

Fakultät für Medizin Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde

Klinikum rechts der Isar, München

(Direktorin: Prof. Dr. Barbara Wollenberg)

Der Einfluss des humanen Papillomavirus (HPV) auf die Wirkung von *in vitro* Chemotherapie, Röntgenbestrahlung sowie zielgerichteter Alphapartikel-Emitter-Therapie (TAT) bei HNSCC-Zelllinien.

Michael Manfred Siegl

Vollständiger Abdruck der von der Fakultät der Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation.

Vorsitzender: Prof. Dr. Dr. Andreas Pichlmair

Prüfende/-r der Dissertation

- 1. apl. Prof. Dr. Anja C. Pickhard
- 2. Prof. Dr. Gabriele Multhoff

Die Dissertation wurde am 14.09.2020 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 29.12.2020 angenommen.

INHALTSVERZEICHNIS

A	ABKÜRZUNGSVERZEICHNIS1				
A	ABBILDUNGSVERZEICHNIS				
T.	ABE	LLEN	VERZEICHNIS	5	
1	1	EINLE	ITUNG	7	
	1.1	Kopi	f-Hals-Tumore (HNC)	7	
	1	1.1.1	Epidemiologie	7	
	1	1.1.2	Ätiologie und Risikofaktoren	9	
	1	1.1.3	Molekularpathologie des HNSCC	10	
	1	1.1.4	HPV-assoziierte HNSCC	13	
	1	1.1.5	Therapieoptionen	16	
	1	1.1.6	Strahlenresistenz	17	
	1.2	Alph	nateilchen-Emitter-Therapie bei Krebserkrankungen	19	
	1.3	Biolo	ogische Effekte ionisierender Strahlung	22	
	1	1.3.1	Schädigung der DNA	22	
	1	1.3.2	DNA-Schadensantwort	23	
	1.4	Hun	nanes Papillomavirus (HPV)	26	
2	2	ZIELSI	ETZUNG	29	
2	T	мате	RIAL UND METHODEN	21	
5	1			51	
	3.1	Mate	erial	31	
	2	3.1.1	Zelllinien	31	
	Ĵ	3.1.2	Enzyme, Kits, Lösungen und Puffer	32	
	ć	3.1.3	Chemikalien	34	
	ĉ	3.1.4	Chemotherapeutika	36	
	ć	3.1.5	Antikörper	37	
	ĉ	3.1.6	Geräte	38	
	ĉ	3.1.7	Verbrauchsmaterialien	41	
	Ĵ	3.1.8	Software	42	
	3.2	Metł	noden	43	
	2	3.2.1	Zellbiologische Arbeiten	43	
		3.2.1	 a) Zellkultivierung b) Transfaktion zon Zellen mit eiPNA 	43	
		3.2.1	ט) 1 runsjektion von Zeuen mit siKINA	44	

		3.2.1	c) Proliferationsanalyse	46
		3.2.1	d) Koloniebildungsanalyse	47
		3.2.1	e) Durchflusszytometrische Zellzyklusbestimmung	47
		3.2.1	f) yH2AX-Immunfluoreszenzfärbung	48
		3.2.1	g) Durchflusszytometrische Bestimmung von yH2AX	
	3.	.2.2	Proteinbiochemie	50
		3.2.2	a) Gewinnung eines Gesamtproteinlysats	
		3.2.2	b) Proteinkonzentrationsbestimmung nach Bradford	50
		3.2.2	c) SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)	51
		3.2.2	d) Semi-Dry Western Blot	53
		3.2.2	e) Immundetektion von Proteinen	54
	3.	.2.3	Arbeiten mit Nukleinsäuren	55
		3.2.3	a) RNA Isolation aus Zellen	55
		3.2.3	b) Photometrische Analyse der RNA-Konzentration und -Reinheit	
		3.2.3	c) cDNA Synthese	56
		3.2.3	d) Polymerase Kettenreaktion (PCR)	57
		3.2.3	e) Gelelektrophorese von Nukleinsäuren	58
		3.2.3	f) Genexpressionsanalyse (Sureprint G3 Human Gene Expression 8x60K Microarray)	59
	3.	.2.4	Bestrahlungsexperimente	59
		3.2.4	a) Röntgenbestrahlung	59
		3.2.4	b) Alphateilchen-Emitter-Behandlung	60
		3.2.4	c) ²¹³ Bi-CHX-A"-DTPA-Cetuximab-Bindungsassay	60
	3.	.2.5	Statistische Auswertungen	61
4	E	RGEF	NISSE	63
	4.1	Nacl	weis der HPV16-Transkripte E6 und E7 in HNSCC-Zelllinien	63
	4.2	Proli	feration nach <i>in vitro</i> Chemotherapie	63
	4.3	Klor	ogenes Überleben nach <i>in vitro</i> Chemotherapie	66
	4.4	Proli	feration nach Bestrahlung	67
	4.	.4.1	Behandlung mit ²¹³ Bi-CHX-A"-DTPA-Cetuximab	68
	4.	.4.2	Bestrahlung mit Röntgenstrahlung	75
	4.	.4.3	Fraktionierte Bestrahlung mit Röntgenstrahlung (5x 2 Gy)	
	4.5	Klor	ogenes Überleben nach Bestrahlung	
	4.6	Zella	vklusanalyse	80
	47	Was	ern Blot Analysen	ຍາ
	т./ 1 0	Ver	nderungen in der Consumragion nach Pasterblung	
	4.8	vera	nderungen in der Genexpression nach Bestranlung	
	4.9	Dure	htlusszytometrische Bestimmung von γH2AX	86

	4.10 siRNA-vermittelter Knockdown von DNA-Reparaturfaktoren		
5	Ľ	DISKUSSION	. 95
	5.1	HPV-Assoziation korreliert mit besserem Ansprechen auf in vitro Chemo- und	
		Strahlentherapie	. 95
	5.2	Zielgerichtete Alphateilchen-Therapie mit ²¹³ Bi-CHX-A"-DTPA-Cetuximab übertrifft die	
		antiproliferative Wirkung von hochenergetischer Röntgenstrahlung	. 98
	5.3	Molekulare Auswirkungen von in vitro Strahlentherapie bei HNSCC-Zelllinien	102
	5.4	Der Einfluss des Knockdowns von DNA-Reparaturfaktoren auf die Proliferation und	
		Radiosensitivität von HNSCC-Zelllinien	108
	5.5	Ausblick	110
6	Z	USAMMENFASSUNG	114
7	L	ITERATURVERZEICHNIS	116
8	A	ANHANG	131
	8.1	Alphateilchen-Emitter-Behandlung: unkonjugierte Kontrolle	131
	8.2	Immunfluoreszenzfärbung von γH2AX (pS139)	132
	8.3	Sureprint G3 Human Gene Expression 8x60K Microarray: Rohdaten	135
9	Ľ	DANKSAGUNG	171
1(IDECCTATTI ICHE EDVI ÄDINC	1 7 2
11) E	IDESSIATILICHE EKKLAKUNG	173

(KIO)Dasenpaar	
°C Grad Celsius	
μ mikro (10-6)	
2D Zweidimensional	
93VU 93VU147T (Zelllinienbezeichnung)	
Ac Actinium (chemisches Element)	
AKT Proteinkinase B	
Agua dest. Destilliertes Wasser	
ATM ataxia telangiectasia mutated protein	
AUC area under curve	
BER Basenexzisionsreparatur	
Bi Bismut (chemisches Element)	
bzw. beziehungsweise	
CDKN2A Cyclin dependent kinase inhibitor 2A	
CO ₂ Kohlenstoffdioxid	
DMEM Dulbecco's Modified Eagle Medium	
DNA Deoxyribonucleic acid (engl. für Desoxyribonukleinsäure)	
E6 bzw. E7 Early region 6 bzw. 7 (virales Gen/Protein des HPV)	
EGFR Epidermal growth factor receptor	
engl. englisch	
ERK Extracellular-signal regulated kinases	
eV Elektronenvolt	
FBS Fetales Kälberserum	
FITC Fluoresceinisothiocyanat	
G1-Phase Gap-1-Phase	
G2-Phase Gap-2-Phase	
GO Gene ontology	
Gy Gray (Dosiseinheit)	
h Stunde	
HNC Head and neck cancer (engl. für Kopf-Hals-Tumore)	
HNSCC Head and neck squamous-cell carcinoma (engl. für Plattenepithelkarzinom des	Kopf-
Hals-Bereich)	1
HPV Humanes Papillomvirus	
HR Homologe Rekombination	
JAK Januskinasen	
kBq Kilobecquerel (Radioaktivitätseinheit)	
LET Linearer Energietransfer	
LIG4 DNA-Ligase 4	
M molar (mol/Liter)	
MEK Mitogen-activated protein kinase kinase	
MEM Minimum Essential Medium	
MEM-NEAA Minimum Essential Medium Non-Essential Amino Acids	
M-Phase Mitose-Phase	
mTOR Mammalian target of rapamycin	
NHEJ Non-homologous end joining	
OPSCC Oropharyngeal squamous cell carcinoma (engl. für Oropharynxkarzinom)	
PBS Phosphate buffered saline	
PI3K Phosphoinositid-3-Kinase	
PTEN Phosphatase and Tensin homolog	
py Pack years (engl. für Packjahre)	
RAD51 DNA repair protein RAD51	
RNA Ribonucleic acid (engl. für Ribonukleinsäure)	
RPMI Roswell Park Memorial Institute 1640 Medium	
RT-PCR Reverse Transkriptase PCR	
siRNA Small interfering RNA	

S-Phase	Synthese-Phase
STAT	Signal Transducers and Activator of Transcription
T 1/2	Halbwertszeit
TAT	targeted alpha-therapy (engl. für zielgerichtete Alphateilchen-Emitter-Therapie)
UD2	UD-SCC-2 (Zelllinienbezeichnung)
UD3	UD-SCC-3 (Zelllinienbezeichnung)
UD5	UD-SCC-5 (Zelllinienbezeichnung)
UP111	UPCI-SCC-111 (Zelllinienbezeichnung)
UP154	UPCI-SCC-154 (Zelllinienbezeichnung)
XRCC1	X-Ray repair cross-complementing protein 1
z.B.	zum Beispiel

ABBILDUNGSVERZEICHNIS

Abbildung 1.1: Geschätzte Anzahl der weltweiten HNC-Neuerkrankungen 2018.	8
Abbildung 1.2: Altersstandardisierte Inzidenzraten (ASR) für Kopf-Hals-Tumore in den Weltregionen.	9
Abbildung 1.3: Die zeitliche Entwicklung (1995-2013) der Prävalenz von p16-positiven OPSCC betrachtet in	
verschiedenen Altersgruppen	13
Abbildung 1.4: Abhängigkeit der Prognose von HPV-Status, Tabakkonsum und TNM-Stadium beim	
Oropharynxkarzinom	16
Abbildung 1.5: Schematische Darstellung der Bindung von 213Bi-CHX-A"-DTPA-Cetxuimab an den EGFR einer	
eukaryotischen Zelle zur zielgerichteten Alphateilchen-Therapie.	19
Abbildung 1.6: Zerfallsreihe von radioaktivem ²²⁵ Ac über ²¹³ Bi zu metastabilem ²⁰⁹ Bi	21
Abbildung 1.7: DNA-Schadensinduzierter Zellzyklusarrest	24
Abbildung 1.8: Einfluss von HPV E6/E7 auf die Zellzyklusregulation	28
Abbildung 3.1: Schematische Darstellung des Semi-Dry Western Blot	53
Abbildung 3.2: Schematische Darstellung des ²¹³ Bi-CHX-A"-DTPA-Cetuximab-Bindungsassay	61
Abbildung 4.1: Gelelektrophorese nach RT-PCR zum Nachweis von HPV16 E6- und E7-Gensequenzen in	
HNSCC-Zelllinien.	63
Abbildung 4.2: Einfluss des HPV-Status auf die Proliferation von HNSCC-Zelllinien nach Behandlung mit	
Chemotherapeutika	64
Abbildung 4.3: Einfluss des HPV-Status auf das klonogene Überleben von HNSCC-Zelllinien nach Behandlung	
mit Chemotherapeutika	66
Abbildung 4.4: Bindungsfähigkeit von ²¹³ Bi-CHX-A"-DTPA/-Cetuximab an HNSCC-Zelllinien	68
Abbildung 4.5: Wirkung von ²¹³ Bi-CHX-A"-DTPA-Cetuximab auf die Proliferation von HNSCC-Zelllinien	69
Abbildung 4.6: Wirkung von Cetuximab ohne 213Bi-CHX-A"-DTPA auf HNSCC-Zelllinien	73
Abbildung 4.7: Einfluss des HPV-Status auf die Proliferation bei Behandlung mit ²¹³ Bi-CHX-A"-	
DTPA-Cetuximab	74
Abbildung 4.8: Wirkung von hochenergetischer Röntgenstrahlung auf die Proliferation von HNSCC-Zelllinien.	76
Abbildung 4.9: Fraktionierte Röntgenbestrahlung im Vergleich zu einmaliger Röntgengebestrahlung und	
Behandlung mit ²¹³ Bi-CHX-A"-DTPA-Cetuximab	78
Abbildung 4.10: Einfluss des HPV-Status auf das klonogene Überleben von HNSCC-Zelllinien nach	
unterschiedlicher Strahlentherapie	79
Abbildung 4.11: Koloniebildungsanalyse nach Bestrahlung (Beispielhaft für 2 Zelllinien)	80
Abbildung 4.12: Zellzyklusanalyse von HNSCC-Zelllinien nach Bestrahlung	81
Abbildung 4.13: Proteinexpression und posttranslationale Regulation nach Bestrahlung	83
Abbildung 4.14: Durch Bestrahlung veränderte Genexpression zweier HNSCC-Zelllinien	84
Abbildung 4.15: Behandlungsspezifische Veränderung der Genexpression	85
Abbildung 4.16: Durchflusszytometrische Analyse von γH2AX nach Bestrahlung	87
Abbildung 4.17: Gemittelte γH2AX-Intensität von sechs HNSCC-Zelllinien nach Bestrahlung	88
Abbildung 4.18: Einfluss des HPV-Status auf die γH2AX-Intensität nach Bestrahlung	88

