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Abstract

Coronary artery disease (CAD) is the leading global cause of mortality and has

substantial heritability with a polygenic architecture. Recent approaches of risk

prediction were based on polygenic risk scores (PRS) not taking possible nonlinear

effects into account and restricted in that they focused on genetic loci associated with

CAD, only. We benchmarked PRS, (penalized) logistic regression, naïve Bayes (NB),

random forests (RF), support vector machines (SVM), and gradient boosting (GB) on

a data set of 7,736 CAD cases and 6,774 controls from Germany to identify the

algorithms for most accurate classification of CAD status. The final models were

tested on an independent data set from Germany (527 CAD cases and 473 controls).

We found PRS to be the best algorithm, yielding an area under the receiver operating

curve (AUC) of 0.92 (95% CI [0.90, 0.95], 50,633 loci) in the German test data. NB

and SVM (AUC~0.81) performed better than RF and GB (AUC~0.75). We

conclude that using PRS to predict CAD is superior to machine learning methods.
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1 | INTRODUCTION

An essential part of precision medicine is the development of
diagnostic and prognostic models. This can be challenging
especially in the analysis of complex diseases like coronary
artery disease (CAD), as many environmental and genetic
variants simultaneously affect disease risk (Smith et al.,
2005). CAD is caused by deposits in the arterial walls of the
coronary arteries, which leads to a reduced or incomplete
blood flow and thus to a reduced oxygen supply to the heart.
Thus, this chronic disease develops over years and leads to
concomitant symptoms such as cardiac arrhythmias or

myocardial infarction. CAD is currently one of the most
common causes of death or disability worldwide (Lopez,
Mathers, Ezzati, Jamison, & Murray, 2006). In addition to
lifestyle and environmental factors (Yusuf et al., 2004),
familial clusters of this disease indicate a significant genetic
background (Marenberg, Risch, Berkman, Floderus, & Faire,
1994). Numerous studies reviewed by Khera and Kathiresan
(2017) have been published so far, associating a total of
approximately 60 individual genetic variants with CAD.
Thus, CAD is a polygenic disease with a substantial
heritability which makes risk estimation based on the genetic
background attractive. Models for risk assessment for CAD
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have already been proposed and entered clinical routine, but
these are mainly based only on clinical variables, such as the
HeartScore (Thomsen, 2005) and the Framingham Risk Score
(Wilson et al., 1998).

The extent to which the addition of scores based on
individual genetic variants to such clinical scores can
improve these existing models has been repeatedly
investigated (Abraham et al., 2016; Beaney, Cooper,
Drenos, & Humphries, 2017; Krarup et al., 2015; Ripatti
et al., 2010; Tada et al., 2016). These polygenic risk scores
(PRS) had the limitation to consider only genetic variants
for which an association with CAD has previously been
established. In contrast, in two recent papers by Khera
et al. (2018) and Inouye et al. (2018), genome‐wide
polygenic risk scores (GPRS) were proposed that use
millions of genetic variants to predict the risk of CAD and
other complex diseases at a high level of accuracy,
regardless of their association with the disease. The
authors state that this would enable risk prediction at the
time of birth and thus early and effective prevention
programs. However, the proposed risk score prediction
models are built as simple sums of the single genotypes,
weighted by their univariable effect on disease, thus
based on the assumption of linear additive effects of the
underlying clinical and genetic factors only.

Here, we want to address the question whether
accounting for nonlinear effects of these factors can
further improve the predictiveness of models. To answer
this question, we utilize various methods from the field of
machine learning which offer attractive algorithms to
model nonlinear effects. Our assumption is that more
complex algorithms should provide a better way to model
the complex genetic driving structures of a complex
disease like CAD. The aim of this study is to assess how
good different algorithms can discriminate CAD cases
from controls, that is a classification, using solely the
genetic information. The results of this study will assist
researchers in finding the best approach to incorporate
the genetic information into risk modeling approaches by
compressing the genetic information in a way that
provides the most discriminative value.

