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`dffl`o not go gentle into that good night,
old age should burn and rave at close of day,
rage, rage against the dying of the light.

˚t˛h`o˘u`g‚hffl wise men at their end know dark is right,
because their words had forkened no lightning, they

do not do gentle into that good night.

`g`oˆoˆdffl men, they last wave by, crying how bright,
their frail deeds might have danced in a green bay,

rage, rage against the dying of the light.

”w˚i˜l´dffl men who caught and sang the sun in flight,
and learn, too late, they grieved it on its way,

do not go gentle into that good night.

`g˚r`a‹vfle men, near death, who see with blinding sight,
blind eyes could blaze like meteors and be gay,
rage, rage against the dying of the light.

`affl”n`dffl you, my father, there on the sad height,
curse, bless, me now with your fierce tears, I pray.

do not go gentle into that good night.
rage, rage against the dying of the light.

Dylan Thomas
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Abstract

Quantum mechanic methods in computational chemistry provide invaluable insights into atom-
scale reaction processes and material properties, a fundamental contribution to research and de-
velopment of current and future technologies. Unfortunately, accurate wave function techniques
are limited to simulations of a comparably small number of particles and short time-scales, which
is preventing the theoretical investigations of many chemically relevant environments and (dy-
namical) physical effects in condensed matter. Alternatively, approximate interaction potentials
in force field techniques provide a very efficient sampling of the atomistic phase space and sig-
nificantly reduce the simulation cost and computational time in atom-level material calculations,
molecular dynamics and Monte Carlo simulations. Therein, a set of inexpensive mathematical
functional forms—historically often motivated by truncated expansion series of quantummechan-
ical expectation values—represent the total energy, atomic forces and other material properties.
A careful choice and validation of the specific description and parametrization implementation
are mandatory to avoid an incomplete or even false foundation of the physical effect at scrutiny.
One major contribution to the total energy in force fields is the long-range electrostatic interac-
tion, typically considered between atoms that are not connected or separated by a few chemical
bonds. An estimate of the electronic charge density distribution and its total Coulomb energy is
computationally unfeasible in molecular mechanics, as it requires an (approximate) charge distri-
bution which fundamentally rely on quantummechanical wave functionmethods. Instead, they are
replaced by simplified atom-related electrostatic interaction potentials like multicenter multipole
expansion series of the average atomic charge density, often derived from molecules in vacuum.
Deviations from this permanent charge representation due to changes of the local electric field
induced by nearby molecules or charges carriers in dense matter can be treated explicitly by addi-
tional polarization functions. In this thesis, a recently developed first-principles-based electronic
polarization model, the atom-condensed Kohn-Sham density functional theory approximated to
second order (ACKS2), has been investigated and was advanced towards practical application as
dielectric response extension to force fields. A new minimalistic Cartesian Gaussian function ba-
sis set representation and condensation scheme was introduced and optimized in an initial proof-
of-principle study. The ACKS2 molecular dielectric response, polarization energy and induced
dipole moments, are validated by the underlying density functional reference. A test set of small
hydrocarbons and aromats perturbed by a single homogeneous electric field or point charge po-
tentials shows great accuracy, while maintaining beneficial model transferability and numerical
efficiency. Next, two flavors of a new fragmentation approach in ACKS2 allow the evaluation of
explicit polarization contributions to intermolecular interactions, which is ideally suited for force
field techniques. Both techniques again exhibit good agreement for charge-constrained (neutral
or charged) dimers of small aromats with their density functional theory reference, concluding
with the study of electron-hole pair dissociation and its polarization stabilization in a simple one-
dimensional toy model.
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Zusammenfassung

In der Computer-gestützten Chemie bieten quantenmechanischeMethoden unschätzbare Erken-
ntnisse zu den Materialeigenschaften und Prozessen chemischer Reaktionen auf atomarer Ebene.
Dieses Verständnis ist ein grundlegender Bestandteil in der Erforschung und Entwicklung derzeit-
iger und zukünftiger Technologien. Bedauerlicherweise sind exakteMethoden, die die Schrödinger-
gleichung mit Hilfe von Wellenfunktionen lösen, rechnerisch sehr aufwendig und dadurch be-
grenzt auf Simulationen mit einer vergleichweise kleinen Anzhal an Teilchen (Elektronen) und
kurzen Zeitskalen. Eine Computer-gestützte Untersuchung vieler chemisch-relevanter Milieus
und (dynamischer) physiko-chemischer Effekte in kondensierter Materie ist so leider nicht durch-
führbar. Dagegen ermöglichen angenäherte Wechselwirkungspotentiale, die in Kraftfeld-Method
verwendet werden, eine sehr effiziente Beschreibung des quantenmechanischen Phasenraums. So
kann der mathematische Aufwand und die Rechenzeit am Computer für die atomistische Mode-
lierung erheblich reduziert werden, wie beispielsweise in Molekulardynamik oder Monte-Carlo
Simulationen. Molekulare Kraftfelder verwenden numerisch effizientemathematische Funktionen
(historisch häufigmit unvollständigen Entwicklungssätzen quantenmechanischer Erwartungswerte
begründet) um die totale Energie, atomareKräfte und andereMaterialeigenschaften zu beschreiben.
Eine sorgfältige Auswahl und Validierung der jeweiligen mathematischen Darstellung und Param-
eterisierung sind dabei unerlässlich um eine unvollständige oder gar falsche theoretische Grund-
lage der physikalischen Effekte zu vermeiden. Ein großer Anteil der Gesamtenergie in diesen
Kraftfeldern ist die lang-reichweitige elektrostatische Wechselwirkung. Sie wird typischerweise
nur für Atome berücksichtigt, die nicht direkt verbunden beziehungsweise durch mehrere chemis-
cheBindungen getrennt sind. Eine Schätzung der Ladungsverteilung zur Berechnung der Coulomb-
Energie ist rechnerisch in Kraftfeldern nicht durchführbar, da die (exakte oder genäherte) Elek-
tronendichte nur mit Hilfe von aufwendigen Wellenfunktionsmethoden berechnet werden kann.
Stattdessen werden sie durch vereinfachte atom-zentrierte elektrostatische Potentiale ersetzt, wie
beispielsweise eine (unvollständige) Entwicklung in einer Multizentrum-Multipol Darstellung.
Als Referenz hierfür dient eine mittlere atomare Ladungsdichte, welche häufig auf Molekülen
im Vakuum oder verschiedenen chmeischen Umgebungen basieren. Abweichungen der Ladungs-
verteilung von dieser permanenten gemittelten Darstellung, aufgrund lokaler Änderungen im elek-
trischen Feld durch andereMoleküle oder Ladungsträger in kondensierterMaterie, können explizit
mit Hilfe sogenannter Polarisationsmodelle verarbeitet werden. Der Fokus der vorliegenden Dis-
sertationsschrift liegt auf einem kürzlich entwickeltem expliziten Polarisationsmodel, der atom-
kondensierten Kohn-Sham Dichtefunktionaltheorie angenähert zur zweiten Ordnung (Original:
atom-condensed Kohn-Sham density functional theory approximated to second order (ACKS2)).
Diese Methode wurde untersucht und weiterentwickelt, um eine allgemeine praktische Anwen-
dung zur Berechnung expliziter elektronischer Polarisation in Kraftfeldern zu ermöglichen. Hier-
für wurde in einer ersten Grundlagenstudie eine neueminimalistische Darstellung in karthesischen
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Gaußfunktionen eingeführt und optimiert. Die ACKS2 molekulare dielektrische Antwort, Polar-
isationsenergie und induzierte Dipolmomente, wurden mit Hilfe der zugrundeliegenden Dichte-
funktionaltheorie validiert. Dazu wurde ein die Elektronendichte eines Satzes kleiner Kohlen-
wasserstoffe und Aromaten mit Hilfe eines simplen elektrostatischen Potentials, einem einzel-
nen homogenen elektrischen Feld oder einer einzelnen Punktladung, gestört. Dabei zeigte das
Gaußsche ACKS2 Model gute Genauigkeit der Polarisationseigenschaften unter Beibehaltung
der vorteilhaften Übertragbarkeit und numerischer Effizienz. Im Anschluss wurden zwei Unter-
arten eines neuen Fragmentierungsschemas in ACKS2 implementiert, um die Beiträge der ex-
pliziten Polarisation zur intermolekularen Wechselwirkung berechnen zu können, was sehr gut
für die Anwendung in molekularen Kraftfeldern geeignet ist. Beide Techniken weisen sehr gute
Übereinstimmung der elektronischen Polarisation mit der Dichtefunktional Referenz für Ladungs-
beschrn̈kte elektronische Zustände (neutraler oder geladener) molekularer Dimere, bestehend aus
kleinen Aromaten. Zum Abschluss zeigt eine Studie der Polarisation während der Ladungstren-
nung in einer eindimensionalen Ketten von Anthracen-Molekülen illustrativ die praktische An-
wendung auf.
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1. Introduction.

THEORETICAL AND COMPUTATIONAL CHEMISTRY focuses on the mathematical and computer-supported
modeling of physical and chemical effects of matter on an atomic scale. These methods provide
information about atoms in molecules and condensed matter, which can help to understand current
(or design new) experimental studies and materials—a crucial feat in a technological world. The
application of computational simulations in chemistry and related fields (like biophysics or engi-
neering) is very diverse. For example, computational studies aid in the understanding of protein
and DNA folding to predict their structure and functionality [3, 4]. Atom-scale investigations of
(chemical) reactivity at surfaces and interfaces are fundamental to heterogeneous catalysis [5] and
electrochemistry [6].
The foundation of atom-scale physics rests in quantum mechanics. Typically, the stationary

(time-independent) Schrödinger equation is employed and atoms are represented bywave-functions.
In many systems, the electrons move orders of magnitudes faster than nuclei, and hence the nuclei
appear to be static to the electrons. This justifies a separation of electronic and nuclear degrees
of freedom, reducing the latter to a structure-dependent parameter in the electronic Schrödinger
equation. At the same time, the nuclei of atoms are typically treated classically as non-massless
point charges, and only electrons are treated in a wave-function framework. Additionally, elec-
trons are assumed to remain in the same electronic state (ground state) upon molecular motion,
implying weak coupling between the different degrees of freedom. This collection of assumptions
is called the adiabatic Born-Oppenheimer (BO) approximation [7]. The solution to the electronic
Schrödinger equation yields the energy of the electronic state as function of the nuclear positions,
which represents a potential energy (hyper)surface (PES) for the nuclear motion. In theoretical
investigations of atom-scale systems, the BO-PES provides forces acting on the different atomic
nuclei and determines the (time-dependent) structure of atomic arrangements. In turn, the latter
determines other static observables (e.g. bulk modulus) or dynamic (transient) observables (e.g.
chemical species on a surface). It is not an overstatement to locate the potential energy surface at
the very heart of modern computational chemistry. Unfortunately, usage of wave-function meth-
ods and calculation of the PES from the electronic Schrödinger equation is numerically expensive
due to the computational cost scaling with the number of electrons in the simulation cell. The
wave-function based interaction operator in the Schrödinger equation contains two-electron four-
center integrals and hits the limits of modern computers already for a small number of atoms. In
consequence, computational studies based on wave-function techniques allow only a small num-
ber of atoms (electrons) and short simulation times. This precludes investigations of extended
system sizes, which is necessary e.g. for representations of extended and complex surfaces in-
cluding bulk materials. It also stops any studies of large time scales to capture slow processes
(e.g. catalyst degradation) or rare events (transition between meta-stable states). Hence, theoret-
ical and computational chemistry need alternatives to bridge the gap and utilize computationally
less expensive energetics.
Here, force field (FF) techniques provide an invaluable set of tools to the modern materials’

modeling community. They are designed for efficient sampling of the phase space of condensed
matter, thereby enabling study of systems too large and simulation times too long to be tackled
by first-principles. Their numerical speedup compared to ab-initio calculations is due to simpli-
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1 Introduction.

fied electronic interactions between different atoms and ions, which are typically either trained on
extensive high-level first-principles references or empirical properties from experimental studies.
The various effective inter-atomic potential contributions to the total energy in a force field are
treated on different footings, often transformed to simple mathematical functional forms by phys-
ical and chemical heuristics. Historically, the force field total energy comprises chemical bond
related energy terms as well as contributions between atoms which are not covalently bonded
(non-bonding), as illustrated for the carbon backbone of naphthalene molecules in fig. 1,

EFF = EΔd + EΔ� + EΔ� + Eel.stat. + Edisp. + Ecross.. (1.1)

 bonding contributions 

non-bonding contributions

EΔd

EΔβ
EΔ𝝰

d(C-C)

∡(C-C-C)∡(C-C-C-C)

Edisp.

Eel.stat.

Figure 1 Illustration of the energy
contributions in force field techniques
for the carbon backbone of a
naphthalene molecule/dimer.

In conventional force fields [8–14], the different energy contri-
butions often employ truncated series expansion representations
of simple functional forms. In practice, the utility of force fields is
facilitated by application of a chemical reference structure during
the parametrization process, where e.g. the inter-atomic distance
distance d is expressed with respect to a zero-order reference dis-
tance, Δd=d−d0. Hence, the bonding energy terms often employ
a quadratic functional form, partly supplemented by small higher
order corrections, for bond lengths Δd and bond-bond angles Δ�:
EΔd∝Δd2 and EΔ�∝Δ�2. The bond-dihedral rotation angle Δ�
utilizes a fourier series expansion as simple rotation functional
form: EΔ�∝cos (n�Δ�), where n� represents the multiplicity of
the rotational symmetry. The total electrostatic interactions are
typically projected onto simplified atom- or bond-related charge

distributions, most prominently represented by Coulomb interactions between point charges qi
and qj with distance ri,j , Eel.stat.∝qiqj∕Δri,j. These charge representations are fixed and pre-defined
for specific atom types to maintain computational efficiency. Additional degrees of freedom to
account for explicit electronic charge rearrangments in simulations are provided in a sub-class, so-
called polarizable force fields, by e.g. atom-centered inducible dipoles [15–18]. In close relation
to the electrostatic interactions, long-range attractive London dispersion effects are expressed as
an inverse power expansion series,Edisp.∝∑

n
Cn∕Δrn, typically corrected by a short-range repulsive

term [19, 20]. More sophisticated force field implementations provide additional cross-coupling
terms between different energy contributions collected in Ecross. [21]. The truncated expansion
and simple functional forms of force fields are typically sufficient to capture most of the total
energy during atomic motions, that are similar to the chemical reference morphologies, at great
numerical efficiency. Yet, it leads to fixed atomic types and pre-defined chemical connectivity. In
contrast, the modeling of chemical bond formation and breaking in terms of transition state theory
and complex reaction mechanisms is an elaborate task and requires more sophisticated force field
formulations, accompanied by increased computational cost [22]. While the approximate form of
the total energy description varies between different effective interaction and energy approaches,
in particular with the advent of more flexible functional forms given by machine-learned poten-
tials [23–26], the separation of short-range (bonding) and long-range (electrostatic and dispersion)
interactions typically still prevails. The success of force field techniques is confirmed in various
applications and research compartments within the materials’ modeling community [27–29], here
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illustrated by a few recent examples. In a study of battery materials and energy storage, Heenen
et al. developed a polarizable force field from density functional theory (DFT) reference ener-
gies, forces and stresses to study the ion conductivity in antiperovskite glasses [30]. Giannini et
al. scrutinized polaron mobility and charge transport in a (one-dimensional) model of organic
semiconductor materials, where a classical non-polarizable force field provides the energies of
the molecular sites [31, 32]. A work by Futera et al. [33] focuses on an extension and benchmark
of a reactive force field implementation versus DFT for the individual adsorption of all natural
amino acids on a gold surface, showcasing the validity of approximate interaction potentials in
biomolecular systems.
In atomistic simulations, the (long-range) classical electrostatic interaction energy between two

charge densities � and �′ is one of the key ingredients (due to long-range) in an accurate ma-
terial property calculation, Eel.stat.=∬ ��′∕|r − r′|drdr′. Yet, developing a physically reliable and
numerically efficient model is a difficult task, as the exact charge density of the atomic struc-
ture is unknown in the absence of the (computationally expensive) electronic structure and spatial
integration of complex distributions is computationally prohibitive in force fields. A multicen-
ter multipole expansion—different flavors deploy cartesian, polar or internal coordinates—of the
classical electrostatic interaction simplifies the interaction integral and reduces the numerical cost
while maintaining reasonable accuracy. The true charge density is typically estimated by approx-
imate permanent atomic multipole moments, which in its simplest form constitutes an ideal point
charge model, E=qiqj∕Δri,j These point charges are typically corrected for short-range interactions
due to the non-ideal nature of atomic charge distributions by Gaussian- or Slater-type functions
[34, 35]. A detailed derivation of an ideal Cartesian multicenter multipole expansion of the elec-
trostatic interaction energy is given in appendix A.

The concept of atom-projected properties, like approximate electrostatic interaction potentials,
derived from first-principles calculations is well established by various atom-in-molecules and
(atom-projected) charge partitioning schemes. Prominent examples of this include e.g. the dis-
tributed multipole analysis [36], Bader charge concentrations [37], Hirshfeld atom-in-molecules
charges [38], Mulliken population analysis [39] and (restrained) electrostatic potential derivation
[40, 41]. Alternatively, more empirical approaches treat the atom-centered multipole moments as
independent parameters optimized to match observables, either . Throughout the past decades,
approximate atom-centered first order mutipole representations (ideal point- , Gaussian- or Slater-
type charges) of the electrostatic energy were the dominant choice for theoretical investigations
of condensed phase matter, in particular motivated by their simplicity and numerical efficiency
[8–13]. Due to the ambiguous nature of the truncated multipole expansion combined with var-
ious partitioning schemes, the (atom-projected) charges in different force field parametrizations
lack considerably in transferability [42–44]. Furthermore, recent discussions of both the static,
isotropic nature of the point charge and lack of directionality in their respectivey potentials [14, 45–
48] prompted the development of more sophisticated models involving point charges distributed
outside the nuclei or atom-centered higher angular momentum terms like dipole or quadrupole (or
rarely even octopole) moments [49, 50].
Going even further, incorporation of the electronic polarization and charge transfer of atomic

structures induced by local electrostatic potential changes, e.g. due to themotion of closemolecules,
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1 Introduction.

excess charge carriers or external biases, is not a simple task [51–53]. Their contributions are typ-
ically rather small compared to the total interaction energy, yet, they can strongly influence the
local processes in condensed phase matter, in particular for weakly-bound systems, for example in
protein folding [54, 55] or excitation and charge transport in organic semiconductors [56, 57]. The
necessity of explicit electronic polarisation canmost easily be illustrated on e.g. the binding energy
curves in pi-cation systems [58]. Large portions of the attractive electrostatic interactions between
benzene—a non-polar, but highly polarizable molecule—and a potassium ion are mediated by the
electronic polarization, which oversimplified representations by fixed partial charges cannot cap-
ture. In another example, a recent study predicts that the energetic stabilization of electron-hole
pairs by (explicit) electronic polarization is crucial during charge separation at donor-acceptor
junctions in organic solar cells [57]. Unfortunately, explicit polarization introduces more model
intricacies (choice of functional form, parameters, etc.) into force fields, initially displaying rather
mixed success compared to well-tuned non-polarizable electrostatic models [45, 59–61]. The
latter frequently employ ad hoc corrections to fixed-charge electrostatic interaction representa-
tions derived from gas-phase molecules, typically at the cost of seriously limited transferability
of parameters [62]. For example, one study suggests the overestimation of the individual charge
magnitudes by about 10-20% to account for increased polarization in condensed phase matter [43],
whereas another introduces reduction by about 30% for ions to account for electronic screening
effects [63].
In this thesis, various polarization extensions to force field techniques are briefly discussed,

followed by an in-depth discussion of the methodological details and development of a general
dieletric response model based on the atom-condensed Kohn-Sham DFT (KS-DFT) approximated
to second order.
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2. Explicit charge polarization in force field methods.

MODELS for an explicit, yet efficient charge polarization in force fields can roughly be grouped in
threemain classes: i) classical Drude oscillators, ii) induced point dipoles, iii) charge equilibration.
This chapter is dedicated to a brief summary of the fundamental ideas of the first two dielectric
response classes and a more elaborate discussion of the various charge equilibration methods,
as they are conceptual predecessors to the general ACKS2 electronic response model. For the
interested reader, a good introduction into the approximate treatment of explicit charge polarization
in force fields, dicussing model origins, code implementations, parameter evaluation and practical
applications is provided by these publications [15–18].

2.1. The Drude oscillator.

q1,0
q1,D

harmonic

spring

k1,D

virtual

charge

particle

atom 1

atomic

core

atomic

shell

Figure 2 Illustration of the Drude
oscillator model for efficient
polarization extentions in force fields.

The Drude oscillator comprises a virtual charged particle attached
to the core of a (typically non-hydrogen) atom by a harmonic
spring to account for intra-atomic electronic polarization [64, 65],
sometimes also referred to as charge-on-spring, shell or core-shell
model. The shell particle of atom i carries a charge of qi,D, and its
core typcially carries a charge of qi,0=qi−qi,D to maintain the total
atomic charge qi. The force constant, ki,D, of the harmonic spring
between both charges is connected to the atomic polarizability �i,
ki,D= q2i,D

�i
. Any electronic polarization effects due to electrostatic

interaction potentials are covered by the displacement of the shell
charge relative to its respective core. Note, that the Drude oscilla-
tor does not incorporate any atom-atom charge transfer. The com-
putational cost of the Drude oscillator polarization representation
in FF scales with simple charge-charge interactions between the core and shell of two particles.
The energy of a Drude oscillator follows simple charge-charge interactions between core and shell
of two different atoms, i and j, and the harmonic spring energy,

EDrude =
∑

i<j

qi,0qj,0
|ri,0 − rj,0|

+
∑

i<j

qi,Dqj,D
|ri,D − rj,D|

+
∑

i,j

qi,0qj,D
|ri,0 − rj,D|

(2.1)

+
∑

i

1
2
ki,D|ri,0 − ri,D|2.

Hence, the computational cost of the Drude oscillator model is about four times the compu-
tational cost of the fixed point charge non-polarizable electrostatic interaction calculations. The
Drude model gained significant popularity in the biological and organic molecular simulation
community in the last two decades [66–70]. For example, proper explicit classical water models
are indispensable to produce reliable solvation of molecules in a biological environment. The di-
electric response of water is accomplished either by a single charge-on-spring at the oxygen [71,
72], several distributed Drude oscillators at each nucleus and lone pair [73] or a charge-transfer
extended Drude oscillator [74].

5



2 Explicit charge polarization in force field methods.

2.2. The induced dipole.

This model comprises an (ideal) inducible dipole located at each nuclear position to capture elec-
tronic polarization effects [75], sometimes also referred to as distributed (dipole) polarizability
model. The local electric field acting on atom i due to its environment prompts a dielectric re-
sponse in form of an induced point dipole �i mediated by its effective (isotropic) polarizability
�i,

�i = �i

[

Ei +
∑

j≠i
T i,j�j

]

(2.2)

Eind.dip. =
1
2
∑

i
�iEi. (2.3)

inducible

point

dipole

+
-

+
-

atom 1 𝝰1

Figure 3 Illustration of the inducible
point dipole model for efficient
polarization extentions in force fields.

