
Deep reinforcement learning

for dexterous hand manipulation

handed in
MASTER’S THESIS

cand. M.Sc. Jedrzej Orbik

born on the 16.07.1992
living in:

Helene-Mayer-Ring 7
80809 Munich

Tel.: 017665268490

Human-centered Assistive Robotics
Technical University of Munich

Prof. Dr.-Ing. Dongheui Lee

Supervisor: Dr. Alejandro Agostini, M.Sc. Shile Li
Start: 03.07.2019
Intermediate Report: 16.06.2020
Delivery: 21.07.2020

TECHNISCHE UNIVERSITÄT MÜNCHEN

Human-centered Assistive Robotics

UNIV.-PROF. DR.-ING. DONGHEUI LEE

July 15, 2020

M A S T E R ’ S T H E S I S
for

Jedrzej Orbik
Student ID 03689272, Degree EI

Deep reinforcement learning for dexterous hand manipulation

Problem description:

Multi-fingered hands are very flexible and capable of performing a variety of tasks on objects of diverse
shapes and sizes. However, achieving a human-like dexterity for a prosthetic hand is a big challenge
due to its highly complex mechanisms. To address this challenge, state-of-the-art deep reinforcement
learning methods are implemented [1]. These methods require human demonstrations of high quality
and complex hand-crafted reward functions to achieve the desired robustness. In this thesis, we tackle
these limitations by relaxing the necessity of high quality demonstrations [2] and by automatically
defining reward functions for each specific task using human demonstrations and inverse reinforcement
learning [3].

Tasks:

• Literature overview of learning from demonstrations and inverse reinforcement learning.
• Implementation of learning with behaviour cloning based on hand pose estimation [4].
• Implementation of an inverse reinforcement learning approach for dexterous hand manipulation [3].
• Assessment of the stability and transferability of the approaches for di↵erent tasks and scenarios.

Bibliography:

[1] A. Rajeswaran et al. Learning Complex Dexterous Manipulation with Deep Reinforcement Learning
and Demonstrations, in ArXiv170910087 Cs, Sep. 2017.

[2] K. Lowrey, S. Kolev, J. Dao, A. Rajeswaran, and E. Todorov. Reinforcement learning for non-
prehensile manipulation: Transfer from simulation to physical system, in ArXiv180310371 Cs,
Mar. 2018.

[3] J. Fu, K. Luo, and S. Levine. Learning Robust Rewards with Adversarial Inverse Reinforcement
Learning, in ArXiv1710.11248 Cs, Oct. 2017.

[4] Li, Shile, and Dongheui Lee. Point-to-Pose Voting based Hand Pose Estimation using Residual
Permutation Equivariant Layer, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019.

Supervisor: Dr. Alejandro Agostini, MSc. Shile Li
Start: 03.07.2019
Intermediate Report: 16.06.2020
Delivery: 21.07.2020

(D. Lee)
Univ.-Professor

Abstract

Dexterous multi-fingered robotic hands are important for embedding the robots in
human-centric environment designed for human-like hands. Such general-purpose
end-e↵ectors are able to perform variety of tasks, what makes them an appealing
subject for research. Unfortunately, the added dexterity does not come without
cost. Dexterous hand manipulation is a challenging task, because of rich contact
patterns and high-dimensional action and state spaces, which result in di�cult ex-
ploration problem. Current state-of-the-art deep reinforcement learning method for
dexterous hand manipulation [RKG+17] is able to deal with various dexterous hand
manipulation tasks using the expert demonstrations, but its application is hindered
by the necessity to meticulously handcraft the reward function.
One of the possibilities to mitigate this limitation is the use of inverse reinforcement
learning (IRL) framework, which hold the promise of inference of the reward function
directly from the expert demonstrations. The current methods however, has proven
ine�cient in the high-dimensional problems. The reason behind this is the lack of
robustness of the reward function to unseen inputs and this problem is especially
severe in complex, high-dimensional settings. Such inferred reward functions can
be exploited during policy learning, in the very same way as the human-defined
rewards, resulting in the behaviour di↵erent from the expected one.
In order to deal with this shortcoming we extend the state-of-the-art inverse rein-
forcement learning (IRL) [FLL17] and propose to employ the sample augmentation,
reward function normalisation and masking of the state space. These extensions
are evaluated with respect to state-of-the-art IRL [FLL17] and direct reinforcement
learning [RKG+17] in object relocation tasks. We demonstrate that using our meth-
ods, and especially the masking of the state space, we obtain robust rewards, which
provide better signal for policy learning. It allows e�cient learning of complex dex-
terous hand manipulation tasks directly from human demonstrations without man-
ual reward function engineering. Importantly, we are able to transfer the method
to new tasks: in-hand object manipulation and tool usage without any additional
task-specific engineering.

2

CONTENTS 3

Contents

1 Introduction 7
1.1 Motivation . 7

1.1.1 Dexterous manipulation . 7
1.1.2 Task statement . 8

1.2 Related Work . 8
1.3 Contribution . 10

2 Basic elements 13
2.1 Reinforcement Learning . 13
2.2 Dexterous hand manipulation task 14

2.2.1 State space . 15
2.2.2 Action space . 16

2.3 Expert demonstrations . 16

3 Methodology 19
3.1 Deep Reinforcement Learning . 19
3.2 Inverse reinforcement learning . 20

3.2.1 State-of-the-art inverse reinforcement learning methods 21
3.2.2 Max-ent formulation of inverse reinforcement learning 23

3.3 Optimisation of demonstrations with PSO 24

4 Dexterous hand manipulation without reward engineering 27
4.1 Reward normalisation . 27
4.2 Sample augmentation . 28
4.3 Exploration enhancement . 29
4.4 Masking of the state space . 30

5 Evaluation 33
5.1 Particle swarm optimisation evaluation 34
5.2 State-of-the-art IRL algorithms . 35
5.3 Reward normalisation . 36
5.4 Sample augmentation . 37
5.5 Masking of the state space . 37
5.6 Transferability of the method . 38

4 CONTENTS

5.7 Robustness of the reward function . 40

6 Discussion 43
6.1 Robustness of the learned reward function 43
6.2 Combination of proposed IRL methods 43

7 Conclusion 45
7.1 Conclusion . 45
7.2 Future work . 45

A Implementation details 47
A.1 Physics engine and simulation environments 47
A.2 Learning algorithm hyperparameters 47
A.3 Particle swarm optimisation hyperparameters 48

List of Figures 49

Bibliography 53

CONTENTS 5

Summary of notation

Matrices are denoted with bold capital letters, vectors are bold lower case letters.

t discrete time step
T final time step in episode
st state at time step t
at action at time step t
⌧ trajectory - sequence of state and actions (s0, a0, s1, ..., aT�1, sT)

⇡(at|st) policy - probability of taking action at at state st

r(st, at) immediate reward for taking action at at state st

p(st+1|st, at) transition dynamics

V (st) state value function (value function)
Q(st, at) state-action value function (Q function)

✓ policy parameters
 reward parameters
⇡✓ policy corresponding to parameters ✓
r reward function corresponding to parameters

H(⇡✓) di↵erential entropy of policy ⇡✓ - measure of randomness
of taking di↵erent actions at under the policy ⇡✓

6 CONTENTS

7

Chapter 1

Introduction

1.1 Motivation

The majority of the robots used today include only simple end-e↵ectors with 1 degree
of freedom. This configuration is su�cient for many repetitive industrial tasks such
as painting, camera operation or welding, but is constrained to the specific task to
which it was designed [MLS17].
On the other hand the manipulation with dexterous end-e↵ector similar to human
hand relaxes this constraint and allows the application of robot in the variety of
complex tasks. This flexibility of dexterous hand is especially important if we aim
to blend the robots into human-centric environment created with ergonomics in
mind.
Besides, dexterous hand manipulators matter in endeavours to create the robots re-
sembling humans. Such humanoid robots may play a social role next to their human
partners as assistive robots e.g. as a teaching aid or in hospitals for rehabilitation
services and healthcare. In such scenarios their similarity to humans would facil-
itate engaging interaction, which is important for education or caregiving [BS99].
These interactions require robot coherency also with respect to end-e↵ectors. They
should match the user expectation with respect to appearance and their capabili-
ties. It makes dexterous hand manipulators indispensable for further advancement
in human-robot interaction.

1.1.1 Dexterous manipulation

Manipulation is one of the main research areas of robotics. It depends on robotic
perception, which should provide su�cient sensory information for the task execu-
tion, and the robot’s mobility if desired [DBP+16]. The end-e↵ectors with many
degrees of freedom which are able to perform the variety of di↵erent grasps can be
classified as dexterous manipulators.
Human hands are example of such versatile manipulator. They allow the execution
of daily life tasks, such as object relocation, tool usage, writing, painting. It makes

8 CHAPTER 1. INTRODUCTION

the human-like robotic hand a natural choice when looking for and example for a
versatile dexterous manipulator.

Dexterous manipulation does not come without a cost. It is a very demanding task,
that limits its robotics use. The current state-of-the-art (SoA) learning algorithms,
such as deep reinforcement learning (DRL), which holds promise of autonomous
learning with minimal human supervision, still struggle in the environments of high
dimensionality of state and action spaces and require many samples which may not
be feasible to collect from the real hardware. Such examples can be collected from
the simulated robotic hand, but transfer of such learned policies to real world require
a substantial amount of additional engineering work [OAB+18].

This master’s thesis focuses on learning dexterous manipulation in the simulator
without consideration of the later transfer of learned policies to hardware.

One of the approaches to significantly lower the required amount of samples in vari-
ous learning algorithms are the expert demonstrations [KP09, NMA+18, HVP+17].
They provide a valuable prior for learning the required task even in complex envi-
ronments [RKG+17].

Commonly used methods such as kinaesthetic teaching cannot be used for com-
plex manipulators, such as the ones used for dexterous manipulation. Suitable
demonstrations can be obtained either with professional motion capture systems
designed to this end [KT15] or in simpler, imperfect setups with the hand pose es-
timation (HPE) algorithms coped with motion targeting method [LL18, AGK18].
Such demonstrations can be directly performed in the simulator or on a real hard-
ware to acquire the required expert samples.

