (discordant), if (x1−x2)(y1−y2) > 0

((x1 − x2)(y1 − y2) < 0).

When describing the dependence structure of two random variables with copulas a con-

venient class of measures are the so called concordance measures. They are characterised

by some useful properties.

Definition 2.38. Concordance measure

A concordance measure is a map I from the bivariate distributions with continuous

marginals to the unit interval fulfilling the following conditions:

i) Symmetry: For all random variables X, Y it holds I(X, Y ) = I(Y,X).

ii) Coherence: Let C1 ≺ C2 be two copulas, then I(C1) ≤ I(C2).

iii) Independence: Let X, Y be independent random variables, then I(X, Y ) = 0.

iv) Sign change: For all random variable X, Y we have I(X,−Y ) = −I(X, Y ).

v) Convergence: Let (Xn, Yn)n∈N be a sequence of random vectors converging in dis-

tribution to (X, Y ), then limn→∞ I(Xn, Yn) = I(X, Y ).

The probably best known concordance measures are Kendall’s τ and Spearman’s ρ. We

will introduce and give the most important properties of the first.
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Definition 2.39. Kendall’s τ

Let (X, Y ) be a random vector and (X̃, tildeY ) be its independent copy. Kendall’s τ is

defined as

τ(X, Y ) = P[(X − X̃)(Y − Ỹ ) > 0]− P[(X − X̃)(Y − Ỹ ) < 0]. (2.4)

One can read this definition as the difference of the probabilities of the random variables

being concordant and discordant.

Theorem 2.40. Let X and Y be two continuous random variables with dependence

structure given by the copula C. Then Kendall’s τ for this two random variables is given

by

τ(X, Y ) = 4

∫ ∫
I2
C(u, v)dC(u, v)− 1. (2.5)

The integral in Equation (2.5) can be interpreted as the expected value of the copula

with respect to the uniformly [0, 1] distributed random variables U and V with joint

distribution function C, i.e. τ(X, Y ) = 4E[C(U, V )]− 1.

Further properties of Kendall’s τ

Besides fulfilling the condition of a concordance measure Kendall’s τ has further interest-

ing properties:

1. For all random variables X it holds τ(X,X) = 1.

2. τ is invariant under (almost surely) strict monotone increasing transformation.

Especially, the second property is of importance as copulas share the same property, but

it does not hold for linear correlation.



Chapter 3

Vine Copula Specification

In this chapter, we will develop the graphical tool of regular vines. In combination with

copulas, regular vines have proven to be useful tools in multi-dimensional dependence

modelling. The initial idea was already developed by Joe (1996) and later Bedford and

Coke (2001) developed the graphical tool here presented. The presentation in this chapter

is following the one in Beare and Seo (2015). The regular vines enable us to split the

multivariate distribution of our time series into an expression only depending on the

univariate distributions and the (conditional) bivariate copulas.

3.1 Regular Vines

As a prerequisite for defining vines we need the concepts of graphs.

Definition 3.1. Graph

A graph G is a ordered pair (V,E) of vertices V and edges E consisting of two-elements

subsets of V .

We call such a graph acyclic, if there exists no path forming a circle.

Example 3.2. Consider the two graphs on the vertices {1, 2, 3} in Figure 3.1. The graph

on the left is a cyclic graph and the other one without the edge (3, 1) is acyclic.

19
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Figure 3.1: Cyclic and acyclic graphs on {1, 2, 3}.

Definition 3.3. Tree

A d-dimensional tree T = (V,E) is a connected acyclic graph with d vertices V and d− 1

edges E, where d ≥ 2.

After having reviewed these tools we are now able to define regular vines.

Definition 3.4. Vine

A collection of trees V = (T1, ..., Td−1) on a set V1 with d-elements is called a vine if

i) T1 is a tree with vertices V1 and edges E1 and

ii) for i = 2, ..., d− 1, Ti is a tree with vertices Ei−1.

We call it a regular vine if in addition

iii) (proximity) for i = 2, ..., d− 1, a1, a2, b1 and b2 vertices in Ti−1:

a = {a1, a2} and b = {b1, b2} vertices in Ti connected by an edge =⇒ a ∩ b is a

singleton

holds.

Remark 3.5. The definition of regular vines implies that two vertices {a1, a2} and {b1, b2}
are connected, if the corresponding edges {a1, a2} and {b1, b2} in the previous tree share

a vertex. However, not all should/can be connected, because this would result in a cyclic

graph. This problem arises whenever the shared vertex is connected with three or more

edges in the previous tree. In those cases on has to decide which connection to drop.

The most common examples for regular vines are the so called Drawable- (D-) and

Canonical- (C-) vines. We call a regular vine D-vine if each vertex in T1 is at most

connected via two edges. Concerning C-vines every vertex is connected to the so called

root vertex in each tree. For a better understanding of the concept of regular vines, we

consider the following example of those two special cases.
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Example 3.6. Let us consider a set of five vertices {1, 2, 3, 4, 5}. Figure 3.2 below displays

the graphical representation of a D-vine (left) and C-vine (right).

1 2 3 4 5
1, 2 2, 3 3, 4 4, 5

T1

1

2 3

4

5

1, 2 1, 3
1, 4

1, 5

1, 2 2, 3 3, 4 4, 5
1, 3|2 2, 4|3 3, 5|4

T2

1, 2

1, 3

1, 4

1, 5

2, 3|1
2, 4|1

2, 5|1

1, 3|2 2, 4|3 3, 5|4
1, 4|2, 3 2, 5|3, 4

T3

2, 3|1

2, 4|1

2, 5|1

3, 4|1, 2

3, 5|1, 2

1, 4|2, 3 2, 5|3, 4
1, 5|2, 3, 4

T4 3, 4|1, 2 3, 5|1, 24, 5|1, 2, 3

Figure 3.2: Trees of the five dimensional D- (left) and C-vine (right).

Note that by definition of the D-vine there will not arise the problem mentioned in Re-

mark 3.5 and the trees are uniquely determined by the regular vine definition.

However, by just looking at the first tree of the C-vine case in Example 3.6. the building

of the next tree just following the definition of regular vines is not unique. Besides the

choice of the new central vertex (changing this would still lead to a C-vine) the problem

mentioned in Remark 3.5 arises. The following Figure 3.3. illustrates all possible connec-

tion between the vertex of the second tree, with green highlighted chosen connections of

the C-vine on the left and an alternative orange highlighted choice fulfilling the regular

vine definition as well on the right (note, that this is actually a D-vine).
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Alternatives of T2

1, 2

1, 3

1, 4

1, 5

2, 3|1

2, 4|1

2, 5|1

3, 5|1

3, 4|1
4, 5|1

1, 2

1, 3

1, 4

1, 5

2, 3|1

2, 4|1

2, 5|1

3, 5|1

3, 4|1
4, 5|1

Figure 3.3: Two highlighted choices out of all possible connections in the second tree of

regular vine with starting tree equal to the C-vine.

There are even more possible choices, defining a regular vine structure on the same starting

tree, but we are not interested in further describing those structures here. At this point

we only want to recall the two most important findings:

1. Given the starting tree of a C-vine the regular vine is not unique and

2. all other possible structures (without the central vertex in each tree) will be treated

as more general regular vines in the rest of this thesis.

The possible choices of the vine structure depend on the number of elements in the set.

On a set with strictly less than four vertices, all possible vines are C and D vines. On

a set with cardinality four, all possible vines are C- or D-vines. For higher cardinality

there can be more interesting structures like the generalised vines we are going to study

in more detail within the next chapter of this thesis.

The labelling of vertices of regular vines can be best described by using the con-

cepts of conditioned and conditioning sets (compare Beare and Seo (2015)). To define

those concepts we need the so called complete union.

In the following let V = (T1, ..., Td−1) be a regular vine on V1 and ek = (uk, vk) an edge of

Tk for 1 ≤ k ≤ d− 1.

Definition 3.7. Complete Union

The complete union of ek is given by

Uek =

ek for k = 1

{i ∈ V1| i ∈ e1 ∈ e2 ∈ ... ∈ ek for some (e1, ...ek−1) ∈ E1 × ...× Ek−1} for k ≥ 2

and for a singleton i ∈ V1 it is given by the singleton, i.e. Ui = {i}.

Definition 3.8. Conditioning Set

The set Dek = Uuk ∩ Uvk is called conditioning set of ek.
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Definition 3.9. Conditioned Set

The respective conditioned set is then given by (ak, bk), where ak = Uuk \ Dek and bk =

Uvk \Dek .

The labelling of the edges (vertices) follows the same idea as in most literatures. The edge

with conditioned set (ae, be) and conditioning set De is labelled with (ae, be|De).

Example 3.6. continued

The edges in Figure 3.2 are already labelled. We want to explain the labelling of the edges

based on the above defined principles. Therefore, we will go through all trees of the D-vine

(Figure 3.2 (left)).

• T1 : Obviously, the complete unions U1, ..., U5 are given by actually different

singletons. Therefore, the four edges have empty conditioning sets. Hence, the

conditioned sets are equal to the edges and are given by (Ui, Ui+1)i=1,...4 =

(1, 2), (2, 3), (3, 4), (4, 5).

• T2 : Let us consider the first red highlighted edge ((1, 2)(2, 3)) The complete union

is given by {1, 2, 3}, the conditioning set by 2 = {1, 2} ∩ {2, 3} and the conditioned

set by (1, 3) = {1, 2, 3} \ {2}. Hence, the edge is labelled with (1, 3|2).

• T3 : Let e3 be the blue highlighted edge connecting (1, 3|2) and (2, 4|3). This results

in a conditioning set Dek = U(1,3|2) ∩ U(2,4|3) = {1, 2, 3} ∩ {2, 3, 4} = {2, 3} and

conditioned set (U(1,3|2) \Dek , U(2,4|3) \Dek) = ({1, 2, 3} \ {2, 3}, {2, 3, 4} \ {2, 3}) =

(1, 4). Yielding the label (1, 4|2, 3) for e3.

• T4 : Following the very same steps as above, the edge is labelled with (1, 5|2, 3, 4).

3.2 Pair Copula Construction

As already mentioned in the section about copulas we want to use the given vine structure,

respective (bivariate) copulas and univariate distributions to express the corresponding

multivariate distribution. We first focus on decomposing a multivariate density into a

cascade of pair copulas. This general decomposition is mainly following Aas et al. (2009).

Afterwards, we will specify these results for R-vine structures which is mainly following

Kurowicka and Cooke (2006).
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3.2.1 General Scheme

Assume the d-dimensional random vector X = (X1, ..., Xd)
T has the joint density given by

the function f(x) := f(x1, ..., xm). Further, let us denote the respective marginal distribu-

tions by fi(xi) and the conditional marginal distributions by fi|j(xi|xj). The multivariate

density can be decomposed in the following way:

f(x) = fd(xd) · fd−1|d(xd−1|xd) · fd−2|d−1,d(xd−2|xd−1, xd) · ... · f1|2,...,d(x1|x2, ..., xd). (3.1)

As a consequence of Theorem 2.3 we already presented a representation of a multivariate

distribution using the copula density for the two dimensional case. This can easily be

extended to higher dimensional cases, yielding:

f(x) = c(F1(x1), ..., Fd(xd))
d∏
i=1

fi(xi), (3.2)

where the capital F is referring to the corresponding cumulative distribution function and

c denotes the respective copula density.

In the next step we will combine the results (3.2) and (3.1), however, for readability

reasons we only consider the case d = 3:

f(x)
(3.1)
= f3(x3) · f2|3(x2|x3)︸ ︷︷ ︸

?

· f1|2,3(x1|x2, x3)︸ ︷︷ ︸
??

, (3.3)

where ? and ?? can be re-expressed by using (3.2) and fi|j(xi, xj) =
fij(xi, xj)

fj(xj)
as follows:

?: f(x3, x2)
(3.2)
= c23(F2(x2), F3(x3)) · f2(x2)f3(x3)

dividing both sides by f3(x3) yields:

f2|3(x2|x3) = c23(F2(x2), F3(x3)) · f2(x2) and similarly

??: f(x1, x2|x3)
(3.2)
= c12|3(F2|3(x2|x3), F1|3(x1|x3)) · f2|3(x2|x3)f1|3(x1|x3)

dividing both sides by f2|3(x2|x3) yields:

f1|2,3(x1|x2, x3) = c12|3(F2|3(x2|x3), F1|3(x1|x3)) · f1|3(x1|x3).

The last term on the right-hand side can be again decomposed by using the same

arguments as in ?, finally yielding

f1|2,3(x1|x2, x3) = c12|3(F2|3(x2|x3), F1|3(x1|x3)) · c13(F1(x1), F3(x3)) · f1(x1).

Hence, the complete pair copula decomposition in (3.3) is given by

f3(x3) · f2|3(x2|x3) · f1|2,3(x1|x2, x3)

=f3(x3) ·c23(F2(x2), F3(x3))f2(x2)︸ ︷︷ ︸
using ?

· c12|3(F2|3(x2|x3), F1|3(x1|x3))c13(F1(x1), F3(x3))f1(x1)︸ ︷︷ ︸
using ??

=f1(x1)f2(x2)f3(x3) · c23(F2(x2), F3(x3)) · c12|3(F2|3(x2|x3), F1|3(x1|x3)) · c13(F1(x1), F3(x3)).
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Remark 3.10. Note that the decomposition described before is not unique. There are

several different possibilities of decompositions in (3.1), for example in the three dimen-

sional case given in (3.3) there are six possibilities. Furthermore, the decomposition used

for ?? is also not unique.

Having found the decomposition for d = 3, we can easily extend this approach to d ∈ N.

Iteratively we can decompose (3.1) by the general formula:

fi|δ(xi|xδ) = ci,j|δ−j
(F (xi|δ−j), F (xj|δ−j)) · fi|δ−j

(xi|xδ−j
),

where i ∈ {1, ..., d}, δ a m-dimensional subset with m ≤ d and δ ⊂ {x1, ..., xd} and δ−j

the (m− 1)-dimensional set without the j-th element. Especially, this means that we are

able to reduce the conditioning set by using pair copulas. But this approach also involves

conditional cumulative distribution functions of the form Fi|δ−j
, which can be evaluated

by using the formula

Fi|δ(xi, xδ) =
∂Ci,j|δ−j

(Fi|δ−j
(xi|xδ−j

), Fj|δ−j
(xj|xδ−j

))

∂Fj|δ−j
(xj|xδ−j

)
,

proved by Joe (1996).

Applying these formulas iteratively to the conditional factorisation of an arbitrary

density function f , given in (3.1), is called pair copula construction and yields a

factorisation of f in its univariate margins and bivariate (conditional) copulas.

3.2.2 R-Vine Pair Copula Construction

A common way of arranging the density factorisation of a pair copula construction is

to use the above mentioned regular vines. This was introduced by Bedford and Cooke

(2001). There have been several fields of applications and as we are focusing on financial

data within this thesis a good review of current research can be found in Aas (2016). In

this section, we will denote the dimension by n instead of d as it is not directly related

to our vine model.

Now, we will see how to arrange a pair copula construction using R-vines.

Definition 3.11. R-vine copula specification

The triplet (F,V , C) is a R-vine copula specification if

i) F = (F1, ..., Fn)T is a vector of continuous and strictly increasing univariate cumu-

lative distribution functions,
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ii) V = (T1, ..., Tn−1) is a regular vine and

iii) C = {Ce|e ∈ E(V)} is the set of absolute continuous bivariate copulas corresponding

to an edge in V .

Assume we have an n-dimensional random vector X = (X1, ..., Xn)T with distribution

function F . We say, that F realises a R-vine copula specification (F,V , C) if and only if

for all i = 1, ..., n Xi ∼ Fi and for all edges i, j|δ in E(V), Ci,j|δ is the bivariate copula

joining Xi|Xδ and Xi|Xδ.

Theorem 3.12. A given R-vine copula specification (F,V , C) is realised by a unique

distribution F given by the density

f =
n∏
i=1

fi
∏

i,j|δ∈E(V)

ci,j|δ(Fi|δ, Fj|δ).

Proof. See Bedford & Cooke (2001).

From this density we can also calculate the conditional cumulative distribution functions

recursively:

For (i, j) ∈ E(T1) we have δ = ∅ and hence Fi|δ = Fi and Fj|δ = Fj respectively.

For (i, j) ∈ E(Tk), k ≥ 2 we have

Fi|δ =
∂Ci′,j′|δ′(Fi′|δ′ , Fj′|δ′)

∂Fj′|δ′
and Fj|δ =

∂Ci′′,j′′|δ′′(Fi′′|δ′′ , Fj′′|δ′′)

∂Fj′′|δ′′
,

where (i′, j′) and (i′′, j′′) are the edges in E(Tk−1), which are connected via (i, j), with

i = i′ and j = j′′.

In Aas et al. (2009) we can find the simplified density of D- and C-vines, which are given

by

fD =
n∏
i=1

fi

n−1∏
j=1

n−j∏
k=1

ck,k+j|k+1,...,k+j−1(Fk|j+1,...,k+j−1, Fk+j|k+1,...,k+j−1)

and respectively

fC =
n∏
i=1

fi

n−1∏
j=1

n−j∏
k=1

cj,j+k|1,...,j−1(Fj|1,...,j−1, Fj+k|1,...,j−1).

Remark 3.13. The complete pair copula decomposition of (3.3) presented in Subsection

3.2.1 is given by the 3-dimensional D-vine:

1 3 2

13 23

2, 31, 3

1, 2|3
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3.3 Matrix Notation of Regular Vines

For implementation, we need a convenient way to store the information of regular vines.

Dissmann et al. (2012) proposed using so called regular vine matrices, which capture all

relevant information on the respective vine within a matrix.

All information needed to describe a R-vine copula specification on V1, with |V1| = n,

can be stored in (2 + x) n× n-dimensional low triangular matrices, where x denotes the

number of parameters of the allowed copula families. These matrices are given by:

• M , which stores all information on the tree structures,

• F , storing the copula families of the specification, and

• P1, ..., Px, containing the respective parameters of the copula families.

Having M we should be able to reconstruct the trees of the regular vine and vice versa.

Each edge ek = (ak, bk|Dek) of Tk is described by the entries (mi,j)i,j=1,...,d of M in the

following way: The conditioned set is given by (md−k+1,i,mi,i) and the conditioning set

by {md−k+2,i, ...,md,i} or the empty set if k = 1.

The easiest way to understand the structure of those matrices is by looking at an

example. Hence, we will now have again a look at the five dimensional D-vine already

discussed in Example 3.5. The corresponding matrix is given by M =


5 0 0 0 0

1 4 0 0 0

2 1 3 0 0

3 2 1 2 0

4 3 2 1 1

.

For the explanation, we will again look at the two red/blue highlighted edges from T2/T3

in Figure 3.2.

• (1, 3|2) is captured by the third column of M (i = 3). The conditioning set is given

by (m4,3,m3,3) = (1, 3) and the conditioning set by {m5,3} = {2}.

• Taking a look at the second column we find for the conditioned set (m3,2,m2,2) =

(1, 4) the conditioning set {m4,2,m5,2} = {2, 3}, giving us the edge (1, 4|2, 3) in T3.

Next, we want to formally define M .
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Definition 3.14. R-Vine Matrix (Compare Dissmann et al. (2012))

A low triangular matrix M = (mi,j)i,j=1,...,n is a regular vine matrix if for j = 1, ..., n− 1

and for all i = j + 1, ..., n− 1, there exists a k ∈ {i+ 1, ..., n− 1} such that:

(mj,i, {mj+1,i, ...,mn,i}) ∈ BM(j) ∪ B̃M(j),

where

BM(j) = {(mi,i, D)|j = i+ 1, ..., n; D = {mj,i, ...,mn,i}} and

B̃M(j) = {(mj,i, D)|j = i+ 1, ..., n; D = {mi,i} ∪ {mj+1,i, ...,mn,i}}.

Remark 3.15. This definition assures several useful properties. First of all it covers the

proximity condition in Definition 3.4. Further, it states that all entries in one column need

to be different and deleting the first row and first column of a regular vine matrix yields

again a regular vine matrix with dimension reduced by one.

Having defined and explained the regular vine matrix we now focus on the corresponding

other matrices describing the copula vine specification. As we only want to give an idea

we only give one reference matrix P instead of all possible parameters P1, ..., Px in the

following. Let the matrix M be given by (mi,j)i,j=1,...n, then the copula family matrix,

assigning a copula family to every Copula (Ce)e∈E(V), with e = (ak, bk|Dek) is given by the

n× n-matrix:

F =



0 0 · · · 0 0

FC(m1,1,m2,1|m3,1:mn,1)
0 · · · 0 0

FC(m1,1,m3,1|m4,1:mn,1)
FC(m2,2,m3,2|m4,2:mn,2)

. . . 0 0
...

...
. . .

...
...