Abbildung 4.19: Nachweis des Knockdown von DNA-Reparaturfaktoren.	. 89
Abbildung 4.20: Auswirkung des Knockdown von DNA-Reparaturfaktoren auf die Proliferation von HNSCC-	
Zelllinien	. 90
Abbildung 4.21: Einfluss des HPV-Status auf die Proliferation von HNSCC-Zelllinien nach Knockdown von	
DNA-Reparaturfaktoren	. 91
Abbildung 4.22: Antiproliferativer Effekt von Bestrahlung wird durch DNA-Reparaturfaktor-Knockdown	
verstärkt	. 92
Abbildung 8.1: : Wirkung von ²¹³ Bi oder ²¹³ Bi-CHX-A"-DTPA auf die Proliferation von HNSCC-Zelllinien	131
Abbildung 8.2: γH2AX-Immunfluoreszenzfärbung bei HNSCC-Zelllinien	135

TABELLENVERZEICHNIS

Tabelle 1.1: Vergleich des linearen Energietransfers (LET) verschiedener Strahlenqualitäten (Hall and Giaccia,	
2012)	20
Tabelle 3.1: Verwendete Zelllinien	31
Tabelle 3.2: Verwendete Enzyme, Kits, Lösungen und Puffer	32
Tabelle 3.3: Verwendete Chemikalien	34
Tabelle 3.4: Verwendete Chemotherapeutika	36
Tabelle 3.5: Verwendete Primärantikörper	37
Tabelle 3.6: Verwendete Sekundärantikörper	38
Tabelle 3.7: Verwendete Geräte	38
Tabelle 3.8: Verwendete Verbrauchsmaterialien	41
Tabelle 3.9: Verwendete Software	42
Tabelle 3.10: Verwendete Medien und Supplemente für jeweilige Zelllinie	44
Tabelle 3.11: Verwendete siRNA	45
Tabelle 3.12: Verwendete Zellzahlen für siRNA-Transfektion in 10 cm Zellkulturschale	45
Tabelle 3.13: Verwendete Zellzahlen für Proliferationsanalyse im 6-Well	46
Tabelle 3.14: Verwendete Reagenzien für die Proliferationsanalyse mittels Kristallviolettfäbrung	47
Tabelle 3.15: Verwendete Reagenzien für die durchflusszytometrische Zellzyklusanalyse	48
Tabelle 3.16: Verwendete Reagenzien für die yH2AX-Immunfluoreszenzfärbung	49
Tabelle 3.17: erweiterte Reagenzien für die durchflusszytometrische Analyse von yH2AX	49
Tabelle 3.18: Reagenzien für die Gewinnung von Gesamtproteinlysaten	50
Tabelle 3.19: Zusammensetzung der SDS-Polyacrylamidgele	52
Tabelle 3.20: Puffer für die SDS-PAGE	53
Tabelle 3.21: Puffer für Semi-dry Western Blot	54
Tabelle 3.22: Puffer für Semi-dry Western Blot	55
Tabelle 3.23: PCR-Programm	57
Tabelle 3.24: Primer für HPV16 E6 / E7 PCR	58
Tabelle 4.1: Statistischer Vergleich (ungepaarter T-Test) der Proliferation (Mittelwerte, normalisiert gegen	
unbehandelte Vergleichsgruppe) abhängig vom HPV-Status	65
Tabelle 4.2: Statistischer Vergleich (ungepaarter T-Test) des klonogenen Überlebens (Mittelwerte, normalisier	t
gegen unbehandelte Vergleichsgruppe) abhängig vom HPV-Status	67
Tabelle 4.3: Statistischer Vergleich (ungepaarter T-Test) der Proliferation (Mittelwerte, normalisiert gegen	
unbehandelte Vergleichsgruppe) nach Behandlung mit verschiedener Aktivitätskonzentrationen von ²¹³	Bi-
CHX-A"-DTPA-Cetuximab und ²¹³ Bi-CHX-A"-DTPA	70
Tabelle 4.4: Statistischer Vergleich (ungepaarter T-Test) der Proliferation (Mittelwerte, normalisiert gegen	
unbehandelte Vergleichsgruppe) abhängig vom HPV-Status nach Behandlung mit verschiedenen	
Aktivitätskonzentrationen von ²¹³ Bi-CHX-A"-DTPA-Cetuximab.	75

Tabelle 4.5: : Statistischer Vergleich (ungepaarter T-Test) der Proliferation (Mittelwerte, normalisiert gegen	
unbehandelte Vergleichsgruppe) abhängig vom HPV-Status nach Behandlung mit hochenergetischer	
Röntgenstrahlung	77
Tabelle 4.6: : Statistischer Vergleich (ungepaarter T-Test) der Proliferation nach Knockdown von DNA-	
Panaraturfaktaran (Mittaluarta narmalisiart agan jawailiga bastrahlta Varalajahagruppa ahna	

Reparaturfaktoren (Mittelwerte, normalisiert gegen jeweilige bestrahlte Vergleichsgruppe ohne
Knockdown) abhängig vom HPV-Status nach zusätzlicher Behandlung mit hochenergetischer
Röntgenstrahlung (2 Gy) oder dem alphateilchen-Emitter ²¹³ Bi-CHX-A"-DTPA-Cetuximab (9,25 kBq/mL). 93
Tabelle 8.1: Liste der im Vergleich zur unbehandelten Kontrolle regulierten Gene 3h nach Behandlung (Änderung
der Genexpression log2 > 1,5) für die HNSCC-Zelllinien UD-SCC-2 und UD-SCC-5

1 EINLEITUNG

1.1 Kopf-Hals-Tumore (HNC)

Der Begriff Kopf-Hals-Tumore (engl. Head and neck cancer, HNC) beschreibt eine heterogene Gruppe an malignen Tumorerkrankungen. Je nach Gewebeursprung wird in dieser heterogenen Entität histologisch zwischen Karzinom, Sarkom, Melanom und Lymphom unterschieden. Den Großteil von über 85 % stellt dabei das Plattenepithelkarzinom des Kopf-Hals-Bereich (engl. head and neck squamous cell carcinoma, HNSCC) dar (Kundu and Nestor, 2012). Histologisch charakteristisch sind dabei Hornbildung und Interzellulärbrücken, welche in ihrer Ausprägung vom histologischen Malignitätsgrad abhängen (Ihrler et al., 2014). Das HNSCC umfasst klassischerweise Malignitäten im Bereich der Mundhöhle, des Larynx und des Pharynx mit seinen Unterregionen Naso-, Oro- und Hypopharynx.

1.1.1 Epidemiologie

Bösartige Tumoren im Kopf-Hals-Bereich (HNC) stellen mit einer jährlichen Anzahl von rund 890.000 Neuerkrankungen und 450.000 Todesfällen gleichzeitig die siebthäufigste Krebserkrankung sowie Todesursache in Folge einer Krebserkrankung dar (Bray et al., 2018). Dabei werden alle Malignitäten im Bereich der Lippen, Mundhöhle, Larynx, Naso-, Oro- und Hypopharynx sowie der Speicheldrüsen betrachtet. Am häufigsten treten mit einem Anteil von rund 40 % diese Malignome im Bereich der Lippe und Mundhöhle auf (Abbildung 1.1, Seite 8). Gleichzeitig geht aus den von Bray et al. (2018) analysierten Daten auf Grundlage der GLOBOCAN-Datenbank (Stand September 2018) hervor, dass Kopf-Hals-Malignome dreimal häufiger bei Männern auftreten als bei Frauen. Je nach Tumorlokalisation ist dieser Faktor teilweise noch stärker zu Ungunsten der männlichen Bevölkerung verschoben und beträgt beim Oropharynx 4 : 1, beim Hypopharynx 5,25 : 1 und beim Larynx 6,7 : 1 (Abbildung 1.1, Seite 8).

ABBILDUNG 1.1: GESCHÄTZTE ANZAHL DER WELTWEITEN HNC-NEUERKRANKUNGEN 2018.

A: Anzahl der weltweiten, geschätzten HNC-Neuerkrankungen und prozentuale Verteilung auf verschiedene Subentitäten. B: Geschlechtsabhängige Verteilung der Inzidenz der jeweiligen HNC-Subentitäten. Datenquelle: GLOBOCAN 2018 (Ferlay J, 2018)

Karzinome im Kopf-Hals-Bereich treten besonders häufig in Melanesien, im südlichen Zentralasien (z.B. Indien und Sri Lanka) sowie in der Karibik auf. Davon gefolgt sind auch Australien, Neuseeland, die europäischen sowie nordamerikanischen Staaten relativ häufig betroffen. Eine Abnahme der Inzidenz kann in den restlichen asiatischen sowie in afrikanischen Staaten beobachtet werden (Abbildung 1.2, Seite 9). Das mittlere Alter bei Neuerkrankungen liegt bei rund 60 Jahren und variiert je nach Tumorlokalisation um wenige Jahre (Dr. Peter Kaatsch, 2017, Argiris et al., 2008, Rettig and D'Souza, 2015). Die epidemiologischen Daten unterliegen in den letzten Jahrzenten in bestimmten Bevölkerungsgruppen einem Wandel, der auf die veränderte Exposition zu bestimmten Risikofaktoren wie Tabakkonsum oder einer Infektion mit dem humanen Papillomvirus (HPV) im Kopf-Hals-Bereich zurückzuführen ist. So sanken in Ländern mit abnehmendem Tabakkonsum auch die Inzidenzen für die mit diesem Risikofaktor verknüpften Kopf-Hals-Tumore (insbesondere Larynx- und Hypopharynxkarzinome), während eine erhöhte HPV-Prävalenz im Bereich der Mundhöhle mit erhöhter Inzidenz des Oropharynxkarzinoms (OPSCC) einherging (Rettig and D'Souza, 2015, Kim et al., 2010, Simard et al., 2014, Lewis et al., 2015, Mifsud et al., 2017).

Weltweite Inzidenzraten für Kopf-Hals-Tumore

ABBILDUNG 1.2: ALTERSSTANDARDISIERTE INZIDENZRATEN (ASR) FÜR KOPF-HALS-TUMORE IN DEN WELTREGIONEN.

Dargestellt sind die Inzidenzraten für Malignome von Lippen, Mundhöhle, Pharynx, Larynx sowie Speicheldrüsen bei Männern und Frauen jeden Alters. Datenquelle: GLOBOCAN 2018 (Ferlay J, 2018)

1.1.2 Ätiologie und Risikofaktoren

Kopf-Hals-Tumore haben verschiedene Risikofaktoren. Am stärksten ist jedoch die Assoziation zu Tabak- und/oder Alkoholkonsum. Diese Noxen sind an mindestens 75 % der bösartigen Erkrankungen im oberen Aerodigestivtrakt beteiligt (Bose et al., 2013, Blot et al., 1988, Sturgis et al., 2004). Raucher haben dabei ein etwa 10-fach höheres Risiko als Personen, die nie geraucht haben. Der karzinogene Effekt von Tabak zeigt dosisabhängige Merkmale und nimmt mit Dauer und Stärke des Konsums zu. Gleichzeitig sinkt das Risiko wieder, wenn der Tabakkonsum eingestellt wird. Ein erhöhtes Restrisiko verbleibt jedoch (Schlecht et al., 1999). Auch Alkohol ist ein Risikofaktor für Kopf-Hals-Tumore, der vor allem von der Regelmäßigkeit und Menge des Konsums abhängig ist (Hashibe et al., 2007). Kombinierter Tabak- und Alkoholkonsum haben einen multiplikativen Effekt auf die Entstehung der genannten Tumorerkrankungen (Pelucchi et al., 2008). Auch das in Ländern wie Indien, Pakistan und Sri Lanka verbreitete Kauen von Betelnusszubereitungen - vor allem mit beigemischten Tabak - erhöht das Risiko von HNC enorm. Travasso (2013) postulierte sogar, dass dieser Konsum die Hälfte aller Mundhöhlenkarzinome in Indien verursache.

Neben dieser nicht-infektiösen Risikofaktoren nimmt das im Wesentlichen sexuell übertragene humane Papillomvirus (HPV) in den letzten Jahren einen immer größeren Stellenwert ein. Vor allem beim Oropharynxkarzinom stieg die Prävalenz einer HPV-Assoziation zwischen den 1980er Jahren und heute von rund 18 % auf 70 - 80 %. Nichtoropharyngeale Karzinome zeigen hingegen nur in rund 20 - 30 % der Fälle eine HPV-Assoziation, was sich mit der Zeit auch nicht verändert hat (Chaturvedi et al., 2011, Mehanna et al., 2013, Ang et al., 2010, Fakhry et al., 2008, Windon et al., 2018). In den allermeisten Fällen von HPV-assoziierten Kopf-Hals-Tumoren liegt der Hochrisikotyp HPV 16 vor (Gillison et al., 2012).

Als weiterer, oft zusammen mit Tabak- oder Alkoholkonsum auftretender Risikofaktor gilt schlechte Mundhygiene (Velly et al., 1998, Graham et al., 1977, Talamini et al., 2000, Moreno-Lopez et al., 2000). Auch bestimmte genetische Syndrome erhöhen das Risiko für HNC, wie z.B. Fanconi-Anämie (Kutler et al., 2003, Scheckenbach et al., 2012), Li-Fraumeni-Syndrom, Louis-Bar-Syndrom (Ataxia telangiectasia), Bloom-Syndrom oder Xeroderma pigmentosum (Trizna and Schantz, 1992).

