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Abstract: The three-dimensional forest structure is an important driver of several ecosystem functions
and services. Recent advancements in laser scanning technologies have set the path to measuring
structural complexity directly from 3D point clouds. Here, we show that the box-dimension (Db) from
fractal analysis, a measure of structural complexity, can be obtained from airborne laser scanning
data. Based on 66 plots across different forest types in Germany, each 1 ha in size, we tested the
performance of the Db by evaluating it against conventional ground-based measures of forest structure
and commonly used stand characteristics. We found that the Db was related (0.34 < R < 0.51) to
stand age, management intensity, microclimatic stability, and several measures characterizing the
overall stand structural complexity. For the basal area, we could not find a significant relationship,
indicating that structural complexity is not tied to the basal area of a forest. We also showed that Db

derived from airborne data holds the potential to distinguish forest types, management types, and the
developmental phases of forests. We conclude that the box-dimension is a promising measure to
describe the structural complexity of forests in an ecologically meaningful way.

Keywords: structural complexity; airborne laser scanning (ALS); terrestrial laser scanning (TLS);
three-dimensional; structure; airborne; light detection and ranging (LiDAR)

1. Introduction

The spatial structure of forests is of great interest to forest scientists as it is related to many ecosystem
functions and services [1–5]. Great advances have been made in addressing the three-dimensional (3D)
character of forest structure by approaching it with airborne remote sensing as well as ground-based
(close-range) remote sensing techniques. Among these techniques, radio detection and ranging
(RaDAR; e.g., [6–8]), airborne light detection and ranging (LiDAR; e.g., [9,10]), spaceborne LiDAR [11],
terrestrial laser scanning (TLS; e.g., [12–14]), aerial and satellite imagery (photogrammetry; e.g., [15,16]),
or structure-from-motion (SfM, e.g., [17]) can be named as prominent examples. All of them aim at
capturing the real forest and representing it based on 3D data in a virtual model space, probably most
commonly in the form of 3D point clouds or digital elevation models. Quite recently, the unique
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opportunity to comprehensively address the detailed 3D structure of something as complex in structure
as a tree or forest, gave rise to research focusing on the relationship between the 3D-structural
complexity and ecosystem functions and services. Microclimate regulation (e.g., [18]), carbon storage
(e.g., [19]), productivity (e.g., [20]), and habitat provisioning (e.g., [21]) are some examples. In the past,
such investigations had to rely on surrogates of 3D structure, such as the diameter distribution of
trees (e.g., [22]) or indices of structural complexity that are based on tree heights and tree positions,
e.g., the structural complexity index [23], the enhanced structural complexity index [24], or the Clark
and Evans index of aggregation [25]. For a comprehensive review of structural indices, the interested
reader is referred to [26] and [4].

With technological advancements, the latest efforts have aimed at using the full potential of
3D data from high resolution, ground-based point cloud representations across scales, from single
trees [27–30], forest layers [31,32], or complete stands [12,33–35]. Addressing “structural complexity”
based on 3D models of the real forest offers new research opportunities. Therefore, we need to be clear
about how we define structural complexity.