The overview of our framework for learning from demonstrations is presented in
Figure 1.1. We use the single depth camera with a deep learning model [LL18] to
estimate the human hand pose. Estimations are used as the input to inverse kine-
matics to retarget the motion in the simulation environment. These trajectory are
adjusted on-line with particle swarm optimisation (PSO) in a task-specific manner
to facilitate the task execution and capture successful demonstrations. Then the
samples of the demonstrations are provided for the inverse reinforcement learning
to learn a policy ⇡✓. In the end, the policy is used for the control in unseen task
configurations.

1.1.2 Task statement

In this master’s thesis we want to achieve the capabilities to relocate the objects with
the dexterous robotic hand without necessity to specify reward function. The learn-
ing process is going to be performed using OpenAI Gym environments [BCP+16]
with MuJoCo physics engine [TET12].

1.2. RELATED WORK 9

Figure 1.1: Overview of the framework. The inferred hand pose with hand pose
estimation algorithm (HPE) is used to perform retargeted motion in the simulator.
It is done with the aid of particle swarm optimisation (PSO), which improves the
quality of the demonstrations. The recorded demonstrations are used as a prior for
learning with deep reinforcement learning approach (DRL) and inverse reinforcement
learning (IRL).

1.2 Related Work

Reinforcement learning (RL) application for dexterous manipulation has been a
subject to a variety of work. Demo Augmented Policy Gradients (DAPG) approach
by Rajeswaran et al. [RKG+17] can be seen as the state of the art for learning
dexterous hand manipulation and is used in this work as a baseline. It is a policy
gradient, model-free deep reinforcement learning approach, which uses the human
demonstrations to cope with the exploration di�culties in high-dimensional state
and action space. Learning is performed in the MuJoCo simulator [TET12] without
transfer to real hardware.
In the paper by Open AI [OAB+18] the same simulator is used for learning the object
manipulation with Proximal Policy Optimization (PPO) algorithm and extensive
work has been devoted to allow zero-shot transfer to real world using the domain
randomisation. This approach has been extended in their later work [OAA+19]
where the automatic domain randomisation has been introduced.
Earlier work by Popov et al. [PHL+] has introduced an extension to Deep Determin-
istic Policy Gradient algorithm to learn the dexterous manipulation from multiple
simple dexterous hands performing the task in parallel and thus improving the learn-
ing speed.
Other works have focused on learning directly on the robot. Kumar et al. [KGTL16]

10 CHAPTER 1. INTRODUCTION

trained set of policies in data-driven way and uses nearest neighbour method for the
policy selection during evaluation. The work by Falco et al. [FASL18] uses the
combination of reactive control, based on the tactile sensor and RL with vision
input to learn dexterous hand manipulation.

Learning from demonstrations for soft dexterous robotic hand has been achieved by
Gupta et al. [GELA17] by the selection of the most suitable demonstration for the
guided policy search based learning.

A model-based RL approach for learning on the robot has been presented in work
by Nagabandi et al. [NKLK19]. It is an o↵-policy method, which uses an ensemble
of models for model fitting. They have trained a model which could be used for
planning of variety of tasks, di↵erent from the task it was originally trained on -
model could be used to learn the control for writing with pencil or rotating the valve
after training on manipulate of Baoding balls in hand.

Learning directly from complex low-cost end-e↵ector [AZH+19] and Allegro robotic
hand has been achieved with a model of low complexity as proposed by Rajeswaran
et al. [RLTK17]. In their work, diverse representations of policy were evaluated
in the task of valve manipulation. After learning simple linear policy and what
was called radial basis function policy the actor was able to achieve state-of-the-art
learning performance with considerably simpler model than neural network function
approximator. It allowed learning of the policy under 10 hours directly in real world
and avoided the di�cult transfer of the learned policy from a simulator.

State-of-the-art inverse reinforcement learning (IRL) in generative adversarial net-
works (GAN) setting [GPM+] has been proposed by Finn et al. [FCAL16] in
trajectory-centric approach. An extension to their work was adversarial inverse
reinforcement learning (AIRL) by Fu et al. [FLL17], a method with specific form of
discriminator, which disentangles the reward function from the task dynamics. Ho
et al. [HE16] have suggested to directly use binary classifier as the discriminator for
the imitation learning algorithm. This form does not have explicit reward function
representation, so it does not give any insight into the task, but the approach can
be used to learn the policy from the demonstrations.

While the previous state-of-the-art work on Deep Reinforcement Learning (DRL)
application for dexterous hand manipulation [RKG+17] allows the e�cient learning,
the application of the method is limited by the necessity to engineer the reward
function for each of the tasks separately. Moreover, the incorrect reward function
specification may easily lead to the unexpected behaviour [CA16]. In extreme cases
the manipulation of the environment by the actor may even result in highly unde-
sirable reward tampering [EH19]. This danger of reward misspecification is avoided
when using IRL in GAN setup, because at convergence the policy matches the fea-
tures from the expert demonstration, what constrains the possible actions taken in
the environment [AN04].

1.3. CONTRIBUTION 11

1.3 Contribution

The work by Rajeswaran et. al [RKG+17] is a state-of-the-art method for learn-
ing dexterous hand manipulation. In this original work the reinforcement learning
learns a policy for a specific task from the expert demonstrations and provided re-
ward function. Our method is an extension for inverse reinforcement learning (IRL)
to cope e�ciently with the high-dimensional tasks of dexterous hand manipulation.

Transferability - we overcome the limitation that baseline method, which requires
the specification of the reward function for each task. Our method is able to learn
challenging dexterous hand manipulation solely from the demonstrations.

Learning e�ciency - proposed novel inverse reinforcement learning methods for
dexterous hand manipulation achieve high success rate with fewer samples than cur-
rent state-of-the-art inverse reinforcement learning.

Evaluation of robustness of the reward function - the quality of the reward
function is evaluated qualitatively and quantitatively to indicate the di↵erence be-
tween our method and the vanilla inverse reinforcement learning.

Our method is compared to the baseline performance and SoA [FLL17] in the fol-
lowing setups:

• Learning the object relocation, the main task considered in this work, from 25
expert demonstrations provided by Rajeswaran et al. [RKG+17]

• Transfer of the method to new tasks to assess the versatility of the learning
method in various dexterous hand manipulation tasks without reward function
engineering

We are able to e�ciently learn in multiple dexterous hand manipulation tasks with-
out manual reward function specification. Our method outperforms the state-of-
the-art AIRL method [FLL17] in terms of achieved success rate of policy in the new
tasks and produces more robust reward functions.

12 CHAPTER 1. INTRODUCTION

13

Chapter 2

Basic elements

2.1 Reinforcement Learning

Reinforcement learning is the problem formulation for the sequential decision-making.
It is often formulated as a Markov Decision Process, where the actor is expected to
learn from the interactions with the environment. At each step of the interaction
the agent receives the reward for the action at taken in the state st (Figure 2.1).

Figure 2.1: Agent interacts with the environment in the Markov Decision Process
[SB18].

Over time, a well-specified reinforcement learning algorithm explores the environ-
ment during training by visiting the environment states, taking di↵erent actions and
improving its policy by learning to take actions that lead to maximisation of returns
in the long term.

The Markov Decision Process (MDP) problem to be solved by reinforcement learning
is defined as [SB18]:

• S - set of states st

• A(st) - set of possible actions at in state st

• R - set of all possible rewards 2 R

• p(st+1|st, at) - transition dynamics

14 CHAPTER 2. BASIC ELEMENTS

• ⇡(st, at) - policy, decision-making rule

where it is customary to assume, that the reward function r(st, at) 2 R is given.

We define the optimisation problem as finding the optimal policy ⇡⇤ which maximises
the expectation of the reward r over all time steps t:

max
TX

t=1

E⌧⇠p✓(⌧) [r(st, at)] (2.1)

under the probability distribution of the sequences:

p✓(s1, a1, ..., sT , aT) = p(s1)
TY

t=1

⇡✓(at|st)p(st+1|st, at) (2.2)

where we define sequence ⌧ as trajectory s1, a1, ..., sT , aT .
The policy defines the control by means of the learned parameters ✓ and is repre-
sented as the conditional probability distribution ⇡✓(at|st) of actions a given state
s.
The objective is to find the optimal parameters ✓ which will maximise the sum over
expectations of the rewards:

✓⇤ = argmax
✓

TX

t=1

E⌧⇠p✓(⌧)[r(st, at)] (2.3)

2.2 Dexterous hand manipulation task

This master’s thesis considers the task of the object relocation using the robotic
dexterous hand depicted in Figure 2.2. In each episode the initial position of the
object and the target are randomised.

Figure 2.2: The goal of the task is to relocate the blue ball from the initial position
to the target position marked as the green sphere.

2.2. DEXTEROUS HAND MANIPULATION TASK 15

2.2.1 State space

Since the learning is performed in the simulation environment there is unrestricted
access to the information about the current state of the task execution and thus
we are working in fully-observed environment. This allows the use of the Markov
property, because we can correctly assume that the current state is independent
of the previous state of the environment. Taking into consideration previous state
cannot give us more information than we get from the current state. This makes
the samples i.i.d. what is an important assumption made in many reinforcement
learning or machine learning algorithms.
We are working in the episodic task setting, since each execution is limited by the
given maximal number of steps. Each execution finishes either in success or failure
of the task.
At each time step the complete information about the simulated environment is
available: joint position, forces in joints, readings from artificial touch sensors etc.
In the original work by Rajeswaran et al. [RKG+17] the observation consists of:

• position and orientation of hand base (6 dimensions)

• hand joint angles (24 dimensions)

• ���!
pOpH (3 dimensions)

• ���!
pTpO (3 dimensions)

• ���!
pTpH (3 dimensions)

giving total state space dimension of 39, where:

• pH is position below the middle of hand’s palm where, if the object is placed,
we expect the grasping to be secure

• pO is position of object

• pT is position of target location

all positions are given in world cartesian coordinate system.
While this does not contradict with the previous findings that the use of neural
network function approximators allows the use of raw observations without feature
engineering in end-to-end manner [MKS+15, HGEJ17] this result shows that proper
feature engineering will significantly reduce sample complexity for this policy gradi-
ent method.

