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Abstract

Visualizing high-dimensional data is a cornerstone in scientific data mining. The meaningful
representation of knowledge discovery in time series helps the expert to understand their data
behavior. In high-dimensional data, visualization often becomes more prominent as it can
help the user in identifying the patterns, classifications, and relationships within contributing
variables.

In time series analysis, Euclidean distance based time-series similarity plays a big role.
A novel method based on Euclidean distance so-called "matrix profile", has demonstrated use
in pattern analysis, clustering, rule discovery. Its capability to be computed in parallel has
distinguished its performance compare to other techniques. It enables us to work with many
sensors and very long time-series data.

Due to the irregularities of the sensors data, we use an unsupervised approach to infers the
feature with no specific application domain. Therefore, the developed model should be able
to be applied for any kind of time series data. Furthermore, additional study is included
to infer the background of the data source. In many data investigations, the background
study helps in developing a hierarchical systematic which guides the user to narrow down
the exploration space for a certain aspect of analysis.

After information extraction, visualization as the terminal of this study: research on in-
sightful ways to show time series similarity, segmentation, and data clustering has to be
performed. As there are many ways to visualize the data in design, information delivery,
and engagement with the users, we limit the research work on the first two parts. In a small
section, we also review the opportunities to create a more interactive way of visualization.

Keywords: data mining, high dimensional, time series similarity, matrix profile, data visual-
ization, HPC performance counters, gas turbine.
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1. Introduction

This chapter summarizes the current state of time series mining, high dimensional visualiza-
tion and the thesis objectives itself.

1.1. Fundamental of Time Series Mining

Measurements or value reading over time lead to a collection of organized data called time
series. Major time series mining-related tasks include query by content, anomaly detection,
motif discovery, prediction, clustering, classification, segmentation, and anomaly detec-
tion [1]. Nowadays, time series analysis covers real-life problems in various fields of research.
The increasing use of time series data has led to a great deal of interest and development
in extracting meaningful information using various data mining tools. Extracting useful
insight from time-series mining, however, includes numerous facets of complexity. Particu-
lar difficulties arise from time-series dimensionality and similarity measures method selection.

With the rapid growth of sensors reading, time series mining algorithms need to adapt
increasingly massive datasets. For instance, in the case of the Internet of Things (IoT), an
increasing number of powerful sensors and context information has made it important to
perform such time series analysis more efficiently by considering all available computational
resources. Some attempts to compute the high dimensionality of time series in parallelizing
mode has been done in [2], [3].

Basics of time series analysis include similarity finding. Two main approaches are known,
Euclidean Distance and Dynamic Time Warping. Based on the computed distance, further
steps are needed in recognizing the recurring pattern and partitioning time series into regimes.
Another interesting aspect of time series mining is to exploit their essential motifs. Time
series motifs itself are pairs of subsequences. Understanding the highly recurring motifs in
time series is beneficial in building predictions or clustering.
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1. Introduction

1.2. High Dimensional Data Visualization

The term data visualization expresses the idea to represent information in a graphical form
(instead of using a table). In high-dimensional data, information needs to be transformed
into datapoint which consists of n-dimensional (row-)vectors of numerals. A set of points, or
datasets are arranged in a matrix in which the number of columns is equal to the number
of dimensions. Each row displays one entry of an n-dimensional point [5]. Later, data
transformation corresponds to dimensionality reduction, regression, subspace clustering,
feature extraction, data sampling, and abstraction. The results in mining the datasets should
be valid and concise before going to be mapped and transformed visually.

Visual mapping focuses on visual encodings based on axes (e.g scatterplots, parallel co-
ordinate plots), pixels, together with animation and perception. View transformation focuses
on-screen space and rendering for various visual structures as well as screen space measures
for reducing clutter or artifacts and highlighting important features [6]. After the validation of
the visual mapping, the process can be continued further using more advanced technologies
and involving more perspectives, such as using AR, VR, and human interaction [7].

1.3. Thesis Objectives

The motivation of this thesis is to prove that we can obtain information insight and to create
a visualization design based on the matrix profile output analysis. We want to see whether
the output works accurately towards large multidimensional time series. The main task is
focused on producing essential time series subsequences (motifs) and region segmentation,
regardless of the data domain knowledge. Due to no domain aspect, we evaluate our analysis
within two data sources which are HPC’s performance counters and gas turbines. To retrieve
important characteristics mentioned above, we might need to develop a new approach in
utilizing matrix profile output for our time series mining and visualization target. Results
of these tasks at the end, need to be evaluated to proof their correctness by comparing with
other technique or fundamental theory.
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2. Background

This chapter describes the background studies of time series mining, the curse in high
dimensionality, matrix profile and visualization. We also briefly explain the background of
using matrix profile in time series mining.

2.1. Key Concepts in Time Series Mining

As previously mentioned, the fundamental task of time series mining is to find similarity and
recurring pattern. This is often continued with advanced analysis like anomaly detection,
motif discovery, prediction, clustering, classification and segmentation [1].

Time-series similarity measurement The similarity measure in time series is the most essen-
tial ingredient of time series clustering and classification systems. This calculation needs to
be done efficiently for multidimensional time series data. The two common choice of this
measure are DTW and ED distance. Eucliden distance is faster but DTW is more accurate
[ED vs DTW Figure 2.1].

(a) Dynamic Time Wrapping
(DTW)

(b) Euclidean Distance (ED)

Figure 2.1.: Basic methods for time series similarity. In terms of accuracy DTW provides
better results, but slower computation compare to ED [8].

One key aspect in time series mining is to work with lighter representation of raw data using
dimensionality reduction. After establishing a true distance measure for the raw data (e.g
with Euclidean distance), the distance between a pair of time series in lower bound space
must lower or equal to the true distance in normal space. There are several representatives of

3



2. Background

time series similarity: lock-step (Euclidean Distance), feature-based (Fourrier coefficients),
model-based and elastic measures [9]. Fourier coefficients [Fourier Equation 2.2] uses Discrete
Fourier Transform, data representation instead of raw time series, enable us to perform half
summation. Hence the computation can be accelerated [9]. This becomes the fundamental in
matrix profile algorithm that we will visit later. A detailed comprehension of raw time series
data to Fourier series conversion, can be learned more from [10].

dLn(x, y) =

(
M

∑
i=1

(xi − yi)
2

) 1
2

(2.1) dFC(x, y) =

(
θ

∑
i=1

(x̂i − ŷi)
2

) 1
2

(2.2)

Clustering Clustering on set of data is trying to group data according to some similarity
based on distance metric. The goal of clustering in time series is given a time series database
and similarity measures, find the set of clusters that maximizes inter-cluster distance and
minimizes intra-cluster variance. Several approaches for time series clustering are clipped
data representations, Auto-Regressive and K-Means. In K-Means, the determination of the
optimal k clusters can be attained using the elbow method. The idea of elbow method is to
run clustering of all possible k and measures the sum of squared errors (SSE) [11].

Classification The classification task seeks unlabeled time series T, known as TSC (Time
Series Classification) problem, and assign it to one class from a set of predefined class. Several
approaches such as using Singular Value Decomposition, however, the computation cost
is high. Other common classifiers: Nearest Neighbor, Support Vector Machines, Decision
Forest; machine learning techniques: neural networks or Bayesian classification. Deep Neural
Network model can also be used for TSC problem [12].

Segmentation There are two definitions of "segmentation" in the literature: an approxi-
mation of a signal with Piecewise Linear Representation (PLR) [PLR illustration Figure 2.2]
or partition of a dataset into several regions. The first definition aims at creating an accu-
rate approximation of time series by pertaining its meaning while reducing dimensionality.
Formally, given a time series T, construct a model of reduced dimensionality T̄ such that T̄
closely approximates T with a threshold of εr. The after results could be similar to moving
average or median in time series pre-processing. PLR has been used to DTW, similarity search,
clustering, and classification algorithm. When trying to find the approximation line, linear
interpolation or linear regression is used [13]. While the second definition of segmentation
which is more into "semantic segmentation", can be recognized as a type of clustering with
the additional constraint that the elements in each cluster are contiguous in time [14]. On the

4



2. Background

other hand, it can also be identified as a classification task if the ground truth classes as the
time series background in contiguous time are known.

Figure 2.2.: PLR fits in a noisy sine waves using pwlf library [15] to a segmented
constant(degree=0), piecewise linear(degree=1) and a piecewise quadratic
model(degree=2).

Motif Discovery Motif discovery aims to find every subsequence that appears recurrently in a
longer time series. Recurrent pattern exploration is beneficial in exploring meaningful clusters.
The interest of this topic has been triggered by the observation that subsequences clustering
produced meaningless result [16] if clustering involves arbitrary subsequences taken from its
time series native. Later, the notion of motifs can be applied to many different tasks, such as
modeling normal versus anomaly behavior implies finding recurrent two distinctive motifs in
a series. Moreover, time-series classification can be speed-ups by constructing motifs for each
class.

Anomaly Detection The common approach to detect anomalies is to create first a normal
behavior of time series and characterize subsequence that diverge far [1]. In other words,
anomaly detection tries to find outlier data points relative to some standard signal. As bottom
line principle, statistical approach begins by detecting the signal outlier using low pass filter
(Z-score), Chebyshev theorem to some current machine learning techniques such as regression
using LSTMs, RNNs, DNNs, density-based techniques (k-NN and isolation forest) can be
used to detect time series anomaly [17].

5



2. Background

2.2. The Curse of High Dimensionality

One limitation concerning the data learning algorithm is the curse of high dimensionality,
where an exponential increase in data size is unavoidable. As shown in [18], the volume of a
unit-radius sphere with respect to the dimension of the space also show that if the number of
dimension increases until a certain point, the volume of radius sphere will go nearly to zero
means that there is no value of adding multivariate features [high-dimensional phenomena
Figure 2.3].