2 | METHODS

2.1 | Algorithms

Throughout this study we assume that nD samples in
a data set D are characterized by p predictor variables
(predictors) ∈ ⋯X = × ×n p n

p
n×

1
D D D   . The predic-

tors are genotypes of single nucelotide polymorphisms
(SNP), thus = {0,1,2}j . Additionally, the outcome
(outcome) ∈Y y = {−1,1} denotes the control (−1) or

case (1) status of a sample. The task for a classification
model MD

hA; , based on algorithm A with hyperparameter
settings h and trained on D, is to estimate the case
probability (Y= 1), given a realization x of the predictors:

∣Y Mx xˆ ( = 1 ) = ( )D
hA; . In this study we considered

six commonly used algorithms for creating classification
models: GPRS, naïve Bayes (NB) classifier, regularized
regression, random forest (RF), gradient boosting (GB),
and support vector machine (SVM). Detailed information
on these prediction algorithms are presented in the
Supporting Information, or can be found for example in
Hastie, Tibshirani, and Friedman (2009). All algorithms
can be used in conjunction with the R package mlr
(Bischl et al., 2016), which was used for benchmarking,
hyperparameter tuning, variable selection, training, and
testing in version 2.12.

2.2 | Data sets

We used six imputed data sets with samples of European
descent from the German population. The original data
includes a total of 9,314 observations with diagnosed
CAD (cases) and 8,160 observations without CAD
(controls). An observation has been defined as a case if
he/she has myocardial infarction, acute coronary
syndrome, angina pectoris, or coronary stenosis greater
than 50%. Details on the single data sets including
the respective number of observations (columns 6–8) are
listed in Table 1. Detailed age information is not available
in the data sets at hand.

2.3 | Imputation and data set‐specific
quality control

Before imputation, the data sets were individually
subjected to the same quality control steps, as described
in Andlauer et al. (2016). This includes the exclusion of
samples whose proportion of missing genotypes exceeds
2% or whose proportion of heterozygous genotypes
deviates four standard deviations from the mean value
in the respective data set. In addition, samples who
were identified as population outliers based on
multidimensional scaling (MDS) components were
excluded. One sample of pairs with estimated cryptic
relationship less than four, that is any closer than first
cousins pairs, was excluded. Genetic variants were
excluded if their proportion of missing genotypes
exceeded 2%, the minor allele frequency (MAF) estimated
in the data set was less than 1%, or the p value for the test
on deviation from Hardy–Weinberg equilibrium (HWE)
was lower than 1 × 10−5. In addition, palindromic SNPs
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with alleles A/T or G/C were removed. The Sanger
Imputation Service (McCarthy et al., 2016; Wellcome
Trust Sanger Institute, n.d.) was used for imputation
of the individual data sets. Estimation of the haplotypes
was done using SHAPEIT2 (Delaneau, Zagury,
& Marchini, 2012) and IMPUTE2 (Howie, Donnelly, &
Marchini, 2009) was used as the imputation algorithm.
The Haplotype Reference Consortium served as reference
panel (McCarthy et al., 2016). The variants were
subjected to further quality control after the imputation.
Variants with an imputation quality less than 0.8, a MAF
less than 1%, a p value in the test for deviation from HWE
less than 1 × 10−20 or a proportion of missing genotypes
greater than 2% were removed from the imputed data
sets. After imputation and quality control, a total of
8,275 CAD cases and 7,434 controls with 5,539,917
genetic variants present in all data sets are available.
Details on the number of observations in each imputed
data set are shown in Table 1 columns 9–11.

2.4 | Preprocessing and quality control
on combined data

For the following analyses, the data sets G1, G2, G3, G4,
G5, and LURIC were combined to form one data set to
achieve more stable model estimates due to the increased
number of samples.

Combining the data sets required further quality
control which is summarized in the flow chart
(Figure 1).

Genotype probabilities were converted into fixed
genotypes using PLINK, version 1.9b4.4 (Chang
et al., 2015) using the best‐guess method, with the
highest probability genotype selected as the fixed
genotype. Genotypes for which the highest probability
was less than 0.9 were set to missing. Furthermore,
SNPs with imputation quality <0.9 in any data set
were excluded.