FC(m1,1,mn−1,1|mn,1)
FC(m1,2,mn−1,2|mn,1)

. . . 0 0

FC(m1,1,mn,1|∅)
FC(m2,2,mn,2|∅)

· · · FC(mn−1,n−1,mn,n−1|∅)
0


with parameters in the n× n-matrix:

P =



0 0 · · · 0 0

PC(m1,1,m2,1|m3,1:mn,1)
0 · · · 0 0

PC(m1,1,m3,1|m4,1:mn,1)
PC(m2,2,m3,2|m4,2:mn,2)

. . . 0 0
...

...
. . .

...
...

PC(m1,1,mn−1,1|mn,1)
PC(m1,2,mn−1,2|mn,1)

. . . 0 0

PC(m1,1,mn,1|∅)
PC(m2,2,mn,2|∅)

· · · PC(mn−1,n−1,mn,n−1|∅)
0
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For our D-vine example we get the respective copula family matrix:

F =


0

FC(1,5|2,3,4) 0

FC(2,5|3,4) FC(1,4|2,3) 0

FC(3,5|4) FC(2,4|3) FC(1,3|2) 0

FC(4,5)
FC(3,4)

FC(2,3)
FC(1,2)

0

 with parameters

P =


0

PC(1,5|2,3,4) 0

PC(2,5|3,4) PC(1,4|2,3) 0

PC(3,5|4) PC(2,4|3) PC(1,3|2) 0

PC(4,5)
PC(3,4)

PC(2,3)
PC(1,2)

0

.



Chapter 4

General Regular Vine Matrices for

Multivariate Time Series

In this chapter, we will have a look at different approaches for implementing regular vine

structures to multivariate time series data, covering cross-sectional, serial and cross-serial

(conditional) dependence. We will review the already existing approaches in the literature

and based on the M-vine approach of Beare and Seo (2015), we will develop a new and

more flexible model.

4.1 Introduction into Regular Vine Models for Mul-

tivariate Time Series

As prerequisite for a precise description of regular vine models for multivariate time series

(RVMMVTS) we need the term cross-sectional (vine) structure.

Definition 4.1. Cross-sectional (Vine) Structure

We call the vine structure describing only the cross-sectional dependence within one (each)

time step t ∈ T cross-sectional structure (at time t). The respective cross-sectional matrix

is given by the regular vine matrix describing this structure.

In general, all RVMMVTS’s follow the same idea. In the following, we assume a mul-

tivariate time series with sectional dimension d and N time steps, i.e. T = {1, ..., N}.
The first tree of the RVMMVTS is given by the d-dimensional cross-sectional structures

at time t and t + 1 for t = 1, ..., N − 1 linked via one edge connecting a vertex from

the structure at t and one from the one at t + 1. Even though, one could allow for dif-

ferent cross-sectional structures and links, we will assume a recurring structure in each

30



CHAPTER 4. R-VINE MATRICES FOR TIME SERIES 31

step as this enables us to use our model for prediction. The Figure 4.1 below visualises

the scheme described above on the basis of a d = 2 dimensional M-vine (Beare and Seo

(2015)) or COPAR (Copula Autoregressive by Brechmann and Czado (2015)) example.

The red highlighted cross-sectional structures at each time point t are linked via the blue

highlighted connecting edges.

A1

B1

A2

B2

· · · AN

BN

A1B1

A1A2

A2B2

A2A3 AN−1AN

ANBN

Figure 4.1: Example for first tree of RVMMVTS: M-vine/COPAR time series approach

with sectional dimension two and N time steps.

Remark 4.2. The starting tree of COPAR and M-vine are the same in this case, but

the succeeding trees will be different and therefore the matrix representations will deviate

from each other. For more details we refer to Section 4.3.3.

In the following sections, we will especially look at the already existing M-vine (Beare and

Seo (2015)), long D-vine (Smith (2015)) and the COPAR (Brechman and Czado (2015))

approaches. The first two approaches only allow for a description of the cross-sectional

(conditional) dependence with D-vines, while the last approach is only applicable to

cross-sectional C-vine structures. Our aim is to generalise the classical M-vine approach

to build one model for all possible cross-sectional vine structures.

We will cover the above mentioned approaches by studying 5 × 3-dimensional ex-

amples for cross-sectional D-, C- and more general R-vine structures in the following

sections. Note that the d = 5 dimensional case is the smallest possible sectional

dimension, in which a non-trivial (meaning non C- nor D-vine) representation of the

cross-sectional vine structure in one time step arises. The time dimension N = 3 was

chosen, because of a practical useful autoregressive order of two, which will be further

analysed in Chapter 7 of this thesis.

Block Structure in Matrix Representation

For the interpretation of the (overall) structure we basically use two block types within the

matrix representation. The later called cross-sectional triangular structures and the



CHAPTER 4. R-VINE MATRICES FOR TIME SERIES 32

parallelogramm structures. Note that those structures will not arise in the COPAR

approach.

Definition 4.3. Cross-Sectional Triangular Structures

The triangles in the last d−1 rows, given by the respective sub-diagonal part of the cross-

sectional vine structure matrix at time t ∈ T , describing the cross-sectional dependence

for each time step t, are called cross-sectional triangular structures.

Definition 4.4. Parallelogramm Structures of Order p

The parallelograms in between the diagonal and cross-sectional triangular structures,

describing the (conditional) dependence of the cross-sectional structure at time t to the

cross-sectional structure at time t−p, where t denotes the time of the respective diagonal

entries, are called parallelogram structures of order p.

The Figure 4.2 below visualises the two structures types within the sub-diagonal of the

matrix representation. In general the copulas assigned to the cross-sectional triangular

structures for each t and the parallelogram structures of one order will not be identical.

However, they become identical when assuming stationarity. This will be discussed in

more detail in Chapter 7.

Figure 4.2: Highlighted structure types within the sub-diagonal of the matrix representa-

tion of a multivariate time series.

Having developed all needed terminology to describe regular vine models for multivari-

ate time series, we can now start with the examples for the respective cross-sectional

structures.
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4.2 Cross-Sectional D-Vine Structure

In this section, we assume that the cross-sectional dependence and therefore the multi-

variate distribution in each time step can be best covered by a D-vine structure. This

especially means, that the matrix representation of the cross-sectional structure at each

time point t is given by:


Et

At Dt 0
Bt At Ct

Ct Bt At Bt

Dt Ct Bt At At

.

4.2.1 Classical M-Vine Approach

A way of linking the D-vine structures is the so called M-vine approach presented by

Beare and Seo (2015). In this approach the serial dependence is captured by one sectional

time series over time, i.e. in our example At is connected to At+1, building a long D-vine

connecting the cross-sectional structures.

The respective vine structure of this approach will result again in a D-vine after d

steps, where d is equal to the dimension of the cross-sectional structure, as in each new

tree within the vine specification the edges of the cross-sectional structures become the

vertices of the connecting D-vine. The easiest way to understand this building of trees

is by looking at a graphical example. In our case the cross-sectional dimension is five,

therefore Figure 4.2 below only considers the first five trees of the whole M-vine structure.

For a better understanding of the changes from tree to tree, we further highlight and

explain the recurring changes in each step.
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A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

A1B1

B1C1

C1D1

D1E1

A1A2

A2B2

B2C2

C2D2

D2E2

A2A3

A3B3

B3C3

C3D3

D3E3

Figure 4.3: a) First tree of M-vine time series approach for three time steps and five

sectional dimensions.

As we can see in the starting tree the connecting long D-vine is given by the edges A1A2

and A2A3. In the second tree those two edges become vertices of the long D-Vine, i.e.

stay as a part of the long D-vine.

Within the trees of the cross-sectional structure we only highlighted in red the edges

(AtBt)t=1,2,3. Those edges also become vertices of the connecting long D-vine while

the other edges stay within the area of the cross-sectional structure. Especially, the

dimension of the area of the cross-sectional structures reduces by one in every step while

the connecting long D-vine is growing.

Note, that this choice is not uniquely determined by the regular vine definition.

Looking at the edges {(AiBi), (AiAj)}i=1,2,3 and j=2,3, leaving all would lead to a cyclic

graph, hence, we have to drop one of those three coloured edges in the following graph:

A1B1 A1A2

A2B2

A2A3 A3B3

B1A2|A1

A1B2|A2

A1A3|A2

B2A3|A2

A2B3|A3
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In the classical M-vine model, we drop the solely cross-serial connection A1A3|A2. Instead

one could also drop one of the cross-sectional and cross-serial connections A1B2|A2 or

B2A3|A2.

A1B1

B1C1

C1D1

D1E1

A1A2 A2B2

B2C2

C2D2

D2E2

A2A3 A3B3

B3C3

C3D3

D3E3

A1C1|B1

B1D1|C1

C1E1|D1

B1A2|A1 A1B2|A2

A2C2|B2

B2D2|C2

C2E2|D2

B2A3|A2 A2B3|A3

A3C3|B3

B3D3|C3

C3E3|D3

Figure 4.3: b) Second tree of M-vine time series approach for three time steps and five

sectional dimensions.

In the next step we see the very same pattern as described above. That is why we

do not again highlight and describe the changes in the following trees, i.e. the edges

(AtCt|Bt)t=1,2,3 in the second tree become vertices of the long D-vine in the third.

A1C1|B1

B1D1|C1

C1E1|D1

B1A2|A1 A1B2|A2 A2C2|B2

B2D2|C2

C2E2|D2

B2A3|A2 A2B3|A3 A3C3|B3

B3D3|C3

C3E3|D3

Figure 4.3: c) Third tree of M-vine time series approach for three time steps and five

sectional dimensions. Because of readability we dropped the labelling of the edges.

A1D1|B1C1

B1E1|C1D1

C1A2|A1B1 B1B2|A1A2 A1C2|A2B2 A2D2|B2C2

B2E2|C2D2

C2A3|A2B2 B2B3|A2A3 A2C3|A3B3 A3D3|B3C3

B3E3|C3D3

Figure 4.3: d) Fourth tree of M-vine time series approach for three time steps and five

sectional dimensions. Because of readability we dropped the labelling of the edges.
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After the next step (Tree 5) the complete M-Vine is now described by the connecting long

D-vine. Printing all vertices is quite unreadable therefore the graphic below only gives an

idea of the remaining structure.

A1E1|B1C1D1 · · · A1D2|A2B2C2 A2E2|B2C2D2 · · · A2D3|A3B3C3 A3E3|B3C3D3

Figure 4.3: e) Fifth tree of M-vine time series approach for three time steps and five

sectional dimensions. Because of readability we dropped the labelling of the edges.

As we will later use a quite similar approach as the M-vine we already want to highlight

the most significant visible structure in the regular vine matrix. The matrix can be divided

into three different areas in addition to the upper zero block. Those areas are highlighted

in red, green and blue within the matrix (4.1) below.

(4.1) =

E3

E1 D3

D1 E1 C3

C1 D1 E1 B3

B1 C1 D1 E1 A3

A1 B1 C1 D1 E1 E2

E2 A1 B1 C1 D1 E1 D2 0

D2 E2 A1 B1 C1 D1 E1 C2

C2 D2 E2 A1 B1 C1 D1 E1 B2

B2 C2 D2 E2 A1 B1 C1 D1 E1 A2

A2 B2 C2 D2 E2 A1 B1 C1 D1 E1 E1

A3 A2 B2 C2 D2 A2 A1 B1 C1 D1 A1 D1

B3 A3 A2 B2 C2 B2 A2 A1 B1 C1 B1 A1 C1

C3 B3 A3 A2 B2 C2 B2 A2 A1 B1 C1 B1 A1 B1

D3 C3 B3 A3 A2 D2 C2 B2 A2 A1 D1 C1 B1 A1 A1





The given structure of the three coloured areas can be summarised by

• descending diagonal entries for each sectional dimension Et to At at each time point

and descending time t→ t− 1 (in N descending diagonal entries from 15 to 1),
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• trinagular structure reflecting the cross-sectional D-vine structure matrix, i.e. con-

sisting of the sub-diagonal entries of the structure matrix, and

• the sub-diagonal structure in between (consisting of the above mentioned parallel-

ogram structures indicated by the yellow for order one and orange for order two

boxes) with descending sectional dimension Et−p to At−p for each order p = 1, 2 and

time point t of the respective diagonal entry.

Using these rules, the concrete example can easily be extended to higher dimensions both

in time and in sectional dimension, compare Section 4.5. A more detailed overview of the

M-vine approach and its properties can also be found in Teuma Manekeng (2017).

4.2.2 Comparison with D-Vine Approach

Another well-known approach is just aligning the cross-sectional D-vines to a new longer

D-vine, i.e. linking the last vertex of the cross-sectional structure at time t (here Et) to

the first one at time t + 1 (here At+1). This model was described in Smith (2015) and

a detailed review is given in Heuke (2016). Even though the influence of changing the

connecting edges will be analysed in detail in Chapter 6, we already want to mention

this example here.

The respective matrix for this approach with highlighted parallelogram structures

of order one (in yellow) and order two (in orange) is given by the matrix (4.2).
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(4.2) =

E3

A1 D3

B1 A1 C3

C1 B1 A1 B3

D1 C1 B1 A1 A3

E1 D1 C1 B1 A1 E2

A2 E1 D1 C1 B1 A1 D2 0

B2 A2 E1 D1 C1 B1 A1 C2

C2 B2 A2 E1 D1 C1 B1 A1 B2

D2 C2 B2 A2 E1 D1 C1 B1 A1 A2

E2 D2 C2 B2 A2 E1 D1 C1 B1 A1 E1

A3 E2 D2 C2 B2 A2 E1 D1 C1 B1 A1 D1

B3 A3 E2 D2 C2 B2 A2 E1 D1 C1 B1 A1 C1

C3 B3 A3 E2 D2 C2 B2 A2 E1 D1 C1 B1 A1 B1

D3 C3 B3 A3 E2 D2 C2 B2 A2 E1 D1 C1 B1 A1 A1





Comparing D- (4.2) and M-vine matrices (4.1), one can see, that different connect-

ing edges yield a significant change in the matrix structure, i.e. in the sub-diagonal

part/parallelogram structures here. While in the classical M-vine case the order within the

rows of the parallelogram structure of order p = 1, 2 is given descending (Et−p, ..., At−p)

the respective order in the long D-vine approach is given ascending (At−p, ..., Et−p). Not

surprisingly, this corresponds to a large D-vine matrix. The concrete influence of the

effect of changing the connecting edges will be further investigated in Chapter 6.

The full vine structure for this approach is the same as the smaller D-vine exam-

ple already covered several times in this thesis, therefore, the graphic below only shows

the structure of the first three trees.

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3

A1B1 B1C1 C1D1 D1E1 E1A2 A2B2 B2C2 C2D2 D2E2 E2A3 A3B3 B3C3 C3D3 D3E3

A1C1|B1 B1D1|C1 C1E1|D1 D1A2|E1 E1B2|A2 A2C2|B2 B2D2|C2 C2E2|D2 D2A3|E2 E2B3|A3 A3C3|B3 B3D3|C3 C3E3|D3

Figure 4.4: First three trees of long D-vine time series approach for three time steps and

five sectional dimensions. Because of readability we dropped the labelling of the edges.
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4.3 Cross-Sectional C-Vine Structure

In this section we will change the cross-sectional structure for each time step to C-vines.

The respective matrix is therefore given by


Et

Dt Dt 0
Ct Ct Ct

Bt Bt Bt Bt

At At At At At

.

The (cross-) serial (conditional-) dependence will again be captured by the time series

(At)t∈T .

4.3.1 COPAR Approach

Let us first take a look at an already existing approach for cross-sectional C-vines: the

COPAR model, see Brechmann and Czado (2015). The development of the tree structure

is significantly deviating from the previous approaches. The rather complex building of the

single trees in the vine structure resumes in a well ordered regular vine matrix structure.

In our 5× 3-dimensional case this is given by:

(4.3) =

E3

E1 D3

E2 E1 C3

D1 E2 E1 B3

D2 D1 E2 E1 A3

D3 D2 D1 E2 E1 E2

C1 C1 D2 D1 E2 E1 D2 0

C2 C2 C1 D2 D1 D1 E1 C2

C3 C3 C2 C1 D2 D2 D1 E1 B2

B1 B1 B1 C2 C1 C1 C1 D1 E1 A2

B2 B2 B2 B1 C2 C2 C2 C1 D1 E1 E1

B3 B3 B3 B2 B1 B1 B1 B1 C1 D1 D1 D1

A1 A1 A1 A1 B2 B2 B2 B2 B1 C1 C1 C1 C1

A2 A2 A2 A2 A1 A1 A1 A1 A1 B1 B1 B1 B1 B1

A3 A3 A3 A3 A2 A2 A2 A2 A2 A1 A1 A1 A1 A1 A1
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Having a first look at the possible parallelogram structure of order one,

brown surrounded in (4.3), it is the same as in the classical M-vine matrix (4.1), but

only in the first two columns from the right. However, (4.3) does not have any recurring

parallelogram structures nor the below triangular structure as already mentioned in the

description of Figure 4.2. This may be a reason why using similar approaches for build-

ing the trees as in the COPAR approach for other cross-sectional vine structures, e.g.

a D-vine structure, do not deliver a comparable COPAR structure in the corresponding

matrix representation.

The respective trees of the vine structure for our 5×3-dimensional example are displayed

in Figure 4.5 below, using the RV ineMatrix()-function from the V ineCopula-package

implemented in the statistical software R. For more details of the development of the

trees from step to step we refer to Section 4.3.3. A detailed review of COPAR models can

also be found in Ivanov (2016).
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Figure 4.5: Copar time series approach for three time steps on five dimensions.
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4.3.2 Generalised M-Vine Approach for Cross-Sectional C-Vine

Given the same starting tree, meaning cross-sectional C-vines connected via the time

series of (A)t=1,2,3 we are also able to build up a different vine structures fulfilling the

regular vine definition. We focus on respective steps from tree to tree similar to the

classical M-vine approach, discussed in Section 4.2.1, here.

Again the tree structure will result in a D-vine after d steps, where d denotes the

dimension of the cross-sectional C-vine structure, here d = 5. The Figure 4.6 below

displays the first five steps of the complete vine structure.

A1

B1 C1

D1 E1

A2

B2 C2

D2 E2

A3

B3 C3

D3 E3

A1B1 A1C1

A1D1 A1E1

A1A2

A2B2 A2C3

A2D3 A2E3

A2A3

A3B3 A3C3

A3D3 A3E3

Figure 4.6: a) First tree of generalised M-vine time series approach for cross-sectional

C-vine structure, three time steps and five sectional dimensions.

Again we see in the starting tree the connecting long D-vine is given by the edges A1A2

and A2A3. In the second tree those two edges become vertices of the long D-Vine, i.e. stay

as a part of the long D-vine.

Within the trees of the cross-sectional structure we only highlighted in red the edges

(AtBt)t=1,2,3. Those edges also become vertices of the connecting long D-vine while the

other edges stay within the area of the cross-sectional structure. Especially, the dimen-

sion of the area of the cross-sectional structures reduces by one in every step while the

connecting long D-vine is growing. To have a unique building of the successive trees, the

new central vertex becoming part of the long D-vine is given by the new central-vertex

of the respective cross-sectional C-vine. Here, we assume that those edges are ordered

by the sectional dimension, i.e. from B to E. Note that this is no limitation, as we can

easily obtain such a structure by relabelling the respective vertices in the cross-sectional

structure. This choice leads to a connecting long D-vine only consisting of Ai’s and Bi’s

in the conditioned sets/complete unions in the second tree of our vine structure.
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A1B1

A1C1

A1D1 A1E1

A1A2 A2B2

A2C2

A2D2 A2E2

A2A3 A3B3

A3C3

A3D3 A3E3

B1C1|A1

B1D1|A1 B1E1|A1

B1A2|A1 A1B2|A2

B2C2|A2

B2D2|A2 B2E2|A2

B2A3|A2 A2B3|A3

B3C3|A3

B3D3|A3 B3E3|A3

Figure 4.6: b) Second tree of generalised M-vine time series approach for cross-sectional

C-vine structure, three time steps and five sectional dimensions.

In the next step we see the very same pattern as described in the first step. That is why

we do not highlight and describe the changes in the following trees again, i.e. the edges

(BtCt|At)t=1,2,3 in the second tree become vertices of the long D-vine in the third. This

results in a long connecting D-vine consisting of Ai’s,Bi’s and Ci’s in the complete unions

of the next tree.

B1C1|A1

B1D1|A1 B1E1|A1

B1A2|A1 A1B2|A2 B2C2|A2

B2D2|A2 B2E2|A2

B2A3|A2 A2B3|A3 B3C3|A3

B3D3|A3 B3E3|A3

Figure 4.6: c) Third tree of generalised M-vine time series approach for cross-sectional

C-vine structure, three time steps and five sectional dimensions. Because of readability

we dropped the labelling of the edges.