Figure 2.3.: Four phenomena in high-dimensional spaces [18].

In multi-dimensional Gaussian distribution, the probability of randomly picked data from the
center in valuable 1st dimension would be 90%. As the dimension increases, this probability
will become lower [18]. Therefore, in terms of clusters visualization, the preliminary steps
of dimensionality reduction are needed. Dimensionality reduction enables exploratory data
analyses by reducing the complexity of the datasets and still preserving reasonable distance
between cases or subjects.

Dimensionality in time series has several meanings. It can mean the number of metrics
involved (multivariate time series) or the value of a single time series. Some popular dimen-
sionality reduction algorithms for multivariate time series such as PCA and t-SNE. Because
of the expensive computation of PCA, in the time series clustering task, where data has
temporal relation, some researchers are considering multi-dimensional scaling (MDS) to
create low-dimensional representation [19] [20]. Where the dimensionality reduction of time
series value can be solved by PLR, SAX or bits compression with MDL (will be discussed in a
later chapter).

6



2. Background

2.3. Matrix Profile for Time Series Similarity

Pattern finding in time series starts from similarity measurement between pairs of time series
or between itself (self-join). The latter can be defined as a similarity join problem, where
given individual data object, one can retrieve the nearest neighbor for every object [21]. Initial
work of similarity join [22] uses conversion to the lower-dimensional representation of time
series using SAX. The lower dimensionality was determined by certain regions, e.g a, b, c in
[SAX Figure 2.4]. From there, the similarity is found by computing the distance between the
sequence of lower-dimensional representation.

Figure 2.4.: Time series transformation to SAX sequences [22].

On the other hand, Matrix Profile computes the full distance matrix of all subsequences in
one-time series with all subsequences in another time series, without converting to lower
bits of time series. From the matrix profile, we can retrieve the 1-NN of subsequences in
time series [21] [matrix profile Figure 2.5]. The companion vector comes with matrix profile
distance is matrix profile indices where it tells the location of nearest neighbor [matrix profile
indices Figure 2.6]. By having a reference of the most similar neighbor in time series, this
will help us to look for patterns and motifs in time series.

Matrix profile algorithm returns two vectors:

• Matrix profile distance, the Euclidean distance of the subsequence T i, i + m to its nearest
neighbor elsewhere in T.

7



2. Background

• Matrix profile index, is the location of the ith’s nearest neighbor in T.

Figure 2.5.: A time series T and its self-join matrix profile P. Self-join means that a single
time series compare with itself [21].

Figure 2.6.: An illustration of Matrix Profile indices, where it indicates the nearest neighbor
of an mp index. It can be symmetric, but not always true, e.g 1270 to 1892 is

symmetric however 3450 to 4039 is not [14].

2.4. Multidimensional Pattern Recognition

Multivariate or multidimensional implies the exploration of multiple signals in parallel. In
many multidimensional pattern exploration research, they need to transform the data into
reduced representation [23]. In 2005 Tanaka et.al [22], many dimension time-series were
transformed into 1-D using PCA. However, this approach will not able to capture activities
from each sensor with small timing and length difference. This also comes with the fact that
not all sensors are synchronously working together. A group of sensors might be idle during
the first 5 seconds, then they work together with other groups according to the activation,
then some sensors might accelerate, some might go back to the idle phase. This complexity in
multidimensional time-series analysis needs to be solved by capturing the signals from each
sensor separately.

Dimensionality reduction has to be done to capture meaningful features, in which dif-

8



2. Background

ferent pattern behaviors of signals from each sensor still can be captured. When only a
single-dimensional to the analysis, fewer patterns will be detected because repeated signals in
continuous time are treated as a single pattern. Moreover, one can expect, a hidden abnormal
behavior that occurs from a single sensor can be detected while the rest of the sensors are
working properly.

2.5. Utilization of HPC Resources

Utilization of HPC systems for matrix profile computation has been done in some research
works [2],[3] [matrix profile cells partition in parallel Figure 2.7]. Each tile represents a
segment of time series pairs while in mSTAMP computation. This will allow the computation
to scale to a very large input size and distribute the computation into different machine [25].
The increasing amount of data has made it important to extend the algorithm using multicore
programming, parallelization, and GPU/HPC acceleration [3], [26].

(a) Trivial parallelization among 3
processes

(b) Tiling scheme of distributed parallelization
among 16 processes

Figure 2.7.: Partitioning illustration of work among processes for self-join computation where
A is the time series computed against itself. PA,A is the matrix profile distance

and IA,A is the matrix profile index. Distributed parallelization is the more
refined work of [3].
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3. Related Works

This chapter covers the theoretical foundations: matrix profile syntax conventions, motif
discovery and segmentation, sub-sequence clustering using matrix profile, visualization
approach, and hierarchical data analysis.

3.1. Definitions

This section introduces common terms used in time series mining. All definitions are taken
from [27].

Definition 1 A time series T is an ordered sequence of n-real valued numbers t ∈ R :
T = [t1, t2, ..., tn] where n is the length of T.

Definition 2 A subsequence Ti,m of a T is a continuous subset of the values from T of
length m starting from position i. It can be formulated into Ti,m = [t1, t2, ..., ti+m−1].

Definition 3 A time series motif is the most similar subsequence pair of a time series
T.

Definition 4 A distance profile MPdistance ∈ Rn−m+1 of a time series T and a subsequence
Ti,m is a vector that stores dist(Ti,m, Tj,m)∀j ∈ [1, 2, ..., n−m + 1].

Definition 5 A matrix profile MP ∈ R−+1 of a time series T is a meta time series that stores
the z-normalized Euclidean distance between each subsequence and its nearest neighbor,
where n is the length of T, and m is the given subsequence length.

Definition 6 A multidimensional time series T ∈ Rdxn is a set of time series T(i) ∈ Rn :
T = [T(1), T(2), ..., T(d)]T where d is the dimensionality of T and n is the length of T.

10



3. Related Works

Definition 7 A multidimensional subsequence Ti,m ∈ Rdxm of a multidimensional time series T
is a set of univariant subsequences from T of length m starting from position i. Formally, Ti,m

= [T(1)
i,m , T(2)

i,m , ..., T(d)
i,m ]T.

Definition 8 The k-dimensional distance function or dist(k) computes the distance between
two multidimensional subsequences by using only the best k out of d dimensions.

Definition 9 A k-dimensional matrix profile P ∈ R−+1 of a multidimensional time series T
is a meta time series that stores the z-normalized Euclidean distance between each subse-
quence and its nearest neighbor, where n is the length of T, d is the dimensionality of T, k is
the given number of dimension, and m is the given subsequence length.

Definition 10 An all-subsequences set A of a time series T is an ordered set of all possi-
ble subsequences of T obtained by sliding a window of length m across T.

Definition 11 1NN-join function: given two all-subsequences sets A and B and two sub-
sequences A[i] and B[j], a 1NN-join function Θ1nn(A[i], B[j]) is a Boolean function which
returns "true" only if B[j] is the nearest neighbor of A[i] in the set B.

3.2. Motif Discovery and Segmentation

Motifs can correspond to complex behaviors that capture common sequences of state transi-
tions. This works by comparing structure similarity in subsequences. Hence, motif discovery
target is to collect the most similar pairs in time series T. Here, we will review mSTAMP
and basic ideas of MASS (Mueen’s Algorithm for Similarity Search) time series algorithm for
similarity search and motif discovery.

3.2.1. mSTAMP Algorithm

mSTAMP is one of the naive algorithms to compute matrix profile for multidimensional time
series. It computes k combinations out of d dimensions in combinatorial search space. The
complexity of the algorithm is O(dlogdn2) time and O(dn) space. Because of these low com-
plexities in time and space, it has enabled mSTAMP to perform efficiently [28]. When looking
for dimensionality reduction, constrained or unconstrained search of included dimensions
can be applied. Constrained search looks for a predetermined set of dimensions from the
user. When the user has little knowledge about the reasonable dimensions to choose, it is

11



3. Related Works

necessary to support unconstrained search. The difference is when choosing k number of
dimensions where 1 ≤ k ≤ d, and typically k � d; where k is done by the algorithm as the
natural dimensionality of a repeated structure in the data.

Unconstrained search in mSTAMP works by dimensionality reduction using Minimum
Description Length (MDL) principle [28]. In the first option, given d dimensional data, matrix
profile also returns d dimensional matrix profile. Then from each of the dimension in matrix
profile, we take the distance profile value and mapped it into elbow plot, where the breaking
point in elbow plot casts the best k dimensionality[elbow plot Figure 3.1].

Figure 3.1.: Elbow curve for 10 dimensional time series. The turning point in elbow plot
shows the best k dimensionality, which in this case is 3.

The most essential reason of using matrix profile based method because of its scalability and
time performance compare to other methods in similarity pairs finding. STAMP is the only
algorithm that does full joins on time series subsequences. Referencing to the computation of
218 data points, the comparison to the other method: TSFR (MapReduce), HSDJ (MapReduce),
Optimized Nested Loop Table 3.1:

TSFRDAA HDSJI−SAX ONL STAMP
51.7 hours 19.6 min 28.1 hours 1.17 hours

Table 3.1.: Time series similarity techniques comparison to STAMP [21].

3.2.2. Minimum Description Length (MDL)

MDL shows that the best description of the data is given by the model which compresses it
the best.

DNorm(Ti,m) = round
(

Ti,m −min
max−min

× (2b − 1)
)
+ 1 (3.1)
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3. Related Works

Figure 3.2.: Time series subsequence represented at different bit precision [19].

For any time series T, to determine how many bits it takes to represent, we can approximate
the Kolmogorov complexity by using Huffman coding. The compressed file size is an upper
bound to the description length (DL) of the time series. Therefore we can approximate the
total number of bits required by looking at the encoded file size from the Huffman coding.

