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Abstract

We analyze the effect of additive fractional noise with Hurst parameter H > 1/2 on fast-
slow systems. Our strategy is based on sample paths estimates, similar to the approach by
Berglund and Gentz in the Brownian motion case. Yet, the setting of fractional Brownian
motion does not allow us to use the martingale methods from fast-slow systems with Brow-
nian motion. We thoroughly investigate the case where the deterministic system permits
a uniformly hyperbolic stable slow manifold. In this setting, we provide a neighborhood,
tailored to the fast-slow structure of the system, that contains the process with high probabil-
ity. We prove this assertion by providing exponential error estimates on the probability that
the system leaves this neighborhood. We also illustrate our results in an example arising in
climate modeling, where time-correlated noise processes have become of greater relevance
recently.

Keywords Fast-slow systems - Fractional Brownian motion - Sample path estimates -
Correlated noise - AMOC model

1 Introduction

Fast-slow systems naturally arise in the modeling of several phenomena in natural sciences,

when processes have widely differing rates [25,27,33]. The standard form of a fast-slow
system of ordinary differential equations (ODEs) is given by

dx

— =x'= f(x,y,9),

ds

d (1)
y o,

— =y =eg(x,y, ),

ds
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where x are the fast variables, y are the slow variables, € > 0 is a small parameter, and f, g
are sufficiently smooth vector fields; for a more detailed technical introduction regarding
the analysis of (1) we refer to Sect. 2.1. Here we just point out the basic aspects from the
modeling perspective. First, note that if ¢ = 0, then (1) becomes a parametrized set of ODEs,
where the y-variables are parameters. Taking this viewpoint, all bifurcation problems [23,35]
involving parameters naturally relate to fast-slow dynamics if the parameters vary slowly,
which is often a natural assumption in applications. Second, in practice, we also want to
couple many dynamical systems. The resulting large/complex system is often multiscale in
time and space. For example, in the context of climate modeling [13,28] coupled processes
can evolve on temporal scales of seconds up to millennial scales. Third, fast-slow systems are
the core class of dynamical problems to understand singular perturbations [54], i.e., roughly
speaking singular perturbations problems with small parameters are those, which degenerate
in the limit of the small parameter into a different class of equations. Combining all these
observations, it is not surprising that fast-slow systems have become an important tool in
more theoretical as well as application-oriented parts of nonlinear dynamics [33].

However, when dealing with real life phenomena certain random influences have to be
taken into account and quantified in a suitable way [18]. The most common stochastic process
used to describe uncertainty is Brownian motion W = W;. One of its key features is the
memory-less or Markov property, which means that the behavior of this process after a certain
time 7 > 0 only depends on the situation at the current time 7. In certain applications it may
be desirable to model long-range dependencies and to take into account the evolution of the
process up to time 7'. One of the most famous example is constituted by fractional Brownian
motion (fBm) WH = W,H ; see [30] for its first use. A fBm is a centered stationary Gaussian
processes parameterized by the so-called Hurst index/parameter H € (0, 1). For H = 1/2
one recovers classical Brownian motion. However, for H € (1/2,1) and H € (0, 1/2),
fBm exhibits a totally different behavior compared to Brownian motion. Its increments are
no longer independent, but positively correlated for H > 1/2 and negative correlated for
H < 1/2. The Hurst index does not only influence the structure of the covariance but also
the regularity of the trajectories. Fractional Brownian motion has been used to model a
wide range of phenomena such as network traffic [52], stock prices and financial markets
[37,50], activity of neurons [17,45], dynamics of the nerve growth [41], fluid dynamics [55],
as well as various phenomena in geoscience [31,38,44]. However, the mathematical analysis
of stochastic systems involving fBm is a very challenging task. Several well-known results
for classical Brownian motion are not available. For instance, the distribution of the hitting
time 7, of a level a is explicitly known for a Brownian motion, whereas for fBm, one has
only an asymptotic statement, according to which

P(z, > t) = t—(l—l'l)—ﬁ-o(l)7

as t goes to infinity, see [39]. Furthermore, since fBm is not a semi-martingale, Itd-calculus
breaks down. Therefore, it is highly non-trivial to define an appropriate integral with respect
to the fBm. This issue has been intensively investigated in the literature. There are numerous
approaches that exploit the regularity of the trajectories of the fBm in order to develop
a completely path-wise integration theory and to analyze differential equations. For more
details, see [19,21,22,26,36] and the references specified therein. Furthermore, another ansatz
employed to define stochastic integrals with respect to fBm relies on the stochastic calculus
of variations (Malliavin calculus) developed in [11]. In summary, fBm is a natural candidate
process to aim to improve our understanding of correlated stochastic dynamics.
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Our objective here is to combine the study of fast-slow systems and fBm by starting to
study stochastic differential equations of the form

1 o H
dx = gf(x, v, e)dr + S—HdW, , @)

dy = 1dt,

where we start with the case of additive noise for the fast variable(s) and assume there is a
single regularly slowly-drifting variable y. For H = 1/2, i.e., for Brownian motion, there
is a very detailed theory, how to analyze stochastic fast-slow systems [33]. One particular
building block—initially developed by Berglund and Gentz—uses a sample paths viewpoint
[4]. This approach has recently been extended to broader classes of spatial stochastic fast-slow
systems [20] and it has found many successful applications; see e.g. [3,32,47,51]. Therefore,
it is evident that one should also consider the case of correlated noise in the fast-slow setup
[24,57].

Our key goal is to derive sample paths estimates for fast-slow systems driven by fBm with
Hurstindex H € (1/2, 1). We restrict ourselves to the case of additive noise and establish the
theory for the normally hyperbolic stable case. Due to the technical challenges mentioned
above, we need to derive sharp estimates for the exit times for processes solving certain
equations driven by fBm. Exploring various properties of general Gaussian processes, we
propose two variants to obtain optimal sample paths estimates.

Then we are going to apply our theory to a stochastic climate model [16,42] describing the
North-Atlantic thermohaline circulation forced by fractional Brownian motion. In fact, it is
well-established that just using white noise modelling in climate models can be insufficient.
The simple reason is that neglecting spatial and temporal correlations does not represent
the statistics of large classes of underlying climate measurement data including temperature
time series [14,29], historical climate data [1,2,10], as well as large-scale simulation data
[6]. In all these cases, an elegant way to model temporal correlations in climate science is
fractional Brownian motion [1,10,29,49,58]. The reasoning to use a time correlated process
can also be understood in climate dynamics in various intuitive ways. For example, in a
larger-scale climate model, stochastic terms often represent unresolved degrees of freedom
or small-scale fluctuations. If we consider the weather as a short-lived smaller scale effect
in terms of the global long-term climate, then models for the latter must include noise with
(positive) time correlations as weather patterns are positively correlated in time on short
scales [8,56]. Similarly, if the noise terms represent external forcing, such as input from
another climate subsystem on a macro-scale, then also this input is likely to be correlated in
time as there are internal correlations of the long-term behaviour of each larger-scale climate
subsystem. In summary, this has motivated us to consider a model from climate dynamics
as one possible key application for fast-slow dynamical systems with fractional Brownian
motion. As mentioned above, in many other applications, fractional Brownian motion also
naturally appears, so our modelling approach via fast-slow systems with with fBm is even
more broadly applicable.

This work is structured as follows. In Sect. 2 we introduce basic notions from the theory of
fast-slow systems and fractional Brownian motion. Furthermore, we state important estimates
for the exit times of Gaussian processes which will be required later on. In Section 3, we
generalize the theory of [4] by first deriving an attracting invariant manifold of the variance
using the fast-slow structure of the system. Based on this manifold we define a region, where
the linearization of the process is contained with high probability. In order to prove such state-
ments, we first derive a suitable nonlocal Lyapunov-type equation for the covariance of the
solution of a linear equation driven by fBm, the so-called fractional Ornstein—Uhlenbeck pro-

@ Springer



Sample Paths Estimates for Stochastic Fast-Slow Systems... 1225

cess. Thereafter we analyze two variants which entail sharp estimates for the exit times of this
process. Furthermore, we consider more complicated dynamics and provide extensions of our
results to the non-linear case, more complicated slow dynamics and finally discuss the case of
fully coupled dynamics. We apply our theory to a model for the North-Atlantic thermohaline
circulation and provide some simulations. Section 4 generalizes the sample paths estimates
to higher dimensions in the autonomous linear case. Our strategy is based on diagonalization
techniques, which allow us to go back to the one-dimensional case and apply the results devel-
oped in Sect. 3. For completeness, we provide an appendix which contains a detailed proof
regarding the limit superior of a non-autonomous fractional Ornstein—Uhlenbeck processes.
We conclude in Sect. 5 with an outlook of possible continuations of our results.

2 Background
2.1 Deterministic Fast-Slow Systems

In this section, we will briefly introduce the terminology of fast-slow systems. We restrict
ourselves to the most important results tailored to our problem in the upcoming sections.
For further details, see [33]. For the definition of the setting, all of the equations are to be
understood formally. We will later add regularity assumptions sufficient to deduce important
results. These also imply that the formal computation we will have performed before are
valid.

Definition 2.1 A fast-slow system is an (ODE) of the form

—xy = x; = (x5, Vs, €)s
ds 3
| 3)
/
LU == £8(Xs, ¥s, €),
where x = x5, y = y, are the unknown functions of the fast time variable s, the vector fields
are f :R" xR" xR - R", g : R" x R" x R — R”", and ¢ > 0 is a small parameter.
The x variables are called the fast variables, while y variables are called the slow variables.
Transforming into another time scale by defining the slow time t = ¢s yields the equivalent

system

=Xy =X = s Vis €),
ds X =Xt = f(xe, yr, €) A
| 4)
[— =vy = Xt ,E).
dr Ve =yt = 8(Xt, yr, €)
Depending on the situation both formulations in fast and slow time may be of use. In par-
ticular, under certain assumptions, considering them for ¢ — 0 indicates a lot of information
for the underlying dynamics for the case 0 < ¢ < 1. The process for ¢ — 0 is called the

singular limit. The singular limit of (3) fore — 0

b =X = £ 35, 0)
dsxs—xs—. Xss Vss V),

d ’
ays =y, =0,
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is called the fast subsystem. The resulting system of the slow time formulation of the fast-slow
system (4) fore — 0

O f(xla )[,O),
—yr =y = g(xs, ¥, 0)
Xty ¥z, 0).
dr”’ ! e
is called the slow subsystem. The set

CO = {(.x,y) ERm XR”: f(xay70):O}

is called the critical set. If Cq is a manifold, it is also called the critical manifold. From now
on, we assume that Cy is a manifold given by a graph of the slow variables, i.e.,

Co={G*(y).,y) eR" xR": x*: D - R", f(x*(y),y,0) =0},
where D C R" is an open subset.

Theorem 2.2 (Fenichel-Tikhonov, [15,27,33,53]) Let f, g € C"(R" xR"xR), 1 <r < o0,
and their derivatives up to order r be uniformly bounded. Assume that Cq is uniformly
hyperbolic. Then for an ey > 0 there exists a locally invariant C"-smooth manifold

Ce={(x,y): x=x(y,8)},
foralle € (0, g9l, where X(y, €) = x*(y) + O(e) with respect to the fast variables. Further-

more, the local stability properties of C. are the same as the ones for Cy.

2.2 Fractional Brownian Motion

In this section we state important properties of fBm, which will be required later on. For
further details see [5,40] and the references specified therein. We fix a complete probability
space (2, F, IP) and use the abbreviation a.s. for almost surely.