16 CHAPTER 2. BASIC ELEMENTS

Figure 2.3: Depiction of the used
model of Shadow Robot Dexterous
Hand with defined dimensions [Sha].

Figure 2.4: Kinematics of the robotic
hand model. This figure presents 24 ro-
tational joints of the hand [Sha].

2.2.2 Action space

The action space has dimension of 30: 24 dimensions belongs to the hand’s rotational
joints, 3 to the rotation and 3 to translation of the base robotic hand as depicted
in Figure 2.3, 2.4. The input can be either the position, velocity or torque/force
control.
In robotics however it is a common practice to use the position control for the
dexterous hand manipulation [OAB+18, OAA+19]. Based on these previous works
and the results of performed evaluation with particle swarm optimisation in Section
3.3 it became apparent that it is the optimal control input.

2.3 Expert demonstrations

The demonstrations are carried out in the setup illustrated in Figure 2.5. We exe-
cute the task of grasping the ball in simulation environment and relocate it to the
given target position, as described in Section 2.2. When performing the demonstra-
tion the readings from a single depth camera are fed to the deep learning regression
model to infer the hand joints positions in the cartesian coordinate system. The
direct interpretation of the target joints angles is not possible due to kinematics
discrepancies of the human and robotic hand. So firstly, we perform the proper
scaling of the inferred Cartesian joints positions. Then the target position of the

2.3. EXPERT DEMONSTRATIONS 17

Figure 2.5: The scheme of the our demonstration acquisition architecture. The
readings from the camera are fed to the deep neural network for pose estimation
and the outputs are introduced to the closed loop inverse kinematics. Visualisation
of grasping presented here is in V-REP simulation environment [RSF13] used in
previous work.

hand base is determined by the least-squares estimation of transformation parame-
ters between point patterns of the knuckles and the wrist of the human and robotic
hand. These positions are used to find the target joint angles using the implemented
inverse kinematics. The result is an input, which are fed directly to the controller
in compliance with the action space described in Section 2.2.2.
The demonstrations are imperfect because of the lack of the haptic feedback dur-
ing the execution of the task, errors in hand pose estimation from the hand self-
occlusions and delay of the system. Because of lack of haptic feedback during the
demonstrations the hand is closed on the object without guarantee the object is
firmly grasped, what implies the low success rate of the demonstrations. This does
not allow us to make the assumption that the policy of the expert is optimal. The
solution of the IRL with the notion of suboptimality proposed in the work by Ziebart
et al. [ZBD08] introduced in Section 3.2.2 has to be followed.

18 CHAPTER 2. BASIC ELEMENTS

19

Chapter 3

Methodology

In this chapter we describe the theoretical tools from state of the art, which are em-
ployed in the contributions presented in the following Chapter 4. Here we present
deep reinforcement learning, inverse reinforcement learning together with its short-
comings and particle swarm optimisation used for the acquisition of the successful
demonstrations of dexterous hand manipulation.

3.1 Deep Reinforcement Learning

Deep reinforcement learning is a fairly new machine learning method which has
proven to be successful in the variety of di↵erent tasks [MKS+13, MKS+15, SHM+16,
VBC+19b]. It extends the reinforcement learning introduced in Section 2.1 using
artificial deep neural networks to learn from rich inputs. Specifically, the neural
network models approximate the elements of the reinforcement learning: it approx-
imates the dynamics of the environments p(st+1|st, at) in case of model based RL or
the actor policy ⇡(at|st) for model-free RL.

Deep reinforcement learning is able to learn from any input any required output
if we apply big enough model. It has been shown in previous contributions when
mastering di↵erent challenges: board game go [SSS+17], Real-Time Strategy Star-
craft 2 [VBC+19a], solving Rubik’s cube with a robot hand [OAA+19]. All these
algorithms has been solved using one general algorithm.

The adaptability of this algorithm resembles the flexibility of the human’s brain and
thus can be seen as a sole solution to creating general artificial intelligence following
the example of the brain. In the di↵erent works it has been shown, that the auditory
cortex is able to learn the visual functions [RPKS92] or the vision is possible with
the nerves from tongue [NPAF15] similarly as the RL algorithms are able to learn
di↵erent functions from diverse inputs. This flexibility of reinforcement learning
suggests that it may be the general solution for many challenging decision-making
problems, including robotics.

20 CHAPTER 3. METHODOLOGY

3.2 Inverse reinforcement learning

Reinforcement learning is a powerful general framework for learning control from
experience, but its applicability is often hindered by the requirement of the onerous
engineering of the reward function and features [CLB+17].
As described in Section 2.1 the reward function r(st, at) is usually assumed to be
given. In reality the reward has to be handcrafted to achieve the desired behaviour
of the learned policy ⇡. This presents various di�culties and pitfalls.
Reward function specification may be impractical in some setups. Consider the
specification of reinforcement learning reward for autonomous driving car or for
carrying out a dialogue with a human. There is no viable way of defining it in a
concise form.
The misspecified reward function may lead to undesired behaviours, so that even
though the learned behaviour will be optimal with respect to the returned rewards,
it will not comply with the user’s expectations leading to actual AI safety problems
[CA16, AOS+16]. In some cases the manipulation of the environment by the actor
may lead to highly undesirable reward tampering [EH19].

Inverse reinforcement learning [AN04] (also called Inverse Optimal Control or Ap-
prenticeship Learning) holds the promise of inferring the reward function r(st, at)
from the expert demonstrations given as the samples of the optimal or near opti-
mal policy ⇡E (expert policy). This aims to avoid the manual engineering of the
reward function by inferring it from the provided samples of the expert policy -
demonstrations.
Inverse reinforcement learning can be seen as a form of imitation learning, but by
definition IRL lends us a way to find a reward function based on the samples from
the expert. As the result the agent may outperform the expert when using the
learned reward function [BGN19] or the reward function itself may grant informa-
tion about the characteristics of the task, what may be of interest to us. In this
way this approach is more appealing than the standard behaviour cloning method
[SHKM92, Pom89].

The early research of apprenticeship learning has lead to the specification of the
objective in a form, which was aiming to maximise the feature expectations with
respect to the expert demonstrations consisting of the sampled states st from the
expert trajectories [AN04]:

µ(⇡) = E
" 1X

t=0

�
t
�(st)|⇡

#
2 Rk (3.1)

where � defines the features of state st. By solving the maximum likelihood problem
kµ(⇡̃✓)� ⇡E}k2 we find the policy ⇡✓ which is close to the expert’s policy on the
unknown reward function r(st, at).

3.2. INVERSE REINFORCEMENT LEARNING 21

This method allows finding the policy ⇡✓ for which the feature expectations will
match those from the expert trajectories, but there are many possible policies, which
satisfy the optimisation objective matching the feature expectations. This problem
has been addressed in the inverse reinforcement learning framework presented in
Section 3.2.2 and used in the following state-of-the-art works.

3.2.1 State-of-the-art inverse reinforcement learning meth-
ods

State-of-the-art inverse reinforcement learning is implemented in the form of gen-
erative adversarial networks [GPM+] as depicted in Figure 5.3. It consists of two
models: generator G and discriminator D competing against each other. The dis-
criminator’s aim is to distinguish between the samples from the target distribution
(positives) and the samples from generator (negatives). The generator tries to max-
imise the probability that the discriminator will make a mistake.

Figure 3.1: The inverse reinforcement learning general scheme [Fin].

Current state-of-the-art reinforcement learning methods learning from demonstra-
tions:

GCL - Guided Cost Learning [FLA16] is the formulation of the inverse reinforcement
learning, which contrary to two next methods works on trajectory level (r(⌧)) instead
of state-action pairs (r(s, a)). The reward function is found as the optimiser with
respect to the loss function:

LGCL() =
1

N

X

⌧i2Ddemo

c (⌧i) + log
1

M

X

⌧j2Dsamp

zj exp(�c (⌧j)), (3.2)

where c (⌧) = �r (⌧) and z is the importance weight. It leads to alternating
updates of the policy and the cost function, a form which resembles generative ad-

22 CHAPTER 3. METHODOLOGY

versarial networks. This perspective is presented on Figure 3.1. The calculation
of importance weights z is necessary, because the samples from distribution Dsamp

ought to be the samples induced by the parameters , what would require training
of the policy until convergence, what is unfeasible. Because we are sampling from a
di↵erent distribution the importance sampling and the weights z have been incor-
porated.

GAIL - Generative Adversarial Imitation Learning [HE16] is not a IRL method,
because it does not have explicit representation of the reward function to train the
policy. Instead, it uses binary classifier as in typical GAN setting and seeks to find
the saddle point of the expression:

E⇡✓
[log(D (s, a))] + E⇡E [log(1�D (s, a)]� �H(⇡✓), (3.3)

which is the optimal cross-entropy loss for classification of the samples between the
⇡E - expert policy and ⇡✓ - sampling policy. This term is regularised by the entropy
term H(⇡✓), following the max-ent reinforcement learning formulation [ZBD08].
D (s, a) is the output of the discriminator given state and action pair, is the inferred
probability that sample is coming from the expert policy distribution. Training
results in the policy which in optimum matches the expert without specifying the
reward function in the process explicitly.
This method achieves similar goal as the IRL - learning without the specification of
the reward function. It is one of the major, state-of-the-art method for imitation
learning with RL and hence it was reasonable to compare its performance to inverse
reinforcement learning approaches for the reference.