The electric field contribution Ei accounts for the permanent
charge or multipole representation of the fixed electrostatic inter-
actions, and T i,j provides mutual dipole-dipole interactions be-
tween different polarizable sites. Typically, these contributions
are corrected for short-range effects, like the non-ideal, contin-
uous nature of the electron distribution including charge accu-
mulation (variable local distribution shape) and charge penetra-
tion (charge density overlap), to improve the energetics by short-
range dampening functions or non-ideal dipole representations
[76–79]. Otherwise this can lead to numerical instabilities of ever-
increasing dipole moments called polarization catastrophe. The
computational cost scales with the charge-charge, charge-dipole
and dipole-dipole interaction evaluation. The model of induced

atomic dipoles (or distributed atomic polarisabilities) bears many conceptual similarities to the
previously introduced Drude oscillator, which has been studied and compared to non-polarizable
force fields [70, 80, 81]. In order to improve the overall (long-range) electrostatic interaction
energy, induced dipole models have been extended by higher angular momentum terms of the per-
manent [52] or inducible [82, 83] distributed multipole representation. Note, the Drude oscillator
and inducible dipole models still only represent simplified and efficient intra-atomic polarization
contributions. They are able to account for overall molecular dipole (and higher angular) moments,
but essentially lack an explicit inter-atomic charge transfer description. Combining induced dipole
models with fluctuating charge models, see next section, establishes a computational framework
to account for explicit intra-atomic polarization as well as inter-atomic charge transfer [84].

2.3. Charge equilibration.

Charge equilibration (QEq) techniques provide a set of tools to estimate atomic partial charges in
molecules as function of their topology and molecular conformation. Conceptually, they slightly
differ from both previous sets of explicit polarization models, which only allow an intra-atomic
response. QEq models retain the same functional structure of the electrostatic energy of non-
polarizable simple fix-charged models—an atom-centerd point charge representation. However,
in QEq the atomic partial charges are not fixed a priori, i.e. pre-determined parameters fitted to
first-principles or empirical data. Instead they are flexible and adapt on-the-fly during molecular
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2.3 Charge equilibration.

dynamics or Monte-Carlo simulations in terms of atom-atom charge transfer prompted by the
molecular topology or conformational changes.

inter-atomic

charge

transferΔq

non-fixed atomic

partial charges

𝟀Aatom A

atomic

electronegativity

Figure 4 Illustration of equilibration
methods by atom-atom charge transfer.

Following the ideas of Sanderson on chemical bond formation,
charge density (and atomic electron population) flows between
atoms until the electronegativity is equal in the entire molecule,
i.e. their electronegativity converges to a common intermediate
value [85]. A theoretical foundation is given by Iczkowksi and
Margrave [86], who relate the free-atom (or ion) electronegativ-
ity � to the change of total energy E as a function the electronic
population N of an atom, �=-dE∕dN. A similar description, yet
closer to an accurate first-principles formalism and the finite na-
ture of electrons, by Parr et al. provides a quantum mechanical
footing and clear mathematical foundation for the electronegativ-
ity (and chemical potential �) concept, �=dE∕d�=-� [87]. Mortier
et al. develop the foundation for the (atomic) electronegativity equalization method (EEM) in
two seminal papers [88–90] (a less conceptual, more fundamental derivation based on a den-
sity functional theory formalism by York and Yang [91] is given in appendix B). The authors of
EEM expand the electronic energy of a free-atom A as a function of its atom-projected electronic
population, NA= ∫ �Adr, up to second order in a simple point-charge representation. A slightly
more convenient form of atomic partial charges qA instead of electronic population, following the
transformation qA=(ZA-NA)e, whereZA is the atomic nuclear charge and explicit mention of the
elementary charge e will be disregarded for the sake of brevity, yields

EA(qA) = E0A +
)E
)qA

qA +
1
2
)2E
)q2A

q2A (2.4)

= E0A + �
0
AqA +

1
2
�0A,Aq

2
A. (2.5)

The first term comprises the total energy of a free-atom in an unperturbed reference state—
typically a neutral atom, but can in principle be extended to ions. The first and second order
energy derivatives are identified with the atomic electronegativity, �0A = )EA∕)qA, and atomic hard-
ness [89] (or idempotential [92]), �0A=)�A∕)qA=)2E∕)q2A. The superscript index 0 indicates a free-atom
property (opposed to an atom in a molecule). Similarly, the total energy (not only the classical
electrostatic contributions) of a molecule can be expressed as function of its total charge. Projec-
tion of the molecular charge distribution onto the atom centers, i.e. an atom-in-molecule partial
charge representation, results in

Emol.(qA, qB,⋯ , qK ) =
∑

A
(E∗A + �

∗
AqA +

1
2
�∗A,Aq

2
A) +

∑

B<A
qA�

∗
A,BqB. (2.6)

The first three terms account for the (one-body) single free-atom-like contributions to the total
energy as function of its charge, describing the energy gain or cost for charge accumulation and
depletion at a site. The last contribution represents interactions between different free-atom-like
sites in the samemolecule. They are typically reduced to simple Coulomb interactions of the atom-
centered partial charges corrected for short-range interactions. Inclusion of additional terms—not
shown here—could account for further perturbations, like e.g. the presence of other molecules
introduced by qA�∗A,A′qA′ , where A′ denotes an atomic site in another molecule. The ground state
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2 Explicit charge polarization in force field methods.

charge distribution of a molecule is determined by the energy minimum with respect to the in-
dividual atomic partial charges, )Emol.∕)qA. The latter is equivalent to impose an electronegativity
constraint onto the different sites, which inspired the authors to call this method electronegativity
equalization method. A final constraint enforces charge neutrality,∑A qA-q=0, where q is the net
charge of the molecule. Note, the constraint of charge conservation can be adjusted to allow or
prohibit charge transfer between different molecules.

During chemical bond formation, the atomic density distribution changes quite vividly. The
pure free-atom character of the unperturbed atomic charge sites decreases and the atom-in-molecule
(AIM) character increases, which influences all atomic properties including electronegativity and
hardness, �0A→�AIMA and �0A,B→�AIMA,B . Despite ambiguities, theoretical atom-in-molecule repre-
sentation is amathematically sound concept and basically projects the electronic structure informa-
tion of a molecule (or other chemically bonded systems) onto atom centers. Practically, the accu-
rate calculation of a faithful charge partitioning function from first-principles on-the-fly produces
large numerical overhead and can generally not be transferred between different atomic structures.
Hence, the usage of exact AIM parameters is computationally prohibitive in any practical simu-
lation and force fields resort to approximate schemes of parameter scales to resolve the transition
between free-atoms and atoms-in-molecules. In the original electronegativity equilization method
(EEM), Mortier et al. considered three different approximate (first-principles derived) free-atom
electronegativities modifed by a screening correction, combined with simple point charge inter-
actions in �∗A,B [88]. Later, they recalibrated their parameters semi-empirically to match Mulliken
charge distributions in small molecules, and applied a Slater-type correction to short-range charge-
charge interactions [89]. Rappe and Goddard utilized the experimental atomic ionization potential
and electron affinity to estimate the intra-atomic charge transfer parameters, �0A=1∕2(IP+EA) and
�0A,A=IP -EA, corrected for exchange interactions [92]. They applied a Slater-function repre-
sentation of the short-range inter-atomic interactions and proceeded to call this approach charge
equilibration (QE, QEq, CHEQ) method. Similarly, the atomic hardness �A,B has been expressed
in Slater- [92–94], Gaussian- [51, 91, 95] or other function [96–98] representations to produce
(long-range) classical Coulomb interactions corrected for short-range effects. In 1994, Rick et al.
developed a Lagrange-technique to efficiently propagate the molecular charges in MD simulations
[99], generally known as fluctuating charge model (fluc-q, FC, FQ). More recently, York and Yang
provided a charge equilibration method derived from density functional theory that moves beyond
the simple atom-condensed charge populations and partly recovers the nature of a finite electron
density distribution [91]. A summary of the derivation of their approach—the chemical potential
equalization (CPE, �Eq) method—and a comparison to EEM is provided in appendix B. The au-
thors proceeded to represent the total molecular energy as a function of atom-centered (partial)
electron density changes—opposed to simple atomic partial charges—along the lines of a rigorous
perturbative DFT formulation, which enables a more fundamental investigation and improvement
of the dielectric response basis functions and its parameters in charge equilibration schemes. For
example, it provides a theoretical foundation to include higher-order fluctuating multipole mo-
ments and enables the describtion of intra-atomic polarization. Throughout the past decades, a
plethora of different charge equilibration schemes and parametrization efforts have been published
[96, 100–104].
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2.4 Non-additivity of explicit polarizability.

Unfortunately, molecular charge equilibration schemes exhibit two major limitations. First, the
procedure to estimate transferable, yet accurate response parameter representations is very tedious
and daunting [51, 97]. Finding and parametrizing simple functional forms to account for the var-
ious local environments even in an average way is not a simple task and often leads to limited
transferability. Secondly, the representation of electronic polarization is oversimplified and fails
to capture the continuous nature of the electron density (opposed to simple point charges or point
dipoles), e.g. present in charge accumulation (local change of charge distribution shape) and pen-
etration effects (charge density overlap) [18]. As a result, an obvious failure of simple point charge
QEq is its inability to allow polarization perpendicular to planar molecules or molecular structures
like benzene, which is crucial in many materials like organic semiconductors or biomolecules.
A simple remedy is the addition of higher order multipole moments, e.g. inducible dipole mo-
ments [91, 105]. Another shortcoming has been reported by Chelli et al., where a QEq model
parametrized for small hydrocarbons predicts a superlinear scaling of the dipole polarizability for
higher linear n-alkanes (instead of linear scaling for dielectric systems in the macroscopic limit)
and breaks size-extensivity [94, 106]. However, in a later study, the addition of atom-centered
inducible moments combined with an improved parametrization procedure lifted the superficial
molecular polarizability scaling [95]. Furthermore, charge equilibration schemes lead to partially
charged molecules in the dissociation limit, which is unphysical, and limits its applicability in
reactive force fields.
One methodological pathway to overcome the model limitations of QEq, in particular the in-

correct asymptotic behaviour for separated atoms, is the transformation from a (one-body) atomic
partial charge representation to a (two-body) charge-transfer along bond representation, where a
bond is not necessarily a literal chemical bond, but instead represents a pair of individual atoms.
Each bond allows the transfer of charge between two atomic sites to contribute to the overall polar-
ization, where the construction of different boundary conditions leads to a variety of flavors, like
the methods of atom-atom charge transfer [94], bond-charge increments [84, 97], charge-transfer
variable [107] and split-charges [108]. While these techniques solve some of the previous lim-
itations [51, 109, 110], they are merely ad hoc corrections and lack any theoretical foundation.
Instead, they basically confine the super-linear polarizability effect to short inter-atomic distances
and hence reduce erroneous contributions [106].
An alternative pathway beyond simple QEq models—founded in first principles as extension of

CPE—is provided by the ACKS2 model in the next chapter.

2.4. Non-additivity of explicit polarizability.

Traditional non-polarizable (and non-reactive) force field techniques are typically additive, mean-
ing the total energy is computed as sum of several independent energy contributions of a set of
variables (e.g. atomic coordinates) and several specific pre-determined input properties (e.g. fixed
atomic charges) during molecular dynamics simulations. These energy terms are formulated as
two-, three-, four-body (or higher) functions of the (pre-determined) atom types and parameters
together with variable nuclear positions. Specifically, the (long-range) classical electrostatic en-
ergy is a two-body interaction energy determined by the relative position and the (atom-centered)
distributed multipole moment of the individual sites.
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2 Explicit charge polarization in force field methods.

Introduction of explicit polarization in force field invalidates the independence of the input
properties of the atomic structure and thereby breaks the additivity assumption. The multipole
moments of a specific site are not fixed and pre-determined anymore, instead they are calculated
on-the-fly in molecular simulations subjected to the presence of other atoms (and interaction po-
tentials). The mutual dependence of the different site multipole moments is apparent in the Drude
model due to coupling of the relative shell charge position, ri,D in eq. (2.1). Similarly, the indi-
vidual sites are coupled by classical dipole-dipole interactions, T�, in the inducible dipole model
in eq. (2.2). In the charge equilibration schemes, charge transfer and interaction of the fluctuat-
ing charges between (atomic) sites are evident in the approximate first and second order energy
derivatives, � and � in eq. (2.6). The interdependence of (atomic) multipole moments leads to
a large (partially sparse) system of linear equations containing all polarizable sites, which intro-
duces a considerable computational bottleneck in efficient force field techniques. Exact solutions
like direct matrix inversion and Cholesky decomposition are computationally prohibitve in force
field simulations of extended systems. Instead, more efficient (arbitrarily exact) approximate solu-
tions are utilized in force field implementations following either an iterative-convergence or direct
time-propagation technique.
In iterative techniques, the simulation system is divided into smaller subunits for which the

explicit polarization linear equations are solved, with the smallest set consisting only a single po-
larizable site. An initial (sophisticated) estimate of the individual multipole moments yields a first
approximate local electrostatic potential and interaction energy. The latter are utilized to deter-
mine the dielectric response of the polarizable sites, which prompts a new electrostatic potential
and change of the response, and so forth. This procedure is continued until the individual inducible
multipoles and electrostatic interaction energy are self-consistent, i.e. they do not change more
than a given accuracy threshold in consecutive iteration steps. Unfortunately, the computational
cost of the self-consistent polarization is still expensive due to the iterative cycling performed
for every atomic structure at every molecular dynamics simulatiton time step individually. Fur-
thermore, the iterative solution can lead to numerical instabilites. Mathematical details and de-
velopment of methods to determine good initial parameter guesses, pre-conditioning, accelerated
self-consistency convergence and efficient numerical algorithms are a matter of ongoing research
[111, 112], but details of these approaches go beyond the scope of this thesis.
Alternatively, the individual multipolemoments are calculated for an initial atomic structure and

consecutively treated as fictitious particles propagated in time by an extended Lagrangian scheme
[99, 113]. With that comes a fictitious mass of the explicit polarization fictitious particles, which
should be chosen small enough so that any charge response adapts immediately to the motion of
the atomic nuclei and artificial thermal coupling between them is avoided. This is equivalent to
a Born-Oppenheimer like separation of the nuclear and explicit electronic degrees-of-freedom.
Unfortunately, too small masses and thereby temperatures (ideally 0K) lead to very small time
propagation steps necessary to avoid energy drifts and hence yield prohibitive computational cost
in any practical applications. In consequence, a compromise for the temperature of the fictitious
particles is met between ideally very small and practically much smaller than the temperature of
the atomic nuclei by application of an additional polarization thermostat at low temperature (≈
5K).
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2.4 Non-additivity of explicit polarizability.

In summary, current charge equilibration methods provide a computationally efficient set of
tools to account for (localized) explicit electronic polarization in force field techniques. However,
they crucially suffer from two major limitations. First, the entire DFT energy functional is pro-
jected onto a small and local atom-centered basis set, see eq. (2.5). Thereby, the (non-classical)
kinetic energy and coulomb interaction contributions are condensed together in a single set of po-
larization parameters, � and � , and the complex quantummechanical information of the electronic
response is oversimplified. One particular feature is the erroneous contribution of the non-local
(long-range) kinetic energy to the electronic response [114]. Second, determination of the fluctu-
ating charge parameters is non-trivial, while at the same time transferability is low. This seriously
limits the (wide-spread) adoption of explicit polarization in force fields for complex chemical sys-
tem and reactivity studies.
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3. First-principles foundation of the ACKS2 general elec-
tronic polarization model.

THE ATOM-CONDENSED KOHN-SHAMDFT APPROXIMATED TO SECOND ORDER (ACKS2) is a linear electronic response
model derived from first-principles by Verstraelen et al. [114, 115]. It is based on an Euler-
Lagrange formulation of perturbative KS-DFT and applies two major simplifications, a lineariza-
tion of the energy functional derivative—equivalent to an energy expansion up to second order—
and an atom-projected (small) linear expansion series of the polarization properties. This chapter
is intended as brief summary of the derivation of the general ACKS2 formalism following the
work of T. Verstraelen and co-workers, more details of mathematical formulations are to be found
in appendix C. Particular focus is set on the ACKS2 model in the context of local or semi-local
exchange-correlation functionals. The last part of this chapter is dedicated to a brief discussion of
the implications of different unperturbed reference states—free-atom, free-molecule or extended
simulation systems. The choice of the latter is in principle arbitrary and depends on the intended
usage. Starting from a free-atom reference allows an estimate of the (molecular) charge distribu-
tion in simulation systems (equivalent to EEM and QEq). A reference system of free molecules
models electronic polarization contributions to the intermolecular interaction energy (as origi-
nally proposed by CPE). Finally, considering the entire simulation system enables the dielectric
response to external fields like a time-dependent electro-magnetic field.

3.1. Wave-function augmented formulation of density functional theory.

In DFT, the total energy as functional of the electronic density is
E[�] = F [�] + ∫ �(r)vext(r)dr (3.1)

The universal functional F contains the pure electronic interactions, including kinetic energy,
classical electron-electron interactions and exchange-correlation corrections. The external poten-
tial vext accounts for interactions with the nuclei and other external potentials. Unfortunately,
a mathematical expression for many contributions to the total density functional energy are un-
known. Instead, the universal functional is decomposed into two functionals,

E[�] = Eexp[�] + Eimp[�] + ∫ �(r)vext(r)dr. (3.2)
One functional, Eexp, contains the energy contributions that explicitly depend on the electron

density, e.g. the classical Ccoulomb interaction between electron distributions. The other func-
tional, Eimp, contains all energy contributions that cannot be expressed directly as function of the
charge density. Following the ideas of KS-DFT, the electron density is transformed to an auxiliary
wave-function, �→Ψ, to implicitly evaluate the unknown energy contributions,Eimp[�]=EWF[Ψ].
The application of two consecutive Legendre transforms provides a formal recipe to express the
implicit density energy functional in terms of wave function energy contributions [116],

Eo[u] = min
Ψ
(∫ ⟨Ψ|Ψ⟩ u(r)dr +W WF[Ψ]) (3.3a)

−Eimp[�] = inf
(

∫ �(r) u(r)dr − Eo[u]
)

. (3.3b)
Here, eq. (3.3a) represents the Legendre transformation of the (yet unspecified) energy contri-

bution W WF from an arbitraty wave function formalism to an energy functional of the auxiliary
potential u(r). In a second step, eq. (3.3b), the potential formulation of the implicit functional is
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3 First-principles foundation of the ACKS2 general electronic polarization model.

converted again by method of Legendre transforms to an energy functional of the electron den-
sity. Together, these equations pose a double constrained search formulated in terms of Lagrange
multipliers. The total DFT energy, separated in explicit density functional dependent and implicit
auxiliary potential dependent functionals, is

E[�, u] = Eexp[�] + Eo[u] + ∫ �(r) (vext(r) − u(r))dr (3.4)
The electronic ground state in DFT (energy minimum) is formulated in terms of the Lagrange-

multiplier method, where � is the Lagrange multiplier,
L[�, u, �] = Eexp[�] + Eo[u] + ∫ �(r) (vext(r) − u(r))dr − �

(

∫ �(r)dr −N
)

. (3.5)
The stationary point, which determines the electronic ground state, is determined by the func-

tional derivative of L with respect to each variable (L, i.e. )L∕)�=0, )L∕)u=0 and )L∕)�=0 (which
provides a simple charge constrained by construction),

Eexp[�]
)�(r)

+ vext(r) − u(r) − � = 0 (3.6a)
Eo[u]
)u(r)

− �(r) = 0 (3.6b)

∫ �(r)dr −N = 0. (3.6c)
A complete list of the first and second order derivatives of the Lagrange-formulation of DFT,

see eq. (3.5), is given in appendix C.1.

3.2. Perturbative density functional theory.

A change of the external potential with respect to a (unperturbed) reference state, vext=vext,0 +
Δvext , prompts a response of the electron density and auxiliary potential, where the initial unper-
turbed state is labeled by index 0,

�(r) = �0(r) + Δ�(r) (3.7a)
u(r) = u0(r) + Δu0(r) (3.7b)
� = �0 + Δ�. (3.7c)

reference 

state

H2 in vacuum

response:

explicit electronic 


polarization
Δvext Δρ and Δu

perturbed 

state

H2 in homogeneous 

electric field

Figure 5 Illustration of electronic
polarization in regular and perturbative
density functional theory.

The electron density for the perturbed and unperturbed state, �
and �0, and with them the total energy follows the regular DFT
formulation in eqs. (3.6a) to (3.6c), given the external potentials
vext and vext,0. The difference in electronic structure of these two
states then gives the polarization response to a change in the ex-
ternal potential as illustrated in fig. 5, e.g. the electronic charge
rearrangments Δ� and induced dipole moment ∫ Δ� r dr. How-
ever, this approach is computationally very expensive, as it em-
ploys two self-consistent calculations, in particular with a view
of explicit polarization corrections in force fields, where the (ef-
ficient) calculation of the dielectric response properties is the top
priority. A more direct approach to the electronic polarization in
response to changes in the external potential is a perturbative ap-

proach to density functional theory. The energy functional formulation of the response, including
the Lagrange multiplier, is
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3.3 Atom-condensed parametrization scheme.

ΔLresp = L[�0 + Δ�, u0 + Δu, �0 + Δ�] − L[�0, u0, �0]. (3.8)

The stationary point in a perturbative DFT ansatz is defined by the functional derivatives of
the response energy, with respect to Δ�, Δu and Δ�, and determines the ground state electronic
response of the system. A linearized energy functional derivative—equivalent to a Taylor expan-
sion of the response energy with respect to the unperturbed reference state truncated at second
order, see appendix C.2 for more details—yields an approximate Euler-Lagrange formulation of
the electronic polarization,

∫
)2Eexp[�0]
)�(r))�(r′)

Δ�(r′)dr′ + Δvext(r) − Δu(r) − Δ� = 0 (3.9a)

∫
)2Eo[u0]
)u(r))u(r′)

Δu(r′)dr′ − Δ�(r) = 0 (3.9b)

∫ Δ�(r)dr = 0 (3.9c)

This triplet of equations is the first-principles foundation of the ACKS2 general explicit polar-
ization model. They define the electronic polarization in the limit of a linear response derived from
perturbative DFT—including the transformation to an implicit energy functional of the density—
and constitute the theoretical foundation of the central working equations of the general ACKS2
method.