The structural complexity of a tree can be defined as a summarizing term describing all dimensional,
architectural, and distributional patterns of a tree’s organs at a given point in time [14]. For a
forest, structural complexity may be defined as all dimensional, architectural, and distributional
patterns of plant individuals and their organs in a given forest space at a given point in time.
While high-resolution 3D data from ground-based approaches proved suitable for deriving different
measures of structural complexity on the tree and stand level, the potential of airborne data
has received lesser attention [9,36–38]. Airborne data would be particularly interesting though,
since large-scale measurements from the ground are still tedious, even if ground-based LiDAR is used
in the efficient single-scan sampling mode [35]. Some of the more recently introduced measures, like the
stand structural complexity index [12], are specifically designed to make use of the ground-based
perspective and are hence not suitable for application to data derived from airborne perspectives.
However, a promising approach lies in the use of fractal analysis, more precisely the box-dimension
(abbrev: Db; cf. [29]). This measure can be determined for point clouds from all sources and platforms,
including mobile, airborne, or even spaceborne. The Db can theoretically be calculated for any kind of
object (cf. [39]) and for single trees as well as stands [13]. Db is considered a measure that integrates
the distribution and density of material in space or, in other words, a measure that characterizes the
way in which plants physically occupy space [40]. To calculate the box-dimension of forest stands,
the laser scanning point cloud is to be transferred into voxel models with voxels of varying size.
Usually, one starts with the minimum bounding cube (box) enclosing the entire point cloud as one
large voxel representing the stand. Of course, this representation is so simple that it does not contain
any other information beyond the extent of the object investigated. However, in subsequent steps the
voxel size is reduced and structures are resolved in more and more detail. With each step, both the
voxel size and the corresponding number of voxels are recorded and later contrasted with each other
(see Methods chapter for details). In this way, in contrast to earlier measures of structural complexity,
the Db summarizes the mathematical complexity of an entire point cloud by expressing it as a single
number [39]. The potential of the application of the box-dimension approach to airborne LiDAR
data has, to the best of our knowledge, not been evaluated so far. In our study, we evaluated the
suitability of the box-dimension approach as a measure of structural complexity derived from airborne
laser scanning data. To test whether the Db obtained this way is actually meaningful, we first tested
whether it could successfully discriminate deciduous from coniferous stands and whether it was able to
distinguish the different developmental phases of the stands. We then hypothesized that (i) Db would
be related to ground-based measures of structural complexity, namely the stand structural complexity
index (SSCI [12]) and the structural complexity index (SCI [23]), as well as measures of structural
heterogeneity, namely the coefficient of variation of diameters and the effective number of layers
(ENL [41]). We do not assume very close relationships between the different indices as two measures of
structural complexity hardly refer to the exact same aspect of complexity. In addition, there are different
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perspectives on the forest plot when using airborne scanning vs. terrestrial scanning or inventory data
from the ground. Finally, terrestrial scans are based on the single-scan perspective but contain very high
resolutions (mm) while airborne data are generated from hundreds of perspectives during the fly-over
but with much coarser resolutions. We do, however, expect them to correlate significantly. We also
hypothesized that (ii) there would be a relationship between the easy to observe stand characteristic
basal area and Db. Furthermore, we hypothesized that (iii) the airborne box-dimension would be
related to stand age and management intensity as well as (iv) to the microclimatic variability in the
stands, which is addressed here using the diurnal temperature range.

2. Materials and Methods

2.1. Study Sites

In our study, we used 66 forest plots, each 100 by 100 m in extent (see Table 1), that were part
of the Biodiversity Exploratories project (see [42] or https://www.biodiversity-exploratories.de/ for
further detail).

Table 1. Overview of some key characteristics of the study sites with HAI = Hainich;
SCH = Schorfheide-C.; ALB = Swabian Alb.

Exploratory Plot_ID No. of Trees Basal Area (m2/ha) Main Tree Species Stand Age 2019 (yrs)

ALB AEW02 454 38.57 Picea abies 65
ALB AEW03 657 46.57 Picea abies 55
ALB AEW06 392 27.63 Fagus sylvatica 85
ALB AEW07 210 34.23 Fagus sylvatica 135
ALB AEW08 299 44.41 Fagus sylvatica 155
ALB AEW09 386 32.62 Fagus sylvatica 155
ALB AEW10 1166 48.56 Picea abies 38
ALB AEW12 329 37.91 Picea abies 66
ALB AEW13 401 49.96 Picea abies 85
ALB AEW14 319 50.24 Picea abies 84
ALB AEW20 221 31.73 Fagus sylvatica 130
ALB AEW22 257 30.02 Fagus sylvatica 120
ALB AEW23 143 25.5 Fagus sylvatica 170
ALB AEW27 902 12.56 Fagus sylvatica 30
ALB AEW29 408 34.72 Picea abies 85
ALB AEW30 624 26.87 Fagus sylvatica 75
ALB AEW31 992 44.19 Picea abies 45
ALB AEW32 648 28.45 Picea abies 45
ALB AEW33 914 39.55 Picea abies 45
ALB AEW34 782 45.62 Picea abies 59
ALB AEW37 233 11.94 Fagus sylvatica 175
ALB AEW42 452 26.12 Fagus sylvatica 92
ALB AEW46 401 23.91 Fagus sylvatica 62
ALB AEW47 534 32.69 Fagus sylvatica 85
ALB AEW48 310 34.09 Fagus sylvatica 110
ALB AEW50 178 33.52 Fagus sylvatica 160
HAI HEW02 687 43.23 Picea abies 63
HAI HEW07 330 28.92 Fagus sylvatica 192
HAI HEW09 255 27.25 Fagus sylvatica 167
HAI HEW10 402 37.54 Fagus sylvatica 175
HAI HEW11 605 41.55 Fagus sylvatica 178
HAI HEW12 333 37.24 Fagus sylvatica 102
HAI HEW15 176 5.24 Fagus sylvatica 107
HAI HEW16 1111 17.82 Fagus sylvatica 93
HAI HEW19 398 37.11 Fagus sylvatica 163
HAI HEW29 249 29.43 Fagus sylvatica 165
HAI HEW30 413 26.71 Fagus sylvatica 175