C1D1|A1B1

C1E1|A1B1

C1A2|A1B1 B1B2|A1A2 A1C2|A2B2 C2D2|A2B2

C2E2|A2B2

C2A3|A2B2 B2B3|A2A3 A2C3|A3B3 C3D3|A3B3

C3E3|A3B3

Figure 4.6: d) Fourth tree of generalised M-vine time series approach for cross-sectional

C-vine structure, three time steps and five sectional dimensions. Because of readability

we dropped the labelling of the edges.

After the next step (Tree 5) the complete generalised M-Vine for the cross-sectional C-vine

is now described by the connecting long D-vine. Printing all vertices is quite unreadable

therefore the last part of Figure 4.5 below only gives an idea of the remaining structure.



CHAPTER 4. R-VINE MATRICES FOR TIME SERIES 44

D1E1|A1B1C1 · · · A1D2|A2B2C2 D2E2|A2B2C2 · · · A2D3|A3B3C3 D3E3|A3B3C3

Figure 4.6: d) Fifth tree of generalised M-vine time series approach for cross-sectional

C-vine structure, three time steps and five sectional dimensions. Because of readability

we dropped the labelling of the edges.

The matrix representation (4.4) of this approach is the same as for the classical M-vine

structure (4.1), except for the cross-sectional triangular structure, where the sub-diagonal

entries of the cross-sectional D-vine matrix are replaced by those of the C-vine matrix.

(4.4) =

E3

E1 D3

D1 E1 C3

C1 D1 E1 B3

B1 C1 D1 E1 A3

A1 B1 C1 D1 E1 E2

E2 A1 B1 C1 D1 E1 D2 0

D2 E2 A1 B1 C1 D1 E1 C2

C2 D2 E2 A1 B1 C1 D1 E1 B2

B2 C2 D2 E2 A1 B1 C1 D1 E1 A2

A2 B2 C2 D2 E2 A1 B1 C1 D1 E1 E1

D3 A2 B2 C2 D2 D2 A1 B1 C1 D1 D1 D1

C3 C3 A2 B2 C2 C2 C2 A1 B1 C1 C1 C1 C1

B3 B3 B3 A2 B2 B2 B2 B2 A1 B1 B1 B1 B1 B1

A3 A3 A3 A3 A2 A2 A2 A2 A2 A1 A1 A1 A1 A1 A1





The last four rows separated by the black line in matrix (4.4), combined with the diagonal

entries reflect the five trees in Figure 4.5. Comparing those trees with the respective trees

in Figure 4.2 we see that the conditioning sets only deviate from each other when the

elements in the conditioned set have the same time index t = 1, 2, 3. This observation

already explains the equality of the sub-diagonal structure of the last four rows of both

matrices (4.1) and (4.4).

For the part above the separating line we will now have a look at the sixth trees for both

the classical and the generalised M-vine.
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E1A2|A1 : D1 D1B2|A1 : C1, A2 C1C2|A1B1A2B2 B1D2|A1A2 : C2 A1E2|A2 : D2 E2A3|A2 : D2 D2B3|A2 : C2, A3 C2C3|A2B2A3B3 B2D3|A2A3 : C3 A2E3|A3 : D3

Figure 4.7: Sixth tree of classical and generalised M-vine in three time steps and five

sectional dimensions. Because of readability we dropped the labelling of the edges.

They are identical and a D-vine (i.e. the building of the next trees is unique) meaning

that all following trees need to be identical, too. This of course results in an identical

matrix representation as presented by the part above the separation line in (4.4) and the

respective part in (4.1).

Now, we know that for the extreme case (D- and C-vine) the matrix representa-

tion of the (generalised) M-vine only differs with respect to the below triangular

structure. This should also be true for all possible cross-sectional regular vines in between

and will be further analysed in Section 4.4.

4.3.3 Deep-Dive Differences COPAR and (Generalised) M-Vine

Before turning to the more general structure we want to highlight the differences from

the already existing approach for cross-sectional C-vines, the COPAR approach, to our

newly created generalised M-vine approach.

As the new created approach significantly deviates from the existing approach we

will especially take a closer look at how the respective trees of the vine specification are

built. We will therefore go through the trees of a rather small example. Let us assume

that we have N = 3 time steps and sectional dimension d = 4. The starting tree for both

approaches is then given by:

A1

B1

C1 D1

A2

B2

C2 D2

A3

B3

C3 D3

A1B1

A1C1 A1D1

A1A2

A2B2

A2C2 A2D2

A2A3

A3B3

A3C3 A3D3

Figure 4.8: a) First tree of cross-sectional four dimensional C-vine.
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First Difference

While in the COPAR approach the cross-serial edges (A1A2 and A2A3) become the new

central vertices of the C-vines, in the generalised M-vine approach they are moved in

between the cross-sectional structures.

i) Generalised M-vine tree 2

A1B1 A1A2

A1C1 A1D1

A2B2 A2A3

A2C2 A2D2

A3B3

A3C3 A3D3

ii) COPAR tree 2

A1B1

A1C1 A1D1

A1A2

A2B2

A2C2 A2D2

A2A3

A3B3

A3C3 A3D3

B1C1|A1 B1D1|A1

B1A2|A1 A1B2|A2

B2C2|A2 B2D2|A2

B2A3|A2 A2B3|A3

B3C3|A3 B3D3|A3

B1C1|A1 B1D1|A1

B1A2|A1

A1B2|A2

A1C2|A2 A1D2|A2

A1A3|A2

A2B3|A3

A2C3|A3 A2D3|A3

Figure 4.8: b) Second trees of i) generalised M-vine and ii) COPAR approach for cross-

sectional four dimensional C-vine.

When looking again at the edges connecting the serial dependence, we find that for the

COPAR approach the first edge (B1A2|A2) is now moved in between the structures and

the second (A1A3|A2) becomes again the new central vertex.

In our new approach the connecting edges in between still become vertices in between as

in the first step.
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i) Generalised M-vine tree 3

B1C1|A1 B1A2|A1

B1D1|A1

A1B2|A2 B2C2|A2

B2D2|A2

B2A3|A2 A2B3|A3 B3C3|A3

B3D3|A3

ii) COPAR tree 3

B1C1|A1 B1A2|A1

B1D1|A1

A1B2|A2

A1C2|A2 A1D2|A2

A1A3|A2

A2B3|A3

A2C3|A3 A2D3|A3

C1A2|A1B1 B1B2|A1A2 B2A3|A1A2

Figure 4.8: c) Third trees of i) generalised M-vine and ii) COPAR approach for cross-

sectional four dimensional C-vine. Because of readabilty we dropped the labelling of the

edges we are not referring to.

Second Difference

While the new approach already results in a D-vine within the next step, the classical

COPAR approach still needs three further steps before resulting in a D-vine. For the serial

connecting edges in the third COPAR tree we see a mixed picture the first (C1A2|A1B1)

stays as a vertex in between the structures, the second (B1B2|A1A2) becomes a new central

vertex and the last (B2A3|A1A2) becomes a vertex in between the C-vine structures.

i) Generalised M-vine tree 4

C1D1|A1B1 C1A2|A1B1 B1B2|A1A2 A1C2|A2B2 C2D2|A2B2 C2A3|A2B2 B2B3|A2A3 A2C3|A3B3 C3D3|A3B3

ii) COPAR tree 4

C1D1|A1B1 C1A2|A1B1 B1B2|A1A2

B2C2|A1A2 B2D2|A1A2

B2A3|A1A2 A1B3|A2A3

A1C3|A2A3 A1D3|A2A3

Figure 4.8: d) Fourth trees of i) generalised M-vine and ii) COPAR approach for cross-

sectional four dimensional C-vine. Because of readabilty we dropped the labelling of the

edges.

We will stop with the detailed comparison here and refer to the respective functions

mentioned in the appendix for the further trees.
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Summary of Differences

To sum up, besides the useful feature of resulting in a D-vine after d steps, where d denotes

the sectional dimension, the rules for building the trees within the new approach is more

straightforward. This is a huge advantage when trying to implement this approach for

more general structures than C- or D-vines, covered in the next section. It also simplifies

further generalisations discussed in Chapter 6. However, of course there was a reason for

choosing COPAR models before. The COPAR approach supports modelling structures

where one time series is driven by the time series of the other factors, e.g. so called

factor models. This strong descriptiveness is therefore not covered within our generalised

approach. As we do not want to restrict us, but allow for any possible connection between

the single observations within one time step, this is no real shortfall for our model anyhow.

Case: Sectional Dimension d = 2

As already shortly mentioned in the introduction of this chapter, for sectional dimension

two the starting tree of the COPAR model is equal to the tree of the classical M-Vine,

which is by definition equal to our generalised M-Vine as the cross-sectional structure is

identical.

For completeness of our comparison, we use this case with N = 3 to compare also

the COPAR with the classical M-vine approach. The development of the trees is given in

the Figure 4.8 below.

A1

B1

A2

B2

A3

B3

A1B1

A1A2

A2B2

A2A3

A3B3

Figure 4.9: a) First tree of the M-vine/COPAR time series approach with sectional di-

mension two and N = 3 time steps.

We have the very same interpretation as in the case above: In the COPAR approach

the cross-serial edges (A1A2 and A2A3) become the new central vertices of the C-vines.

Especially the edge (A2, B2) prevents the structure from resulting in a D-vine already. In

the M-vine approach the cross-serial edges become part in between the cross-serial edges

of the resulting D-vine.
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i) M-vine tree 2

A1B1 A1A2 A2B2 A2A3 A3B3

ii) COPAR tree 2

A1B1 A1A2

A2B2

A2A3

A3B3

B1A2|A1 A1B2|A2 B2A3|A2 A2B3|A3

B1A2|A1

A1B2|A2

A1A3|A2

A2B3|A3

Figure 4.9: b) Second trees of i) M-vine and ii) COPAR approach for sectional dimensional

two and N = 3 time steps.

When looking again at the edges connecting the serial dependence, we find that for the

COPAR approach the edges (B1A2|A2) and (A1A3|A2) now become part of the long D-

vine. Compared to the M-vine case this D-vine deviates in two vertices and this deviation

will remain until the last tree.

i) M-vine tree 3

B1A2|A1 A1B2|A2 B2A3|A2 A2B3|A3

ii) COPAR tree 3

B1A2|A1 A1B2|A2 A1A3|A2 A2B3|A3

Figure 4.9: c) Third trees of i) M-vine and ii) COPAR approach for sectional dimensional

two and N = 3 time steps.
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i) M-vine tree 4

B1B2|A1A2 A1A3|A2B2 B2B3|A2A3

ii) COPAR tree 4

B1B2|A1A2 B2A3|A1A2 A1B3|A2A3

Figure 4.9: d) Fourth trees of i) M-vine and ii) COPAR approach for sectional dimensional

two and N = 3 time steps.

i) M-vine tree 4

B1A3|A1A2B2 A1B3|A2B2A3

ii) COPAR tree 4

B1A3|A1A2B2 B2B3|A1A2A3

Figure 4.9: e) Last trees of i) M-vine and ii) COPAR approach for sectional dimensional

two and N = 3 time steps.

4.4 More General Cross-Sectional R-Vine Structure

After having discussed the (generalised) M-vine approach for the cross-sectional D- and

respectively C-vine in Subsections 4.2.1 and 4.3.2 we will transfer this method to general

cross-sectional regular vine structures in this section. As the C- and D-vine can be seen

as the extreme cases of the structures we expect a similar result for our overall matrix as

already mentioned in 4.3.2, i.e. only a change in the cross-sectional triangular structure.

In our five dimensional example there arises exactly one (neglecting possible relabelling

of sectional dimension) non C- nor D-vine starting tree, which can be seen in Figure

4.10 below. Recall that there are other more general regular vine structures (as a result

of choosing the higher order trees) in the five-dimensional case as already discussed in

Section 3.1 of this thesis.
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At

Bt

Ct Dt Et

Figure 4.10: First tree of five dimensional regular vine.

The corresponding matrix is given by:


Et

Ct Dt 0
At Ct Ct

Bt At At Bt

Dt Bt Bt At At

.

The serial dependence will again be captured by one sectional time series over time,

namely At is connected to At+1.

As we use the same approach for building the trees as in the two (generalised) M-

vine cases before, the structure will again result in a D-vine structure after d = 5

(dimension of the cross-sectional structure) steps. We further expect the sixth tree to be

identical to sixth tree pictured in Figure 4.7. Figure 4.11 below therefore illustrates only

the first six trees of the overall structure for the cross-sectional regular vine as above.

We skip the detailed explanation of the tree building here, as it follows the same steps

already presented for the D- and C-vine. We want to stress again that, whenever there

arises a non-unique decision based on the regular vine definition, this is either clarified

by the cross-sectional structure or by the fact that cross-serial edges become/stay a part

of the long connecting D-vine.
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A1

B1

C1 D1

E1

A2

B2

C2 D2

E2

A3

B3

C3 D3

E3

A1B1

B1C1 B1D1

D1E1

A1A2

A2B2

B2C2 B2D2

D2E2

A2A3

A3B3

B3C3 B3D3

D3E3

A1B1

B1C1 B1D1

D1E1

A1A2 A2B2

B2C2 B2D2

D2E2

A2A3 A3B3

B3C3 B3D3

D3E3

A1C1|B1 A1D1|B1

B1E1|D1

B1A2|A1 A1B2|A2

A2C2|B2 A2D2|B2

B2E2|D2

B2A3|A2 A2B3|A3

A3C3|B3 A3D3|B3

B3E3|D3

Note here, that whenever there is more than one edge of the cross-sectional area connected

to the long D-vine, we have to decide which edge is becoming a part of the long D-vine

in the next step. However, this decision has already been taken in the cross-sectional

structure. Especially, we use the common approach of ordering the diagonal of the cross-

sectional matrix and therefore the edge with the next sectional dimension will be chosen

(here: the edge containing Ct).

A1C1|B1

A1D1|B1

B1E1|D1

B1A2|A1 A1B2|A2 A2C2|B2

A2D2|B2

B2E2|D2

B2A3|A2 A2B3|A3 A3C3|B3

A3D3|B3

B3E3|D3

C1D1|A1B1

A1E1|B1D1

C1A2|A1B1 B1B2|A1A2 A1C2|A2B2 C2D2|A2B2

A2E2|B2D2

C2A3|A2B2 B2B3|A2A3 A2C3|A3B3 C3D3|A3B3

A3E3|B3D3
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C1E1|A1B1D1 D1A2|A1 : C1 C1B2|A1B1A2 B1C2|A1A2B2 A1D2|A2 : C2 C2E2|A2B2D2 D2A3|A2 : C2 C2B3|A2B2A3 B2C3|A2A3B3 A2D3|A3 : C3 C3E3|A3B3D3

E1A2|A1 : D1 D1B2|A1 : C1, A2 C1C2|A1B1A2B2 B1D2|A1A2 : C2 A1E2|A2 : D2 E2A3|A2 : D2 D2B3|A2 : C2, A3 C2C3|A2B2A3B3 B2D3|A2A3 : C3 A2E3|A3 : D3

Figure 4.11: First six trees of the generalised M-vine time series approach for a five di-

mensional cross-sectional regular vine structure and three time steps.

Indeed, the last tree in Figure 4.11 is equal to the one in Figure 4.7. Further comparing

the other trees with the respective trees in Figure 4.3 and 4.6, we find again, that the

conditioning sets only deviate from each other, when the elements in the conditioned set

have the same time index t = 1, 2, 3.

Hence, the corresponding matrix (4.5) below has the same structure as in the

(generalised) M-vine approach for D- and C-vine except for a different cross-sectional

triangular structure, representing the cross-sectional regular vine matrix.

(4.5) =

E3

E1 D3

D1 E1 C3

C1 D1 E1 B3

B1 C1 D1 E1 A3

A1 B1 C1 D1 E1 E2

E2 A1 B1 C1 D1 E1 D2 0

D2 E2 A1 B1 C1 D1 E1 C2

C2 D2 E2 A1 B1 C1 D1 E1 B2

B2 C2 D2 E2 A1 B1 C1 D1 E1 A2

A2 B2 C2 D2 E2 A1 B1 C1 D1 E1 E1

C3 A2 B2 C2 D2 C2 A1 B1 C1 D1 C1 D1

A3 C3 A2 B2 C2 A2 C2 A1 B1 C1 A1 C1 C1

B3 A3 A3 A2 B2 B2 A2 A2 A1 B1 B1 A1 A1 B1

D3 B3 B3 A3 A2 D2 B2 B2 A2 A1 D1 B1 B1 A1 A1
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4.5 Summary and Algorithm for Generalised M-Vine

Considerations of the five times three dimensional examples, discussed above, can easily

be extended to higher dimensions both in time and in the sectional dimension. The

general form of each time series matrix can be determined by the cross-sectional regular

vine matrix and the number of time points N , i.e. T = {1, ..., N}.

As we want to implement an algorithm building such matrices in the statistical

software R, we need a slightly different notation as before. We have to transform

our data (Xt)t∈T = (At, Bt, Ct, ...)
′
t∈T into the set of natural numbers {1, ..., Nd}. The

isomorphism used to map those two notations is explained in the following remark.

Remark 4.5. Isomorph Mapping of Notations

Let Θ be the restriction of {A,B, ..., Z,AA, ...} to the first d elements, denoting the set

of our previous sectional dimensions. We further need the following two functions:

• f : {1, ..., d} → Θ, with 1 7→ A, 2 7→ B, ..., 26 7→ Z, 27 7→ AA, ... and

• g : N→ {1, ..., d}, with g(x) = Ig∗(x)6=0g
∗(x) + Ig∗(x)=0d, where g∗(x) = x mod d.

Then each element Xt in our previous notation (i.e. X ∈ Θ and t ∈ T ) can be mapped to

the set {1, ..., Nd} by the function

h =

(Θ, T ) → {1, ..., Nd}

(X, t) 7→ td+ f−1(X)
with inverse h−1 =

{1, ..., Nd} → (Θ, T )

Y 7→ (f(g(Y )), bY
d
c)

To better understand this mapping, let us take a look at the following example.

Example 4.6. Let N = 3 and d = 5. Considering the vertex C2 we get by the definition

above:

h(C, 2) = 2·5+f−1(C) = 10+3 = 13 and h−1(13) = (f(g(13)), b13

5
c) = (f(3), 2) = (C, 2).

Having the needed notation, we are now able to define the structure of our gen-

eralised M-vine matrices. The cross-sectional structure matrix can be described by
dt

. . . 0
Mt d(t− 1) + 1

 with dimension d.

The patterns of the three matrix parts always stay the same and are in line with

the matrix representation in (4.1), (4.4) and (4.5), i.e. only deviating in the cross-

sectional triangular structure for a given sectional and time dimensions. In the above

developed notation they are given by:
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• Descending diagonal entries starting from Nd going down to 1,

• cross-sectional triangular structure reflecting the changes in the cross-sectional de-

pendence, i.e. the sub-diagonal Mt of the structure matrices at t, and

• the sub-diagonal structure in between, which is given by the columns of the respec-

tive parallelogram structures of order p = t−1, ..., 1 given by (t−p)d to (t−p−1)d+1,

where t denotes the time of the diagonal entry of the column.

Nd Nd− d+ 1 N − 1dd Nd N N

ddd
. . .

...
. . . Nd− d+ 1

d1d
... d (N − 1)d

22d2
. . .

... d
. . . 0

...
. . . 1

...
. . . (N − 2)d+ 1

d+ 1
... 2d 1

... d

...
. . .

...
...

. . .
...

. . .

...
... d+ 1

...
... 1 · · ·

...
... d

...d
...

...
...

...

(N − 2)d+ 1 · · · ... (N − 3)d+ 1 · · · ... · · · d

N
. . .

... N
. . .

... N
. . .

MN MN
... MN-1 MN

... · · · M1 MN 1





t = N t = N − 1 t = 1...

p
=
N
−

1

p
=
N
−

2

p
=
N
−

2

For the respective trees of the (generalised) M-vine structure, we find that the complete

unions of the edges in each tree Tk for k = 1, ...d are only consisting of the set {∪ki=1i}.
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To implement generalised M-vine matrices in R we use the following algorithm:

Algorithm 1 Vine Structure Time Series Matrix

Input N : number of time steps

Input csStructure: cross-sectional structure matrix

Output M : generalised M-vine structure matrix

function generalisedMVine(csStructure,N)

d← sectional dimension

m← counter for each d columns starting at 1

Triangle ← sub-diagonal of csStructure

diagonal of M ← decreasing sequence from Nd to 1

for each column from 1 to (N − 1)d do

Sub-diagonal structure of M ← (t− p)d to (t− p− 1)d+ 1

with t = N −m+ 1 and p from t− 1 to 1

After every d-th column

Triangle structure of the d columns ← (N −m)d+Triangle

m← m+ 1

First triangle structure M1 ← Triangle

return M

Block Notation

Given the general structure matrix above we are further interest in using a block notation

to better understand the sub-diagonal part. We will therefore identify all the diagonal

entries at each time step t, i.e. td : (t−1)d+1, with diag(t), the parallelogram-structures

or order p at t with t− p and the cross-sectional triangular structure at t with Mt as

before.