AIRL - Adversarial Inverse Reinforcement Learning [FLL17] aims to find a reward
function, which will be robust to the changes of the environment by disentangling
the reward from the transition dynamics. It is an inverse reinforcement learning
method work in the framework of GAN, similarly as GCL [FLA16], but in sample-
centric notion. In this method has been shown, that the e↵ect of the environment
dynamics can be minimised formulating the discriminator D as:

D ,�(st, at, st+1) =
exp(f ,�(st, at, st+1))

exp(f ,�(st, at, st+1)) + ⇡✓(a|s)
, (3.4)

where learned function f ,�(st, at, st+1) is restricted to reward approximator g and
a shaping term h�:

f ,�(st, at, st+1) = g (st, at) + �h�(st+1)� h�(st) (3.5)

and term h� happens to be the value function V (st). The justification for this result
is provided in the reference [FLL17].
Instead of using state and action for the input to the reward function it is possible
to parametrise g (st) only as a function of state. It allows the disentanglement

3.2. INVERSE REINFORCEMENT LEARNING 23

from the environment dynamics and vastly lowers the input space making it more
applicable also in practice.
All three methods have been evaluated in Section 5.2.

While these IRL methods attempt to reason the reward function directly from the
demonstrations, they are subject to the same exploitation as the human-defined
reward functions. The more careful work has to be done to mitigate this problem.

3.2.2 Max-ent formulation of inverse reinforcement learning

The maximum entropy (max-ent) formulation of inverse reinforcement learning re-
solves the ambiguity of the reward function specification given the expert demon-
strations.
In the framework proposed by Ziebart et al. [ZBD08] the probability p(⌧ |), which
allows the notion of suboptimality of the expert, defined as:

p(⌧ |) = exp(r (⌧))
1

Z()
/ exp(r (⌧)), (3.6)

with Z() as the normalising partition function, is the probability of taking the
trajectory ⌧ under the linear reward function:

r (st) =
T
�(st), r (⌧) =

X

t

 T
�(st), (3.7)

where � defines the features of state st.
Similarly as before, we solve the maximum likelihood learning problem by maximis-
ing the probability of trajectories ⌧E taken by the demonstrator:

max

1

N

NX

1

log p(⌧E|) = max

1

N

NX

1

r (⌧)� logZ() (3.8)

and taking as the partition function:

Z() =

Z
p(⌧) exp(r (⌧)), (3.9)

we arrive at the gradient of loss L:

r L =
1

N

NX

i=1

r r (⌧E,i)�
1

Z()

Z
p(⌧) exp(r (⌧))r r (⌧)d⌧. (3.10)

The application of the formula of the expectation value:

r L = E⌧E⇠⇡E(⌧)[r r (⌧E)]� E⌧⇠p(⌧ |)[r r (⌧)], (3.11)

24 CHAPTER 3. METHODOLOGY

leads to a gradient based algorithm, which matches the features of the sample esti-
mate of the expert policy ⇡E and deals with the reward function ambiguity problem.
It can be shown, that this is equivalent to the reinforcement learning objective
function [Zie10]: X

t

E⇡✓
[r(st, at)] + ! E⇡✓

[H(⇡✓(at|st))], (3.12)

where H is the di↵erential entropy of the policy ⇡✓ defined as:

H(⇡✓(at|st)) = �E⇡✓
[log ⇡✓(at|st)] (3.13)

and ! is the entropy regularisation factor � 0.
The objective is then the maximisation of the reward under the constraint to keep
the policy as random as possible.

3.3 Optimisation of demonstrations with PSO

According to the general scheme in Figure 1.1 particle swarm optimisation is used to
assist motion retargeting during demonstration acquisition, to successfully accom-
plish the task. PSO is a task-specific optimisation dependent on the specified utility
function. During object relocation we want to move the fingers towards the object
increasing the quality of the grasp. Ideally, this prevents slipping during relocation
and raises the success rate of task execution by human demonstrator.
Particle swarm optimisation is a type of stochastic optimisation method. Randomly
initialised swarm population consists of particles, which are candidates for the so-
lution of optimisation problem. The update of the particles trying to optimise the
utility (energy function) is governed by the following formula:

vi,t = vi,t�1 + c1 ⇤ (pbesti,t�1 � pi,t�1) + c2 ⇤ (gbestt�1 � pi,t�1), (3.14)

pi,t = pi,t�1 ⇤ vi,t, (3.15)

where vi,t is the velocity of particle with index i at the iteration step t out of defined
maximum N steps. p is particle position, gbestt�1 is the best global particle position
(with currently the lowest energy function), pbesti,t�1 and pi,t�1 are the current particle
position and it’s current best position. c1 and c2 are the system parameters, which
define the exploration potential of the swarm and individual particles and number
of particles M can be adjusted as a trade-o↵ between optimisation quality and
processing speed. The distribution of initial positions of the particles is dependent
on the output from inverse kinematics.
The evaluation of utility for each particle is performed in simulation in order to
take into account the external forces acting on the agent and possible non-linearities
of the environment. For the object relocation MDP we adopt the energy function
proposed by Antotsiou et al. [AGK18]:

3.3. OPTIMISATION OF DEMONSTRATIONS WITH PSO 25

E(x, y, object) = !poseEpose(x, y) + !taskEtask(y, object) (3.16)

The optimisation of the demonstrations can be used both in the o✏ine and online
manner, but because the fitness of each of the particles is evaluated in the simulator
the computational cost is considerable. The frequency of retargeting algorithm
control frequency decreases from ⇠200 Hz down to ⇠5 Hz if run on the multicore
Intel i5 CPU. In the online optimisation it makes the simulation significantly less
responsive, what was unacceptable for some subjects during the experiments. To
alleviate it we activate the computationally expensive PSO only if the distance
between the hand and object is smaller than defined threshold of 0.075 m.
Importantly, after the hyperparameter tuning PSO delivers the needed aid to suc-
cessfully perform the di�cult relocation task using a single tracking camera and
HPE algorithm.
The scheme of Particle Swarm Optimisation is presented in Figure 3.2. The optimi-
sation is performed for specified N number of iterations or until convergence, when
the fitness function does not change above the defined small threshold. The process
is repeated for T steps - until the final step of the episode. The list of all PSO
hyperaparameters has been included in Appendix A.

Figure 3.2: The scheme of the proposed Particle Swarm Optimisation application
for our demonstrations acquisition setup.

26 CHAPTER 3. METHODOLOGY

27

Chapter 4

Dexterous hand manipulation
without reward engineering

We aim for the similar learning capacity with inferred reward function as the state-
of-the-art baseline method [RKG+17]. The avoidance of manual specification of the
reward function in the high dimensional state space can be considered a substan-
tial advancement of the state-of-the-art allowing wider application of reinforcement
learning to robotics.
The initial positive results of learning with AIRL depicted in Figure 5.3 could not
be confirmed when aiming to use the learned reward for learning from scratch.
During learning the policy exploits the deficiencies of the learned reward function
by providing inputs, which produce high rewards without achieving the goal of the
task.
In order to address the problem of low sample e�ciency of IRL for dexterous hand
manipulation and low robustness of the reward function, which prevents e�cient
learning we propose novel methods, which improve the e�ciency of state-of-the-art
inverse reinforcement learning in dexterous hand manipulation.

4.1 Reward normalisation

Targets normalisation has been studied in the past for Temporal Di↵erence methods
by van Hasselt et al. [vGG+16]. Target normalisation has lead to simplification of
the hyperparameters search and learning stability. Normalisation of the reward
especially important when using the augmented policy gradient with non-stationary
reward function. According to DAPG algorithm the policy gradient is augmented
by gradient of demonstration samples according to the formula [RKG+17]:

gaug =
X

(s,a)2p⇡

r✓ log ⇡✓(a|s)A⇡(s, a) +
X

(s,a)2pD

r✓ log ⇡✓(a|s)w(s, a), (4.1)

with p⇡✓
being the probability distribution induced by the policy ⇡✓, pD the prob-

28 CHAPTER 4. DEXTEROUS HAND MANIPULATION WITHOUT REWARD ENGINEERING

ability distribution of the given demonstrations and w(s, a) the weighting factor.
The advantage function A

⇡(s, a) is used instead of the reward r(s, a) in order to
lower the variance of the gradient gaug. The changes in the magnitude of the ad-
vantage function A

⇡(s, a) = Q(s, a)� V (s) will influence the ratio between the two
summands and the normalisation is necessary of either of the change.
In order to keep the magnitude of the advantage function and control the gradient
variance during training, the reward normalisation has been proposed. We follow
the work by van Hasselt et al. [vGG+16].
We apply proposed value target normalisation from their work to normalise the
rewards according to the formula:

rnorm(s, a) =
r(s, a)� µt

�t
, (4.2)

where

µt =
1

N

NX

i

r(s, a)(i) and �
2
t =

1

N

NX

i

�
r(s, a)(i) � µt

�2
, (4.3)

at time step t.
These formulas can be generalised to online case by the introduction of the step size
� 2 [0, 1]:

µt = (1� �)µt�1 + �r(s, a) and ⌫t = (1� �)⌫t�1 + �r(s, a)2, (4.4)

with ⌫t being the second moment. The estimated standard deviation is:

�
2
t = ⌫t � µ

2
t . (4.5)

This yields the exponential moving average which puts more weight on the recent
data points as � step size is constant. The initial values of µ0 and �0 are set
arbitrarily to 0 and 1 respectively.
The formulation which suits better to our setup with the samples acquired in batches
is:

µt = (1� �)µt�1 + �µcur and �t = (1� �)�t�1 + ��cur, (4.6)

where µcur and �cur are mean and standard deviation for the current batch calculated
according to (4.3).
The results of reward normalisation are presented in Section 5.3.

4.2 Sample augmentation

A commonly used technique in deep learning to improve the network accuracy is
the data augmentation [SK19]. In case of image classification, the images are sub-
jected to random transformations, such as resizing, rotation, brightening, in order
to achieve better generalisation to new examples using the existing dataset.