1.1.3 Molekularpathologie des HNSCC

Die Karzinogenese des HNSCC ist bedingt durch eine Reihe von genetischen Veränderungen in den Schleimhäuten des Kopf-Hals-Bereichs. Diese sorgen dafür, dass sich die Zellen erst vermehrt teilen (Hyperplasie), dann Ihr Erscheinungsbild verändern (Dysplasie) bevor Sie zu einem Carcinoma in situ, also einem nichtinvasiven intraepithelial wachsenden Karzinom, heranwachsen. Aus diesem kann sich dann ein invasives und gegebenenfalls metastasierendes HNSCC entwickeln. Die zugrundeliegenden genetischen Veränderungen sind vielfältig. Einige dieser Aberrationen (Onkogenamplifizierungen, Tumorsuppresorgenverluste, Mutationen) treten jedoch gehäuft auf und dienen als charakteristische Modellparameter für die Karzinogenese des HNSCC (Califano et al., 1996, Perez-Ordonez et al., 2006, Leemans et al., 2018, Cancer Genome Atlas, 2015). Ein Beispiel für solch eine charakteristische genetische Veränderung im HNSCC ist die Inaktivierung des Tumorsuppressorgen CDKN2A (p16). Diese tritt in rund 80 % der HNSCC auf und ist meist durch einen Verlust des entsprechenden Genlokus auf Chromosom 9p21 verursacht (Reed et al., 1996). Auch Mutationen von TP53 (p53), die häufig zur Inaktivierung dieses wichtigen Tumorsuppressorgens beziehungsweise einem nichtfunktionalen p53-Protein führen, treten in 50 - 80 % der Fälle auf (Poeta et al., 2007, Cancer Genome Atlas, 2015, Stransky et al., 2011, van Houten et al., 2002, Agrawal et al., 2011) und sind ein wichtiger Faktor in der Entstehung und Erhaltung eines Kopf-Hals-Malignoms. Onkogene wie EGFR (epidermaler Wachstumsfaktorrezeptor, engl. epidermal growth factor receptor) oder CCND1 (Cyclin D1) sind häufig amplifiziert, überexprimiert und haben einen negativen Einfluss auf die Prognose bezüglich Überleben (Grandis and Tweardy, 1993, Rousseau et al., 2001, Rubin Grandis et al., 1998, Lin et al., 2013, Sheu et al., 2009, Ke et al., 1998).

Weitere häufig zu beobachtende molekularpathologischen Veränderungen betreffen Signalwege wie die PI3K-AKT-mTor-Achse, den JAK-STAT-Signalweg, oder NOTCH1 (Bose et al., 2013). Der PI3K-AKT-mTor-Signalweg spielt eine wichtige Rolle bei der Regulation von Zellüberleben, -wachstum und -differenzierung (Engelman et al., 2006). Eine Dysregulation beziehungsweise übermäßige Aktivierung dieses Signalwegs ist eine der am häufigsten zu beobachtenden Signalwegsveränderungen bei Krebs allgemein (Vivanco and Sawyers, 2002). Im HNSCC ist häufig das Gen für die katalytische Untereinheit der Phosphoinositid-3-Kinase (PI3K) mutiert oder amplifiziert. Alternativ oder ergänzend sind in rund 7 % Mutationen bei PTEN, dem natürlichen Gegenspieler von PI3K, vorzufinden (Pedrero et al., 2005, Stransky et Agrawal et al., 2011). PIK3CA-Mutationen/-Amplifikationen sind mit al., 2011, fortgeschrittenem Tumorstadium und erhöhter Invasion assoziiert (Lui et al., 2013, Murugan et al., 2008, Du et al., 2016, Samuels et al., 2005). Der JAK-STAT-Signalweg befähigt Zellen extrazelluläre Signale in Form von Interferonen, Interleukinen oder Hormonen in entsprechende Genexpression umzusetzen. Nach Bindung dieser Signale an Zytokin-Rezeptoren werden die STAT-Proteine (Signal Transducers and Activator of Transcription) von an den Rezeptor gebundenen und aktivierten Januskinasen (JAK) phoshporyliert, so dass diese dimerisieren und im Zellkern als Transkriptionsfaktor aktiv werden können. Hierüber werden zelluläre Prozesse wie Wachstum, Überleben, Differenzierung aber auch

11

Immunantwort reguliert. Überaktivierung der STAT-Proteine, vor allem STAT3, fördern die Onkogenese durch vermehrtes Wachstum und Entkopplung von apoptotischen Prozessen (Sriuranpong et al., 2003, Grandis et al., 1998, Rubin Grandis et al., 2000, Bowman et al., 2000). Der Notch-Signalweg ist hochkonserviert und steuert Differenzierung, Proliferation und Apoptose von Zellen über Zell-Zell-Kontaktabhängige Signaltransduktion (Hori et al., 2013). Je nach Zelltyp und dem zellulären Kontext kann der Notch-Signalweg onkogen oder aber tumorsuppresiv wirken. So treten bei der T-Zell akuten lymphatischen Leukämie vor allem sogenannte *"gain of function"*-Mutationen des NOTCH1-Rezeptors auf. Also Mutationen, welche die Funktion des Proteins verstärken. Bei HNSCC hingegen führen NOTCH1-Mutationen in rund 40 % der Fälle zur Trunkierung des Genprodukts, weshalb NOTCH1 im HNSCC eher eine Rolle als Tumorsuppressor spielen könnte (Agrawal et al., 2011, Stransky et al., 2011, South et al., 2012). Weiterer Hinweis hierfür sind Studien von Pickering et al. (2013), die zeigen konnten, dass funktionales NOTCH1 die Proliferation von Mundhöhlenkarzinomzelllinien hemmt.

Das Krebsentstehungsmodell nach Califano et al. (1996) mit einer relativ starken Häufung definierter genetischer Veränderungen könnte vermuten lassen, dass HNSCC eine homogene Entität darstellt, die es leicht macht molekulare Ziele für Therapien zu finden. Tatsächlich sind Plattenepithelkarzinome im Kopf-Hals-Bereich aber äußerst heterogen. Bereits histologisch kann eine Vielzahl an unterscheidbaren Subklassen definiert werden (Woolgar and Triantafyllou, 2009). Auch auf molekularer Ebene können weitere Klassifizierungen anhand von unterschiedlichen Genexpressionsmustern (Chung et al., 2004) vorgenommen werden. Auch die chromosomale Integrität ist ein Faktor, nach dem man HNSCC einteilen kann und der prognostischen Wert hat (Smeets et al., 2009). Eine weitere molekulare Eigenschaft, die auch Rückschlüsse auf ein besseres Therapieansprechen und Überleben zulässt, ist der HPV-Status eines HNSCC (Ang et al., 2010). Wie bereits in Abschnitt 1.1.2 beschrieben sind inzwischen rund 70-80% der Oropharynxkarzinome mit dem humanen Papillomavirus Typ 16 assoziiert. Diese Virus-assoziierten Tumore haben meist eine niedrigere Last an genetischen Aberrationen sowie abweichende Schwerpunkte des Mutationsspektrums, was auf eine andersartige Karzinogenese hinweist (Cancer Genome Atlas, 2015, Braakhuis et al., 2004, Klussmann et al., 2009, Smeets et al., 2006, Seiwert et al., 2015). HPV-Positivität geht meist mit einem positiven p16-Status und verringerter TP53-Mutationslast einher (Dai et al.,

2004, Snow and Laudadio, 2010). Bereits 2004 wurden HPV-assoziierte HNSCC als eigenständige Entität beschrieben (Gillison, 2004) und tragen somit noch weiter zur Heterogenität im HNSCC bei.

1.1.4 HPV-assoziierte HNSCC

Humane Papillomviren sind weltweit für rund 5 % aller Krebserkrankungen verantwortlich (Tota et al., 2011). Wie bereits beschrieben liegt vor allem beim Oropharynxkarzinom eine sehr hohe HPV-Prävalenz von inzwischen rund 70 - 80 % vor. Bei nicht-oropharyngealen Karzinomen liegt diese bei rund 20 - 30 % (Chaturvedi et al., 2011, Mehanna et al., 2013, Ang et al., 2010, Fakhry et al., 2008, Windon et al., 2018). Meist haben HPV-positive HNSCC ihren Ursprung in den Krypten der lingualen und Gaumenmandeln (Begum et al., 2005, Gillison et al., 2000, Klussmann et al., 2003). Anders als im Zervix-Karzinom, wo eine Disruption des stratifizierten Epithels für eine HPV-Infektion der Basalmembran nötig ist (Roberts et al., 2007), bietet das retikuläre Epithel der tonsillären Krypten durch mangelnde strukturelle Integrität eine Umgebung, die die virale Infektion von Natur aus erleichtert (Perry, 1994).

ABBILDUNG 1.3: DIE ZEITLICHE ENTWICKLUNG (1995-2013) DER PRÄVALENZ VON P16-POSITIVEN OPSCC BETRACHTET IN VERSCHIEDENEN ALTERSGRUPPEN.

Dargestellt ist die Prävalenz von HPV-positiven OPSCC mit p16-Status als Surrogatmarker. Die Steigerung der Prävalenzraten von 1995-2013 war in jeder Altersgruppe individuell signifikant. Datenquelle: Windon et al. (2018)

EINLEITUNG

Patienten mit HPV-positivem Oropharynxkarzinom sind im Vergleich zu nicht HPVassoziiertem OPSCC jünger und deutlich häufiger männlich als weiblich. Zudem wird ihnen ein höherer sozioökonomischer Status zugeschrieben (Ang et al., 2010, Worden et al., 2008, Gillison et al., 2008, Chaturvedi et al., 2011, Schwartz et al., 2001). HPV-assoziierte Tumore sind bei Diagnose meist noch kleiner, weisen jedoch bereits häufiger Lymphknotenbefall auf (Ang et al., 2010, O'Sullivan et al., 2012). In den letzten Jahren stieg auch bei älteren Patienten die Prävalenz von HPV-assoziierten Oropharynxkarzinomen an und erreichte bei einer aktuellen Studie in Nordamerika das Niveau von jüngeren Patienten (Abbildung 1.3, Seite 13).

Anders als bei nicht-HPV-assoziierten HNSCC spielen die Risikofaktoren Tabak- und Alkoholkonsum eine eher untergeordnete Rolle. Vielmehr steigt das Risiko für ein HPVassoziiertes Oropharynxkarzinom mit der Anzahl an bisherigen Sexpartnern - insbesondere Oralsex. Zudem ist starker Marihuana-Konsum mit HPV-positiven HNSCC assoziiert (Gillison et al., 2008, D'Souza et al., 2007, Smith et al., 2004, Kreimer et al., 2004). Neben einem veränderten epidemiologischen Profil mit separaten Risikofaktoren konnte festgestellt werden, dass Patienten mit HPV-assoziiertem OPSCC eine um etwa 50 % verbesserte Prognose bezüglich Überleben haben. Dies konnte auch unter Berücksichtigung des jüngeren Alters und der verringerten Komorbiditäten bei HPV-positiven OPSCC bestätigt werden (Gillison et al., 2000, Ang et al., 2010, Chaturvedi et al., 2011, Fakhry et al., 2008, Rischin et al., 2010, O'Rorke et al., 2012, Posner et al., 2011, Masterson et al., 2014, Sethi et al., 2012, Windon et al., 2018). Berücksichtigt man neben dem HPV-Status zusätzlich Tabakkonsum und beziehungsweise Lymphknotenmetastasierung, Tumorstadium, kann eine noch differenziertere Prognose bezüglich Überleben getroffen werden (Abbildung 1.4, Seite 16). So haben HPV-positive OPSCC mit geringem Einfluss von Tabakkonsum die beste Prognose, während beispielsweise HPV-assoziierte OPSCC mit einer Historie von erhöhtem Tabakkonsum und dem Vorliegen von Lymphknotenmetastasen eine ähnliche Prognose wie HPV-negative OPSCC mit wenig Tabakkonsum und einem frühen Tumorstadium haben (Ang et al., 2010). Auf molekularer Ebene unterscheiden sich HNSCC mit HPV-Assoziation durch ein eigenständiges Spektrum an chromosomalen Aberrationen, (Braakhuis et al., 2004, Klussmann et al., 2009, Smeets et al., 2006), eine geringere Mutationslast mit anderen Mutationsschwerpunkten (Cancer Genome Atlas, 2015, Seiwert et al., 2015) sowie ein verändertes Genexpressionsmuster (Martinez et al., 2007). Auch eine veränderte

EINLEITUNG

Immunogenität konnte für HPV-assoziierte HNSCC beschrieben werden. Vor allem für das bessere Ansprechen auf Strahlentherapie der HPV-positiven Plattenepithelkarzinome könnte diese verstärkte Immunantwort gegen den Tumor zu Grunde liegen. So ist eine verstärkte Infiltration mit Immunzellen beschrieben. Diese sogenannten *"tumor infiltrating lymphocytes"* sind beispielsweise CD8⁺ zytotoxische, PD-1⁺ oder auch regulatorische T-Zellen (Özcan-Wahlbrink et al., 2019, Rödel et al., 2019). Zudem konnten in Patienten mit HPV-positiven Kopf-Hals-Tumoren Antikörper spezifisch gegen HPV gefunden werden (Heusinkveld et al., 2012). Auch eine erhöhte PD-1 oder PD-L1-Expression der Tumorzellen selbst ist mit besserem Ansprechen auf Strahlentherapie und somit besserem Überleben assoziiert (Lyu et al., 2019). Eine Modulation dieser Immunantwort bietet unter Umständen die Möglichkeit die Therapie dieser malignen Erkrankung zu verbessern.

Für die Karzinogenese und Tumorerhaltung sind aber vor allem die Integration und Expression der viralen Onkogene E6 und E7 verantwortlich. Diese beeinflussen eine Vielzahl zellulärer Prozesse, die mit klassischen Krebsmerkmalen in Verbindung stehen, wie zum Beispiel replikative Immortalität, Genominstabilität, Aktivierung von Invasion und Migration, Vermeidung von Zelltod und die Aufrechterhaltung der Proliferation (Moody and Laimins, 2010, Mesri et al., 2014). Bereits 2004 wurde postuliert, dass HPV-assoziierte Kopf-Hals-Tumore eine eigenständige Entität darstellen - und das sowohl epidemiologisch, klinisch als auch molekular betrachtet (Gillison, 2004). Seit 2017 finden diese Erkenntnisse im Zuge der 8. Auflage der "TNM-Klassifikation maligner Tumoren" Anwendung und es wird bei der Tumoren zwischen HPV-positiven Klassifizierung der und HPV-negativen Oropharynxkarzinomen unterschieden (Wittekind, 2017).

ABBILDUNG 1.4: ABHÄNGIGKEIT DER PROGNOSE VON HPV-STATUS, TABAKKONSUM UND TNM-Stadium beim Oropharynxkarzinom.

Dargestellt ist die Risikobewertung bezüglich des 3-Jahres Gesamtüberleben (3y OS) für das Oropharynxkarzinom unter hierarchischer Rücksichtnahme des HPV-Status, gefolgt vom Tabakkonsum in Packjahren (py) und dem TNM-Stadium. Modell nach Ang et al. (2010).