This results in a general representation given by (4.6) below.
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(4.6) =

diag(N)

1

diag(N − 1)

2 1

diag(N − 2)

...
...

. . .

. . .

N − 1 N − 2 N − 3 · · ·

diag(1)

MN MN−1 MN−2 · · · M1





Ignoring the cross-sectional triangular structures (Mt)t=1,...,N , (4.6) simplifies to



diag(N)

1 diag(N − 1)

2 1 diag(N − 2)
...

...
. . . . . .

N − 2 N − 3 N − 4 · · · diag(2)

N − 1 N − 2 N − 3 · · · 2 diag(1)


,

which is actually just a block D-vine matrix.

This is probably due to the fact, that we connected the cross-sectional vines with

the help of a growing long D-vine. Another interesting study would be using e.g. a C-vine

for connecting the cross-sectional structures and investigate the effect on the block

matrix as displayed above. So, instead of connecting Ai to Ai+1 for i = 1, ...N − 1, we

would choose one central vertex, e.g. A1, and connect all other Ai’s to this central vertex.



Chapter 5

Generalised M-Vine

We now have an understanding of the generalised M-vine matrix structure and are even

able to build the respective matrix by knowing only the number of time points and

the cross-sectional structure matrix. However, we have not yet formally defined our new

created structure. In this chapter, we will finally give a formal definition. Further, we will

be able to proof the findings of the previous chapter. The formal definition and some of the

theorems are generalisations of the theorems in Beare and Seo (2015) and the respective

proofs are therefore only adapted to the generalised definition.

5.1 Formal Definition of Generalised M-Vines

Let N, d ∈ N, where N again denotes the number of time steps and d the dimension

of the cross-sectional structure. Recall that the overall aim is to model the multivariate

distribution of (X1, ...,XN), where Xi ∈ Rd by a regular vine structure, i.e. our generalised

M-vine structure. Therefore, consider the regular vines on the vertices V1 = {1, ..., d} ×
{1, ..., N}.

Remark 5.1. In the previous chapter we identified the sectional components by letters

(A,..,D,...) as this enhances the readability and highlighted the cross-sectional structure.

For the formal definition it is more convenient to use also numbers for the sectional dimen-

sion. However, this is no problem as we can easily map those two sets via an isomorphism,

given by the function f in Remark 4.5.

We further need the concept of restricted regular vines on a subset of those vertices

Ṽ1 ⊂ V1.

Definition 5.2. Restriction of Regular Vines (Compare Beare and Seo (2015))

Let V be a regular vine on V1 with trees Tk = (Vk, Ek) ∀k = 1, ..., Nd − 1 and Ṽ1 ⊂ V1

58
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with q := |Ṽ | ≥ 2. For k = 1, ..., q− 1 define Ẽk := Ek ∩
(
Ṽk
2

)
, T̃k := (Ṽk, Ẽk) and if k ≥ 2,

Ṽk = Ẽk−1. Then Ṽ = (T̃1, ..., T̃q−1) is called restriction of V on Ṽ1.

The graphical interpretation of this definition is straightforward. In the first tree of the

complete regular, one deletes the respective vertices not included in the subset. And for

the higher trees the respective edges missing because of this deletion will be deleted. Note

that a restriction is not necessarily a regular vine.

The last concepts needed to describe the structures of (generalised) M-vines are single

and adjacent columns.

Definition 5.3. Single and Adjacent Columns

Let V be a regular vine on V1 = {(i, s)i=1,...,d and s∈T}, then

i) At = ∪di=1{(i, t), (i, t+ 1)} is called adjacent column and

ii) Xt = ∪di=1{(i, t)} is called single column

at time t.

Before defining the generalised M-vine let us give the definition of the classical M-vine

first.

Definition 5.4. Classical M-Vine (Compare Beare and Seo (2015))

A regular Vine V on V1 with trees (Nk, Ek)k=1,...,Nd−1 is called M-vine if and only if:

i) E1 =
{
{(i, s), (j, t)} ⊂

(
V1
2

)
|(i = j − 1 and s = t) or (i = j = 1 and s = t− 1)

}
and

ii) for each pair of adjacent columns At, t = 1, ..., N − 1 the restriction of V on At is a

D-vine.

Obviously, the second part of the definition is not true for the generalised M-vine anymore.

Also the first restriction of the set in the first part of the definition does not necessarily

hold for the new structure (e.g. if the cross-sectional structure is a C-vine). Therefore, we

need to modify this definition covering the new features.

Definition 5.5. Generalised M-Vine

A regular vine V on V1 with trees (Nk, Ek)k=1,...,Nd−1 is called generalised M-vine if and

only if:

i) E1 = {{(i, s), (j, t)} ⊂
(
V1
2

)
|((i, s), (j, t) are connected via an edge in the cross-

sectional structure at time t and s = t) or (i = j = 1 and s = t− 1)},
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ii) for each single column Xt, t = 1, ..., N the restriction of V on Xt has the same

structure, namely the cross-sectional structure and

iii) for each restriction of V on the respective adjacent columns (At)t=1,...,N−1 the d-th

tree is a D-vine, given by the from j = 1 to d ordered edges:

((d− j + 1, t), (j, t+ 1)|
d−j⋃
i=1

{(i, t)} ∪
j−1⋃
i=1

{(i, t+ 1)})j=1,...,d.

Remark 5.6. Definition 5.5 is only an extension based on Definition 5.4. However, it is

not easy to illustrate. Let us therefore give an interpretation of the single parts (i) to (iii).

• The first part ensures the structure in the first tree, i.e. the cross-sectional structures

connected via the edges connecting the sectional dimension 1 vertices of each time

step.

• The second part only describes the fact that in the first d trees the cross-sectional

structures for each time step are evolving like the chosen cross-sectional structure.

• The last part is more complex. Besides the fact that it ensures resulting in a D-vine,

it also determines which edges to add first to the long D-vine, whenever there is

more than one option, i.e. that the long D-vine is ordered according to the sectional

dimension. This means the conditioned set in Tree (d+ 1) is descending in sectional

dimension for t and ascending for t + 1 for all t = 1, ..., N − 1 (ensured by the

ordering of the edges by j).

Example 5.7. Recall the equivalence of the sixth tree in Figures 4.7 and 4.11, i.e. the

edges of the d(= 5)-th are the same even if the cross-sectional dependence is captured

by different regular vines. Restricted on the adjacent columns A1 of any regular vine

structure with fixed dimension d the edges are given by:

(d, 1)(d− 4, 2)| ∪4
i=1 {(i, 1)} (d− 1, 1)(d− 3, 2)| ∪3

i=1 {(i, 1)}, (1, 2) (d− 2, 1)(d− 2, 2)| ∪2
i=1 {(i, 1)},∪2

i=1{(i, 2)} (d− 3, 1)(d− 1, 2)|(1, 1),∪3
i=1{(i, 2)} (d− 4, 1)(d, 2)| ∪4

i=1 {(i, 2)}

E1, A2|A1 : D1 D1, B2|A1 : C1, A2 C1, C2|A1, B1, A2, B2 B1, D2|A1, A2 : C2 A1, E2|A2 : D2

Recall: Edges of 5-th tree in a d = 5 and N = 2 generalised M-vine example in the

notation of Chapter 4 and 5.

Remark 5.8. The structure of the D-vine in the example above is depending

on the order of the edges added to the long D-vine. As already mentioned in

Chapter 4 the ordered structure above can be obtained by relabelling the ver-

tices V1. In the case, where we add the vertices in the order D,C,B,E we obtain:
E1, A2|A1 : D1 B1, D2|A1, C1, D1, A2 C1, C2|A1, D1, A2, D2 D1, D2|A1, A2, C2, D2 A1, E2|A2 : D2

i.e. we just have to change the role of Bi and Di for i = 1, 2.



CHAPTER 5. GENERALISED M-VINE 61

An alternative, but equivalent definition of the generalised M-vine structure, which is

probably more intuitive or illustrative is given in the following definition.

Definition 5.9. Generalised M-Vine (alternative)

A regular vine V on V1 with trees (Nk, Ek)k=1,...,Nd−1 is called generalised M-vine if and

only if:

i) E1 =
{
{(i, s), (j, t)} ⊂

(
V1
2

)
|(i, j are connected via an edge in the cross-sectional structure at time t and s = t) or (i = j = 1 and s = t− 1)

}
,

ii) for each single column Xt, t = 1, ..., N the restriction of V on Xt has the same

structure, namely the cross-sectional structure and

iii) for each k = 1, ..., d − 1 and each restricted pair of adjacent columns A(t,k) =

∪k+1
i=1 {(i, t), (i, t+ 1)}, t = 1, ..., N −1 the restriction of Ṽk:Nd−1 on A(t,k) is a D-vine,

where Ṽk:Nd−1 is denoting the regular vine starting from the k − th tree of V .

Informally speaking this means that starting in each tree k of the regular vine V the

restriction of this vine on the sectional dimension 1 to k + 1 of any adjacent column of

this tree and the following (k + 1) · 2− k trees is a D-vine.

Example 5.10. Recall the trees from Figure 4.5 for N = 2. For the case k = 1 the D-vine

from the alternative definition is given by:

(2, 1) (1, 1) (1, 2) (2, 2)

(1, 1)(2, 1) (1, 1)(1, 2) (1, 2)(2, 2)

(2, 1)(1, 2)|(1, 1) (1, 1)(2, 2)|(1, 2)

And for the case k = 3 it is given by:

(1, 1)(4, 1)|(2, 1) (1, 1)(3, 1)|(2, 1) (2, 1)(1, 2)|(1, 1) (1, 1)(2, 2)|(1, 2) (2, 2)(3, 2)|(2, 2) (2, 2)(4, 2)|(2, 2)

(3, 1)(4, 1)|(1, 1)(2, 1) (3, 1)(1, 2)|(1, 1)(2, 1) (2, 1)(2, 2)|(1, 1)(1, 2) (1, 1)(3, 2)|(1, 2)(2, 2) (3, 2)(4, 2)|(1, 2)(2, 2)

(4, 1)(1, 2)|(1, 1) : (3, 1) (3, 1)(2, 2)|(1, 1)(2, 1)(2, 1) (2, 1)(3, 2)|(1, 1)(1, 2)(2, 2) (1, 1)(4, 2)|(1, 2) : (3, 2)

(4, 1)(2, 2)|(1, 1) : (3, 1)(1, 2) (3, 1)(3, 2)|(1, 1)(2, 1)(1, 2)(2, 2) (2, 1)(4, 2)|(1, 1)(1, 2) : (3, 2)

(4, 1)(3, 2)|(1, 1) : (3, 1)(1, 2)(2, 2) (3, 1)(4, 2)|(1, 1)(2, 1)(2, 1) : (3, 2)

Having formally defined and visualised the definition we will next formalise the findings

from the previous chapter following Beare and Seo (2015).
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5.2 Central Theorems

We have already seen in the previous chapter that the generalised M-vine structure results

in a D-vine after d steps. The following theorem formalises this assertion.

Theorem 5.11.

If V is a generalised M-vine specification of a d-dimensional dataset on V1 with N time

steps, then the tree Td is a D-vine.

Proof. (Following the steps Beare and Seo (2015))

The aim is to show that each vertex of Td is connected to at most two vertices.

First note, that for N ≤ 2 and d > 0 the tree Tm of the generalised M-vine is a

D-vine due to (iii) in Definition 5.5 and for d = 1 and N > 0 the first tree of the

generalised M-vine is already a D-vine. Thus, we will assume d ≥ 2 and N ≥ 3.

For t = 1, ..., N − 1, we denote the restriction of V on At by Vt. By the definition

of generalised M-vine, we know that Vt has d edges (d + 1 vertices) on tree Td. Further,

the intersection At ∩ At+1 is equal to the single column Xt+1 = ∪mi=1{(i, t + 1)}. Hence,

At and At+1 share exactly the d vertices of the observations at t + 1. Therefore, Vt
and Vt+1 have exactly one common vertex on Td. We will denote this common vertex by at.

Obviously, by the regular vine definition Td has Nd − d edges. Therefore, if we

only consider Vt and Vt+1 for t = 1, ..., N − 1, each of those restrictions has d+ 1 vertices

on the d-th tree. However, Vt and Vt+1 share the vertex at and the remaining d vertices

belong to the tree of Vt. As we already know from Definition 5.5 Vt is a D-vine on Td for

all t, i.e. all vertices are connected to at most two vertices.

So, we need to show that also at is connected to at most two vertices. Indeed,

when considering the generalised M-vine Vt or Vt+1, at has the element (d, t + 1) in its

conditioned set, which is of degree one. It follows, considering V , that at has degree at

most two, too.

We can even say more about the edges of the D-vine. The new important finding - the

equality of the D-vine in the d+ 1-th tree of the generalised M-vine specification irrespec-

tive of the cross-sectional structure - is summarised in the next theorem.

Theorem 5.12. Equality of the D-Vine

The D-vine in tree Td+1 of a (N × d-dimensional) generalised M-vine does not depend on

the chosen cross-sectional structure.
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Proof. By Definition 5.5 (iii) Td of Vt (again denoting the restriction of V on At) is given

by a D-vine with unique edges independent of the cross-sectional structure, i.e. Vt on

Td+1 is uniquely determined by the dimension d.

From the proof of Theorem 5.11 we know that Td of V is a D-vine and that Vt
and Vt+1 for t = 1, ..., N − 1 only share one vertex on the d-th tree, which we denoted by

at.

The vertex at is connected to Vt by the edge ((1, t), (d, t + 1)| ∪d−1
i=1 {(i, t + 1)})

and to Vt+1 by the edge ((d, t+ 1), (1, t+ 2)| ∪d−1
i=1 {(i, t+ 1)}). This especially implies that

Vt and Vt+1 have no common vertex on tree Td+1, but are connected when looking at V .

Hence, V on Td+1 is given by just aligning d + 1-th trees of (Vt)t=1,...,N . And as

the d + 1-th trees of each Vt are unique and independent from the cross-sectional

structure, the same is true for the overall tree.

We now know, that for fixed N and d the (d + 1)-th and (as this a D-vine by Theorem

5.11) also the following trees of each N × d-dimensional generalised M-vine are equal.

We further need to show that the vertices of the first d trees only differ from each other

when the elements in the conditioned set have the same time index. This is equivalent

to saying that the matrix representation of a N × d-dimensional generalised M-vine for

different cross-sectional structures only differ in the cross-sectional triangular structure.

This assertion is formalised in the following theorem.

Theorem 5.13. Conditional Cross-Serial Structure

The (conditional) inter-temporal vertices (meaning the elements of the conditioned set

having different time indices) on the first d trees of a N × d-dimensional generalised

M-Vine do not depend on the chosen cross-sectional structure.

Proof. Let us again denote the restriction of V on any adjacent column (At)t=1,...,N−1 by

Vt. We will denote the k − th tree of this restriction by T̃k.

Each tree T̃k has 2d − k edges by the definition of the regular vine. Further, each

pair of Vt and Vt+1 share exactly d − k edges on Tk, denoting the k-th tree of the

unrestricted vine. Obviously, those shared edges cannot be (conditional) inter-temporal

edges due to the requirement of different time indices in the conditioned set. Therefore,

we will only consider Vt for any t = 1, ..., N − 1 in the following.

For the first tree T̃1 there do not arise any inter-temporal vertex, on the second
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tree we have exactly one inter-temporal vertex given by ((1, t), (1, t + 1) independent of

the cross-sectional vine structure, we will therefore only look at trees (T̃k)k=3,...,d.

Note first, that in each of those trees T̃k there arise exactly k inter-temporal edges

connecting the vertices of the long connecting D-vine. Hence, k − 2 of the k inter-

temporal vertices in T̃k are given by the connecting edge of vertices already independent

of the cross-sectional structure.

The two remaining critical vertices are given by the edge in the previous tree T̃k−1

connecting v1 = ((k− 1, t), (1, t+ 1)| ∪k−2
i=1 (i, t)) with the vertex in the intersection of the

long D-vine and the k − 1-th tree of the restriction of V on the single column Xt and

v2 = ((1, t), (k − 1, t + 1)| ∪k−2
i=1 (i, t + 1)) with the respective element when using the

single column Xt+1.

Let us denote the long D-vine in T̃k−1 by Dk−1, the restriction on Xt by V̂ and

the vertex in the intersection by ek−1 = Dk−1 ∩ T̂k−1. As a direct consequence of our

ordered diagonal in the cross-sectional structure matrix, the complete union of the vertex

is given by Uek = {(1, t), ..., (k, t)} with (k, t) in the conditioned set of ek−1 independent

of the cross-sectional structure. The analogue statement replacing t by t+ 1 is also true.

Having the complete union and the fact that (k, t) is in the conditioned set of

ek−1, we find that the edge connecting v1 and ek−1 is given by ((k, t), (1, t+ 1)| ∪k−1
i=1 (i, t))

and respectively for v2 by ((1, t), (k, t+ 1)| ∪k−1
i=1 (i, t+ 1)).

This is especially independent of the cross-sectional structure and is true for all

k = 3, ..., d.

The last question arising on our new created specification is, if it is unique. This directly

results of the theorems above.

Corollary 5.14. Uniqueness of Generalised M-Vines

For a given set of vertices V1 with N time steps and a given d-dimensional cross-sectional

structure there exists a unique generalised M-vine specification.

Before discussing further generalisation of our model in the next chapter, let us summarise

our results so far.

• We have developed a new regular vine model for multivariate time series on basis of

the M-vine approach from Beare and Seo (2015), which we called generalised M-vine
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approach.

• The generalised M-vine approach is, in contrast to the already existing approaches

in the literature, applicable for any cross-sectional regular vine structure.

• The trees (and therefore also the matrix representation) of a generalised M-vine

are uniquely determined by the cross-sectional structure and the time horizon T =

{1, ..., N}.

• The d-th tree of each generalised M-vine is a D-vine with edges only depending on

the final time N (independent of the cross-sectional structure).

• For fixed N and different cross-sectional structures the respective generalised M-

vine matrices only differ from each other in the cross-sectional triangular structure

(the vertices of the first d trees only differ in the conditioning set, if the elements in

the conditioned set have the same time index).



Chapter 6

Generalised Temporal Connection

As already seen in the comparison of the D-vine and M-vine approach for cross-sectional

D-vine structures, one can not only allow for more general cross-sectional structures, but

also generalise the serial dependence model by allowing for different connecting edges

between the time steps. In this chapter, we will analyse the influence of changing the

respective vertices of those connecting edges to the overall matrix representation. The

aim is to further develop the algorithm from Chapter 4, to capture also this generalisation.

For being able to describe those influences to the overall matrix we will use some

further expressions, which need to be defined first. We will again use the letter notation

for the sectional dimension here (i.e. the sectional dimension given by the set Θ).

Definition 6.1. Connecting Edge

We call the edges connecting the cross-sectional vine structures at time t−1 with the one

at time t (for each t = 2, ..., T ) in the first tree of our overall vine structure connecting

edges. We denote those edges in the usual way, i.e. (Zt−1, At), where A and Z denote the

respective sectional dimension in Θ.

Definition 6.2. (Temporal) Out/In Vertex

Let for each t = 2, ..., T the connecting edges be given by (Zt−1, At). Then we call Zt−1

the temporal out- and At the temporal in-vertex.

Definition 6.3. Order of the Sub-Diagonal Structure

The order of the sub-diagonal structure is given by the sectional dimensions of the columns

of the parallelogram structures.

Let us have a look at the following example to better understand those definitions.

Example 6.4. Assume we are in 5×3-dimensional classical M-vine approach as discussed

in Section 4.2.1. The first tree is then given by Figure 4.2 a). Obviously, the connecting

66
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edges are (A1, A2) and (A2, A3). Therefore, the temporal in-vertices are given by A2 and

A3 and the temporal out-vertex are A1 and A2.

Having a look at the matrix representation (4.1) we see that for each parallelogram struc-

ture the sectional dimension in the columns is given decreasing by E, ..., A. Hence, the

order of the sub-diagonal structure is E,D,C,B,A.

6.1 Changing the Temporal Out-Vertex

Let us first consider changes of the temporal out-vertex. As in Chapter 4 we will take a

look at the three different possibilities of the cross-sectional structure in the five dimen-

sional case and will develop a general rule which explains the changes in the sub-diagonal

structure of the overall matrix.

6.1.1 Cross-Sectional D-Vine Structure

We will start with the cross-sectional D-vine, where we have already seen a change of the

out-vertex in the D-vine approach versus the classical M-vine approach (see Section 4.2).

Further, we already mentioned the change of the sub-diagonal structure.

Let us recall the cross-sectional D-vine structure as well as both (the D-vine (4.2)

and M-vine (4.1)) matrices with respective changes. The cross-sectional structure is given

by the matrix:


Et

At Dt 0
Bt At Ct

Ct Bt At Bt

Dt Ct Bt At At

.