DL(T) = |HuffmanCoding(T)| (3.2)

The idea to use this concept is by comparing a real value time series data with its hypothesis
(reduction). This lower bound shape of the real value time series can be approximated with
DFT, APCA, SAX, PLR [19].

3.3. Semantic Segmentation

Semantic segmentation divides time series into several regimes. Assume we have a system
S, which can be divide into some regimes (e.g An exercise routine contains of warm-up,
stretching, resistance training and cool-down [29]). Segmentation on a data sequence has been
successfully developed by using Hidden Markov Models (HMMs). Another approach, FLUSS
algorithm from Garghabi, et.al [14] that also extends mSTAMP algorithm. While HMM
exploits statistical changes to mark the segment cuts, FLUSS uses counting of the crossing
arcs number. The crossing arcs are basically the MPindices returned from mSTAMP. The
fewer arcs crossing across a region, the more likely that time series region becomes the cuts
(segment border) between a region and its neighbor.

13



3. Related Works

Figure 3.3.: The arcs crossing across their own regime (colored in grey and yellow). The
dashed vertical line is the hint for the breaking point of regimes change.

The task of FLUSS is to produce companion time series Arc Curve (AC), which annotates the
regimes changes likelihood in time series. The intuition is as follows: within a single regime
we can expect that most subsequence will have a nearest neighbor close to them, which if we
imagine that one subsequence pointing to another subsequence and vice versa Figure 3.3, we
can think that these subsequence are in the same regimes. Therefore, the previous lemma of
fewer arcs crossing could be a hint of regimes change.

FLUSS takes a time series T and pre-defined subsequence length as inputs. FLUSS out-
puts AC vector of length n, where each index i contains the number of how many nearest
neighbor arcs from the MPindex spatially cross over i. Regimes change detection can be
spotted by looking at this AC vector, where Arc Curve has a low value at the location of the
regimes change[AC transformed into CAC Figure 3.4 in detecting regimes changes].

Figure 3.4.: The CAC (Corrected Arc Curves, where AC has been corrected with inverted
parabola) minimizes in index where regimes changes [30].

14
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An ideal AC shape resembles an inverted parabola with its height
1

2n
. Further, regimes can

be extracted from the CAC. This regimes extraction works like k-means clustering, where
it requires k number of cluster as user input. Their Regime Extracting Algorithm (REA)
searches for k lowest "valley" points in the CAC. FLUSS sets up an exclusion zone to prevent
the second segment cut is chosen from the consecutive point. The exclusion zone is important
to pick the next regimes with some distance from the current segment cut.

3.4. Subsequences Clustering

Clustering on time series can be recognized into two variants, whole clustering on complete
selected sequences in or subsequences clustering. Time series subsequences cannot be
simply plugged into a MDS framework. Given a single time series, sometimes in the form
of streaming time series, individual time series subsequences are extracted with a sliding
window. Clustering is then performed on the extracted time series sub-sequences [16]. The
other way of clustering time series is by means similar to conventional clustering of discrete
objects. It clusters similar time series into the same cluster.

3.4.1. Multidimensional Scaling (MDS)

MDS is one of the related techniques used for dimensionality reduction before visualization.
Given k dimensional objects, MDS can preserve the distance between objects as well as
possible. MDS based visualization has been done in subsequence with different events and
range. Keogh et.al [16] demonstrates a clustering of time series subsequences is bad where all
subsequences are involved. In identifying important subsequences, MDL framework can be
used as subsequence proposing algorithm using discrete time series normalization Equation 3.1.
The normalization tries to find out the most optimum bit to compress the time series
subsequence without reducing the precision subsection 3.2.2. In summary, MDS in time series
has been used for the subsequence selection problem by testing all subsequences and pick
one that minimizes the total bit cost.

3.4.2. Top k-motifs Algorithm

Top motifs are subsequences or some region in a time series that has appeared many times.
One motif represents a single subsequence that recurrence many times. Hence, in k top
motifs, there are several different k subsequences which represent k different motifs. As
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Euclidean distance in matrix profile is an excellent proxy for picking the location of motifs
candidate, semantically meaningful sub-sequence in time series will also have local extrema
in matrix profile[motif and discord Figure 3.6-part(a)]. Discovered motifs is beneficial in
recognizing frequent patterns. In Figure 3.5 shows a use case of multivariate time series
pattern visualization in the data center.

Figure 3.5.: Motifs visualization in describing high and low efficiency in data center [31].

3.4.3. Top k-discord Algorithm

Discords in time series data represent a subsequence candidate which has the farthest eu-
clidean distance with the rest of the data which might be a candidate of an anomaly in
the dataset. However, not all unusual patterns are important. Finding top-K discords on
many occasions is more important than only discovering the most or all unusual patterns.
Facilitated by matrix profile, top-K discords discovery can be investigated by taking the
highest point in matrix profile distance[motif and discord Figure 3.6-part(b)].
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(a) The minimum value of the matrix profile corresponds to a pair of time series
motifs in the power usage data. The best time series motifs detected in red and

green color.

(b) The maximum value of the matrix profile corresponds to discord or anomaly in
raw time series data.

Figure 3.6.: An example of motifs and discords discovery on power usage data. Source [21]

3.5. Time Series Pattern Visualization

Temporal data is subdivided into temporal and structural domains. Visualization of the
temporal domain focuses on the historical change of time evolution, while the structural
domain focuses on the correlation of values in the data. Frequently, structural domain analysis
will ignore the aspect of the time evolution in time series data [24]. Most often visualization
of temporal data is in shapes of plotline or stacked graph. The complexity of visualizing data
increases where data are too large, not only in terms of data point but also in the number of
features observed. Ordinary visualization of such data can lead to overcrowded and cluttered
displays [24].

The most important criteria from a visualization point of view are the following: when
dealing with large volumes of data, additional analytical methods have to be included to
derive a higher level of abstraction of the data[32]. Visualization techniques that can exploits
pattern similarity become important. Time series are commonly represented as line charts, but
a considerable amount of work has examined alternatives visual encodings, such as horizon
graphs [33] and heatmap or colorfields [34].
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A clustered color with the light and saturation color can be useful to display the pattern in
time series. Some of the visualization using hierarchical analysis in the start before they map
the data following to its saturation color properties. Visualization based on color saturation
can be represented in CircleView Figure 3.7 or Line graph (colorfields). The color follows
the intensity of the value, for instance, the more important feature has a more intense color.
In many cases of scientific visualization, the transition of color intensity can be created by
creating a sequence of linear space or using complex numbers. Another common approach
for the time series visualization is by using a stream graph (ThemeRiver) Figure 3.9.

In visualization, it is important to fit every feature to visualization space. To this end,
hierarchical structures to find data granularities, such as by analyzing the data correlation,
information gain and statistical methods to get the concentration of interesting part of the
data based on user objectives. Improvisation on data granularity can be improved by em-
ploying tree structure like SpaceTree, HyperSlices, Hierarchical Parallel Coordinates and
Multiresolution approach Figure 3.7.

Figure 3.7.: Multiresolution compute hierarchy of views that present the data at different
levels of detail. It shows more relevant objects at higher detail. The more relevant

the data the more contrast the color intensity. Source: [32]
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Figure 3.8.: Arc diagram visualization of Für Elise music structure [33]

(a) Stream graph of time series data over
years.

(b) A-thal genes. Source:Helmholtz Munich

Figure 3.9.: Each color in stream graph corresponds to flow of a single feature while color in
heat map correlates with value intensity to the color maps (blue-red).

Time series data can be processed later into something more meaningful such subsequences
clustering. One of the visual representations of clustering is a scatter plot. An example of
such data visualization is Embedding Projector Figure 3.10 by Tensorflow [34]. In this project,
user can interact with the visualized points for instance with mouse clicking where it will
show more details about a point and its cluster. It also provides other features such as doing
dimensionality reduction over iteration until the points are converged.
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Figure 3.10.: Embedding Projector by Tensorflow on Mnist data [35]

3.5.1. Interactive Data Visualization

There are starting point tools for data visualization with projection on a 2D screen such as
Matlab, Matplotlib, OpenGL, or a web-based visualization using WebGL. A study [36] started
the development of data visualization in VR 3D using Unity 3DTM. They combined web
browser interaction as an interface to an immersive 3D space that facilitates the exploration
of data in VR in a "game-like" environment. One approach is to have "scatter plot" look like
using point cloud based element in the game engine environment [37].

Figure 3.11.: Illustration of point cloud prototype in Unreal Engine (plugin by LRZ).
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This chapter summarizes the thesis roadmap and background study in data source and
preparation.

4.1. Thesis workflow

This work roadmap consists of several steps from data production, preparation, data mining,
and relevant visualization tools [thesis work plan Figure 4.1].

Figure 4.1.: Thesis work plan.

The works started by producing and collecting data from different sources. In collecting data
from performance counters, we need to set up a script that will run different application
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benchmarks. Hence, background knowledge on how to acquire the intended dataset is
needed. On the other hand, for the gas turbine data, because the data was already batched,
we can continue the step directly into data preparation.

Our time series mining uses the Matrix Profile approach. Data preparation before mSTAMP
includes grouping several sensors together and data filtering. In mSTAMP, the window sizes
are identified based on the length of interesting subsequences in the dataset. The output
from mSTAMP (MPindices and MPdistance) can then be further analyzed to produce useful
insight, which will be the main focus of this thesis. After developing the analysis model, we
will evaluate these results to assess the accuracy of the analysis. Further, some visualization
approaches will be explored to present the results in a meaningful manner. In this work,
we will only focus on static visualization and further possibilities to reach an immersive
visualization.

4.2. HPC’s Performance Counters Case Study

To generate the sensor data in the HPC environment, events trigger to some parts in the
system can be produced by running a common benchmarks application. In this work, we
deployed benchmarks reading using Coral2 [38].