1.1.5 Therapieoptionen

Zur Behandlung von Plattenepithelkarzinomen im Kopf-Hals-Bereich stehen im Grunde drei Therapieoptionen zur Verfügung, die auch miteinander kombiniert werden: Chirurgische Resektion, Radiotherapie und systemische Therapien. Diese verschiedenen Therapiearten werden in Abhängigkeit vom Tumorstadium, also dessen Größe und Ausbreitung, eingesetzt. Ziel der Behandlung ist im Idealfall die vollständige Entfernung des Tumors bei bestmöglichem Erhalt der Funktion des betroffenen Gewebes und eine daraus hervorgehende Erhaltung oder gar Verbesserung der Lebensqualität. Um diese möglichst allumfassende Versorgung gewährleisten zu können muss ein breites Spektrum an Fachpersonal verschiedener Disziplinen eng zusammenarbeiten. So sind meist nicht nur Kopf-Hals-Chirurgen, Onkologen und Radioonkologen involviert, sondern insbesondere für die Nachsorge auch Radiologen, Sprachtherapeuten, Psychologen, plastische Chirurgen und Sozialarbeiter (Vermorken and Specenier, 2010, Denaro et al., 2014). Patienten, die sich mit einem frühen Tumorstadium I-II vorstellen, erhalten in der Regel eine alleinige Operation oder Radiotherapie und haben in Abhängigkeit von Lokalisation und Ausbreitung des Tumors eine Heilungschance von 60 – 90 %. Im lokal fortgeschrittenen Stadium wird meist eine Kombination aus Chirurgischen Maßnahmen mit postoperativer Strahlentherapie empfohlen. Wird bei der Operation festgestellt, dass bestimmte Risikofaktoren für ein Rezidiv, wie extrakapsuläres Tumorwachstum oder mangelnde komplette Resektion, gegeben sind, wird zumeist eine postoperative Kombination aus Radio-und Chemotherapie mit platinhaltigen Agenzien angewendet. Dies ist auch bei nicht operablen Tumoren der Fall (Licitra et al., 2009, Vermorken and Specenier, 2010).

In der prospektiven Studie RTOG 0129 konnte gezeigt werden, dass Patienten mit HPVpositivem Oropharynxkarzinom bezüglich ihres 3-Jahresüberleben stark von einer Radiochemotherapie mit Cisplatin (82,4 % vs. 57,1 %) profitieren (Ang et al., 2010). Diese Ergebnisse waren Anlass für weitere Studien, in denen bei HPV-positiven OPSCC das oft zu toxische Cisplatin durch Cetuximab ersetzt wurde. Cetuximab ist ein chimärer monoklonaler Antikörper gegen den EGF-Rezeptor. Sowohl RTOG 1016 als auch De-ESCALaTE HPV hatten jedoch zum Ergebnis, dass Cetuximab nicht zur erhofften Reduktion der Toxizität führte und bezüglich Überleben und Rezidivrate der Therapieoption mit Cisplatin sogar unterlegen ist (Gillison et al., 2019, Mehanna et al., 2019). Bislang wird die Therapieentscheidung also weiterhin unabhängig vom HPV-Status getroffen.

1.1.6 Strahlenresistenz

Strahlentherapie ist ein wichtiger Bestandteil der Behandlung von Kopf-Hals-Tumoren. Trotz fortschreitender technischen Entwicklung kommt es häufig zur Strahlenresistenz. Diese kennzeichnet sich entweder durch ein nur partielles Ansprechen des Tumors oder aber durch Rezidive kurz nach erfolgreicher Remission. Patienten, bei denen es zu einer solchen Resistenz gegenüber Radiotherapie kommt, haben im Verlauf eine schlechtere Prognose, da die weiteren Behandlungsmöglichkeiten stark eingeschränkt sind. Die Strahlenresistenz stellt daher ein enormes Problem bei der Behandlung des HNSCC dar (Perri et al., 2015).

Die Gründe für eine bestehende oder sich entwickelnde Strahlenresistenz sind vielseitig. So können beispielsweise Veränderungen in tumorassoziierten Signalwegen wie der

17

EGFR/PI3K/AKT/mTOR-Achse oder dem p53-Signalweg die Radiosensitivität beeinflussen. Bestrahlung führt zu einer Autophosphorylierung des EGFR und in Folge dessen zu einer ligandunabhängigen Stimulation der Proliferation (Bowers et al., 2001, Goldkorn et al., 1997, Schmidt-Ullrich et al., 1997). Auch strahleninduzierte Migration wird über den EGF-Rezeptor reguliert (Pickhard et al., 2011). Dem EGFR nachgeschaltet reguliert der PI3K-AKT-Signalweg zelluläre Funktionen wie Zellproliferation, DNA-Reparatur oder Inhibition von Apoptose. Eine Überaktivierung dieses Signalwegs, sei es in Abhängigkeit vom EGFR oder durch Genmutationen oder -amplifikationen, ist eng mit Radioresistenz verknüpft (Bussink et al., 2008, Horn et al., 2015, Perri et al., 2015). Differenzielle Genexpressionsanalysen konnten zudem zeigen, dass Bestrahlung zu Subklonen von HNSCC-Zellen führt, welche eine veränderte Genexpression hinsichtlich dieser Signalwege aufweisen (Michna et al., 2016). Als zentrales Tumorsuppressorgen reguliert TP53 unter Stressbedingungen den Zellzyklus, Apoptose, DNA-Reparatur und Angiogenese. Da wie im Abschnitt 1.1.3 beschrieben der p53-Signalweg im HNSCC in 50 – 80 % der Fälle verändert ist, kann dies die Strahlensensitivität mit beeinflussen (El-Deiry, 2003).

Neben diesen intrazellulären Signalwegsveränderungen spielt auch die induzierte Form des Zelltods eine Rolle für das nachhaltige Ansprechen auf Strahlentherapie. So bewirkt das Sekretom einer nekrotischen Zelle eine Stimulation des Immunsystems, welche gegen die Tumorzellen gerichtet ist. Somit wird das Immunsystem auf die Tumorzellen aufmerksam gemacht und kann gezielt gegen sie vorgehen. Eine apoptotische Zelle hingegen kann antiinflammatorische Signale vermitteln, was zur Induktion von Toleranz führt (Lauber et al., 2012).

Eine weitere Ursache für Strahlenresistenz ist die Tumorhypoxie. Diese entsteht durch verstärkte Proliferation des Tumorgewebes mit gleichzeitig höherer metabolischer Aktivität, wohingegen die Sauerstoffversorgung durch verminderte Durchblutung abnimmt. Hypoxie ist ein unabhängiger prognostischer Faktor im HNSCC (Vaupel et al., 2001, Nordsmark et al., 2005). Es ist schon lange bekannt, dass ein geringer Sauerstoffgehalt im Gewebe Einfluss auf die Effektivität von Strahlentherapie hat (Gray et al., 1953), da so weniger schädigende freie Radikale gebildet werden und ohne Sauerstoff keine Fixierung von strahleninduzierten DNA-Schäden stattfindet (Harada, 2011). Zusätzlich geht die Expression des hypoxieinduzierten Transkriptionsfaktors HIF-1 mit einer Resistenz gegenüber Radio- und Radiochemotherapie

einher. Da HIF-1 nach Bestrahlung noch stärker exprimiert wird, manifestiert sich die Resistenz, der Tumor wächst aggressiver und das Risiko für Fernmetastasen steigt (Moeller and Dewhirst, 2006, Koukourakis et al., 2002, Moeller et al., 2004).

1.2 Alphateilchen-Emitter-Therapie bei Krebserkrankungen

Die im vorherigen Abschnitt 1.1.6 beschriebene Resistenz gegenüber hochenergetischer Röntgen- oder γ-Strahlung, sowie die teils starke Schädigung tumornahen gesunden Gewebes und damit verbundene Nebenwirkungen durch diese Behandlungsmethode, verdeutlichen den Bedarf einer zielgerichteten Therapie. Die zielgerichtete Alphateilchen-Emitter-Therapie (engl. targeted alpha-therapy, TAT) bietet die Möglichkeit eine hochenergetische Strahlenquelle unmittelbar am Tumor wirken zu lassen und dabei das umliegende Gewebe bestmöglich zu schonen (Abbildung 1.5).

ABBILDUNG 1.5: SCHEMATISCHE DARSTELLUNG DER BINDUNG VON ²¹³BI-CHX-A"-DTPA-CETXUIMAB AN DEN EGFR einer Eukaryotischen Zelle zur zielgerichteten Alphateilchen-Therapie.

Dargestellt ist das an eine Zelle gebundene Radioimmunkonjugat ²¹³Bi-CHX-A"-DTPA-Cetuximab, dessen freigesetztes Alphateilchen mit einer Reichweite von 50 - 90 μ m in der Lage ist die DNA im Zellkern zu erreichen und zu schädigen.

Alphateilchen stellen anders als UV-, Röntgen- oder γ -Strahlung keine Photonen- sondern eine Teilchenstrahlung dar. Wie Rutherford bereits Ende des 19. Jahrhunderts feststellte, haben Alphateilchen eine viel kürzere Reichweite als hochenergetische Photonenstrahlung oder β -Teilchen (Rutherford, 1899). Zudem konnte gezeigt werden, dass Alphateilchen aus einem 2fach positiv geladenem Heliumkern (2 Protonen, 2 Neutronen) bestehen (Rutherford and Royds, 1909). Diese entstehen beim radioaktiven Zerfall von Isotopen einiger schwerer Elemente mit Ordnungszahlen \geq 82, wie zum Beispiel Pb (Blei), Bi (Bismut), At (Astat), Ra (Radium), Ac (Actinium) oder Th (Thorium). Die Halbwertszeiten dieser für TAT nutzbaren radioaktiven Isotope sind verhältnismäßig gering und liegen im Bereich von etwa 30 Minuten bis hin zu knapp 19 Tagen (213Bi = 45,6 Minuten). Alphateilchen haben in Gewebe eine Reichweite von etwa 25-100 µm, was dem Durchmesser von etwa 2-5 Turmozellen entspricht, und einen vergleichsweise hohen linearen Energietransfer (LET) von 50 – 230 keV/µm. Der lineare Energietransfer gibt an wieviel Energie durchschnittlich pro zurückgelegter Wegstrecke abgegeben wird und ist ein Maß für die Stärke ionisierender Strahlung (Tabelle 1.1). Genau diese hohe Ionisierungsdichte von Alphateilchen führt zu gehäuften und komplexen DNA-Doppelstrangbrüchen, da die Distanz von Ionisierungsvorgängen hier beinahe exakt dem Abstand der Stränge einer DNA-Doppelhelix entspricht. Diese Eigenschaften von Alphateilchen haben zur Folge, dass sie im Vergleich zu konventioneller Bestrahlung bei Applikation der gleichen Dosis einen drei- bis siebenfachen Effekt bezüglich der Induktion von Zelltod haben (Sgouros, 2008). Zudem ist die direkte Schädigung der DNA unabhängig vom Oxygenierungsstatus des Gewebes, was bei der Strahlenresistenz auch eine erhebliche Rolle spielt (Wulbrand et al., 2013).

Bestrahlung	LET [keV/µM]
Cobalt-60 γ-Strahlen	0,2
250-kV Röntgenstrahlung	2,0
2,5 MeV Alphateilchen	166

TABELLE 1.1: VERGLEICH DES LINEAREN ENERGIETRANSFERS (LET) VERSCHIEDENER STRAHLEN-
QUALITÄTEN (HALL AND GIACCIA, 2012).

Lokalisiert man einen Alphateilchen-Emitter selektiv und hochaffin an Tumorzellen ist diese Form von Strahlentherapie durch die enorm hohe Energieabgabe auf sehr kurzer Distanz ein vielversprechender Kandidat zur effektiven Tumortherapie bei gleichzeitig bestmöglicher Schonung umliegenden Gewebes. Vor allem kleine Tumorzellnester, disseminierte Tumorzellen oder Mikrometastasen, die mit üblicher Strahlentherapie nicht so einfach erreicht werden, könnten so zielgerichtet therapiert werden. Dabei sind die Radionuklide ²²⁵Ac und ²¹³Bi auf Grund ihrer Halbwertszeit, Zerfallsenergie, Reichweite im Gewebe und der Möglichkeit der Konjugation an zielführende Moleküle wie Antikörper oder Peptide mittels bi-funktionalen Chelatoren (z.B. CHX-A"-DTPA oder DOTA) bzw. anderen gut durchführbaren Techniken besonders erfolgsversprechend. So gibt es bereits eine Reihe klinischer Studien zur Therapie von Leukämie, Lymphom, Melanom, Blasenkarzinom, Gliom, Neuroendokrinen Tumoren und Prostatakarzinom bei denen diese beiden Radionuklide zum Einsatz kamen.

ABBILDUNG 1.6: ZERFALLSREIHE VON RADIOAKTIVEM ²²⁵AC ÜBER ²¹³BI ZU METASTABILEM ²⁰⁹BI.

Dargestellt ist der Zerfall des Radionuklids ²²⁵Ac mit durchschnittlichen Halbwertszeiten (HWZ) der Isotope unter Angabe von Art und Energie des jeweiligen Zerfalls. Modifiziert nach Morgenstern et al. (2018).

²¹³Bi zerfällt über zwei unterschiedliche Wege zu ²⁰⁹Pb, wobei jeweils ein β -Teilchen und ein Alphateilchen freigesetzt werden. Die mittlere Energie des ²¹³Bi-Zerfalls liegt bei 8,35 MeV (Abbildung 1.6). Sowohl ²²⁵Ac als auch ²¹³Bi haben im Gewebe eine Reichweite von etwa 50 - 90 µm. Bisher sind vor allem die schlechte Verfügbarkeit von medizinisch einsetzbaren Radionukliden in entsprechenden Mengen und die oft ungeklärte Darreichungsform limitierende Faktoren von TAT. (McDevitt et al., 1998, Goodhead, 2006, Wulbrand et al., 2013, Seidl, 2014, Hall and Giaccia, 2012, Morgenstern et al., 2018, Makvandi et al., 2018)

1.3 Biologische Effekte ionisierender Strahlung

Eine grundlegende Eigenschaft ionisierender Strahlung ist die lokale Freisetzung einer Energiemenge, die ausreichend ist, um chemische Bindungen zu brechen. Wie im vorherigen Kapitel bereits beschrieben, gibt es unterschiedliche Arten ionisierender Strahlung. Grundsätzlich wird zwischen elektromagnetischer bzw. Photonenstrahlung (z.B. Röntgenstrahlung) und Teilchenstrahlung (z.B. Alphateilchen) unterschieden. Photonenstrahlung wird als indirekt ionisierende Strahlung bezeichnet, da sie bei Absorption in Materie Energie abgibt und erst dadurch geladene Partikel (Elektronen) frei werden, welche ionisierendes Potential haben (Compton-Effekt). Alphateilchen hingegen sind zweifach positiv geladene Heliumkerne und damit direkt ionisierende Teilchenstrahlung (Hall and Giaccia, 2012).