https://www.biodiversity-exploratories.de/
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Table 1. Cont.

Exploratory Plot_ID No. of Trees Basal Area (m2/ha) Main Tree Species Stand Age 2019 (yrs)

HAI HEW31 365 27.49 Fagus sylvatica 170
HAI HEW34 473 35.03 Fagus sylvatica 110
HAI HEW35 585 32.05 Fagus sylvatica 72
HAI HEW36 516 30.62 Fagus sylvatica 105
HAI HEW37 296 39.43 Fagus sylvatica 162
HAI HEW38 329 35.71 Fagus sylvatica 169
HAI HEW39 255 35.14 Fagus sylvatica 124
HAI HEW41 364 31.97 Fagus sylvatica 73
HAI HEW42 250 31.95 Fagus sylvatica 95
HAI HEW47 311 34.77 Fagus sylvatica 133
HAI HEW48 188 30.69 Fagus sylvatica 185
HAI HEW49 292 26.62 Fagus sylvatica 137
HAI HEW50 509 26.89 Fagus sylvatica 92
SCH SEW01 1331 31.23 Pinus sylvestris 31
SCH SEW02 1124 39.85 Pinus sylvestris 42
SCH SEW04 753 43.49 Pinus sylvestris 103
SCH SEW14 1068 38.72 Pinus sylvestris 39
SCH SEW17 372 39.83 Pinus sylvestris 117
SCH SEW18 495 34.91 Pinus sylvestris 81
SCH SEW23 411 29.92 Quercus spp. 116
SCH SEW24 405 37.47 Quercus spp. 177
SCH SEW25 435 28.13 Quercus spp. 118
SCH SEW31 296 29.48 Pinus sylvestris 88
SCH SEW33 676 38.57 Pinus sylvestris 123
SCH SEW34 473 29.67 Pinus sylvestris 127
SCH SEW35 187 23.86 Fagus sylvatica 138
SCH SEW36 375 32.83 Fagus sylvatica 52
SCH SEW37 189 30.72 Fagus sylvatica 126
SCH SEW49 138 17.16 Fagus sylvatica 92

For these 66 plots, both airborne laser scanning data and a full all ground-based enumeration
of all trees with diameter at breast height (DBH) > 7 cm was available. The plots were in the three
Exploratories (see Figure 1), with 16 plots in the Schorfheide-Chorin region (Northeast Germany), 24 in
the Hainich-Dün region (Central Germany), and 26 in the Swabian Alb region (Southwest Germany).

Figure 1. Map of Germany highlighting the locations of the study areas.
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2.2. Methods

2.2.1. Airborne Laser Scanning Data and Point Cloud Processing

Airborne laser scanning data were acquired in July, 2015 using a Q780 Riegl Sensor at an operating
frequency of 400 kHz from a flight height of approximately 950 m above ground. This resulted in
an average pulse density of 13 pls × m−2 with a mean pulse spacing of 29 cm, as observed for the
areas of the 66 plots. As multiple returns were recorded per pulse, the average point density was
36.24 pts ×m−2. The pre-processing was performed using LAStools [43]. This included the removal of
isolated returns, retiling into 500 × 500 m tiles, classification of returns into ground and vegetation,
and normalization of the elevation values to above ground level (AGL). Finally, the point clouds were
clipped using the plot boundaries and the vegetation returns were exported as CSV files with the
xyz-coordinates of each return. A visualization of the airborne LiDAR data of two exemplary plots
from different perspectives is provided in Figure 2.