3.3. Atom-condensed parametrization scheme.

In any practical application, the change of electron density Δ� and auxiliary potential Δu are
expanded in a linear expansion series,

Δ�(r) =
∑

i
cigi(r) (3.10a)

Δu(r) =
∑

j
djℎj(r). (3.10b)

This representation is in principle exact in the limit of a complete basis set. For any practically
relevant simulation setup, efficient basis functions are necessary, which are capable to condense
the electronic structure response information with reasonable accuracy while at the same time they
exhibit a sufficiently small computational cost. The choice of an atom-centered (minimalistic) ba-
sis set representation is a key component of the ACKS2 approach. Applying a linear expansion of
density and auxiliary potential in the Euler-Lagrange response condition above yields the ACKS2
matrix working equations for practical applications,

�c −Od − Δ�D = −V (3.11a)
�d −OT c = 0 (3.11b)

Dc = 0, (3.11c)
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3 First-principles foundation of the ACKS2 general electronic polarization model.

where the ACKS2 parameters are given by
�k,l = ∬ gk(r)

)2Eexp[�0, u0]
)gk(r)gl(r′)

gl(r′) drdr′ (3.12a)

�m,n = ∬ ℎm(r)
)2Eimp[�0, u0]
)ℎm(r)ℎn(r′)

ℎn(r′) drdr′ (3.12b)

Ok,m = ∫ gk(r)ℎm(r)dr (3.12c)

Vk = ∫ gk(r)Δvext(r)dr (3.12d)

Dk = ∫ gk(r)dr (3.12e)
The hardness kernel �k,l and non-interacting linear response kernel�m,n include electronic struc-

ture information following the choice of separation into explicit and implicit electron density func-
tionals. Details for the parametrization with (local and) semi-local functionals are presented in the
next section. The overlap parametersOk,m, density integral parametersDk and perturbation vector
Vk are entirely electronic-structure independent and their performance rests on the basis set repre-
sentation. A useful polarization property is the induced dipole moment as function of the change
in electron density,

Δ�ind. =
∑

i
ci ∫ gi(r) rdr. (3.13a)

Another important property is the induced polarization energy Epol., which describes the en-
ergetic gain due to rearrangement of charge density, excluding the interaction of the unperturbed
reference density with the perturbation potential ∫ �0Δvextdr. In the limit of linear response,
which should be valid for small perturbations and enforced by the ACKS2 approach, the cost of
electronic rearrangements is half the size of the gain by the interaction with the external perturba-
tion.

Eresp.ACKS2 = ∫ �0(r)Δvext(r)dr + cV − cOd + 1
2
c�c + 1

2
d�d (3.14a)

Epol.ACKS2 = cV − cOd + 1
2
c�c + 1

2
d�d (3.14b)

≈ 1
2
cV (3.14c)

Direct computation of atomic forces due to polarization poses a desirable feature for force field
simulations. Investigation of atomic forces has not been part of this thesis, nevertheless a deriva-
tion of ACKS2 polarization contributions to atomic forces is illustrated in appendix C.3.

3.4. Semi-local exchange-correlation functionals in ACKS2.

The choice of basis set and exchange-correlation (xc) functional influence the accuracy of (static)
polarization calculations in DFT [117–119]. Generalized gradient approximations slightly lack in
accuracy, PBE-xc [120] exhibits an relative error of 6% for a range of small organic molecules
[118] and 10% for small molecules composed of main group elements lighter than Argon [119]
compared to coupled cluster calculations. We focus on the application of GGA-level exchange-
correlation functionals (in particular PBE), which are explicit with respect to the electron density,
i.e. Exc=Exc[�]. The explicit functional terms applied in the KS-DFT formulation and the respec-
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3.5 Dielectric response in intermolecular interactions.

tive ACKS2 hardness are
Eexp[�] = EH [�] + Exc[�] (3.15a)

�k,l = ∬ gk(r)
1

|r − r′|
gl(r′)drdr′ +∬ gk(r)

)Exc[�0]
)�(r))�(r′)

gl(r′)drdr′ (3.15b)
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Figure 6 Illustration of the electronic
structure dependent ACKS2
parameters, �xck,l and �m,n for acollection of small aromats (benzene,
naphthalene, anthracene, tetracene).

In practice, the Coulomb contributions clearly dominate the
hardness elements within a local or semi-local xc-functional
framework, particularly for atom centers far apart. However, the
same-center contributions (diagonal elements [�k,k]xc and block-
diagonals for same atom center) are not negligible and add an
intra-atomic exchange-correlation correction. Figure 6 illustra-
tively depicts the distribution of the electronic structure depen-
dent parameters, [�k,l]xc and �m,n (see below), for small aromats
given the sp-type Cartesian Gaussian function basis set represen-
tation developed in publication #1 [1]. The implicit functional, re-
sorting to a wave function technique by Legendre transformation,
now only contains the kinetic energy of the Kohn-Sham electronic
structure,

W WF[Ψ] = ⟨Ψ| − 1
2
∇2|Ψ⟩ (3.16a)

Eo[u] = − inf
(

∫ �(r)u(r)dr +W WF[Ψ]
)

(3.16b)

= − inf
(

∫ �(r)u(r)dr +
(

EKS[Ψ] − ∫ ⟨Ψ|Ψ⟩ vKS(r)dr
))

. (3.16c)
This formulation of the implicit density functional in the framework of KS-DFT and (local or)

semi-local exchange-correlation functionals helps us identify the auxilary potential with the effec-
tive potential of the Kohn-Sham system of non-interacting electrons, u=vKS. The non-interacting
linear response kernel finally is

�m,n = ∬ ℎm(r)
)EKS[u]
)u(r))u(r′)

ℎn(r′)drdr′ (3.17a)

=
∑

i,j

1
�i − �j

(

∫  ∗i (r)ℎm(r) j(r)dr
)(

∫  ∗j (r)ℎm(r) i(r)dr
)

+ c.c., (3.17b)
where  i ( j) are the occupied (virtual) KS orbitals with eigenenergy �i (�j) and c.c. is an

abbreveation of the complex conjugated term.

3.5. Dielectric response in intermolecular interactions.

The research in this study is dedicated to a freemolecule as reference, where the initial unperturbed
state �0 (see eq. (3.7a)) is the self-consistent charge density of a molecule in vaccuum. The elec-
tronic responseΔ� contains the change of the molecular charge density, specifically scrutinized in
this thesis for ideal electrostatic potentials—a single point charge or homogeneous electric field—
or a simplified Coulomb representation of other molecules. Intended as proof-of-principle study
in a bottom-up direction, all ACKS2 parameters are calculated exactly from the self-consistent
KS-DFT electronic structure and the ACKS2 response properties—induced dipole moment and
polarization energy—are validated against the KS-DFT parent method. Thereby, we assess the
ability of our basis set representation to project the response information onto atom-centered ba-
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3 First-principles foundation of the ACKS2 general electronic polarization model.

sis functions and get a measure of the ab-initio accuracy in ACKS2 (excluding error cancelation
due to empirical parameter fitting). This allows us to include efficient, yet accurate first-principles
derived response contributions in the intermolecular interaction energy in force fields. Details of
the Cartesian Gaussian basis set development for molecules are collected in publication #1, fur-
ther information about the dielectric response due to interaction of molecules are summarized in
publication #2.

external

potential

self-consistent 

molecular charge density


reference

ACKS2 fluctuating

atomic multipoles

Figure 7 Illustration of molecular
ACKS2 model for carbon backbone of
benzene.

One critical drawback of this bottom-up approach is that cur-
rently we need to perform one self-consistent DFT calculation for
each molecular structure or atomic arrangement, which can be
quite challenging depending on the system and is practically un-
feasible for phase space sampling with force fields. We envision a
high-accuracy ACKS2 model for an efficient molecular response,
where a basis set representation is developed from KS-DFT (as
performed in publication #1) and the first-principles derived pa-
rameters are projected onto an efficient descriptor or machine-
learned to reduce their computational overhead. Furthermore, the
current state of ACKS2 allows—after a single DFT calculation—
to calculate the dielectric response of a fixed atomic structure to
a varying external perturbation, like e.g. the response of a frozen

molecule or cluster to a time-dependent potential.

3.6. Electronic charge rearrangements of atoms in a molecule.

non-self-consistent superposition

of free-atom charge densities


reference

external

potential

ACKS2 fluctuating

atomic multipoles

coupling

between atoms

Figure 8 Illustration of free-atom
reference ACKS2 model for carbon
backbone of benzene.

A free-atom unperturbed reference state is very useful to esti-
mate fluctuating charges and higher multipole moments of the in-
dividual atoms in a molecule during molecular motions (atomic
multipole changes triggered by conformational and topological
changes). It follows the idea of system fragmentation of the
ACKS2 reference state introduced in publication #2 [2]. Now,
a molecule is decomposed into single-atom fragments, and the
ACKS2 model yields an electronic response of each atomic site to
the presence of all other sites in the molecule and an external po-
tential if present. Crucially, the free-atom reference ACKS2 needs
to approximate the interaction potential between different atomic
sites in a molecule (a simplified classical Coulomb interaction ap-
proximation suffices for molecular fragments in publication #2).

It must contain (approximate) information about the electronic structure at short ranges typical for
molecular bond lengths to account for chemical bond interactions between atomic sites. They key
ideas for a free-atom ACKS2 are briefly summarized here.
The self-consistent molecular charge density �mol is decomposed into atomic contributions (in-

dexA for different atom centers), where �fa is the unperturbed charge density of an atom in vacuum
and Δ�AIM is its change in a molecule (atom-in-molecule correction),
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3.6 Electronic charge rearrangements of atoms in a molecule.

�mol(r) =
∑

A
�faA (r) + Δ�

AIM
A (r) (3.18)

In the free-atom reference ACKS2 model, the unperturbed reference state �0 (see eq. (3.7a)) is
defined as (non-self-consistent) superposition of free-atom like charge densities. The molecular
(free-atom reference) ACKS2 electronic response Δ� contains the charge rearrangments due to
any external potential acting on the entire molecule (calculated individually for each atom center
Δ�A). Additionally, it includes an atom-in-molecule correctionΔ�AIMA to account for themolecular
character of the atomic sites. To achieve that, the free-atomACKS2 perturbation parameterΔvext,A
contains the external potentialΔvext (acting on the entire molecule) and an atomic interaction term
Δvfa−fa{A,B}. The later introduces coupling of the atomic site A to the free-atom ground state charge
density of another atomic site B. Note, the free-atom ACKS2 interaction potential parameter is
atomic site specific, indicated by the atomic label subscript A.

�0 =
∑

A
�faA (3.19a)

Δ� =
∑

A
Δ�AIMA + Δ�A (3.19b)

Δvext,A(r) = Δvext(r) +
∑

B
Δvfa−fa{A,B} (3.19c)

The basis set dependent (electronic structure independent) free-atom reference ACKS2 param-
eters are calculated analytically for a Cartesian Gaussian representation. The electronic-structure
dependent ACKS2 parameters, exchange-correlation contributions to � (see eq. (3.15b)) and �
(see eq. (3.17a)), for basis functions located at the same atom are calculated exactly from the KS-
DFT electronic structure of an isolated atom in vacuum. For numerical speedup, they can be saved
to a file or look-up tables for future use as polarization model. The ACKS2 parameters for basis
functions located at different atom centers need to be approximated for any practical implementa-
tion, e.g. from a diatomic reference. Alternatively, the coupling of the response at different atomic
sites can be treated in the effective inter-atomic interaction potential.
A free-atom reference ACKS2 exhibits two major challenges. First, condensing the ab-initio

interaction of two atoms into an effective (two-body) potential Δvfa−faext is a non-trivial task, in
particular for the short-range interactions and charge penetration (orbital overlap) effects of close
atoms. A well-chosen charge distribution function like Slater-type or Gaussian-type may prove a
good remedy, as has been applied in previous studies of EEM and CPE [121]. Second, accounting
for the changes of the electronic structure and hence DFT-dependent response parameters, �i,j and
�i,j , at the atomic site during bond formation is computationally challenging. In principle, the
free-atom like character decreases and the atom-in-molecule character increases, �fai,j → �AIMi,j and
� fai,j → �AIMi,j . Practically, the bonding effect onto the atoms in a molecule need efficient estimates,
for example statistical sampling of atom-in-molecules ACKS2 parameters, ⟨�⟩AIMi,j and ⟨�⟩AIMi,j ,
for a reasonable variety of chemical environments. An effective AIM (linear) scaling term, which
specifies the AIM character of a polarizable site versus its free-atom character, can help to account
for the transition,

�i,j = (1 − �)�fai,j + � ⟨�⟩
AIM
i,j �i,j = (1 − �)� fai,j + � ⟨�⟩

AIM
i,j . (3.20)

This approach sounds promising as road map for future work of ACKS2 as extention to simple
fluctuating charge models, but has not been investigated within this thesis.
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4. Density functional tight-binding.

THE DENSITY FUNCTIONAL TIGHT-BINDING TECHNIQUE , specifically the second order energy expansion ver-
sion DFTB2, bears many similarities with CPE (and by extension with ACKS2) in their theoretical
background. The modeling targets are quite different, as the aim of DFTB methods is to calculate
the total energy of a system (and other related properties)—similar to force fields, but on a different
functional footing—whereas charge equilibration techniques only cover explicit polarization. In
fact, the method of fluctuating atomic charges (FQ) is applied within approximate DFTB models
to efficiently evaluate parts of the electrostatic interactions and charge transfer between approxi-
mate free-atom-like particles. A brief summary of the origins of DFTB2 is given, following these
references [122–124]. The density functional energy in a Kohn-Sham formalism—here concep-
tually formulated as functional of the electron density similar to the derivation of the CPE model,
see appendix B—contains the kinetic energy contributions TKS, classical Coulomb interactions
EH, non-classical exchange-correlation interactions Exc (and corrections due to the incorrect ki-
netic energy functional), interactions with external fields Eext , e.g. due to the atomic nuclei, (and
explicit ion-ion interactions Eion between the atomic nuclei)

E[�] = TKS[�] + EH[�] + Eext[�] + Exc[�] + Eion[�] (4.1)
The true kinetic energy is approximated by a system of non-interacting electrons represented

by one-particle wave-functions  KSa (occupation fa ∈ [0, 2]) in an effective potential veff , which
contains classical Coulomb interactions vH, non-classical exchange-correlation effects vxc and
external potentials vext . Additionally, it satisfies the constraint to reproduce the electron density
distribution∑a | 

KS
a |=�,
−1
2
∇2 + vKSeff (r) | 

KS
a ⟩ = �a | KSa ⟩ (4.2a)

veff (r) = vH(r) + vxc(r) + vext(r) (4.2b)
TKS[�] =

∑

a
fa ⟨ 

KS
a | − 1

2
∇2 | KSa ⟩ (4.2c)

=
∑

a
fa�a − ∫ vKSeff .(r)�(r)dr (4.2d)

In density functional tight binding DFTB2 [122, 124] the total energy is expanded up to second
order with respect to a reference state �0—recent work also includes third order expansion terms
[125]—similarly to CPE and ACKS2,

EDFTB2 ≈ E[�0 + Δ�] + O(Δ�2) (4.3)
=
∑

a
fa�a −

1
2 ∫

vH(r)�0(r)dr − ∫ vxc(r)�0(r)dr + Exc[�0] + Eion (4.4)

+ 1
2 ∬

(

)2Exc[�0]
)�(r))�(r′)

+ 1
|r − r′|

)

)�(r))�(r′)drdr′

The first five terms constitute the energy of the (artificial) reference state energy, E0[�0], which
is not present in CPE and ACKS2, as they only describe the electronic response, i.e. the change of
this reference with changes in the external potential. For practical implementations, DFTB con-
tains many approximations to estimate this zero-order reference state to gain numerical speedup
compared to conventional DFT. The electronic charge density of the reference state is constructed—
somewhat artificially—from optimised pro-atomic (or free-atom-like) distributions, �0=∑

A �
0
A,
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4 Density functional tight-binding.

in order to utilize an effective and inexpensive inter-atomic interaction framework. The core elec-
trons are typically assumed to be bound tightly (hence the name), so they approximately forgo
any changes during molecular or solid state bond formation and are simply added to the effective
ion-ion interaction contribution Eion, also referred to as frozen-core approximation. The valence
orbital electrons are accounted for explicitly in  DFTB, but reduced to a minimal basis representa-
tion of a single (Gaussian) radial function per angular momentum, i.e. one primitive function for
s-type orbitals, three primtive functions for p-type orbitals, etc.. In the formulation of DFTB, the
explicit treatment of the approximate (one-body) wave-function is executed on purpose (opposed
to DFT, where the Kohn-Sham electronic structure is a necessary tool) to calculate approximate
(molecular) orbital shapes and levels,

EDFTB2 =
∑

a
fa
{

⟨ DFTBa | − 1
2
∇2 + 1

2 ∫
�(r′)
|r − r′|

dr′ (4.5)

+ vH[�0](r) + vxc[�0](r) + vext(r) | DFTBa ⟩

}

− 1
2 ∫

vH(r)�0(r)dr − ∫ vxc(r)�0(r)dr + Exc[�0] + Eion

+ 1
2 ∬

(

)2Exc[�0]
)�(r))�(r′)

+ 1
|r − r′|

)

)�(r))�(r′)drdr′

Changes of the orbitals and the overall charge density upon bond formation, �=∑

A �
0
A +Δ�A,

are calculated from the DFTB approximate free-atom-like particle wave functions and density
functional in a non-self-consistent [122] or self-consistent manner [123, 126]. The energetic con-
tributions of the reference state E0[�0] are grouped in band-structure (BS) terms—approximate
single-particle orbitals and energies—repulsive (rep) terms—two-body terms dominated by the ef-
fective repulsion potential between the ionic cores. Efficient implementation and parametrization
details for the band structure and repulsive contribution go beyond the scope of this work.

EDFTB2BS =
∑

a
fa ⟨ 

DFTB
a | − 1

2
∇2 + 1

2 ∫
�(r′)
|r − r′|

dr′ (4.6)

+ vH[�0](r) + vxc[�0](r) + vext(r) | DFTBa ⟩

EDFTB2rep = −1
2 ∫

vH(r)�0(r)dr − ∫ vxc(r)�0(r)dr + Exc[�0] + Eion (4.7)
The last term in eq. (4.5), provides a second order correction to the interaction potential of

the valence electrons for any charge rearrangements of the pro-atomic upon bond formation and
other external potentials. They are reduced to simple atomic charge populations—similarly to the
initial formulation of the electronegativity equalization method in eq. (2.6)—and hence provide
a simple model of charges flowing between different atomic sites. In DFTB the individual par-
tial charges are calculated by simple spatial partitioning of the valence orbitals (core electrons
are assigned to nuclei already), typically following a simple radial atom-centered distribution like
a s-type Cartesian Gaussian function volume VA instead of complicated and computationally ex-
pensive atom-in-molecule charge partitioning schemes. Note, any first order expansion terms with
respect to the reference density are omitted in DFTB2 under the assumption that the approximate
reference is close to the true ground state, )E∕)�|�0=�=0, which is conceptually different to EEM
and ACKS2. The second order atom-centered partial charge energy correction in DFTB is simply
expressed by an effective two-body interaction potential 
 as function of the nuclear positionsRA,
translating to the inter-atomic and intra-atomic second order terms, �A,A and �A,B in EEM,

22



qDFTB2A = ∫VA
�(r)dr (4.8)

EDFTB2FQ = 1
2 ∬

(

)2Exc[�0]
)�(r))�(r′)

+ 1
|r − r′|

)

)�(r))�(r′)drdr′ (4.9)

= 1
2
∑

A,B
qA qB 
A,B(|RA −RB|)

ΔEEEM(qA) = �AqA +
1
2
�A,Aq

2
A +

1
2
�A,BqAqB (4.10)

The total DFTB2 energy finally reads
EDFTB2 = EDFTB2BS + EDFTB2rep + 1

2
∑

A,B
qAqB
A,B(|RA −RB|). (4.11)

In summary, the theoretical foundation of DFTB2 bears many similarities to CPE and ACKS2.
In density functional tight-binding, the total charge density is constructed (self-consistently or
non-self-consistently) from parametrized pro-atomic frozen-core charge distributions andminimal
valence orbital representations. Charge equilibration techniques provide a second order correction
to the total energy based on the change of the atomic charges (with respect to the pro-atomic
reference).

23





5. Publications.
5.1. Toward First-Principles-Level Polarization Energies in Force Fields: A

Gaussian Basis for the Atom-Condensed Kohn-Sham Method.

P. Gütlein, L. Lang, K. Reuter, J. Blumberger and H. Oberhofer
J. Chem. Theory Comput. 15, 8, 4516-4525 (2019)
DOI 10.1021/acs.jctc.9b00415
Content

In this study, we introduce and carefully validate a new basis set representation of the electronic
respose in the ACKS2 method as a first step towards a general polarization technique. In their two
seminal publications [114, 115], Verstraelen et al. initially apply a Hirshfeld- and Fukui-function
based description of the electronic polarization derived from theKS-DFT ground state to formulate
the theoretical foundation of ACKS2 method in his two seminal publications. While both repre-
sentations exhibit good accuracy for illustrative test cases, they crucially lack in transferability
between different structures and produce a large numerical overhead, which precludes their usage
as efficient polarization model. We present a new primitive Cartesian Gaussian function basis
set to account for the changes of electron density and Kohn-Sham potential upon perturbation to
improve the numerical efficiency and representation transferability of the ACKS2 technique while
maintaining accuracy. To this end, we assess the mathematical foundation of Cartesian Gaussian
functions and their integrals present in the ACKS2 formulation to calculate all ACKS2 parameters
in full detail. Intended as proof-of-concept, we deploy a small basis set of one s- and p-type Gaus-
sian function per atomic site to allow atom-atom charge transfer and intra-atomic polarization.
The width of each basis function is optimized independently for different atomic species, here
illustrated for carbon and hydrogen, to match the response properties—induced dipole moment
and polarization energy—from a full KS-DFT calculation. Thereby, we find a good projection
of the full electronic response information onto simple atom-centered Gaussian functions. We
constructed a small training set of homonuclear atomic dimers, H2 and C2, and added various
idealized electrostatic potentials, either a single homogeneous electric field or a point charge, to
sample different relative orientations and magnitudes of interaction. To validate our simplistic
setup, we built a test set of different molecules, containing small linear hydrocarbons to check
for size-extensivity effects, different C2Hx compounds to include different chemical bonds and
atomic connectivity as well as small aromats, all again perturbed by a variety of individual ideal-
ized electrostatic perturbation potentials. We demonstrate good agreement of our Gaussian-based
ACKS2 induced dipole moments with the parent DFT method. Furthermore, we report and suc-
cessfully validate (molecular) polarization energies crucial to atom-level simulations for ACKS2,
which has been omitted in the initial studies of Verstraelen and co-workers [114, 115]. In a final
test, we illustrate the application of ACKS2 for molecular polarizabilities and raman activities of
a high-symmetry ring-breathing mode of benzene.
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5 Publications.