Further quality control included three steps and were
also performed with PLINK. The first step was quality
control at the SNP level. SNPs were removed if the
proportion of missing genotypes exceeded 2% (call
rate > 98%), if the MAF was less than 5% or if the test
for deviation from HWE yielded a p value of less than
1 × 10−5. In the second step, criteria were applied at
the sample level. Observations were removed if the
proportion of missing genotypes exceeded 2% (call
rate > 98%) or if the proportion of heterozygous SNPs
differed by more than three standard deviations from the
mean in the respective data set. For the last step, the
cryptic relationship in the data sets was analyzed. For the
estimation of the cryptic relationship SNPs in minimal

LD to each other were selected. Regions with 2 × 106 base
pairs were considered, in each of which one SNP was
removed from SNP pairs with r2≥ 0.2. The regions were
gradually shifted by 2 × 105 base pairs. Based on the
remaining SNPs, the cryptic relationship was analyzed.
In the third step, the SNPs pruned for cryptic relatedness
were added back into the data, and one of two samples
was removed for pairs in which the degree of the cryptic
relationship was less than two. Finally, the criteria used
in the second step were reapplied.

2.5 | Training and test data sets

To allow the testing of the classification models, the
combined data set consisting of the data sets G1, G2, G3,
G4, G5, and LURIC was divided into a training data set
Dtrain and an independent test data set Dtest

⁎ . For the test
data set Dtest

⁎ , n = 1000test
⁎ randomly selected samples

were removed from the base data set.
To avoid unnecessarily increasing the computational

effort due to highly correlated predictors, from SNP pairs
in D that are in high LD one SNP was removed using
PLINK (LD pruning). A threshold of r2 = 0.5 was
chosen. The regions considered included 1 × 104 base
pairs. With each iteration, this region was shifted by
1 × 103 base pairs.

For quality control, the imputed data were trans-
formed into unique genotypes using a best guess
procedure, as described above. Here, sporadically missing
values can occur. However, some of the prediction
algorithms used cannot handle missing values. To avoid
the exclusion of too many samples or predictors due to
isolated missing values, the imputed data of the genetic

FIGURE 1 Flow chart illustrating the preprocessing and
quality control. Solid lines indicate data flow, and the loosely
dashed line indicates flow of cryptic relatedness analysis results
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markers remaining in the data sets after quality control
and LD pruning were retransformed using the expected
genotype, that is xi,j= p1 + 2p2, where p1 and p2 are the
probabilities of sample i to have one or two alternate
alleles at SNP j. Thus, the support of the predictors in all
data sets is ⊂= [0,2]j  , j= 1,…, p.

2.6 | Genome‐wide association

As described in the Supporting Information, the PRS
needs weights for each SNP. Since the available data sets
contributed to most of the published GWAS results for
CAD, taking public effect estimates could induce a bias
when evaluating the classification performance. There-
fore, a GWAS was first performed on the training data set
Dtrain. For the estimation of the single SNP effects
PLINK was used on the best guess genotypes. Since
the phenotype in the present data sets is dichotomous, a
logistic regression was performed with sex as an
additional covariable. The effect estimates from this
GWAS were used as weights for the PRS.

2.7 | Variable selection

The training data set Dtrain comprises a large number of
predictors. From these, RFs, regularized regression and
GB use internal mechanisms to identify those that are
relevant for the prediction. The predictive power of PRS,
NB classifier, and SVM, on the other hand, depends on
how many noninformative predictors are present in the
data set. Nevertheless, the prediction quality can also be
improved for the algorithms with internal variable
selection, but above all the duration of the training of
the corresponding algorithms can be reduced if an
external variable selection is carried out beforehand.

One possibility of variable selection is the prioritization of
the predictors on the basis of an importance measure.

During training of each of the classification
algorithms, the best ̃p predictors regarding the
importance measure were to be selected (see
Figure 2). This value was added as an additional
hyperparameter to be optimized to the hyperparameter
search spaces defined in Table 2. Thus, the optimal
number of SNPs as predictors was chosen free of any
further hypotheses automatically during the optimization
process for each algorithm.