Figure 2. Airborne light detection and ranging (LiDAR) point clouds of two example plots used in
this study. Top: Plot AEW02; Bottom: Plot HEW48. Both point clouds are shown from top view,
intermediate angle, and side view of exemplary cross-sections. Both plots are 1 ha in size (100 × 100 m).
Further details on AEW02 and HEW48 are provided in Table 1. Colors indicate return intensity were
not of importance in our analysis. We kept colors here only for better visualization.

Based on these CSV files, we calculated the box-dimension of each plot for the full 100 × 100 m
with Mathematica software (Wolfram Research, Champaign, USA) and as described in the following.
Based on all points in the point clouds, the algorithm determined the number of boxes of varying
size that were needed to encapsulate all points. Starting with the minimum bounding cube (only one
needed to enclose all points), the box sizes were consecutively reduced in steps that always cut the box
edge length in half. Consequently, starting with 100 × 100 × 100 m, the next size was 50 × 50 × 50 m,
25 × 25 × 25 m, and so on, until the lower cut-off was reached. The lower cut-off was set as 50 cm as a
highly conservative estimate of the point cloud resolution.

The box-dimension of a tree or forest can then be considered the slope of the fitted straight
line through a graph of log(N) over log(1/r) [29,30,44]. Here, log() is the natural logarithm, N is the
number of boxes (here: boxes) of size r (edge length in relation to the initial edge length used for the
first box) needed to enclose all points of a tree or forest. Figure 3 provides a visual outline of the
box-dimension calculation.
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Figure 3. Workflow for the determination of the box-dimension: exemplary plot HEW48 as original
airborne LiDAR point cloud with return intensities shown as different colors (top; 366,486 points) and
representation of points indicating the centers of the voxels of a 20 cm voxel model without coloring
but with shading (middle; 267,379 points). Consecutive subset of boxes of decreasing size for an
exemplary box only (lower left). Table contrasting box sizes with number of filled boxes (lower right).
Bottom right: exemplary log-log plot with the slope representing the box-dimension (Db).

2.2.2. Terrestrial Laser Scanning and Point Cloud Processing

Terrestrial laser scans were conducted in Summer 2014 on all 66 plots, using a Faro Focus 3D 120
terrestrial laser scanner (Faro Technologies Inc., Lake Mary, USA). On a regular grid with 33 m spacing,
we made nine scans per 1-ha plot; for details see [12,41]. All scans were set to scan with an angular
resolution of 0.035◦ in horizontal and vertical directions. The total 594 single scans were then filtered
for erroneous points using standard filters in Faro Scene (Faro Technologies Inc., Lake Mary, USA) and
exported as xyz-files. Since the scans were used each on their own (single-scan approach), no merging
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procedure (co-registration) was necessary. Based on these xyz-files, we calculated the effective number
of layers (ENL2D; [41]) as a measure of vertical structure, as well as the stand structural complexity
index (SSCI; [12]), using the same algorithms as in the original work and Mathematica software.
In short, ENL2D is a measure that first quantifies the number of vertical layers (1 m in thickness) that
actually contain vegetation and secondly weighs the numbers based on the filling of the layers using the
inverse Simpson index (more plant material in a layer = greater weight). The SSCI index uses vertical
cross-sections through the point cloud to quantify the complexity of the surrounding forest scene
based on the relationship between the perimeter of the polygon, connecting all points in a cross-section
and the area enclosed by it. By using a 1280 cross-section for a 360◦ field of view in the azimuthal
direction, a detailed description of the structure of the forest scene was provided. The interested reader
is referred to [12,41] for more explanation and mathematical details on the two indices.