Individual contributions

I produced a python package, which implements all Gaussian function overlap and interaction
integrals to evaluate all electronic-structure independent ACKS2 parameters, in order to provide a
simple-to-use tool to execute and further develop ACKS2 electronic polarization simulations. All
KS-DFT calculations with the FHI-aims code and further post-processing to obtain the various po-
larization energy contributions for the training and test set data were executed by myself. Finally,
I performed the optimization of the primitive Cartesian Gaussian function basis set. Lucas Lang
initially researched the mathematical foundation to calculate all ACKS2 parameters for primitive
Cartesian Gaussian functions and implemented the evaluation of the electronic-structure depen-
dent contributions in the FHI-aims full-electron DFT code [127]. Dr. Harald Oberhofer edited the
manuscript, Prof. Jochen Blumberger and Prof. Karsten Reuter proofread the final draft.
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5.2 An iterative fragment-scheme for the ACKS2 electronic polarization model: Application to molecular dimers and
chains.

5.2. An iterative fragment-scheme for the ACKS2 electronic polarization model:
Application to molecular dimers and chains.

P. Gütlein, J. Blumberger and H. Oberhofer
J. Chem. Theory Comput. (accepted)
DOI 10.1021/acs.jctc.0c00151
Content

In this study, we investigate the electronic polarization contributions to the intermolecular in-
teraction energy of the ACKS2 formalism and Cartesian Gaussian basis set published before. We
present two new approaches to construct a polarizable (molecular) fragment representation of a
simulation cell in an ACKS2 framework and calculate the mutual polarization in terms of in-
duced dipole moment and polarization energy. Conceptually, both models allow the evaluation of
polarization contributions to the intermolecular energy of constrained charge states while at the
same time simplifying the ACKS2 parametrization effort. The first approach, fragment-ACKS2
or f-ACKS2, applies a fixed-charge representation of the molecular ground state charge density as
approximate interaction potential between different fragments. It is a simple non-additive exten-
sion to molecular mechanics simulations and retains the general ACKS2 form from the previous
publication. The second approach incorporates an additional coupling between the ACKS2 dielec-
tric response of different fragments in a self-consistent manner, scf-ACKS2. Thereby, it becomes
an additive response model, where each fragment is polarized by the permanent and the mutu-
ally induced charge representation. We investigated the efficacy of both approaches for a set of
charged hydrocarbon dimers and validated it against its full constrained-DFT parent method. Si-
multaneously, we estimated the effective deviations in the dielectric response due to a simplified
point charge permanent interaction potential versus a full electrostatic potential in DFT. Overall,
the trends of induced dipole moment and polarization energy between the fragment-ACKS2 ap-
proach and its DFT reference match well, but fragment-ACKS2 systematically miscalculates the
properties by a small margin. We find, the self-consistent correction to f-ACKS2 is noticeable and
nicely agrees with its DFT parent results, but it is rather small compared to the overall electronic
response and can be regarded as high accuracy option for future applications. Finally, we investi-
gate the energetics of an electron-hole pair separation in a model system comprising a linear chain
of anthracene molecules, which is computationally unfeasible in DFT.
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5 Publications.

Individual contributions

I extended the ACKS2 python package from a previous work to allow coupling of different frag-
ment in a non-self-consistent (f-ACKS2) and self-consistent (scf-ACKS2) way. All calculations,
ACKS2 and KS-DFT calculations with the FHI-aims code, and further post-processing to obtain
the various polarization energy contributions for the training and test set data were executed by
myself. Dr. Harald Oberhofer edited the manuscript, Prof. Jochen Blumberger proofread the final
draft.
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6. Conclusion & Outlook.

INCORPORATION of the (long-range) classical electrostatic interactions is crucial to study condensed
matter with efficient approximate force field techniques and has been an active field of research
ever since the first molecular mechanics simulations. Initial attempts, specifically aiming at low
computational cost, employed pre-determined (atom-centered) distributed multipole moment rep-
resentations of the latter. In order to maintain the numerical efficiency of fixed-charge model
implementations in additive force fields, implicit ad hoc corrections of increasing or decreasing
gas phase atomic charges accounting for an average effect of dense phase environments have been
applied to mixed success, as they clearly lack the distinct adaptability of the charge density in
various media and consequent versatility inherent to the dielectric response. They often, yet not
always struggle to account for local effects like a varying response behavior of the same nuclear
species in different atomic environments or the directionality of the electronic charge rearrang-
ments. The expected shift of paradigm towards explicit rendition of the electronic polarization
observed over the last fifteen years lead to a plethora of flavors and parameter schemes of a small
set of simple response models. They mostly employ multicenter (intra-atomic) polarizabilities,
Drude oscillator and inducible dipole moments, or fluctuating charges, charge equilibration, and
combinations thereof. While they often perform well after a thorough parametrization comply-
ing with the distinct model intricacies, which can lead to a very limited transferability, a unified
framework on a rigorous theoretical footing in first-principles is ideal for the future development
of a general polarization technique.
Here, the recently published ACKS2 technique poses a promising candidate, but so far crucially

lacked in a foundation for application in force fields. Methodologically, it hinges on a two-fold
simplification of the perturbative KS-DFT polarization, which is exact within the limits of DFT
and its exchange-correlation functionals, including a truncated second order energy expansion and
a reduced atom-projected representation of the full electronic structure response information. This
doctoral thesis was dedicated to the study of the ACKS2 method and progress towards its applica-
bility as general polarization model in a proof-of-principle work. We targeted the transferability of
the ACKS2 basis set representation and parameter evaluation while maintaining reasonable accu-
racy compared to the first-principles reference. Therefore, this study was designed in a bottom-up
fashion starting at the quantum mechanical level of molecules, where all ACKS2 parameters are
calculated exactly from and the ACKS2 response properties are carefully validated by the full KS-
DFT response information in order to gauge the influence of the approximate representation and
overall ACKS2 quality. In a first publication, ref [1], a minimalistic Cartesian Gaussian function
basis set—including monopole and dipole angular momenta for interatomic charge transfer and
intra-atomic polarization—was introduced and optimized for carbon and hydrogen. This simplis-
tic approach exhibited good agreement of polarization properties, namely induced dipole moments
and polarization energies, compared to the KS-DFT reference for a variety of small hydrocarbons,
which showcased the accuracy and transferability inherent to the ACKS2 model. It provides a
clear first-principles based parametrization recipe for future development and applications. With
a view on molecular modeling and computational cost, the choice of Gaussian functions allows
analytical calculation of many parameters and the number of basis functions per atom center is
rather small (i.e. four in a sp-orbital-type representation). Furthermore, the same study points to-

29



6 Conclusion & Outlook.

wards the applicability of an average or efficient interpolation estimate of all ACKS2 parameters
currently evaluated from an explicit electronic-structure calculation (which is probitive to efficient
force field techniques). In a second publication, ref [ADD PAPER], a fragmentation approach to
ACKS2 was developed to assess the mutual polarization of (gas-phase reference) molecules in
dense matter and its affiliated contribution to the intermolecular energy ideally suited for molec-
ular mechanics simulations. The fragment ACKS2 technique comes in two flavors, a non-self-
consistent and a self-consistent version, where the electronic polarization depends only on the
permanent charge representation or additionally includes mutual response interactions. The com-
parison to an exact reference constrained DFT calculations for a set of small aromats exhibits good
agreement of the polarization properties and illustrates the validity of the f-ACKS2 approach. A
first showcase application of the f-ACKS2 approach was given in the study of charge separation
and their distance-dependent stabilization due to explicit electronic polarization in a toy model
of anthracene moldecules stacked perpendicularly to a one-dimensional chain. Both works to-
gether conclude the intended proof-of-principle work on the validity of the first-principles derived
ACKS2 technique as general polarization model focusing on the parametrization, accuracy and
transferability in a bottom-up direction.
The next step towards application comprises the development of a more complete ACKS2

(Cartesian Gaussian) basis set that includes more nuclear species (other than just hydrogen and
carbon) and flavors of angular momentum, where e.g. a simple s-type (spd-type) representation
can be applied as low (high) cost options in force fields. At the same time, numerically efficient
estimates of the set of parameters currently still calculated from a KS-DFT electronic structure are
indispensable for any extended molecular dynamics and Monte Carlo studies. Finally, a properly
optimized implementation of the ACKS2 parameters and (Cartesian Gaussian) basis functions
in a production molecular modeling software and consecutive benchmarks of the accuracy and
computational cost are valuable final steps to general out-of-the-box applicability of ACKS2.
Conceptually, the first-principles foundation of theACKS2model developedwithin this thesis is

arguably incomplete compared to high-levelmulti-referencewave-functionmethods like CCSD(T)
due to the choice of a semi-local exchange-correlation functional. Extension and cross-comparison
to other exchange-correlation functionals including hybrid formulations is an option to improve
the underlying theory towards a more exact physical foundation of ACKS2.
Finally, the ACKS2 and f-ACKS2 methods provide valuable post-processing tools. On the

foundation of an exactly parametrized ACKS2 formulation off a single KS-DFT calculation, the
explicit electronic response of an atomistic structure can be screened for a variety of external
perturbation potentials. Furthermore, they allow a decomposition of the polarization properties,
like the change of a molecular dipole moment in condensed media. In particular, a comparison
between an ACKS2 formulation and a f-ACKS2 (or scf-ACKS2) formulation helps to identify the
differences in the dielectric response of a molecule in vacuum and a molecule in dense media and
assess their intra- and intermolecular contributions to the total charge rearrangements.
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A. Electrostatic interactions in multipole expansion.

THE LONG-RANGE CLASSICAL ELECTROSTATIC INTERACTIONS between two (well-separated) molecules, with
charge density �1 and �2, constitutes a major contributions to the total intermoleculer interaction
energy with

Eel.stat. = ∬
�(r)�(r′)
|r − r′|

drdr′. (A.1)
Evaluation and implementation of the classical electrostatic interactions in effective force field

techniques suffers from two major concerns. First, the exact charge distributions, �1 and �2 are
not known, as the calculation of the latter from first-principles techniques like DFT produces large
numerical overhead unfeasible in force field calculations. Instead, transferable approximate rep-
resentations are highly desirable. Secondly, the numerical cost of the real-space double integral
above is quite exhaustive, prohibitive to efficient force field simulation. Hence, a choice of approx-
imate representations including efficient potentials for the electrostatic interactions are ideal for
effective atomistic simulations. In practice, truncated permanent multicenter multipole expansion
series are employed to estimate the electronic dsitribution and (long-range) classical electrostatic
interactions, condensing the charge potential onto atom centers, partly extended by off-nuclear
sites. In this chapter, the basic concepts of the multicenter multipole expansion (MME) and mul-
tipole expansion potential (MEP) are briefly reviewed.

A.1. Series expansion of the classical electrostatic potential.

The classical electrostatic interaction potential � at an arbitrary coordinate r due to a charge dis-
tribution �1, where we assume the origin close to (or within) the charge distribution, is

�1(r) = ∫
�1(r′)
|r − r′|

dr′ (A.2)
Note, one can always shift the coordinate system by a constant vector, r0, so the assumption

above is valid. Next, the Coulomb interaction operator is transformed to a series expansion in
Cartesian coordinates, which for completeness is shown following both the power series and Taylor
series expansion approaches.
Power series expansion.

In a first step, the Coulomb operator is transformed following the binomial theorem, where
r=|r| and r′=|r′|,

1
|r − r′|

=
[

(r − r′)2
]− 1

2 (A.3a)

=
[

r2 + r′2 − 2r ⋅ r′
]− 1

2 (A.3b)

=
[

r2
(

1 + r′2

r2
− 2
r2
r ⋅ r′

)

]− 1
2 (A.3c)

= 1
r
⋅

1
√

1 + 1
r2
(r′2 − 2r ⋅ r′)

. (A.3d)

Next, the linear expansion of a power series is utilized,
1

√

1 + s
= 1 − 1

2
s + 3

8
s2 − 15

48
s3 +… . (A.4)

Together, eq. (A.3d) and eq. (A.4) yield (with terms sorted by orders of 1∕r and truncated at
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A Electrostatic interactions in multipole expansion.

second order),
1

|r − r′|
= 1
r

[

1 − 1
2

( 1
r2
(r′2 − 2r ⋅ r′)

)1
+ 3
8

( 1
r2
(r′2 − 2r ⋅ r′)

)2 (A.5a)

− 15
48

( 1
r2
(r′2 − 2r ⋅ r′)

)3
+…

]

(A.5b)

= 1
r
+ 1
r3
(r ⋅ r′) + 1

r5
(3
2
(r ⋅ r′)2 − 1

2
r′2

)

+… (A.5c)
Finally, the potential at coordinate r due a charge density �1, displayed explicitly up to second

order, is
�1(r) =

1
r ∫

�1(r′)dr′ +
1
r3 ∫

�1(r′)(r ⋅ r′)dr′ +
1
r5 ∫

�1(r′)
(3
2
(r ⋅ r′)2 − r′2

)

dr′ (A.6a)

= 1
r
q1 +

1
r3
d1 ⋅ r +

1
r5
Q1 +… (A.6b)

In here, the expansion coefficients are indentified with the overall net charge q1, overall net
dipole moment d1 and overall net quadrupole moment Q1 of the charge distribution �1.
Taylor series expansion.

The general Taylor expansion series of a one-dimensional function f (x) located at x0 is defined
by

fTaylor(x, x0) =
∞
∑

n

1
n!
(x − x0)∇xf (x) (A.7a)

= f (x0) + (x − x0)
[ d
dx
f (x)

]

x0
+ 1
2
(x − x0)2

[ d2

dx2
f (x)

]

x0
(A.7b)

+ 1
6
(x − x0)3

[ d3

dx3
f (x)

]

x0
+…

The expansion of the (three-dimensional) Coulomb operator with respect to the charge density
coordinate variable r′ around a center r′0, here by choice of simplicity the origin 0, yields
fTaylor(r′, r′0=0) =

1
|r − r′|

(A.8)

= 1
r
+ x′ )

)x′
1

|r − r′|
|

|

|r′0=0
+ y′ )

)y′
1

|r − r′|
|

|

|r′0=0
(A.9)

+ z′ )
)z′

1
|r − r′|

|

|

|r′0=0
(A.10)

+ 1
2!
x′2 )

2

)x′2
1

|r − r′|
|

|

|r′0=0
+ 1
2!
x′y′ )2

)x′)y′
1

|r − r′|
|

|

|r′0=0
(A.11)

+ 1
2!
x′z′ )2

)x′)z′
1

|r − r′|
|

|

|r′0=0
… (A.12)

= 1
r
+ r′ ⋅

[

∇r′
1

|r − r′|

]

r′=0
+ 1
2!
r′0
⊺ ⋅

[

∇⊺r′∇r′
1

|r − r′|

]

r′=0
⋅ r′ +… (A.13)

The Taylor expansion of the classical electrostatic potential of a charge density �1 is
�1(r) =

1
r ∫

�1(r′)dr′ + ⋅
[

∇r′
1

|r − r′|

]

r′=0 ∫
r′�1(r′)dr′ (A.14a)

+ 1
2! ∫

r′⊺ ⋅
[

∇⊺r′∇r′
1

|r − r′|

]

r′=0
r′dr′

= 1
r
q1 +

1
r3
d1 ⋅ r +

1
r5
Q1 +… (A.14b)

Again, the expansion coefficients are indentified with the overall net charge q1, overall net dipole
moment d1 and overall net quadrupole moment Q1 of the charge distribution �1.
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A.2 The multipole electrostatic interaction energy.

The multipole moments.

The first expansion term is identified with the overall net charge of the charge distribution �1—
q1= ∫ �1—located at an arbitrary expansion center, chosen here to be the coordinate origin 0,

�(1)1 (r) =
1
r
q1 (A.15)

The second order expansion contribution, with total dipole moment d1= ∫ �1r′, is

�(2)1 (r) =
[

∇r′
1

|r − r′|

]

r′0=0
⋅ ∫ r′�1(r′)dr′ (A.16a)

= d1 ⋅
[

( )
)x
, )
)y
, )
)z
)
(

(x − x′)2 + (y − y′)2 + (z − z′)2
)− 1

2
]

r′0=0
(A.16b)

= d1 ⋅
[

(

(x − x′)2 + (y − y′)2 + (z − z′)2
)− 3

2 (x − x′, y − y′, z − z′)
]

r′0=0
(A.16c)

= 1
r3
d1 ⋅ r (A.16d)

Note, eq. (A.16c) clearly reveals a dependence of the dipole interaction potential on the multi-
pole expansion center r′0. Any shift of the expansion center (r′→r′ + rc) yields a correction term
to the potential. On the contrary, any changes of the coordinate system (r→r+ rc and r′→r′ + rc)
does not affect the dipole interaction potential.
A discussion of the quadrupole and higher multipole moments is omitted for the sake of brevity.

A.2. The multipole electrostatic interaction energy.

Inserting the first multipole expansion of �1 into the total electrostatic energy yields

Eel.stat. = ∫ �0(r)�1(r)dr (A.17a)

= ∫ �0(r)
(q1
r
+ 1
r3
r ⋅ d1 +…

)

dr (A.17b)

Next, the coordinate system is shifted by an arbitrary offset Δr (r→r+Δr) which length repre-
sents the distance between the multipole expansion centers of the charge density distributions �0
and �1. In a second step, the multipole expansion series is repeated for the potential �0 present at
the center of the first expansion series (which is now located at Δr) due to the charge density �0

Eel.stat. = q1
( q0
Δr

+ 1
Δr3

d0 ⋅ Δr +…
)

+ d1 ⋅
( q0
Δr3

Δr +…
)

+… (A.18a)

=
q0q1
Δr

+ q0
1
Δr3

d1 ⋅ Δr + q1
1
Δr3

d2 ⋅ Δr +
(d0 ⋅ d1
Δr3

−
(d0 ⋅ Δr)(d1 ⋅ Δr)

Δr5
)

+…

(A.18b)
In here, the first term constitutes a simple point charge interaction, the second and third term

constitue point charge point dipole interactions, the fourth term constitutes the point dipole point
dipole interaction, etc.. Note, the present derivation focused on an idealized Cartesian multipole
representation, other techniques are dedicated to capture more of the non-ideal continuous charge
distribution nature of matter. Therefore, the overall electron density is expanded in a set of suitable
basis functions fa, e.g. Gaussian functions [34, 36], which allow an efficient calculation of the
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A Electrostatic interactions in multipole expansion.

interaction integral,
�(r) =

∑

a
cafa(r) (A.19a)

Eel.stat. =
∑

a

∑

a′
caca′ ∬ fa(r)

1
|r − r′|

fa′(r′) drdr′ (A.19b)

fCart.Gaussiana (r) = (x − x0)i(y − y0)j(z − z0)k exp (−�r2) (A.19c)
A major drawback of the expansion of the classical electrostatic interaction potential and en-

ergy with respect to a single center, i.e. all multipole moments or basis functions located at the
same position, is the number of expansion terms necessary to convergence to a reasonable ac-
curacy, which becomes computationally prohibitive in force fields. Instead multiple centers are
utilized to expand only the electrostatic potential of parts of the charge distributions following an
(in principle arbitrary) charge partitionig scheme, which leads to distributed multipoles optimzed
to represent the electrostatic potential of a specific contribution. In practice, the individual density
contributions �1,A are typically targeted towards an approximate atomic charge distribution in a
molecule to provide transferability of the force field model.

� =
∑

A
�A(r) (A.20)
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B. Density functional theory foundation of charge equilibra-
tion.

IN DENSITY FUNCTIONAL THEORY, electron density flows upon bond formation until the total energy
reaches a (global) minimum, and hence incorporates the same guiding principal as electronega-
tivity equalization methods. The derivation of charge equilibration schemes from DFT follows a
more theoretically sound path, which provies a way to identify the (atomic) charge equilibration
parameters with its first-principles equivalents and help find the weaknesses of current QEq mod-
els. This chapter is dedicated to a summarized derivation of the chemical potential equalization
method as presented by York and Yang [91] and a short comparison to the EEM method.

B.1. Derivation of the chemical potential equalization method.

The density functional theory formulation of the energy E of electron density � is
E[�] = F [�] + ∫ �(r)vext(r)dr. (B.1)

The universal functional F contains the purely electronic contributions to the energy, including
Coulomb, exchange and correlation effects as well as the kinetic energy. Interactions with the
nuclei and other fields are collected in the external potential vext . A perturbation of the DFT
ground state by a change in the external potential )vext prompts a charge density response )�. The
total energy up to second order is

E[�0 + )�, vext,0 + )vext]

= E[�0, vext,0] + ∫
)E0
)�(r)

)�(r)dr + ∫
)E0

)vext(r)
)vext(r)dr (B.2)

+ 1
2 ∫

)2E0
)�(r))�(r′)

)�(r))�(r′)drdr′ + ∫
)2E0

)�(r))vext(r′)
)�(r))vext(r′)drdr′

+ 1
2 ∫

)2E0
)vext(r))vext(r′)

)vext(r))vext(r)drdr′

= E0 + ∫ �0)�(r)dr + ∫ (�0(r) + )�(r)))vext(r)dr (B.3)

+ 1
2 ∬

�0(r, r′))�(r)(r)drdr′.

The energy of the (molecular) reference ground state is E0 (=E[�0, vext,0]). The first and sec-
ond order derivatives are identified with the molecular chemical potential �0=)E∕)� and molecular
hardness �0=)2E∕)�2=)2F∕)�2=)�∕)�. The energy response to the change in the external potential in
Euler-Lagrange form is

)(E[�0 + )�, vext,0 + )vext] − E[�0, vext,0])
)�(r)

= � (B.4)

= ∫ �0(r, r′))�(r′)dr′ + )vext(r) + �0. (B.5)
This is the DFT foundation of the chemical potential equalization method. It formally resem-

bles an expansion of the true chemical potential of the perturbed system, �, in terms of the non-
perturbed system chemical potential, �0, and first order corrections, ∫ �(r, r′))�(r′)dr′+)vext(r).
The electron density changes induced by the external potential change is expanded in a linear series
of normalized, well-behaved basis functions �i ( limr→∞�i=0, ∫ �i(r)dr <∞),

37



B Density functional theory foundation of charge equilibration.

)� =
∑

i
ci�i(r). (B.6)

Hereby, the Euler-Lagrange equation is cast into a matrix. The parameters are the basis func-
tion density di= ∫ �i(r)dr, perturbation interaction integral vi= ∫ �i(r))vext(r)dr and hardness
�i,j= ∫ �i(r)�(r, r′)�j(r′)drdr′. The foundation of any practical implementation of CPE in force
fields is the matrix working equation

∑

j
�i,jcj + vi − (� − �0)di = 0. (B.7)

The polarization energy (excluding the permanent charge distribution energy with the pertur-
bation potential ∫ �0(r))vext(r)dr) is

Epol. =
∑

i,j
ci�i,jcj +

∑

civi − (� − �0)
∑

i
di. (B.8)

So far, the hardness parameter � has not been defined in details. It contains the charge density
second derivatives of Hartree energy EH , kinetic energy TKS (practical implementations of DFT
apply a Kohn-Sham scheme) and any exchange-correlation effects which have not been captured
by the previous two Exc,

� = )2F
)�)�′

(B.9)

=
)2EH
)�)�′

+
)2TKS
)�)�′

+
)2Exc
)�)�′

(B.10)

= 1
Δr

+
)2TKS
)�)�′

+
)2Exc
)�)�′

. (B.11)
Evaluation of classical Coulomb interactions between two basis functions is not a difficult task.