Definition 2.3 Let H € (0, 1]. A one-dimensional fractional Brownian motion (fBm) of
Hurstindex/parameter H is a continuous centered Gaussian process (WtH ):>0 with covariance

1
B/ W' = 3 (P + 5 =10 =sPH)  foralls,s = 0.

Note that for H > 1/2 the covariance of fBm satisfies
1 [
E(ﬂH + 27— — sy = HQH - 1)//|v — w2 dv du.
0 0

We further observe that:

(1) for H = 1/2 one obtains Brownian motion;
(2) for H =1 then WIH = thH a.s. for all + > 0. Due to this reason one always considers
H e (0,1).

The following result regarding the structure of the covariance of fBm holds true, see [40,
Section 2.3].
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Proposition 2.4 Let H > 1/2. Then, the covariance of fBm has the integral representation
min{s,t}
EwWHWH] = / K(s,r)K(t,r)dr fors,t>0, 5)
0
where the integral kernel K is given by
t
K(t.r)=cy / (Z)H_m(u =72 du,
/ r
for a positive constant cy depending exclusively on the Hurst parameter.
We remark that for suitable square integrable kernels, one obtains different stochastic
processes, for instance the multi-fractional Brownian motion or the Rosenblatt process, see

[9]. We now focus on the most important properties of fBm. For the complete proofs of the
following statements, see [40, Chapter 2].

Proposition 2.5 (Correlation of the increments) Let (W,H),Zo be a fBm of Hurst index H €
(0, 1). Then its increments are:

(1) positively correlated for H > 1/2;
(2) independent for H = 1/2;
(3) negatively correlated for H < 1/2.

Particularly, for H > 1/2 fBm exhibits long-range dependence, i.e.
o
> EIW (W - Wi = oo,
n=1

whereas for H < 1/2

o0

S ERIWH W - W] < oo

n=1
Proposition 2.6 Let (WtH)zzo be a fBm of Hurst index H € (0, 1). Then:
(1) [Self-similarity] Fora > 0

law

(aHW,H)tZo = (Wal-[[)lz()’ (6)
i.e. fBm is self-similar with Hurst index H.
(2) [Time inversion] (IZH W17t)t>0 law (WH)i~0.
(3) [Stationarity of increments] For all h > 0

law

W, = Wihi=0 = (W0

(4) [Regularity of the increments] fBm has a version which is a.s. Holder continuous of
exponent o < H.

We conclude this section emphasizing the following result, which makes fBm very inter-
esting from the point of view of applications, see [40, Section 2.4 and 2.5].

Proposition 2.7 Let (WIH)IZO be a fractional Brownian motion with Hurst index H €
0,1/2) U (1/2,1). Then (WtH)tZO is neither a semi-martingale nor a Markov process.
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1228 K. Eichinger et al.

2.2.1 Integration Theory forH > 1/2

Since fBm is not a semi-martingale, the standard It calculus is not applicable. Due to this
reason, the construction of a stochastic integral of a random function with respect to fBm
has been a challenging question, see [5,11] and the references specified therein. However,
for deterministic integrands and for H > 1/2 the theory essentially simplifies. We deal
exclusively with this case and indicate for the sake of completeness the theory of Wiener
integrals of deterministic functions with respect to fBm, see [11]. Let 7 > 0 and

N-1

£:= {h Dh(s) =Y Ml NeNO0=n<n<...<ty
k=1

= T,hke]Rforke{l,...,N}

be the set of step functions on [0, T']. For & € £ define the linear mapping I(h; T) : £ —
L*(Q)

T N-—1
[(h; T) ::/0 VAW =" i (Wi - wit).
k=1

Observe that I (h; T) defines a Gaussian random variable with

T
E U h(r)dW,H:| =0,
0

T T T
Var [/ h(r)dWrH:| = HQH — 1)/ / h)h ) lu — v/~ dudv < oo
0 0 0

T T
:/ / h(u)h(v)¢p (u — v)dudv, (@)
0 0
where
¢(s) ;= HQH — 1) |s|*~2 (8)

The representation of the variance can be easily verified by noting the following identity

H H H H et (i 2H-2
E[(wi, - wi) (Wi —wi)| = HneH - 1)/% /t lu— o[22 dudv.
1

Note that H > 1/2 is crucial here. For p > 1/H we can bound the L2(Q)-norm of h >
1(h; T) as follows

T pT
17 (h; T35, = H2H — 1)/ / h@)h(v) [u — v[* =% dudv
0 JO

< aller.1) 1 * @Il Loso-1 0,1
2 2
= ||¢||Lp/(2pf2)(0j)”h“Ll’(U,T)’

where we have obtained the estimate by applying Holder’s inequality and Young’s
inequality for convolutions [7, Theorem 3.9.4]. The boundedness claim now follows as
”(pllip/@ﬁ*?)(o,n < oo for p > % This means that /(-, T) is a bounded linear operator

defined on the dense subspace £ C L?(0, T), so it can be uniquely extended to a bounded
operator
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I,(h; T) : LP(0,T) — L*(R).
This discussion justifies the following definition:

Definition 2.8 For f € L?(0, T) and ¢t € [0, T'] we set
t
fo FOAWH = L(fLo0: T)

The integral process (I »(fLo,n; T)) 1€[0.7] is by construction centered Gaussian. Regard-
ing (7), its covariance can be immediately computed as follows.

Proposition 2.9 (Covariance of the integral) Leta, b > Oand f, g € LP(0, T)forp > 1/H.

Then
a b a b
Cov (f f(r)dWrH,/ g(r)dw,”> =f / Fw)g(W)¢(u — v)dudv.
0 0 0 0

2.2.2 Stochastic Differential Equations Driven by Fractional Brownian Motion
After establishing a suitable stochastic integral with respect to the fractional Brownian
motion, we consider stochastic differential equations (SDEs) given by:

dX, = b(t, X,)dt + o ()dWH, Xo=xo € R, )

The solution satisfies the integral formulation

13 13
X,:x0+/ b(r,x,)dr+/ o(rydwWH, as.,
0 0

where the stochastic integral was constructed in Sect. 2.2.1. Under certain classical regularity
assumptions, existence and uniqueness of solutions for (9) can be proven. For more details,
see [5, Theorem D.2.4].

Theorem 2.10 Let b : [0,00) x R — R be globally Lipschitz in both variables, ¢ €
c([0, o0)) with o and %O’ globally Lipschitz. Then for every T > 0 the SDE (9) has a
unique continuous solution on [0, T] a.s.

In this work one case we have to consider is a time-dependent linear drift, i.e., b(z, -) :
R — R is linear with b(t, x) := A(¢)x for every ¢t € [0, 00) and x € R. In this case, the
solution of (9) is given by the variation of constants formula/Duhamel’s formula and is called
non-autonomous fractional Ornstein—Uhlenbeck process.

Theorem 2.11 (Non-autonomous Fractional Ornstein—Uhlenbeck Process) Letr A, B
[0,00) — R. Suppose that A is globally Lipschitz and uniformly bounded, and B €
C'([0, 00)) with B as well as %B globally Lipschitz. Then there exists an a.s. unique solution
to the stochastic differential equation

dX, = A()X,dr + B()dWH, Xo=x0€R (10)

which satisfies the variation of constants formula

1
X, =exo + f el AW g qwH g,
0
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Remark 2.12 Note that all the results discussed in this subsection extend to higher dimensions,
since all previous steps can be done component-wise. Namely, for m > 1 we mention.

(R1) We call (WH);~y an m-dimensional fractional Brownian motion if WH :=
¢ = t
m
Wk’Hek, where (e;)r>1 is a basis in R™ and (Wk’H)1>0, k =1...m, are indepen-
! > ' >
k=1

dent one-dimensional fractional Brownian motions with the same Hurst index H.

(R2) Naturally, existence and uniqueness of SDEs in higher dimension carry over from
Theorem 2.10 under the same assumptions respectively. In particular, for coefficients
A, B : [0, 00) — R"™ withm > 1, satisfying the same assumptions as in Theorem 2.11,
the solution of (10) is given by

t
X,:q>(t,0)x0+/ o(r,r)B(r)dWH, as.,
0

where ® denotes the fundamental solution of x; = A(f)x; and (WtH )i=0 1S an m-
dimensional fractional Brownian motion.

2.3 Useful Estimates of Gaussian Processes

The fact that fBm is not a semi-martingale restricts the repository of known inequalities
(such as Doob or Burkholder—Davies—Gundy) to establish sample paths estimates. A crucial
property of fBm we shall exploit is its Gaussianity. In this section we will describe some
useful estimates for exit times of certain Gaussian processes, which will be helpful for our
analysis in the upcoming sections.

We first state the next auxiliary result regarding the Laplace transform of a Gaussian
process. This was established in [12] by means of Malliavin calculus.

Lemma 2.13 (Proposition 3.5 [12]) Let (Y;);>0 be a centered Gaussian process with
Yo = 0 and covariance function R(s, t) := E[YY;] satisfying the following conditions:

(i) %R(s, t) exists and is continuous as a function on [0, 0o) x [0, 00),
(ii) 2R(s,t)=0forallt,s >0,
(iii) E[|Y; — Y,|?1 > O forallt > s > 0,
(iv) limsup,_, ., ¥, = oo a.s.

Then for any o > 0:

Efexp(—aV;,)] < exp(—cv/2a), (11)
where V; .= R(t,t) and 1, ;== inf{r > 0:Y, > c}.

In addition, we require the following form of Chebychev’s inequality.
Lemma 2.14 Let¢ : R — [0, 00) be measurable, Z a random variable and A € B(R). Then
inf{p(y) : y € AJP(Z € A) < E[p(2)].
Proof Under these assumptions we have
inf{p(y) : y € Alzea) < 9(Z2)1izea) < (2).

Taking expectation in the above inequality yields the result. O
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Lemma2.15 Let ¢ > 0 and (Y;);>0 be a centered Gaussian process with Yo = 0 satisfying
the assumptions (i)—(iv) of Lemma 2.13. Then, for its exit time 7, := inf{r > 0 : Y, > ¢},
the following estimate holds:

e
P(TC < t) < exp _EW .
1

Proof Applying Lemma 2.14 for Z := 7., ¢(r) := exp (@V;) and A := (0, t) we can bound
the probability P(z. < t) together with (11) as follows:

P(t. <) < exp ((x sup Vr> E [exp (—aVz,)]

O<r<t
< exp ((x sup V., —cv/ 2a> s
O<r<t

for all « > 0. Optimizing over « and noticing that sup,_,, V, = Var(Y;) proves the
statement. O

The previous lemma established a Bernstein-type inequality solely relying on certain
properties of the covariance function of Gaussian processes. Another useful estimate is given
by [43, Theorem D.4], which is based on Slepian’s Lemma [48].

Theorem 2.16 Let T > 0and (Y;);c[0,1] be a centered Gaussian process with a.s. continuous
trajectories. Assume that (Y;):e[0,1] 15 a.s. mean-square Holder continuous, i.e. there are
constants G and y such that

E[(Y, - Y)?*] <Glt—sV forallt,s € [0,T].

Then there exists a constant K := K (G, y) such that for c > 0and A C [0, T]

2
2 c
P (sup Y, > c) < KTc7? exp (—27) ,
teA 20°(A)
where 0?(A) 1= sup,, Var (¥;).
This estimate can be sharpened if we restrict ourselves to the interval of interest.