2.2.3. Additional Information on Plot Level

For each plot, we obtained information from the Biodiversity Exploratories database (http:
//www.bexis.uni-jena.de/PublicData/PublicData.aspx). This included stand age (see also Table 1;
source: [45]; Dataset ID: 17486), management intensity as expressed by the silvicultural management
index (abbreviated: SMI; [45]; Dataset ID: 17746), basal area ([46]; Dataset ID: 22907), structural
complexity index by [23], and the coefficient of variation of the diameter of trees larger than 7 cm at
breast height, both from Dataset ID 17687 [46,47].

Furthermore, we used the mean diurnal temperature range (DTR; see [18]; based on Dataset ID:
19007) as a measure of the “stability” of the forest microclimate.

2.3. Statistical Analysis

The open source software R (Vers.3.5, R Development Core Team) was used for all statistical
analyses. The general relationship between the different variables and the box-dimension (Db) was
described through the Spearman’s rank correlation coefficient (rho) as a non-parametric correlation
measure, because a linear relationship between the variables could not be assumed. The significance of
the correlation was assumed if the p-value of the correlation coefficient was <0.05, indicating the true
rho to be not equal to 0.

We used Welch’s T-test to test for significant differences in structural complexity between coniferous
and deciduous forest plots. The regression analysis between explanatory and response variables was
conducted with generalized linear modeling techniques by applying generalized additive models to the
data [48]. This method requires no predefinition of the relationship between response and explanatory
variable, which allows the unbiased detection of trends in the data themselves. The exponential family
distribution of the response variable was specified as normal along with an identity link function.
The effective degrees of freedom were limited to a maximum of 3 to avoid over-fitting the data and
allow the detection of general trends within the data [49]. The amount of smoothing was chosen
automatically through generalized cross-validation [50].

3. Results

Despite some overlap, we found a significantly (p < 0.05) higher structural complexity (Db) for
the investigated deciduous stands when compared to the coniferous stands (Figure 4).

We observed significant differences between the management types “age class forests”,
pooling together all phases (thickets, polewoods, immature and mature stands), and “selection forests”
(Figure 5a), considering all 66 plots. The structural complexity of unmanaged forests did not differ
significantly from age class forests or selection forests.

http://www.bexis.uni-jena.de/PublicData/PublicData.aspx
http://www.bexis.uni-jena.de/PublicData/PublicData.aspx
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Figure 4. Box-and-whisker plot of box-dimension for all 66 study sites, grouped as coniferous (n = 21)
or deciduous (n = 45) forests. The differences in mean were significantly different from zero (p < 0.05).

Figure 5. Box-and-whisker plots of box-dimension from airborne laser scanning data for (A) all
stands, and (B) only stands dominated by European beech (n = 42). In (A) Different lower-case letters
indicate statistically significant differences between the groups AC: Age class forest, SE: Selection forest,
UM: Unmanaged forest. In (B), we did not test for statistically significant differences among age
classes due to two occasions of small sample sizes (n = 2 for thicket and polewood). TH: Thicket;
PW: Polewood; IM: Immature; MA: Mature.

Considering only plots dominated by European beech (largest sample), we found an increasing
trend in the box-dimension from thickets (mean: 2.04) over that of polewood (mean: 2.07) to immature
(mean: 2.11) and mature forests (mean: 2.14) (Figure 5b). We did not test for significance when
comparing the age classes due to the limited sample sizes of polewoods (n = 3) and thickets (n = 2).

The box-dimension (Db) derived from the airborne laser scanning data was significantly
positively correlated with the stand structural complexity measures obtained from the ground-based
measurements, namely the SSCI and SCI (see Figure 6A+B). It was also positively related to the
coefficient of variation of diameters (Figure 6 C) and the effective number of layers (E), both measures
describing forest structure. Furthermore, we found a positive relationship with stand age (F).
Significant negative relationships were discovered for Db and management intensity (G) as well as the
diurnal temperature range (H), the latter indicating an increased microclimatic stability (lower DTR)
with increasing complexity. Basal area (Figure 6C) was not significantly related to the Db from
airborne LiDAR.
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Figure 6. Scatterplots of box-dimension from airborne LiDAR (Db) against measures of structural
complexity (stand structural complexity index (SSCI) and structural complexity index (SCI);
(A,B), against the coefficient of variation of diameters (CV_dbh; (C), basal area (BA; (D), the effective
number of layers (ENL2D; (E), stand age (F), silvicultural management intensity (SMI; (G) and the
diurnal temperature range (DTR; H). Spearman’s correlation coefficient (Cor) is presented for all
p-values indicating that true rho is not equal to 0 (p < 0.05). Solid black lines indicate significance at the
level of p < 0.05 of the smoothing terms in the generalized additive models. Grey dashed lines show
non-significant parameter estimates of the smoothing term.