Figure 6.2 below depicts the two matrices ((4.2) and (4.1)) and highlights the

changes of the sub-diagonal structure, i.e. the reversion of the order of the sub-diagonal

structure. To understand the changes better, recall from Example 6.4, that in the

M-vine case the out-vertex is At−1, whereas in the D-vine case it is Et−1. This deviating

out-vertex is the only difference between the first trees of both approaches as illustrated

in Figure 6.1.
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Figure 6.1: First tree of M-vine (left) and first tree of long D-vine (right) time series

approach for three time steps and five sectional dimensions.

Figure 6.2: Comparison of classical M-vine (4.1) denoted by (?) and long D-vine (4.2)

matrix denoted by (??) in the 5× 3-dimensional case.
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We will now change the connecting edges to (Ct−1, At) to better understand this reversion

of the sub-diagonal order for cross-sectional D-vine structures. Figure 6.3 illustrates the

corresponding starting tree and we can see that again the only difference to the one of

the classical M-vine approach is given by the out-vertices.

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

A1B1

B1C1

C1D1

D1E1

A1A2

A2B2

B2C2

C2D2

D2E2

A2A3

A3B3

B3C3

C3D3

D3E3

A1B1

B1C1

C1D1

D1E1

C1A2

A2B2

B2C2

C2D2

D2E2

C2A3

A3B3

B3C3

C3D3

D3E3

Figure 6.3: First trees of M-vine (left) and R-T-Vine with out-vertices Ct−1 (right) time

series approach for a five dimensional cross-sectional D-vine and three time steps.

The respective matrix in this case, with red highlighted area of changes versus the M-vine

case is given by the matrix (6.1) below.
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(6.1) =

E3

E1 D3

D1 E1 C3

A1 D1 E1 B3

B1 A1 D1 E1 A3

C1 B1 A1 D1 E1 E2

E2 C1 B1 A1 D1 E1 D2 0

D2 E2 C1 B1 A1 D1 E1 C2

A2 D2 E2 C1 B1 A1 D1 E1 B2

B2 A2 D2 E2 C1 B1 A1 D1 E1 A2

C2 B2 A2 D2 E2 C1 B1 C1 D1 E1 E1

A3 C2 B2 A2 D2 A2 C1 B1 A1 D1 A1 D1

B3 A3 C2 B2 A2 B2 A2 C1 B1 A1 B1 A1 C1

C3 B3 A3 C2 B2 C2 B2 A2 C1 B1 C1 B1 A1 B1

D3 C3 B3 A3 C2 D2 C2 B2 A2 C1 D1 C1 B1 A1 A1





We can see that the order of Ct to At within the sub-diagonal/parallelogram structures

has been reversed. It is tempting to say, that changing the out-vertex reverses the order

of the sub-diagonal structure up to the sectional dimension of the new vertex compared

to the M-vine approach. Indeed, this pattern can be seen for all possible connections in

any dimensional cross-sectional D-vine structure.

However, we will also be interested in other structures and there we will see a

slightly different picture. Hence, let us point out another interpretation based on the

cross-sectional vine structure matrix, which we will explain with reference to the above

mentioned three examples. The following table again summarises the out-vertices and

the respective order of the sub-diagonal structure.

Out vertex Order of sub-diagonal structure

A E,D,C,B,A

E A,B,C,D,E

C E,D,A,B,C

• For the out-vertex A, we see that the respective order matches the diagonal of the
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cross-sectional structure matrix:


Et

At Dt 0
Bt At Ct

Ct Bt At Bt

Dt Ct Bt At At

⇒ Et, Dt, Ct, Bt, At,

• for the out-vertex E the respective order is given by the first column, where

the diagonal entry Et is switched to the last position:


Et

At Dt 0
Bt At Ct

Ct Bt At Bt

Dt Ct Bt At At

 ⇒
At, Bt, Ct, Dt, Et

• and for the out-vertex C the order is given by the diagonal entries left of

the C-column followed by the sub-diagonal of the respective column and Ct:
Et

At Dt 0
Bt At Ct

Ct Bt At Bt

Dt Ct Bt At At

⇒ Et, Dt, At, Bt, Ct.

We will later use these findings to create a general rule for the order of the sub-diagonal

structure only depending on the cross-sectional structure matrix and the temporal out-

vertex.

6.1.2 Cross-Sectional C-Vine Structure

Now, we change the cross-sectional structure to the five dimensional C-vine. We will again

only change the out-vertices, i.e. we will look at the vertices At−1, Ct−1, Et−1. Figure 6.4

depicts the starting trees of the respective ”generalised M-vine” approaches. Recall that

so far (in Chapter 4) the out-vertices were always given by At−1.
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A1

B1 C1

D1 E1

A2

B2 C2

D2 E2

A3

B3 C3

D3 E3

A1

B1 C1

D1 E1

A2

B2 C2

D2 E2

A3

B3 C3

D3 E3

A1

B1 C1

D1 E1

A2

B2 C2

D2 E2

A3

B3 C3

D3 E3

A1B1 A1C1

A1D1 A1E1

A1A2

A2B2 A2C3

A2D3 A2E3

A2A3

A3B3 A3C3

A3D3 A3E3

A1B1 A1C1

A1D1 A1E1

C1A2

A2B2 A2C3

A2D3 A2E3

C2A3

A3B3 A3C3

A3D3 A3E3

A1B1 A1C1

A1D1 A1E1

E1A2

A2B2 A2C3

A2D3 A2E3

E2A3

A3B3 A3C3

A3D3 A3E3

Figure 6.4: First trees of ”generalised M-vine” time series approach for out-vertices At−1

(top left), Ct−1 (top right) and Et−1 (below) for a five dimensional cross-sectional C-vine

and three time steps.

Having a closer look at the comparison of the respective matrices in Figures 6.5 and

6.6, we find that the red highighted out-vertices in the cross-sectional C-vine case is just

moved to the end of the order of the sub-diagonal structure compared to choosing At−1

as out-vertices.

Obviously, this finding deviates from the reversing of the order mentioned in the previous

section, where we studied the D-vine structure.

However, taking a look at the interpretation of the cross-sectional matrix as be-

fore, reveals the same pattern. For a detailed description we need the respective structure

matrix as well as the orders for the sub-diagonal structure for each chosen out-vertex:
Et

Dt Dt 0
Ct Ct Ct

Bt Bt Bt Bt

At At At At At


Out vertex Order of sub-diagonal structure

A E,D,C,B,A

E D,C,B,A,E

C E,D,B,A,C

.
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Figure 6.5: Comparison of ”generalised M-Vine” matrix with out-vertex At−1 (above) and

Ct−1 (below) in the 5× 3-dimensional case.

Figure 6.6: Comparison of ”generalised M-Vine” matrix with out-vertex At−1 (above) and

Et−1 (below) in the 5× 3-dimensional case.
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• For the out-vertices A, we see that the respective order matches the diagonal of the

cross-sectional matrix:


Et

Dt Dt 0
Ct Ct Ct

Bt Bt Bt Bt

At At At At At

⇒ Et, Dt, Ct, Bt, At,

• for the out-vertex E the respective order is given by the first column, where

the diagonal Et entry is switched to the last position:


Et

Dt Dt 0
Ct Ct Ct

Bt Bt Bt Bt

At At At At At

 ⇒
Dt, Ct, Bt, At, Et

• and for the out-vertices C the order is given by the diagonal entries left of

the C-column followed by the sub-diagonal entries of the C-column and Ct:
Et

Dt Dt 0
Ct Ct Ct

Bt Bt Bt Bt

At At At At At

⇒ Et, Dt, Bt, At, Ct.

6.1.3 More General Cross-Sectional R-Vine Structure and Tree

Building

Finally, we will have a look at the non C- nor D-vine example of the cross-sectional

structure. We skip the presentation of the matrices and only give the matrix and a table

reflecting the dependence of out-vertex and the order of the sub-diagonal structure.
Et

Ct Dt 0
At Ct Ct

Bt At At Bt

Dt Bt Bt At At


Out vertex Order of sub-diagonal structure

E C,A,B,D,E

C E,D,A,B,C

A E,D,C,B,A

Again, we find the same interpretation as in the two cases before. The general rule

extracted from the above examples is given by:
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For each temporal out-vertex, the order of the sub-diagonal structure is given

by

1. the diagonal entries to the left of the column, in which the out-vertex is

the diagonal entry (from left to right),

2. followed by the sub-diagonal entries of this column

3. and the out-vertex itself.

This rule is valid for higher sectional as well as higher time dimensions. For a

higher dimensional example, we refer to the respective part in the appendix.

We are further interested in how these changes are depicted in and can be explained

by the respective trees. Therefore, we will compare the trees of our 5 × 3-dimensional

cross-sectional non C- nor D-vine example for the out-vertices At−1 (in Figure 4.8) and

Et−1 (Figure 6.7 with red highlighted deviating vertices).

A1

B1

C1 D1

E1

A2

B2

C2 D2

E2

A3

B3

C3 D3

E3

A1B1

B1C1 B1D1

D1E1

E1A2

A2B2

B2C2 B2D2

D2E2

E2A3

A3B3

B3C3 B3D3

D3E3

A1B1

B1C1 B1D1

D1E1

E1A2 A2B2

B2C2 B2D2

D2E2

E2A3 A3B3

B3C3 B3D3

D3E3

A1C1|B1 A1D1|B1

B1E1|D1

D1A2|E1

E1B2|A2

A2C2|B2 A2D2|B2

B2E2|D2

D2A3|E2

E2B3|A3

A3C3|B3 A3D3|B3

B3E3|D3
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A1C1|B1

A1D1|B1

B1E1|D1

D1A2|E1 E1B2|A2 A2C2|B2

A2D2|B2

B2E2|D2

D2A3|A2 E2B3|A3 A3C3|B3

A3D3|B3

B3E3|D3

C1D1|A1B1

A1E1|B1D1

B1A2|D1E1 D1B2|E1A2 E1C2|A2B2 C2D2|A2B2

A2E2|B2D2

B2A3|D2E2 D2B3|E2A3 E2C3|A3B3 C3D3|A3B3

A3E3|B3D3

C1E1|A1B1D1 A1A2|B1D1E1 B1B2|D1E1A2 D1C2|E1A2B2 E1D2|A2 : C2 C2E2|A2B2D2 A2A3|B2D2E2 B2B3|D2E2A3 D2C3|E2A3B3 E2D3|A3 : C3 C3E3|A3B3D3

C1 A2|A1B1D1E1 A1 B2|B1 : D1, A2 B1 C2|D1E1A2B2 D1 D2|E1A2 : C2 E1 E2|A2 : D2 C2A3|A2B2D2E2 A2B3|B2 : D2, A3 B2C3|D2B2A3B3 D2D3|E2A3 : C3 E2E3|A3 : D3

Figure 6.7: First six trees of the ”generalised M-vine” time series approach with out-

vertices Et−1 for a five dimensional cross-sectional regular vine structure and three time

steps.

As we only change the cross-serial structure, but not the cross-sectional, it is not

surprising, that the conditioning sets of the respective vertices in both figures are the

same whenever the elements in the conditioned set have the same time index. However,

when there arises a different time in the elements of the conditioned set the conditioning

sets are not the same. This already explains the equality of below triangular structure

and that there are changes of the sub-diagonal structure in the last five rows of the

overall matrix. Further, we know that the trees (and therefore the sub-diagonal part)

will be non-identical since the sixth (D-vine) tree is non-identical to the respective one

in Figure 4.8 in every vertex.

In the example of the out-vertex Et, the order of the sectional dimension becom-

ing part of the root tree (prior called long connecting D-vine) is given by E,D,B,A,C.

This results in a sub-diagonal order C,A,B,D,E, i.e. the sub-diagonal order is the

reversed order of the sectional dimensions, becoming part of the root tree. To fully

understand the order of the sub-diagonal structure it suffices to have a look at the

conditioned sets of the first 5 (in general d) vertices of the sixth (in general (d + 1)-th)

tree, i.e. the blue surrounded elements, with time t = 1. The respective order of the

sub-diagonal structure is then given by aligning the respective sectional dimensions from

left to right.
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6.2 Changing the Temporal In-Vertex

The next generalisation we want to discuss is changing the temporal in-vertices, i.e.

instead of connecting At−1 ↔ At, we now analyse the changes to the matrix when we

connect At−1 ↔ Xt, where X can be any other possible sectional dimension.

We will not go through all examples again, but just give the rule and explain it

based on the five dimensional non C- nor D-vine example.

6.2.1 General Influence on Matrix Representation

An extensive study of changing the in-vertices revealed that it influences the order of

the sectional dimensions on the diagonal structure directly as well as the cross-sectional

triangular structure indirectly, implicitly linked to cross-temporal dependence with lag 1.

• The change of the order on the diagonal is completely analogue

to the change of the order of the sub-diagonal structure, dis-

cussed in the previous section. The respective rule is given by:

For each temporal in-vertex, the order of the sectional dimension on

the diagonal of the overall matrix is given by

1. the diagonal entries to the left of the column of the cross-sectional

matrix, in which the in-vertex is the diagonal entry (from left to

right),

2. followed by the sub-diagonal entries of this column

3. and the in-vertex itself.

• These changes of the diagonal structure also influence the cross-sectional triangular

structure. The probably most simple way to picture this influence is, that now the

diagonal of our cross-sectional matrix is given by the new order obtained by the rule

above. Clearly, we have to adjust the the whole sub-diagonal part of the matrix as

well.

6.2.2 Example: General Regular Vine Structure

Let us now use the five dimensional non C- nor D-vine example to visualise the changes

described above. Recall that the matrix for the connection At−1 ↔ At is given by (4.5).
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Let us assume the optimal connection is given by At−1 ↔ Ct. The developed rule

implies that the new sectional order in the diagonal structure is then given by

E,D,A,B,C, resulting in the new cross-sectional matrix


Et

Ct Dt 0
At Ct At

Bt At Ct Bt

Dt Bt Bt Ct Ct

.

So the corresponding overall matrix, with red highlighted changes versus (4.5), is given

by: (6.2) =



E3

E1 D3

D1 E1 A3

C1 D1 E1 B3

B1 C1 D1 E1 C3

A1 B1 C1 D1 E1 E2

E2 A1 B1 C1 D1 E1 D2 0
D2 E2 A1 B1 C1 D1 E1 A2

C2 D2 E2 A1 B1 C1 D1 E1 B2

B2 C2 D2 E2 A1 B1 C1 D1 E1 C2

A2 B2 C2 D2 E2 A1 B1 C1 D1 E1 E1

C3 A2 B2 C2 D2 C2 A1 B1 C1 D1 C1 D1

A3 C3 A2 B2 C2 A2 C2 A1 B1 C1 A1 C1 A1

B3 A3 C3 A2 B2 B2 A2 C2 A1 B1 B1 A1 C1 B1

D3 B3 B3 C3 A2 D2 B2 B2 C2 A1 D1 B1 B1 C1 C1



.

6.2.3 Explanation via Tree Building

Let us first describe the changes on the diagonal. Until now we only discussed the

dependence between the trees and the sub-diagonal and cross-sectional triangular

structure (i.e. conditioning and conditioned sets). As seen in the matrix (6.2) above,

there arise also changes within the diagonal of the matrix. By looking at the respective

trees of this specification (with red highlighted changes of elements in the conditioned

sets of the vertices versus Figure 4.8, driving the diagonal entries) in Figure 6.7, we find

that the role on the diagonal of A and C have been changed. This results in the order

E,D,A,B,C as developed by our rule.

In general, to get the order of the diagonal entries it is even enough to look at

the (d + 1)-th tree of the vine specification (note it is always a D-vine). The order is
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given by aligning the sectional dimension of the time t = 2 elements in the conditioned

set of the first d vertices (from the left) in reversed order.

A1

B1

C1 D1

E1

A2

B2

C2 D2

E2

A3

B3

C3 D3

E3

A1B1
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D2E2
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A1B1
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D1E1

A1C2 A2B2

B2C2 B2D2

D2E2

A2C3 A3B3

B3C3 B3D3

D3E3

A1C1|B1 A1D1|B1

B1E1|D1

B1C2|A1

A1B2|C2 A2C2|B2 A2D2|B2

B2E2|D2

B2C3|A2

A2B3|C3 A3C3|B3 A3D3|B3

B3E3|D3

A1C1|B1

A1D1|B1

B1E1|D1

B1C2|A1 A1B2|C2 A2C2|B2

A2D2|B2

B2E2|D2

B2C3|A2 A2B3|C3 A3C3|B3

A3D3|B3

B3E3|D3

C1D1|A1B1

A1E1|B1D1

C1C2|A1B1 B1B2|A1C2 A1A2|C2B2 C2D2|A2B2

A2E2|B2D2

C2C3|B2C2 B2B3|A2C3 A2A3|B3C3 C3D3|A3B3

A3E3|B3D3

C1E1|A1B1D1 D1C2|A1 : C1 C1B2|A1B1C2 B1A2|A1B2C2 A1D2|A2 : C2 C2E2|A2B2D2 D2C3|A2 : C2 C2B3|A2B2C3 B2A3|A2B3C3 A2D3|A3 : C3 A3E3|B3 : D3
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E1C2|A1 : D1 D1B2|A1 : C1, C2 C1A2|A1B1B2C2 B1D2|A1A2 : C2 A1E2|A2 : D2 E2C3|A2 : D2 D2B3|A2 : C2, C3 C2A3|A2B2B3C3 B2D3|A2A3 : C3 A2E3|A3 : D3

Figure 6.8: First six trees of the ”generalised M-vine” time series approach for a five

dimensional cross-sectional regular vine structure with in-vertex C and three time steps.

Next, we want to discuss the influence on the cross-sectional triangular structure. The

trees of the respective structure are given in Figure 6.9.

At Bt Dt

Ct

Et
AtBt BtDt

BtCt

DtEt

BtCt AtBt BtDt DtEt
AtCt|Bt AtDt|Bt BtEt|Dt

AtCt|Bt AtDt|Bt BtEt|Dt

CtDt|AtBt AtEt|BtDt

CtDt|AtBt AtEt|BtDt

CtEt|AtBtDt

Figure 6.9: The trees of the non C- nor D-vine example.

As already seen several times we assigned the matrix representation
Et

Ct Dt 0
At Ct Ct

Bt At At Bt

Dt Bt Bt At At

 to this vine specification, i.e. we have chosen the diagonal to be

descending from E to A. This is a common approach in practice of regular vine matrices.

When looking for example at the vertex (CtDt|AtBt), which is reflected in the second

column of the matrix, one could also replace the column by (0, Ct, Dt, At, Bt)
T (and the

third column respectively by (0, 0, Dt, At, Bt)
T ) also reflecting the above trees accordingly.

As mentioned above the change of the diagonal of our overall matrix influences

the triangular structure, given by the sub-diagonal of the cross-sectional structure matrix

M . For getting the correct cross-sectional triangular structure we need to adjust the
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diagonal of this matrix according to our developed rule and then we have to adjust the

sub-diagonal, such that the ”new cross-sectional structure matrix” Mnew reflects the tree

in Figure 6.9 correctly. This can be reached in the following way, given the new diagonal

structure:

• For each entry Mnew(i, i)i=1,...,d on the diagonal structure of the ”new cross-sectional

structure matrix” Mnew, the default sub-diagonal is given by the entries i + 1 up

to m of the order obtained, when Mnew(i, i) is the in/out-vertex. We denote the

resulting default matrix by Mdefault.

• If there arises an element of the diagonal left to Mdefault(i, i) in the sub-diagonal,

this would be wrong. We have to adjust the whole sub-diagonal of this column i.

Therefore, we go through the lines i + 1 up to d of the cross-sectional structure

matrix M and search for Mdefault(i, i).

If we can find this diagonal entry of the default matrix and the respective diagonal

entry of the column in M is in the remaining part of our diagonal of the ”new cross-

sectional structure matrix”, i.e. in the set {Mnew(j, j)i<j≤d}, we add the diagonal

entry to the sub-diagonal.

If not, we will add the entry with the coordinates of the respective and the column,

where Mdefault(i, i) is the diagonal entry, in M to our sub-diagonal.

Let us focus on the following example to better understand this building of the new

matrix.

Example 6.5. Assume we are in the five dimensional non C- nor D-vine example. The

in-vertex is given by Dt, resulting in a diagonal order of E,C,A,B,D.

In the first step, we have to calculate the orders for each diagonal entry and get the i : d−1

entries for the default sub-diagonal:

E: C,A,B,D,E

C: E,D,A,B,C

A: E,D,C,B,A

B: E,D,C,A,B

Mdefault =


Et

Ct Ct 0
At Dt At

Bt At Ct Bt

Dt Bt Bt At Dt


In the next step, we see that obviously the blue surrounded entries are wrong. This means

we have to search for Mdefault(3, 3) = At in the fourth and fifth and for Mdefault(4, 4) = Bt

in the fifth line of the cross-sectional structure matrix.