4.2.1. Coral2 Benchmarks

Application benchmarks in this thesis work include Kripke, AMG, Nekbone, and LAMMPS
from Coral2 [38]. Nekbone targets scalable science while the other focuses in throughput mea-
surement. Nekbone solves a Poisson equation where each process having the same amount
of computational work. Kripke has a wavefront algorithm which stresses more the memory
throughput on a structured grid algorithm. AMG tested parallel performance on unstructured
multigrid methods which consume main memory bandwidth. LAMMPS, is used to simulate
materials modeling and is intended to measure compute, memory bandwidth, and network
latency performance.

Data are obtained using DCDB [39] framework, in which it has defined the level of the
performance counters that can be retrieved. It would be beneficial if the application runs on a
certain MPI configuration [40] and be able to acquire the data only from related sensors. For
instance, we can define how many cores the application will run using I_MPI_PIN_DOMAIN.
We can also investigate the related metrics via MPI (Message Passing Interface) debug options.

22



4. Experimental Approach

In summary, DCDB can perform information up to the system core level. These data will be
grouped belongs to their criteria in subsection 4.2.2.

4.2.2. Top-Down Approach for HPC’s Performance Counters

Yasin et.al [41] designed a top-down analysis approach to identifies critical bottlenecks
in CPUs. The counters from DCDB will be conformed using this approach. There is a
limitation where some counters have no pair match with DCDB specification. Therefore,
we will approximate a matching pairs between available DCDB sensors and required PMU
counters in [41], is described in [top-down for DCDB Figure 4.2] and [DCDB’s sensors group
Table A.2].

Figure 4.2.: The top-down categorization for HPC’s performance counters.

4.3. Gas Turbine Case Study

Gas turbine produces a huge amount of data[46]. As we stated earlier, we will perform our
analysis on different data source. The difference between this use case and the performance
counters lies on no ground-truth labels available in the analysis (unconstrained search subsec-
tion 3.2.1). Meanwhile, in HPC’s performance counters, we can label the time duration where
the application runs which turn into our ground truth in the analysis.

We grouped gas turbine sensors into speed (TNH_RPM), power, temperature, pressure,
valve position, and gas detector [gas turbine sensors group section A.4]. Power sensor will
be kept in each group to see the impact of its down-time and up-time towards reading
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of the other sensors in a group. Then sensors with multiple reading and similar prefixes
with others in the same group are averaged together. We also apply data sampling and
filtering to the sensors based on its noise level. Based on the behavior in the dataset, we
perform two different analyses: when the machine has gone through multiple idle phases or
steady run in a certain time duration. When conducting an experiment for a stable run, the
data regions of idle time is removed by removing any value below the mean value of the speed.

For statistics review, this dataset is available in second precision. The total size of a single
sensor is around 32M data points. After a 20 seconds sampling rate is applied, it has reduced
to 1.7M data points. For current analysis, only some parts in the colored boxes are taken[gas
turbine data sample Figure 4.3]. The data size in both regions, idling and steady, are 60000
and 35000 data points respectively.

Figure 4.3.: Data investigation on sample focuses in regions across red (time series with idle
phases) and light blue (stable regions with no idle phase) colors.

4.3.1. Filtering

When time-series data has high noise, it could create more dissimilarity instead of similarity
between time series pairs in matrix profile computation. In this case, filtering helps to smooth
the data to a certain threshold t. Although the purpose of filtering is to reduce the noise, the
subsequences shape from original data has to be in recognition for matrix profile computation.
Therefore, when filtering is needed, we try first with different filter window sizes to see how
far information loss is accepted. We filter gas turbine data before mSTAMP, while we skip
this part for Coral2 because the subsequence shapes are already clear.

A widely used class of filters is moving windows. The wider the window size q the more noise
will be removed, however, it can cause more data points loss. Moving average by window
size also removes some points by q in the first part of data. Therefore, the q parameter is
decided by how fine expected granularity of the output and the length of raw time series data
q� n. Another approach of data filtering is by applying a weighted exponential filter (EMA
or EWMA). This filtering option does not eliminate the first q part of the data. Although, the
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outlier suppression is weaker than moving mean [42], for our analysis we chose this filtering
method to avoid any data points removal.

4.4. Outlier Removal

The intention to use outlier removal in our analysis is to remove the high frequency noise
in MPindices after being transformed with MDL. This intuition occurs where a segment in
dataset should have similar pointers distribution to other region in dataset Figure 3.3. Turns
out, applying low-pass filter (using moving average and standard deviation) to the MPindices
works better compared to without pre-liminary transformation on MPindices. Outlying points
can be set by dynamic threshold t of the sigma-rule in interval [µ− t ∗ σ, µ + t ∗ σ] and |zi| > t.

zi =
xi − µ

σ
(4.1)

4.5. Method Evaluation

Basic precision and recall will be used to measure the performance of the analysis. They con-
sist of TP (True Positives), FP (False Positives), FN (False Negatives), TN (True Negatives) [43].

Precision =
TP

TP + FP
(4.2) Recall =

TP
TP + FN

(4.3) F1score =
2 ∗ P ∗ R

P + R
(4.4)

These performance metrics are used to measured all detected label in our segmentation and
motifs discovery analysis. Precision is the fraction of all detected segment or motif labels,
whereas recall is the fraction of all real segments or motifs that are successfully detected.

Actual

Pr
ed

ic
te

d + -

+ TP FN

- FP TN

Table 4.1.: Definition of TP, FP, FN and TN in comparing the actual and predicted label.
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5. Matrix Profile, Motif Discovery and
Segmentation

As previously mentioned time series mining in this thesis study is based on the matrix profile
output from mSTAMP, where the flow of the algorithm can be described:

Algorithm 1: mSTAMP Algorithm [21]
input : TA, TB and window size with length m
output : MPdistanceA,B, MPindexA,B, MPdimsA,B

1 nb ← Length(nb)
2 MPA,B ←infs, MPIndexA,B ←zeros, idxes←1:nb −m + 1
3 foreach idx in idxes do
4 QT← SlidingDotProducts_FFT(Query Q, Time series T)
5 µQ, σQ, MT, ΣT ← ComputeMeanStd(Q,T)
6 D← CalculateDistanceProfile(Q, T, QT, µQ, σQ, MT, ΣT )
7 MPA,B, MPIndexA,B ← ElementWiseMin(MPA,B, MPIndexA,B, D, idx)

8 return MPA,B, MPIndexA,B

When calculating the distance profile algorithm 1-line 6, the algorithm uses Equation 5.1
which applies Pearsons’ correlation ρA,B, instead of using z-normalized euclidean distance
Equation 2.1.

δA,B =

√
2m
(

1− QA,B −mµAµB

mσAσB

)
=
√

2m(1− ρA,B)) (5.1)

The main hyperparameter tuning involves in the algorithm is the window size. Window
sizes are currently chosen by visual observation on the raw time-series dataset, wherever
some parts are more likely leads to recognition of data pattern. The chosen window with
size m slides across T and by this definition the subsequence Ti,m will be compared with
the rest of data T. When doing the similarity of multidimensional time series, every time
series subsequence captured in a window size of m will be compared to subsequences in
all dimensions. The output at the end of the algorithm is the value when 1NN-join is true,
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indicated by local minima in matrix profile distance.

5.1. Matrix Profile with Different Window Sizes

The decision of window sizes in mSTAMP algorithm needed will depend on the length of
the pattern that we would like to observe. For illustration we describe matrix profile analysis
on a dummy time series data which consists of multiple sine, tooth saw, and square signal
forms Figure 5.1. We would like to see how our matrix profile output looks like given these
signals on multidimensional time series Figure 5.2.

Figure 5.1.: Repeated different signals (sine, toothsaw, square) and random. The length for each
signal pattern is 80. The coloring red and green are to show the area of time series
data that we want to identify in latter task.

We can see, when m is set close to the pattern length of the signals (m = 80), MPdistance
indicates a local minima which covers the signal pattern. Unique subsequences Ti,m with
m ≤ 80 might be detected from the 5th dimension, however, mSTAMP does not recognize
any impact on the analysis from including this dimension. It is demonstrated by the 5th

dimension of matrix profile value, local minima moving far from 0. In the intuition of
mSTAMP algorithm, any unique pattern in original T data can be investigated by tracing the
regions of local minima on matrix profile.
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Inspection on the signal pattern in Figure 5.1 colored in green, it is showing signal on
1st, 2nd, and 4th dimensions on the time-series T data. If we look into the matrix profile
distance for these three dimensions, we can see the local minima in matrix profile of the
first 3 dimensions are close to zero, thereafter the local minima moving away from 0. This
knowledge leads to the conclusion that 3 out of 5 dimensions are important in recognizing
the green pattern. Now, if we investigate the red pattern, the signals present on 1st, 2nd, 3rd

and 4th dimensions. The MPdistance are still close to 0 until the 4th dimensions. Therefore
four dimensions are important in recognizing the red pattern. This is basically the intuition
of elbow curve in selecting the k dimensionality.

Figure 5.2.: Multidimensional matrix profile distances (MPdistance)given multidimensional
time series in Figure 5.1 with varied window sizes. As matrix profile returns
n-m+1, where n is the length of a single T, m is the window size, thus it will not
cover m-1 data points in time-series T tail into the analysis.

5.1.1. MDL for dimensionality reduction

We can now put our multidimensional MPdistance into our core analysis, which consists of
finding its MDL and transforming the multidimensional MPindex based on their MDL. As
MDL is usually used to find the best compression of time series data, here we use MDL to
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find the best k dimension algorithm 2-Part I. MDL can be found by compressing it to the
most optimized bit by Huffman coding, however, we take another approach by calculating
the derivative of multidimensional MPdistance value (elbow point) for each data point. This
comes from the idea in [28], that k-dimensional MPdistance can be produced by solving
min

x
‖MPdistance‖0 ∀j ∈ [1, 2, ..., n−m + 1], where k is the vector of included dimensions. In

terms of k expression, because of the programming nature, k will start from 0 while it means
1st dimension instead of 0th. Hence, when talking about the best k dimension, we refer to k+1
dimension Figure 5.3.