As Wright, Ziegler, and König (2016) report, RFs are
generally able to account for interactions between
predictors for predictions, although it is not possible to
identify interactions as such. Therefore, the corrected
Gini importance, an unbiased measure of the total
decrease in node impurity (Nembrini, König, & Wright,
2018), was used as the measure of variable importance.
The corrected Gini importance is unbiased like the
permutation importance and is almost as computation-
ally fast as the classic Gini importance. Specifically, this is
achieved by adding a randomized version of each
predictor variable during training of a RF and correcting
the Gini importance of each original predictor variable by
the Gini importance of the corresponding randomized
predictor variable. For this purpose, a RF with 50,000
trees and mtry (the number of variables available for
splitting at each tree node) set to 10% of all available
predictors was grown on the training data set with the
R package ranger, version 0.8.1‐300 (Wright &
Ziegler, 2017). Only variables with a corrected Gini
import greater than 0 were used to train the algorithms.

2.8 | Benchmark

To select the classification algorithms best suited for the
classification of CAD, they were compared by nested
cross‐validation (CV) with 10‐fold outer CV by the area
under the receiver operating characteristic (ROC) curve
(AUC). During this performance comparison, each outer
CV training data set was randomly reduced to 20% of
the samples to limit the computational overhead. The
hyperparameters of the individual algorithms were
optimized by means of a sequential model based
optimization (SMO) on each reduced outer CV training
data set using a fivefold inner CV. For this, the R package
mlrMBO, version 1.1.0 (Bischl et al., 2017), was used. As
surrogate model in the SMO a RF with 500 trees and
mtry ⌊ ⌋d=  was used, where d is the number of
hyperparameters of the respective algorithm to be
optimized. As implementation for the surrogate model,
the R package ranger was used. The remaining

FIGURE 2 Flow chart illustrating the different steps of
building the classification models
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TABLE 2 Hyperparameter search spaces and optimal hyperparameter settings of the classification algorithms

Algorithm Hyperparametera Search space
Optimal
hyperparameterb SNPsc AUCd

Polygenic risk

score

Weight {TRUE, FALSE} TRUE 50,633 0.9106

Support vector

machine

Type {C‐svc, nu‐svc} C‐svc 8469 0.8149

C‐svc C ⊂10[−5,5]  0.0011

nu‐svc nu ⊂[0, 1] 
Kernel {vanilladot, rbfdot, polydot,

laplacedot, besseldot}

besseldot

rbfdot sigma ⊂10[−5,2] 
polydot degree ⊂[1, 5] 

scale ⊂10[−5, 5] 
offset ⊂2[−3, 3] 

laplacedot sigma ⊂10[−5, 2] 
besseldot order ⊂[0, 6]  1

degree ⊂[1, 5]  5

sigma ⊂10[−5, 2]  3.52 × 10−5

Shrinking {TRUE, FALSE} TRUE

Naïve Bayes

classifier

Laplace ⊂[0, 10]  0.0738 10,508 0.8137

Random forest num.trees ⊂{100, 200, …, 5000}  3,400 1,357 0.7649

mtry ⊂[0.001, 0.1]  0.00206

min.node.size ⊂[10, 100]  79

replace {TRUE, FALSE} TRUE

Gradient boosting eta ⊂[0, 1]  9.69 × 10−5 3,120 0.7646

booster {gbtree, gblinear} gbtree

gbtree gamma ⊂[0, 10]  4.35

max_depth ⊂[1, 14]  13

min_child_weight ⊂2[0, 7]  2.16

subsample ⊂[0, 1]  0.0644

colsample_bytree ⊂[0, 1]  0.703

colsample_bylevel ⊂[0, 1]  0.369

gblinear lambda ⊂2[−10, 10] 
lambda_bias ⊂[0, 10] 
alpha ⊂[0, 1] 