1.3.1 Schädigung der DNA

Die größte Auswirkung von ionisierender Strahlung ist die Schädigung der DNA. Bestehend aus zwei Strängen mit einem Zucker-Phosphat-Rückgrat, die durch Wasserstoffbrückenbindungen zwischen den komplementären DNA-Basen zusammengehalten werden, bildet DNA eine Doppelhelixstruktur. Die Abfolge der DNA-Basen stellt den genetischen Code dar. Eine Schädigung kann entweder durch das direkte Einwirken der ionisierenden Strahlung auf die DNA-Struktur, oder aber auf indirektem Weg über Bildung von hochreaktiven Radikalen erfolgen, welche wiederum mit der DNA reagieren. Da Zellen zu 80 % aus Wasser bestehen, sind vor allem Hydroxyl-Radikale (OH·) an diesem indirekten Wirkungsmechanismus beteiligt. Je höher der lineare Energietransfer (LET) einer Strahlung ist, desto höher ist die Wahrscheinlichkeit, dass die DNA auf direktem Wege geschädigt wird. Bei hochenergetischer Röntgenstrahlung überwiegt jedoch mit rund 66 % der Weg der indirekten Schädigung über freie Radikale. Schäden die durch ionisierende Strahlung verursacht werden, betreffen die DNA-Basen oder das DNA-Rückgrat. Letzteres führt zu einem Einzelstrangbruch der DNA-Doppelhelix, welcher durch den noch vorhandenen Komplementärstrang jedoch relativ einfach repariert werden kann. Treten zwei Einzelstrangbrüche an direkt gegenüberliegender Position oder mit einem Abstand von nur wenigen Basenpaaren auf, kommt es zu einem DNA-Doppelstrangbruch. Diese gelten bezüglich der Letalität für Zellen als besonders

relevant. Vor allem bei Strahlung mit hohem LET kommt es neben vermehrten Doppelstrangbrüchen zu weiteren Schädigungen der DNA (z.B. Basenschäden) in unmittelbarer Nähe zum Doppelstrangbruch. Dies erhöht die Komplexität des Schadens, führt zum Verlust genetischer Information und erschwert die Reparatur der Schädigung (Hall and Giaccia, 2012).

1.3.2 DNA-Schadensantwort

Tritt eine Schädigung der DNA auf, werden eine Reihe von biologischen Mechanismen aktiviert, um den Schaden zu markieren und zu beheben. Dabei gibt es für die unterschiedlichen Arten von DNA-Schäden spezialisierte und hoch konservierte Reparaturmechanismen.

Einzelstrangbrüche werden von dem Enzym Poly(ADP-ribose) polymerase-1 (PARP-1) erkannt, woraufhin das X-Ray repair cross-complementing protein 1 (XRCC1) bindet und als zentrales Plattformprotein die Basenexzisionsreparatur (BER) steuert. Bei dieser Reparatur dient der komplementäre DNA-Strang als Vorlage und der Schaden kann meist ohne Veränderung der genetischen Information repariert werden (Hanssen-Bauer et al., 2011, Whitehouse et al., 2001).

ABBILDUNG 1.7: DNA-SCHADENSINDUZIERTER ZELLZYKLUSARREST.

Schematische Darstellung der Zellzyklusregulation mit den Möglichkeiten des Arrests nach DNA-Schaden. In der G1-Phase akkumuliert unter Vorhandensein von mitogenen Stoffen Cyclin D1. CDK4/6 kann durch Bindung von Cyclin D1 das Protein RB phosphorylieren, wodurch der Transkriptionsfaktor E2F freigegeben wird. Dieser sorgt für die Expression von Cyclin E und weiteren Faktoren, die den Übergang in die Synthese-Phase (S) ermöglichen. Der Übergang von der G2-Phase in die Mitose wird durch die Komplexe CDK1/Cyclin A und CDK1/Cyclin B initiiert. Reguliert ist dieser Prozess unter Anderem von Cdc25 und Wee1. Nach einem DNA-Schaden wird p53-abhängig und –unabhängig der Zellzyklus in der G1- oder G2-Phase angehalten (gestrichelte Balken = Restriktionspunkte). Modifiziert nach Vermeulen et al. (2003).

Bei einem DNA-Doppelstrangbruch erkennen die Kinasen ATM/ATR den Schaden und sind initial mit daran beteiligt einen Zellzyklusarrest zu etablieren, da die Reparatur eines Doppelstrangbruches mehr Zeit benötigt (Abbildung 1.7). Vor Eintritt in die S-Phase des Zellzyklus, in der die Replikation der DNA durchgeführt wird, ist ein solcher Arrest vom Tumorsuppressor p53 gesteuert. Dieser stimuliert die Expression von p21. Das Protein p21 ist ein CDK-Inhibitor (Cyclin dependent kinases) und blockiert die Aktivität von CDK4 und CDK6, welche zusammen mit Cyclin D1 durch Phosphorylierung des Retinoblastom-Proteins (RB) die Freigabe des zuvor gebundenen Transkriptionsfaktor E2F und somit den Übergang von der G1- in die S-Phase ermöglichen. Neben dem G1-Arrest ist p53, bzw. p21, auch beim Stoppen des Zellzyklus vor dem Übergang in die Mitose beteiligt, indem es CDK1 inhibiert. Auch p53-unabhängig kann in der G2-Phase ein Arrest über ATM/ATR durch Inhibierung von Cdc25 initiiert werden, welches an der Aktivierung von CDK1 beteiligt ist (Vermeulen et al., 2003). Zusätzlich kommt es am Ort der Schädigung innerhalb weniger Minuten zur Phosphorylierung der Histonvariante H2A.X an Serin 139 (yH2AX). Diese Markierung umfasst einen Bereich von bis zu 2 Megabasenpaaren (Mbp) um den Doppelstrangbruch und rekrutiert Reparaturproteine, die für die Doppelstrangbruchreparatur zuständig sind. Erst wenn der Schaden behoben ist, wird yH2AX wieder dephosphoryliert. Es dient somit als zuverlässiger Marker für einen vorhandenen und noch nicht reparierten DNA-Doppelstrangbruch (Paull et al., 2000, Rogakou et al., 1998, Kuo and Yang, 2008, Pilch et al., 2003, Bewersdorf et al., 2006). Für die Reparatur stehen hauptsächlich zwei unterschiedliche Mechanismen zur Verfügung, Homologe Rekombination (HR) und die nicht-homologe Endverknüpfung (engl. non-homologous end joining, NHEJ). Steht nach erfolgter Replikation in der S-Phase des Zellzyklus eine exakte Kopie der betroffenen DNA in Form des Schwesterchromatids zur Verfügung, wird die theoretisch fehlerfreie homologe Rekombination bevorzugt. Nach Erkennung des Doppelstrangbruches werden die offenen Enden von spezialisierten Proteinkomplexen wie dem RAD50/MRE11/NBS1 Komplex prozessiert. Anschließend werden diese Einzelstrangüberhänge vom Replication Protein A (RPA) bedeckt. Dies ermöglicht die Ausbildung von RAD51-Filamenten, die sich um diesen Überhang winden. Dieser RAD51-bedeckte Einzelstrangüberhang ist in der Lage die komplementäre Sequenz auf dem Schwesterchromatid zu finden und sorgt für die Öffnung des homologen Doppelstranges und die Einlagerung des Einzelstranges (sogenannte Holiday-Junction). Am Ort des Doppelstrangbruchs werden so mit Hilfe des intakten Schwesterchromatids als Vorlage die offenen DNA-Enden wieder verknüpft. In der Zellzyklusphase G1 steht keine exakte Kopie in Form des Schwesterchromatids zur Verfügung. Die Zelle muss somit auf den ungenaueren Reparaturmechanismus NHEJ zurückgreifen. Hierbei werden die DNA-Enden von den Proteinkomplexen KU70/80 und DNA-PKcs gebunden, minimal prozessiert und anschließend vom Enzym DNA Ligase 4 wieder verknüpft. Diese Reparatur ist fehleranfälliger und geht meist mit geringen Sequenzverlusten einher (Hoeijmakers, 2001, Khanna and Jackson, 2001).

Liegen zu viele DNA-Schädigungen vor oder können diese nicht adäquat repariert werden, kann die Zelle den Zelltod einleiten. Dies geschieht abhängig von Zelltyp und Schadenstärke über verschiedene Mechanismen wie extrinsische/intrinsische Apoptose oder der mitotischen Katastrophe. Bei intrinsischer Apoptose wird über Aktivierung von p53 eine intrazelluläre Signalkaskade in Gang gesetzt, bei der unter Beteiligung der Mitochondrien letztendlich die Caspasen ("cysteinyl-aspartate-specific proteases") 3, 6 und 7 aktiviert werden. Diese sogenannten Effektorcaspasen sorgen für die Aktivierung einer Vielzahl an Proteinen, welche unter anderem die DNA degradieren, die DNA-Reparatur blockieren oder das Zytoskelett reorganisieren und letztendlich zum Schrumpfen und Fragmentierung der Zelle in membranumschlossene Vesikel führt ("apoptotic bodies"). Bei der extrinsischen Apoptose werden ligandbindungsabhängig bestimmte Membranrezeptoren, die sogenannten "Death receptors" aktiviert. Diese führen intrazellulär zur Aktivierung der Caspasen 8 und 10, welche letztendlich auch die Caspasen 3, 6 und 7 aktivieren. Eine weitere Form des Zelltods, die mitotische Katastrophe, tritt während oder als Folge einer fehlerhaften Mitose auf. Wird der G2-Arrest nach DNA-Schädigung außer Kraft gesetzt, z.B. durch Mutation oder Verlust von p53, wird trotz bestehender DNA-Schäden die Zellteilung eingeleitet. Dies, oder auch eine abnormale Anzahl an Zentrosomen, führt zu einer ungeordneten Verteilung der Chromosomen und atypischer Zellteilung. Wird dieser fehlerhafte Vorgang noch während der Mitose erkannt, wird Apoptose eingeleitet. Ist die Zelle nicht in der Lage dies zu erkennen oder Apoptose zu induzieren entstehen in Folge vergrößerte Zellen mit mehreren Zellkernen oder auch Mikrozellkernen. Diese Zellen sind Aneuploid und können noch für einige weitere Tage überleben, bevor sie durch sich verstärkende Aberrationen der Chromosomen durch verspätete Apoptose sterben. (Eriksson and Stigbrand, 2010, Elmore, 2007, Castedo et al., 2004, Lauber et al., 2012)

1.4 Humanes Papillomavirus (HPV)

Humane Papillomviren gehören zu der Familie der *Papillomaviridae* und sind kleine, unbehüllte Viren mit einem ca. 8 kbp großen Genom bestehend aus zirkulärer, doppelsträngiger DNA. Der Lebenszyklus von HPV ist perfekt an sein Wirtsgewebe, sich differenzierendes Epithel der Schleimhäute, angepasst. Um eine produktive Infektion zu gewährleisten, müssen infektiöse Viruspartikel bis zu den Basalzellen vordringen, da sich diese im Zuge ihrer Differenzierung teilen und die zelleigene Replikationsmaschinerie für die Vermehrung des viralen Genoms benutzt wird. Dieses liegt nach Infektion als extrachromosomales Episom vor und kann in drei Abschnitte eingeteilt werden. Ungefähr ein

Achtel des Genoms ist eine nicht kodierende, regulatorische Region, welche an der Replikation und Transkription des viralen Genoms beteiligt ist. Die codierenden Bereiche werden eingeteilt in die "early region" (E) und "late region" (L). Erstere kodiert für die Gene E1, E2, E4, E5, E6 und E7. Diese regulieren die virale Genomreplikation, Genexpression, Immunevasion und Erhaltung des Genoms. Die Gene L1 und L2 sind verantwortlich für die Produktion der Capsid-Proteine und der Verpackung des viralen Genoms um wieder infektiöse Viruspartikel zu bilden (Prati et al., 2018, Moody and Laimins, 2010). Infizierte Basalzellen müssen also im Zuge ihrer terminalen Differenzierung in die apikalen Zellschichten wandern, um wieder infektiöse HPV-Partikel freisetzen zu können. Die zeitliche Abfolge der Expression und Aktivität der verschiedenen viralen Gene ist an diesen Differenzierungsprozess gekoppelt (Doorbar, 2005). Es existieren über 200 verschiedene HPV-Typen, wovon etwa 40 die Schleimhäute im Genitaltrakt infizieren. Vierzehn dieser Typen können nahezu immer bei invasivem Gebärmutterhalskrebs identifiziert werden und gelten als onkogene bzw. "high-risk" Typen (Walboomers et al., 1999). Einige davon sind auch bei einer Untergruppe von Kopf-Hals-Tumoren zu finden, allen voran HPV Typ 16 und 18 (Gillison et al., 2000, Kreimer et al., 2005). Die Integration des episomalen HPV-Genoms in das Wirtsgenom ist ein wichtiger Aspekt bei der HPV-induzierten Karzinogenese. Das Gen E2 wird durch die Integration nicht mehr exprimiert und in Folge dessen kommt es zu einer verstärkten Expression der viralen Proteine E6 und E7 (Munger et al., 2004). Diese beiden Proteine sind durch ihre Interaktion mit entscheidenden Regulatoren von Proliferation, Zellzykluskontrolle, Apoptose und Immortalisierung maßgeblich an der malignen Transformation und Erhaltung dieses Zustands beteiligt (Moody and Laimins, 2010). Das HPV E7 Protein bindet den Tumorsuppressor Retinablastoma Protein (RB) und sorgt somit für eine E2F-stimulierte Zellzyklusprogression am G1-S-Restriktionspunkt, welche nun von Wachstum stimulierenden Faktoren entkoppelt ist. Gleichzeitig sorgt HPV E6 für einen proteasomalen Abbau von p53, was das Voranschreiten im Zellzyklus trotz bestehender DNA-Schäden ermöglicht (Abbildung 1.8).

ABBILDUNG 1.8: EINFLUSS VON HPV E6/E7 AUF DIE ZELLZYKLUSREGULATION.