An overview of some numerical characteristics of the generalized additive models that have been
visualized in Figure 6 are provided in Table 2.
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Table 2. Overview on several characteristics of the generalized additive models. Estimated degrees
of freedom (EDF) = 1 if the model penalized the smooth term to a simple linear relationship;
p.EDF = significance of smoothing; n= number of plots for which data was available.
DevEx = Deviation explained.

X-Axis Label EDF p.EDF DevEx n

SSCI 1.869 <0.001 25.99 66
SCI 1.849 0 32.5 66

CV of dbh 1.805 <0.001 22.56 66
BA (m2) 1.613 0.4178 3.71 66
ENL2D 1.762 <0.001 28.04 66

Age (yrs) 1.161 <0.001 18.28 66
SMI 1.268 0.0298 11.94 54

DTR (◦C) 1.084 0.0025 15.05 64

4. Discussion

We first tested the performance of Db in differentiating between forest types (coniferous vs.
deciduous). Db differed significantly for coniferous vs. deciduous stands even though we observed
some overlap in the range of values. We argue that this is to be expected since, aside from forest type,
the contrasted stands also differed in management regime, developmental phase, and geographical
location. Furthermore, earlier research [12] already revealed that the coniferous stands pooled here have
considerable differences in structural complexity depending on the main tree species (pine vs. spruce).

Secondly, the Db from airborne laser scanning (ALS) was evaluated for its performance in separating
different management types. The unmanaged forests investigated here showed only intermediate
structural complexity and did not differ from the age class stands forest or selection forests, which is
a result of the short period since management ceased (~20 yrs). Furthermore, management ceased
when the stands were in the optimum phase, which is naturally a phase of low structural complexity,
particularly in the case of European beech [35]. The significant differences between age class forests and
selection forests supports the hypothesis that the Db from ALS data is indeed capable of distinguishing
structural patterns as a consequence of different management. While age class forests have a high
variability in structural complexity if all age classes are considered together, they also tend to have the
greatest complexity in the younger developmental phase, particularly in thickets [35]. The age class
forests investigated here also showed great variability in structural complexity (Figure 6A) but may
seem to contrast when it comes to the complexity of thickets. Instead of the highest values for thickets,
we found a trend from low to high complexity for the successive developmental phases. We argue that
this is due to the very limited number of shelter trees in our thickets. Usually, the remaining overstory
trees add great complexity to thickets [35], but, in the case of the thickets investigated here, these trees
have already been removed to a great extent. However, our findings must be interpreted with caution
due to the small sample sizes of thickets (n = 2) and polewood (n = 3).

We further compared Db with various ground-based measures, including two measures of
structural complexity, namely the stand structural complexity index (SSCI) and the structural complexity
index (SCI). While SSCI is a holistic measure of structural complexity that is derived from terrestrial
laser scanning (cf. [12]), SCI can be calculated from conventional inventory data. Both have proven
useful in the past as surrogates of microclimatic stability (SSCI; [41]), classifiers of forest types (SCI: [23];
SSCI: [12] and [35]), or predictors of biodiversity, e.g., for ant species (SSCI:[51]) or tree species diversity
(SSCI: [12]). Here, the birds-eye perspective of airborne laser scanning (ALS) yielded intermediate but
significant correlations (R = 0.35 − 0.51) between Db and the two ground-based measures of structural
complexity. It is hence not surprising that Db was also correlated with the coefficient of variation of the
diameters at breast height (CV_dbh) as the latter is known to be strongly correlated to stand structural
heterogeneity [46].
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We showed that Db from airborne data, despite the possible effects of the occlusion of lower
forest strata, was correlated with several ground-based measures that are related to stand structural
complexity. The occlusion effects may have reduced the strength of the correlations but did not impede
them. The observed correlation between Db and the effective number of layers (ENL2D), a measure of
vertical structural evenness, supports this argument. Morsdorf et al. [52] also highlighted that ALS
data can be used to discriminate forest strata even in multi-layered forests.