Corollary 2.17 Let T > Oand (Y;):c[0,1] be a centered Gaussian process with a.s. continuous
trajectories. Assume that (Y;):c[0,1] 1S a.s. mean-square Holder continuous, i.e. there are
constants G and y, such that

E[(Y, - Y)*| <Gt —s|” forallt,s €[0,T].

Then there exists a constant K := K (G, y) such that forc > 0and) <a <b <T

) 2
P sup Yy >c | < K(b—a)r exp (—c—z),
a<t<b 20

2= SUp, <;<p Var (7).

where o

Proof (Z;); with Z, := Y, satisfies the assumptions of Theorem 2.16 on [0, b — a]. ]
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3 The One-Dimensional Case

In this section, we investigate the dynamics of a planar stochastic fast-slow system driven by

fractional Brownian motion (WXH )s>0 with Hurst parameter H > %:

dxy = f(x5, ys, £)ds + o F(y)dW/,
dys; = eds.

Its equivalent formulation in slow time, i.e. for r = &5 is

dx,

1 o
gf(xm Ve, €)dt + S?F(Yt)dWH,

dy, = 1dr,

(12)

using the self-similarity of fBm (6). We are interested in the normally hyperbolic stable case
and therefore make the following assumptions.

Assumption 3.1 Stable case

(1) Regularity: The functions f € C*(R x [0, 00)%;R) and F € C'([0, 00); (0, 0)), as
well as all their existing derivatives up to order two are uniformly bounded on an interval
I =[0,00)or I =[0,T], T > 0, by aconstant M > 0.

(2) Critical manifold: There is an x* : [0, c0) — R such that

f(x*(®),1,00=0

for all ¢ € [0, 00).
(3) Stability: For a(t) := o, f (x*(¢), t, 0) there is a > 0 such that

a(t) < —a

for all € [0, 00).

Under these assumptions, (12) has a unique global solution according to Theorem 2.10.
Furthermore, the deterministic system, i.e., for o = 0, given by

d .
— = = , 1,
£ o Xy = &Xr = f(xs,t,€)

has an asymptotically slow manifold x(r,¢) = x*(¢t) + O(¢) for ¢ > 0 small enough
due to Fenichel-Tikhonov (Theorem 2.2). We expect that, given small noise 0 < 0 < 1,
the trajectories of (12) starting sufficiently close to x(0, &) remain in a properly chosen
neighborhood of x(, ¢) for a long time with high probability. Our goal will be to make this
idea rigorous by pursuing the following steps. We first linearize the system around the slow
manifold to get an SDE describing the deviations induced by the noise. This helps us obtain
a simple description of a suitable neighborhood by using the fast-slow structure inherited by
the variance of the system. Then, using this neighborhood, we deduce sample paths estimates
for the linear case starting on the slow manifold. To complete the discussion we generalize
the result to the non-linear case starting sufficiently close to the slow manifold, that is, such
that in the deterministic case solutions are still attracted by the slow manifold. This general
strategy inspired by [4], where a similar system driven by Brownian motion (Hurst parameter
H = %) is analyzed. Yet, the several techniques used in [4] do not generalize to fBm.
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3.1 The Linearized System
The deterministic system
= ek = flnte)
e—xy =¢exX; = f(x, t, ¢
dt 1 t t
has an asymptotically stable slow manifold x (¢, ¢) = x*(#) +O(e) due to Fenichel-Tikhonov
(Theorem 2.2). As already outlined, our first step is to examine the behavior of the linearized

system around X (¢, ). For a solution (x;);ey of (12) we set & = x; — x(¢, €). Then (§);es
satisfies the equation

1
dé; z [f &+ X, 8),1,8)— f(x(t,8),1,8)]dr + ;iHF(t)dW,H

(13)

1[a(t, e)& + b(&,t, e)]dr + iHF(t)dW,H,
I &
where
a(t,e) =0y f(x(t,€),t,8) = O f(x™(1),1,0) + O(s),
lb(x. 1, 8)| < M x|,

by Taylor’s remainder theorem. Due to the uniform boundedness of the derivatives of f one
can show that the O(g)-term is negligible on finite time scales as ¢ — 0. Therefore, we
restrict ourselves without loss of generality to the analysis of the linearization

dg, = éa(t)étdt + ;LHF(t)dW,H . (14)

Examining the process starting on the slow manifold now corresponds to investigating the
unique explicit solution of (14) for initial value £y = 0, which is given by the fractional
Ornstein—Uhlenbeck process (recall Theorem 2.11)

t
o
3 :/0 e“<”">/58—HF(u)de,

where a(f, u) 1= f Mt a(r)dr. In order to define a proper neighborhood, where the fractional
Ornstein—Uhlenbeck process (§; )<y is going to stay with high probability, we use the variance
Var (&) as an indicator for the deviations at time ¢. According to Proposition 2.9, the variance
is given by

2 t ot
o2w(r) := Var(§) = %/ / /e VI B ) F () H(2H — 1) lu—v2H 2 dudv,
€ 0 JO

As we would like to see dynamics of # — Var(;), we rescale it by ﬁ to get rid of the small
parameter o < 1, which only changes the order of magnitude of the system. It turns out that
t — w(t) inherits the fast-slow structure from the SDE, which yields a particularly simple
approximation of the variance.

Proposition 3.2 The so-called renormalized variance w satisfies the fast-slow ODE

t
egw(t) = e (r) = 2a()w(r) + 2F(1)HQ2H —1) / %ea(ﬁWsF(u)(t —u)*2qy.
dt 0 82H 1
(15)
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In particular, there is a (globally) asymptotically stable slow manifold of the system of the
Sform

2
C()—ﬁHF(ZH)+O(8) (16)
Proof Differentiating 7 — w(t) yields
%w(r) =w(t) = 2Q () +2 (t)H(2H - 1)/ a@m/e payt — u)?"2du

— S%U)(t) =ew(t) =2a(t)wt) +2Ft)HQRH — 1)

t
1
/ — eI F )t — u)*M 2 du.
0o €

In order to be able to take the singular limit ¢ — 0 and apply Fenichel-Tikhonov (Theo-
rem 2.2) we need to prove sufficient regularity in & = 0; continuous differentiability will be
enough for the approximation of the slow manifold with the critical manifold up to order
O(e). To do this, rewrite the integral by substituting v = %

I3

t 1 ;
/ e w0 du = f X0/ F(p — py)u?H2dy
0o €

0
(l‘)/ a(t)u (2H 1)— ldv
5%0
F(1)
= —TQ2H-1).
la(t)[*H ! ( )

To see that the right hand side of (15) is continuously differentiable in ¢ = 0 it is sufficient
to check it for the integral term

L
i /2 ea(l,tfau)/sF(t . av)vZH’zdv
de 0

¢ 2H-2
_ ejo a(t— sr)drF(O)( )

/ elo ati—erydr (—/ a'(t —er)yrdrF(t —ev) — F'(t — EU)U) v 24y,

which has an existing limit for ¢ — 0, because the exponential term goes to 0 faster than the
polynomial term diverges. Now taking the singular limit ¢ — O gives the slow subsystem

F@)?
0=2a(w()+2——=7—HQ2H - 1HI'CH - 1).
la()[*"~
The critical manifold is hence given by
F(t)?
w*(t) = ——+HQRH - 1)[2H - 1).
(0) = g )I( )

Using integration by parts we can rewrite (2H — 1)I'(2H — 1) = I'(2H), so that the critical
manifold can also be written as
F(1)?

VO = o

HI'(2H).
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By Theorem 2.2, the ODE (15) has a solution of the form

c0r = L Hrem + o
= — E N
la@*"
which is asymptotically stable due to Assumption 3.13. This stability property is even global
in this case because the ODE (15) is linear. ]

As expected, the critical manifold depends on the Hurst parameter H. Note thatas I (x) —
1 for x — 1, the slow subsystem for H — % reads

0 =2a()v(t) + F(1)%,
=1,

which coincides with the slow subsystem we would obtain in the case of Brownian motion
noise, which exactly corresponds to H = %

Remark 3.3 The proof of Proposition 3.2 only shows that ¢ is C! in ¢ and C! in the time ¢.
Depending on the properties of f, we expect ¢ to even have higher regularity. However, this
fact is not required in the following considerations.

Proposition 3.2 already states that the slow manifold is a good indicator for the size of the
set we are looking for as ¢ +— UI—ZVar(S,) (as a solution of (15) with initial datum w(0) = 0) is
attracted by the slow manifold. In this particular case we can explicitly state the exponentially
fast approach due to the structure of the linear equation

Var(§) = o (£(0) = 25(0)). a7)

where «(¢) := «(t,0). Even more is known about the properties of ¢. Due to the uni-

form boundedness assumption on f and F we get that the difference between ¢ and

F(1)?
la@)P
¢T and ¢~ such that

HTI'(2H) is actually in uniform ¢. This implies that for ¢ small enough there are

(T>c@)=¢" >0 forallrel.
The goal is now to prove that the stochastic process (§);¢; is concentrated in sets of the form
B(h) :={(x,1) e R x I : x| < h/t (D)}
To get a better understanding of what to expect, note that the probability that & leaves B(h)

at time ¢ can be bounded by using the inequality P(X > ¢) < exp (—ﬁ%), which holds
for any centered Gaussian random variable X. This further leads to

& h*¢ (1) h?
(e =) == (zey) =0 (-3) "

Of course, the probability that (§);<; has exited B(h) in the interval [0, ¢] at least once

P( sup i > h) =P(rg(h) < t)

0<r<t V¢(r)

is larger, where 5 1= inf{r > 0: (§-,r) ¢ B(h)} is the first time (£);¢s has exited B(h).
We will present a few approaches to estimate this probability in the following, using the
inequalities we have established in Section 2.3. The increase of probability compared to (18)

is simply indicated by the prefactor of exp (— 2%)
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Remark 3.4 1t could also have been possible to define the neighborhood B(%) by considering
the critical manifold w*, i.e. to define

B*(h) :={(x,1) e R x I : |x]| < hy/w*(1)}.

This will yield the same bounds on the exit times, which we will establish in the following
because the difference between ¢ (¢) and w*(¢) is only in O(g), which is of the same order
as the order we obtain by approximating with the slow manifold ¢ anyways.

3.1.1 Variant 1

The first approach is based on the result on exit times of Gaussian processes with sufficiently
regular and increasing covariance function, as stated in Lemma 2.15.

Theorem 3.5 Lett € I. Then under Assumption 3.1 for any & > 0 the following estimate
holds true for ¢ > 0 sufficiently small

€| loe()| h* h?
P (021:1; RG] > h) <2e [ - ;(1 + (’)(e))—‘ exp (—ﬁ) .