Schematische Darstellung der Zellzyklusregulation unter Einfluss der viralen Proteine HPV E6 und E7. In der G1-Phase akkumuliert unter Vorhandensein von mitogenen Stoffen Cyclin D1. CDK4/6 kann durch Bindung von Cyclin D1 das Protein RB phosphorylieren, wodurch der Transkriptionsfaktor E2F freigegeben wird. Dieser sorgt für die Expression von Cyclin E und weiteren Faktoren, die den Übergang in die Synthese-Phase (S) ermöglichen. HPV E7 entkoppelt durch Bindung an RB diesen Vorgang von proliferationsfördernden Faktoren. Der Übergang von der G2-Phase in die Mitose wird durch die Komplexe CDK1/Cyclin A und CDK1/Cyclin B initiiert. Nach einem DNA-Schaden wird p53-abhängig der Zellzyklus in der G1- oder G2-Phase angehalten (gestrichelte Balken = Restriktionspunkte). HPV E6 unterbindet diesen Arrest durch proteasomabhängigen Abbau von p53. Modifiziert nach Vermeulen et al. (2003) und Leemans et al. (2011).

Auch die Induktion von Apoptose ist dadurch gehemmt. Des Weiteren stimuliert E6 die Expression und Aktivität von Telomerasen. Die Folge dieser Aktivitäten von HPV E6 und E7 ist eine fortschreitende genomische Instabilität, was Kennzeichen und Voraussetzung für die maligne Transformation von Epithelzellen ist (Mesri et al., 2014, Duensing and Munger, 2002).

2 ZIELSETZUNG

HPV-assoziierte Plattenepithelkarzinome im Kopf-Hals-Bereich stellen eine eigenständige Entität der Kopf-Hals-Tumore dar. Klinische Studien konnten zeigen, dass darunter leidende Patienten bessere Überlebenschancen haben. Bezüglich der zugrundeliegenden molekularen Mechanismen herrscht allerdings noch kein klarer Konsens. Es wird allerdings vermutet, dass die Chemo- und Strahlensensitivität dieser viral-assoziierten Tumore erhöht ist. In dieser Arbeit soll dies anhand in vitro Experimenten mit HNSCC-Zelllinien überprüft und molekular analysiert werden. Neben Proliferation und Zellzyklus sollen auch verschiedenste Regulatoren und Signalwege, die mit Proliferation und DNA-Schädigung im Zusammenhang stehen, mittels Western Blot auf Auffälligkeiten getestet werden. Auch der Einfluss auf die Gesamtgenexpression soll mit einem RNA-Array analysiert werden. Betrachtung der DNA-Schädigung selbst und der Einfluss von bestimmten DNA-Reparaturfaktoren auf die Proliferation der Zellinien sollen Hinweise auf den Umgang der Zellen mit ionisierender Strahlung geben. Da Patienten mit HPV-assoziierten HNSCC länger überleben und zugleich jünger sind, wiegen therapiebedingte Spätfolgen besonders schwer. Um diese physisch, psychisch und sozioökonomisch belastenden Nebeneffekte möglichst gering zu halten, ist das Ziel einer Therapie-Deeskalation besonders wichtig. Daher soll in dieser Arbeit neben der Behandlung mit hochenergetischen Röntgenstrahlung in vitro auch eine zielgerichtete Alphateilchen-Behandlung verwendet werden. Diese hat das Potenzial durch ihren lokal begrenzten Wirkmechanismus die Nebenwirkungen bei gleichzeitig hoher Effektivität gering zu halten. Es soll zudem geklärt werden, ob für diese zielgerichtete Therapie auch ein besseres Ansprechen der HPV-assoziierten HNSCC-Zelllinien vorliegt. Ein besseres molekulares Verständnis hinsichtlich HPV-bedingter Strahlensensitivität und dem Ansprechen auf zielgerichtete Alphateilchen-Emitter-Behandlung soll langfristig neue Therapieansätze ermöglichen.
3 MATERIAL UND METHODEN

3.1 Material

3.1.1 Zelllinien

Es wurden sechs verschiedene HNSCC-Zelllinien verwendet (Tabelle 3.1). 93VU147T wurde von Dr. Josephine Dorsman vom VU University medical center in Amsterdam (Niederlande) zur Verfügung gestellt. UPCI-SCC-111 und UPCI-SCC-154 wurden von der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) mit Firmensitz in Braunschweig (Deutschland) bezogen. Die UD-SCC-Zelllinien stammen aus der Hals-Nasen-Ohren-Klinik des Universitätsklinikum Düsseldorf (Deutschland).

Zelllinie	Tumorlokalisation	TNM	Alter	Geschlecht	TP53	HPV16
93VU147T	Zungenboden	T4N2	58	männlich	L257R / wt	+
UD-SCC-2	Hypopharynx	T1N3	58	männlich	wt	+
UD-SCC-3	Lymphknoten- Metastase (Larynx)	T2N2	45	männlich	G224Stop	-
UD-SCC-5	Supraglottis	T1N1	44	männlich	H179Y	-
UPCI-SCC-111	Zungenboden	T1N1	69	weiblich	H179Y	-
UPCI-SCC-154	Zunge	T4N2	54	männlich	wt	+

TABELLE 3.1: VERWENDETE ZELLLINIEN

wt = Wildtyp

(Lansford et al., 1999, White et al., 2007, Lin et al., 2007, Steenbergen et al., 1995, Rieckmann et al., 2013, Hauser et al., 2002, Telmer et al., 2003)

3.1.2 Enzyme, Kits, Lösungen und Puffer

TABELLE 3.2: VERWENDETE ENZYME, KITS, LÖSUNGEN UND PUFFER

Bezeichnung	Hersteller
Bio-Rad Protein Assay Dye Reagent Concentrate	Bio-Rad Laboratories GmbH, München, Deutschland
5X First-Strand Buffer	Life Technologies, Carlsbad, CA, USA
Cell Lysis Buffer (10X)	Cell Signaling Technology (CST), Frankfurt a. M., Deutschland
DMEM - mit geringer Glukosekonzentration, Natriumpyruvat, GlutaMAX TM und Phenolrot	Life Technologies, Carlsbad, CA, USA
DNA Polymerization Mix dNTP Set (10 mM each A, C, G, T)	Roche, Mannheim, Deutschland
DNA-Farbstoff peqGREEN	PEQLAB Biotechnologie GmbH, Erlangen, Deutschland
DNA-Leiter peqGOLD 100 bp	PEQLAB Biotechnologie GmbH, Erlangen, Deutschland
DPBS - ohne Kalzium, Magnesium und Phenolrot	Life Technologies, Carlsbad, CA, USA
FBS (fetales Kälberserum)	Life Technologies, Carlsbad, CA, USA
Hexanucleotide Mix 10X conc.	Roche Diagnostics GmbH, Mannheim, Deutschland
KAPA SYBR® FAST qPCR Master Mix (2X) (DNA Polymerase, SYBR® Green I, MgCl2, dNTPs und Stabilisatoren)	Kapa Biosystems (Pty) Ltd, Kapstadt, Südafrika
Ladepuffer 6X Blue Loading Buffer	PEQLAB Biotechnologie GmbH, Erlangen, Deutschland
L-Glutamine 200 mM	Biochrom AG, Berlin, Deutschland
MEM - mit L-Glutamin und Phenolrot	Life Technologies, Carlsbad, CA, USA

MEM Non-Essential Amino Acids Solution (100X)	Life Technologies, Carlsbad, CA, USA
M-MLV Reverse Transcriptase (200 U/µL)	Life Technologies, Carlsbad, CA, USA
Oligofectamine [™] Transfection Reagent	Life Technologies, Carlsbad, CA, USA
Opti-MEM™ Reduced Serum Medium - mit L-Glutamin und Phenolrot	Life Technologies, Carlsbad, CA, USA
PageRuler TM Prestained Protein Ladder	Thermo Scientific, Waltham, MA, USA
Penicillin/Streptomycin (1000 U/mL, 10.000 µg/mL)	Biochrom AG, Berlin, Deutschland
Protease Inhibitory Cocktail (10X)	Cell Signaling Technology (CST), Frankfurt a. M., Deutschland
Quick Start Bovine Serum Albumin (2 mg/mL)	Bio-Rad Laboratories GmbH, München, Deutschland
RNase A (DNase-free)	AppliChem GmbH, Darmstadt, Deutschland
RNeasy Mini Kit	Qiagen GmbH, Hilden, Deutschland
RPMI Medium 1640 - mit L-Glutamin, HEPES und Phenolrot	Life Technologies, Carlsbad, CA, USA
SignalFire™ ECL Reagent	Cell Signaling Technology (CST), Frankfurt a. M., Deutschland
TrypLE [™] Express (1x) Stable Trypsin	Life Technologies, Carlsbad, CA, USA
Vectashield® Mounting medium for Fluorescence H-1000	Vector Laboratories, Inc., Burlingame, CA, USA
Agilent RNA 6000 Nano Chip Kit	Agilent Technologies, Waldbronn, Deutschland
Agilent one-color Low Input QuickAmp Kit	Agilent Technologies, Waldbronn, Deutschland
Agilent Gene Expression Hybridization Kit	Agilent Technologies, Waldbronn, Deutschland

Agilent SurePrint G3 Human Gene Expression 8x60K Microarrays Agilent Technologies, Waldbronn, Deutschland

UltraPure® TBE Buffer (10X)

Invitrogen by Thermo Fisher Scientific, Waltham, USA

3.1.3 Chemikalien

TABELLE 3.3: VERWENDETE CHEMIKALIEN

Artikel	Hersteller / Vertrieb
1,4 Dithiotreitol (DTT) \geq 99,9 % p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
2-Mercaptoethanol	Sigma-Aldrich, St. Louis, MO, USA
6-Aminocaproic acid	Sigma-Aldrich, St. Louis, MO, USA
Ammoniumperoxidsulfat (APS) ≥v98 %, p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Bromphenol Blau (1 %)	Sigma-Aldrich, St. Louis, MO, USA
Crystal Violett	Sigma-Aldrich, St. Louis, MO, USA
Dimethylsulfoxid (DMSO)	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Dithiothreitol (DTT)	Sigma-Aldrich, St. Louis, MO, USA
Essigsäure	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Ethanol≥99,5 % p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Ethylendiamintetraacetat (EDTA)	Sigma-Aldrich, St. Louis, MO, USA
Formaldehydlösung säurefrei≥37 %	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland

Glycerol	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Glycin≥99 %	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Hoechst 33342	Sigma-Aldrich, St. Louis, MO, USA
Isopropanol (2-Propanol)	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Kaliumchlorid	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Magermilchpulver (non-fat skimmed milk powder)	Biomol GmbH, Hamburg, Deutschland
Methanol ≥ 99,5 % p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
N,N,N',N'-Tetramethylethylendiamin (TEMED)	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Natriumchlorid > 99,8 %	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Phenylmethansulfonylfluorid (PMSF)	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Propidiumiodid	Sigma-Aldrich, St. Louis, MO, USA
Rotiphorese® Gel 30 (37,5:1) Acrylamidstammlösung 30 % mit 0,8 % Bisacrylamide	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Sodiumdodecylsulfat (Roti®-Stock 20 % SDS)	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
TRIS, Pufferan $\mathbb{B} \ge 99,9 \%$ p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Triton X-100	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Tween-20	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
CHX-A"-DTPA	Macrocyclics, Inc.,Plano, TX, USA
Chlorwasserstoff (HCl)	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland

Natriumiodid (NaI)	Sigma-Aldrich, St. Louis, MO, USA
Ascorbinsäure (40 mg/mL), L-ascorbic acid)	Sigma-Aldrich, St. Louis, MO, USA
Ammonium-Acetat (C2H7NO2, mind. 98%)	Sigma-Aldrich, St. Louis, MO, USA
Tri-Natriumcitrat-Dihydrat	Merck Millipore, Darmstadt, Deutschland
²¹³ Bi (gewonnen aus ²²⁵ Ac/ ²¹³ Bi Generator)Instituts für Transurane der Europäischen Kommision	Institut für Transurane der Europäischen Kommision, Karlsruhe, Deutschland
4',6-diamidino-2-phenylindol (DAPI)	Sigma-Aldrich, St. Louis, MO, USA
LE Agarose	Biozym Scientific GmbH, Hessisch Oldendorf, Deutschland

3.1.4 Chemotherapeutika

TABELLE 3.4: VERWENDETE CHEMOTHERAPEUTIKA

Bezeichnung	Zielstruktur	Hersteller / Vertrieb
MK2206	AKT1/2/3	Selleckchem, Houston, TX, USA
U0126	MEK1/2	Selleckchem, Houston, TX, USA
Cisplatin	DNA	Medac GmbH, Wedel, Deutschland
Cetuximab (Erbitux®)	EGF-Rezeptor	Merck KGaA, Darmstadt, Deutschland

3.1.5 Antikörper

TABELLE 3.5: VERWENDETE PRIMÄRANTIKÖRPER

Zielstruktur	Antikörper- Spezies	Klon	Verdünnung	BSA / Milch / PBS	Hersteller / Vertrieb
AKT	Kaninchen		1:1.000 (WB)	Milch	CST
AKT pS473	Kaninchen		1:500 (WB)	BSA	CST
ATM pS1981	Kaninchen		1:1.000 (WB)	BSA	CST
Aurorakinase A	Kaninchen	1G4	1:1.000 (WB)	Milch	CST
Aurorakinase B	Kaninchen		1:500 (WB)	BSA	CST
Cleaved PARP (D214)	Kaninchen	D64E10	1 : 500 (WB)	BSA	CST
Cyclin D1	Kaninchen	92G2	1 : 1.000 (WB)	Milch	CST
EGFR pY1068	Kaninchen	D7A5	1 : 2.500 (WB)	Milch	CST
ERK 1/2	Kaninchen		1 : 1.000 (WB)	Milch	CST
ERK 1/2 pT202/Y204	Kaninchen		1:1.000 (WB)	Milch	CST
H2A.X pS139	Kaninchen	20E3	1 : 1.000 (WB)	BSA	CST
H2A.X pS139	Maus	JBW301	1 : 500 (IF, FC)	PBS	Merck Millipore
Ligase IV	Kaninchen	D5N5N	1 : 1.000 (WB)	BSA	CST
mTOR pS2448	Kaninchen	D9C2	1 : 500 (WB)	BSA	CST
p21	Kaninchen	12D1	1 : 2.000 (WB)	Milch	CST
p38	Kaninchen		1 : 1.000 (WB)	BSA	CST
p38 pT180/Y182	Kaninchen		1 : 500 (WB)	BSA	CST
p53	Maus	DO-7	1 : 2.000 (WB)	Milch	Dako
p53 pS15	Kaninchen		1:500 (WB)	BSA	CST
PARP	Kaninchen		1:1.000 (WB)	Milch	CST
Rad51	Kaninchen	D4B10	1 : 1.000 (WB)	BSA	CST