base_score ⊂[0, 1]  0.587

nrounds ⊂[1, 5000]  3,887

Logistic regression link {logit, probit, cloglog}

Regularized

regression

alpha ⊂[0, 1] 
s {lambda.1se, lambda.min}

standardize {TRUE, FALSE}

Note: Details about the individual hyperparameters can be found in the descriptions of the individual classification algorithms and in the documentation of the
respective R packages.
Abbreviations: AUC, area under the receiver operating curve; SNP, single nucleotide polymorphism; SVC, support vector machine.
aHyperparameters in this column should be read as nested hierarchical list. The left most values denote level 1 hyperparameters, the value below and right
denote a selected value for the level 1 hyperparameter, and finally, the right most values denote level 2 hyperparameters dependent on the selected value of the
respective level 1 hyperparameter. For example, the Support Vector Machine algorithm supports two different values for the level 1 hyperparameter type,
namely C‐svc, and nu‐svc. If during hyperparameter tuning, C‐svc is selected, there is a dependent level 2 hyperparameter C with its own search space, and if
nu‐svc is selected, another level 2 hyperparameter nu which has to be tuned over its own search space.
bOptimized hyperparameters determined by 10‐fold cross‐validation.
cOptimal number of SNPs with the highest corrected Gini importance which enter the classification models as predictors.
dAverage AUC over 10 cross‐validation test data sets with the optimal hyperparameter settings after training.
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hyperparameters of the surrogate model remained in the
default settings. The internal hyperparameter optimization
was limited to a maximum of 100 iterations and a
maximum runtime of 4 weeks. The following R packages
were used as implementations of each of the classification
algorithms described above:

1. Polygenic risk score riskScoreR, version 0.6
(own development, available at https://github.com/
imbs‐hl/riskScoreR);

2. Naïve Bayes classifier e1071, Version 1.6‐7 (Meyer,
Dimitriadou, Hornik, Weingessel, & Leisch, 2017);

3. Regularized regression glmnet, Version 2.0‐5
(Friedman, Hastie, & Tibshirani, 2000);

4. Random forest ranger, Version 0.8.1‐300 (Wright &
Ziegler, 2017);

5. Gradient boosting xgboost, version 0.6‐4 (Chen
et al., 2018);

6. Support vector machine kernlab, version 0.9‐25
(Karatzoglou, Smola, Hornik, & Zeileis, 2004).

The hyperparameter search spaces of each algorithm
were defined as shown in Table 2.

2.9 | Hyperparameter tuning

Running the benchmark allowed for the selection of the
best algorithms. However, from the benchmark no optimal
hyperparameter settings for any algorithm can be derived,
as in each fold of the outer CV, other training data is taken.
Thus, for each outer fold one optimal model for each
algorithm has been created by hyperparameter optimiza-
tion in the inner CV. Therefore, for the best algorithms
selected by the benchmark, a hyperparameter optimization
by means of SMO was subsequently performed with
respect to the AUC as a measure of quality on the
complete training data set Dtrain. Again, the R package
mlrMBO and a forest with 500 trees and mtry ⌊ ⌋d= 

were used as a surrogate model, where d is the number of
hyperparameters of the respective algorithm to be opti-
mized. As an implementation for the surrogate model, the
R package ranger was used. The remaining hyperpara-
meters of the surrogate model remained in the default
settings. Hyperparameter optimization was limited to a
maximum of 100 iterations and a maximum runtime of 4
weeks with 10‐fold CV. We used the same hyperparameter
spaces as for the benchmark, listed in Table 2.

Finally, a final classification model was compiled for
each of the best algorithms with the optimal hyperpara-
meter settings on the entire training data set.

For an overview of the steps to build the final
classification models see Figure 2.

2.10 | Testing of models

To check the classification quality, the final models were
primarily evaluated on the test data set Dtest

⁎ with respect
to the AUC and their 95% confidence intervals according
to DeLong, DeLong, and Clarke‐Pearson (1988). Perfor-
mance in terms of mean misclassification error, balanced
accuracy, true positive and negative rates, and false
positive and negative rates was also evaluated for
different thresholds converting the probability estimation
of the respective models into hard classifications. In
addition, a graphical evaluation is carried out on the basis
of the ROC curves, and the rank correlation of the
predicted class probabilities of the individual classifica-
tion models is examined on the basis of the Kendall
correlation (Kendall, 1938).

3 | RESULTS

3.1 | Preprocessing and quality control

After merging data sets G1, G2, G3, G4, G5, and LURIC, the
combined data set comprised a total of 15,709 observations,
of which 8,275 were cases of CAD and 7,434 were controls.
A total of 4,243,908 SNPs with an imputation quality
greater than 0.9 were present in all data sets.

After quality control, the combined data set comprised
15,510, observations and 2,777,815 SNPs. The exclusion
of highly correlated SNPs provided 98,374 SNPs for
further steps. The proportion of CAD cases was 52.96%,
and the proportion of women was 37.51%.