Figure 5.3.: Elbow curves from Figure 5.4 of detected orange and green colored patch
respectively. The orange colored patch involves at best 3 dimensions, while the
other one involves at best 4 dimensions.

For every data point, we can then pick the value of data point i in MPindex-k, where the
whole output later is known as our filtered MPindex. As a reminder, MPindex hints to another
area in T where it informs the location of their nearest neighbor. The output of our filtered
MPindex usually still has noises in this indexing system. The perception where a cluster of
indexes in a certain subsequence Ti,m should in all point to the somewhere another region in
the same cluster. In other words, MPindex of a subsequence Ti,m[a] should point altogether
to the most similar subsequence Ti,m[b]. Aggregation of MPindex by reducing the variation
around a certain range of the index is important to have a finer visualization Figure 5.4.
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Algorithm 2: MPindex Filtering towards its MDL properties
input : MPdistance, MPindex, f_window, sigma
output : adapted_mpi

1 // Part I: MDL computation for each data point in T

2 mdl_dim← []
3 for i← 0 to length of MPindex do
4 for k← 0 to size of MPdims do
5 // derivative of elbow curve

6 elbow_dim← []
7 der← MPindexk+1,i - MPindexk,i

8 elbow_dim.append(der)

9 k← minelbow_dim

10 // k is the best dimensionality

11 mdl_dim.append(k)

12 // Part II: MPindex filtering based on its MDL for each data points in T

13 adapted_mpi← []
14 min_dim← minmdl_dim

15 max_dim← maxmdl_dim

16 // min_dim, max_dim can be replaced by x1 and x2, where minmdl_dim ≤ x1 ≤
x2 ≤ maxmdl_dim

17 for i← 0 to length of mdl_dim do
18 if mdl_dim[i] ≥ max_dim and mdl_dim[i] ≤ min_dim then
19 // the dimension is within dimensionality range

adapted_mpi.append(mdl_dim[i])

20 else adapted_mpi.append(0);

21 // apply low pass filter and linear interpolate, deviation ≈ 1σ to 2σ

22 adapted_mpi← lowpass_filter(adapted_mpi, f_window, sigma)
23 return adapted_mpi

The filtering of MPindex starts by canceling the pointers that are perceived as noise. For
instance, in this simple 5-dimensional case, dimensionality in the regions where the signal
is not meaningful can be ignored or k set to zero. This step will reduce the complexity of
MPindex filtering in the next step. However, this step is mostly skipped because the signal
patterns in the dataset are not distinctive. Subsequently, pointers in MPindex still need to be
aggregated by removing the sudden indexing shift.
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The outlier removal technique is the approach to complete the task. Filtering by low-pass
filter using parameter f_window (line 19) and later where the indicated outliers with deviation
more than 1 to 2 σ are removed and replaced by linear interpolation of its closest neighbors.
The deviation should be around these values because we want to smooth out the noise in
MPindex without eliminating the meaningful pointers shifting in some regions. After getting
through all steps, the MPindex is now more representative and we called it Adapted MPindex
for future reference Figure 5.4. To note down, every figure that represents pattern recognition
in the next section will have their experiment setup reference, as a change in one of these
values can affect the final result and also for easier investigation, see section A.2.
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Figure 5.4.: Application of adapted MPindex to the multidimensional T. The transforma-
tion of smoothing out the pointer noise from MPindex to adapted MPindex and
goes until recognizing meaningful time series segment. [setup: sampling 1s,
EMA=0, mp_window=80, f_window=43, sigma=1, cp_gap=140, cp_peak_t=400,
mpindex_var_t=1000].

In the next section, we will describe the paths in obtaining the segment length, motif location,
and the coloring scheme based on adapted MPindex regardless of its multidimensional aspect.
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5.1.2. Local Extremum in Matrix Profile Distance

Investigation on MPdistance becomes fundamental in discovering motifs, segmentation, and
clustering tasks. First, meaningful regions in the matrix profile need to be defined. This is
done by selecting the peak/valley points in matrix profile which can be similar to searching for
local minima or maxima in signal processing. In order to obtain these values in a matrix pro-
file, one approach is to use the combination of gaussian kernel algorithm 3, scaling, and rolling
the matrix profile values. The other option is by using find_peaks library in Scipy which works
by comparing neighboring values in a signal or find_peaks_cwt with its wavelet transformation.

Algorithm 3: Local minima using Gaussian Filter
input : 1D array
output : local minima

1 gaussian_shape← scipy.general_gaussian(p←1, standard_deviation, gaussian_width)
2 convolved← FourrierConvolve(gaussian_shape, distance)
3 convolved← µMPdistance/µconvolved × convolved
4 convolved← roll(convolved, window_size)
5 peaks← relativeExtrema(convolved, elementWiseLessComparison)
6 // select to only lowest peaks under median value of MPdistance

7 return peaks

The algorithm mentioned above needs parameter tuning such as the shape of the Gaussian
with adjusting the p value. Thereafter, the data is filtered to the gaussian window that we
already have using FFT convolve (line 4-6). The local extremum can be obtained when the
Gaussian fits the data. The median value of the data is needed to set the threshold for picking
the valley peaks with a value smaller than the median (line 9-10).

Figure 5.5.: Local extremum (marked with red points) found on a matrix profile with relative
to its original data. Finding the peak valleys can determine the occurrence of
patterns in time series.
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In some cases, the technique mentioned above still could not find the peaks accurately, the
other approaches are also being used interchangeably as long as the local extremum can be
retrieved. After several experiments, most of the time, find_peaks performed the best. The
results difference are shown in Figure A.8 and Figure A.9.

5.2. Matrix Profile-based Motifs Discovery

Motifs in time series represent a particular trend that happens which can be recurring many
times in localized or different regions in data. Because multidimensional time-series data
are involved in motif discovery tasks, our problem is described as multidimensional motif
discovery. Retrieved peaks from the previous step are the best indication of motifs location,
however, this alone can not be used to return the top motif. The length m of each subsequence
motif needs to be known.

Ideally, when the pointers of the MPindex are shifting far from the current average pointers
value, it indicates another new regime such as described in section 3.3. While we previously
took the abstraction of the MPindex (adapted MPindex), this leads to a new way of deriving the
subsequence length required for each motif. A sudden jump of pointers in adapted MPindex
will show peak when the forward differential Equation 5.3 is applied. Meanwhile, the slope
in constant increment or decrement in adapted MPindex pointers will stay insignificant.

MPindex′f d(x) = MPindex(x + 1)−MPindex(x) (5.2)

where MPindex = adapted_mpi (5.3)

algorithm 4 describes the steps in obtaining the segment lengths m of Ti,m is needed to
recognize the subsequence motifs. Two parameters that are involved in this step are the
minimum distance between changepoints cp_gap to marked down the segment region and the
minimum height of the spike cp_peak_t occurred from taking the first derivative of MPindex. It
does not necessarily take the highest value of the spike that occurred is the valid changepoints
or cuts between regions.

As shown in Figure 5.4 changepoints even occurred with a height between 140 and 200.
In the same figure, other changepoints are detected around time-point ≈ 1800. We can
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assume the cp_gap ≈ 140 will safely capture the important signals with length m and able in
ignoring the rest. Hence a harmonize fit of cp_gap and cp_peak_t is necessary. Because the
adjustment of these two values is currently taken by visual inspection with looking back into
the original data, this also becomes part of the future works whether it is possible to create
an optimization to tackle this problem.

After segments in the dataset are found respective to their changepoints, only some of
them are important and could lead to meaningful motifs discovery. Motif in the matrix profile
has a minimum distance to its nearest neighbor, while it is true by selecting the minimum
values (peaks) in MPdistance. This also has been mentioned in subsection 3.4.2, where the
idea behind top-k motifs is by looking for a couple of points (Pi, Pj) where the walk of i→ j
is the index range of motif window, where j− i ≤ m. Therefore, the segment locations where
there is one or more MPdistance local minima lie in between are the indication of the top motifs.
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Algorithm 4: Changepoints detection
input : adapted_mpi, cp_gap, cp_peak_t
output : changepoints

1 // Given adapted MPIndex and window size for matrix profile computation,

find the changepoints for data segmentation

2 // Part I

3 for i← 0 to length of adapted_mpi do
4 // derivative of Adapted MPIndex

5 der_mpi← adapted_mpii+1 - adapted_mpii

6 // Part II: segment the time series based on der_mpi; find the

changepoint, a number of list will be created following to the number of

segments

7 list_seq, current_seq, changepoints← new List
8 // window size in matrix profile can be used as approximation of tolerated

length between spikes in der_mpi

9 cp_gap ≈ window_length
10 for i← 0 to length of adapted_mpi do
11 if |der_mpi[i]| ≥ cp_peak_t then
12 if length of current_seq ≤ cp_gap then
13 list_seq.append(current_seq)
14 current_seq← empty list
15 current_seq.append(i)

16 else current_seq.append(i);

17 else current_seq.append(i);
18 list_seq.append(current_seq)

19 for i← 0 to length of list_seq do
20 // head and tail of the list_seq are the initial index and last index

of a segment respectively

21 changepoints.append(list_seqhead, list_seqtail)

22 return changepoints

[Multidimensional motif algorithm 5] explains the process to find motifs by locating the peaks
of minimum MPdistance. The matrix profile algorithm that is used to compute the distance
similarity of k multidimensional time-series will also return k dimensional MPdistance. There-
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fore, the steps in Part I- algorithm 2 need to be applied in finding the best k dimensionality
for each MPdistance data points. Afterwards, algorithm 3 can be enforced on the final 1-d
MPdistance.