Proof In order to apply the estimate given in Lemma 2.15 to our problem observe that &
may not satisfy all the assumptions. First of all we need well-definedness of the Ornstein—
Uhlenbeck process over the whole non-negative real line [0, oo); this is guaranteed by
Assumption 3.1. In addition, we consider the process given by X; = e~*®)/¢g, Note that
the event that & exceeds a certain level ¢ > 0 corresponds exactly to the event of X, exceed-
ing e *®W/e¢c, that is {& > ¢} = {X; > e~*®/2¢}. Unfortunately this observation does
not carry over to supy~,-; X, and supg.,~, §-. In fact, a priori we only have the relation
{supg<, </ & > ¢} C {sﬁp_o<,<, X, > c},_wﬂich yields a too strong estimate in the end as we
are increasing the variance by an exponentially increasing factor, while maintaining the same
exit level! A way to overcome this is to partition the interval [0, ¢] to suitable subintervals
[#i, ti+1) to obtain the relation {sup, .., ., & = ¢} C {sup, ., -, , X, = e~/ ¢} This
partition will also turn out to be useful to control the variance with the slow manifold in the
exponential of the estimate. The covariance of (X;)ey is given by

2 topr
R(t.r) = E[X,X,]=;—H// e ¥ WEem W/ F ) F(v) H(2H —1) [u—v[*"~ dudv.
0J0

By the theorem for differentiation of parameter dependent integrals we deduce that % R(t,r)
exists and is continuous in [0, o0) x [0, o0). Furthermore, %R(t, r)y >0forallt,r >0
is an immediate consequence of the fundamental theorem of calculus as the integrand is

always greater equal than 0. This already implies assumption (i) und (ii) of Lemma 2.15. For
assumption (iii) it suffices to observe that

11 o
X, — Xy :/ e*O‘(")/EE—HF(u)de
15}

is a Gaussian process with nonzero variance. Assumption (iv) follows by Corollary A.2. This
implies that (e=*()/¢&,),; satisfies a Bernstein-type inequality due to Lemma 2.15

1 c?
P —a(r)/e < T A e e~ ) 19
(oi‘i‘;e Sr>c) =X\ =5 o evars,) 1
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After having established this result, we can proceed as in the proof of Proposition 3.1.5 [4].
Fory € (0,1/2)1let0 =1y < t; < ... < ty be a partition containing the interval [0, 7] such
that

t
—a(tiy1, ) =€y for 0§i<N:’7|a( )|—‘.
ey

(Note that ty > ¢ is possible. But this only increases the estimate on the probability slightly.
As we would like to optimize over y in the end, it does not make sense to fix it to obtain
ty =t.)Foreachi € {0,..., N — 1} we have

(73]
P >h
(fiﬁilil?i+l Ne@r) T )

< 21P>< sup e */fg > p  inf e—““)/g,/g(r))

0<r<tiy1 Lisr<titi

> e—2a(ti+1)/5VaI'(éjz,~+1)

2 .
an ( h mft,-fr<t,-+1f(r)eza(zi+l,ti)/a)

(2) 2exp <_ 1 infy, <r iy e_za(r)/gé—(r)>

202 ¢(tit1)

h2
< 2exp (—@ﬂm — 0<sy>)) :

< 2exp

where the last inequality follows by ;‘ (r) = O(1), which is proven in Lemma 3.6. Now by
subadditivity of the probability measure

I& | = & |
P ———>h) < P ——— >
(é‘i‘i, NG ) = ; <t,-ssril?,-+l NGl )

()] & h?
<2 exp| —y(1+0()) |exp | — ;
’V ey —‘ <02 ) ( 202)

where the last inequality is due to e 2 > 1 — 2. Due to monotonicity of [-] , it suffices to
minimize

h2
2Ol o (;y(l + 0(a>))

ey

in order to find the minimal value of this estimate. Optimizing over y hence yields

&1 lae(t)| h? h?
P (03:1; 70 > h) <2e [ . —U+ O(s))—‘ exp <_ﬁ) ,

which finishes the proof. O

Lemma 3.6 The slow manifold ¢ (t) satisfies gL(t) = O(1).

Proof Note that
F(t)

|
w¥(t, ) = mH(ZH — 1)/ ezflﬁea(l-”)/ep(u)(t _ u)2H72du
0
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satisfies the corresponding invariance equation for the fast-slow ODE (15) up to error O(¢).
This implies that £ (1) = w*(#, &) + O(¢). Plugging this representation of ¢ into the ODE
(15) yields directly €¢ (1) = O(e). O
3.1.2 Variant 2

The second approach uses the fact that (§;);e; is mean-square Holder continuous. This is
also going to enable to control the deviations based upon Theorem 2.16.

Theorem 3.7 Lett € I. Then under Assumption 3.1 there is a constant K = K (¢, ¢,0, H) >
0, such that for any 7 > 0 the following estimate holds true for ¢ > 0 sufficiently small

&1
P ———>h
(o?ii’t NGOl )
1

h? 1 F? n h?
Kt exp 20—20(8) h#H az—HHF(ZH)-I-O(S) exp ~557 )

where Fy 1= sup, g« F(r) < 00.

IA

Proof Let t > 0. In order to apply Theorem 2.16 we have to prove mean-square Holder
continuity of (§),¢jo,s- Fort > r; >r2 >0

E[E -]

2
_ o /rl /rl (ea(rl,u)/s _ ]l{u<r2}ea(r2,u)/e> (eoz(rl,u)/s _ ]l{v<r2}eot(r2,v)/s>
g2H 0 0 = =

- F(u)F ()¢ (u — v)dudv

o2 [r2 n
= —/ / (ea(rl,u)/e — ea(rz,u)/e> (ea(rl,v)/e _ ea(rz,w/a) F(u)F ()¢ (u—v)dudv
e2d J, J,

(20)
o2 2
+255 / f (ea(rl,u)/s _ t?ot(rz,u)/s) 1V B ) F () (1 — v)dudo @1
& 1) 0
g2 o
" Wf / /e @1V /e By F (1) (i — v)dudv. 22)
€ r I

Lipschitz continuity of r — e®(~)/¢ for arbitrary u > 0 (with Lipschitz constant L = “f,
where a := sup,; la(r)]) yields for (20)

% /rz /rz e riw)/e _ ea(rz,u)/s) (eoz(m,v)/f _ eot(rzgv)/s) Fu)F@)$(u — v)dudv
&

o a+ )
< pIEs) F(u)F(v)qb(u —v)dudv |r; — rp|

G2a-2+ olal ., 2H
=< S2HT2 +/ / ¢ (u — v)dudv |ry — 2H+2F t°|rp — ol
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Similarly we can show for (21)

0.2 r r
2€2H / /0 (eo:(n,u)/s _ ea(rz,u)/s) ea(rl’v)/sF(u)F(v)(j)(u — v)dudv
n
o [N r
<25 / e“(’l‘”)/eF(v)/ Fu)é(u — v)dudv |1 — r|
2 rn 0
2

2
9 o
2 2H 2H 2H 2 2H
< por] Fy ((rl r2) (rq ry )) r1 —rl < 827HF+I(” ra)~ .

Last but not least (22) can be estimated as follows

o2 rnoopen
2H / f e r/e yariv)/e Fu)F ()¢ — v)dudv
e S
2 r r 2
a o
= ﬁFif f ¢ — v)dudv = 2 F2 |ry — ry P .
& ra Jr &

By combining the three estimates we obtain that, for a constant G = G (¢, ¢,0, H) > 0, it
holds

2
E[(Erl _‘i:rz) :I =< G|rl _r2|2H~
Let0 =1y <t <... <ty =t be a partition of the interval [0, 7] such that
tiv1 —t; =0() for 0<i < N.

Foreachi € {0,..., N — 1} we have by Corollary 2.17 for K = K(G,2H)

€r ]
P >h
(fifs‘r‘lirt)zﬂ Ne@r) T )

1 <r<tiyi

= 21?’( sup & >h _inf \/;(T)>
1 <r<tiy| i <r<tiqi
1
H h2' f,. et
< K(tiy1 —1) (h inf J;“(T)) exp (_ infy, <r<iyyy (1) )

2 SUPy,; <r<tiyy Var (&)

H
a7 F? h?inf, <<,
< K(tiy1 — t)ht \/;;1 HT(Q2H) +O(e) | exp (— 7 i §7) )
a

202 SUPy, < <y;y, ()

L

1 FJ'Z_ 2H h2
< K(tiy1 —1)h¥ T HTQH) +0(e) | exp (-272(1 - 0(8))) ;

where the last inequality follows by g;(r) = O(1), see Lemma 3.6. This yields by the
subadditivity of the probability measure
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p( sup 5 = 1P &,
0<r<t V;(r) tl<r<tl+1 g(}’

i=

1

2 2
< KthH < HT(2H) + O(e)) exp (—2;;—2(1 — (’)(e)))
1

h 1 FE 2
< Ktexp (2020(8)> hH aZ—HHF(ZH) + O(e)

Therefore, the proof is finished. O

3.2 Comparison of the Two Variants

In this section, we will compare the two variants in view of varying the noise intensity given
by o > 0 and the time scale parameter ¢ > 0. In order to better understand what to expect
under these variations we first heuristically describe their effect on the underlying SDE

dg; = fa(t)é;}dt + F(t)dWH

We can directly see that a smaller o reduces the mtensity of the fraction Brownian motion
noise. In particular, as o is decreasing, the probability that (§,),c; exits B(h) on some
interval [0, 7] should become smaller. For a smaller ¢ the attraction towards the slow manifold
becomes stronger, however also the noise intensity increases. We expect small deviations if
< is sufficiently small.

Suppose we are in the situation of Theorems 3.5 and 3.7. To simplify the comparison the
results of both variant 1

173 la(t)| h? h?
(o ) o2 on(£5)

and variant 2

|€r
P >h
(oi‘flit NGOk )
h? 1 F_%_ m h?
< Ktexp (2(7(’)(8)> hH <azHHF(2H) + (’)(,9)) exp (_ﬁ> ,

where K = K(t,¢,0, H) > 0, are displayed here. Unfortunately, we do not know the
dependence of K on the other parameters, so we can only do a qualitative comparison up to
some extent. By looking at the proof of Theorem 3.7 we guess that K is increasing in G, so
that we assume for the forthcoming analysis that K is increasing in o, decreasing in & and
increasing in 7. In variant 1, we see the same interplay of o and / as already observed in the
analysis of (18) because the exponential dominates the linear term in the prefactor, and the

same holds true for variant 2 as long as ¢ << (for exp ( O(s)) to remain relatively

small), which is true in many applications. For ¢ — 0 the estimate in variant 1 becomes
larger, whereas in variant 2 it does not seem to have a huge effect on the bound. However, the
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increase might be hidden in K. As the time ¢ increases, it obviously becomes more likely that
&; has already exited B(h) at least once. In variant 1 this increase is displayed linearly in ¢ as
r > a(r) is uniformly bounded and thus o () = ®(¢). Variant 2 shows an increase which is
at least linear in ¢ because K might be increasing in ¢ as well. This means that in variant 1 we

have to pick & large enough such that Z—z is significantly larger than In (é) For variant 2 we

have to choose / in a suitable way that Z—i is larger than (’;—20(8) + % In(h)+In(Kt). Although
we cannot prove it, it seems that variant 1 yields a sharper bound. Last but not least, note that
the estimate in variant 1 coincides with the estimate derived for the Brownian motion case,
see [4, Proposition 3.1.5]. The dependence of the Hurst parameter H is completely hidden
in the structure of the neighborhood B(#), which depends on the slow manifold. This also
intuitively makes sense because we are “almost” dividing by the variance. Furthermore, in
the Brownian motion case this estimate is quite close to the actual distribution of the exit
time 75(1), see [4, Theorem 3.1.6] and the comments below.

3.3 Back to the Original System

Now that we have convinced ourselves that the most promising estimate is given in Theo-
rem 3.5 it remains to generalize the result to different scenarios which may be of interest.