Unfortunately, density functional forms of the kinetic and exchange-correlation energies and, in
consequence, their derivatives are not known. In any practical implementations, these have to be
estimated. York and Yang originally propose a Hückel-Ansatz-like approach, where these contri-
butions are condensed into a set of (local) density independent parameters {fi} (k typically chosen
to be 1),

�i,i = fi + ∫ �i(r)
1

|r − r′|
�i(r′)drdr′ (B.12a)

�i,j = k(fi + fj)∫ �i(r)�j(r)dr + ∫ �i(r)
1

|r − r′|
�j(r′)drdr′. (B.12b)

A constant kinetic-exchange-correlation contribution in fi is a rather crude approximation. A
well parametrized CPE model proves useful if a system stays close to an equilibrium state, but
lacks considerably in transferability to other systems or fails to capture drastic effects like bond-
formation and -breaking in molecular dynamics simulations.

B.2. Comparison of CPE to EEM.

The CPE method has originally been developed for the electronic response of a molecule in its
electronic groundstate. The electronegativity equilibration method by Mortier et al. [88, 89] and
charge equilibration scheme by Rappe and Goddard [92] are special cases of the CPE method,
where the unperturbed reference is a free-atom. A direct comparison of the energetics per indi-
vidual atom reveals their similarities,
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B.2 Comparison of CPE to EEM.

ΔECPE = �0 ∫ )�(r)dr + 1
2 ∫

�0(r, r′))�(r))�(r′)drdr′ (B.13)

+ ∫ (�0(r) + )�(r)))vext(r)dr

ΔEEEM = �∗AqA +
1
2
�∗A,Aq

2
A +

∑

B≠A
qA�A,BqB. (B.14)

The energy of the unperturbed free-atom reference has been omitted, yielding only the polariza-
tion correction contributions. The first terms provide an first-order correction to the atomic energy
with respect to changes of the charge distribution, where the electrnegativity � is the negative of
the chemical potential �, �= -� [87]. The second terms represent the atomic hardness, i.e. the
gradient of the change of energy as function of charge rearrangements. The last terms introduce
an external perturbation potential due to changes in the environment. While the latter term is in a
general form in the CPE model, it comprises the approximate interactions with other atom-centers
in the EEM model, typically reduced to screened Coulomb interactions contained in �A,BqB. The
unperturbed charge contribution, ∫ �0(r))vext(r)dr)=0, is zero for a neutral atom reference rep-
resented by atomic partial charges. Note, the density change basis functions of CPE translate to
simple delta-functions for atom-centered point charges of EEM, �i(r) = �(r − ri).
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C. Formula collection for ACKS2 derivation.

THIS CHAPTER provides an addendum to the derivation of the general ACKS2 method from pertur-
bative KS-DFT and contains a summary of extensive formulae.

C.1. Derivatives related to density functional theory.

This section summarizes the functional derivatives for an explicit-implicit separated DFT formu-
lation,

L[�, u, vext , �] = Eexp[�] + Eo[u] + ∫ �(r)vext(r)dr (C.1)

− ∫ �(r)u(r)dr − �
(

∫ �(r)dr −N
)

.

The first order functional derivatives—typically assumed to be small or zero close to the true
ground state—of the Legendre-formulation total energy expression, abbreviatedE=L[�, u, vext , �],
are

)
)�(r)

E = )
)�(r)

Eexp[�] + vext(r) − u(r) − � (C.2a)
)

)u(r)
E = )

)u(r)
Eo[u] − �(r) (C.2b)

)
)vext(r)

E = �(r) (C.2c)
)
)�
E = −�(r). (C.2d)

The second order functional derivatives exlcuding symmetric contributions, as )2∕()�)u)E=)2∕()u)�)E
and so forth, are

)2

)�(r))�(r′)
E = )2

)�(r))�(r′)
Eexp[�] (C.3a)

)2

)u(r))u(r′)
E = )2

)u(r))u(r′)
Eo[u] (C.3b)

)2

)vext(r))vext(r′)
E = 0 (C.3c)

)2

)�)�′
E = 0 (C.3d)

)2

)�(r))u(r′)
E = −1 (C.3e)

)2

)�(r))vext(r′)
E = 1 (C.3f)

)2

)�(r′))�
E = −1 (C.3g)

)2

)u(r))vext(r′)
E = 0 (C.3h)

)2

)u(r))�
E = 0 (C.3i)

)2

)vext(r′))�
E = 0. (C.3j)
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C Formula collection for ACKS2 derivation.

C.2. Second order energy expansion of electronic response.

The total electronic energy of a system is transformed to a linearly expansion series around an
arbitrary unperturbed reference state, E0=E[�0, u0, vext , �0], up to second order in each variable
explicitly. Note, inclusion of the expansion with respect to changes in the external potential al-
lows polarization due to the presence of perturbation potentials. The first order derivatives of the
total energy with respect to the electron density and auxiliary potential (not the external potential)
are approximately zero close to the self-consistent electronic ground state, )E0∕)�=0 and )E0∕)u=0
()E0∕)vext ≠ 0), which for example is employed in the derivation of density functional tight binding
methods. The general second order energy expansion is

ΔLresp. = E[�0 + Δ�, u0 + Δu, vext,0 + Δvext , �0 + Δ�] − E[�0, u0, vext,0�0] (C.4a)
≈ E2nd[�0 + Δ�, u0 + Δu, vext,0 + Δvext] − E[�0, u0, vext,0�0] (C.4b)

= ∫
)E
)�(r)

)�(r)dr + ∫
)E
)u(r)

)u(r)dr (C.4c)

+ ∫
)E

)vext(r)
Δvext(r)dr + ∫

)E
)�
)�dr

+∬
1
2

)2E
)�(r))�(r′)

)�(r))�(r′)drdr′

+∬
1
2

)2E
)u(r))u(r′)

)u(r))u(r′)drdr′

+∬
1
2

)2E
)vext(r))vext(r′)

Δvext(r)Δvext(r′)drdr′

+∬
1
2
)2E
)�)�′

(Δ�)2drdr′

+∬
)2E

)�(r))u(r′)
)�(r) )u(r′)drdr′

+∬
)2E

)�(r))vext(r′)
)�(r) Δvext(r′)drdr′

+∬
)2E

)�(r))�
)�(r) Δ�drdr′

+∬
)2E

)u(r))vext(r)′
)u(r) Δvext(r′)drdr′

+∬
)2E

)u(r))�
)u(r) Δ�drdr′

+∬
)2E

)vext(r))�
)vext(r) Δ�drdr′
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C.3 Atomic forces in ACKS2.

= ∫

(

)Eexp[�]
)�(r)

+ vext(r) − u(r) − �
)

[�0,vKS,0,u,0,�0]
Δ�(r)dr (C.4d)

+ ∫

(

)Eo[u]
)u(r)

− �(r)
)

�0,u0

Δu(r)dr

+ ∫ (�(r))�0 Δvext(r)dr

− ∫ (�(r))�0 Δ�dr

+∬
1
2
Δ�(r)

(

)2Eexp[�]
)�(r))�(r′)

)

�0

Δ�(r′)drdr′

− ∫ Δu(r)Δ�(r)dr

+ ∫ Δ�(r)Δvext(r)dr

+∬
1
2
Δu(r)

(

)2Eo[u]
)u(r))u(r′)

)

u0

Δu(r′)drdr′

The stationary point (ground state) of the response in an Euler-Lagrange formulism—defined by
)ΔLresp.∕)Δ�, )ΔLresp.∕)Δu and constraint of total charge conservation enforced by )ΔLresp.∕)Δ�—to a change
in the external potential can now, with help of the second order energy expansion, be expressed
solely in terms of non-perturbed reference state contributions. Any derivatives of order greater
than two are disregarded.

∫
)2Eexp[�0]
)�(r))�(r′)

Δ�(r′)dr′ + Δvext(r) − Δu(r) = Δ� (C.5a)

∫
)2Eo[u0]
)u(r))u(r′)

Δu(r′)dr′ − Δ�(r) = 0 (C.5b)

∫ Δ�(r) = 0 (C.5c)

C.3. Atomic forces in ACKS2.

Direct computation of atomic forces due to polarization is a valuable tool in molecular dynamics
simulations. This section is dedicated to a general derivation of ACKS2 electronic polarization
contributions to atomic forces, performed in more detail for a Cartesian Gaussian basis represen-
tation.
In the limit of linear electronic response, typically valid for small to medium homogeneous

electric field perturbations, the energetic cost to rearrange the electron density from equilibrium
is half, but opposite sign to the energy gain by the interaction of the induced electronic density
changesΔ�with the external potential [128]. By construction, the ACKS2model enforces validity
of the linear limit of its dielectric response, which I consider an useful sanity check for any future
basis set options. Thereby, the total ACKS2 polarization can be simplified [115] to

Epol.lin.limit ≈
1
2
∑

i
ciVi =

1
2
∑

i
ci ∫ gi(r)Δvext(r)dr. (C.6)

The general polarization-contribution to the atomic force follows
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C Formula collection for ACKS2 derivation.

F pol.A = −(AE
pol.
lin.limit (C.7)

= −1
2
∑

i
ci ∫

[

(Agi(r)
]

Δvext(r) + gi(r)
[

(AΔvext(r)
]

dr. (C.8)
This force expression exhibits general validity, independent of the choice of basis set represen-

tation for the ACKS2 dielectric response or interaction potential. In a non-additive approach, i.e.
non-self-consistent eletronic polarization due to electrostatic interactions with the fixed (multi-
pole) charge potential only, the external potential vext is independent of the atomic coordinates rA
and hence equal to zero. This assumption is not valid in the scf-ACKS2 approach introduced in
publication #2, but I expect the contribution by the iteration cycle to be small and recommend to
disregard the second term in the general force expression. Here, the electron density basis function
gi refers to a Gaussian function centered at atom A with individual angular momentum {k, l, m}
along the {x, y, z} Cartesian coordinates, gi=g{k,l,m}(r, rA). Derivation of the first term will be
illustrated in some detail for the x-component, the y- and z- components straightforwardly,

)
)xA

g{k}(x, xA) =
)
)xA

[(x − xA)k exp−�(x−xA)
2] (C.9)

= (−k) ∗ (x − xA)k−1 exp−�(x−xA)
2 +2�(x − xA)k+1 exp(−�(x−xA)

2) (C.10)
= 2�g{k+1}i (x, xA) − kg

{k−1}
i (x, xA). (C.11)

The derivative of an one-dimensional Cartesian Gaussian function is a simple superposition of
two functions of decreased/increased (by +1) angular momentum. Note, the second term vanishes
for s-type Gaussian functions (k=0). In conclusion, a Gaussian function ACKS2 implementation
allows analytical evaluation of polarization induced atomic force contributions,

F pol.A,x =
1
2
∑

i
cik∫ g{k−1,l,m}i (r)Δvext(r)dr −

∑

i
ci� ∫ g{k+1,l,m}i (r)Δvext(r)dr (C.12)

The current python implementation of Gaussian-based ACKS2 does not yet support the calcu-
lation of atomic forces for two reasons. First, there is currently now way to extract these forces
from DFT simulations available and hence, validation of these forces to the parent method is im-
possible. Second, the study of ACKS2 executed within this research thesis is still in a bottom-up
proof-of-principle stage and neglects application in actual molecular dynamics simulations.
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ABSTRACT: The last 20 years of force field development have shown that even well
parametrized classical models need to at least approximate the dielectric response of
molecular systemsbased, e.g., on atomic polarizabilitiesin order to correctly render
their structural and dynamic properties. Yet, despite great advances most approaches
tend to be based on ad hoc assumptions and often insufficiently capture the dielectric
response of the system to external perturbations, such as, e.g., charge carriers in
semiconducting materials. A possible remedy was recently introduced with the atom-
condensed Kohn−Sham density-functional theory approximated to second order
(ACKS2), which is fully derived from first principles. Unfortunately, specifically its
reliance on first-principles derived parameters so far precluded the widespread adoption
of ACKS2. Opening up ACKS2 for general use, we here present a reformulation of the
method in terms of Gaussian basis functions, which allows us to determine many of the
ACKS2 parameters analytically. Two sets of parameters depending on exchange-
correlation interactions are still calculated numerically, but we show that they could be straightforwardly parametrized owing to
the smoothness of the new basis. Our approach exhibits three crucial benefits for future applications in force fields: i) efficiency,
ii) accuracy, and iii) transferability. We numerically validate our Gaussian augmented ACKS2 model for a set of small
hydrocarbons which shows a very good agreement with density-functional theory reference calculations. To further demonstrate
the method’s accuracy and transferability for realistic systems, we calculate polarization responses and energies of anthracene
and tetracene, two major building blocks in organic semiconductors.

1. INTRODUCTION

Owing to their novel materials properties and the vast chemical
space they span, molecular organic semiconductors (OS) have
attracted the interest of both science and industry for many
years.1−5 In parallel to applied OS research, there is a vibrant
community aiming to understand the intrinsic electronic
properties and fundamental mechanisms involved in charge
and energy transfer processes.6−12 To the theorist, an extensive
toolbox of methods is available to model these compounds,
often involving molecular dynamics simulations as an integral
component to sample structures and responses to external
perturbations.9,10,13

Since the dawn of molecular simulation, classical force fields
(FF) have been used to efficiently sample the phase space of
systems too large to be tackled from first principles.14−17

Unfortunately, a correct dielectric response to external
perturbation poses a severe challenge for an effective FF
treatment where electrostatic interactions are usually treated in
terms of fixed charges or multipoles.18−22 A number of
approaches have been put forward to tackle this problem,
typically based on an atom-centered expansion of classical
multipoles.23−25 An early and successful example of this is the
electronegativity equalization method (EEM),26,27 where a

population of fluctuating atomic charges is applied to model the

formation of molecular bonds as well as rearrangements of the

charge density upon perturbation (cf. Figure 1).
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Figure 1. Illustration of the perturbation of the charge density of a
tetracene molecule (black scaffold) upon responding to a point charge
of +1e on the right (black sphere). Charge accumulation vs ground state
is depicted in blue (1 × 10−3e a0

−3) and reduction (−1 × 10−3e a0
−3) is

depicted in red density difference isosurfaces: calculated with FHI-aims
and the settings described in the text.
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This simple representation is further refined in subsequently
developed methods, like the chemical potential equalization
method28,29 or charge equilibration model.30 Later models, like
the atom−atom charge transfer theory31 and the split-charge
equilibration scheme,32 tackle the more fundamental short-
comings of EEM, related to the overestimation of long-range
charge transfer in dielectrics and vacuum. Yet, so far only ad hoc
corrections employing interatomic charge constraints based on
topological considerations alleviated these limitations, while still
manacled to daunting calibration procedures due to the nature
of the split-charge variable.33,34

Aspiring to eliminate the fundamental issues of previous
methods, the atom-condensed Kohn−Sham density-functional
theory approximated to second order (ACKS2)34,35 has been
developed on the foundations of EEM. It is a linear electronic
response theory derived entirely from first principles and hence
provides an exact ab initiomany-body polarization correction to
semiempirical interaction potentials. Thereby, ACKS2 rests on
an atom-projected description of changes to charge density and
Kohn−Sham potential due to external perturbations such as
applied electric fields or other molecules. It thus also bears some
conceptional similarity to distributed polarizability approaches
pioneered, e.g., by Misquitta and Stone,36,37 where perturbative
responses of molecules are separated into individual atomic
contributions. However, in terms of practical applications, the
ACKS2 method has so far only been used to complement more
traditional EEM models,38 due to the fact that full ACKS2
response calculations still rely on system dependent parameters
derived from density functional theory (DFT) calculations. For
the same reasons, ACKS2 has to date never been applied to the
calculation of electronic polarization energies, to the best of our
knowledge.
In this work we thus present an efficient implementation of

the ACKS2method allowing, for the first time, the calculation of
electronic polarization energies on top of the polarization of the
electronic density. In order to demonstrate its efficacy, we then
apply our implementation to calculate the charge responses and
energies of small and medium sized organic molecules to several
external fields. Following the original parametrization recipe,35

we choose a Gaussian representation of the electronic linear
response, i.e., changes to the electron density and Kohn−Sham
potential, in which many of the ACKS2 energy terms can be
calculated analytically. This results in a formally exact
description (up to second order) of the electronic polarization
response without the need for time-consuming self-consistent
iteration of the electron density for each external perturbation,
as, e.g., in DFT. Yet, a few parameters depending on exchange
and correlation terms of the KS DFT remain. These need to be
parametrized from a single, unperturbed DFT calculation, which
is facilitated by the smoothness of our new basis. We
demonstrate the accuracy of our approach by calculating the
electronic polarization energy of a set of hydrocarbons and π-
conjugated organic molecules forming crystalline semiconduc-
tors. Compared to DFT reference calculations, we obtain very
small errors, while the computational cost currently exceeds
standard force field calculationsi.e., with fixed bonding
topologies and either fixed- or variable charge representa-
tionsdue to the few parameters still dependent on electronic
structure calculations. These will be discussed in detail below.
Hence, this work lays the foundation for MD simulations with
rigorous and efficient ACKS2-based polarization responses.
1.1. Theoretical Background of the ACKS2 Method. In

order to determine the electronic response to an external

perturbation, regular Kohn−Sham (KS) DFT offers two distinct
approaches. First, one could perform self-consistent DFT
calculations of both perturbed and unperturbed system states,
to take their difference to compute the changes to the electronic
density, the KS potential, and thus the energy. Second, for small
perturbations, one could employ a linear response scheme, using
density functional perturbation theory (DFPT),39,40 to
determine these properties in a single calculation.
The ACKS2 method follows the latter approach in that it is a

simplified linear electronic response model derived from regular
KS DFT. At its heart lies a linear equation, derived using the
Euler−Lagrange formalism, which describes the response of the
electron density to the external perturbation vext, while a second
coupled linear equation accounts for changes of the auxiliary
Kohn−Sham potential induced by the density changes. A third
and final equation adds a constraint on the total number of
electrons for any density rearrangements. Note that this
formulation only considers induced changes of the electron
density and KS potential and hence cannot describe properties
of the unperturbed system state. In order to provide an efficient
electronic response scheme for force field simulations, two
crucial approximations are introduced to the full KS linear
response formalism to arrive at the ACKS2 method. First, in
analogy to linear DFPT,39 the functional derivatives of the
energy terms are linearized. This is a particularly important
simplification of the KS DFT equations, asin the limit of a
linear electronic responseit removes the necessity of a self-
consistent iteration scheme. Second, representations of density
and potential response are chosen to be atom-condensed, i.e., all
basis sets and parameters are mapped to atom centers similar to
previous equilibration schemes like EEM, in order to provide
transferability between different geometries.
Considering polarization models, the significant innovation of

the ACKS2 approach over, e.g., the EEM method is now to not
only account for the density change Δρ but also to explicitly
treat all induced changes to the auxiliary KS potentialΔvKS, both
in mean-field as well as xc components. To make them
computationally accessible, both are expanded in a series of
atom-centered basis functions

∑ρΔ = c gr r( ) ( )
i

N

i i
(1a)

∑Δ =v d hr r( ) ( )
j

M

j jKS
(1b)

where gi (hj) denote the N (M) basis functions, while ci (dj)
denote the expansion coefficients of the induced density
(potential) changes Δρ (ΔvKS).
Given the atom-centered basis set expansions of eqs 1, the

parametrized form of the KS-DFT linear response, i.e., the
working equations of ACKS2, reads

The matrix on the left-hand side of eq 2 contains the entire KS
electronic structure-dependent linear response information on
the system and assigns parameters to each basis function.
Contrary to earlier schemes,28−30 the ACKS2 hardness
submatrix ηN,N accounts on a DFT level for both, changes of
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the Coulomb energywhich was accounted for in earlier
schemesand of the exchange-correlation energieswhich
was either estimated empirically or neglected. Both energy
contributions described by ηN,N are thereby due to rearrange-
ments of the electron density. The noninteracting linear
response kernel parameters χM,M, on the other hand, incorporate
changes of the KS energy induced by changes of the KS
potential.