Algorithm 5: Multidimensional Motif Discovery
input : changepoints, MPdistance
output : motif/s location

1 foreach d ∈ MPdistance do
2 peaks← find_peaks(d) // local extrema in matrix profile distance

3 peaks_list.append(peaks)

4 motifs_location, colors← new Array
5 // color_1 for motif, color_2 for

6 motifs_color← color_1, color_2
7 ismotif← False
8 for i← 0 to length of changepoints do
9 // changepointsi,0: initial index of a segment

10 initial_idx← changepointsi,0

11 // changepointsi,1: last index of a segment

12 last_idx← changepointsi,1

13 for j← 0 to length of peaks_list do
14 // there is local minima in matrix profile between changepoints,

which could indicate a motif

15 if peaks_listj ≥ initial_idx and peaks_listj ≤ last_idx then
16 motifs_location.append(initial_idx, last_idx)
17 color.append(color_1)
18 ismotif← True
19 break

20 else color.append(color_2)
21 ;

22 if ismotif==False then
23 color.append(color_2)

24 return color, motifs_location

Now as we already have the changepoints between segments and location of meaningful
motifs, the effort continues by coloring the region of motifs and the rest with different colors.
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In line. 16, the subsequences Ti,m that represent a motif are colored differently with the rest
of the non-motif subsequences (line 22). For instance, in case of gas turbine dataset, we want
to detect the number of down-time right before the machine turns to idle.

Figure 5.6.: Local minima (marked with red dots) found on the MPdistance hints the location
of interesting motif (marked in blue) which is the down-time before going to idle.
The pair of changepoint helps in determining the motif window size.

We took a gas turbine data sample for almost a week’s duration. The behavior of the gas
turbine system shown in Figure 5.6 indicated there are eight times (marked in blue) that the
machine went off to idle phase during this time sample, see Figure A.6 for full reference.
This experiment was conducted on the power and temperature sensors group. On the other
hand, the recognition is not always 100% correct which is shown in Figure A.7 using power
and valve sensors group, see precision and recall in Table 5.1. There we can see a slight
misclassification (in red patches), where the algorithm recognizes the transition from idle
phase to up-time instead down-time.

Dataset TP FP FN P R F1score
Figure A.6 Power and temperature group 8 0 0 1 1 1

Figure A.7 Power and valve position group 7 1 1 7
8

7
8 0.875

Table 5.1.: Performance metric on down-time to idle phase motif recognition in gas turbine
data. TP, FP, FN is the number of correct downtime recognition, the number
of where the down-time motif is not recognizable and the number of the non-
downtime motif is detected as down-time respectively.
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We also try motif discovery for stable run data [gas turbine stable run Figure A.4], where the
motif target is a short downtime (the value suddenly drops for a very short time window,e.g.
sensor TTWS1F1_avg with time-point close to 50K). The setup of window size for mSTAMP
is taken based to the length of a single drop motif. After getting the first derivative of the
adapted_mpi and local minima in MPdistance, in these variables we can see that there are no
distinctive match between gap in the derivative and local minima location in MPdistance.
Therefore, the intended motif detection could not be achieved. In the same dataset, we can
see motif candidates with larger window size as shown in Figure A.5. The analysis returns 2
local minima in MPdistance which signifies a region with two sensors having a big transition.
These length of the motif subsequence are defined by the gap length between changepoints.

5.3. Matrix Profile-based Segmentation

First, we would like to review a work that also develops a time series segmentation using
MPindex section 3.3. The construction of time series segmentation using matrix profile has
relied on the number of crossing arcs across regions. The term "arcs" here means indexing
pointers in MPindex returned by mSTAMP. By counting the frequency on how many arcs
crossing a certain region, they derived the segment cut based on the lowest number of crossing
arcs. Apart from it can generate an exact number of labels, after experimenting CAC with a
variety of datasets, we can conclude that the technique will produce segment cuts if there is a
motif uniqueness between regions Figure 3.4, where the shift between one region in MPindex
is visible. This prevents arcs or indexing pointers from crossing to another region far away
with a similar motif. Detection on similar motifs within a region will enforce the MPindex
pointers to point a group of indices within its region and ignore other regions with similarity
candidates.
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Algorithm 6: CAC construction for Segmentation [14]
input : MPindex, L: subsequence length
output : Filtered MPindex

1 n← new Array[length of MPIndex]
2 AC = CAC = nnmark← new Array of zeros[length of L]
3 nnmark(i,j)← NN(i) // count once the crossing arc if symmetrical

neighboring, i → j and j → i

4 numArcs← 0
5 for i← 1 to L do
6 numArcs← numArcs + nnmark[i]
7 AC[i]← numArcs

8 IAC← parabolic curve of length n and height 1
2 n

9 CAC← min(AC/IAC, 1)
10 return CAC

Figure 5.7.: Coral2 (fetch latency group) dataset segmentation using CAC. The background
patch colors are the ground truth while the predicted segment are colored in
blue, orange, green, red and violet via scatter plot. [setup: sampling 1s, EMA=0,
mp_window=26, filter=no, L=26].

Based on the fundamental work of CAC, we proposed a technique to approach time series
segmentation using changepoints and adapted_mpi that we obtained from previous steps. After
computing adapted_mpi derivative, we would pick a fairly good cp_gap and cp_peak_t thresh-
old values for algorithm 4 input. It is recommended to take cp_gap with a value less or equal
to the smallest segment in the dataset (if the ground truths are known). For instance, in
Coral2 benchmark dataset Figure 5.8, the smallest segment is from AMG application which is
approximately 50 time-point. Hence, in this experiment, cp_gap is set to 50. The mp_window
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for mSTAMP input, is chosen by considering the subsequence length m of a single unique
motif algorithm 7.

The central distribution of MPindex over a segment is taken as an approximated location to
another segment with a similar motif pattern(line 8-9 in algorithm 7). Mean or median value
is chosen depends on the MPindex distribution in that segment(line 14-22). Ideally, MPindex
pointers in a segment should not abruptly change. The threshold value mpindex_var_t deter-
mines an allowed pointer variance range within a segment. When pointer variance passes the
threshold, it is better to consider the median over mean. At the end of the algorithm, we can
retrieve the potential matching segment in the time series dataset (line 18,22,24). To describe
this better, we put the segment pair on top of the Adapted MPindex plot in each figure, e.g s
0>0.

The difference of our segmentation algorithm in contrast with CAC is the number of the
intended label will not be guaranteed as these come naturally with the selection of cp_gap and
cp_peak_t. Experiment shown in Figure 5.8 is able to recognize 4 different labels, however
experiment with the same configurations in other DCDB sensors group Figure A.1 can re-
trieved 5 different segments (see number of segments in Adapted MPindex plot). Meanwhile,
the number of segments in CAC can be pre-defined before the algorithm.
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Algorithm 7: Segmentation mapping
input : changepoints, mpindex_var_t
output : mapping of segments

1 segment_pairs← [{}]
2 for i← 0 to length of changepoints do
3 // find the average or median of pointers for each segments in

adapted_mpi

4 // changepoints[i][0]: initial index of a segment

5 initial_idx← changepoints[i][0]
6 // changepoints[i][1]: last index of a segment

7 last_idx← changepoints[i][1]
8 average← meanadapted_mpi[initial_idx:last_idx]

9 median← medianadapted_mpi[initial_idx:last_idx]

10 // find the max and minimum of pointers for each segment

11 mpi_min← minadapted_mpi[initial_idx:last_idx]

12 mpi_max← maxadapted_mpi[initial_idx:last_idx]

13

14 if mpi_max-mpi_min ≤ mpindex_var_t then
15 // use average of a segment, to find segment mapping

16 for j← 0 to length of changepoints do
17 if initial_idx ≤ average and last_idx ≥ average then
18 destination[i]← j

19 else // use median of a segment, to find segment mapping

20 for j← 0 to length of changepoints do
21 if initial_idx ≤ median and last_idx ≥ median then
22 segment_pairs[i]← j

23 ;

24 return segment_pairs
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Figure 5.8.: Coral2 (fetch latency group) segmentation [setup: sampling 1s, EMA=0,
mp_window=26, f_window=11, sigma=1, cp_gap=50, cp_peak_t=190, mpin-
dex_var_t=400].

The border between AMG and Nekbone in Figure 5.8 is not segmented properly. Further
inspection on the region of AMG and Nekbone was done by trying with different experiment
setups with a focus in tuning mp_window parameter. The rest parameters setup will follow
the intuition of returned MPindex from mSTAMP. After trying these time region alone
in the whole process, our algorithm can distinguish these two regions over two different
segments Figure 5.9. Hence, we took this mp_window into account back to the full dataset.
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Figure 5.9.: Coral2 (fetch latency group) partial segmentation from Figure 5.8 [setup: sampling
1s, EMA=0, mp_window=15, f_window=7, sigma=1, cp_gap=30, cp_peak_t=40].

Modification on mp_window from 26 to 15 has changed the segmentation Figure 5.10. It
recognizes 5 segments instead of 4, which is identical to the number of ground truth labels.
Although there are 5 different segments, our coloring scheme will follow the symmetrical
rule because index 207 (pointer in s 1) is covered within the Kripke region, hence the coloring
scheme in algorithm 8 will draw predicted Kripke and AMG with the same color, blue. This
has resulted in the dataset having 4 different colors instead of 5.
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Figure 5.10.: Coral2 (fetch latency group) segmentation in Figure 5.8 with different setup
from Figure 5.8 [setup: sampling 1s, EMA=0, mp_window=15, f_window=7,
sigma=1, cp_gap=50, cp_peak_t=200, mpindex_var_t=400].