Details on the single quality control steps can be found
in the Supporting Information.

3.2 | Training and test data sets

After preprocessing and quality control, the combined data
set included 15,510 observations with 7,247 (46.7%)
controls and 8,263 (53.3%) CAD cases. Of these,
n = 1000test
⁎ observations (473 controls and 527 CAD

cases) were set apart for the test data set Dtest
⁎ for later

testing of the classification models. Thus, the training data
set Dtrain comprised a total of n= 14, 510 observations with
6,774 (46.7%) controls and 7,736 (53.3%) CAD cases.

3.3 | Variable importance

The calculation of the corrected Gini importance
required about 22 hr with 16 parallel threads on an
Intel® Xeon® E5‐2680 2.70 GHz CPU. Overall, 50,646

GOLA ET AL. | 131

https://github.com/imbs-hl/riskScoreR
https://github.com/imbs-hl/riskScoreR


SNPs had a positive corrected Gini importance and
were included in the further steps.

3.4 | Benchmark

All algorithms reached the maximum number of iterations
for the SMO within the respective 4‐week runtime.
Figure 3 shows the performance in terms of AUC of the
different classification algorithms in the benchmark. The
PRS leads this benchmark with a median AUC of 0.9131
well ahead of the other classification algorithms. On the

second to fifth place follow the SVM, NB classifier, RF, and
GB. These four algorithms achieve a median AUC> 0.7 in
the benchmark. In particular, the SVM, the NB classifier
and the RF are very close together with median AUCs of
0.7448, 0.7417, and 0.7369. Regularized regression and
logistic regression are some way behind GB and below a
median AUC of 0.7. These classification algorithms were
therefore excluded from the further steps.

3.5 | Hyperparameter tuning

The hyperparameter tuning was performed for the
classification algorithms PRS, SVM, NB classifier, RF, and
GB. For all algorithms, 100 optimization iterations could be
performed within the maximum runtime of 4 weeks. The
optimal hyperparameter settings of the individual classifica-
tion algorithms are summarized in the last columns of
Table 2 together with the optimal number of SNPs entering
the respective model and the respective performance after
hyperparameter optimization as mean AUC. Particularly
noteworthy here are the very large differences in the
optimal number of SNPs, which enter into the individual
models as predictors. Thus, for the PRS with 50,633 SNPs
almost all available SNPs are included in the final
classification model, while in the final RF model only
1,357 SNPs are considered.

3.6 | Testing of models

The testing of the final classification models on the test
data set Dtest

⁎ yielded the following AUC values and 95%
confidence intervals:

1. Polygenic risk score: 0.9222, [0.9045, 0.94]

FIGURE 3 Result of the benchmark.
Shown are the values of the quality
measure area under the receiver operating
characteristic curve per algorithm from
the outer cross‐validation as box plots

FIGURE 4 Receiver operating characteristic curves of the final
models on the test data set Dtest

⁎
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2. Support vector machine: 0.8228, [0.7972, 0.8484]
3. Naïve Bayes classifier: 0.8189, [0.7929, 0.8449]
4. Random forest: 0.7453, [0.7151, 0.7754]
5. Gradient boosting: 0.7399, [0.7092, 0.7707].

The corresponding ROC curves of the classification
models on Dtest

⁎ are shown in Figure 4. Clearly, the
classification model of the PRS dominates all other
classification models. Also, the AUC confidence interval
does not overlap with any confidence interval of the other
models. The SVM model and the NB classifier model are
nearly equivalent in terms of specificity and sensitivity
for different thresholds. Accordingly, the AUC confi-
dence intervals are almost completely superimposed. The
same applies to the weakest models, the GB model and
the RF model. Here, however, it can be observed that the
model of the GB in the range of a specificity between
approximately 0.45 and 0.75 has a slightly higher
sensitivity than the RF model. At a specificity lower
than 0.45, this reverses. The confidence intervals of the
models of the SVM and the NB classifier show no overlap
with the confidence intervals of the GB and RF models.
These relationships between the individual models can
also be seen by considering the Kendall correlation of the
predicted case probabilities (Figure 5). Thus, there is a
strong correlation between the ranks of the predicted
values of the SVM model and the NB model of τ= 0.7.
The correlation between the predictive values of the RF
and GB model is somewhat weaker with τ= 0.6, but just

as strong as between the PRS model and NB and SVM
models. All other correlations are τ= 0.6.