Tubulin	Kaninchen	1 : 5.000 (WB)	Milch	CST
XRCC1	Kaninchen	1 : 750 (WB)	BSA	CST

WB = Western Blot; IF = Immunfluoreszenz; FC = Durchflusszytometrie; CST = Cell Signaling Technology, Frankfurt a. M., Deutschland; BSA = 5 % BSA in TBS-T; Milch = 5 % Magermilchpulver in TBS-T

TABELLE 3.6: VERWENDETE SEKUNDÄRANTIKÖRPER

Zielstruktur	Konjugat	Antikörper- Spezies	Verdünnung	BSA / Milch / PBS	Hersteller / Vertrieb
Kaninchen-IgG	HRP	Ziege	1:5.000 (WB)	Milch	CST
Maus-IgG	HRP	Pferd	1:10.000 (WB)	Milch	CST
Maus-IgG	FITC	Ziege	1 : 400 (IF, FC)	PBS	Santa Cruz Biotechnology Inc., Dallas, TX, USA

HRP = Horseradish peroxidase; WB = Western Blot; IF = Immunfluoreszenz; FC = Durchflusszytometrie; CST = Cell Signaling Technology, Frankfurt a. M., Deutschland; BSA = 5 % BSA in TBS-T; Milch = 5 % Magermilchpulver in TBS-T

3.1.6 Geräte

TABELLE 3.7: VERWENDETE GERÄTE

Bezeichnung	Modell	Hersteller / Vertrieb
2D-Elektrophoreseapparatur (vertikal)	Mini-PROTEAN® Tetra System	Bio-Rad Laboratories GmbH, München, Deutschland
Absaugpumpe	Vacuum Pump ME2	Vacuubrand GmbH, Wertheim, Deutschland
Analysenwaage	Scaltec SBC21	Scaltec Instruments GmbH, Göttingen, Deutschland
Bestrahlungsgerät	RS225 X-Ray Box	Gulmay Ltd., Byfleet, UK
Bioanalyzer	Agilent 2100 Bioanalyzer	Agilent Technologies, Waldbronn, Deutschland

Blotapparatur	Trans-Blot® SD Semi Dry Transfer Cell	Bio-Rad Laboratories GmbH, München, Deutschland
Chemilumineszenzdetektion	ChemiDoc XRS+	Bio-Rad Laboratories GmbH, München, Deutschland
CO ₂ -Inkubator	Heracell™ 150i	Thermo Fisher Scientific, Langenselbold, Deutschland
Durchflusszytometer	FACSCanto-II	BD Biosciences, Heidelberg, Deutschland
Durchflusszytometer	FACSCalibur (2 Laser)	BD Biosciences, Heidelberg, Deutschland
Elektrophoreseapparatur (horizontal)	Mini Horizontal Gel System, PerfectBlue™ Gel System Mini L	PeqLab (VWR Life Science Competence Center), Erlangen, Deutschland
Fluoreszenzmikroskop	Leica DMI6000B	Leica Microsystems, Wetzlar, Deutschland
Flüssistickstofftank	LS 4800	Taylor-Wharton Germany GmbH, Husum, Deutschland
Gamma-Counter	Gamma-Counter Typ 1480 Wizard TM 3	Wallac, Finnland
Geldokumentationsgerät	E-BoX VX2/20M	PeqLab (VWR Life Science Competence Center), Erlangen, Deutschland
Gene Expression Microarray Platform	SureScan Microarray Scanner	Agilent Technologies, Waldbronn, Deutschland
Magnetrührer	RCTbasic	IKA Labortechnik, Staufen, Deutschland
Mikroskopkamera	Leica DFC 425C	Leica Microsystems, Wetzlar, Deutschland
Multiwell Reader	Multiskan™ FC Microplate Photometer	Thermo Fisher Scientific, Finnland
pH-Meter	pH-Meter 766 Calimatic	Knick Elektronische Messgeräte GmbH & Co. KG, Berlin, Deutschland
Pipetten	Peqpette	PeqLab (VWR Life Science Competence Center), Erlangen, Deutschland

Pipettierhilfe	Accu-jet® pro	Brand GmbH & Co. KG, Wertheim, Deutschland
Power Supply	PowerPac [™] HC	Bio-Rad Laboratories, München, Deutschland
Rüttler	IKA-VIBRAX-VXR ORBITAL Shaker	IKA Labortechnik, Staufen, Deutschland
SDS-PAGE-Gelgießstand	Mini-PROTEAN® Tetra Cell Casting Module	Bio-Rad Laboratories GmbH, München, Deutschland
Spektralphotometer	NanoDrop™ ND-1000	Thermo Fisher Scientific, Langenselbold, Deutschland
Sterilwerkbank	Herasafe™ KS	Thermo Fisher Scientific, Langenselbold, Deutschland
Taumel-Rollenmischer		A. Hartenstein Laborbedarf GmbH, Würzburg, Deutschland
Thermocycler	CFX96 [™] , Thermal Cycler C1000 [™]	Bio-Rad Laboratories, München, Deutschland
Thermomixer	Thermomixer Comfort	Eppendorf AG, Hamburg, Deutschland
Vortexer	MS2 Minishaker	IKA Labortechnik, Staufen, Deutschland
Wasserbad	Тур 1003	GFL Gesellschaft für Labortechnik GmbH, Burgwedel, Deutschland
Zellbestrahlungsgerät (Hochenergetische Röntgenstrahlung)	RS225 X-Ray Box	Gulmay Medical LTD, Camberley, Surrey, England
Zellzähler	Cellometer [™] Auto T4	PeqLab (VWR Life Science Competence Center), Erlangen, Deutschland
Zentrifuge	Centrifuge 5430R (Rotor: FA-45-30-11)	Eppendorf AG, Hamburg, Deutschland
Zentrifuge	Rotina 380R (Rotor: 1754)	Andreas Hettich GmbH & Co. KG, Tuttlingen, Deutschland
Zentrifuge	PerfectSpin Mini	PeqLab (VWR Life Science Competence Center), Erlangen, Deutschland

3.1.7 Verbrauchsmaterialien

TABELLE 3.8: VERWENDETE VERBRAUCHSMATERIALIEN

Bezeichnung	Artikel	Hersteller / Vertrieb
Zellkulturschalen /-platten	CELLSTAR® 100/20 mm CELLSTAR® Multiwellplatte, 6 well	Greiner Bio-One International GmbH, Frickenhausen, Deutschland
Reaktionsgefäße	15 mL CELLSTAR® Röhrchen, PP, 17/120 mm, konischer Boden 50 mL CELLSTAR® Röhrchen, PP, 30/115 mm, konischer Boden Microplatte 96 well, PS, U-Bottom, MICROLON®, Med. Binding	Greiner Bio-One International GmbH, Frickenhausen, Deutschland
	SafeSeal Micro Tubes 1,5 / 2 ml 12x75 mm Round Bottom PS Tube (5 mL)	Sarstedt AG & Co. KG, Nümbrecht, Deutschland
	FrameStar® 96 Well Skirted PCR Plate, low profile	4titude® Ltd., Berlin, Deutschland
PVDF Membran	Immobilon™-P membrane (0,45 μm)	Merck Millipore, Darmstadt, Deutschland
Blotting Papier	Whatmann Gel Blotting Paper BF 2 (195 g/m²)	Sartorius AG, Göttingen, Deutschland
Pipettenspitzen	LABSOLUTE® Pipettenspitzen mit Aerosolbarriere (0,1 – 10 μL, 0,5 – 20 μL, 2 – 100 μL, 2 - 200 μL, 100 – 1250 μL)	Th. Geyer GmbH & Co. KG, Renningen, Deutschland
Serologische Pipetten	5 mL, 10 mL, 25 mL	Greiner Bio-One International GmbH, Frickenhausen, Deutschland
Pasteurpipetten	Glas-Pasteurpipetten, 225 mm	Brand GmbH & Co. KG, Wertheim, Deutschland
Kryoröhrchen	Mikro-Schraubröhre, 2 ml, PP	Sarstedt AG & Co. KG, Nümbrecht, Deutschland
Zellschaber	Zellschaber 39 cm	Sarstedt AG & Co. KG, Nümbrecht, Deutschland

Dünnschichtchromatografie	Silica Gel Impregnated Glass Fiber	Pall Corporation, Port Washington, NY, USA
Gelfiltrationssäule	PD-10 Gelfiltrationssäule	GE Healthcare, München, Deutschland
Objektträger	Objektträger Superfrost plus	Menzel GmbH & Co. KG, Braunschweig, Deutschland
Abdeckplättchen	Microscope Coverslip (20 mm)	Menzel GmbH & Co. KG, Braunschweig, Deutschland
Zellzählkammer	SD100 Cellometer Zählkammern	Cenibra GmbH, Bramsche, Deutschland

3.1.8 Software

TABELLE 3.9: VERWENDETE SOFTWARE

Bezeichnung	Hersteller
Leica Application Suite LAS V4.7	Leica Microsystems, Wetzlar, Deutschland
Microsoft Office 2016	Microsoft GmbH, München, Deutschland
Adobe Photoshop CS5	Adobe Systems GmbH, München, Deutschland
GraphPad Prism (V6-8)	GraphPad Software, Inc., San Diego, CA, USA
ImageLab [™] Software	Bio-Rad Laboratories GmbH, München, Deutschland
GeneSpring GX	Agilent Technologies, Waldbronn, Deutschland
EndNote Literaturverwaltungsprogramm	Clarivate Analytics, Philadelphia, PA, USA
ModFit I T 3 2 Software	Verity Software House,
Would the ET 5.2 Software	Topsham, ME, USA
BD FACSDiva Software Version 6.1.1	BD Biosciences, San Jose, CA, USA
CellQuest TM Pro Software	BD Biosciences, San Jose, CA, USA
ChemDraw 19.0	PerkinElmer, Waltham, MA, USA

3.2 Methoden

3.2.1 Zellbiologische Arbeiten

Für Arbeiten mit lebenden eukaryotischen Zellen wurde eine Sterilwerkbank (Herasafe™ KS) genutzt. Auch die für diese Arbeiten benötigten Puffer, Lösungen und Verbrauchsmaterialien waren steril.

3.2.1 a) Zellkultivierung

Alle Zelllinien wurden unter Standard-Bedingungen bei 37 °C und 5 % CO₂ in einem CO₂-Brutschrank (Heracell[™] 150i) mit entsprechendem Zellkulturmedium (Tabelle 3.10) in Zellkulturschalen kultiviert. Bei allen Zelllinien handelt es sich um adhärente Plattenepithelkarzinomzelllinien aus dem Kopf-Hals-Bereich (HNSCC), so dass die Zellen regelmäßig vor dem Erreichen vollständiger Konfluenz (ca. bei 80 %) gesplittet wurden. Hierzu wurde das Zellkulturmedium mit einer Glaspipette abgesaugt, der Zellrasen vorsichtig mit 3-4 mL PBS gewaschen und anschließend durch Inkubation für wenige Minuten mit 2 mL TrypLE[™] Express bei 37 °C abgelöst. Die Zellsuspension wurde anschließend mit 6 mL entsprechendem Medium verdünnt und die Zellen durch sorgfältiges auf- und abpipettieren vereinzelt. Falls eine definierte Zellzahl für ein Experiment ausgesät werden sollte, wurde an dieser Stelle die Zellkonzentration mit Hilfe des Zellzählers CellometerTM Auto T4 bestimmt. Hierfür wurde ein 20 µL Aliquot der Einzelzellsuspension in die zugehörige Zählkammer pipettiert und am Zellzähler analysiert. Für die standardmäßig Weiterkultivierung der Zellen wurde je nach Wachstumsgeschwindigkeit und Zelltyp ein Teil der Suspension in eine neue Zellkulturschale überführt und mit entsprechendem Medium auf rund 7 mL Gesamtvolumen aufgefüllt. Unabhängig der Konfluenz wurde das Zellkulturmedium alle 2-3 Tage durch frisches Medium ersetzt.

Zelllinie	verwendetes Medium
93VU147T	DMEM + 10% FBS, Penicillin (1000 U/mL), Streptomycin (1000 µg/mL), L-Glutamin (2 mM)
UD-SCC-2	RPMI 1640 + 10% FBS, Penicillin (1000 U/mL), Streptomycin (1000 µg/mL), L-Glutamin (2 mM)
UD-SCC-3	DMEM + 10% FBS, Penicillin (1000 U/mL), Streptomycin (1000 µg/mL), L-Glutamin (2 mM)
UD-SCC-5	DMEM + 10% FBS, Penicillin (1000 U/mL), Streptomycin (1000 µg/mL), L-Glutamin (2 mM)
UPCI-SCC-111	MEM + MEM Non-Essential Amino Acids (1X) + 10% FBS, Penicillin (1000 U/mL), Streptomycin (1000 µg/mL), L-Glutamin (2 mM)
UPCI-SCC-154	MEM + MEM Non-Essential Amino Acids (1X) + 10% FBS, Penicillin (1000 U/mL), Streptomycin (1000 µg/mL), L-Glutamin (2 mM)

TABELLE 3.10: VERWENDETE MEDIEN UND SUPPLEMENTE FÜR JEWEILIGE ZELLLINIE

Zum Einfrieren von Zelllinien wurde eine rund 70 % konfluente Schale wie oben beschrieben abgelöst. Die erhaltene Einzelzellsuspension wurde in 15 mL Reaktionsgefäßen abzentrifugiert (5 min, 500 g), der Überstand verworfen und das Zellpellet in 4 mL FBS mit 5 % DMSO resuspendiert. Die Zellen wurden in beschrifteten Kryoröhrchen (je 1 mL) über Nacht in einem Einfrierbehälter bei – 80 °C eingefroren. Diese wurden am nächsten Tag zur Langzeitlagerung in den Flüssigstickstofftank überführt.