3.3.1 The Nonlinear Case

Recall that we have rewritten the SDE (13) satisfied by the deviations around the slow
manifold & = x;, — x(¢, &)

1 o H
d§, = g[a(t, e)er +b(&,t,e)]dr + 87F(t)dW )

with a being the linear drift term and b containing the (possible) nonlinearities of the equation
satisfying |b(x, t,&)| < M |x 2. As we expect that the nonlinear term b does not influence the
deviations too strongly near the critical manifold, we use the same neighborhood 5B(%). This
in particular implies that we keep the same simple description of it, which we have derived
in Proposition 3.2. The bound on » will help us to control it inside of B(h). For the case that
(x1)ser 1s starting on the slow manifold, i.e. &y = 0 we obtain:

Theorem 3.8 Lett € 1. For h sufficiently small it holds

P sp 25 5 p) <2 P“(mfczhz(l + 0(5))—‘ exp (—thz)
0<r<t Vv ¢y — N € o2 202)°
where k =1 — O(h).

Proof As previously motivated before we treat the nonlinear drift term b as perturbation of
the linear system, i.e. split the solution of (13)

£ =8 +&

where Eto is a solution to the linear system, which we have already studied in detail, and

1 t
£ = */ (&, u, &)du.
0

&
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Then for h = ho + hy, hg, h1 > 0 we consider

& €71
P >h)=P h
<oi‘i‘i, VO ~ ) <o§,i?fmm GGl )

>
< P{ sup |€9| >hy | +P sup |§r]| > hy
O<r<t v {(r) O<r<tntgm vV C(V)
=:Po(ho) =:P1(hy)

It remains to prove that Pi(h1) is small. Observe that due to continuity of (§;);c; we have
forr < t5n)

& < hy/C(r) < hy/c+.
&}

This enables us to control 70 inside of B(h) thanks to the bound on the Taylor remainder

term b

& 1 f
<
ST et Jo €
M

<
T

Ara0/e \b(gy, u, &) du

s

/ Cetrare e 2 qy < ML
0 —— Ve

<h?¢T

Hence, choosing i1 = ZMT}’Z < results in P; (k) = 0. Note that this is choice is possible

=
aslongash < 597 ”{f: , which is in O(1), so requiring & >> o is possible. Indeed, the choice
of h is usually even “smaller” than O(1), so that ho = h — hy = h(1 — O(h)). Applying
Theorem 3.5 to hp now yields the claim. O

Remark 3.9 With this approach we lose some accuracy (k = 1 — O(h) instead of k = 1)
in the exponential. This has more effect on the increase of probability than in the prefactor.
To overcome this difficulty it might be better to adapt the neighborhood depending on the
nonlinearities.

3.3.2 Behavior Close to the Slow Manifold

For the deterministic system we get in the case of a uniformly asymptotically stable slow
manifold that solutions starting close to it are attracted exponentially fast. Given low enough
noise intensity a similar behavior can be observed in the noisy system, i.e., solutions have
small deviations around the deterministic solution and after some (small) time 7y we can
again observe small deviations around the slow manifold.

Theorem 3.10 Lett > 0,d > 0. There is § > 0 and some time ty > 0 such that the solutions
(xp)rer of (12) with initial condition xq satisfying

[xo — x(0,8)| <6

are attracted by the slow manifold. That is, up to time to the solution (x;);cy is close to the
deterministic solution x9€t

@ Springer



Sample Paths Estimates for Stochastic Fast-Slow Systems... 1243

det 2 2
- ! h h
Pl s ) <o P“(ON 220 +(9(8))—‘ exp (—xz—z),
&

0<r<ty /E (r) N 20

where the” denotes the different values due to linearization around x°" instead of the slow
manifold x(t, €). After ty we obtain almost the same behavior as in the case where xo =
x(0,¢), i.e fort > 1y

lx, — x(r, &)l la (7)] z(h d)2 2 (h — d)2>
(om, B2 0) o v 5E)

Proof Exponentially fast attraction means that there are constants §, C, k > 0 such that for
xo0 € R with |xg — x(0, &)] < § it holds

det

lx, — x(t, &) < C |xg — (0, )] e /¢,

Consider an initial value xo € R with |xg — x(0, &)| < § and denote by x9¢t the solution to the
deterministic system (o = 0) in (12). Instead of linearizing (12) around x (¢, ¢), like we did in
(13), we linearize it around x%°'. This procedure yields qualitatively the same linearization,
witha(t) := o, f (xflet, t,0) instead of a(t, ¢), or respectively a(t), see discussion before, and
¢ adapted accordingly. In particular, even for the nonlinear case we obtain by Theorem 3.8

xdet| l&@)] 2 h?

P| sup |xr—

0<r<t \/%

where @ (1) = foz a(rydr and k = 1 — O(h). Choose t( such that for distance d

2
>h| <2e ’V 3 1+ O(e))—‘ exp (—K %)

’x;iet — (r, 8)| <d forall r > 1,

thatis 7o > £ In (%) Furthermore, we have by the mean value theorem
a(t,e) = 0, f(x% 1,6) = 8, f(X(1,8), 1, 8) + dex f (R, 1, £)(xT — X(1, £))
for some x = Ax; + (1 — AM)x(¢, ), L € [0, 1]. So that for a(z, €) = 0y f(x(¢, &), t, €)
la(r, &) —a(r, &) < CMse™ /"

We want this distance to be of order at most g, so that in total 75 > max {% In (%) s

£1n (C’;”)} . Then, up to time 7y, we can use the estimate above for (x;);cs close to its
deterministic solution. And after #y the process is already close to the slow manifold and
its dynamics, so it makes sense to look at the deviations around X (r, €). Splitting again

h=ho+hy, ho,h1 =0

]p( sup M Zh> ﬁp( sup M Zh0>
fo<r<t V() to<r<t /C(r)
to<r<t NI4(D) -
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|£(r.e)—xdet|

Choosing 1 = d we obtain P (suptoSK, VRG]

> h1> = 0. Furthermore, since ho =

h — d, we have

o, M ) = [ 20

which finishes the proof. O

_ i _ g2 a2
|xr —X(r, &)l la®] 5 —d) (1+O(8))—‘exp<—/<2(h d)>,

3.3.3 More Complicated Slow Dynamics

So far, we have considered the case where the slow dynamics is completely uniform and
regular, i.e.,

dy, = 1dr.

However, in applications many interesting systems contain more complicated slow variables.
In fact, this is particularly relevant if one wants to reduce the dynamics to the slow manifold.
The reduced equation usually qualitatively describes the dynamics of the slow variables
around the slow manifold quite well. This section will clarify that the theory developed so
far can be extended to more complicated slow dynamics in two steps. We first generalize our
result to deterministic slow dynamics, which may also influence the diffusion term and then
consider a fully coupled system.

Deterministic Slow Dynamics

Hence, we consider systems of the form

X Xty Vi, € 1
t t t 8” t t (23)
d)’t g(ylv E)dt~

We have to adapt the assumptions a bit.
Assumption 3.11 Stable case, non-trivial slow dynamics

1. Regularity The functions [ € C3(D x [0, 00); R), g € C2(m(D) x [0, 00); R) and
F € Cl(m2(D): (0, 00)), as well as their derivatives up to order 2 are uniformly bounded
on an open subset D C R? by a constant M > 0. Here 75 is the projection onto the
second coordinate.

2. Critical manifold There is an x* : Dy — R for Dy C 72 (D) open such that

Co={(x,y)€eD: yeDy, x=x"(y)}

is a critical manifold of the system (23).
3. Stability For a(y) := 9y f (x*(y), y, 0) there is @ > 0 such that

a(y) < —a

forall y € Dy.
4. Global existence The solutions (x, y) of (23) are defined for all # € [0, 00).
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Under these assumptions the system (23) has an attracting slow manifold
Co={(x,y)€D: y €Dy, x =x(y,e)},

where x(y, &) = x*(y) + O(e) due to Theorem 2.2 (Fenichel-Tikhonov). (Again, this O(g)
is uniform in y.) We linearize the fast variable around C,. For a solution (x, y) of (23) set
& = x; —x(ys, €), then (&, y) satisfies the equation

dé

1
LG RO 0) 31 8) = fE O ). yr. )i + %F(y»dwﬁ

1
= a0 )6 + b(Er yr. &)t + ;%F(yz)dvv”, 24

dy, = g(y:, €)dr,
where due to Taylor’s remainder theorem
a(y! 8) = 8Xf()z(y9 ‘9)7 y» 8) = 8Xf(X*(y)! y7 0) + 0(8)9
b(x, y, &)l < M |x].

Now we can proceed as in the case for trivial slow dynamics by first considering solutions
starting on the slow manifold, i.e. (§9, yo) = (0, o), yo € Dy, and using the terms

a(t) :=a(y:,0),
F(t) := F(y).

This way we obtain the same qualitative bound (also for the nonlinear case) as before, which
also coincides with intuition, as more involved dynamics on the slow manifold should not
influence the attracting behavior of it.

Fully Coupled Dynamics

Now that we have seen the idea how to generalize to more complicated dynamics we give
an exposition of the more general case, where the slow variables may even be random,
particularly be perturbed by fBms with different Hurst parameters Hy, Hy € (%, 1). We
consider the following system

Ay =+ f a3t + 2w

FT e gH (25)
dy, = g(x, yr, €)dt + opd W/,

which will turn out to be interesting in applications, see Sect. 3.4. The following assumptions

will suffice to obtain a qualitatively similar result to the one-dimensional case, analyzed in
Sect. 3.

Assumption 3.12 Stable case, fully coupled system

1. Regularity The functions f € CZ(D x [0, 00); R) and g € CZ(D x [0, 00); R) as well
as their derivatives up to order 2 are uniformly bounded on an open subset D C RZ.
2. Critical manifold There is an x* : Dy — R for Dy C m2(D) open such that

Co={(x,y) €D: yeDy x=x")}
is a critical manifold of the system (25). Here m> is the projection onto the second

coordinate.

@ Springer



1246 K. Eichinger et al.

3. Stability For a(y) := 9 f (x*(y), v, 0) there is a > 0 such that
a(y) < —a

forall y € Dy.
4. Global existence The solutions (x, y) of (25) are defined for all # € [0, 00).

Remark 3.13 Note that the theory discussed in Sect. 2.2.1 does not provide the technical
details regarding the existence and uniqueness of solutions for coupled systems driven by
fractional Brownian motion. However, this can be extended to systems of the form (25). We
refer to [40, Theorem 3.3] for further details.

Similarly as before the system (25) has an attracting slow manifold given by
Ce={(x,y)eD: yeDy x=x(y.8)},

where X (v, €) = x*(y)+O(¢e) due to Theorem 2.2, where again the O(g)-termis uniformin y.
The strategy to establish sample paths estimates for (25) is to successively linearize both fast
and slow variables around their deterministic counterpart (i.e. the solution for o1 = 07 = 0)

denoted by ytdet, )E(ytdet, ¢). The deviations are then described by
§ = — X+ e),
t t det[ t (26)
Nt =Yt — Y -

They satisfy the following SDE, whose form is obtained by successively applying Taylor’s
theorem (int. always stands for the appropriate intermediate value)

&

1 - — (ep] H;
” Lf& +xr, )y, 8) — f(xX(r, 8), yr,€)]dt + 871de

™| = | =

- . 2 o1 H,
[0 £ Gy ), 31, )6 + dec f(int, vy, 7] + - dW,

a8 + b m.1.0)| + %dW,HI,
where
a(t, &) = o f (R ). 3 &) = a(t) + O(e),
b(&,ns, t, €) = Oxx f(int., yy, 8)“;‘,2 + [8xxf(32(int., €), int., £)dyx(int., &)
+3, f (X(int., &), int., &) &,

so that |b(x, y, 1,&)] < M;(x> + |xy|), where M is uniform in the variables due to the
uniform boundedness assumption.

dne = [, yio 8) — 8 (r, €), y1v &) + (X (v, €), yr, &) — gEO, £), i, &)] dr
+ CTdeV,H2
= [0 01, ©), 31, )8 + duxgint, y1, )67

+ (083X, £), y2, &)y X (X, &) + dyg (R, &), yi, &) s

+ Ié()’t, yzdet’ 5)77,2](11 + UdetHz

= [c(¥, )& +d(y*, &) + R, mi, ©)] df + 02d W™,
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where

c(v* &) = g (R, £). 3", o),
d(y*, e) = g (RO, £). ¥, )0, T (7, ) + 8yg (RO, £), ¥, ©),

det

d .
R it €) = dxrg(int., yp, ©)&7 + R(yy, v, e)nf + @c(mt.,a)am.