4.3. EXPLORATION ENHANCEMENT 29

The similar approach has been considered for the deep reinforcement learning. Here
the augmentation requires the knowledge of the task and careful implementation,
since is has to consider the peculiarities of the given input observations from the
environment. In our case only the rotation of the scene was a possible choice.
Sample augmentation is done according to the rule:

st,aug = R(✓)st, (4.7)

where R is a rotation matrix around z axis:

R(✓) =

2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

3

5

and st is a R3xN matrix consisting of stacked N indices of st which should be aug-
mented.
Augmented elements of observations (see 2.2.1):

• position and orientation of hand base

• ���!
pOpH (vector between the object and hands’ palm)

• ���!
pTpH (vector between the target and hands’ palm)

• ���!
pTpO (vector between the target and object)

Other elements of observations are copied to the augmented observation without any
change and then the augmentation of actions follows. The example of augmentation
is provided in Figure 4.1 and the results of the evaluation are provided in Section
5.4.

4.3 Exploration enhancement

Exploration is widely researched subject in reinforcement learning [Tok10, IYY02,
THF+17]. It often boils down to an exploitation-exploration problem, which is an
open problem for machine learning approaches. In general, successful exploration
strategy will allow the discovery of the high reward regions preventing falling in the
suboptimal local minima.
The max-ent reinforcement learning, described in Section 3.2.2, lends a natural
way of steering the exploration by adjusting the entropy weight ! in the learning
objective (3.12).
Another approach to improve entropy is the introduction of the temperature term,
which increases the policy variance by given rate. The variance augmentation is
calculated according to the formula:

30 CHAPTER 4. DEXTEROUS HAND MANIPULATION WITHOUT REWARD ENGINEERING

Figure 4.1: An example of a single augmented environment state. The rotation
around z axis is presented from identical camera position.

log � = log � · (1 + current temp) (4.8)

where current temp decreases with each iteration i:

current temp = 0.95(i) · base temp, i = iteration no. (4.9)

Because of insu�cient improvement comparing to the standard IRL method, the
evaluation of the method was not included in the report. The structured exploration
e.g. [GCM+19] could be considered instead increasing the randomness of the actions
to learn more robust reward functions in consistent way.

4.4 Masking of the state space

Utilised inverse reinforcement learning approach, which in form resembles generative
adversarial networks, seeks to solve the problem by mining the negative examples of
actor states. However, due to the large input area, it is still susceptible to exploita-
tion in case of examples out of explored state distribution.
The problem of lack of coverage of the input space to the reward function approxima-
tor can be seen as an example of adversarial attack on the artificial neural network
representing the policy. Adversarial attacks on deep learning systems, such as this
in Figure 4.2, is a well studied phenomenon, which hinders the broad application
of deep learning systems. Here we follow the view of adversarial examples as in
work by Goodfellow et al. [GPH+17] as ”inputs to machine learning models that
an attacker has intentionally designed to cause the model to make a mistake”. In

4.4. MASKING OF THE STATE SPACE 31

Figure 4.2: A demonstration of an adversarial example generation applied to
GoogLeNet on ImageNet. [GSS15].

our case the mistake of reward function provides high reward r(s, a) for state and
action pair, which does not comply with the expected behaviour.
Similar aspect has been also observed in deep reinforcement learning in various
framework. In Q-learning [GXL+18] the correct Q(s, a) values cannot be learned
from limited number of samples from the demonstrations, especially in high-dimensional
input space or in IRL [FSG+18], where the shortcomings of the binary classifier are
easily exploited by the actor. They alleviate this limitation by training only on the
goal positions instead of the whole trajectory and mining the negative examples in
the generative manner. This is not a viable solution as we are working with the
demonstrations consisting of whole trajectories.

Figure 4.3: Example of causal confusion, where too much information yields worse
imitation learning performance. [dJL19].

Another work suggests that too rich state information may cause a causal confusion
where the cause of the action may be di�cult to distinguish from its e↵ect in the
imitation learning setup yielding worse performance [dJL19] as presented in Figure
4.3. de Haan et al. propose to allow the expert queries to allow the information
disambiguation.
The vulnerability of the learned policies in multi-agent environments has been de-
scribed in work by Gleave et al. [GWKR19]. They have suggested to mitigate this
e↵ect by masking the observation to lower the dimensionality of the policy network.
We propose to apply similar principle to IRL - lowering the input space to salient
dimensions significantly improves the learning speed of the IRL algorithm and im-
proves the robustness of the learned reward function as presented in Section 5.7.

32 CHAPTER 4. DEXTEROUS HAND MANIPULATION WITHOUT REWARD ENGINEERING

This is achieved according to the same rule across di↵erent tasks - we mask the
features of the hand in the input space to the reward function and keep dimensions
specific to the MDP. The manual work for each new tasks is kept at minimum.

33

Chapter 5

Evaluation

The methods introduced in Chapter 4 have been evaluated in the task of object
relocation with MuJoCo physics engine [TET12]. The goal of the task is the grasping
of the object and its relocation to the given target position with a robotic Shadow
Robot Dexterous Hand model (see Section 2.2). The simulation environment used
in the experiments is depicted in Figure 5.1.

Figure 5.1: The visualisation of the task setup. The goal is to move the blue ball to
the target location marked green.

The results are based on the success rate of the policy from fixed set of initial state
s0 of the environment. The episode is identified as successful if the object stays in
the target location for at least 25 time steps, what corresponds to at least 12.5% of
the episode duration.
The following elements have been evaluated:

• Particle swarm optimisation - the contribution towards higher e�ciency for
the demonstration acquisition and evaluation of the control types - Section 5.1

• State-of-the-art IRL algorithms - comparison performed to recognise the po-

34 CHAPTER 5. EVALUATION

tential utility of current SoA methods for dexterous hand manipulation - Sec-
tion 5.2

• Reward normalisation - normalisation, which contributes to more stable aug-
mented gradient - Section 5.3

• Sample augmentation - evaluation of how the extension of data contributes to
training e�ciency - Section 5.4

• Masking of the state space - aid to lack of robustness of the learned reward
function - Section 5.5

• Transferability of the method - presents how the proposed method contributes
to wider application of reinforcement learning for robotic dexterous hand ma-
nipulation - Section 5.6

5.1 Particle swarm optimisation evaluation

Particle swarm optimisation was used in the previous work for grasping dexterous
hand manipulation before [AGK18]. We follow the similar principle and perform
the evaluation in the object relocation task to evaluate the influence of the demon-
stration optimisation on the e�ciency of learning.

Influence of the demonstration refinement on the task success rate

The successful execution of the task using the hand pose retargeting and motion
retarget in the simulator is very challenging, especially using the position control.
Empirically we were able to capture approximately 2.5 more successful demonstra-
tions if the particle swarm optimisation was used during the motion retargeting
when using position control. The velocity control has performed much better in the
simulation environment providing approximately 8 times more successful demon-
strations.
To reflect the di�culty of the demonstrations execution and evaluate how it cor-
responds with the learning capabilities, we have captured 3 demonstrations using
position control without PSO, 8 demonstrations with position control and PSO and
24 demonstrations with the velocity control. Those demonstrations were used for
direct learning with DAPG algorithm.

Reinforcement learning with refined demonstrations

The results of the evaluation are depicted in Figure 5.2.
While the superiority of the velocity control in our simulation environment accounts
for many more demonstrations for the agent, the position control with PSO vastly
outperforms the velocity control in terms of the learning speed with reinforcement

5.2. STATE-OF-THE-ART IRL ALGORITHMS 35

learning. We hypothesise that it is due to necessity to provide the control input
type, joint velocities, in the state space besides the joint positions vector, which
vastly increases the policy input dimension from 39 (see 2.2.1) to 63. This indicates,
that the position control with PSO is the optimal way of learning dexterous hand
manipulations from demonstrations.
Nevertheless, even though the position control with particle swarm optimisation
performed best in this task (using Shadow Robot Dexterous hand for which the
demonstration acquisition system described in Section 2.3 has been created), the
learning speed is a magnitude slower in our MDP than in the equivalent task (Adroit)
provided by Rajeswaran et al. [RKG+17] (compare with Figure 5.3). In order to
allow e�cient learning and have apples to apples comparison with state-of-the-art
dexterous hand manipulation method by Rajeswaran et al. [RKG+17] it was decided
to work on the object relocation in their MDP, provided with 25 demonstrations.

Figure 5.2: Evaluation of the particle swarm optimisation depending on the input
type. The velocity control allows much higher success rate than position control, but
the addition of the PSO increases the success rate providing the additional samples,
which allow to outperform the velocity control.

5.2 State-of-the-art IRL algorithms

Prior to starting the work on improvement of inverse reinforcement learning the
state-of-the-art inverse reinforcement learning algorithms had to be evaluated for
the application in dexterous hand manipulation.
Figure 5.3 depicts the results of performance comparison of 3 state-of-the-art im-
itation learning methods, which were introduced previously in Section 3.2.1. The
tested algorithms:

36 CHAPTER 5. EVALUATION

• GCL - Guided Cost Learning [FLA16]

• GAIL - Generative Adversarial Imitation Learning [HE16]

• AIRL - Adversarial Inverse Reinforcement Learning [FLL17]

In the experiments we have used the default hyperparameters delivered with the
source code of the methods [Fu18]. The hyperparameters with their values are
listed in Appendix A.

Figure 5.3: Comparison of 3 state-of-the-art inverse reinforcement learning algo-
rithm together with the results of the baseline method for reference. The AIRL
outperforms the 2 other IRL methods when learning the reward function, but is still
significantly less sample e�cient than the baseline method.

The results indicate the supremacy of the adversarial inverse reinforcement learning
[FLL17]. This method also aims for the robustness to the changes of the environ-
ment, what should improve the learned reward making it especially appealing for
the high dimensional task.