Dataset TP FP FN P R F1score
Figure 5.7 FL segmentation with CAC, w=26 733 39 54 0.94 0.931 0.94

Figure 5.8 FL segmentation own analysis, w=26 725 85 30 0.89 0.96 0.92
Figure 5.10 FL segmentation own analysis, w=15 766 0 50 1 0.938 0.968

Table 5.2.: Performance metric from each experiment. FL: Fetch Latency dataset

The performance metric is measured by counting the total data point of our segment predic-
tion. True positives mark every segment that can represent one ground-truth label. When
there is a predicted segment that overreaching the ground truth labels boundary, it is consid-
ered as false negatives. False positives happen when a different label is recognized as the same
label as the other, for instance, Nekbone is recognized altogether in s1 with AMG Figure 5.8.
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6.1. Literature Review

The final step in this thesis work is to represent our findings in better or more compelling
visualization. Apart from that, an exploration in visualization has aided the writer in
developing the method in the previous chapter. Over the years, there are many approaches to
high-dimensional visualization research pathways. Categorization of recent advances research
from major visualization venues (e.g Visweek, EuroVis, PacificVis, TVCG), visualization
pipeline can be summarized in Table 6.1:

Data Transformation
Dimension Reduction Subspace Clustering Regression Analysis Topological Data Analysis

linear projection, dimension space exploration, Optimization design steering, Morse-smale complex
non-linear projection, subset of dimension, structural summaries reeb graph

Control points projection, Non-Axis-Parallel Subspace contour tree
distance metric, topological creatures

precision measures
Visual Mapping

Axis Based Glyphs PixelOriented Hierarchy Based Animation Evaluation
Scatterplot Matrix, Per-Element Glyphs Jigsaw Map, Dimension, GGobi, Scatterplot Guideline,

Parallel Coordinate, Pixel Bar Charts, Hierarchy, TripAdvisor
Radial Layout, Circle Segment, Topology-based PCPs Effectiveness

Hybrid Construction Multi-Object Glyphs Value and Relation Display

Views
Illustrative Rendering Continuous Visual Representation Accurate Color Blending Image Space Metrics

Illustrative PCP, Continuous Scatterplot, Hue-Preserving, Clutter Reduction,
3D Scatter Plot, Continuous Parallel Coordinate, Blending Pargnostics

Magic Lens Splatterplots Pixnostics

Table 6.1.: Research categorization based on different stages of the visualization pipeline, with
each, reflects common approaches. Source [44]. Note: cells in violet denotes the
approaches used in this study.
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6.2. Approach

Figure 6.1.: Arc diagrams visualization over gas turbine dataset with many idling phases. The
arc diagrams and coloring were drawn based on adapted_mpi without taking its
first order of derivatives.

Our first attempt was to see whether applying adapted_mpi alone and pairing it with Mat-
plotlib colormaps, will produce a good visual recognition on idling phases. From the figure,
enforcing colormaps directly to adapted_mpi could not produce good pattern recognition.
Later, another approach using arc diagrams was expected to improve the recognition of the
pattern. This technique requires further MPindex pointers and region filtering, such as only
draw arcs if the value exceeds a certain threshold, by limit the arcs crossing distance. This is
because irregular and abrupt changes of pointers in adapted_mpi will end up in overcrowded
and chaotic arcs. This suggestion also persuaded by the fact that pointers in adapted_mpi do
not always have symmetry relationship- algorithm 8. In [33] study showed arc diagrams
visualization, where the mapped or connected subsequences are symmetrical.

In the same figure, we can also see red patches which illustrate that putting a threshold value
(horizontal blue line) is still not enough to filter down the arcs in ignoring the non-idling
region, while it worked well to the region around 5000 to 10000. Such a case occurs because
indices between 5K and 10K are pointing to itself, while some indices in red patch (up-time
region) are referencing to the region between 15K and 30K (idle regions). Therefore, further
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steps in recognizing the exact segmentation are necessary.

(a) Down-time motifs. (b) Up-time motifs.

(c) Mean of DWATT sensor.

Figure 6.2.: Extracted motif pairs with colorfields visualization for down-time and up-time
classes- Figure 5.6. The colormap midpoint is shifted according to the mean of

gas turbine DWATT sensor.

In reviewing motif visualization, we picked again the gas turbine dataset with contains the
idling phase, as it has two distinct motifs, either idle or up-time motif. Our approach is to
use color fields. As mentioned in section 7.1, for some cases humans perceive time series
motifs better in Colorfields compare to LineGraph. After retrieving idle motifs in Figure 5.6,
visualization in Colorfields starts by defining the colormap range. First of all, in this dataset,
the value range between the up-time and idle phases can be separated properly by averaging
the dataset Figure 6.2-section(c).
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Later, this average value becomes the new midpoint in colormaps. Shifting the midpoint
of colormaps will maintain the color range from Tosca to light-green for up-time (above
mean=65) and dark-blue to Tosca-green for down-time (below mean=65). If the colormaps
are not shifted following to the mean of the dataset, every low slope in up-time will be
represented in dark blue as well. We can see in Figure 6.2-section(a), that every time the
down-time transition occurs, color fields evolves to dark-blue, while in up-time motifs, color
fields remain green Figure 6.2-section(b).

Algorithm 8: Time Series Segmentation Coloring
input : destination
output : colors grouping for each segment

1 // bruteforce in filling the color for each segment

2 colors← Array[length of destination)]
3 for i← 0 to length of destination do
4 if colors[i] == "" then
5 c← next(matplotlib_color_cycle)
6 colors[i]← c
7 colors[destination[i]]← c

8 // traceback to all destination keys

9 for j← 0 to length of destination do
10 if destination[i] == j then
11 colors[destination[j]]← c

12 // final check for all coloring slots

13 for i← 0 to length of destination do
14 if colors[i] == "" then
15 colors[i]← colors[destination[i]]

16 return colors

In coloring the segments which were produced by Coral2 dataset experiments Figure 5.8,
Figure 5.10, Figure A.1, there are at least 3 different scenarios such as described in Figure 3.3,
e.g there are 2 segments A and B:

• Segment A points to index within itself.

• Segment A points to index within segment B, however pointer in B does not reference
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back to segment A (asymmetry relationship).

• Segment A points to index within segment B and B also points back to A (symmetry
relationship).

Our current approach is by filling all available segment slots with a different color at the
start. While filling the color of every segment, it also finds out whether the current segment
is pointing to another segment that already has a color (line. 9- algorithm 8). From here, the
algorithm will match up the current segment coloring with its neighbor. This also defines
that some segments belong to the same group. A brute-force approach of coloring segments
with the same or different colors might create false recognition although the segmentation
method works well. In our previous example, the size of ground truth labels is relatively
small. We will keep the intention to see the performance of this coloring scheme in more
massive ground truth labels and repeated labels over the dataset in our future works.

Following the idea, topological spaces in graph problem can be a candidate for better-
connected segments tracing in order to give color them the same or differently [45] Figure 6.3.
For instance, based on the connection path, segment 8th and 6th should be colored the same,
although there is no direct pointer from segment 8th to 6th. Later, based on the group of
colors, it can lead to the development of segments clustering.
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Figure 6.3.: Illustration of topological approach in time series segmentation coloring. The
top two trees represents two disjoint sets in different color group. Bottom: linear
array which stores the trees in ordering of the nodes. Image was recreated from
Edelsbrunner, et.al [45].

The result from our segmentation coloring method can be proven using this theory. For
instance in one of our experiment Figure 5.4, the sequence of the segmentation pairs are:

{s_0→s_0} {s_1→s_6} {s_2→s_0} {s_3→s_8} {s_4→s_0} {s_5→s_0} {s_6→s_1} {s_7→s_0}
{s_8→s_3} {s_9→s_0}

By following the source and destination of every segment pair, we obtained three disjoint
sets Figure 6.4 of color group. This validates the correctness of our coloring scheme- algo-
rithm 8.
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Figure 6.4.: Topological approach validates the correctness of our coloring scheme in Fig-
ure 5.4. It returns 3 disjoint sets in which the connected nodes in each group
matched with the our segmentation coloring method’s output.

The last topic in our visualization method is visualization using point cloud element, which
basically can be prototyped using 3D scatter plot to retrieve its coordinates candidate. Each
point represents a subsequence of time series with length m. The subsequence length should
be close to the mp_window size when producing the segmentation. Hence, for instance,
if a segment has a length of 100, divided by mp_window of 5, it will produce a 20 points
cloud. In relation to multi-dimensionality, each point will represent n-subsequences from
n-dimensionality. As a reminder, different segments either it close or crossing far which are
represented in the same color should be clustered together in one center. Therefore, we need
to have a map of a segment number and their color, then group the segments with similar
colors together.
For visualization in 2D or 3D space, our current approach in picking the central coordinate of
each cluster is by giving random values. Each point in the same group initially will be given
the same coordinate values then the distribution around was adapted by adding Gaussian
noise to each coordinate in the point. This method will give us clustered points as the initial
coordinate values are equal and were shifted nearby by the noise. This visualization method
enables us to explore the density of a segment compare to another. However, this work will
be limited at this point, as we need to develop a better way to generate the cluster center
coordinates, distribution of points in a cluster, and distances between clusters.
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Figure 6.5.: Motifs density visualization of Coral2 experiment- Figure 5.10 with scatter plot.
Each point represents three subsequences which were deducted from 3 different
sensors (mpp3.r02.c05.s05.branch-instructions; branch-misses; instructions). From
the visualization, Nekbone looked to have spent less time in the benchmark
run represented by less density scatter plot, compare to the other 3 applications
(Kripke&AMG, Lammps, Linpack).
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Matrix profile is a new method for motif discovery and meaningful segmentation with the
advantage of scalability for very large datasets. For instance, in a non-parallelized version
of mSTAMP, it took approximately 2.5 days of computation for processing around 400000
data points per sensor such as the experiment in Figure A.6. It also works well in high-
dimensional as it can select naturally the best k dimensionality. However, we might state
as well as involving more than one dimension in the analysis can be useful in extracting
patterns. For a real-life example, a constant repeated arms movement might be considered
as a single pattern. If we put another dimension into the analysis, e.g legs movement, with
different speeds (walking or running), the analysis will detect two distinctive patterns instead
of one, such as pattern 1 (arms movement while walking) and pattern 2 (arms movement
while running).