∫ ∫η ρ
ρ ρ

= | − ′| + ∂ [ ]
∂ ∂ ′ ′ ′i

k
jjjjj

y
{
zzzzzg

E
g d dr

r r r r
r r r( )

1
( ) ( )

( )kl k l

2 xc

(3a)

∫ ∫χ = ∂ [ ]
∂ ∂ ′ ′ ′i

k
jjjjj

y

{
zzzzzh

E v
v v

h d dr
r r

r r r( )
( ) ( )

( )kl k l

2 KS
KS

KS KS (3b)

Energy changes due to concurrent perturbations of the charge
density and KS potential are mediated through the basis set
overlap integrals, Okl = ∫ gk(r)hl(r)dr. Additionally, the last row
of the left-hand side working matrix (eq 2) contains the integrals
of the density basis functions, Dk = ∫ gk(r)dr, to establish a
constraint on the total charge of the system. In analogy to KS
DFT the change in chemical potential Δμ̃ thereby mediates the
charge constraint in the form of a Lagrangemultiplier. The right-
hand side of eq 2 introduces external perturbations acting on the
charge density, Vk = ∫ gk(r)Δvext(r)dr. Finally, the ACKS2 based
linear electronic response, represented by the expansion
coefficients ci and dj, is calculated by solving eq 2.
In our reformulation of the ACKS2 approach, a subset of

parameters (O, D, and the Coulomb integral in η) can be
calculated analytically, i.e., independently of the KS-DFT based
electronic structure, while the remainders (χ and the exchange
and correlation contributions to η) are evaluated exactly from a
reference KS-DFT calculation. Hence, the ACKS2 method
theoretically reproduces the exact electronic response of the
underlying DFT reference up to second order in the limit of
linear response and a complete basis set representation. While
the limitation to second order effects at first may seem overly
restrictive, recent work, e.g., by Giese and York,41,42 has shown
that carefully conducted second order expansions can yield
polarization responses and even geometries nearly indistinguish-
able from the full KS DFT case. In section 2 we show ACKS2 to
go even one step further, yielding excellent agreement not only
for the induced molecular dipole moments but also the
polarization energy.
1.1.1. ACKS2 Energy Expression. To be useful in actual

applications, ACKS2 needs to be able to reproduce a molecule’s
electronic response to an external potential. Here we focus on
the induced dipole moment and the energetic cost of that
response known as the polarization energy. While the induced
dipole moment follows straightforwardly from the density
response (eq 1a), the expression for the energy response
expanded in a Taylor-series up to second order is more
involved:35

∫ ∑ ∑
∑ ∑

ρ ρ ρ

ρ η χ

Δ = [ + Δ + Δ ] − [ ]

≈ + +

− +

+Δ

′
′ ′

′
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′
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v d c c d d

c O d c V
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2
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2
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∑Δ =E c V
i

N

i iACKS2
inter

(4d)

The first term on the right-hand side of eq 4a represents the
interaction energy of the unperturbed reference charge density
(of both electrons and nuclei), ρ0, with the external perturbation
vext. The ACKS2 methodology does not account for this term, as
it operates in the space of the induced charge densityΔρ and KS-
potential ΔvKS only. Yet, it could easily and efficiently be
calculated, e.g., from a static force field’s multipole representa-
tion of the unperturbed charge density.19,21,22 The energy of
induced charge and KS potential polarizationΔEACKS2

pol. provide a
static response correction accounting for induction effects. The
term ΔEACKS2

intra describes the intramolecular polarization energy
necessary to rearrange the charge density of the reference state,
while ΔEACKS2

inter is the interaction energy of the induced charge
density with the external perturbation. Evaluation of the ACKS2
polarization energy and hence the computational expense to be
expected in its application are determined by the vector−
matrix−vector multiplications and a single vector−vector scalar
product, cf. eq 4b. The induced dipole moment is then a simple
scalar product of the density expansion coefficients and density
basis function times dipole operator integrals, which can simply
be tabulated for a specific Gaussian type density basis set

∫∑μΔ = c g dr r r( )
i

i iACKS2
(5)

1.2. A Gaussian Basis for ACKS2. Inspired by the point
charges in classical FFs, earlier studies expanded the response of
the electron density and KS potential in Fukui and Hirshfeld
functions.34,35 While these implementations show a relatively
high accuracy, they produce a large computational overhead as
the basis functions directly depend on the electronic structure of
the molecule. In contrast, our implementation employs a set of
primitive Cartesian Gaussian functions (GF) centered at the
atomic positions. Next to a greatly increased computational
efficiency, this choice of representation has the added
advantages of a tunable accuracy andeven more impor-
tantlybasis set transferability. Thereby, the accuracy of the
ACKS2 representation can straightforwardly be increased by
adding higher angular momentum basis functions. As will be
made clear below, the (atom-centered) basis functions are solely
element specific, which ensures the transferability among
different molecular structures.
By derivation, the ACKS2 parameters χM,M, ηM,M, DN, OM,N,

and VN in eq 2 are KS-DFT expectation values and need to be
obtained from DFT calculations. In contrast to earlier
incarnations of ACKS2, our Gaussian representation allows
many of the parameters to be calculated analytically. Never-
theless, the evaluation of χM,M as well as exchange-correlation
contributions to ηM,M currently necessitates a KS-DFT
electronic structure, whereas Coulomb-interaction portions of
ηM,M as well as all terms inDN,OM,N, andVN are obtained directly
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by recursive GF integration schemes. Hence, computational cost
of the analytically derived parameters depends on the specific
software implementation of the recursion relations introduced
in the Supporting Information. The software thereby used is an
in-house proof-of-concept Python package to be made available
upon reasonable request. With a view on the use of ACKS2 for
force fields, preliminary studies indicate that the ACKS2
parameters that require explicit DFT calculation depend very
smoothly on nuclear geometry, see below. Hence, DFT
calculations on only one or a few molecular geometries should
be sufficient for parametrization of an ACKS2-based force field
and drastically improve the computational cost, which in this
case would then solely be due to the necessary inversion of the
ACKS2 response matrices.

2. RESULTS

2.1. Fitting the New Basis Set.We illustrate our Gaussian
basis set implementation of ACKS2 for carbon and hydrogen.
We choose a minimal basis of Cartesian s- and p-type Gaussian
functions for both the electron density and Kohn−Sham
potential responses to balance good accuracy with high
computational efficiency of the ACKS2 method as well as a
manageable procedure for basis set optimization. The s-type
functions describe atom−atom charge transfer, whereas the p-
type functions account for intra-atomic dipole polarization. The
latter are particularly important for planar or linear molecular
fragments often encountered, e.g., in organic semiconductor
materials and biochemical systems. Together, both types of
functions can be expected to cover the basic electronic response
to external electrostatic perturbations, both in-plane and
perpendicular to the molecular plane.
An atomic species-dependent sp-GF basis set is generated

independently for both carbon and hydrogen by optimizing the
width σ of the Gaussian functions

σ
σ

= − − − × − −i
k
jjj y

{
zzzf x X y Y z Zr R r R( , , ) ( ) ( ) ( ) exp

1
2

( )a b c A A
a

A
b

A
c

A, , 2
2

(6)

where RA = {XA, YA, ZA} denotes the position of atom A, and r =
{x, y, z} is the position vector. To find the optimal σ for each
elementary s- and p-function, atomic dimers of H and C are
subjected individually to a set of external electrostatic
perturbations. The basis sets are then optimized for the
ACKS2 response to match the full KS-DFT reference by
variation of the width (or radial decay) σ of the Gaussian
functions separately for the representations of electron density
and KS-potential response, respectively. The space of possible
perturbations is sampled by a radial and angular distribution of
point charges (PC) of +1e placed between 1.3 times and up to
3.5 times the van der Waals radii, complemented by
homogeneous electric field (HEF) potentials of similar
strengths, yielding a total of 110 and 130 different perturbation
potentials for carbon and hydrogen, respectively. A more
detailed description of our fitting set can be found in the
Supporting Information.
The quality of the basis set is measured by the relative mean

error (RME) of the ACKS2 response from the respective full
KS-DFT reference

∑= −
N

x x
x

RME
1

i

N
i i

idata

ACKS2 DFT

DFT

data

(7)

where x represents the property of interest, e.g., induced dipole
moment, intramolecular rearrangement energyΔEACKS2intra (eq 4c),
and intermolecular interaction energy ΔEACKS2

inter (eq 4d),
respectively. Screening of the four-dimensional parameter
space (σs and σp for the electron density and KS potential
response functions, respectively) exposed a great number of
local minima. Therefore, we applied a global particle swarm
optimizer43 to select the global minimum among several local
minima with similar fitness scores, as shown in Table 1. For the

present basis set representation, the radial decay matches the
order of magnitude of atomic valence shells. This is not
surprising, given that the basis needs to represent changes to the
density and the potential, respectively. However, this being an
atom-condensed approximation of these quantities, likely
dependent on the angular momentum order of the expansion,
one should not expect a physical relevance of our σ values
beyond the correct order of magnitude.
The results obtained with the best basis set are shown in

Figure 2. For H2 the relative mean error of induced dipole
moments and polarization energy are 4.4% and 4.1% with
respect to KS-DFT, while they are 2.5% and 6.5% for C2,
respectively. The optimized sp-GF basis shows excellent
agreement with DFT references for induced dipole moments
(A, D) and for the polarization energy (B, E) over 3 orders of

Table 1. Optimized Radial Parameters, i.e., Gaussian Widths
σ [a0] for an sp-Type ACKS2 Basis Set for Hydrogen and
Carbona

σΔρ
(s) σΔρ

(p) σΔvKS
(s) σΔvKS

(p)

H 0.608 0.863 0.490 1.000
C 0.446 1.174 0.637 5.652

aNote the different parameters for the density and the potential basis,
respectively.

Figure 2. Performance of the fitted sp-GF minimal basis for the
hydrogen (A, B, C) and carbon (D, E, F) training sets. Panels (A) and
(D) illustrate the induced dipole moment, and panels (B) and (E)
depict the polarization energy of the ACKS2 method, cf. eq 4a,
compared to the DFT reference. The relative error is summarized in
panels (C) and (F).
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magnitude, from 0.01 to 1.0 eV. In general, ACKS2 predicts the
response to HEF perturbations (blue) better than to PC
perturbations (red), in particular for the carbon dimer. A more
detailed view of the differences in panels (C, F) shows deviations
for HEF perturbations to follow a rather narrow distribution up
to 5%, while distributions for PC perturbations exhibit a flat-
bottomed tail up to 20% error.
An exemplary illustration of the density changes due to

external perturbations is shown in Figure 3. Here, a one-

dimensional cut of the electronic response to a single HEF or PC
along the bond of a hydrogen dimer reveals the simplicity of the
presented approach based on a sp-GF minimal basis set.
Evidently, the fine details of the density response around the
nuclei are not and cannot be resolved as the basis functions are
not flexible enough. Nevertheless, the very good agreement of
integrated propertiesi.e., energies and induced dipoleswith
respect to DFT demonstrate that only a sufficiently accurate
averaged ACKS2 description of charge and potential response is
required. Our effective basis thus follows the spirit of other
effective methods such as, e.g., pseudopotentials, which are
designed to reproduce orbital energies without reproducing the
nodal features of the orbitals close to the nucleus. A more in-
depth study of the convergence of the density response near the
cores with basis set size is beyond the scope of this work.
2.2. Small Molecule Test Set. To test the transferability of

the Gaussian basis from H2 and C2 to more general CH-
containing molecules, we curated a set of ten small hydro-
carbons. They were selected for their different chemical features,
i.e., four linear alkanes, three compounds containing single,
double, and triple bonds C2H{2,4,6}, and four unsaturated cyclic
hydrocarbons, cf. Table 2. Similar to the training procedure,
each molecule is separately exposed to a set of external
perturbations sampling the three-dimensional space by a radial
and angular distribution of HEF and PC potentials, yielding 30
data points per molecule and 300 data points in total for the test
set.
Again, our ACKS2 implementation is capable of predicting

the DFT reference electronic response properties over an order
of magnitude with good accuracy, as illustrated in Figure 4. The
induced dipole moment, panel (A), and polarization energy,
panel (B), match the DFT reference data very well. The slight
underestimation of both induced dipole and polarization energy
can be attributed to a slight overestimation of the intramolecular
polarization energy contributions compared to the intermo-

lecular interactions. We believe this to be a side effect of the
minimal basis set representation. To our knowledge, this is for
the first time that the polarization energy ΔEACKS2

pol has been
determined solely within the ACKS2 framework. Our results
further show that atom-centered basis sets, though optimized for
simple diatomics, are transferable to other molecules with
different chemical features (bonds between heteroatoms,
double, triple bond, etc.). Unfortunately, simple stacking of
more basis functions does not necessarily improve the basis set
representation, as the ACKS2 method does not follow the
variational principle of KS-DFT due to the perturbative
treatment of the KS response matrix χ.34,35 Again, deviations
are generally smaller for HEF perturbations (blue) compared to
external PCs (red) as illustrated by the distributions of relative
errors given in Figure 4C−E.
The subset of linear alkanes exhibits narrow distributions in

the 7−10% range, with a slight tail toward larger errors for PC
perturbations. Hence, accuracy slightly falls off compared to the
training set data averaging at relative errors of about 4.5%.
Nevertheless, such small errors provide evidence for the
transferability of the simple GF basis set representation. A
more detailed view, given in Table 2, indicates small increases in
error with increasing chain size except ethane, as it resembles the
geometric structure of the carbon training dimer C2, the closest
in the present test set.
The C2H{2,4,6} compounds mimic the effect of different

chemical bonding types and local electronic structure. They
display broader distributions of errors, Figure 4, with shallow
tails up to the 30% range, but are again centered at the 10%mark.
A closer look reveals an increased error with larger bond orders,
Table 2, due to enhanced nonlinear response effects in π-
conjugated organic systems, in particular triple bonded carbon.
Finally, the set of cyclic unsaturated hydrocarbons, relevant

for application in OS material modeling, reproduces the DFT
reference reasonably well. The distribution of errors, cf. Figure 4,
is again centered around the 10% mark. It closely resembles the
deviations of the linear alkane chains but exhibits a slightly
enhanced tail up to the 30% mark, similar to the C2H{2,4,6}
molecules.

2.3. Acenes. While the test set comprised of simple
molecules already demonstrates the efficacy of ACKS2 for
different chemical species and bonding situations, we now turn

Figure 3. One-dimensional cuts of the induced electron density
rearrangements in H2. The external perturbations are aligned with the
molecular bond axis. The response to a PCwith center-of-mass distance
of 2.0 Å and single elemental charge and a homogeneous electric field
matching the PC potential are illustrated.

Table 2. Linear Response Prediction for HEF and PC
Perturbations of a Hydrocarbon Test Seta

alkanes RME(ΔEpol.) RME(Δμ)
methane 10.2 10.5
ethane 8.5 9.0
propane 10.9 9.9
n-butane 11.9 10.7
C2H{2,4,6}

ethane 8.5 9.0
ethylene 13.1 11.3
acetylene 21.4 21.8
cyclic
cyclopropanene 12.4 11.2
cyclobutadiene 16.4 14.6
cyclopentadiene 14.8 13.2
benzene 18.4 16.4

aThe relative errors of the ACKS2 polarization energy (RME(ΔEpol.)
[%]) and induced dipole moment (RME(Δμ) [%]) compared to the
DFT reference are listed.
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to two larger molecules that form semiconducting organic
crystals, anthracene and tetracene.44 The electronic response
properties of these acenes are not trivial and exhibit complex
effects as illustrated in Figure 1. For a number of HEF and PC
perturbations the ACKS2 response again matches the DFT
reference properties very well as depicted in Figure 5. Hence, the
present work provides a crucial first step toward an ACKS2-
based electronic response function for large, application-relevant
molecules.

2.4. Polarizability and Raman Intensity.We now turn to
the calculation of polarizability and the nuclear derivative of
polarizability determining the intensity of Raman spectra, where
other effective polarization models often struggle to yield
accurate results.45,46

To this end, we compute the isotropic polarizabilityi.e., the
average of the diagonal of the polarizability tensor,
α α α α= + +( )xx yy zz

iso 1
3

and its dependence on the molec-

ular structure, by perturbing the equilibrium geometry of
benzene along the symmetric ring-breathing mode.
Here, the polarizability is calculated numerically by a finite

electric field differentiation of the total molecular dipole
moment with a field strength of 0.01 VÅ−1. Figure 6 depicts
the isotropic polarizability for small displacements along the
benzene breathing mode. Separately, Figure 6 highlights
changes of αiso with respect to the polarizability in the vibrational

equilibrium geometryΔαiso = αvib
iso − αequ

iso . The overall trend of
total isotropic molecular polarizabilities of benzene, relative
mean error of 12.6%, matches the accuracy of previously
introduced molecular test sets of small organic molecules and
acenes, see Figures 4 and 5. However, a closer look reveals a
slight, albeit systematic growth of the relative error of the
isotropic molecular polarizabilities outside the equilibrium
configuration. This is most likely a consequence of the small
basis set, fitted to yield a reasonable approximation of the overall
electronic response properties but potentially too insensitive to
capture quantitatively the small changes in polarization response
with nuclear displacements.
Finally, we point out that each of the distorted geometries still

necessitated a full DFT calculation to extract the ACKS2
response matrices as discussed in detail in the next section.

2.5. Nonanalytic Parameters of ACKS2. Envisioning the
ACKS2 method as polarization correction to force fields, the
current bottleneck remains the evaluation of the Kohn−Sham
DFT electronic structure dependent parameters, namely the
exchange-correlation contributions to the hardnessηi,j

xcas
well as the noninteracting linear response kernelχi,j. Our
preliminary studies of those ACKS2 parameters indicate a
smooth dependency on nuclear geometry due to our smooth
Gaussian representation of the response properties. We
exemplify this on benzene, cf. Figure 7a, where we symmetrically
alter the equilibrium distance of all C−H bonds (ΔdC,Hbond = 1.09
Å) over a range of −0.075 Å to +0.075 Å by equally displacing
the C atoms inward (outward) and the H atoms outward
(inward) for a bond expansion (contraction). This then also
changes the C−C distances in the ring, where the respective

Figure 4. Performance of the ACKS2 method in predicting induced dipole moment (A) and polarization energy (B). The left column depicts the
absolute induced dipole moment and polarization energy, while the right column displays the relative errors of the linear one-dim. alkanes (C),
C2H{2,4,6} compounds (D), and cyclic molecules subsets (E).

Figure 5. Numerical validation for anthracene and tetracene polar-
ization properties. In panel (A), the induced dipole moment of the
ACKS2 method is depicted vs the DFT reference, and panel (B) shows
the polarization energy defined in eq 4a. RME gives the relative mean
error for each property.

Figure 6. Illustration of the isotropic polarizability and its relative
changes for a benzene symmetric breathing mode.
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change of the pairwise distance between two adjacent C atoms
(ortho), two second-nearest C atoms (meta), and two-third-
nearest C atoms (para) on the ring follows simple geometric
dependencies on the C−Hbond length (ΔdC,Cortho = 1.40 Å,ΔdC,Cmeta

= 2.42 Å, ΔdC,Cpara = 2.79 Å). As illustrated in Figure 7b, the
corresponding response matrix elements of the exchange-
correlation contributions as well as the noninteracting linear
response kernel vary smoothly near the equilibrium interatomic
positions. For the sake of simplicity we here focus on a pure s-
basis for both density and potential and plot carbon−carbon as
well as bonded carbon−hydrogen interaction elements. Hydro-
gen−hydrogen terms as well as hydrogen−carbon terms of
atoms, that are not directly bonded, are not shown as we find
them negligibly small. The exchange-correlation contributions
decay to zero rapidly with distance, as shown in the top graph of
Figure 7b. Hence, same-center contributions, depicted in Figure
7c, and off-center matrix elements of atoms partaking in a bond
are the most important features of ηi,j

xc and could be tabulated or
interpolated smoothly from a DFT reference. The elements of
the noninteracting linear response kernel χi,j generally decay less
rapidly and involve considerable nonlocal contributions due to

the long-range effects of the Kohn−Sham potential changes.
Nevertheless, they vary smoothly with interatomic distances,
which should allow for interpolation from a few DFT reference
calculations. Considering basis functions of higher angular
momentum like p-type GF, the ACKS2 model requires
descriptors that are able to account for an angular resolution
of the latter response parameters as well compared to a simple
interatomic distance metric of an s-type representation, as
illustrated here. One candidate for such a metric could, e.g., be a
simple GF basis overlap, which naturally encodes distances and
relative orientations of basis functions. We found that both ηi,j

xc

and χi,j still vary smoothly with the their respective overlap
matrix elements (see the Supporting Information). Hence, for a
given molecule or set of molecules, a careful parametrization of
an ACKS2 model from a set of a few DFT reference calculations
should straightforwardly be possible and greatly facilitate the
method’s application, e.g., as a polarization correction in
molecular dynamics calculations.

2.6. Comparison to Other Polarizeable Methods.
Setting our results into perspective, even state of the art
approximations to DFT such as the semiempirical modified
neglect of differential overlap (MNDO) tend to struggle to
accurately reproduce polarization responses with relative mean
errors (RME) for the induced dipoles of 25%,47 compared to
hybrid-level DFT. Similar failures can be found for straightfor-
ward applications of density functional tight binding DFTB2.42

Both of these can be substantially improved though, by coupling
the respective ground state electronic structures to carefully
parametrized implementations of the chemical potential equal-
ization (CPE). A single postprocessing step of CPE, for example,
yields an RME of 12% and 3% for induced dipole moments and
molecular polarizabilties, respectively, for MNDO47 and 5% for
molecular polarizabilities in DFTB2.42 Using a careful para-
metrization, similar resultsRME of 12% for induced dipole
moments and RME of 4% for molecular isotropic polar-
izabilitiescan also be found for a direct application of CPE29

to a set of small organic molecules, very similar to the set used
here (cf. section 2.2). On the more empirical side, the popular
Drude oscillator model, for example, has been shown to yield
polarizabilities down to 3%,48 if carefully parametrized, albeit at
the potential cost of a loss of transferability. Furthermore, relying
on fixed charges, such an approach could potentially struggle
with polarizations along conjugated bonds such as in the acenes
discussed in section 2.3 above.
Additionally, we point out that these studies did not include

any correction to the polarization energy terms, which are
conceptionally more involved (see section 1.1.1) to accurately
estimate and typically would require even more sophisticated
parameter training. In ACKS2, on the other hand, density
response and polarization energy can be computed from the
same set of matrices. Finally, given that ACKS2 is parametrized
directly from DFT, currently without any empirical fitting, the
accuracy of the model rests on a single parameter, the quality of
the basis set.

3. DISCUSSION

In conclusion, we presented a highly efficient Gaussian basis set
implementation of the ACKS2 method, that is transferable from
diatomics to general molecules and that shows good accuracy
when compared to reference DFT calculations. A new minimal
GF basis set has been developed for carbon and hydrogen
species, and consequent numerical validation illustrated the

Figure 7. Illustration of pairwise distance dependency of KS-DFT
derived ACKS2 parameters for atomic s-type Gaussian basis functions
for breathing mode of benzene. (a) Benzene molecular motion and
relative position of carbon atoms. The pairwise interatomic distances
are applied as metric for the ACKS2 parameters following the color
coding scheme. (b) Off-center KS-DFT parameters for symmetric
breathing mode. (c) Same-center KS-DFT parameters for symmetric
breathing mode.
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power of the ACKS2 method despite the rather simplistic
training procedure.
Employing the new Gaussian basis set for ACKS2 responses,

we found it to yield admirable accuracies compared to DFT
reference calculations. The electronic response properties of
small molecules such as alkanes and unsaturated cyclic
hydrocarbons, as well as single, double, and triple bonded
compounds, demonstrated the accuracy of ACKS2 for a large
number of bonding perturbation scenarios. As observables, we
thereby calculated induced dipole moments and presented the
first evaluation of the polarization energy within the ACKS2
formalism, which matches DFT energies to a remarkable degree.
Although one-dimensional cuts through the ACKS2 density and
potential response show great differences to their DFT
counterparts, the observables nevertheless agree well due to
error cancellations when integrated over all space. Finally, we
demonstrated the good performance of ACKS2 on application-
relevant molecules in organic semiconductor research, tetracene
and anthracene.
Future work will focus on the improvement of basis sets,

extension to further compounds, and in particular the
development of strategies for electronic structure free
incorporation of ACKS2 polarization energy in force field
basedmolecular dynamics simulation. Due to the Gaussian basis
introduced in this work, most of the ACKS2 parameters can be
determined analytically, yet a few of them still rely on a full
electronic structure evaluation. In the current state, the
exchange-correlation contributions to the hardness η and the
KS noninteracting linear response kernel χ are evaluated from
the KS orbitals of the reference system. For an application of the
ACKS2 model in a force field this computational bottleneck
needs to be removed. We envision the elimination of the
computationally expensive DFT parametrization process in a
second step by geometric scaling or interpolation schemes,
facilitated by the smoothness of the ACKS2 parameters with
respect to nuclear displacements, to finally obtain linear
electronic responses that only depend on nuclear geometry
and hence are ideally suited for force fields. In such a framework,
conventional interatomic potentials would account for the
intramolecular interactions, permanent electrostatic interac-
tions, and dispersion corrections, while the ACKS2 model
provides static electronic polarization.