5.3 Reward normalisation

The non-stationarity of the reward function may confuse the policy learning [TGR18]
and disturb the balance in the formulation of the used augmented gradient 4.1. In
order to avoid it, the reward normalisation has been proposed. The results of its
application are presented in Figure 5.4. They confirmed the importance for joint
learning of reward and the policy.
The updates of µt and �t according to (4.6) in each discriminator step significantly
perturb the optimisation process in case of too high normalisation learning rate �,
but the proper value rises the quality of the learned policy (normalisation learning
rate of 0.005) if compared to no reward normalisation (learning rate of 0).

5.4. SAMPLE AUGMENTATION 37

Figure 5.4: Evaluation of reward normalisation with respect to adjusted the normali-
sation steps size � used as in (4.6). The success rate is depicted with continuous line,
the normalisation mean µt with dashed line in logarithmic scale. The normalisation
allows the convergence to higher success rate.

5.4 Sample augmentation

The sample augmentation from Section 4.1 has been performed with the rotation
angles sampled from the uniform distribution between -25� and 25� according to the
method described in Section 4.2.
The results of the experiments of sample augmentation are depicted in Figure 5.5.
The data is augmented 5 times, what is equivalent to collecting one new trajec-
tory set. This significantly improves data acquisition rate and results in better
training speed overall. It remains to be seen if such a method could be considered
for real-world direct RL, because we can assume that the automatic augmentation
could be unable to represent distinct non-linearities, which would characterise the
environment.

5.5 Masking of the state space

Masking of the input space have been the solution to adversarial attacks in reinforce-
ment learning, as described in Section 4.4. Here the method have been tested for
the inverse reinforcement learning framework. Based on the prior knowledge of the
MDP we select the last 9 dimensions of the input space as the input to the reward
function approximator, which are sample specific and mask first 30 dimensions of
state space. The use of only the subset of features for the reward function network
lowers the possibility of observing o↵-distribution samples, which would lower the
robustness of the inferred reward function as demonstrated empirically in Section

38 CHAPTER 5. EVALUATION

Figure 5.5: Evaluation of sample augmentation for IRL. The graph presents that the
use of data augmentation for IRL improves the learning performance. The results
of direct learning with the baseline method have been attached.

5.7.

The selected last 9 dimensions are the 3 vectors spanned between 3 points:

• pH position of point below the middle of hand’s palm

• pO position of object

• pT position of target location

according to specification of the state space in Section 2.2.1.
The results of IRL with masked state space are depicted in Figure 5.6.

5.6 Transferability of the method

The prevention of manual specification of reward function would be an advantage
over the state-of-the-art dexterous hand manipulation if the extensive labour work
on the manual reward specification in new tasks could be avoided [CLB+17].
In order to demonstrate the transferability of our method di↵erent hand manipula-
tion tasks have been used for the evaluation: in-hand object manipulation (Figure
5.7) and tool usage (Figure 5.8). These MDPs have been used to compare proposed
IRL method to the state-of-the-art dexterous hand manipulation method [RKG+17]
with manually defined reward function and state-of-the-art inverse reinforcement
learning. Because of higher dimension of the state space than in the original object
relocation task, we provide 50 expert demonstrations instead of 25 demonstrations

5.6. TRANSFERABILITY OF THE METHOD 39

Figure 5.6: The results of the AIRL algorithm learning with the input state space
masked to the last 9 dimensions comparing to the original input space and baseline.
The performance with feature masking is similar the baseline, but does not converge
to its high success rate. One standard deviation between evaluation runs is marked
with shaded colour for each line.

to improve the learning capacities for evaluation of both methods: state-of-the-art
IRL and our extension proposal.

Figure 5.7: In-hand manipulation task: the goal of the task is the rotation of the
object to the desired position marked by the green pen in the fixed dexterous hand.
[RKG+17]

For the evaluation of transferability we used the masking of the state-space and
addition of the random noise samples. We mask the first 30 dimensions, exactly as
in the object relocation task, and leave the last dimensions, which are task specific.
The results presented in Figure 5.9 prove that our method allows the high transfer-
ability without any additional labour while the baseline requires the engineering of
the reward function for each task separately. This shows the higher versatility of
our method and clear advantage over SoA dexterous hand manipulation approach
[RKG+17].

40 CHAPTER 5. EVALUATION

Figure 5.8: Tool usage task: The hammer has to be picked from the table and used
to hit the nail into board with significant force. Task is successful if the whole nail is
placed into board. The environment allows the force exertion only from the provided
tool. [RKG+17]

Figure 5.9: The proposed method is able to adapt to new setup using just the
provided demonstration and delivers results comparable with the results of direct
learning where the manual reward function specification is necessary.

5.7 Robustness of the reward function

To understand the reason for the superiority of our method in the range of dexterous
hand manipulation tasks we quantitatively evaluate the robustness of the learned
reward function.
We use the fixed learned reward function obtained at the end of the learning process
to teach a new policy from scratch. The results of the evaluation in the tasks are
presented in Table 5.1.
Our method consistently outperforms the state-of-the-art IRL (vanilla IRL) [FLL17],
what proves that we obtain more robust reward function, which allow better learn-
ing. It naturally implies better e�ciency when learning policy in the GAN setup.
This claim was supported by the qualitative assessment of the reward function in
Section 6.1.

5.7. ROBUSTNESS OF THE REWARD FUNCTION 41

Object relocation Tool usage
Vanilla IRL [FLL17] -2.03 -229.22
Our method w/o noise samples 148.73 1404.31
Our method with noise samples 186.35 6125.23

Table 5.1: Results of learning from scratch on the fixed reward function taken at
the end of IRL learning process. The values are the average maximum returns from
the original reward function over 10 training iterations.

42 CHAPTER 5. EVALUATION

43

Chapter 6

Discussion

6.1 Robustness of the learned reward function

Learning of the reward jointly with the policy using the proposed methods allows
the transfer of the method to novel task with minimal labour what is a considerable
improvement over state-of-the-art methods for dexterous hand manipulation.
But during the work on the inverse reinforcement learning we devoted time to eval-
uate the learned reward functions for the ability to use the for learning from scratch
(see evaluation results in Figure 6.1). Even though we are able to learn challeng-
ing tasks without manual feature engineering, the fixed reward functions are not
suitable for learning from scratch. This is in line with the prior findings for GAN
[GPM+] and shows, that joint learning is the applicable solution for dexterous hand
manipulation.
The results of state-of-the-art work [CLB+17, FSG+18] suggest that the reward
function is not suitable for robust learning and transfer, because of deficiencies of
the learned reward function in high dimensional space.
In the interest of getting an important insight into understanding the reason for the
lack of robustness of the learned reward function in dexterous hand manipulation,
the visualisation of the learned reward has been created (Figure 6.1). Clearly, the
reward function of SoA IRL is not suitable for the robust learning from scratch
because of the high reward areas outside of the target. Our method learns the
reward function, which guides to the region of high reward to the target, what
makes it superior in the GAN-IRL setting.

6.2 Combination of proposed IRL methods

The respective proposed methods have improved the learning speed of IRL for dex-
terous hand manipulation. Especially significant improvement was observed with
masking of the state space and reward function normalisation. A natural direc-
tion is the combination of all the methods to achieve superior performance to all

44 CHAPTER 6. DISCUSSION

Figure 6.1: Plot of the learned reward function in object relocation task. It presents
the learned reward value depending on the distance between object and target given
in meters. Target position is marked with a star. Our method learns high reward
for the target position as expected, while SoA IRL [FLL17] provides higher values
to the areas outside goal position.

the respective ones. This was not observed, the results deteriorated if the meth-
ods were combined. The possible reason for it is that the distinct elements may
not be complementary and an additional study would be required to understand
how they can be fruitfully combined. Additionally, from the practical standpoint
high number of hyperparameters to optimise may hinder the practical applica-
tion. E.g. there have been multiple improvements proposed to Deep Q-Networks
[MKS+13, MKS+15, VHGS16, WSH+16, SQAS15] and we could expect that if com-
bined, they should improve performance as presented in the following work called
Rainbow [HMVH+18], but for the practical application simpler methods such as
Soft Actor-Critic [HZH+19] are often preferred.
For this reason the analysis of the combination of proposed methods for IRL is left
for the future work.

45

Chapter 7

Conclusion

7.1 Conclusion

We have considered the problem of lack of transferability of state-of-the-art dexter-
ous hand manipulation approach [RKG+17] caused by requirement to handcraft the
reward function in each task to obtain expected behaviour. Reward engineering is
both tedious and potentially dangerous especially for robotics, because of the likely
reward function misspecification [CA16, AOS+16]. We proposed methods, which al-
low application of inverse reinforcement learning for e�cient learning of challenging
dexterous hand manipulation tasks directly from the human demonstrations. It is
an important step toward higher applicability of reinforcement learning in robotics
by minimising the required manual work and making the framework more versatile,
while keeping the learning e�cient.
We have evaluated the task with respect to the state-of-the-art reinforcement learn-
ing methods [FLL17, HE16] and the direct learning methods with manually speci-
fied reward function [RKG+17]. It vastly outperforms current inverse reinforcement
learning methods by lowering the state space to the relevant dimensions and im-
proves the robustness of the reward function by the addition of noise samples, nor-
malisation and sample augmentation. Our method shows the superiority in terms
of the transferability to new MDPs by learning the robust reward functions in de-
manding dexterous hand manipulation tasks.

7.2 Future work

Due to the time constraints of the master’s thesis the method was not evaluated
with the actual hardware and is left for the future work. There are several methods
by which the policy transfer real world is possible [LKD+18, TFR+17, OPN17,
JWK+] and the success of the zero-shot transfer using the domain randomisation
technique for the dexterous hand manipulation [OAA+19] make us optimistic about
the potential success of the method.

46 CHAPTER 7. CONCLUSION

Secondly, the combination of the proposed methods did not deliver better evaluation
results comparing to results obtained for each component used in isolation. Addi-
tional analysis could give us understanding of the relation between each extension
and could achieve better performance of IRL for dexterous hand manipulation.
Thirdly, Rajeswaran et al. [RKG+17] claimed, that their policy-gradient based
method has unparalleled performance in challenging high-dimensional tasks of dex-
terous hand manipulation. But considering the recent improvements in the e�-
cient state-of-the-art o↵-policy reinforcement learning one could wonder if the novel
methods such as Soft Actor-Critic [HZH+19] could potentially deal with large di-
mensions of action and state spaces while being more sample e�cient. If one of
e�cient o↵-policy approaches would be coped with our IRL methods for dexterous
hand manipulation it could potentially outperform the baseline method [RKG+17]
both with respect to transferability and e�ciency making the method even more
compelling for robotics.