A relationship between structural complexity and basal area may be expected, since Db is
dependent on stand density and material distribution in space [39]. Earlier studies found that basal
area was related to Zenner and Hibbs’ SCI [53]. In addition, previous research showed that structural
complexity measured using SSCI was dependent on stand density as well, even though space-filling
was used instead of basal area as a measure of density [12]. However, space-filling considers the
actual canopy space exploration and goes far beyond basal area (sensu [34,54]). Here, we argue that
basal area was not related to Db since it is not a holistic measure of structural complexity. Basal area
provides no information on the crown dimensions (those parts that are responsible for most of the
complexity in a forest), but also trees below a certain threshold, usually 7 cm in diameter at breast
height, are not included in its calculation based on standard inventory data. In contrast, in the point
cloud, all trees are included and accounted for, regardless of their size. The absence of a significant
correlation between Db and basal area may be a result of these fundamental discrepancies and leads to
a rejection of hypothesis (ii).

We further hypothesized that Db would be related to the age of a stand. In our data, we found clear
indications to support this hypothesis. With increasing stand age, structural complexity as measured
by Db increased (Figure 6f). We argue that this is due to the increased structural complexity of the
individual trees with age [30]. The effect was still evident when the forests were grouped according to
the main tree species (data not shown), meaning that this relationship did not result from the fact that
the deciduous stands in our study were on average older than the coniferous ones (see Table 1).

The observed negative relationship between the management intensity index (SMI) and Db

confirmed the findings of Stiers et al. [35], who studied beech-dominated forests across a management
gradient from intensively managed to unmanaged old-growth forests, clearly highlighting that the
greatest complexity is to be found in old-growth stands (low SMI). ALS data has already shown a
potential for addressing forest structure–management relationships in earlier studies. For example,
Valbuena et al. [55] showed that the Gini coefficient derived from ALS data was useful to identify
changes in forest structure due to management. Our findings on the relationship between Db and
stand age and SMI are in line with these results and support our third hypothesis (iii).

Finally, hypothesis (iv) was also supported by our identification of a significant positive relationship
between the microclimatic stability, here addressed using the diurnal temperature range, and the
structural complexity (Db) of the stands. Earlier pilot studies already showed that structural complexity,
when addressed from the ground using the TLS-based SSCI, was positively related to the microclimatic
stability, reducing daily temperature fluctuations and the vapor pressure deficit [12].

Past research showed that a large number of forest metrics can be derived from ALS point clouds,
including species identities [56,57], a plethora of structural measures [9,58], and even forest type
classifications [10,59,60]. As a measure of structural complexity, Db was related to all measures tested in
our study except basal area. The strength of the relationships may often only be weak or intermediate
(R = 0.34 − 0.51), but we argue that this is to be expected if a holistic measure like Db, that uses
basically all data in the point cloud to combine them into a single number, is related to the individual
characteristics of a stand.

In earlier studies based on digitizers, measurements of Db were restricted to tree compartments,
e.g., roots [61]. Terrestrial laser scanning (TLS) data expanded the application of fractal analysis to
single trees or tree groups [13,29]. Here, we show that Db from ALS can be a useful descriptor enabling
an assessment of forest structural complexity for 1-ha plots and theoretically much larger areas and
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even in difficult terrain. This supports the idea that applying fractal techniques at the stand level can
yield new insights into forest structure [62].

5. Conclusions

Quantifying the structural complexity of forest stands is important to support a management
for complexity, thereby strengthening ecosystem functioning and ecosystem services. We showed
that the box-dimension (Db), as a measure of structural complexity that already showed potential
in ground-based LiDAR applications, can also be derived from airborne laser scanning data.
Using different ground-based measures for reference, we were able to show that ALS-derived
Db has the potential to identify differences in forest type, management type, and developmental
phase. Furthermore, it was sensitive to stand age, management intensity, and structural changes.
Finally, it was related to an indicator of microclimatic stability in terms of temperature fluctuations in
the stands.
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