4. METHODS
Throughout this study, DFT reference calculations as well as the
KS electronic structure dependent ACKS2 parameter evalua-
tions were carried out with the FHI-aims full potential all
electron DFT simulation package.49 We applied the PBE
generalized gradient approximated density functional. Integra-
tions were conducted using “tight” integration grids with wave
functions expanded in a tier 3 numeric atomic orbital basis, to
ensure the numerical convergence of our results.
While PBE certainly is not the perfect functional for both the

C2 dimer used in the basis set parametrization, as well as the
polarizability of acenes, the exact choice of functional is not
relevant. As shown earlier,49 even an imperfect description of the
electronic structure of elementary dimers seems sufficient to
yield accurate and transferable basis sets (cf. section 2.1). On the
other hand, in our accuracy tests, ACKS2 shows itself able to
very well reproduce the DFT reference. We have no reason to
suspect this not to hold for other, modern DFT functionals such
as the promising SCAN meta-GGA,50 that can be expected to
yield better polarization properties of molecules.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.9b00415.

Theoretical foundations of ACKS2 approach and
technical details of evaluation of new Gaussian basis and
description of training and test sets used in this work, as
well as description of how to extract reference data from
DFT calculations (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: harald.oberhofer@tum.de.

ORCID
Karsten Reuter: 0000-0001-8473-8659
Jochen Blumberger: 0000-0002-1546-6765
Harald Oberhofer: 0000-0002-5791-6736
Author Contributions
L.L. initially implemented the Gaussian-based ACKS2 method.
P.G. refined and extended this implementation. Furthermore,
P.G. implemented the ACKS2 energy terms and performed all
training and testing calculations. The initial idea to the project
was conceived by H.O. and K.R. H.O. and J.B. derived the
ACKS2 energy expressions, designed, and supervised the
project. All authors contributed to the writing of the manuscript.

Notes
The authors declare no competing financial interest.
Supporting training data for the Gaussian parametrization as
well as raw data of the test sets and all software used in this work
present as an in-house proof-of-concept Python package for this
article are available from the corresponding author upon
reasonable request.

■ ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the Solar
Technologies Go Hybrid Initiative of the State of Bavaria. P.G.
further acknowledges the support of the Technische Universitaẗ
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ABSTRACT: The treatment of electrostatic interactions is a key
ingredient in the force field-based simulation of condensed phase
systems. Most approaches used fixed, site-specific point charges.
Yet, it is now clear that many applications of force fields (FFs)
demand more sophisticated treatments, prompting the implemen-
tation of charge equilibration methods in polarizable FFs to allow
the redistribution of charge within the system. One approach
allowing both, charge redistribution and site-specific polarization,
while at the same time solving methodological shortcomings of
earlier methods, is the first-principles-derived atom-condensed
Kohn−Sham density functional theory method approximated to
the second order (ACKS2). In this work, we present two fragment
approaches to ACKS2, termed f-ACKS2 and a self-consistent
version, scf-ACKS2, that treat condensed phase systems as a collection of electronically polarizable molecular fragments. The
fragmentation approach to ACKS2 not only leads to a more transferable and less system-specific collection of electronic response
parameters but also opens up the method to large condensed phase systems. We validate the accuracies of f-ACKS2 and scf-ACKS2
by comparing polarization energies and induced dipole moments for a number of charged hydrocarbon dimers against DFT
reference calculations. Finally, we also apply both fragmented ACKS2 variants to calculate the polarization energy for electron−hole
pair separation along a chain of anthracene molecules and find excellent agreement with reference DFT calculations.

1. INTRODUCTION
Nowadays, atomistic or coarse-grained force fields are an
essential tool in the materials’ modeling community, enabling
an efficient sampling of the phase space of condensed phase
systems.1−4 Whether based on training by ab initio references
or experimental properties, or, recently, machine learned
models, force fields allow molecular simulations of systems that
are too large for treatment with explicit electronic structure
methods. They have been used very successfully for the
simulation of biological systems,5−7 catalysis,8,9 and energy
conversion materials like batteries10,11 or organic semi-
conductors.12,13

In all cases, the accuracy of force field approaches rests
critically on their ability to represent the different types of
interactions between atoms or molecules.4,14,15 One key
ingredient is the accurate description of electrostatic
interactions, especially in systems where small changes in the
electrostatic potential strongly influence local properties, as,
e.g., in protein folding16 or excitation energy and charge
transport.17,18 Therefore, earlier molecular mechanics simu-
lations frequently employed an inexpensive but crude classical
point charge representation of the mean-field electrostatic
interactions.19,20 In recent years, though, the static, isotropic
nature and lack of directionality of the simple point charge
model were highlighted,21−24 prompting the development of

improved electrostatic models by either adding off-center point
charges or higher angular momentum terms like dipole and
quadrupole moments.25,26 Going further, incorporating the
electronic many-body polarization induced by local electro-
static potential changes, e.g., due to dynamical fluctuations of
other molecules, the presence of excess charge carriers, or
external voltages, in a classical interatomic model framework is
a difficult task.21,27 Indeed, polarization corrections so far
exhibited mixed successes compared to well-tuned non-
polarizable force field parametrizations.28−31 Popular empirical
models for the explicit polarization in force fields are the Drude
oscillator (or core−shell)32,33 and the atomic inducible dipole
(or distributed polarizabilities) approach,34,35 which employ a
charge attached to the atomic nuclei by a harmonic spring or
atom-centered inducible point dipoles, respectively, to capture
intra-atomic charge rearrangements. While they are very
efficient and easy to implement, they exclude specific atom−
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atom charge transfer terms and are difficult to parametrize
thoroughly, raising the problem of system transferability.36,37

On the contrary, the X-Pol38 (formerly MODEL39,40) method
combines a simplified semi-empirical quantum mechanical
description of a molecule, including its polarization, with the
efficient force field representation of the intermolecular
interaction potential, to approximately maintain the non-
classical nature of electrons. Along similar lines, force field
techniques have been combined with quantum chemical
calculations of molecular fragments to obtain atomic partial
charges and molecular fragment dipole moments on the fly
(i.e., every few picoseconds for protein simulations).41,42 While
these approaches show promising accuracy and transferability,
e.g., protein solvation in water,43,44 they suffer from a much
increased computational cost compared to standard force
fields.45 Finally, in an attempt to capture charge reorganization
and polarization yet at the cost of standard force fields, a
population of fluctuating atomic charges, initially described by
the electronegativity equilibration method (EEM),46 has
become a widespread choice for the description of electronic
polarization. In the three and a half decades since EEM’s
inception, it has undergone many refinements in the form of
the charge equilibration (QEq),47 chemical potential equilibra-
tion (CPE),48 atom−atom charge transfer (AACT),49 and
split-charge equilibration (SQE)50 schemes. However, many of
these models suffer from overestimation of the long-range
charge transfer due to incorrect kinetic energy contributions to
the electronic many-body response. A recently suggested
method for the calculation of electronic polarization, the atom-
condensed Kohn−Sham density functional theory approxi-
mated to the second order (ACKS2),51,52 could alleviate these
methodological drawbacks.
ACKS2 is a linear electronic response technique derived

from first principles, based on an atom-projected description of
the perturbative Kohn−Sham (KS) density functional theory
(DFT) electron density rearrangements induced by an external
potential. In a recent study, we developed a transferable
Cartesian Gaussian basis set representation as the first step
toward applying ACKS2 as a general electronic polarization
contribution in force fields.53 We found that ACKS2-calculated
induced dipoles and polarization energies of organic molecules
due to simple external electrostatic perturbations were in
excellent agreement with the results of full DFT calculations.
This suggests that ACKS2 could be a promising method for
the description of electronic polarization between molecules in
the condensed phase. However, so far, ACKS2 has only been
used to calculate the polarization response to a static external
electric field, not between two mutually polarizable entities like
molecules. Therefore, in order to make ACKS2 amenable to
force field simulations, it is necessary to develop an approach
that describes the mutual polarization of molecules within the
ACKS2 framework.
In this study, we introduce a fragment approach to ACKS2

and treat the simulation system as an assembly of polarizable
molecular subunits. In this approach, the intramolecular and
intermolecular polarization energies are accounted for at the
ACKS2 level under the constraint that the total charge of each
fragment is equal to the charge of the unperturbed fragment.
Hence, similar to other polarization models, the method
accounts for intramolecular but not intermolecular charge
redistribution. In section 2, we briefly summarize the main
concepts of ACKS2 before we describe in detail our new
ACKS2 fragmentation approach. The latter is validated against

the perturbative KS-DFT parent method in section 3 on a set
of neutral and charged organic dimers and illustrated further
for a chain of organic molecules carrying an excess electron and
electron hole. Finally, concluding remarks are given in section
4.

2. THEORY
2.1. Atom-Condensed Kohn−Sham DFT Approxi-

mated to the 2nd Order. The atom-condensed Kohn−
Sham density functional theory approximated to the second
order,51,52 a recently developed extension to more traditional
charge equilibration schemes,48 was demonstrated to be an
accurate yet transferable first-principles-based method for the
calculation of response properties, like the electronic polar-
ization energies and induced dipole moments.53 It describes
electronic polarization in the presence of an external potential
using a simplified perturbative Kohn−Sham density functional
theory approach within the limit of linear response. The first-
principles nature of this method has a number of distinct
benefits compared to empirical polarization models in that all
parameters of the ACKS2 model have a direct physical
meaning and can be derived exactly from DFT calcula-
tions.51,53 In the interest of brevity, here, we only give a brief
overview of the method, necessary for the derivation of the
fragment scheme. For a more detailed description of the
method, we refer the reader to references51,52 or our previous
work.53

In ACKS2, the response of the electron density, Δρ, and the
Kohn−Sham potential, ΔvKS, to an external potential, Δvext, is
expanded in terms of atom-centered basis functions gn (hm)
with expansion coefficients cn (dm)

∑ρΔ = c gr r( ) ( )
n

N

n n
(1a)

∑Δ =v d hr r( ) ( )
m

M

m mKS
(1b)

This atom-condensed representation of the electronic
structure response is in principle exact in the limit of a
complete basis set. Given the atom-centered basis set
expansions of eq 1, the parametrized matrix form of the KS-
DFT linear response equation, i.e., the working equation of
ACKS2, reads
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(2a)

= −Px V (2b)

The right hand side vector with elements [V]n = ∫
drgn(r)Δvext(r) represents the potential Δvext of an external
perturbation acting on the system, such as an external field.
The solution vector x = {cn, dm}, collects the expansion series
coefficients for the change in electron density and KS potential.
The matrix P on the left hand side of eq 3 encodes the reduced
KS-DFT ground-state response information, condensed
according to the choice of basis set in eq 1. It contains four
different parameters, {ηi, j, χi, j, Oi, j, Di}, which are all well-

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00151
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B



defined expectation values of the KS-DFT ground-state
electronic structure.
Two parameters, ηi,j and χi,j, require KS-DFT ground-state

orbitals and energies for their calculation

∬η
ρ ρ

= | − ′| + ∂
∂ ∂ ′ ′ ′

ρ[ ]i
k
jjjjj

y
{
zzzzzg

E
gr

r r r r
r r r( )

1
( ) ( )

( )d di j i j,

2 xc

(3)

∬χ = ∂ [ ]
∂ ∂ ′ ′ ′i

k
jjjjj

y

{
zzzzzh

E v
v v

hr
r r

r r r( )
( ) ( )

( )d di j i j,

2 KS
KS

KS KS (4)

The hardness kernel ηi,j accounts for the energetic cost of
electronic polarization due to changes in the electron density
Δρ. The non-interacting linear response kernel χi,j accounts for
the energetic cost of electronic polarization due to changes in
the Kohn−Sham potential ΔvKS. The remaining two ACKS2
parameters, Oi,j and Di, are independent of the KS electronic
structure and depend only on the choice of the basis functions
in eq 1. Oi,j is the overlap integral of basis functions for density
and KS potential response: Oi,j = ∫ gi(r)hj(r) dr, accounting
for the energetic contribution of concerted changes of electron
density and KS potential. Di = ∫ gi(r) dr and ensures the
conservation of total charge.
With these parameters, the total ACKS2 polarization energy

of the system can be expressed as53

∑ ∑
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2.2. Fragment-ACKS2. We here introduce a fragment
approach to ACKS2, termed fragment-ACKS2 or f-ACKS2.
The key idea here is to divide a large condensed phase system
into smaller polarizable subunits or fragments, typically
molecules, and account for the total electronic polarization
in a simulation cell by means of the individual fragment
responses. Specifically, in this study, the f-ACKS2 technique is
applied to evaluate the dielectric response contributions to the
intermolecular interactions in dense phase media. Therefore, as
illustrated for a benzene molecular dimer in Figure 1,
fragments are chosen to represent the entire simulation cell
and consecutively parametrized in a vacuum reference
framework. This means that the f-ACKS2 matrices for each
fragment are calculated individually from the KS-DFT
electronic ground state of an isolated molecule in vacuum.
Additionally, an effective interaction potential of the isolated
ground-state charge density of each fragment is developed,
which is used as external perturbation to simulate the effect of
neighboring molecules in dense phase media. Solution of the f-
ACKS2 equations then yields the electronic polarization of a
vacuum-level parametrized fragment embedded in a dense
phase environment represented by vacuum-level charge
potentials. This way, the f-ACKS2 approach follows the spirit
of force field techniques to treat contributions to the total
energy on different footings based on, e.g., chemical
connectivity, bonded or non-bonded, or distance measures,
long-range vs. short-range. It provides a computationally
efficient tool to account for the electronic polarization between
fragments, like molecules in the condensed phase, and hence is
ideally suited for use in molecular mechanics simulations. In

the following, the ACKS2 foundations of the three practical
steps, (i) fragmentation, (ii) parametrization, and (iii) mutual
polarization, depicted in Figure 1 are assessed, starting from
the viewpoint of an ACKS2 matrix formulation of the entire
simulation cell.
In a nutshell, the system cell fragmentation step is justified

by theoretical arguments to decouple the response between
different fragments (sparsification), to change the ACKS2
framework from an embedded molecule to a vacuum-level
reference electronic structure and to set a suitable charge
constraint. The parametrization step is concerned with the
calculation of the f-ACKS2 matrix elements and an efficient yet
accurate interfragment interaction potential. The fragment
polarization step involves the solution of the f-ACKS2 matrix
equations and numerical implementations to allow possible
coupling between different fragments, as well as correct
evaluation of the response properties.
In step (i), the partitioning of a simulation system in κ

polarizable fragments is a new concept to the ACKS2 theory,
inspired by other constraint and fragmentation techniques like
fragment-orbital DFT.54 Similar schemes have been reported
as ad hoc corrections in charge equilibration schemes, where a
molecule has been partitioned topologically in small subunits
to avoid the erroneous superlinear scaling of molecular
polarizabilities with increasing size.49,55

Figure 1. Illustration of the methodological steps of the f-ACKS2
approach for the mutual polarization of two benzene molecules.
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The choice of fragments is in principle arbitrary, e.g.,
following atom proximity, chemical connectivity, or functional
grouping. The use of molecules as polarizable subunits arises
naturally in a molecular condensed phase system like organic
crystals or solvated proteins.
The f-ACKS2 technique represents a sparsification approach

to the total electronic response, which in the present study
contains three conceptual approximations (fragmentation of
the ACKS2 equations and methodological implications are
derived in detail in the Supporting Information). First, all
ACKS2 matrix elements (Oi, j, ηi, j, and χi, j) related to basis
functions located on different fragments are set to zero, which
prohibits the coupling of the electronic response between
different fragments. Note, any intrafragment matrix elements
are unchanged. The overlap matrix elements Oi, j (between
density basis functions and KS potential functions) generally
depend on the radial decay of each function and the distance
between them, which leads to small overlaps for well-separated
molecular fragments. Following the theorem of Unsöld,56

ACKS2 matrix elements of the non-interacting linear response
kernel χi, j related to different molecular fragments, i.e., at a
large distance and small electronic overlap between different
atomic sites, are approximately zero.51 Similarly, the exchange-
correlation contributions to the hardness kernel ηi, j for semi-
local functionals such as PBE57 rapidly decay with increasing
interatomic distances, yielding negligible intermolecular
contributions to the ACKS2 matrix. Only the classical
electrostatic interaction contribution to the hardness kernel
is long-range in nature and goes well-beyond typical
intermolecular distances in dense matter. However, the
electronic response in dielectric media (like an organic
molecule) to an external potential and especially its induced
change of the potential at other fragments are reasonably small,
and setting these contributions to zero is a valid first
approximation (depending on the system polarizability). The
fragmentation (sparsification) and its practical impact on the
ACKS2 (intermolecular vs. intramolecular) matrix elements
are illustrated for a molecular dimer of benzene, see section 1.
As model refinement to f-ACKS2, mutual fragment response
interactions due to classical electrostatic contributions are
implemented in an iterative, self-consistent field approach
introduced in section 2.3.
The second approximation in our fragmentation approach

concerns the evaluation of the ACKS2 parameters for the
individual fragments. Executing and postprocessing a DFT
calculation for the entire simulation cell at every molecular
dynamics or Monte Carlo simulation step (and then setting all
interfragment matrix elements to zero anyways) are computa-
tionally prohibitive in force field methods. One route to
circumvent this is to sample a reasonable number of relevant
structures of the molecule embedded in the dense phase
environment and extract an estimate of their exactly calculated
ACKS2 parameters (e.g., via averaging, interpolation, or even
machine learning). In this study, we opt for an even more
transferable approach, where the parameters of each fragment
are derived from a reference DFT calculation of a single
molecule in vacuum. Other fragments otherwise present in
dense matter are introduced by an approximate Coulomb
response interaction potential (like a simple point charge
model), very much in the spirit of other force field techniques.
Furthermore, a vacuum reference parametrized f-ACKS2
model allows the evaluation of electronic polarization
contributions to the intermolecular interactions, which will

be studied for a set of small (partially charged) aromatics
below.
The third, and last, approximation concerns the constraint of

the total charge due to electronic rearrangements present in
the ACKS2 method, c.f. the last row in eq 2, which necessitates
a translation to fragment contributions in the f-ACKS2.
Practically, this yields two distinct choices. In a straightforward
approach, a constraint is imposed on the overall polarization
charge, i.e., summation over all fragment charges is constant,
which allows charge transfer between different sites. Thereby,
charge equilibration is achieved in the entire system, and the
responses of the individual fragments are effectively coupled by
charge transfer energetics (any implementation requires a
numerical solution of a coupled set of linear equations).
Alternatively, a charge constraint is imposed for each individual
fragment in f-ACKS2, preventing charge transfer between
different sites. This is the approach taken in this work. While it
is expected to be a good approximation for the (adiabatic)
ground state of non-polar or weakly polar systems, it is the
natural choice for the modeling of the charge localized (or
(quasi)-diabatic) electronic states of electron transfer reac-
tions58 and charge transport in the condensed phase.59−61

In step (ii), the parametrization process of the f-ACKS2
response matrices follows the standard ACKS2 model for each
of the κ fragments in vacuum. The perturbation of a given
fragment A by the other fragments B is modeled by a sum of
fragment potentials vfrag

A

∑Δ =
κ

≠
v vr r( ) ( )A

B A

B
ext frag

(6)

The idea of an effective potential representation vfrag
B here is a

general concept and can be tuned to specific numerical needs
and applications. In order to avoid costly real space integrals in
the determination of the perturbation vector V, we chose a
discrete representation based on fixed atom-centered point
charges (fc), i.e., vfrag

B = vfc
B . The latter represents a simple

Coulomb interaction term but neglects higher fixed multipole
terms or exchange-correlation contributions between the
fragments. While it would also be possible to introduce, e.g.,
atom-centered multipoles, to describe fragment−fragment
interactions, our benchmark results presented in section 3
already show that such a simple representation is able to
capture most of the induced polarization effects.
In step (iii), computing the (non-self-consistent) response

for each individual fragment again follows standard ACKS2
methodology.

∫∑[ ] =
κ

≠
g vV r r r( ) ( )dA

n
B A

n
A B

fc
(7a)

= −P x VA A A (7b)

The solution vector xA contains the expansion coefficients
for electron density and Kohn−Sham potential changes, cn

Aand
dm
A , of basis functions located at fragment A, c.f. eqs 1a and 1b.
Observables like polarization energy and dipole moment of the
individual fragments follow straightforwardly, see ref 53. The
overall response is finally obtained by simple superposition of
the individual fragment electronic polarization

∑μ μΔ = Δ
κ

A
A

(8a)
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∑Δ = Δ
κ

E E
A

A
pol. pol.

(8b)

2.3. Self-Consistent Fragment-ACKS2. With the in-
troduction of a fixed atom-centered point charge representa-
tionvfc

B , we provide an effective interaction potential between f-
ACKS2 fragments based on a simplified electronic ground-
state charge distribution. However, the influence of mutual
electronic polarization interactions between different fragments
has not yet been accounted for. Illustrated in Figure 2, the

presence of fragment A and its effective ground-state KS
potential polarizes fragment B, which in turn induces local
potential changes and a response of fragment A, in turn
changing the potential on fragment A and so on. In total, this
yields a contribution vresp

B to the local potential of a fragment
due to the polarization of all other fragments in the system

∑ ∑Δ = +
κ κ

≠ ≠
v v vr r( ) ( )A

B A

B

B A

B
ext fc resp

(9)

A straightforward way to introduce coupling of the mutual
polarization response interactions is the addition of a Coulomb
potential due to the response density,

∫∑= | − ′| ′ ′
′

′
′ ′v c g

r r
r r

1
( )dB

n
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B
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N

n
B

n
B

ext fc

(10)

Note that the mutual response interaction term shown here
for fragment A includes the f-ACKS2 expansion coefficients cn′

B

of the other fragments B. Thus, the new working equations
cannot simply be solved by a single matrix inversion of κ
response-independent fragments, as in f-ACKS2, because now,
all fragment perturbations include the polarization of each
other, and the individual fragment coefficients are interde-
pendent. The interdependence of the (atomic) inducible
multipole moments leads to a large yet sparse ACKS2 set of
linear equations for the total system (all fragments). The
number of equations scales with the number of basis functions
and would introduce a considerable bottleneck in calculations
on large clusters/condensed phase systems. The blocks on the
diagonal represent individual fragments (here parametrized

from molecules in vacuum). All interfragment off-diagonal
elements introduce an approximate coupling, see second term
in Eq 9, which is long-range in nature due to the 1r and 1r3

decay of the electrostatic potential of (point) charges and
dipoles, respectively, and somewhat reduces the actual sparsity
of the ACKS2 equations. The difference between a fully
fragmented f-ACKS2 and the coupled working equations is
illustrated for a two-fragment system in Figure 3.