CHAPTER 6. GENERALISED TEMPORAL CONNECTION 82

• Searching for At in the fourth line, we find two possible candidates, with respec-

tive diagonal entries Dt and Ct:


Et

Ct Dt 0
At Ct Ct

Bt At At Bt

Dt Bt Bt At At

. Only D is arising in the

remaining part of the diagonal order ..., B,D.

• In the fifth line, there arises only one candidate At:


Et

Ct Dt 0
At Ct Ct

Bt At At Bt

Dt Bt Bt At At

. The

respective diagonal entry Bt is indeed in the remaining part of the diagonal order

..., B,D.

=⇒ The sub-diagonal of column 3 is given by (Dt, Bt)
T .

• Searching for Bt in the fifth line, revealed two possible candidates with respec-

tive diagonal entries Dt and Ct:


Et

Ct Dt 0
At Ct Ct

Bt At At Bt

Dt Bt Bt At At

. The remaining diagonal of

Mdefault only contains D, implying the sub-diagonal element of column 4 is given

by Dt.

Hence, the final ”new cross-sectional structure matrix” Mnew is given by:

Mnew =


Et

Ct Ct 0
At Dt At

Bt At Dt Bt

Dt Bt Bt Dt Dt

 .

6.3 Changing the Connecting Edges

The change of the in-vertex has no influence on the sub-diagonal structure and the

change of the out-vertex does not affect the diagonal nor the triangular structure. This

turns out to be important when we look at the connection of e.g. Ct−1 ↔ Ct, because we
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can just combine both effects without any interaction.

This can also be seen from the (d + 1)-th tree, in which the description of the or-

der of the sub-diagonal structure and the diagonal do not depend on each other as they

are determined by one of the elements in the conditioned set of the first m vertices (from

the left) each (compare Figure 6.10, with red highlighted elements for diagonal and blue

highlighted elements for sub-diagonal order, above).

Both effects (changing out and in-vertices) do not directly affect the triangular structure

as the vertices of the first m trees are the same, whenever the elements of the conditioned

set have the same time index, independent on the choice of connecting edges.

E1C2|A1 : D1 D1B2|A1 : C1, C2 A1A2|B1C1B2C2 B1D2|A1A2 : C2 C1E2|A2 : D2 E2C3|A2 : D2 D2B3|A2 : C2, C3 A2A3|B2C2B3C3 B2D3|A2A3 : C3 C2E3|A3 : D3

Figure 6.10: Sixth tree of the ”generalised M-vine” time series approach for a five dimen-

sional cross-sectional regular vine structure and three time steps with connecting edges

(Ct−1Ct).

The matrix of the 5 × 3-dimensional cross-sectional non C- nor D-vine example with

connecting edges (Ct−1, Ct) is given by

(6.3) =



E3

E1 D3

D1 E1 A3

A1 D1 E1 B3

B1 A1 D1 E1 C3

C1 B1 A1 D1 E1 E2

E2 C1 B1 A1 D1 E1 D2 0
D2 E2 C1 B1 A1 D1 E1 A2

A2 D2 E2 C1 B1 A1 D1 E1 B2

B2 A2 D2 E2 C1 B1 A1 D1 E1 C2

C2 B2 A2 D2 E2 C1 B1 A1 D1 E1 E1

C3 C2 B2 A2 D2 C2 C1 B1 A1 D1 C1 D1

A3 C3 C2 B2 A2 A2 C2 C1 B1 A1 A1 C1 A1

B3 A3 C3 C2 B2 B2 A2 C2 C1 B1 B1 A1 C1 B1

D3 B3 B3 C3 C2 D2 B2 B2 C2 C1 D1 B1 B1 C1 C1



.

Remark 6.6. The connection (Ct−1, Ct) can also be interpreted as a generalised

M-vine structure with a different ordered cross-sectional structure. The matrix of the

cross-sectional structure is the given by matrix obtained by the procedure in the previous
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section. Here, it is given by


E1

C1 D1

A1 C1 A1

B1 A1 C1 B1

D1 B1 B1 C1 C1

.

However, for algorithmic reasons it is easier to fit a cross-sectional structure first

and adjust it in accordance to the order implied by the in-vertex.

6.4 Summary and Algorithm

To summarise the generalisation of the regular vine specification from this chapter, we

give a formal definition of our obtained structure and implement those structures in an

algorithm.

6.4.1 Influence of Changing Connecting Edges on Generalised

M-Vines

Recalling Definition 5.5 (Generalised M-Vine), we notice that allowing for changes in the

connecting edges, changes the second restriction within the first part of the definition,

i.e. there can also arise an edge between vertices of different time steps when the sec-

tional dimension is not 1 (respectively A). Furthermore, the changes of the sub-diagonal

structure results in possible different edges on the d-th tree of the restriction of V on

the adjacent columns. Thus, the final definition of our general vine specification needs a

further modification. We will call this R(egular)-T(emporal)-vine.

Definition 6.7. R-T-Vine

A regular vine V on V1 with trees (Nk, Ek)k=1,...,Nd−1 is called R-T-Vine if and only if:

i) E1 = {{(i, s), (j, t)} ⊂
(
V1
2

)
|(i, s), (j, t) are connected via an edge in the cross-

sectional structure at time t and s = t or (i, s) is the out-vertex and (j, t) is the

in-vertex and s = t− 1},

ii) for each single column Xt = ∪di=1{(i, t)}, t = 1, ..., N the restriction of V on Xt has

the same structure, namely the cross-sectional structure and

iii) for each restriction of V on the respective adjacent columns (At)t=1,...,N−1 the d-th

tree is a D-vine.
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As this definition is quite similar to the one given in Chapter 5, Theorem 5.5 and 5.6 can

be easily transferred to this general class of vine structures. Hence, also for R-T-Vines we

have uniqueness (given a specific connection) and a D-vine structure on the d-th tree.

Theorem 6.8. Theorem 5.11 for R-T-Vine

If V is a R-T-Vine specification of a d-dimensional dataset V1 with N time steps, then

the tree Td is a D-vine.

Proof. Following the same steps as the proof of Theorem 5.11 except that the common

vertex of the two restrictions does not necessarily contains the element (d, t+ 1), but still

has degree one on the respective restrictions.

Theorem 6.9. Uniqueness of R-T-Vine

For a given set of vertices V1 with N time steps, a given d-dimensional cross-sectional

structure and given connecting edges, there exists a unique R-T-Vine.

Proof. We only need to show that for each given cross-sectional structure the first d− 1

trees are uniquely determined via the proximity condition of regular vines and the

equality of the single columns Xt and the rest follows from Theorem 6.7 above.

For t = 1, ..., N − 1 taking a look at the first d − 1 trees of Vt, denoting the re-

striction of V on At) we find that they are uniquely determined by the cross-sectional

structure (reflected in Definition 6.6 (ii)) and the fact that the additional vertices

resulting from the edge connecting the single columns Xt and Xt+1 are at most connected

to two vertices (Note that this is a necessary and sufficient condition for Definition 6.6

(iii)).

The first tree is uniquely determined by (i) in the definition of the R-T-vine, so

we will take a look at the trees (Tk)k=2,...,d−1.

On tree Tk the restriction Vt has 2d − k edges and each pair of Vt and Vt+1 share

exactly d− k edges on Tk. Hence, the N − 1 uniquely determined restriction (Vt)t=1,...,N−1

explain Nd−k edges of Tk. On the other hand, we know that V on Tk has exactly Nd−k
edges. Thus, Tk is determined uniquely for k = 2, ..., d− 1. Furthermore, Tk is connected

as it is composed of the N − 1 overlapping regular vines (Vt)t=1,...,N−1. And the proximity

condition must be satisfied, since each vertex in Tk is contained in at least one regular

vine.
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6.4.2 Generalisation of the Algorithm

We have seen that the influence of changing the out or in-vertex on the overall matrix

can be fully described by a simple rule only knowing the cross-sectional matrix and the

respective connecting edges. The rule to get the sectional order for the diagonal or sub-

diagonal structure is summarised in the following algorithm.

Algorithm 2 Sectional order given specific vertex

Input csStructure: cross-sectional structure matrix

Input vertex: the vertex for which we want to get the new order

Input d: sectional dimension

Output resultOrder: vector containing the sectional order of the (sub-)diagonal

function getOrder(csStructure,vertex,d)

j ← row/column of diagonal entry in csStructure equal to vertex

resultOrder from 1 upto j − 1← diagonal of csStructure from 1 upto j − 1

resultOrder from entry up to d− 1← sub-diagonal of csStructure in column j

resultOrder at d← vertex

return structure

The change of the diagonal structure (changes of the in-vertex), however, influences the

cross-sectional triangular structure. These changes are captured by the following two

Algorithms 4 and 3.

Algorithm 3 Update default structure

Input csStructure: cross-sectional structure matrix

Input inOrder: diagonal order given by structure in Algorithm 2

Input startrow: row from which we start start searching for the diagonal entry

Input d: sectional dimension

Output res: the vector containing updated sub-diagonal

function updateDefault(csStructure,inOrder,startrow,d)

for each row i from startrow to d do

if searched element is in the i-th row then

candidates← diagonal entries to the columns containing the searched element

res ← the element in candidates in remaining part of the inOrder

else

res← the element in row i and column of searched element as diagonal entry

return res
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Algorithm 4 Triangular structure given diagonal order

Input csStructure: cross-sectional structure matrix

Input inOrder: (sub-)diagonal order given by structure in Algorithm 2

Input d: sectional dimension

Output Mnew: new cross-sectional triangular structure

function getTriangle(csStructure,inOrder,d)

diagonal of Mnew ← structure

for each column j from 1 to d− 1 do

sub-diagonal at j of Mnew ← getOrder(csStructure,inOrder[i],d) from j to d− 1

if sub-diagonal of Mnew in column i 3 element of diagonal left to column i then

sub-diagonal of Mnew ← updateDefault(csStucture,inOrder,i+1,d)

return sub-diagonal of Mnew

Having Algorithm 2,4 and 3 we are able to further generalise the Algorithm 1 for the

overall matrix, including the feature of changing the connecting edges. Essential for this

step is the independent combination of changing temporal in and out-vertices, which we

have confirmed with the help of the changes in the matrix representation and based on

the vine structure trees (i.e. the m+ 1-th tree).
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Algorithm 5 Temporal vine matrix

Input N : number of time steps

Input csStructure: cross-sectional structure matrix

Input inVertex: the temporal in-vertex

Input outVertex: the temporal out-vertex

Output M : R-T-Vine structure matrix

function temporalVineMatrix(csStructure,N ,inVertex,outVertex)

d← sectional dimension

m← counter for each d columns starting at 1

inOrder ← getOrder(csStructure,inVertex,d)

outOrder ← getOrder(csStructure,outVertex,d)

Triangle ← getTriangle(csStructure,inOrder,d)

diagonal of M ← decreasing sequence d(N −m)+inOrder

for each column from 1 to (N − 1)d do

Sub-diagonal structure of M ← outOrder+(t− p− 1)d

with t = N −m+ 1 and p from t− 1 to 1

After every d− th column

Triangle structure of the d columns ← (N −m)d+Triangle

m← m+ 1

First triangle stucutre M1 ← Triangle

return M

Those algorithms built the basis of the implemented temporal vine functions in the not

yet published R-package tvine by Thomas Nagler, which will be used for the practical

application study in Chapter 9.



Chapter 7

Regular-Temporal-Vine Copula

Specification for Stationary

Multivariate Time Series

Besides the developed R-T-Vine specification, we also have to take into account the re-

spective matrices of copula families and relating parameters, already presented in Chapter

3, for a full general vine copula specification. We will recall the other matrices needed to

fully describe the vine copula specification in this chapter. Further, we will discuss the

influence of assuming stationarity or an autoregressive order of p to those matrices.

7.1 Respective Copula Vine Specification

Given a R-T-Vine matrix M (given by Algorithm 5) we further need to specify the

respective copulas associated with this vine structure. Therefore, we first need to assign

the respective copula families in the matrix F , with parameters stored in P1, ..., Px,

where x denotes the maximal number of parameters of the copula families assigned to

our specification.

Recall that in the N × d-dimensional case with M = (mij)i,j=1,...,N∗d the respec-

tive matrices are given by

89
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F =



0 0 · · · 0 0

FC(m1,1,m2,1|m3,1:mn,1)
0 · · · 0 0

FC(m1,1,m3,1|m4,1:mn,1)
FC(m2,2,m3,2|m4,2:mn,2)

. . . 0 0
...

...
. . .

...
...

FC(m1,1,mn−1,1|mn,1)
FC(m1,2,mn−1,2|mn,1)

. . . 0 0

FC(m1,1,mn,1|∅)
FC(m2,2,mn,2|∅)

· · · FC(mn−1,n−1,mn,n−1|∅)
0


with parameters in the n× n-matrix:

(Pi)i=1,...x =



0 0 · · · 0 0

PC(m1,1,m2,1|m3,1:mn,1)
0 · · · 0 0

PC(m1,1,m3,1|m4,1:mn,1)
PC(m2,2,m3,2|m4,2:mn,2)

. . . 0 0
...

...
. . .

...
...

PC(m1,1,mn−1,1|mn,1)
PC(m1,2,mn−1,2|mn,1)

. . . 0 0

PC(m1,1,mn,1|∅)
PC(m2,2,mn,2|∅)

· · · PC(mn−1,n−1,mn,n−1|∅)
0


Therefore, in a completely general set-up of those matrices, one would have
(N ∗ d− 1)2 +N ∗ d− 1

2
different copulas with overall

x ∗ (N ∗ d− 1)2 +N ∗ d− 1

2
parameters to specify. Obviously, this will be computationally costly for large N or d and

needs to be reduced.

7.2 Reducing Complexity of the Copula Matrix

As already mentioned in Section 2.1, we can significantly reduce this number by assuming

stationartity or an autoregressive order of p.

7.2.1 Stationarity

When assuming a strictly stationary times series we want the multivariate distribution

of each arbitrary successive sample of time steps to be equal to the time shifted

distribution of this sample. This directly implies that the cross-sectional structure will

be time independent and therefore the triangular structures will be the same. Further,

as the distribution is also described by the higher order trees within our vine specifi-

cation we find that for each fixed order p the parallelogram structures are the same as well.

To formally describe this effect we will need the concept of translation invariance,

which exactly describes the structures in our matrix. This part is mainly following the

presentation in Beare and Seo (2015).



CHAPTER 7. R-T-VINE COPULA SPECIFICATION 91

Definition 7.1. Translation Invariance

A vine copula specification (F,V , C) on N time steps and sectional order d fulfilling:

i) Ft,i = Ft+1,i ∀t, t+ 1 ∈ 1, ..., N and ∀i ∈ 1, ..., d as well as

ii) For any edge on V , i.e. e, e′ ∈
⋃Nd−1
k=1 Ek such that De = De′ + (0, s) and

{((ae, be), t)} = {((ae′ , be′), t)}+ (0, s) for some s ≥ 1, we have Cae,be|De = Cae′ ,be′ |De′

is called translation invariant.

Theorem 7.2.

Let the joint distribution of (X1, ...,XN) realise the vine copula specification (F,V , C) on

N time steps and sectional order d. If (X1, ...,XN) is strictly stationary, then (F,V , C) is

translation invariant.

Proof. (Following Beare and Seo (2015))

Given that the parallelogram structures for each order as well as the triangular structure

stays the same in each time point, the number of different copulas to be specified in the

N × d case significantly reduces to (N − 1) ∗ d2 +
(d− 1)2 + (d− 1)

2
. This can be seen in

Figure 7.1 in the following.
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Figure 7.1: Highlighted structure types within the sub-diagonal of the matrix representa-

tion of a multivariate time series with stationarity.

7.2.2 Autoregressive Order p

When assuming an autoregressive order of p in our multivariate time series we assume

conditional independence of observations with lag greater than p. This results in assigning

the independence copula to all entries in the parallelogram structures with order higher

than p in our R-T-Vine specification.

This conditional independence of a strictly stationary process can also be defined

via the so called p-Markov property.

Definition 7.3. p-Markov Property

The array (X1, ...,XN), with Xi ∈ Rd is said to be p-Markov if for any t = p + 1, ..., n,

P(Xt|X1, ...,Xt−1) = P(Xt|Xt−p, ...,Xt−1), i.e. the present state only depends on the p

previous states.

To understand the influences on our copula vine specification we need the concept p-

independence.
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Definition 7.4. p-Independence (based on Beare and Seo (2015))

A R-T-Vine copula specification (F,V , C) for N observations of a d-dimensional dataset

on the set of vertices V1 is called p-independent if it assigns the independence copula to

all edges in V , which do not belong to the restriction of V on some collection of p + 1

adjacent columns.

Indeed, this definition is equivalent to assigning the independence copula to all parallelo-

gram structures with order larger than p, as shown in the following theorem.

Theorem 7.5.

Let V be a p-independent R-T-Vine specification on the vertices V1. Then

i) for each k = 1, ...d−1 the tree Tdp+k has exactly k(N −p−1) independence copulas

and

ii) all edges of the trees Td(p+1), ..., TNd−1 are only assigned independence copulas.

Proof. (Following Beare and Seo (2015))

Assigning independence copula to all parallelogram structures with order higher than p,

yields a number of (N − 1) ∗ p ∗ d2 +
(d− 1)2 + (d− 1)

2
copulas to be specified. For p = 1

this especially is the same reduction as in the stationary case. Combining this effect with

stationarity even reduces the number to p ∗ d2 +
(d− 1)2 + (d− 1)

2
. Again this can be

seen in Figure 7.2 in the following.

Especially, all information concerning the assigned copula families can be stored in

a (d ∗ (p+ 1)− 1)2-dimensional matrix instead of a (N ∗ d− 1)2-dimensional one.
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Figure 7.2: Highlighted structure types within the sub-diagonal of the matrix representa-

tion of a multivariate time series with stationarity and autoregressive order p = 2.

So, now it is just left to show that indeed the p-Markov property implies the p indepen-

dence.

Theorem 7.6.

Let the joint distribution of (X1, ...,XN) realise the vine copula specification (F,V , C)
on N time steps and sectional order d. If (X1, ...,XN) is p-Markov then (F,V , C) is p-

independent.

Proof. (Following Beare and Seo (2015))

7.2.3 Example Calculation: Reduction of Complexity

In this section, we assume different numbers for time steps N and dimensions d. The

following table summarises the number of different copulas to be estimated within the

R-T-Vine specification, assuming no reducing factors, only stationarity, only autoregres-

sive order one and two and stationarity combined with autoregressive order one and two.
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Model/] Copulas specified for N=100, d=5 N=5, d=100 N=100, d=100

Full Model 124,750 124,750 49,995.000

Stationary Model 2,485 44,950 994,950

AR(2) Model 4,960 89,900 1,989,900

AR(1) Model 2,485 44,950 994,950

AR(2)-stationary Model 60 24,950 24,950

AR(1)-stationary Model 35 14,950 14,950

We can see a significant reduction in all three cases. However, the effects become

stronger for higher time dimension N and lower sectional dimension d. Especially, the

total number of copulas for the combined effect does not depend on N , but only on the

dimension d.

As the maximum likelihood estimation of the parameters for our vine specifica-

tion, which will be described in more detail in the next chapter, is really time-consuming

for the full model, we will use the stationary AR(2) model instead.



Chapter 8

Maximum Likelihood Estimation

8.1 Introduction to MLE

Before going into the details of the maximum likelihood estimation (MLE) of the

R-T-Vine specification, we will give an overview on the MLE procedure following Millar

(2011) and Shao (2007).

Let y = (y1, ...,yn)T be a given realisation of the sample Y = (Y1, ...,Yn)T with

density function f . The value of the joint density function for our realisations is given

by f(Y = y|θ), where θ = (θ1, ..., θp),p ∈ N is an unknown parameter vector we need

to estimate. The estimator of θ will ge given by θ̂n, maximising the likelihood function

given by

L(θ) = f(Y = y|θ),

with n denoting the sample size. For a twice differentiable L(θ), we only need to calculate

the roots of the first derivative and check the second order condition. However, it is often

easier to take the logarithm of the likelihood function, the log-likelihood l(θ) = ln(L(θ)),

instead. This is indeed admissible as the logarithm is a strictly monotone function.

Example 8.1. Let Y be a random variable with density f(y|θ) and Y be an independent

identical sample of Y with realisations given by y. Then the likelihood function is given

by:

L(θ) =
n∏
i=1

f(yi|θ)

and the log-likelihood by:

l(θ) =
n∑
i=1

ln(f(yi|θ)).

96



CHAPTER 8. MAXIMUM LIKELIHOOD ESTIMATION 97

Remark 8.2. The MLE estimator θ̂n has some useful properties. The following two are

taken out of Shao (2007) for independent identical distributed data.

Asymptotic Normality: The estimator θ̂n is asymptotically normal distributed, i.e.
√
nθ̂n

d→ θ̂ ∼ N (θ, I(θ)−1), where I(θ) is the Fisher information matrix.

Consistency: The estimator θ̂n is consistent, i.e. θ̂n
P→ θ as n→∞.