47

Appendix A

Implementation details

A.1 Physics engine and simulation environments

For the evaluation we used MuJoCo physics engine [TET12] with universal OpenAI
Gym framework [BCP+16]. The simulation tasks have been adopted from the work
by Rajeswaran et al. [RLTK17] from the corresponding GitHub repository.

A.2 Learning algorithm hyperparameters

We have used fixed hyperparameters for each of the tasks with exception for in-hand
manipulation task, where 1 epoch has been used for behaviour cloning.

Behaviour cloning:

• epochs: 5

• learning rate: 1e-3

Policy (actor):

• number of FC layers: 2

• units per layer: 32

• activation function: Tanh

• step size: 0.1

• gamma: 0.995

• GAE lambda: 0.97

• trajectories per update: 200

48 APPENDIX A. IMPLEMENTATION DETAILS

Value function (critic):

• epochs: 2

• batch size: 64

• learning rate: 1e-3

Discriminator:

• number of FC layers: 2

• units per layer: 64

• activation function ReLU

• learning rate: 1e-3

• batch size: 256

• trajectories per update: 200

• max updates of generator per discriminator update: 4

• steps till max update no. for generator: 150

• minimal loss threshold: 0.01

Noise samples:

• percentage in all samples: 20%

• standard deviation: 1.0

A.3 Particle swarm optimisation hyperparameters

• particles number: 16

• optimisation steps: 5

• c1 (see (3.14)): 2.8

• c2 (see (3.14)): 1.3

• convergence threshold: 5e-05

• distance threshold for PSO activation: 0.075

LIST OF FIGURES 49

List of Figures

1.1 General scheme . 9

2.1 Reinforcement learning . 13
2.2 Main task . 14
2.3 Shadow Robot Dexterous Hand diagram 16
2.4 Kinematics of robotic hand . 16
2.5 Demonstration scheme . 17

3.1 IRL scheme . 21
3.2 PSO scheme . 25

4.1 Example of augmentation . 30
4.2 Adversarial example . 31
4.3 Information confusion . 31

5.1 Simulation environment . 33
5.2 PSO evaluation . 35
5.3 IRL comparison . 36
5.4 Normalisation comparison . 37
5.5 Augmentation results . 38
5.6 Masked input results . 39
5.7 In-hand manipulation tasks . 39
5.8 Tool usage task . 40
5.9 Transferability results . 40

6.1 E�ciency evaluation . 44

50 LIST OF FIGURES

LIST OF FIGURES 51

Acronyms and Notations

AIRL Adversarial Inverse Reinforcement Learning

DAPG Demo Augmented Policy Gradients

DRL Deep Reinforcement Learning

GAIL Generative Adversarial Imitation Learning

GAN Generative Adversarial Networks

GCL Guided Cost Learning

HPE Hand Pose Estimation

IRL Inverse Reinforcement Learning

MDP Markov Decision Process

PPO Proximal Policy Optimisation

PSO Particle Swarm Optmisation

RL Reinforcement Learning

SoA State of the art

52 LIST OF FIGURES

BIBLIOGRAPHY 53

Bibliography

[AGK18] Dafni Antotsiou, Guillermo Garcia-Hernando, and Tae-Kyun Kim.
Task-Oriented Hand Motion Retargeting for Dexterous Manipulation
Imitation. arXiv:1810.01845 [cs], October 2018.

[AN04] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse
reinforcement learning. In Twenty-First International Conference on
Machine Learning - ICML ’04, page 1, Ban↵, Alberta, Canada, 2004.
ACM Press. doi:10.1145/1015330.1015430.

[AOS+16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano,
John Schulman, and Dan Mané. Concrete Problems in AI Safety.
arXiv:1606.06565 [cs], July 2016.

[AZH+19] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek
Gupta, Sergey Levine, and Vikash Kumar. ROBEL: Robotics Bench-
marks for Learning with Low-Cost Robots. arXiv:1909.11639 [cs, stat],
September 2019.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym.
arXiv:1606.01540 [cs], June 2016.

[BGN19] Daniel S. Brown, Wonjoon Goo, and Scott Niekum. Better-than-
Demonstrator Imitation Learning via Automatically-Ranked Demon-
strations. In arXiv:1907.03976 [Cs, Stat], Osaka, October 2019.

[BS99] C. Breazeal and B. Scassellati. How to build robots that make friends
and influence people. In Proceedings 1999 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Human and Environ-
ment Friendly Robots with High Intelligence and Emotional Quotients
(Cat. No.99CH36289), volume 2, pages 858–863, Kyongju, South Ko-
rea, 1999. IEEE. doi:10.1109/IROS.1999.812787.

[CA16] Jack Clark and Dario Amodei. Faulty Reward Functions in the Wild.
https://openai.com/blog/faulty-reward-functions/, December 2016.

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1109/IROS.1999.812787

54 BIBLIOGRAPHY

[CLB+17] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg,
and Dario Amodei. Deep Reinforcement Learning from Human Prefer-
ences. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 4299–4307. Curran Associates,
Inc., 2017.

[DBP+16] Alexander Dietrich, Kristin Bussmann, Florian Petit, Paul Koty-
czka, Christian Ott, Boris Lohmann, and Alin Albu-Schä↵er. Whole-
body impedance control of wheeled mobile manipulators: Stabil-
ity analysis and experiments on the humanoid robot Rollin’ Justin.
Autonomous Robots, 40(3):505–517, March 2016. doi:10.1007/
s10514-015-9438-z.

[dJL19] Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal Confu-
sion in Imitation Learning. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 11693–
11704. Curran Associates, Inc., 2019.

[EH19] Tom Everitt and Marcus Hutter. Reward Tampering Problems and So-
lutions in Reinforcement Learning: A Causal Influence Diagram Per-
spective. arXiv:1908.04734 [cs], August 2019.

[FASL18] Pietro Falco, Abdallah Attawia, Matteo Saveriano, and Dongheui Lee.
On Policy Learning Robust to Irreversible Events: An Application
to Robotic In-Hand Manipulation. IEEE Robotics and Automation
Letters, 3(3):1482–1489, July 2018. doi:10.1109/LRA.2018.2800110.

[FCAL16] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A
Connection between Generative Adversarial Networks, Inverse Rein-
forcement Learning, and Energy-Based Models. arXiv:1611.03852 [cs],
November 2016.

[Fin] Chelsea Finn. Lecture slides.

[FLA16] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided Cost
Learning: Deep Inverse Optimal Control via Policy Optimization.
arXiv:1603.00448 [cs], March 2016.

[FLL17] Justin Fu, Katie Luo, and Sergey Levine. Learning Robust Rewards
with Adversarial Inverse Reinforcement Learning. arXiv:1710.11248
[cs], October 2017.

[FSG+18] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine.
Variational Inverse Control with Events: A General Framework for

https://doi.org/10.1007/s10514-015-9438-z
https://doi.org/10.1007/s10514-015-9438-z
https://doi.org/10.1109/LRA.2018.2800110

BIBLIOGRAPHY 55

Data-Driven Reward Definition. arXiv:1805.11686 [cs, stat], Novem-
ber 2018.

[Fu18] Justin Fu. Inverse RL. https://github.com/justinjfu/inverse_
rl, June 2018.

[GCM+19] Yijie Guo, Jongwook Choi, Marcin Moczulski, Samy Bengio,
Mohammad Norouzi, and Honglak Lee. Self-Imitation Learn-
ing via Trajectory-Conditioned Policy for Hard-Exploration Tasks.
arXiv:1907.10247 [cs, stat], November 2019.

[GELA17] Abhishek Gupta, Clemens Eppner, Sergey Levine, and Pieter Abbeel.
Learning Dexterous Manipulation for a Soft Robotic Hand from Hu-
man Demonstration. arXiv:1603.06348 [cs], March 2017.

[GPH+17] Ian J. Goodfellow, Nicola Papernot, Sandy Huang, Rocky Duan,
Pieter Abbeel, and Jack Clark. Attacking machine learning with
adversarial examples, Feb 2017. URL: https://openai.com/blog/
adversarial-example-research/.

[GPM+] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative Adversarial Nets. page 9.

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explain-
ing and Harnessing Adversarial Examples. arXiv:1412.6572 [cs, stat],
March 2015.

[GWKR19] Adam Gleave, Michael Dennis Cody Wild, Neel Kant, and Sergey
Levine Stuart Russell. Adversarial Policies: Attacking Deep Rein-
forcement Learning. page 11, 2019.

[GXL+18] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor
Darrell. Reinforcement Learning from Imperfect Demonstrations.
arXiv:1802.05313 [cs, stat], February 2018.

[HE16] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation
Learning. arXiv:1606.03476 [cs], June 2016.

[HGEJ17] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina
Jayne. Imitation Learning: A Survey of Learning Methods. ACM
Computing Surveys, 50(2):1–35, April 2017. doi:10.1145/3054912.

[HMVH+18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar,
and David Silver. Rainbow: Combining improvements in deep rein-
forcement learning. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

https://github.com/justinjfu/inverse_rl
https://github.com/justinjfu/inverse_rl
https://openai.com/blog/adversarial-example-research/
https://openai.com/blog/adversarial-example-research/
https://doi.org/10.1145/3054912

56 BIBLIOGRAPHY

[HVP+17] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom
Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris,
Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo,
and Audrunas Gruslys. Deep Q-learning from Demonstrations.
arXiv:1704.03732 [cs], November 2017.

[HZH+19] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker,
Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta,
Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algorithms and
Applications. arXiv:1812.05905 [cs, stat], January 2019.