An exact solution of the sparse polarization matrix is
computationally very expensive, and instead, it is often
approximated to arbitrary accuracy following two general
concepts (or combinations thereof). In iterative solver
techniques, the simulation cell is divided into smaller subunits
(with the smallest being an individual site) for which the
individual polarization linear equations are solved, similar to
the f-ACKS2 approach. The response of the individual sites to
an initially estimated charge distribution updates the local
electrostatic potential, prompting a new response and so forth
until self-consistency is reached.62,63 Alternatively, in time-
dependent molecular dynamics simulations, the explicit
polarization degrees of freedom can be propagated directly
from an initial solution by Lagrangian methods, which
introduces an additional thermostat for the response.64,65

Here, we employ an iterative self-consistency scheme, termed
scf-ACKS2, where the response of each fragment is fed
stepwise into the external potential of other fragments until
self-consistency is reached

= +{ } { − }V V V x( )A i A A B i,
fc response

, 1
(11a)
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A B

fc fc
(11b)
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( )d d
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B i

B A n

N

n
B i

n
A

n
B

response
, 1

, 1

(11c)

The additional superscript {i} indicates the step number
within the iterative scf-ACKS2 scheme. In the scf-ACKS2
scheme, all interaction integral vectors in Vfc and Vresponse are
constant and can be stored in memory, whereas the expansion
prefactors xA ({cn

A} and {dm
A}) change with each iteration step,

Figure 2. Illustration of the effective interaction treatment in f-ACKS2
and scf-ACKS2.

Figure 3. Illustration of the different parameter elements in a direct
matrix approach to f-ACKS2 excluding and including the response
coupling vresp (as a function of the charge rearrangements Δρ only)
between different fragments for a benzene molecular dimer.
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accounting for the mutual polarization response interaction.
Following the update of the perturbation vectors, solution of
the ACKS2 matrix equation for each fragment gives the
individual expansion coefficient vectors, PAxA, {i} = VA, {i} ∀ A ∈
κ. Note, the solutions to the ACKS2 matrix equation of each
fragment are interdependent, as defined in eq 11c. Efficient
implementation strategies of the iterative solvers, including
initial guesses to the solution, preconditioning, and prop-
agation algorithms, e.g., variants of Jacobi and conjugate
gradient methods, to compute reliable explicit polarization
properties at reasonable computational cost is a matter of
ongoing research.62,63,66 Focusing on a proof of principle in the
present study, we include an intermediate linear mixing step
for an update of the ACKS2 density and KS potential
expansion coefficients xA mediated by a constant mixing
parameter τmix < 1

τ τ→ + −{ } { } { − }x x x(1 )A i A i A i,
mix

,
mix

, 1
(12)

The iteration of the mutual electronic polarization
interaction between different fragments is continued until
self-consistency is reached, ensured by some termination
criterion like the maximum change of coefficients to be smaller
than some threshold,

τ{| − |} < ∀{ } { − }x x A(max( ) ) .
n

n
A i

n
A i, , 1

threshold

The scf-ACKS2 scheme is initiated by solution of the f-
ACKS2 equations for each fragment where the external
perturbation includes the fixed-charge distribution interaction
potential vfc

B . That is, the expansion coefficients in the potential
(eq 10) are set to zero for the first step of the iterative scheme,
cn′
B, {0}= 0. Hence, the initial polarization of each fragment
contains the electronic response due to the interactions with
the fixed point charge distribution of all other fragments. In
principle, SCF convergence can in some cases further be
improved by using a different mixing constant, τinit ≠ τmix, for
the first few steps. In practice, though, for most of the systems
considered here, this proved unnecessary, cf. the Supporting
Information.
The electronic response of the total system is obtained by

summing up the polarization energies of the individual
fragments but corrected for the double counting of the mutual
response polarization interaction contributions, where x
represents the self-consistent solution in the scf-ACKS2
scheme

∑ ∑ ∑Δ = Δ −
κ κ κ

−
≠

E E x V x
1
2

( )
A

A
A B A

A A B
scf ACKS2
pol. pol.

response

(13)

3. RESULTS
3.1. Parametrization of f-ACKS2. First, we highlight the

impact of the above discussed approximate treatment of the f-
ACKS2 parameters for a molecular dimer of benzene taken
from a single crystal (Pbca),67 where each molecule represents
one fragment. In Figure 4, the distributions and distance
dependence of the various matrix elements of the total dimer
are color-coded to illustrate the relative importance of the
individual contributions. Panel A displays the large difference
of the exchange-correlation contributions to the hardness, ηxc,
for a semi-local functional (PBE) and fast decay with
interatomic distance. In Panel B, the Coulomb hardness

distributions, ηH, of inter- and intrafragments are of a similar
shape but slightly shifted by about half an order of magnitude.
The slow relative decay of these matrix elements reflects the
(non-negligible) long-range nature of the classical electrostatic
interaction contribution of the response. Panel C demonstrates
a similar behavior of the distributions of the non-interacting
linear response kernel, χ, with respect to intra- and interfrag-
ment contributions. However, there is an extended tail in the
intrafragment distribution about two orders of magnitudes
larger than the interfragment counterpart, which can be
expected to dominate the response contributions. The same is
reflected in the rather rapid relative decay of the matrix
elements with respect to interatomic distances. A similar but
less pronounced effect is visible in the distribution and distance
plot of the overlap matrix elements O. In Figure 5, the
difference of same-fragment ACKS2 matrix elements para-
metrized from the DFT electronic structure of a molecule
embedded in the simulation cell versus the molecule in vacuum
is illustrated. While both f-ACKS2 matrix elements exhibit
broad distributions, they are at least one order of magnitude
smaller than the largest (dominating) values displayed in
Figure 5. Note that the slightly different distributions for the
matrix elements of fragment A and fragment B are a
consequence of the effective overlap of basis functions due
to their relative orientation.

Figure 4. Comparison of interfragment and intrafragment ACKS2
matrix parameters (defined in section 2.1) and their dependence on
the distances between the center of the basis functions for the nearest
neighbor benzene molecular dimer of a single crystal.67
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3.2. Electronic Polarization in Molecular Dimers A-B+.
As a first demonstration, we apply the f-ACKS2 model for the
electronic polarization between two charge-constrained mole-
cules. Illustratively, we consider dimers of fairly small organic
molecules such as benzene (Pbca),67 naphthalene (P21/a),

68

anthracene (P21/a),
69 and tetracene (P1̅),70 where the first

molecule (fragment A) is charge neutral, while the second
molecule (fragment B) carries a charge of +1.0e. The dimer
geometries are extracted from their respective single crystal
structures, taking into account two or three different next-
nearest-neighbor site dimers. With this, we aim for a realistic
test case of the electronic polarization of a molecule by an
electron−hole constrained to another molecule (and vice
versa), as, e.g., encountered during charge transport in organic
semiconductors.
In the first step, we account for fixed-charge distribution

interactions between the fragments and exclude any mutual
polarization response interactions. The approximate fixed-
charged interaction is represented by atom-centered point
charges derived from an electrostatic potential fit of the KS-
DFT ground-state charge distribution, c.f. fixed point charge
potential in eq 6. The respective data are labeled ACKS2(PC)
in Figure 6 and thereafter. The full electronic response
reference data to validate the ACKS2(PC) simulation setup are
obtained from a perturbed KS-DFT calculation of the charge-
constrained molecules. Therein, the approximate intermolec-
ular interaction potential comes in two variants: a full

Coulomb potential due to electron density and nuclear cores
(DFT(FC)) and an atomic point charge approximation of the
latter (DFT(PC)) via electrostatic potential fitting. The former
is based on a fragment-orbital (FO) DFT implementation54 in
the FHI-AIMS code,71 which provides a tool to get a self-
consistent KS-DFT calculation of one molecule in the presence
of the exact Coulomb potential of the self-consistent charge
distribution of another molecule. Further methodological and
numerical details of the DFT validation setup and properties
are given in the Supporting Information. A comparison
between the different DFT models, DFT(PC) and DFT(FC),
allows us to gauge the error made by approximating the full
Coulomb electrostatic interaction potential by point charges.
On the other hand, the difference between DFT(PC) and
ACKS2(PC) is the true test for the accuracy and validity of the
ACKS2 electronic polarization model with respect to the DFT
parent method.
Figure 6 illustrates the polarization energies and induced

dipole moments for each fragment and provides comparison of
the f-ACKS2 response model to the DFT data. Note that the
response of fragment B to the non-charged non-polar fragment
A is very small and hence more prone to small numerical
inaccuracies due to the f-ACKS2 approximations. Assessment
of the polarization of fragment A by the positively charged
molecule B is less subject to numerical issues and hence of
greater significance here. Generally, the trends of the
polarization energy and the dipole moment agree well for
fragment A despite the different levels of interaction potentials
and electronic polarization response representations applied
here. Following the individual trends, we can decompose the
influence of the different levels of electronic response
treatment for these molecular dimer systems. DFT(PC)
introduces a point charge simplification to the full Coulomb
intermolecular interaction potential in DFT(FC). Hence, the
differences between the DFT(FC) and DFT(PC) trends, black
and blue in Figure 6, represent an estimate of the validity of the
first-order multipole analysis fragment interaction representa-
tion of the full Coulomb potential. For the small organic
molecule dimers in Figure 6, the mean unsigned relative errors
for the response, polarization energy and induced dipole
moment, of fragment A by the DFT(PC) model are 19 and
10%. Extension of the multipole expansion series by including
higher angular momentum terms like dipole moments and
quadrupole moments could provide a simple conceptual
approach to improve the interaction potential for even higher
accuracies.72 The ACKS2(PC) model introduces an approx-
imate electronic response representation to the full KS-DFT
polarization DFT(PC), both considering a point charge
intermolecular interaction potential. The trends of the
polarization properties from both methods agree well with a
slight offset due to underestimation by the ACKS2 approach,
yielding relative mean unsigned errors of 24 and 22% for the
polarization energies and induced dipole moments, respec-
tively. Introduction of a larger or more well-trained basis set
provides a pathway to improve the current ACKS2 model.
Considering fragment B, the ACKS2(PC) response matches
the DFT(PC) polarization quite well, while both partly show
significant deviation from DFT(FC). Indeed, condensing the
Coulomb interaction potential into atom-centered point
charge representations is quite inaccurate for large non-polar
molecules and can yield tremendous differences in the local
perturbation potentials.73,74

Figure 5. Comparison of intrafragment f-ACKS2 matrix parameters
calculated from the molecule embedded in a dimer (emb) or isolated
in vacuum (vac) for a benzene molecular dimer.

Figure 6. Electronic response for different approximations within the
f-ACKS2 approach for a set of small molecular dimers (benzene,
naphthalene, anthracene, and tetracene), where each data point
represents a different nearest neighbor geometry extracted from the
molecular single crystal structure.
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So far, we disregarded the mutual interaction between the
response densities on each fragment; however, it can be crucial
in a non-polar system with strong electrostatic fields such as a
(partly) localized charge on a neighboring fragment. Figure 7

illustrates the change of electronic polarization by addition of
the iterative polarization response interaction of scfACKS2 and
its validation reference KS-DFT based on a full Coulomb
perturbation potential. Note, the scf-ACKS2 model includes
different levels of approximations to the electrostatic
intermolecular interaction treatment, a simple point charge
representation for the fixed-charge distribution and an ACKS2
basis set-dependent representation of the mutual polarization
response, c.f. eq 10. The response property trends of scf-
ACKS2 generally exhibit good agreement with the DFT
validation data. Considering that a self-consistent polarization
response induces small changes of the polarization energies for
fragment A and B, leading to further energetic stabilization of
the charge, which is about an order of magnitude smaller
compared to the polarization energy due to the fixed-charge
contribution in f-ACKS2, illustrated earlier in Figure 6. The
induced dipole moment of fragment B also increases notably,
while it remains approximately constant for fragment A.
Fragment A does not undergo significant electronic rearrange-
ments during the iteration process because the response
density on the charged fragment B is very small. In contrast,
the local potential changes drastically for fragment B compared
to the simple fixed-charge contribution by the neutral fragment
A and hence increases its electronic response significantly
compared to that in Figure 6
The f-ACKS2 polarization energy is calculated according to

eq 8b (see main text and the Supporting Information for
details on DFT calculations).
3.3. Electronic Polarization in A+-B− Anthracene

Dimers. We investigate the mutual electronic polarization of
two anthracene molecules in different relative orientations and
distances, where anthracene molecular fragments A and B have
a charge of +1e and −1e, respectively. This is a simple model
for electronic polarization in an adjacent electron−hole pair or
charge transfer exciton. Both anthracene molecules are aligned

with their long axes in the y direction, with the second
anthracene placed next to the first, shifted along the x-, y-, or z-
axis to sample a number of different dimer configurations (cf.
Figure 8). The non-self-consistent f-ACKS2 response to a fixed

point charge intermolecular interaction model is again
validated by DFT(PC) and DFT(FC). The response proper-
ties, induced dipole moment and polarization energy, are
illustrated in Figure 9 for different relative arrangements of the
anthracene molecular dimer.
The simulation models for the electronic polarization show

good agreement across all different relative arrangements of the
anthracene molecular dimer. In Figure 9a, the KS-DFT
electronic polarization by the approximate fixed point charge
interaction potential, DFT(PC), slightly underestimates (over-
estimates) the polarization energy of fragment A (fragment B)
compared to a full Coulomb representation, DFT(FC), while
induced dipole moments exhibit near-perfect coincidence for
both methods. Similar to the previous section, the f-ACKS2
model tends to underestimate the response properties for all
geometries. A more detailed list of the relative deviations, see
Table 1, reveals a trend of increasing relative mean unsigned
error in the ACKS2 model with increasing polarization
perpendicular to the molecular bonding plane of the
anthracene fragments. We expect the latter two effects to be
a consequence of the small ACKS2 basis set representation
employed.53

We include the mutual polarization interactions between the
response of the different fragments to obtain a self-consistent
electronic polarization and illustrate the respective change of
induced dipole moments and polarization energies in Figure
9b. The trend of the scf-ACKS2 response changes matches
those of the DFT reference very well for the parallel motion
along the x-axis, while f-ACKS2, and in consequence the scf-
ACKS2, still struggles to represent the motion along the z-axis
and shearing of the molecular dimer. We expect the latter to be
a consequence of the underestimation of the response to the
fixed-charge interaction in Figure 9a, which accounts for the
mutual polarization interaction contributions.

3.4. Polarization Energy of Electron−Hole Pair in 1D
Chain. Finally, we study the stabilization of a separated
electron−hole pair, located at two different molecular
fragments, by the electronic response of its environment. To

Figure 7. Change of the response by addition of the mutual
polarization response interaction potential, ΔΔEpol. = ΔEscf − ACKS2

pol. −
ΔEf − ACKS2

pol. and ΔΔμ =|Δμscf − ACKS2 − Δμf − ACKS2|, where
ΔEf − ACKS2

pol. is calculated according to eq 8b and ΔEscf − ACKS2
pol. is

calculated according to eq 13. The scf-corrections in fragment-based
ACKS2 approaches are illustrated for a set of small molecular dimers
(benzene, naphthalene, anthracene, and tetracene), where each data
point represents a different nearest neighbor geometry extracted from
the molecular single crystal structure.

Figure 8. Structure and stacking geometry of anthracene molecular
dimers.
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this end, we consider a chain of 50 anthracene molecules with
a stacking pattern as shown in Figure 8, “along z”, and a
stacking distance of 4.0. One molecule of the chain is positively
charged, and another one is negatively charged; all other
molecules are neutral, with the number of neutral molecules
between the two charged molecules denoted by N. Hence, we
consider chains of the type (A)M-(A)

+1-(A)N-(A)
−1-(A)M,

where (A) denotes an anthracene molecule and = − −M N50 2
2

.

The neutral fixed-charge distribution of the chain is again
represented by fixed atomic point charges, fitted to the KS-
DFT-based electrostatic potential of the free molecules. In
order to show screening effects stabilizing the charged

molecules, we place them at different separations along the
chain, starting with a configuration where they are directly
adjacent to each other, in analogy to section 3.3. The total
electronic response of the anthracene molecule chain is
depicted in Figure 10a as a function of N. To focus on the

polarization effect solely due to the electron−hole pair, we
subtract the polarization energy of the chain where all 50
molecules are neutral

ΔΔ = Δ [ − ] − Δ [ ]E E Eelectron hole neutralpol. pol. pol.

(14)

∑
∑

μ μ

μ

Δ|Δ | = Δ| [ − ]|

− Δ| [ ]|

κ

κ

z z

z

( ) ( ) electron hole

( ) neutral

A

A (15)

The total polarization energy as a function of N exhibits a
rather unexpected trend. At first, it strongly decreases with

Figure 9. Illustration of electronic response for different relative
orientations (along the x-axis: star, shearing: circle, along the z-axis:
triangle, displayed in Figure 8) and center-of-mass distances Δcms for
an A+-B− anthracene molecular dimer. ΔEf − ACKS2(PC)

pol. is calculated
according to eq 8b and ΔEf − ACKS2(PC)

pol. according to eq 13.

Table 1. Summary of the Relative Mean Unsigned Errors for the Electronic Polarization Properties of the A+-B− Anthracene
Dimers Displayed in Figure 9aa

rmue [%] ΔμDFT(PC) ΔEDFT(PC)
pol. Δμf − ACKS2(PC) ΔEf − ACKS2(PC)

pol.

along the x-axis fragment A 0 32 13 19
fragment B 0 24 19 33

shearing fragment A 0 14 17 20
fragment B 1 24 29 27

along the z-axis fragment A 1 16 22 24
fragment B 2 50 35 34

aCalculated following = ∑ −rmue 1
N i

N x

xDFT(PC)
1 i

i

DFT(PC)

DFT(FC) and = ∑ −rmue 1 .
N i

N x

xACKS2(PC)
1 i

i

ACKS2(PC)

DFT(PC)

Figure 10. Illustration of the electronic polarization of a linear chain
of anthracene molecules containing an electron−hole pair as a
function of the number of separating molecules.
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increasing N, goes through an energy minimum at N = 3, and
then increases to reach a plateau at about N = 12−15. We
explain this observation by two opposing trends. At an initially
large distance, both the positively and negatively charged
molecules lead to polarization of neutral molecules only, as
displayed in Figure 10b for N = 15, and effectively act like
independent charge carriers in a large one-dimensional chain of
non-charged anthracene molecules. Once the electron−hole
pair separation decreases, here at N = 12−15, the charge
carriers start to polarize each other, while at the same time the
polarizability of a negatively (positively) charged anthracene is
greater (lesser) than a neutral molecule. In the present one-
dimensional chain, the gain in polarization by the electron
carrier outperforms loss in polarization by the hole carrier and
yields a net growth in polarization energy with decreasing N.
On the other hand, several neutral molecules in the chain are
exposed to the presence of two charge carriers for small
separations of the electron−hole pair. Thereby, the dielectric
response of the N intermediate neutral molecules is bumped
up linearly due to a simple amplifying superposition of
opposite point charge interaction potentials. However, the
anthracene molecules outside the electron−hole pair perceive
the presence of the latter as a finite dipole moment, similar to
an ideal point dipole, which exhibits stronger locality than an
ideal point charge. As N decreases, the dipole perturbation
potential contribution increases, and polarization energy
decreases, which starts to dominate eventually at N = 3 in
the one-dimensional chain here. On the contrary, we find that
the absolute value of the induced dipole moment steadily
grows with increasing electron−hole separation. This effect
levels off until it reaches a plateau at N = 15−20. For large N,
the polarization energy approaches the polarization energy of
two non-interacting charges (dashed line), as it should. The
induced dipole moments per anthracene molecule display a
larger effective range dependency, c.f. N = 15 plot in Figure
10b. Hence, the point-dipole-like contributions to the
intermolecular perturbation potential dominate the trend of
the total dipole moment and overshadow any polarizability
effects of the charged anthracene molecules. Figure 10b thus
explains the mismatching trends of the polarization energy (dip
at N = 3) and the induced dipole moment (no dip) observed
in Figure 10a.
Overall, only a few molecules adjacent to the electron or

hole carriers significantly contribute to the ΔΔEpol. and
Δ|Δμ(z)|. This observed locality of the response in even a
low dielectric system such as the here treated organic
semiconductor chain opens up the f-ACKS2 method for use
in efficient force field calculations based, e.g., on neighbor lists.
Figure 10a further illustrates the impact of polarization

response self-consistency introduced in the scf-ACKS2
approach. As expected, the energetic stabilization and induced
dipole moments increase compared to the non-self-consistent
treatment. Despite a rather small difference, the non-iterative f-
ACKS2 approach predicts the largest polarization stabilization
for a spacing of two molecules, while the scf-ACKS2 yields
three spacing fragments.
Finally, in order to gauge the importance of f-ACKS2/scf-

ACKS2 polarization compared to the total electrostatic energy,
we also need to account for the interaction between the two
charge carriers themselves, not currently included in our
approach. Instead, we compute them with a simple Coulomb
model based on our point charge representation of the
electrostatic potential. A more detailed description of this

approximation can be found in the Supporting Information.
The total electrostatic energy of the molecular chain calculated
using this model is depicted in Figure 11. While the total

electrostatic interaction energy in this system is dominated by
the contributions of the (unpolarized) fixed-charge contribu-
tion, the electronic polarization energy as obtained by ACKS2
calculations yields a notable energetic stabilization, particularly
at medium to large electron−hole separations. On the other
hand, the mutual polarization response as described by our scf-
ACKS2 scheme is almost negligible on the energy scales in
section 3.4 and may therefore be regarded as a high-accuracy
option for specific simulation targets.

4. CONCLUSIONS
In summary, here, we have introduced a novel fragment-based
approach to ACKS2 that allows us to calculate the electron
density response, electronic polarization energy, and induced
dipole moments of molecules in condensed phase molecular
systems. We presented a detailed discussion of the
fundamental approximations within the f-ACKS2 approach,
with particular focus on the applied perturbation treatment,
based on fixed-charge distribution interactions. These can
optionally be augmented by a self-consistent mutual polar-
ization response contribution. Validation of the electronic
polarization contribution from f-ACKS2 and scf-ACKS2 shows
reasonable accuracy compared to full KS-DFT for different
singly charged organic molecular dimers as well as various
relative orientations of an electron−hole dimer. An already
simple point charge representation of the intermolecular
perturbation potential was shown to account for the majority
of the molecular polarization. A more accurate representation
improved the f-ACKS2 electronic response. Additionally,
future development of more flexible response basis sets beyond
the simple s-p Gaussian basis used here should further improve
the accuracy of the ACKS2 method compared to the parent-
DFT method.
Finally, a 1D chain of anthracene molecules showcased the

ability of the f-ACKS2 and scf-ACKS2 approaches to include
first-principles-based electronic polarization in large molecular
systems at a negligible cost compared to explicit electronic
structure calculations. The present work is an important step
toward force field development with ACKS2-based electronic
polarization.

5. METHODS
Throughout this study, DFT reference calculations as well as
the KS electronic structure-dependent ACKS2 parameter
evaluations were carried out with the FHI-aims full potential

Figure 11. Illustration of the total electrostatic interaction energy of a
one-dimensional chain of anthracene molecules based on a simple
fixed-charge interaction model (fc) and f-ACKS2/scf-ACKS2
electronic polarization.
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all electron DFT simulation package.71 We applied the PBE
generalized gradient approximated density functional, and
electron spin was treated explicitly. Integrations were
conducted using “tight” integration grids with wave functions
expanded in a tier 2 numeric atomic orbital basis to ensure the
numerical convergence of our results.
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