8.2 Model Specification for R-T-Vine Copula Model

We will now briefly review the (sequential) maximum likelihood estimation arising in our

temporal vine specification.

Given the regular vine matrix of our R-T-Vine specification, we need to find the

optimal copula families and parameters. This is usually done by optimising some

information criteria, such as the Akaike or Baysian Information Criteria (AIC/BIC).

Definition 8.3. AIC/BIC Let k be the number of estimated parameters and n the

number of data points, then the AIC is given by

AIC = 2k − 2l(θ̂)

and the BIC by

BIC = kln(n)− 2l(θ̂).

For finding the optimal copulas we need to minimise the information criteria. This corre-

sponds to choosing the copula families on each edge in our vine structure V , performing an

MLE for the parameters and using the regular vine pair copula construction as described

in Section 3.2.2 of this thesis to calculate the log-likelihood. Recall that the density is

given by

f =
d∏
i=1

fi
∏

i,j|δ∈E(V)

ci,j|δ(Fi|δ, Fj|δ)

as stated in Theorem 3.12.

Remark 8.4. In general, a copula family to every edge in the selected vine specifica-

tion needs to be assigned. However, when assuming stationarity and an autoregressive

order of p within our R-T-Vine approach this optimisation is simplified, as we assign the

independence or the same copulas to many edges, as already discussed in the previous

chapter.
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Sequential BIC and MLE in R-T-Vine Specifications

Remark 8.5. Within the implementation we determine the (conditional-) bivariate-

copulas sequentially, i.e. tree by tree starting at the first tree. We start by fitting the

copulas of the first tree using the U0,1-distributed dataset. For the following trees we

have to form pseudo-observations using the (conditional-) joint distribution functions im-

plied by the copulas obtained in the previous tree(s). With this pseudo-observations the

selection is again straightforward.

To better understand this procedure of the copula fitting, let us discuss a (n × 2)-

dimensional example here. We assume an autoregressive order of 1 and therefore only

consider the last 4 rows and columns of the matrix representation below. The idea of

sequentially estimating the copulas is mainly following Dissmann et al. (2012) slightly

adapted to our model.

Let the excerpt from the R-T-vine be given by the matrix


B2

B1 A2

A1 B1 B1

A2 A1 A1 A1

, i.e.

we have a cross-sectional C-/D-vine connected via the series of sectional dimension A.

We denote the (n × 2)-dimensional dataset of U0,1 distributed observations from

time 1 to n by D(1,n) = (Ai, Bi)i=1,...,n, the set of densities of the allowed copula families

by F and for each c(·, ·) ∈ F the parameter-vector with kc parameters of the copula by θc.

Following the BIC and MLE optimisation the optimal copula of the edge (A1, B1)

(and due to our assumption in the R-T-vine model also of (Ai, Bi)i=2,...,n) in the first tree

is given by the following minimisation:

min
c∈F

kc ln(n)− 2 max
θc

n∑
i=1

ln(c(Ai, Bi|θc)).

For the edge (A1, A2) (and (Ai, Ai+1)i=1,...,n−1) we need to have a look at the lagged data,

i.e. we split the dataset into a dataset of dimension ((n−1)×4), given by (D(1,n−1),D(2,n)),

and the maximisation problem is given by:

min
c∈F

kc ln(n− 1)− 2 max
θc

n−1∑
i=1

ln(c(Ai, Ai+1|θc)).

Note that this only holds as we assume U0,1 distributed observations (as also re-

quested in most implementations), since the joint density can be decomposed into the
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copula density and the marginal densities and here the marginals are constantly equal to 1.

Recall from Chapter 3 that we can recursively obtain the conditional distribution

functions at the edge (i, j) ∈ E(Tk) for k ≥ 2 via

Fi|δ =
∂Ci′,j′|δ′(Fi′|δ′ , Fj′|δ′)

∂Fj′|δ′
and Fj|δ =

∂Ci′′,j′′|δ′′(Fi′′|δ′′ , Fj′′|δ′′)

∂Fj′′|δ′′
, (8.1)

where (i′, j′) and (i′′, j′′) are the edges in E(Tk−1), which are connected via (i, j), with

i = i′ and j = j′′. And for (i, j) ∈ E(T1) we have δ = ∅ and hence Fi|δ = Fi and Fj|δ = Fj

respectively.

Having determined all optimal copulas and the resulting conditional distribution

functions in one tree, we can use them to obtain the optimal copulas in the following one.

In our example, for the edge (A2, B1|A1) (and again also for (Ai+1, Bi|Ai)i=1,...,n−1)

in the second tree, we need to minimise over all c ∈ F :

kc ln(n− 1)− 2 max
θc

n−1∑
i=1

ln[cA2,B1|A1(FB1|A1(Ai, Bi), FAi+1|Ai
|θc),

where we need to recursively calculate FB1|A1 and FA2|A1 via (8.1). For following trees and

higher dimensional vine structures this procedure can easily be extended.



Chapter 9

Application: Major Stock Indices

9.1 Dataset

The considered data set consists of the monthly closing prices from beginning of 2007 up

to June 2018 (138 observations) of five major stock indices: S&P500, DAX, Nikkei, FTSE

and SMI. The data is retrieved from Yahoo finance1.

9.1.1 Log-Returns

As already seen in Chapter 2, the closing prices of the major stock indices are not sta-

tionary. In finance, one assumes the asset price (St)t∈T to follow a continuous discounting,

i.e.

St = St−1e
r,

where r is the constant continuous return over the time period t − 1 to t. In time series

analysis, logarithmic differences of consecutive prices (log-returns) use this idea. We

assume that those returns are stationary, as already seen in Chapter 2. The number

of observations for each time series reduces by one as we are considering the log differences.

We transform our data set into the respective log-returns. Let us assign the stock

indices to the sectional dimension from 1 to 5 as shown in the following table.

1https://de.finance.yahoo.com
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Sectional dimension Stock Index

1 DAX

2 S&P500

3 FTSE

4 Nikkei

5 SMI

For each sectional dimension X ∈ {1, ..., 5} in our multivariate time series

((1, t), ..., (5, t))t=1,...,138, given by our initial data set, the log-returns (X̃t)t∈1,...,137 are given

by

X̃t = log(Xt+1)− log(Xt) = log(
Xt+1

Xt

).

The Figure 9.1 below, shows the plots of the corresponding autocorrelation functions.

Figure 9.1: Plots of the autocorrelation functions for the log-returns of the considered

data set of five major stock indices.

9.1.2 Data Tansformation

So far, we have transformed the initial data into a stationary data set. In the next step,

we need to normalise the data into the interval [0, 1] in order to be able to apply copula

models.

Recall the probability integral transformation (Theorem 2.18), i.e. F (X) ∼ U0,1.
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Unfortunately, we do not have any information about the marginal distribution func-

tions. That is why we will fit a skewed t distribution to each univariate time series to

obtain the copula data of the monthly log-returns. The distribution function of a skewed

t distribution at x ∈ R (Azzalini and Capitanio (2003)) is given by

ST (ξ, ω2, α, ν)(x) =
2

ω
t(z, ν)T (αz

√
ν + 1

ν + z2
, ν + 1), with z =

x− ξ
ω

,

where t(·, τ) and T (·, τ) denote the densitiy respectively the distribution function of the

Student’s t distribution.

Let (X̃t)t∈T denote the univariate time series in one sectional dimension of our log-returns.

We use the skewed student t innovations for all marginal series with parametrisation as in

Azzalini and Capitanio (2003), i.e. the skewness is captured by only one parameter. This

distribution type is well suited for typical heavy-tailed and skewed economic time series.

Figure 9.2 below displays the respective histograms and fitted distribution functions, using

the sstd functions from the R-package fGarch. We can see a good fitting of the fitted

distributions, covering the negative skewness and the fat tails, to our data set.

Figure 9.2: Histogramm of log-returns with fitted skewed t distributions for the five se-

lected indices.

Finally, we apply the obtained skewed student t distribution functions FX̃ to the series

of the respective log-returns, i.e. FX̃(X̃t) ∼ U0,1, in all five sectional dimensions. The

initial data set is now transformed into a stationary time series of uncorrelated uniform
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distributed data-points. Furthermore, we computed the Kendall’s τ in the following table

and Figure 9.3 displays the pair-plots of all possible pairs.

DAX S&P500 FTSE Nikkei SMI

DAX 1.000 0.578 0.545 0.470 0.509

S&P500 0.578 1.000 0.587 0.432 0.543

FTSE 0.545 0.587 1.000 0.350 0.463

Nikkei 0.470 0.432 0.350 1.000 0.410

SMI 0.509 0.543 0.463 0.410 1.000

Unsurprisingly we find, that FTSE and S&P500 have the strongest dependence, indicated

by the highest Kendall’s τ in the table above. Further, the Nikkei is comparatively weakly

dependent on the other indices as the respective row/column contains the lowest values.

Figure 9.3: Pair-plots of transformed monthly log-returns of the five selected indices.

9.2 Estimation of R-T-Vine Specification

Using the transformed data from the previous section, we will estimate a regular

temporal vine specification. This will be done in three steps: First we need to select

the cross-sectional structure (either via the empircial Kendall’s τ or some information

criteria), second we determine the connecting edges (again using τ or some information

criteria) and third using the obtained regular vine structure, we sequentially choose
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the best copula families via BIC selection criteria and perform a maximum-likelihood

estimation to obtain the R-T-vine specification, which then can be used for performing

predictions.

Note that the selection of cross-sectional structure and connecting edges via BIC

already requires the sequential fitting usually done in step three. Especially, we need

to fit the copulas for all possible regular vine structures in the sectional dimension and

respectively every R-T-vine structure implied by all possible connecting edges and the

previously obtained cross-sectional structure.

9.2.1 Selecting Cross-Sectional Structure

Let (Dt)t=1,...,N denote the time series of our complete transformed dataset with d = 5

sectional and N = 137 time dimensions. We use the optimal structure given by the

implemented function vinecop() in the R-package rvinecopulib to automatically fit a

regular vine describing the cross-sectional relation in our data.

Now, assuming (Dt)t=1,...,N independent identically distributed, we fit the cross-

sectional regular vine structure.

The implemented criteria for the tree selection is maximising the empirical Kendall’s τ ,

i.e. the optimal vine is given by the solution of

argmax
V∈V(V1)

∑
eij∈V

|τij|, (9.1)

where V(V1) denotes the set of all possible vines on V1 vertices.

For our transformed dataset (Dt)t=1,...,N with sectional dimensions {1 = DAX, 2 =

S&P500, 3 = FTSE, 4 = Nikkei, 5 = SMI} the optimal cross-sectional regular vine

matrix is given by


3

4 5

5 4 4

1 1 2 2

2 2 1 1 1

. The corresponding trees are visualised in Figure 9.4

below.
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Figure 9.4: Fitted regular vine to our transformed data set.

This is indeed a more general regular vine structure, i.e. no C- nor D-vine.

In general, we just need this optimal vine to continue with our temporal vine estimation.

However, as we would like to compare our new approach with the M-vine approach from

Beare and Seo (2015) at this point, we need to further specify the respective copula

families and parameters as described in Section 8.2 with respect to the BIC and the MLE.

For comparison with the classical M-vine model we need to fit a D-vine to the

cross-sectional structure first. The optimal D-vine concerning the BIC is given by the

matrix


4

3 2

1 3 5

5 1 3 1

2 5 1 3 3

. To obtain this optimal D-vine matrix we need to perform a full

model fitting for all 5! possible D-vine structures. We therefore perform a sequential BIC

model selection based on parameter selected via MLE as shown in Chapter 8. For the

cross-sectional structure we can use the complete dataset, i.e. we do not need to split up

into the lagged data.

Comparing the information criteria for the non C- nor D-vine, obtained by maximising
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the empirical Kendall’s τ , with the D-vine model (as used in the classical M-vine

approach), we find the following results:

Model/Criteria Log-Likelihood AIC BIC

R-vine (τ) 261.44 -508.88 -488.44

D-vine (BIC) 273.58 -527.16 -497.96

At least for the choice of the cross-sectional structure, the generalised M-vine (and the

R-T-Vine) approach is outperformed by the model developed by Beare and Seo (2015) in

all criteria.

Remark 9.1. However, given some more computational effort, we are able to further

improve the R-T-vine model. Therefore, instead of maximising the empirical Kendall’s

τ , we need to optimise every possible vine structure model with respect to the selection

criteria (e.g. maximising the BIC here).

This means for every possible vine structure on five vertices, we have to perform a full

model fit. We therefore consider all 5! · 4! · 3! · 2! · 1! = 34, 560 possible below triangular

matrices and neglect those matrices not full-filling the proximity condition. For a study on

the number of possible vines and a more efficient algorithm we refer to Morales-N’apoles

O. (2010). This time-consuming optimisation yields a slightly different optimal cross-

sectional structure given by


3

4 4

2 1 2

5 2 1 1

1 5 5 5 5

. The corresponding trees are visualised in

Figure 9.5 below.

3 1 5

4

2
13 15

45

25

13 15 25 45
35|1 12|5 24|5

35|1 12|5 24|5
23|15 14|25
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23|15 14|25
34|125

Figure 9.5: Fitted regular vine to our transformed data set using the maximisation of the

BIC.

This model outperforms the two models above with respect to all selection criteria as

summarised in the following table:

Model/Criteria Log-Likelihood AIC BIC

R-vine (τ) 261.44 -508.88 -488.44

D-vine (BIC) 273.58 -527.16 -497.96

R-vine (BIC) 274.02 -528.04 -498.84

In the following we will continue working with both regular vine structures obtained by

either the maximisation of Kendall’s τ or the BIC.

Note that the tvinecop() function implemented in R is not performing the compu-

tational costly optimisation procedure.

9.2.2 Selecting Connecting Edges

Having determined the optimal cross-sectional structure, we are now interested in finding

the optimal connecting edges. As in the implemented algorithm for finding the optimal

trees in the R-packages V ineCopula, rvinecopulib and tvine we use the edge, maximising

the empirical Kendall’s τ for our vine specification.

Recall that generally the optimal tree selection is performed by the optimisation

problem in Equation (9.1). We are only interested in finding the optimal inter-temporal

edges given the already recurring cross-sectional structure V . Therefore, the optimisation

problem simplifies to

argmax
V?∈M(t,V)

∑
eij∈V?

|τij| = argmax
X,Y ∈{1,...d}

τ((Xt)t=1,...,N−1, (Ys)s=2,...,N) (9.2)

where M(t,V) denotes the set of all possible R-T-Vines with time horizon t and

cross-sectional structure V . Using, the pre-defined algorithms in the not yet published

R-package tvine, we see the maximal τ is given by the connection of FTSE at time t

with itself at t+ 1, i.e. the optimal connecting edge is given by (3, 3).
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Having the optimal cross-sectional structure (using the empirical Kendall’s τ) and

the connecting edges (also using the empirical Kendall’s τ) we are able to come up with

the matrix representation for the overall temporal vine model as given in Algorithm

5. As described in Chapter 6 the changes of the connecting edges influence diagonal,

sub-diagonal and indirectly the triangular part of the overall matrix. The diagonal and

sub-diagonal, following Algorithm 2, is given by the sub-diagonal of the first column

followed by the respective diagonal entry:
3

4 5 0
5 4 4

1 1 2 2

2 2 1 1 1


In/Out vertex Order of (sub-)diagonal structure

3 4, 5, 1, 2, 3

The triangular structure given by this new diagonal order (still describing the same regular

vine structure) can be obtained with Algorithm 4 and yields:


4

3 5 0
5 3 1

2 1 3 2

1 2 2 3 3


This results in the regular vine matrix for N = 3 given (9.3).

(9.3) =



14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 15 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 11 0 0 0 0 0 0 0 0 0 0 0 0

1 5 4 12 0 0 0 0 0 0 0 0 0 0 0

2 1 5 4 13 0 0 0 0 0 0 0 0 0 0

3 2 1 5 4 9 0 0 0 0 0 0 0 0 0

9 3 2 1 5 4 10 0 0 0 0 0 0 0 0

10 9 3 2 1 5 4 6 0 0 0 0 0 0 0

6 10 9 3 2 1 5 4 7 0 0 0 0 0 0

7 6 10 9 3 2 1 5 4 8 0 0 0 0 0

8 7 6 10 9 3 2 1 5 4 4 0 0 0 0

13 8 7 6 10 8 3 2 1 5 3 5 0 0 0

15 13 8 7 6 10 8 3 2 1 5 3 1 0 0

12 11 13 8 7 7 6 8 3 2 2 1 3 2 0

11 12 12 13 8 6 7 7 8 3 1 2 2 3 3



.

Without this changes, i.e. with in- and out-vertex given by 1 instead of 3, we get the

matrix representation of the generalised M-vine (9.4).
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(9.4) =



13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 15 0 0 0 0 0 0 0 0 0 0 0 0 0

5 3 14 0 0 0 0 0 0 0 0 0 0 0 0

4 5 3 12 0 0 0 0 0 0 0 0 0 0 0

2 4 5 3 11 0 0 0 0 0 0 0 0 0 0

1 2 4 5 3 8 0 0 0 0 0 0 0 0 0

8 1 2 4 5 3 10 0 0 0 0 0 0 0 0

10 8 1 2 4 5 3 9 0 0 0 0 0 0 0

9 10 8 1 2 4 5 3 7 0 0 0 0 0 0

7 9 10 8 1 2 4 5 3 6 0 0 0 0 0

6 7 9 10 8 1 2 4 5 3 3 0 0 0 0

14 6 7 9 10 9 1 2 4 5 4 5 0 0 0

15 14 6 7 9 10 9 1 2 4 5 4 4 0 0

11 11 12 6 7 6 6 7 1 2 1 1 2 2 0

12 12 11 11 6 7 7 6 6 1 2 2 1 1 1



.

9.2.3 R-T-Vine Estimation

With the help of this matrix we now need to estimate the optimal families and the

corresponding parameters for each edge in the temporal vine specification.

As we are dealing with stationary time series and assume an autoregressive order

p (in our example p = 2 as this yields the lowest BIC for all p ≤ 2 in the R-T-vine

estimation using the empirical Kendall’s τ) recall from Chapter 7, that we can describe

the whole copula family matrix by the first p+ 1 time steps in the matrix, containing the

triangular structure and the parallelogram structures from 1 to p.

As already mentioned in the previous section the sequential fitting of the copulas

in the cross-sectional structure can be performed on the complete dataset. For the

estimation of the copulas in the parallelogram structure of order k in 1 to p, we need the

lagged data with lag k. This is intuitively clear, however, let us take a look at the exem-

plary edge (1, 7|6) = (6, 12|11) = (Ai, Bi+1|Ai+1)i=1,..,N−1 in the parallelogram structure

of order one in (9.4). For understanding the dependence structure we need to consider

the data (At, Bt+1|At+1)t=1,...,N−1, i.e. we need the dataset D̃ = ((Dt)t=1,...,N−1, (Dt)t=2,...,N)

In general, for the edges in the parallelogram structure of order k we need to split

up the data into a dataset of dimension (k + 1)d × (N − k) for k = 1, ..., p. The new
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dataset (D̃t)t=1,...,N−k is given by

D̃ = ((Dt)t=1,...,N−k, ..., (Dt)t=k+1,...,N).

As described in Chapter 8 the lagged data will be transformed to pseudo-observation to

sequentially determine the optimal conditional bivariate copula at the respective edge

using the BIC (and MLE). We always use the complete available data set for calculation

(e.g. in the cross-sectional structure we will start at t = 1 even when estimating the edge

in the time dimension t > 1) and ensure assigning the same copula to recurring edges in

the next time step.

This whole procedure is captured by the function tvinecop() in the not yet pub-

lished R-package tvine, developed by Thomas Nagler on basis of this thesis.

The contour plot of the fitted copulas for the R-T-vine specification given by (9.3)

using this function can be found in Figure 9.6 below.

Figure 9.6: Contour plot of the (conditional) bivariate copulas obtained by tvincop() for

our transformed data set.

9.2.4 Outperformance of Classical M-Vine

When using the empirical Kendall’s τ for choosing the tree structure, we have already

seen the better performance concerning the information criteria of the classical M-vine in

the cross-sectional structure. Fitting the overall R-T-Vine model and comparing it with
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the classical M-vine approach reveals the same result.

When considering the generalised M-vine (the R-T-Vine with connecting edges

given by (1, 1)), the BIC is in between the one from classical M-vine and the one from

the R-T-vine model. The results are summarised in the following table.