Figure 6 shows the distributions of the predicted
probabilities for the class “CAD case,” stratified according
to the true CAD status for the final classification models.
Noticeable is the distribution of the probabilities for the
model of the NB classifier, which are strongly pushed to the
edges 0 and 1 for both CAD status groups, which is due to
the NB classifier attempting to maximize the a posteriori
class probabilities. In contrast, the probability distributions
of the other classification models tend to be more
symmetrical. In addition, for the models of GB, SVM, and
RF, the predicted class probabilities take values from
extremely short intervals. Thus, the probabilities predicted
by the GB model are in the range [0.5575, 0.587], those by
the SVM model in the range [0.533149, 0.53315] and those
by the RF model in the range [0.5058, 0.5546]. Only the
models of the NB classifier and the PRS draw on
the complete range [0, 1]. The distributions also show that
the PRS model is best suited to discriminate observations
between the two CAD status classes.

The limited ranges of predicted probabilities affect the
search for an optimal threshold for dichotomizing the
predictions. Figure 7 shows different quality measures
depending on different thresholds for the final classifica-
tion models. It can easily be seen that the PRS model is
also better in other performance measures, such as
mean misclassification and balanced accuracy, than the
other models.

FIGURE 5 Kendall correlation of class probabilities between the classification models on the test data set Dtest
⁎
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4 | DISCUSSION

In this study, classification models have been developed
with the aim to discriminate individuals with CAD from
healthy individuals by using genetic information only.
For the application of the PRS, a GWAS was performed
on the training data set to obtain weights for the
individual SNPs. This was necessary because the avail-
able data sets contributed to most of the published GWAS
results for CAD, and thus taking public effect estimates
would have induced a bias when evaluating the
classification performance.

To allow a fair comparison of the different classification
algorithms, a benchmark was performed by means of
nested CV on the training data. The clear winner was the
simple PRS with a mean AUC of 0.9131. The more complex
classification algorithms SVM, NB classifier, RF, and GB all
achieved at least an AUC>0.7. These five algorithms
qualified for hyperparameter optimization and final model-
ing. The algorithms regularized regression and logistic
regression achieved poor classification performance and
were not considered further. For logistic regression, this is
due to the poor convergence property of the algorithm: If

more than approximately 850 predictors were included in
the training, convergence of the algorithm was no longer
possible. However, it is unclear why regularized regression
fared similarly poorly.

After the optimization of the hyperparameters, the
different numbers of SNPs used in the final models was
striking. With 50,633 SNPs, almost all available predictors
entered the final model of the PRS, while only 1,357 SNPs
were used for the final RF model. One reason for this
could be that the importance of SNPs was also
determined by a RF. However, by design, other classifica-
tion algorithms may use other variables to generate good
predictions, so they will need to look at more SNPs for
modeling until the variables specific to the algorithm are
available. This reasoning is also supported by the fact that
the second‐lowest number of SNPs was used for the
gradient‐boosting model in which the basic models were
also decision trees. Overall, far more SNPs are used for
the prediction in all models than are significant in a
GWAS. This supports an altered view on the underlying
genetic mechanisms in complex diseases currently
discussed in the literature. For example, Boyle, Li, and
Pritchard (2017) suggest the “omnigenetic model” in

FIGURE 6 Distributions of the estimated case probabilities by true disease status in the test data set Dtest
⁎
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which all genes that are expressed in disease‐relevant
cells ultimately influence the etiology of complex diseases
through their influence on disease‐relevant genes.