[IYY02] Shin Ishii, Wako Yoshida, and Junichiro Yoshimoto. Control of
exploitation–exploration meta-parameter in reinforcement learning.
Neural networks, 15(4-6):665–687, 2002.

[JWK+] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalash-
nikov, Alex Irpan, Julian Ibarz, Sergey Levine, Raia Hadsell, and
Konstantinos Bousmalis. Sim-To-Real via Sim-To-Sim: Data-E�cient
Robotic Grasping via Randomized-To-Canonical Adaptation Net-
works. page 11.

[KGTL16] Vikash Kumar, Abhishek Gupta, Emanuel Todorov, and Sergey
Levine. Learning Dexterous Manipulation Policies from Experience
and Imitation. arXiv:1611.05095 [cs], November 2016.

[KP09] Jens Kober and Jan Peters. Learning motor primitives for robotics.
In 2009 IEEE International Conference on Robotics and Automation,
pages 2112–2118, Kobe, May 2009. IEEE. doi:10.1109/ROBOT.2009.
5152577.

[KT15] Vikash Kumar and Emanuel Todorov. MuJoCo HAPTIX: A virtual re-
ality system for hand manipulation. In 2015 IEEE-RAS 15th Interna-
tional Conference on Humanoid Robots (Humanoids), pages 657–663,
Seoul, South Korea, November 2015. IEEE. doi:10.1109/HUMANOIDS.
2015.7363441.

[LKD+18] Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind Ra-
jeswaran, and Emanuel Todorov. Reinforcement learning for non-
prehensile manipulation: Transfer from simulation to physical system.
arXiv:1803.10371 [cs], March 2018.

[LL18] Shile Li and Dongheui Lee. Point-to-Pose Voting based Hand
Pose Estimation using Residual Permutation Equivariant Layer.
arXiv:1812.02050 [cs], December 2018.

https://doi.org/10.1109/ROBOT.2009.5152577
https://doi.org/10.1109/ROBOT.2009.5152577
https://doi.org/10.1109/HUMANOIDS.2015.7363441
https://doi.org/10.1109/HUMANOIDS.2015.7363441

BIBLIOGRAPHY 57

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing Atari with Deep Reinforcement Learning. arXiv:1312.5602 [cs],
December 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level con-
trol through deep reinforcement learning. Nature, 518(7540):529–533,
February 2015. doi:10.1038/nature14236.

[MLS17] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathe-
matical Introduction to Robotic Manipulation. CRC Press, 1 edition,
December 2017. doi:10.1201/9781315136370.

[NKLK19] Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Ku-
mar. Deep Dynamics Models for Learning Dexterous Manipulation.
arXiv:1909.11652 [cs], September 2019.

[NMA+18] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba,
and Pieter Abbeel. Overcoming Exploration in Reinforcement Learn-
ing with Demonstrations. arXiv:1709.10089 [cs], February 2018.

[NPAF15] Amy C Nau, Christine Pintar, Aimee Arnoldussen, and Christopher
Fisher. Acquisition of visual perception in blind adults using the brain-
port artificial vision device. American Journal of Occupational Ther-
apy, 69(1):6901290010p1–6901290010p8, 2015.

[OAA+19] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz
Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plap-
pert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak,
Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech
Zaremba, and Lei Zhang. Solving rubik’s cube with a robot hand.
arXiv preprint, 2019.

[OAB+18] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal
Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias
Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor,
Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba.
Learning dexterous in-hand manipulation. CoRR, 2018. URL: http:
//arxiv.org/abs/1808.00177.

[OPN17] Takayuki Osa, Jan Peters, and Gerhard Neumann. Experiments with
Hierarchical Reinforcement Learning of Multiple Grasping Policies.

https://doi.org/10.1038/nature14236
https://doi.org/10.1201/9781315136370
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177

58 BIBLIOGRAPHY

In Dana Kulić, Yoshihiko Nakamura, Oussama Khatib, and Gen-
tiane Venture, editors, 2016 International Symposium on Experimental
Robotics, volume 1, pages 160–172. Springer International Publishing,
Cham, 2017. doi:10.1007/978-3-319-50115-4_15.

[PHL+] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner,
Gabriel Barth-Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa,
Tom Erez, and Martin Riedmiller. Data-e�cient Deep Reinforcement
Learning for Dexterous Manipulation. page 12.

[Pom89] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural
network. In Advances in neural information processing systems, pages
305–313, 1989.

[RKG+17] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani,
John Schulman, Emanuel Todorov, and Sergey Levine. Learning Com-
plex Dexterous Manipulation with Deep Reinforcement Learning and
Demonstrations. arXiv:1709.10087 [cs], September 2017.

[RLTK17] Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, and
Sham M Kakade. Towards Generalization and Simplicity in Contin-
uous Control. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 6550–6561. Curran
Associates, Inc., 2017.

[RPKS92] Aw Roe, Sl Pallas, Yh Kwon, and M Sur. Visual projections routed
to the auditory pathway in ferrets: Receptive fields of visual neurons
in primary auditory cortex. The Journal of Neuroscience, 12(9):3651–
3664, September 1992. doi:10.1523/JNEUROSCI.12-09-03651.1992.

[RSF13] Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321–1326. IEEE,
2013.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Adaptive Computation and Machine Learning Series.
The MIT Press, Cambridge, Massachusetts, second edition edition,
2018.

[Sha] Shadow Robot Company. Shadow Dexterous Hand Technical Specifi-
cation Shadow Dexterous Hand E Series.

[SHKM92] Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie.
Learning to fly. In Machine Learning Proceedings 1992, pages 385–
393. Elsevier, 1992.

https://doi.org/10.1007/978-3-319-50115-4_15
https://doi.org/10.1523/JNEUROSCI.12-09-03651.1992

BIBLIOGRAPHY 59

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Tim-
othy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489, January 2016.
doi:10.1038/nature16961.

[SK19] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):60, 2019.

[SQAS15] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Pri-
oritized experience replay. arXiv preprint arXiv:1511.05952, 2015.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. Mastering the game of Go without human knowl-
edge. Nature, 550(7676):354–359, October 2017. doi:10.1038/
nature24270.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics en-
gine for model-based control. In 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 5026–5033, Vilamoura-
Algarve, Portugal, October 2012. IEEE. doi:10.1109/IROS.2012.
6386109.

[TFR+17] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech
Zaremba, and Pieter Abbeel. Domain Randomization for Trans-
ferring Deep Neural Networks from Simulation to the Real World.
arXiv:1703.06907 [cs], March 2017.

[TGR18] Aaron Tucker, Adam Gleave, and Stuart Russell. Inverse reinforcement
learning for video games. arXiv:1810.10593 [cs, stat], October 2018.

[THF+17] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi
Chen, Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. #
exploration: A study of count-based exploration for deep reinforcement
learning. In Advances in neural information processing systems, pages
2753–2762, 2017.

[Tok10] Michel Tokic. Adaptive "-greedy exploration in reinforcement learning
based on value di↵erences. In Annual Conference on Artificial Intelli-
gence, pages 203–210. Springer, 2010.

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109

60 BIBLIOGRAPHY

[VBC+19a] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Math-
ieu, Max Jaderberg, Wojtek Czarnecki, Andrew Dudzik, Aja
Huang, Petko Georgiev, Richard Powell, Timo Ewalds, Dan Hor-
gan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh,
Valentin Dalibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha
Vezhnevets, James Molloy, Trevor Cai, David Budden, Tom Paine,
Caglar Gulcehre, Ziyu Wang, Tobias Pfa↵, Toby Pohlen, Dani
Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis
Hassabis, and David Silver. AlphaStar: Mastering the Real-
Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/,
2019.

[VBC+19b] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël
Mathieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard
Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai,
John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi
Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sul-
sky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, To-
bias Pfa↵, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch,
Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap,
Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Sil-
ver. Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature, 575(7782):350–354, November 2019. doi:
10.1038/s41586-019-1724-z.

[vGG+16] Hado P van Hasselt, Arthur Guez, Arthur Guez, Matteo Hessel,
Volodymyr Mnih, and David Silver. Learning values across many
orders of magnitude. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 4287–4295. Curran Associates, Inc., 2016.

[VHGS16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforce-
ment learning with double q-learning. In Thirtieth AAAI conference
on artificial intelligence, 2016.

[WSH+16] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot,
and Nando Freitas. Dueling network architectures for deep reinforce-
ment learning. In International conference on machine learning, pages
1995–2003, 2016.

[ZBD08] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Maximum
Entropy Inverse Reinforcement Learning. page 1, 2008.

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z

BIBLIOGRAPHY 61

[Zie10] Brian D. Ziebart. Modeling Purposeful Adaptive Behavior with the
Principle of Maximum Causal Entropy. PhD thesis, Carnegie Mellon
University, December 2010.

62 BIBLIOGRAPHY

LICENSE 63

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	Introduction
	Motivation
	Dexterous manipulation
	Task statement

	Related Work
	Contribution

	Basic elements
	Reinforcement Learning
	Dexterous hand manipulation task
	State space
	Action space

	Expert demonstrations

	Methodology
	Deep Reinforcement Learning
	Inverse reinforcement learning
	State-of-the-art inverse reinforcement learning methods
	Max-ent formulation of inverse reinforcement learning

	Optimisation of demonstrations with PSO

	Dexterous hand manipulation without reward engineering
	Reward normalisation
	Sample augmentation
	Exploration enhancement
	Masking of the state space

	Evaluation
	Particle swarm optimisation evaluation
	State-of-the-art IRL algorithms
	Reward normalisation
	Sample augmentation
	Masking of the state space
	Transferability of the method
	Robustness of the reward function

	Discussion
	Robustness of the learned reward function
	Combination of proposed IRL methods

	Conclusion
	Conclusion
	Future work

	Implementation details
	Physics engine and simulation environments
	Learning algorithm hyperparameters
	Particle swarm optimisation hyperparameters

	List of Figures
	Bibliography