Model[cross-sectional structure, connecting edge] Log-Likelihood AIC BIC

R-T-Vine [R-vine (τ), (3, 3)] (9.3) 825.41 -1588.83 -1498.31

generalised M-vine [R-vine (τ), (1, 1)] (9.4) 824.33 -1586.65 -1496.13

classical M-vine [D-vine (BIC), (3, 3)] (9.5) 867.41 -1648.81 -1523.26

The matrix representation of the classical M-vine for N = 3 is given by

(9.5) =



14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 12 0 0 0 0 0 0 0 0 0 0 0 0 0

2 4 15 0 0 0 0 0 0 0 0 0 0 0 0

5 2 4 11 0 0 0 0 0 0 0 0 0 0 0

1 5 2 4 13 0 0 0 0 0 0 0 0 0 0

3 1 5 2 4 9 0 0 0 0 0 0 0 0 0

9 3 1 5 2 4 7 0 0 0 0 0 0 0 0

7 9 3 1 5 2 4 10 0 0 0 0 0 0 0

10 7 9 3 1 5 2 4 6 0 0 0 0 0 0

6 10 7 9 3 1 5 2 4 8 0 0 0 0 0

8 6 10 7 9 3 1 5 2 4 4 0 0 0 0

13 8 6 10 7 8 3 1 5 2 3 2 0 0 0

11 13 8 6 10 6 8 3 1 5 1 3 5 0 0

15 11 13 8 6 10 6 8 3 1 5 1 3 1 0

12 15 11 13 8 7 10 6 8 3 2 5 1 3 3



.

Using the BIC Optimisation

Again, we might also use a different approach. Analogue to the selection of the cross-

sectional structure we can perform a optimisation of the selection criteria (here BIC)

instead of the empirical Kendall’s τ for the connecting edges. Therefore, we fit a R-T-vine

model based on the cross-sectional R-vine (BIC) for every possible connecting edge. Using

the so obtained optimal cross-sectional structure we come up with the connecting edge

(1, 3). Hence, the sub-diagonal part, the diagonal as well as the triangular structure of

the matrix will be modified compared to the respective generalised M-vine.
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3

4 4 0
2 1 2

5 2 1 1

1 5 5 5 5


In vertex Order of diagonal structure

3 4, 2, 5, 1, 3

Out vertex Order of sub-diagonal structure

1 3, 4, 2, 5, 1

The triangular structure given by this new diagonal order (still describing the same

regular vine structure) can be obtained with Algorithm 4 and yields:


4

3 2 0
1 3 5

2 1 3 1

5 5 1 3 3

.

Here, we see a clear out-performance of the R-T-vine versus the generalised M-

vine based on the cross-sectional structure optimised with respect to BIC and the other

approaches, such as the classical M-vine, discussed above. The best three performing

model are ranked and summarised in the following table.

Model[cross-sectional structure, connecting edge] Log-Likelihood AIC BIC

R-T-Vine [R-vine (BIC), (1, 3)] (9.6) 994.77 -1909.55 -1792.75

classical M-vine [D-vine (BIC), (3, 3)] (9.5) 867.41 -1648.81 -1523.26

generalised M-vine [R-vine (BIC), (5, 5)] (9.7) 866.42 -1646.85 -1521.29

For completeness we will also present the matrix of the optimal R-T-vine (9.6) and the

generalised M-vine (9.7) using the BIC optimisation. The respective contour plot of the

R-T-vine is displayed in Figure 9.7 in the following.
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(9.6) =



14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 12 0 0 0 0 0 0 0 0 0 0 0 0 0

4 3 15 0 0 0 0 0 0 0 0 0 0 0 0

2 4 3 11 0 0 0 0 0 0 0 0 0 0 0

5 2 4 3 13 0 0 0 0 0 0 0 0 0 0

1 5 2 4 3 9 0 0 0 0 0 0 0 0 0

8 1 5 2 4 3 7 0 0 0 0 0 0 0 0

9 8 1 5 2 4 3 10 0 0 0 0 0 0 0

7 9 8 1 5 2 4 3 6 0 0 0 0 0 0

10 7 9 8 1 5 2 4 3 8 0 0 0 0 0

6 10 7 9 8 1 5 2 4 3 4 0 0 0 0

13 6 10 7 9 8 1 5 2 4 3 2 0 0 0

11 13 6 10 7 6 8 1 5 2 1 3 5 0 0

12 11 13 6 10 7 6 8 1 5 2 1 3 1 0

15 15 11 13 6 10 10 6 8 1 5 5 1 3 3



(9.7) =



13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 14 0 0 0 0 0 0 0 0 0 0 0 0 0

4 3 12 0 0 0 0 0 0 0 0 0 0 0 0

2 4 3 11 0 0 0 0 0 0 0 0 0 0 0

1 2 4 3 15 0 0 0 0 0 0 0 0 0 0

5 1 2 4 3 8 0 0 0 0 0 0 0 0 0

8 5 1 2 4 3 9 0 0 0 0 0 0 0 0

9 8 5 1 2 4 3 7 0 0 0 0 0 0 0

7 9 8 5 1 2 4 3 6 0 0 0 0 0 0

6 7 9 8 5 1 2 4 3 10 0 0 0 0 0

10 6 7 9 8 5 1 2 4 3 3 0 0 0 0

14 10 6 7 9 9 5 1 2 4 4 4 0 0 0

12 11 10 6 7 7 6 5 1 2 2 1 2 0 0

15 12 11 10 6 10 7 6 5 1 5 2 1 1 0

11 15 15 15 10 6 10 10 10 5 1 5 5 5 5



.
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Figure 9.7: Contour plot of the (conditional) bivariate copulas obtained by the R-T-vine

using the BIC for optimisation for our transformed data set.

9.3 Simulation and Comparison of Results

In the next step, we want to use our model for the prediction of monthly log-returns of

our five chosen indices. We will compare the result of both R-T-Vine approaches (given

by (9.3) and (9.6)) with the classical M-vine model (given by (9.5)) and a VAR(2)-Model.

The VAR(2)-Model will be fitted on the transformed copula dataset using only bi-

variate Gaussian copulas, which result in a multivariate normal distribution. For the

conditional prediction with the help of copula models one can use the functions imple-

mented in the not yet published R-package tvine. Let us just give a short introduction

into the theory behind the simulation function implemented here.

Simulating from Regular Vine Models

For simulating the next time step in a model, one needs to specify the distribution to

sample from. In regular vine models for multivariate time series we depict the distri-

bution with the help of bivariate (conditional) copulas. A simple way to simulate every

distribution was introduced by Rosenblatt (1952).



CHAPTER 9. APPLICATION: MAJOR STOCK INDICES 115

Definition 9.2. Rosenblatt Transform

The Rosenblatt transform U = T (V ) of a random vector V = (V1, ..., Vd) ∼ F is defined

as

U1 = F (V1), U2 = F (V2|V1), ..., Ud = F (Vd|V1, , Vd−1),

where F (vk|v1, ..., vk−1) is the conditional distribution of Vk given V1, ..., Vk−1, k = 2, ..., d.

The vector U than consists of independent uniform variables.

Remark 9.3. For a given copula F , if U is a vector of independent random variables,

V = T−1(U) has distribution F , i.e. the inverse of the Rosenblatt transformation

V1 = F−1(U1), V2 = F−1(U2|U1), ..., Vd = F−1(Ud|U1, ..., Ud−1),

can be used to simulate from any distribution.

Hence, to simulate the next step, we first generate d independent uniform distributed

realisation and then apply the Rosenblatt transformation conditioned on the d values of

the previous p time steps.

Comparison - Preliminaries

The quality of the predictions will be assessed based on continuous ranked probability

score (see Gneiting and Raftery (2007)). This is an often used tool to asses the quality of

probabilistic forecasts, where the widely known tools such as the mean squared or absolute

error can not directly be applied. Note that the CRPS simplifies to the mean absolute

error if the observations are deterministic.

Definition 9.4. Continous Ranked Probability Score (CRPS)

Let X be a random variable, F the respective cumulative distribution function and x be

the observation related to an empirical probabilistic forecast associated to F . The CRPS

of x and F is defined as:

CRPS(F, x) =

∫ ∞
−∞

(F (y)−Θ(y − x))2dy,

where Θ denotes the heavy-side function, i.e. Θ : R→ {0, 1}, with Θ(x) = IR+
0

(x).

The higher the CRPS, the better the predicted distribution is fitting to the observation,

as a high CRPS indicates a strong increase in the cumulative distribution function around

the observed value, i.e. assigns high probability to the interval around a observation.

To assess our models, we transfer the copula data obtained from the conditional
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prediction in R (via the function tvinecop sim conditional) into log-return data.

Therefore, we use the inverse of the fitted skewed t-distributions from Section 9.1.2. For

simplicity reasons we compare the actual log-return data with the empirical distribution

function of this transformed predictions to calculate the CRPS’s. The conditional

monthly log-returns for July 2018 conditioned on June and May 2018 (i.e. the first

out-of-sample prediction) can be seen in Figure 9.8, using the optimal R-T-vine (9.6).

Figure 9.8: Empirical cumulative distribution functions of monthly log-returns for July

2018, based on the optimal R-T-vine (9.6).

We can see in Figure 9.8 that the obtained ECDF’s of the FTSE and the S&P500 assign

a higher probability to negative monthly log-returns compared to the other three indices

for July 2018.

Comparison - CRPS Assesment

Next, we will asses our three models (9.6),(9.3) and (9.5) with the CRPS’s of each

empirical cumulative distribution function of the single indices. Therefore, we will

calculate the CRPS’s of the in-sample monthly log-returns from January 2018 to June

2018 and of the out-of-sample data from July 2018 to October 2018.

For each observation, we will especially simulate 100, 000 one-step-ahead predictions

(using tvinecop sim conditional) based on all previous observations, transform them

into log-return data, calculate the empirical CRPS’s with the R-function crps sample
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from the package scoringRules and sum up the results.

For the in-sample set we obtain the following results:

Model/Index DAX S&P500 FTSE Nikkei SMI Sum

R-T-vine (9.6) 0.157 0.091 0.142 0.129 0.148 0.667

R-T-vine (9.3) 0.130 0.102 0.112 0.121 0.127 0.592

classical M-vine (9.5) 0.115 0.086 0.102 0.109 0.126 0.538

Not surprisingly, we find that the computational costly model of maximising the BIC

performs best. However, the second best model is the R-T-vine implemented in R even

though we would expect it to be the worst, concerning the information criteria.

Let us now have a look at the CRPS’s for the out-of-sample dataset:

Model/Index DAX S&P500 FTSE Nikkei SMI Sum

R-T-vine (9.6) 0.131 0.127 0.108 0.147 0.113 0.626

classical M-vine (9.5) 0.116 0.112 0.089 0.142 0.099 0.558

R-T-vine (9.3) 0.117 0.088 0.093 0.125 0.103 0.526

Here, we again find that the BIC optimal R-T-vine performs best. However, the classical

M-vine is out-performing the R-T-vine, using the empirical Kendall’s τ , in the out-of-

sample set.

Comparison with VAR(2)

As described in the beginning of this chapter, we fitted a VAR(2)-model (using only

bivariate Gaussian copulas to capture the multivariate normal distribution) on the copula

data obtained by transforming the log-returns via skewed t distributions. Following the

very same procedure of conditional prediction discussed before, we obtained the following

result concerning the CRPS’s for the out-of-sample dataset:

Model/Index DAX S&P500 FTSE Nikkei SMI Sum

VAR(2) 0.113 0.100 0.084 0.132 0.096 0.525

Hence, all copula models out-perform the VAR(2)-model with respect to the CRPS.

Conditional Prediction Quantile for DAX

We will close this section by using the best performing model, the R-T-vine model (9.6),

for calculating the 95% confidence interval for the in- and out-of-sample data from January
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to October 2018 of the DAX. We visualised the boundaries and the actual log-returns in

Figure (9.9) below.

Figure 9.9: 95% confidence bounds for in- and out-of-sample monthly log-returns of the

Dax index for 2018.

We can see in Figure 9.9 that all actual monthly log-returns of the selected time period

lie in between the 2.5% and 97.5% quantile. This also implies a reasonable good fitting

of our model.

To sum up, we found that the newly developed R-T-vine model captures more

flexibility than the other models. However, when fitting the cross-sectional structure and

the connecting edges to data, one has to be cautious in selecting the decision criteria for

optimal tree selection. Of course the application of the new model to only one data set

does not serve statistical relevance. One needs further applications to really assess the

performance of the model.



Chapter 10

Wrap-Up

In this thesis, a new copula model, capturing serial, cross-serial and cross-sectional

(conditional) dependence structures in stationary multivariate time series, has been

developed. Therefore, we have given a short introduction into the mathematical prelimi-

naries including the basics of time series analysis, the notion of copulas and the respective

central theorems, the concept of regular vines and the application of regular vines within

the pair copula construction. We have reviewed the already existing copula models such

as the long D-vine by Smith (2015), the COPAR by Brechmann and Czado (2015) and the

M-vine by Beare and Seo (2015). On basis of the latter, we have enhanced the model by

first allowing for more general cross-sectional structures resulting in the so call generalised

M-vine model. For this model, we have built an algorithm for coming up with a matrix

representation for all possible cases and have been able to formalise and proof some nice

features (for example: the selection of the cross-sectional structure only influences the

triangular structure in the matrix representation). In the next generalisation step, we have

allowed for different inter-temporal connection (changing of the connecting edges). We

analysed the influence on the matrix structure and have further developed the algorithm

of the generalised M-vine. We have called this new model R(egular)-T(emporal)-vine.

On basis of the matrix representation and the corresponding algorithms the R-package

tvine has been developed, including the new function tvinecop() by Thomas Nagler,

performing a complete R-T-Vine specification. This function also captures the feature of

copula selection for the R-T-Vine copula specification and the fitting of the parameters

via maximum likelihood estimation, also both described within this thesis. Finally, we

have applied this new implementation to monthly log-returns of five selected indices and

have been able to prove the out-performance of the classical M-vine model.

Within our generalised M-vine approach, we have connected the cross-sectional
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structures via a long D-vine, yielding also a D-vine in the block notation (compare

Section 4.5), as this is the most promising approach for describing a serial structure.

Another interesting vine structure might be given by other inter-temporal connections

(i.e. the connections of the cross-sectional structures), e.g. via a C-vine. Figure 10.1

below shows the 5 × 3-dimensional case, where the first time step of the first sectional

dimension has been chosen as the central vertex.

A2

B2

C2 D2

E2

A1

B1

C1 D1 E1

A3

B3

C3 D3

E3

A2B2

B2C2 B2D2

D2E2

A1A2

A1B1

B1C1 B1D1

D1E1

A1A3

A3B3

B3C3 B3D3

D3E3

Figure 10.1: First tree of the alternative connection of the cross-sectional structures via a

C-vine approach.

So far, we have only used sequential BIC selection and sequential MLE for selecting the

optimal copula family and parameters. A computational costly joint MLE approach for

the R-T-vine might improve the model and hence, might be interesting to consider.



Appendix A

Vine Structure in Higher Sectional

and Time Dimensions

In this part, we want to give an example of a R-T-vine with d > 5 and N > 3 respectively

p > 2. We therefore fitted a R-T-vine (using the maximal empirical τ -method) with

autoregressive order p = 3 to the daily log-returns of 8 stock indices (DAX, DowJones,

S&P500, EuroStoxx, FTSE, CAC40, SMI and Nikkei) from January 2017 to June 2018.

The regular vine matrix is given by:

29

5 26

2 5 27

8 2 5 31

6 8 2 5 30

1 6 8 2 5 28

7 1 6 8 2 5 25

4 7 1 6 8 2 5 32

3 4 7 1 6 8 2 5 21

13 3 4 7 1 6 8 2 5 18

10 13 3 4 7 1 6 8 2 5 19

16 10 13 3 4 7 1 6 8 2 5 23

14 16 10 13 3 4 7 1 6 8 2 5 22

9 14 16 10 13 3 4 7 1 6 8 2 5 20

15 9 14 16 10 13 3 4 7 1 6 8 2 5 17

12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 24

11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 13

21 11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 10

18 21 11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 11

24 18 21 11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 15

22 24 18 21 11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 14

17 22 24 18 21 11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 12

23 17 22 24 18 21 11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 9

20 23 17 22 24 18 21 11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 16

19 20 23 17 22 24 18 21 11 12 15 9 14 16 10 13 3 4 7 1 6 8 2 5 5

26 19 20 23 17 22 24 18 18 11 12 15 9 14 16 10 10 3 4 7 1 6 8 2 2 2

27 32 19 20 23 17 22 24 19 24 11 12 15 9 14 16 11 16 3 4 7 1 6 8 3 8 3

32 30 32 19 20 23 17 22 24 22 24 11 12 15 9 14 16 14 16 3 4 7 1 6 8 6 8 7

30 25 30 32 19 20 23 17 22 17 22 24 11 12 15 9 14 9 14 16 3 4 7 1 6 1 6 8 6

25 31 25 30 32 19 20 23 17 23 17 22 24 11 12 15 9 15 9 14 16 3 4 7 1 7 1 6 8 4

28 28 31 25 25 32 19 20 20 20 23 17 17 24 11 12 12 12 15 9 9 16 3 4 4 4 7 1 1 8 1

31 27 28 28 28 25 32 19 23 19 20 20 20 17 24 11 15 11 12 12 12 9 16 3 7 3 4 4 4 1 8 8
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and the respective starting tree, already indicating the complexity, is shown in Figure A.1

below.

Figure A.1: First tree of the R-T-vine fitted to the daily log-returns of 8 seected stock

indices [using the plot function in rvinecopulib].

Further, we compare the information criteria with the one of the classical and generalised

M-vine in the following table:

Model/Criteria Log-Likelihood AIC BIC

R-T-Vine 5655.71 -11083.41 -10668.64

generalised M-vine 5620.81 -11021.62 -10621.40

classical M-vine 5614.51 -10919.02 -10355.08

In this data set we can see a clear out-performance in all three criteria of the new model

against the other models.



Appendix B

R Algorithms

Here, we provide a list of all functions and scripts programmed in R used in this thesis

with a short description.

Besides the own programming, we heavily used the following new functions in the

not yet published R-package tvine developed by Thomas Nagler on basis of this thesis:

• tvinecop(), fitting the R-T-vine either using the empirical Kendall’s τ for tree

selection or for pre-defined vines and

• tvinecop sim conditional(), predicting the next time step on basis of the last p

data points and the fitted R-T-vine model.

Further we used the following R-packages:

• rvinecopulib (Nagler and Vatter 2018)

• V ineCopula (Schepsmeier et al. 2018)

• fGarch (Wuertz et al. 2017)

• scoringRules (Jordan, Krueger, and Lerch 2018)

1. RetrieveDataLogRet(): It is retrieving the data for selected indices from

Yahoo-finance. One can choose a start and end date, whether you want the closing

prices or log-returns and the period length between each observation.

2. myDataset(): Wrapper of the RetrieveDataLogRet() function, retrieving the data

used in the application in Chapter 9. Further the data is converted into copula
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data using skewed t distributions and the respective parameters are stored.

3. CoparTree: This script builds the Copar regular vine matrix and produces the

trees in Figure 4.5 using the functions implemented in V ineCopula-package.

4. getOrder(): Function returning the sectional order for a given cross-sectional

matrix and the in-/out-vertex. (Algorithm 2)

5. getTriangle(): Function returning the cross-sectional triangular structure for a

new given diagonal. (Algorithm 3)

6. updateDefault(): This function is used in getOrder(), if there is a mistake in the

default matrix. (Algorithm 4)

7. TemporalVineMatrix(): The function combines the functions 4-6 to come

up with a complete R-T-vine matrix for a given cross-sectional structure and

connecting edges. (Algorithm 5)

8. TreePicture(): Within Chapter 5 and 7 there are many figures containing only the

first d trees of the R-T-vine structure, where d denotes the sectional dimension. To

be able to analyse the full tree pictures, we created a function returning all 14 trees

of the respective regular vine, covering the three cross-sectional cases and every

possible connecting edge discussed in this thesis.

9. DataAnalysis: The script is used to produce the Figures and tables in Section

9.1.2 (histograms with fitted skewed t, table of Kendall’s τ , pair-plot of transformed

log-returns).

10. optimalCS: The script performs a full MLE (using the functions in the tvine-

package) for every possible cross-sectional vine structure and returns the matrix of

the structure with the highest log-likelihood. [Note: this is very time-consuming]

11. Wrapper: This script performs the R-T-vine estimation. It first returns the

cross-sectional structure based on the empirical Kendall’s τ and compares it with

the D-vine. Then it fits the full model and compares the criteria of classical and
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generalised M-vine with the R-T-vine model.

12. FullOptimalTVine: Using the structure obtained in optimalCS, this script

performs the full MLE (again using the functions in tvine-package) for all possible

connecting edges and returns the R-T-vine with the lowest BIC. Further it compares

the criteria with the classical M-vine based on the same cross-sectional structure.

13. CRPS: The script compares the five models using the CRPS as discussed in

Section 9.3.

14. VAR: Fitting a VAR(2) model to our copula dataset using only Gaussian copulas

to restrict to a multivariate normal distribution.

15. QuantilePlot: The script conditionally simulates the monthly Dax log-returns for

2018, calculates the quantiles and plots them with the actual log-returns in Figure

9.9.
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