The testing of the five final models on a part of the
combined data set as a test data set showed the same
ranking of the algorithms as in the benchmark. The
classification performance from testing corresponded
approximately to the respective values from the bench-
mark. Thus, although we are lacking a sensitivity analysis
in the sense of performing repeated splits of the entire
data set into distinct Dtrain and Dtest

⁎ and re‐evaluating the
entire process, the benchmark performance values, as
based on 10‐fold CV, can be seen as an indicator of the
performance in the testing data set. Furthermore, the
highly restricted ranges of the predicted probabilities by
the SVM, GB, and RF models indicate that these models
are very poorly calibrated, that is the proportion of actual
CAD cases does not match the predicted probabilities. In
contrast, the predicted probabilities of the PRS model and
the model of the NB classifier are on the entire [0, 1]
interval. One reason for this is the behavior of the
individual classification algorithms (Niculescu‐Mizil &

Caruana, 2005), especially in the use of the AUC as a
criterion during hyperparameter optimization, which
focuses exclusively on a good discrimination of the
CAD disease status. However, a good calibration of
predictive models alongside good discrimination is much
more important for prognostic models than for diagnostic
models (Cook, 2007). As the available data sets are
retrospective case/control, only diagnostic models can be
developed, so that this aspect is rather negligible for the
classification models developed here.

Carrying out the calculation of the variable impor-
tance and GWAS outside of the CVs in the performance
comparison and during the hyperparameter optimization
can be viewed critically. Usually, all steps to determine
variable weights should be performed within a CV to
avoid over‐optimistic estimates of model qualities (Bischl,
Mersmann, Trautmann, & Weihs, 2012). However, the
additional time required for this would have been
enormous because the one‐time calculation of the
importance of the variables alone required 22 hr. Also,
we assume that calculation of the variable importance
outside the CVs leads only to slight distortions, since the

FIGURE 7 Performance measures depending on varying thresholds for transforming the predicted class probability into hard class
predictions in the test data set Dtest

⁎

GOLA ET AL. | 135



RF algorithm already uses internal bootstrapping. Since
the final classification models were also tested on
independent data sets, little overall distortion of the
classification quality is to be expected. In addition, it was
found that the AUC did not vary much for all
classification models between performance comparison,
hyperparameter optimization and testing on Dtest

⁎ .
More generally, it might be questioned whether the

data used for the GWAS and training was, in the strictest
sense, independent from the test data set, given that these
samples were drawn from the same mix of study groups.
Therefore, a truly external validation in data generated
with a different technology, at another time point, in a
different population is required to evaluate the absolute
classification performance of the models. Interestingly,
this is the case also for other published GPRS by Khera
et al. (2018) and Inouye et al. (2018).

Other procedures might have been applied for the
variable selection. As described above, the rank order
determined by a RF model may have given higher ranks
to variables that are important only for RF models, but
less important for others and vice versa. One solution
would have been to use methods that form any subset of
the available variables. However, this would also entail a
dramatically increased computing time.

Several different genotyping chips were used for the
six original data sets. One of these studies used even
different chips for their cases and controls. This has a
tendency to produce false associations. However, the
latter is true only for a small subset of the data set, thus
this effect should be small.

The age distribution of the samples at hand would
have been of interest, but unfortunately, detailed age
information was not available. Thus, a bias could have
specifically occurred if the controls were younger
than the cases, thereby possibly being affected by
CAD in later life. However, in this case we assume
that the genetic effects would be underestimated, thus
resulting in an underestimation of the discrimination
performance.

It should be noted that the proportion of females is
different between cases and controls. When building risk
estimation models one might therefore want to include
sex as an important predictor for the CAD phenotype.
However, in this study we wanted to show how well the
discrimination between cases and controls can be
discriminated by just using genetic information, that is
how to compress the genetic information in the most
discriminative way and thus make the genetic informa-
tion easily usable in risk estimation models in addition to
other clinical and/or demographic variables, and to
clarify the importance (or not) of using more complex
statistical approaches.

Our study substantiates the findings by Inouye et al.
(2018) and Khera et al. (2018) showing that GPRS can
boost individual risk prediction of common diseases.
Here, we come to the conclusion, that at least for
prediction of CAD status there is no need to use a sledge‐
hammer to crack the nut. All machine learning models
considered in our work were substantially worse than a
simple GPRS in compressing the genetic information in
an information preserving way. It is possible that
machine learning models might improve in performance
if more samples would be available. However, up to this
point it seems that the assumption of linear additive
effects influencing the CAD disease status is sufficient for
creating powerful risk prediction models based on GPRS
and that other methods modeling nonlinear effects are
not necessary.
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