In particular the nonlinearity term satisfies for some M» > 0 (again uniform in the variables)
[R(x, y 1. 8)] < Ma(x® + 5 + |ay).

In order to prove that x; is concentrated in the neighborhood B(h) := {(x, y) € R?: |x| <
h+/¢(y)} around the slow manifold C, with high probability define the exit times

) = inf{r > 0: (&, y&) ¢ B(h)},

v, = inf{r >0y > h}.

Then we partition the event of x; in the following way

IP(‘L’B(h) < t) = IP('L’B(},) <t, rn,fl > TB(h)) +IFD<'L’B(},) <, ‘E - < TB(h))
<P (TB(h) <tA T'Iﬁ) +P (Tr;.fz <tA TB(h)) .

Note that the first probability is of the form

&L
Pltgn <t AT 7)=P sup >h].
( " n,h) <0<r<t/\r z \/C(yde‘)

By the same technique used to prove Theorem 3.8 we get

173 lae (7)] 2h2 h?
P(é‘i‘; Vo) Zh) <2 [T 0 o (47557

which is valid as long as h¢ ™+ + \/Fﬁ < af . It remains to estimate [P (‘L’ BStA 7:5(;,)>
This issue is however tightly linked to investlgatmg the behavior of non-stable or even non-
hyperbolic dynamics under fractional noise because we have no additional assumptions on
the slow dynamics. In the event {‘L’ » < t} we conjecture that a reduction to the slow variables
should be possible. The reduced equation is then given by

dy = g(x(t,8), yr, )dt + opd W,
which will be illustrated by the simulations presented at the end of Sect. 3.4.
3.4 Example
We consider the climate model analyzed in [4, Section 6.2.1]. It is a simple model describing

the difference of temperature AT = T1 — 7> and salinity AS = S| — S, between low latitude
(T1, S1) and high latitude (7>, S») by a system of coupled differential equations
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d 1 1 q 2
SAT = —— (AT —0) — [ — + L(agAS — ar AT)? ) AT,
ds T g Vv

das=Eg L 9 4ers —araT)?) AS
—AS=—S)—| —+ =(x -« .

ds Y \g, v T

Here 7, stands for the relaxation time of AT to its reference value 6, F is the freshwater flux,
H the depth of the ocean, Sy a reference salinity. Furthermore, 7 is the diffusion timescale,
q the Poiseuille transport coefficient and V' the volume of the box the system is contained
in. The influence of external sources, internal fluctuations, and/or microscopic effects can be
incorporated into the model via noise terms. For example, daily weather variations certainly
influence the temperature 7 and salinity S. Yet, a precise/detailed modelling of these terms
would be far too expensive computationally and would make the model intractable analyti-
cally. We know, as discussed in the introduction to this work, that using white noise generally
does not represent temperature fluctuations correctly but these are usually positively corre-
lated. Since we have no further basic knowledge of the stochastic process it is quite natural
to start by considering fBm with Hurst index H > 1/2. This allows us to model Gaussianity
and positive correlations in time. After transforming our model into dimensionless variables
x=AT/0,y = asAS/(ar0), rescaling time by t; and taking into consideration fractional
noise with Hurst parameter H > %, this yields the system

dx, =

™ | =

[~ — 1) — ex, (1 + 020 — y)D)]de + g—;dw”, o

—

dyr = [ — y(1+ 0*(x; — y)®) ] dt + 02d W/,

where ¢ = 1, /14, n2 = td(aTQ)zq/V, and u = F -asSota/(ar6 H). Note that the previous
system is of the form (25). We consider the solution on a bounded time interval [0, T],
T > 0 to ensure the uniform boundedness of the corresponding functions, as imposed in
Assumption 3.12.

The slow subsystem of the deterministic system is given by

0= _(-xl - 1)7

d .
—y =y =pn—y 1+ 772()51 — yt)2)~

dr
In particular, it has a normally hyperbolic critical manifold, namely
Co={(x.y) €eR*: x =1},

which is even stable, as % (—=(x — 1)) = —1. By Theorem 2.2 there exists an invariant
manifold

C.={(x,y) € R?: x = x(v,e) =1+ 0(e)}.

In order to apply the estimate from Theorem 3.5 note that f(x, y, &) = —(x; — 1) —ex; (1 +
n*(x — y1)?), so that

0cf (e y.e) = —1 —e(l+ 0> = y)?) = 26’ (x = ).
Hence we have
a(yr, €) = 0 f(X(yr, ), yi, &) = =1 + O(e).
By Proposition 3.2 there is an attracting slow manifold for the variance of the form

t(t) =HI'2QH) + O(e).
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We conclude that, in the case that y; is deterministic, sample paths starting on the slow
manifold x(y, ) are concentrated in the set

B(h) ={(x,y) e R*: |x — 1 — O(e)| < h(HT 2H) 4 O(¢))},

or, more precisely, for 0 < ¢+ < T and initial data (xo, yo) = (x(y0, €), Yo)

t h? h?
PAO=r=t: (x,y) ¢ Bh) =2e|-k—(1+0() |exp|—k7—= ).
& o2 202
Figure 1 indicates that for small enough noise the dynamics around the slow manifold should
be governed by the equation
d .
V=S = =y (= y0) + od W (28)
In (28) n? is a fixed parameter, while  is proportional to the freshwater flux. It can be
hence treated as a slowly varying parameter compared to the rescaled salinity. By setting
X := y and Y := u we obtain another fast slow system subject to some noise

i — YV — _ 201 _ 2 H

q X, =X, =Y, - X, (1 +n"(1 = X)) + o2()dW;",

' (29)
—Y, =Y, =eg(X,, Y2,

a r =eg8(Xs, 1)

where g € C2(R?; R). In particular, we can apply our theory again on the two stable branches
of the new slow manifold. We simulate now the reduced equation, similarly to [32, Section
7.1], where the same system was considered with respect to the Brownian motion. The results
for two different Hurst parameters (i.e. H = 0.6 and H = 0.8) are illustrated in Figs. 2 and 3.

4 The Multi-dimensional Case

In this section, we make the first steps towards extending our theory to the multi-dimensional
case. Note that we keep the same notation as for the one-dimensional objects. We start again
with uniform slow dynamics and consider the fast-slow system system in slow time

d, = 1 ydt + 2 dwH
Xt = gf(xtayhg ng 1 (30)
dy, = 1dt,

under the following assumptions. Let m > 1.

Assumption 4.1 Stable autonomous multi-dimensional case

1. Regularity The function f € C2(R™ x [0, 00)?; R), as well as its derivatives up to order
2 are uniformly bounded by a constant M > 0 on an interval I = [0, c0) or I = [0, T],
T > 0.

2. Critical manifold There is an x* : [0, c0) — R such that

fG&H(®,1,00=0

for all t € [0, 00).
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Fig. 1 Equation (27) simulated for Hurst parameter H = 0.7, ¢ =

Dynamics for o7 = 0.001

Time series for o7 = 0.001

0.01, oo = 0 and different oy. The

stochastic solution is displayed red, the deterministic one is blue, the critical manifold is in green and the
neighborhood B(h) for h = 0.2 is in black (Color figure online)

3. Stability The critical manifold is asymptotically stable, i.e. the Jacobian matrix
A1) = 0, f(x™(1), 1, 0)

only contains eigenvalues with negative real part. In addition, its linearization is inde-
pendent of time, i.e. A(?) = A.
4. Noise (WIH )r>0 is an m-dimensional fractional Brownian motion.

These assumptions guarantee the existence and uniqueness of (30) due to Remark 2.12(R2).
Furthermore, recall that under these assumptions there is a slow manifold
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o2(t) = 0.05sin(10¢)+4-0.15, moving backward in time.
h=3 We also give a neighborhood for
the second stable branch; oo =
0.1, h=3

Fig. 2 Equation (29) simulated for Hurst parameter H = 0.6, ¢ = 0.01. and different noise. The stochastic
solution is displayed red, the deterministic one is blue, the critical manifold is in green and the neighborhood
B(h) for varying A is in black (Color figure online)

Co={(x,) eR" x I :x =x(t,8) =x*() + Oe)},

due to Fenichel-Tikhonov (Theorem 2.2). We start again by examining the behavior of the
linearized system around C. For a solution (x;);c; of (30) set&; := x; —x(, €), then (&§;)ser
satisfies the equation

d& = L 1f &+ 7)1 6) — FGE 0.1 e di + T AW/
e efl G1)

1
~[A(t, ) + B, 1, )ldi + —dW/H,
& &

where

A(t,8) = 0x f(X(1,8), 1, 8) = 0y f(x™(1), 1, 0) + O(e),
IB(x, 1, e)lla = Mllxll2

with [|-||, being the operator norm with respect to the Euclidean norm. For simplicity, we
analyze the linearization with A being the drift term instead of A 4+ O(¢), i.e. we consider

1 o
d& = —A&dr + —dw/. (32)
& &
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o2(t) = 0.05sin(10¢)+0.15, moving backward in time.
h=3 We also give a neighborhood for
the second stable branch; oy =
0.1, h=3

Fig. 3 Equation (29) simulated for Hurst parameter H = 0.8, ¢ = 0.01. and different noise intensity. The
stochastic solution is displayed red, the deterministic one is blue, the critical manifold is in green and the
neighborhood B(h) for varying A is in black (Color figure online)

The solution for & = 0 ((x;);¢; starting on the slow manifold C;) is given by

t
o —
& = 87/0 Adaw (33)

Its covariance (matrix) can be computed as

2 t t
0B (1) 1= Cov(§) = ;—H/ f A0 AT O 1y ju— v 2 dudo.
0 JO

In the same way as in the one-dimensional case the rescaled covariance ¢ — =(¢) inherits
the fast-slow structure.