7.1. User studies on time series similarity visualization

The value of the final visualization structure must be highly considered from a user per-
spective. Therefore, here we give one research example on user studies in visualization
impression. Research in [46] conducted user studies with different backgrounds towards
visualization in time series similarity. The time series visualization encoding techniques
ranging from line charts(LC ) , horizon graphs(HG ) and color
fields(CF ). The task of the participants was to select the most similar time
series in different visualization to a query(time series). The experiment started by collecting
around 100-time series which is the nearest neighbor with the query. Measurement of partic-
ipants’ confidence was based on the type of the answers following to similarity algorithm
(Euclidean Distance ED or Dynamic Time Wrapping DTW) and the shape of visualization(LC,
HG, CF), time performance and their subjective assessment of the visualization structures.
Subjective assessments (agreement) were scored by the probability of the Brennan coefficient,
which assumes all q categories are selected by chance with the same probability 1

q .
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In terms of visualization encodings preference, participants’ are more likely to complete the
task faster with CF(7.5sec) where HG(9.1sec) and LC(13.9sec) are on the average. However,
in subjective assessments, agreement value is generally low for HG and CF which implies
higher subjectivity of participants’ choices. Corresponding to the similarity algorithm, HG is
showing a better tendency towards DTW, as ED answers were chosen with no consistency
among participants. In conclusion for this experiment, participants preferred results returned
by DTW. Color variations communicate high-level patterns, while shape and position reveal
details. Participants may have focused on the high-level patterns in color while considering
shape and position as secondary factors. Their results also suggest that CF is less appropriate
for domains that require invariance to temporal wrapping (e.g DTW).

7.2. Limitations and Future Works

In our developed analysis model, we need to setup hyperparameters and preparation dif-
ferently for each dataset. First of all, we need to have a best initial guess for matrix profile
window based on the targeted analysis. Afterwards, some datasets might need to have data
filtering before getting into the main process. Then, based on the output we might need to
review the pre-processing step that we applied earlier on the original data for gaining a better
decision. The parameters tuning also needed in every part of the algorithm especially in
adapting the MPindex in a way, after being processed it can still maintain essential cuts and
information. As different parameters setup with a single numerical different can affect the
final result, we can also apply probability measurement for each parameter setup. We might
take an HMM (Hidden Markov Model) approach for counting the probability of segment
pairing.

For future work in visualization, in the earlier time, we wanted to reach immersive data
visualization starting with the application of point cloud using the game engine framework.
This part of work is a very interesting thing to be explored later as it is not only involved
more technological aspects and flexibility for data visualization itself.

7.3. Conclusion

We presented an evaluation of matrix profile in extracting pattern when handling multidi-
mensional time series. We include 3 phases of visualization starting from data collection and
formatting, then continued with data mining and transformation and in the final, we chose
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one or two feasible visualization approaches. We also developed a further implementation of
matrix profile to find its best k dimensionality and using this element to adapt the original
MPindex (matrix profile indices) and MPdistance (matrix profile distance). The adapted profile
index and distance are useful in obtaining the insight of various window sizes of trends or
motifs. From time series motifs, we can extend the work into time-series segmentation.

The methods were experimented at first with simple multidimensional datasets then con-
tinues to be applied in real data. When generating performance counters data, the author
can simulate a synthetic data generation in a controlled environment. Moreover, the ground
truth of which applications were running in a specific time range is useful for validating
the performance of the developed model. On the other hand, analyzing gas turbine data
resembles investigation on a black box for the author.

The idea of defining segments using adapted_mpi at the end is more or less similar to
SAX sequence Figure 2.4, however not to create a sequence fpr the raw time series data but
for the MPindex. The main difference is in SAX, lower dimensionality means an approxima-
tion of the time series data to their linear space. On the other hand, matrix profile does not
need a reduced representation of the raw time data, while enabling us to explore data in high
dimensional features. Thus, terms of "dimensionality reduction" in our work is to find out
the best number of features or metrics that need to be included in the analysis.

The results of this work answered the research objectives- section 1.3. After many trials
and errors, we can conclude that our model extension using matrix profile can be applied to
reach our visualization targets. This finding also might contribute to the time series mining
knowledge in the future.
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A.1. Results

Figure A.1.: Coral2 (base group) segmentation. It resulted in 4 segmentation regions with 3
different colors. [setup: sampling 1s, EMA=0, mp_window=26, f_window=11,
sigma=1, cp_gap=50, cp_peak_t=190, mpindex_var_t=400]
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Figure A.2.: Coral2 (base group) segmentation. [setup: sampling 1s, EMA=0, mp_window=26,
filter=no, L=26]

Figure A.3.: NASA benchmark (fetch latency) segmentation. An example of bad subse-
quence shape makes it difficult to be analyzed. [setup: sampling 1s, EMA=0,
mp_window=100, f_window=101, sigma=1, cp_gap=50, cp_peak_t=190, mpin-
dex_var_t=400]
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Figure A.4.: Motif Discovery in Gas Turbine (power and temperature) sensors steady run,
period:2017-12 to 2018-03. [setup: sampling 20s, EMA=20, mp_window=22,
f_window=11, sigma=1, cp_gap=800, cp_peak_t=26000]
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Figure A.5.: Motif Discovery in Gas Turbine (power and temperature) sensors steady run,
period:2017-12 to 2018-03. [setup: sampling 20s, EMA=20, mp_window=10000,
f_window=5001, sigma=1, cp_gap=4000, cp_peak_t=2000]
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Figure A.6.: Downtime in idling phase detection (blue mark) in Gas Turbine (power and
temperature) sensors, period:2018-07 to 2018-10. [setup: sampling 20s, EMA=20,
mp_window=330, f_window=101, sigma=1, cp_gap=500, cp_peak_t=2500]
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Figure A.7.: Downtime in idling phase detection (blue mark) in Gas Turbine (power and
valve) sensors, period:2018-07 to 2018-10. [setup: sampling 20s, EMA=20,
mp_window=330, f_window=101, sigma=1, cp_gap=500, cp_peak_t=2500]

Figure A.8.: Peaks detection using scipy find_peaks_cwt of MPdistance Figure 5.4

Figure A.9.: Peaks detection using scipy find_peaks of MPdistance Figure 5.4
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A.2. Experiment Setup Terms Summary

Variable name Description
mp_window window size for mSTAMP input
f_window moving average window in EMA (Exponentialy Moving

Average )
sigma standard deviation, related to noise filtering in EMA
cp_gap distance between a pair of changepoint in adapted_mpi

derivative, related to the minimum window size of a
segment

cp_peak_t minimum threshold peak in adapted_mpi derivative
mpindex_var_t tolerable pointers variance of a segment in adapted_mpi
adapted_mpi MPindex returned from mSTAMP that has been modi-

fied
adapted_mp MPdistance returned from mSTAMP that has been modi-

fied

Table A.1.: Experiment Setup Terms Summary.
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A.3. DCDB sensors grouping for top-down perf. counters analysis

DCDB Sensor Middle Layer Top Layer
MemAvailable

MemBound

BackendBound

Vmalloc chunk
Vmalloc total
Vmalloc used
alloc_stall
cached
col_idle

CoreBound
col_iowait
col_nice
col_system
col_user
branch_misses Branch Misspredicts Bad Speculation
cpu_cycles

Base Retiringref_cycles
instructions
branch_instructions

Fetch Latency
FrontendBound

branch_misses
instructions
Cached

Fetch Bandwidth
Buffers

Table A.2.: Grouping of DCDB sensors
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A.4. Gas Turbine sensors grouping

Sensors Type
TNH_RPM Speed
DWATT Power
AFPAP

Pressure
avg(AFPCS,CPD)
FPG3
avg(CTIF1A,CTIM)

Temperature

avg(TTWS1FI1,TTWS1FI2)
avg(TTWS1AO1,TTWS1AO2)
avg(TTWS2FI1,TTWS2FI2)
avg(TTWS2AO1,TTWS2AO2)
avg(TTWS3FO1,TTWS3FO2)
avg(TTWS3AO1,TTWS3AO2)
avg(TTXD1_1,7,13,19,24)
CSGV

Valve PositionFSG
FSGR
DLN_MODE_GAS

Gas and Flame
L28FD

Table A.3.: Grouping of Gas Turbine Sensors

A.5. DCDB data preparation

Data acquisition needs to be prepared in order to fits the input for the algorithm and matrix
profile. Therefore, conversion to a defined CSV format can be described as follows:
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(a) Data Format for sensors with no-core decomposition.

(b) Data Format for sensors with cores decomposition. All cores values in a
single sensor are summed up.

Figure A.10.: DCDB Data Format conversion in second precision timestamp.

A.6. LRZ CoolMUC-3 Hardware and Software Specifications

The experiments mostly ran in parallelized version of matrix profile. Jupyter notebook for
data analysis and data acquisition of performance counters (via DCDB) were deployed in

SuperMUC Linux Cluster (CoolMUC-3).
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Hardware Specification

CPU 1x Intel Xeon Phi CPU 7210F
Number of Nodes 148
Number of Cores 9472
Cores per Node 64

Hyperthreads per Core 4
Main Memory per Node 96 GB

Software Specification

Operating System SUSE Linux Enterprise Server (SLES12 SP2)
Batch System SLURM

MPI Intel MPI 2018 or 2019
Python Python3.6

C++ Compilers Intel icc, icpc

Table A.4.: Configuration of LRZ CoolMUC-3
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