Proposition 4.2 The so-called renormalized covariance E(t) satisfies the fast-slow ODE
d _ i - - T 1 T
e2-B() = eE() = ABO) + EOAT + 5 [P0+ POT]. G4
where

t
P(t)= HQH — 1)/ A0/ (¢ 2H 2
0

@ Springer



Sample Paths Estimates for Stochastic Fast-Slow Systems... 1253

In particular, there is an (even globally) asymptotically stable slow manifold of the system
of the form

- 0 T
£ = [ e (0w + 007 ) au+ 0, (39)
0
where
o0
0@t)=HQH - 1) / AP 24y,
0
Proof We again differentiate t — E(¢) to obtain the ODE
d : 1
e B0 =s8(1) = AT+ EOAT + 5 [P(z) n P(z)T] ,
where
t
P(1)= HQH — 1)/ AU/ y)2H=2qy,.
0

In order to be able to take the singular limit ¢ — 0 and apply Fenichel-Tikhonov (Theo-

rem 2.2) we need to prove at least one times continuous differentiability in ¢ = 0. To do this,

rewrite SH,%P(I) by substituting v = "T"

4 e}
HQH — 1) / MV 24y — HQH — 1) / M4y fore —> 0. (36)
0 0

This implies continuity in ¢ = 0. To see that the right hand side of (34) is continuously
differentiable in ¢ = 0, it is sufficient to check it for the integral P(¢)

t
% (P(t)) = —H(ZH _ 1)/ eA(l‘—u)/SA(t _ u)/az(t _ u)ZH_zdu,
0

where the limit for ¢ — 0 exists because the exponential term dominates the polynomial
term in ¢. The slow subsystem hence reads

0=AE® +EOAT +[00+007],

where
[e.¢]
Q@) =HQH — 1)f AP 24y,
0
This is a Lyapunov equation, and according to Lemma 4.4 it has the unique solution
o0
X*(t) = / oAt (Q(t) + Q(t)T) eAludy,
0

By Fenichel-Tikhonov (Theorem 2.2) we conclude that there is an asymptotically stable
manifold of the form

X(t) = /OO Al (Q(t) + Q(t)T) eAMdu + OCe).
0

Note again that the stability property, which carries over from the critical manifold, is even
global due to linearity of the ODE (34). ]

@ Springer



1254 K. Eichinger et al.

Remark 4.3 We need that linearization (32) is autonomous in this section for taking the
singular limitin (36). In the non-autonomous case we need to compute the limit of ® (¢, r —ev)
for ¢ — 0. We suspect that ® (7,1 — ev) — eADv,

In order to investigate a multi-dimensional Lyapunov-Equation, we rely on the following
result, see [4, Lemma 5.1.2].

Lemma 4.4 (Lyapunov Equation) Let A € RP*P and B € R*4 with eigenvalues ay, . . ., a,
and by, ..., by. Then the operator L : RP*9 — RP*4 defined by

LX =AX+XB

has eigenvalues of the form {a,- + bj}i:l,.“,p,j=l ____
only if A and —B don’t have any common eigenvalue. Moreover; if all eigenvalues of A
and B have negative real part, then for any C € RP*Y the unique solution of the so-called
Lyapunov equation AX + XB + C = 0 is of the form

e In particular, L is invertible if and

o
X:/ A ceBdu.
0

Note again that due to the linearity of the operator LX = AX + XA the rescaled
covariance t +— ﬁCov(Et) as solution of (34) with starting value U%Cov(éo) = 0 satisfies
the following equation

Cov() = o2 (X(z) - eA’/S)_((O)eAT’/€> , 37)

which explicitly depicts the exponentially fast approach of the covariance towards the slow
manifold, as it could have been already concluded by Fenichel-Tikhonov (Theorem 2.2).
This justifies the choice of our neighborhood this time, depending on the critical manifold

B(h) ={(x.1):t eI, (x, X*(1)"'x) < h?}.

As already previously mentioned in Remark 3.4 choosing the neighborhood depending
on the critical manifold instead of the slow manifold does not worsen our estimates. So
we expect the same to be true in the higher dimensional case. Therefore, we have used the
critical manifold X* (which is time-independent in our case) this time because our strategy
depends on diagonalizing, and we do not spell out the additional technical details regarding
the O(e)-term.

4.1 Estimates on the Deviations
4.1.1 No Restrictions on the Linearization

The proof of Theorem 3.7 can be immediately extended the multi-dimensional case by proving
the mean-square Holder continuity in each component of the covariance.

Lemmad4.5 Lett > r| > rp > 0, then there is a constant G = G(t, &, 0, H) > 0 such that

[E[(6n — 8) (60— 8)"] |, < 6 1 —raP?.
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Proof Lett > ry > rp > 0, then
”E I:(%_rl - Srz) (%—rl - %_rz)TiI ”2

n n
/ / (eAm—u)/a T eA(rz—u)/s)
0 0

. (eAT(n—w/a _ ﬂ{vgrz}e/ﬂ(m—v)/e) (1 — v)dudv

0,2 /rQ /rz
< —
g2H o 0

o2
T 2H

2

eA(r] —u)/e _ eA(rz—u)/s

Heﬂ(n—v)/s _ AT v/
2

5 ¢ (u — v)dudv

(38)

02 r n T

N ﬁ/ / HeA(rlfu)/s _ pA—w)/e HeA =v/e | oy — v)dudv (39)
& rn Jo : ?

+ % f ) / ) [ereimte| JerTeimue — ATl g~ v)dud (40)
& 0 r 2 ’
0_2 r rl A( AT

n W/‘ / ‘e ri—u)/e He ri=v/e g (y — v)dudv. (41)
& rn n 2 :

Since A only has eigenvalues with negative real part we have forr > u > 0

<1

HeA(r—u)/s
2

<1, HeAT(r—u)/s

2

andforr; >u>0,rn>u>0

HeAm—u)/e _ oA—w)/e

” oA ri—w/e _ AT (n-w)/e

a a
< —lrn —nl, < —|rn —rl,
e e

2 2

where a := max{|A| : A eigenvalue of A}. This enables us to prove the result similarly as in
the one-dimensional case, i.e., a straightforward calculations using the last result now shows
the required Holder bounds by estimating (38)—(41). O

The mean-square Holder continuity of (&;);c; implies the same for each component.
Hence, we can establish the following qualitative result.

Theorem 4.6 Lett € 1. Then under Assumption 4.1 there is a constant K = K (¢, ¢,0, H) >
0 such that for 4 > 0 the following estimate holds true for ¢ > 0 small enough

- X Aih?
P ( sup (&, X*( &) = hz) < ,; Kt (Vichdi) " exp (—2’;—2(1 - O(e») ,

O<r=t
where Ay > 0 with ) ;" Ax = 1 and d' denote the (time-independent) eigenvalues of X*.

Proof Note that the critical manifold X* is symmetric and in the autonomous case it is time
independent in addition. This implies that it is diagonalizable with respect to an orthogonal
matrix O (independent of time). Let 0T = (O], ..., O,}), where Oy denotes the k-th row
of O and d} (r) = dj be the corresponding eigenvalues. This enables us to reduce the problem
to the estimate of the one-dimensional problem, using the notation D*(r) = diag(d;),
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P ( sup (&, X*(r) ') > h2> =P ( sup (O&, D*(r)~' 0&,) > h2>

0<r<t 0O<r<t

=P ( sup Y Oprdif(r) "' Ok&, > h2>

O=<r=t

< P( sup dif (r) 7' (Og)* = Akh2>

0<r<t
m
Oké‘_r 2
<2 P sup > Akh
,; <0§rsz Vi (r)
m
=2) P ( sup Opé, > Akth,f) .

k=1 O<r<t

We have already proven that (&;),c; is mean-square Holder continuous in Lemma 4.5, which
directly implies the same property for the components in the O-coordinate system. This
means that we can apply Theorem 2.16 for Ox&. This leads to

& Ach*dy
P ( sup Oré&, > )\khzd,’:) < Kt (wkkhd,f) " exp (— %k .

0<r<t 2 SUPg<r<¢ Var(Or§,)

Now note that (37) written in the k-th component in the O-coordinate system reads as
Var(046) = (0Cov(&)0T)

=0 (0 (X*(1)+0) 07 = 0e X ()t 0T

o? (@0 +0@) = (0x©0T) )
=02 ((d,;k + O(e)) — e2uwlle (OX(O)OT>1<J<) ’

This further implies

1 2 1%
" Ach dk
P sup Ok& > ach?di | < Kt (Vachd? )" exp [ —
(Osrsz ' k ( "> 2 5Upg<, <, Var(O&,)

| 2 *

T Aih d
< Kt (Vohdf) " exp (25—
= ( hd ) exP( 2072 d,j+0(s)>

-

xh?
< Kt( Akhd,’:> exp <—2’;72(1 - (9(8))) .

Summing over the dimensions yields

m €1 2
P ( sup (& X*(1)7'&) h2> = > kit (Vachdi) " exp (—%(1 - 0(e>)>
k=1

0<r<t

and this finishes the proof. O

In the case when A is normal we get a nice description of the d}’. The corresponding k-th
component of the diagonalized critical manifold results in
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1 o0 =
df =HQH—1)——— f (e 4 ™) 2 2du,
lax + ax| Jo
which simplifies even further if all eigenvalues are real
1 o
df =HQH — 1)— UV =2q,

lak| Jo

1 1
=HQH —1)—>;TQH — 1) = — HT 2H).
|| |ay|

4.1.2 Symmetric Linearization

From now on, we consider the case when A is a symmetric matrix (i.e. A = AT). The reason
for this restriction is that in the following the proves to bound the probability of (&;);¢; exiting
the neighborhood up to time ¢

PAO=r=t1: (x,y) ¢ Bh)

is based on linearizing the underlying system and understanding the structure of the eigen-
values of the covariance. We actually require normality of A for this strategy to work as it
is sufficient to use the functional equality of the matrix exponential. Furthermore, e inher-
its the normality structure, which is a necessary and sufficient criterion to characterize the
eigenvalues of eA’\eAT", A, & > 0. To be able to generalize the result of variant 1 it is crucial
that the eigenvalues of A are all real. These two criteria already imply that A is symmetric.
In particular, we see that the critical manifold is of the form

* *© Au *© Av ATv\ 2H-2 ATy
X*)=HQH-1) | e (e te )v dv ) e* " du
0 0

R Au+v)+AT Aut+AT (v+u)\ , 2H-2
=HQH — l)/ / (e utv)+A U 4 pAuTA - (vtu ) v " *dvdu.
0 Jo

Thanks to the discussion above the we can consider the diagonalization D*(¢) := U X* (1)U T
Its k-th (k = 1, ..., m) diagonal component is given by

d/f(t) — (UX*(Z)UT> — HQH-1) /oo/oo (eak(u+v)+uku+eaku+ak(v+u)) v 2qudu
kk 0 0
1 oo
=HQH-1)— | % 2dv
lak| Jo
—HQH-1) ! TQH —1) = ! HT(2H)
- jax > laP? '
Similarly we can rewrite the covariance
0.2 t t T
Cov(&) = —/ / eNT0A I HQH — 1) Ju — v dudy
e2H |, o

o2 t et .
= a7 HQH — 1)/ / AUTIOHATC=) 1 2H =2 qydy,
o Jo
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and diagonalize it with respect to the same U and consider its k-th (k = 1, ..., m) component

(UCOV(S,)UT)kk = (Cov(U& )k

2 t t
o
= 8THH(2H — 1)/ / e UmFa =) )1 2H=2 44y
0 JO

We obtain the following result

Theorem 4.7 Lett € 1. Then under Assumption 4.1 and if A is in addition symmetric with
real eigenvalues ay, ..., a, there is a constant such that for 2 > 0 the following estimate
holds for ¢ > 0 small enough

2 2
IP( sup (srsX*(")_lér} 2h2> 26’7|a+|th72(1+0(‘9))—‘ €xXp <_ h >,
0<r<t & O

202m
where a4 = max{|u| : n eigenvalue of A}.

Proof Let U = (U --- U,}), where Uy denotes the k-th row of U. Now

P ( sup (&, X*(r) ') > h2> =P ( sup (Ug,, D*(r)~'UE&,) > h2>

O<r<t 0<r<t

=P ( sup D (Ui)di (N~ (Uiér) = h2>

0<r=t ;—

m
for Az > O with > A =1
k=1

< ZP( sup dii(r) ™ (Ur)* = wﬂ)

O<r<t

= Uk,
=2 Pl su >/ h ).
2 (p Jagn Y )

Due to the normality of eA¢~%) (inherited by A) the Gaussian process U& has variance

2 ptopt
o
Var(Uié,) = 827[_[/ / et/ part=0)/e ropr 1y |y — v)*7 72 dudv.
0 Jo

In particular, we can show that the process (e’“k’ UkS,) 0 satisfies the assumptions of
Lemma 2.15, so that we can apply the Bernstein-type inequality. (The proof is completely
analogous as in the one-dimensional case, see proof of Theorem 3.5.) To get a relation
between the k-th value of the diagonalized covariance and the corresponding component of
the critical manifold consider (37) in the U-coordinate system

Var(Uy) = (UCov(ENU™)
=o? (U (X*0) + 0@) U* = UM X oU*)
=0 ((di (1) + O(e)) — %' (UX(O)U¥),,)
=0’ ((df + O(e)) — 4/F (UX(O)U*),,) . (42)
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asd*(t) = d* isactually independent of time in our case. Now, we can use the same strategy as
variant 1 in the one dimensional case foreach k. Fory € (0,1/2)let0 =1ty <t < ... <1ty
be a partition containing the interval [0, ] such that

t
—ag(tis1 —t)=¢ey for 0<i<N= IVM—‘ .
&y

We start by estimating the probability of the exit time on [#;, #;41) fori € {0,..., N — 1}

Uk%:r
P sup > JArh
(t,-<r<t,-+1 Vg (r) )

=< IF’( sup e W/EULE, > \/)Tkh inf e—akr/s\/(%>.
L <r<tiyi

L <r<tiy]

Applying Lemma 2.15

=

oo 1 Ach?infy <o, e 242 ¥ (r)
P\727 c2annleCov(Uis,,)

2 *
(452)exp —%*dikezak(”“f“)/g
202 (df + O(e))

2
< exp <—%e_2y(1 - O(e))) .

Taking the union of the events that U & has exited B(h) in [#;, t;+1) and using the subadditivity
of the probability measure, yields

&
P Uy " h P Ach
(o, =% ) ) Z 22, i =)
< Pak“w exP( Akhz - 0(8))>
&y 20
2
- [@W exp <%y(1 + 0(8))) exp (—%) :
= p 20

Finding the minimal bound with respect to y now corresponds to optimizing
lag| ¢ Akh Iih?
= exp| —— v +0() |exp| -5 |
ey 20

due to the monotonicity of [-]. The optimal value is achieved for

2

e (1+0@)™!

y:

Plugging this in the estimate gives the bound for the k-th component

Uiér lak|t Arh Axh?
P (055221 o - fh) [——(1 + (9(5))—‘ exp (_F> )
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Summing over the dimensions

P( sup (&, X*(r) ') > h2>

0<r<t

A

23 P Uid
. Z (oi‘iz, Wik
t Axh? Aich?
2e Z ’V|ak| L(l + 0(5))-‘ exp (—2]?7>
lag|t hch? Aih?
2e Z ’V + 7(1 + 0(8))—‘ exp <_ﬁ> s

where a4 := max{|u| : n eigenvalue of A}. The optimal value is now attained by choosing
Ak = % This yields

-1 2 lay |t h? h?
P sup (&, X" ()" '&)>=h 526[ . ﬁ(l—i—(’)(s))—‘exp(— )

0<r<t 20%m

- )

IA

IA

The proof is complete. O

Due to the symmetry of A we could have diagonalized the SDE in the beginning (i.e. look
at it in the U-coordinate system) and done the whole theory established in Chapter 2 to get
the existence of a slow manifold ¢ (¢) for Var(Ui&;), which is of the form

G(1) = |1| HT'(2ZH) + O(¢)
a

= df + O(s).

However, we decided to use the results on the higher dimensional systems as much as possible
to clearly indicate which steps of the proof can be generalized to more general classes of
matrices beyond symmetric ones.

5 Outlook

This work provides a first step towards the investigation of fast-slow systems driven by fBm
using sample paths estimates. So far we have examined the behavior close to a normally
hyperbolic attracting invariant manifold in finite dimensions. Numerous extensions could be
considered as next steps.

Having covered the uniformly attracting case, it is then natural to conjecture that there
are scaling laws for the fluctuations as fast subsystem bifurcation points are approached,
i.e., when hyperbolicity is lost. These results are available in the fast-slow Brownian motion
case [32]. However, even when the fast dynamics is dominated by nonlinear terms [46] or
one considers fast-slow maps with bounded noise [34] using modified proofs and additional
technical tools it is possible to save many results. This robustness of the scaling laws near
the loss of normal hyperbolicity leads one to conjecture that it will still be possible to prove
such results for the fast-slow fBm case when H € (1/2, 1).

However, the analysis of fast-slow systems for H € (0, 1/2) is expected to be more
complicated due to several reasons. First of all, a different integration theory has to be
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considered, see for instance [5,11]. Furthermore, the kernel (8) we have used to develop an
approximation of the variance by means of the slow manifold has a non-integrable singularity
for H < 1/2. Last but not least, Bernstein-type inequalities as established in Lemma 2.15
do not hold true anymore, since the covariance function of the fractional Brownian motion
is negative. Consequently, one has to develop completely different techniques in this case.
Another related extension would be to analyze the dynamics of fast-slow systems driven by
multiplicative noise. This issue, however, requires a more general theory than It6-calculus
because the fractional Brownian motion is not a semi-martingale.

Furthermore, one could consider other stochastic processes with memory. More precisely,
one could think of other stochastic processes whose covariance functions are represented by

min{s,?}
K(s,r)K(t,r)dr, fors,t >0,
0

for suitable square integrable kernels K, recall (5). Beyond fBm, further examples in this
sense are the multi-fractional Brownian motion or the Rosenblatt process [9]. However, the
analysis of fast-slow systems in this case is a challenging question, since these processes
do not have in general stationary increments and are no longer Gaussian (as e.g. Rosenblatt
processes).

Finally, one can also broaden the scope of the applications. Although climate dynamics
is certainly a very important topic, where time-correlated noise is well-motivated by data
such as temperature measurements, it is not the only possible application. Other areas, where
fast-slow systems with fBm could be considered are financial markets. For example, assets
could be modelled as fast variables influenced by fBm stochastic forcing, while the slow
variables are political/social factors influencing the market, which change on a much slower
time scale in many cases. Similar remarks and examples of concrete applications are likely
also exist in many contexts in neuroscience, ecology and epidemiology, where stochastic
fast-slow systems with Brownian motion are already used frequently.
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A On the Limit Superior of Gaussian Processes

The following proof has been developed in personal communication with Professor Andrey
Dorogovtsev.
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Theorem A.1 Let (Y;);>0 be a centered Gaussian process with covariance function R(t, s) =
E[Y; Y] satisfying

I. R(t,s) = Ofort —s — oo,
2. R(t,t)y=1forallt > 0.

Then

limsupY; = oo a.s.
t—00

Proof We aim to construct a sequence of independent random variables inductively to apply
the Borel-Cantelli lemma. The strategy is highly based on the fact that for Gaussian random

variables independence is equivalent to zero covariance. Let 7] := 0. Givent; < --- < t, we
apply Gram-Schmidt orthogonalization to the variables Y;,, ..., Y; in LZ(Q, F, P) to obtain
uncorrelated and normalized random variables Sy, ..., S, satisfying foreach 1 <i <n

n n
S Zzainzj, Y, Zzbijsj,
j=1 j=1

where the coefficients a;; and b;; only depend on the on the values R(#;,t;) for1 <i,j <n
by construction. Now for any 7 > 7, we can project ¥; on the space span;;,{Y;;} =

spanlgjfn{Sj}

n
Y, =Y EIY.S;1S; + Y.
j=1

Observe that by construction Y,’ is uncorrelated, and hence independent, of the the variables

Y. ..., Y. This holds in particular if we choose f,41 > max{t,, n + 1} with
n+1 2 1
E| | BN, S8 | | =< o0
j=1

where the latter is possible because R(?, s) — 0 forr —s — oo. Inductively we get for each
nelN

Ytn = Yt/,, =+ Yn-
For the sequence of independent random variables (Y,’” JneN

o0

ZIP’(Y,/H >c) >

j=1

M2

]P’(Y,n > c) +P(—yn > 0)

~.
I
-

M

]P’(Y,1 > c) +P(—yn > 0)

~.
Il
—_

I
8

because Var(Y;,) = R(t,, t,) = 1 by assumption. By the Borel-Cantelli lemma we obtain

limsupY, =oc0 as.
n
n—o0

@ Springer



Sample Paths Estimates for Stochastic Fast-Slow Systems... 1263

Now note that y,, — 0 as n — oo as for any ¢ > 0

E[1Y, - ¥, ]

P (yal > ©) < ,

Cc

E [(ZLl ELY;, Sj]Sj>2]

2

c
1

<———0, asn — oo.
2)17162

This implies that

lim sup ¥, = limsup(Y; + y,) = 00 a.s
n—00 n—oo

as required. O
Now we can apply this result to our setting.
Corollary A.2 Under the Assumptions of Theorem 3.5 we have

limsup e *?/¢¢, = 00 as.
11— 00

Proof Define Z; = «/% Then Var(Z;) = E(Z;Z;) = 1 by construction. To

prove the second assumption of Theorem A.1, observe that

‘i:t Ss j|
R(t,s) =FE .
t:5) L/Var @) JVar &)

Now note that Var(&,) is bounded for ¢ € [0, 0o). This means it suffices to prove for every
s >0

E[&&] — Oast — 0.

The correlation function is given by

E[&&]
0,2 K t
= — W/ EGYF()HH — 1) [u — v)*H 2 dudv
e2f [, Jo
02F2 s t
* SV HQH — 1) [u — v[* 7 dudy
e2H |, [, ’
where F, := sup F(r). Lete > 0. Then thereis 7 > 0 such that fora := sup a(r)
rel0,00) rel0,00)
272
o°F 1 e
HQH —1)—2 112 — < .

Now choose 7y > s + T such that for all r > g

O.2F2 s pt
+ / / ea([,u)/ae(x(s,v)/é‘H(ZH _ 1) |1/l _ U|2H72 dudU
g2H o Jo
O.2F2 s ps+T e
_ Jea(t,s+T) ea(s+T,u)/sea(s,v)/£H(2H —Dlu— v|2H—2 dudv < =,
g2H o Jo 2

independent of ¢
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where we have used the semi-group property of e*(-*)/¢_Putting this together we get for all
t>1

E[Stév]
O.2F2 st
E 2H+ / / eO((l,ll)/Se(X(S,U)/SH(ZH _ 1) |M _ v|2H—2 dl/ldU
€ 0 Jo
0.2F2 s s+T
= — f / eV HQH — 1) |u — v* 2 dudv
€ 0 Jo
O.2F2 st
2H+ /. / eOt([,ll)/Se(X(S,U)/SH(zH _ 1) |u _ v|2H—2 dudv
€ 0 Js+T

t

€ o?F2 $
<3 +HQH - D |T|2”—2/ e“<f~“>/€du/ e dy
2 0

s+T
22
I3 o°F 1
<-4+ HQH-1)—— T2 — <.
Now, Theorem A.1 proves the claim. ]

Remark A.3 Note that one cannot directly apply classical probabilistic results such as the
Borel-Cantelli Lemma, law of iterated logarithm or ergodic theorems to prove Corollary A.2,
since the process & has neither stationary nor independent increments.
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