Um Zellen aus Langzeitlagerung wieder aufzutauen wurde das entsprechende Kryoröhrchen aus dem Flüssigstickstofftank geborgen und in einem 37 °C warmen Wasserbad zügig aufgetaut. Der Inhalt wurde auf eine Zellkulturschale mit 10 mL entsprechendem Medium überführt und bei 37 °C und 5 % CO₂ inkubiert. Am Folgetag wurde das Medium, sofern sich ein Teil der Zellen bereits an die Zellkulturschale angeheftet hat, gegen frisches Medium getauscht, um das restliche DMSO und abgestorbene Zellen zu entfernen.

3.2.1 b) Transfektion von Zellen mit siRNA

Um in den Zelllinien die Expression spezifischer Proteine zu reduzieren, wurde siRNAvermittelte RNA-Interferenz angewandt. Hierzu wurde entsprechende siRNA gegen RAD51, LIG4 und XRCC1 mit Hilfe von Oligofectamine[™] in die Zellen eingebracht (Tabelle 3.11). Für diese lipidbasierte Transfektionsmethode wurden zelllinienspezifische Zellzahlen (Tabelle 3.12) in 10 cm Zellkulturschalen ausgesät und am Folgetag transfiziert. Je Transfektionsansatz wurden 7,2 µL siRNA (25 µM) in 300 µL Opti-MEM-Medium, sowie 12 µL OligofectamineTM in 300 µL Opti-MEM-Medium verdünnt. Nach zehnminütiger Inkubation bei Raumtemperatur wurde der OligofectamineTM-Mix zum siRNA-Mix gegeben und durch kurzes vortexen gut durchmischt. Dieser Transfektionsmix wurde weitere 10 Minuten bei Raumtemperatur inkubiert und anschließend mit Opti-MEM auf 3 mL aufgefüllt. Währenddessen wurde bei den zu transfizierenden Zellen das Medium abgesaugt und 3 mL Opti-MEM in den Zellkulturschalen vorgelegt. Der Transfektionsmix (3 mL) wurde dann tröpfchenweise auf die Zellen gegeben und durch vorsichtiges Schwenken der Zellkulturschale gleichmäßig verteilt. Die Endkonzentration der siRNA in der Zellkulturschale betrug 30 nM. Die Inkubation der Zellen bis zur gewünschten Verwendung erfolgte standardmäßig bei 37 °C und 5 % CO₂. Nach 24 h erfolgte ein Mediumwechsel auf das jeweilige Standardmedium.

TABELLE 3.11: VERWENDETE SIRNA

Zielgen	siRNA
RAD51	Silencer Select siRNA ID s11735 (Invitrogen by Thermo Fisher Scientific, Waltham, USA)
LIG4	Silencer Select siRNA ID s8181 (Invitrogen by Thermo Fisher Scientific, Waltham, USA)
XRCC1	Silencer Select siRNA ID s14940 (Invitrogen by Thermo Fisher Scientific, Waltham, USA)

 $TABELLE \ 3.12: Verwendete \ Zellzahlen \ für \ siRNA-Transfektion \ in \ 10 \ cm \ Zellkulturschale$

Zelllinie	93VU147T	UD-SCC-2	UD-SCC-3	UD-SCC-5	UPCI-SCC-111	UPCI-SCC-154
Zellzahl	750.000	1.000.000	750.000	600.000	600.000	1.000.000

3.2.1 c) Proliferationsanalyse

Um den Einfluss von experimentellen Behandlungen auf das Proliferationsverhalten der HNSCC-Zelllinien zu bestimmen, wurde eine Kristallviolettfärbung durchgeführt. Die Färbung mit diesem organischen Farbstoff wurde 1989 als Alternative zur konventionellen Zellzählung etabliert (Saotome et al., 1989).

TABELLE 3.13: VERWENDETE ZELLZAHLEN FÜR PROLIFERATIONSANALYSE IM 6-WELL

Zelllinie	93VU147T	UD-SCC-2	UD-SCC-3	UD-SCC-5	UPCI-SCC-111	UPCI-SCC-154
Zellzahl	20.000	20.000	10.000	5.000	5.000	20.000

Zuerst wurde eine definierte Anzahl an Zellen (Tabelle 3.13) in die Wells einer 6-Well-Platte in 5 mL Gesamtvolumen ausgesät. Bei den Zellen mit RNA-Interferenz wurde 48 h nach erfolgter Transfektion ausgesät. Für jeden zu untersuchenden experimentellen Parameter wurden je Wiederholung des Versuchs drei Wells ausgewertet. Die 6-Well-Platten wurden über Nacht im CO₂-Inkubator inkubiert, so dass die Zellen adhärent und proliferativ werden konnten. Am nächsten Tag (= Tag 0) erfolgte die jeweilige Behandlung (in vitro Chemotherapie, Bestrahlung, zielgerichtete Alphateilchenbehandlung). Die Konzentration der Agenzien wurde in Vorversuchen festgelegt. Nach den Behandlungen wurden die 6-wellplates für 10 Tage im Brutschrank ohne Mediumwechsel inkubiert. Danach wurde das Medium abgesaugt, die verbliebenen, adhärenten Zellen mit 2 mL einer 4 % Formaldehydlösung pro Well bei Raumtemperatur 10 min fixiert. Anschließend wurde mit 2 mL 0,1 % Triton X-100 in PBS und 2 mL Aqua dest. gewaschen. Die Färbung der Zellen erfolgte mit 2 mL einer 0,04 % Kristallviolett-Lösung für 20 min. Nach dreimaligem gründlichen Spülen mit Aqua dest. wurden je 4 mL einer 1 % SDS-Lösung zugegeben und die 6-Well-Platten für 1 h auf dem Rüttler lysiert um den Farbstoff wieder freizusetzen. 100 µL dieses Lysates wurden in 96-Well-Platten umpipettiert und die Extinktion bei 595 nm im Multiwell-Reader bestimmt. Die gemessene Menge an Farbstoff korreliert mit der Anzahl der lebenden Zellen und konnte zu den unbehandelten Zellen ins Verhältnis gesetzt werden. Die Auswertung des Versuches erfolgte mit der Software GraphPad Prism. Insgesamt wurde der Versuch zur statistischen Auswertung mindestens dreimal durchgeführt.

Reagenz	Zusammensetzung
Formaldehydlösung	4 % Formaldehyd in PBS
Tritonlösung	0,1 % Triton X-100 in PBS
Kristallviolettlösung	0,04 % Kristallviolett in 4 % Ethanol (in Aqua dest.)
SDS-Lösung	1 % SDS in Aqua dest.

TABELLE3.14:VerwendeteReagenzienfürdieProliferationsanalysemittelsKristallviolettfäbrung

3.2.1 d) Koloniebildungsanalyse

Die Koloniebildungsanalyse erfolgte mit differierender Zellzahl (500 Zellen pro Well für jede Zelllinie) bis zum Schritt der SDS-Lyse nach dem gleichen Protokoll wie die Proliferationsanalyse (3.2.1 c). Anstatt der Lyse wurden die Wells mit den angefärbten Zellen jedoch getrocknet. Anschließend wurden die einzelnen Wells am ChemiDoc XRS+ unter Verwendung der Weißlichtplatte fotografiert und die gewachsenen Kolonien manuell gezählt. Auch hier diente ein unbehandelter Kontrollansatz als Referenz für die relative Quantifizierung.

3.2.1 e) Durchflusszytometrische Zellzyklusbestimmung

Um den Einfluss einer Behandlung auf den Zellzyklus zu analysieren, wurden je eine Million Zellen in 10 cm Zellkulturschalen ausgesät und nach 24 h die gewünschte Behandlung durchgeführt. Nach weiteren 24 h wurden die Zellen nach Standardprotokoll abgelöst, einmal mit PBS gewaschen, gezählt und 1 Millionen Zellen in 1 mL eiskaltem 70 % Methanol fixiert. Die so fixierten Proben wurden gekühlt zu unserem Kooperationspartner Prof. Dr. Brockhoff nach Regensburg geschickt und dort weiter prozessiert. Die Zellen wurden dort nochmals mit PBS gewaschen und in Färbepuffer resuspendiert. Nach 30-minütiger Inkubation bei 37 °C wurde der Nukleinsäurefarbstoff 4',6-diamidino-2-phenylindol (DAPI) mit einer Endkonzentration von 1 µg/mL zugegeben und die Fluoreszenz von DAPI am FACSCanto-II Durchflusszytometer gemessen. Das DAPI-Fluoreszenzsignal wurde auf eine lineare Skala geplottet und die Zellzyklusverteilung mittels der Software ModFit LT 3.2 analysiert. Zelldoubletten, Aggregate und Zelltrümmer wurden mit entsprechenden Algorithmen herausgefiltert.

TABELLE 3.15: VERWENDETE REAGENZIEN FÜR DIE DURCHFLUSSZYTOMETRISCHE ZELLZYKLUSANALYSE

Reagenz	Zusammensetzung
Fixativ	70 % Methanol (eiskalt)
Färbepuffer	0,01 mg/mL RNaseA in PBS
Kernfarbstoff	4',6-diamidino-2-phenylindol (DAPI) – Endkonzentration: 1 μg/mL

3.2.1 f) yH2AX-Immunfluoreszenzfärbung

Die zu färbenden Zellen wurden abgelöst, abzentrifugiert (5 min, 500 g) und das Pellet zur Fixierung in 2 mL einer 2 % Paraformaldehydlösung resuspendiert. Nach 15-minütiger Inkubation bei Raumtemperatur wurden die Zellen wieder abzentrifugiert, einmalig mit PBS gewaschen und anschließend für 15 Minuten bei Raumtemperatur in 2 mL 0.5 % Triton X-100 in PBS permeabilisiert. Nach erneutem Abzentrifugieren wurde in 1 mL Blockinglösung (0,4 % BSA in PBS) resuspendiert und über Nacht bei 4 °C inkubiert. Die Proben konnten so auch für maximal 7 Tage gelagert werden. Anschließend wurde wieder mit PBS gewaschen und das Zellpellet in 100 µL Primärantikörperlösung (1:500 in PBS; mouse monoclonal anti-phospho-Histone H2A.X Ser139) resuspendiert und für eine Stunde bei Raumtemperatur inkubiert. Nach erneutem Waschen mit PBS erfolgte eine 45-minütige Inkubation in Sekundärantikörperlösung im Dunkeln (1:400 in PBS; goat anti-mouse IgG, FITC conjugated). Anschließend wurde wieder mit PBS gewaschen und eine Kernfärbung mit Hoechst 33342 (1 µg/mL) für 5 Minuten im Dunkeln durchgeführt. Nach erneutem Waschen mit PBS wurde das Pellet in 40 µL Vectashield® Mounting Medium aufgenommen, auf einen Objektträger aufgebracht und mit einem Deckglas eingedeckelt. Die yH2AX-Färbung wurde mit dem Leica DMI6000B Fluoreszenzmikroskop begutachtet und dokumentiert.

Reagenz	Zusammensetzung
Fixativ	2 % Paraformaldehyd in PBS
Permeabilisierungslösung	0,5 % Triton X-100 in PBS
Blockinglösung	0,4 % BSA in PBS
Primärantikörperlösung	mouse monoclonal anti-phospho-Histone H2A.X Ser139; 1:500 in PBS
Sekundärantikörperlösung	Goat-anti-mouse IgG, FITC conjugated; 1:400 in PBS
Kernfarbstoff	Hoechst 33342 (1 µg/mL)
Eindeckmedium	Vectashield® Mounting Medium

TABELLE 3.16: VERWENDETE REAGENZIEN FÜR DIE YH2AX-IMMUNFLUORESZENZFÄRBUNG

3.2.1 g) Durchflusszytometrische Bestimmung von yH2AX

Zur quantitativen Analyse der yH2AX-Immunfluoreszenzfärbung erfolgte eine Auswertung per Durchflusszytometrie. Hierfür wurde die Immunfluoreszenzfärbung wie unter 3.2.1 f) durchgeführt. Nach Inkubation mit dem Sekundärantikörper wurde das Zellpellet in FACS-Puffer (10 % FBS in PBS) gewaschen und anschließend für 30 Minuten in FACS-Färbepuffer im Dunkeln inkubiert. Für jede Probe wurden am BD FACSCalibur der forward scatter (FSC), sideward scatter (SSC) sowie die Fluoreszenz der yH2AX-Färbung (FITC) und DNA (PI) gemessen. Zur Messung und Analyse der Daten wurde die Software CellQuest[™] Pro verwendet.

Reagenz	Zusammensetzung
FACS-Puffer	10 % FBS in PBS
FACS-Färbepuffer	0,02 mg/mL Propidiumiodid + 0,1% Triton X-100 in PBS + 0,2 mg/mL RNase A (DNase free) in PBS

	TABELLE 3.17: ERWEITERTE	Reagenzien für die d	URCHFLUSSZYTOMETRISCHE	ANALYSE VON YH2AX
--	---------------------------------	-----------------------------	------------------------	-------------------

3.2.2 Proteinbiochemie

3.2.2 a) Gewinnung eines Gesamtproteinlysats

Zur Extraktion eines Proteinextraktes aus den Zelllinien wurde das Medium abgesaugt und die Zellen mit eiskaltem PBS gewaschen. Pro 10 cm Schale wurden 500 μ L frisch angesetzter Lysepuffer auf die Zellkulturschale gegeben und mit Hilfe eines Zellschabers die Zellen geerntet und in ein 1,5 mL Reaktionsgefäß überführt. Nach kräftigem vortexen und 15-minütiger Inkubation auf Eis wurde das Lysat bei 4 °C und 10.000 g für 20 min zentrifugiert. Die im Überstand gelösten Proteine wurden in ein neues Reaktionsgefäß überführt und bei – 20 °C gelagert.

TABELLE 3.18: REAGENZIEN FÜR DIE GEWINNUNG VON GESAMTPROTEINLYSATEN

Reagenz Zusammensetzung

Lysepuffer 1X Cell Lysis Buffer in Aqua dest. + 100 mM PMSF + 1X Protease Inhibitory Cocktail

3.2.2 b) Proteinkonzentrationsbestimmung nach Bradford

Die Bestimmung der Proteinkonzentration erfolgte mittels Bradford-Test, dessen Prinzip auf einer Verschiebung des Absorptionsmaximums von Coomassie-brilliant-Blau nach Bindung an kationische unpolare Aminosäureseitenketten auf 595 nm beruht (Bradford, 1976).

Für die Messung wurden 2 μ L Proteinlysat in 198 μ L PBS verdünnt und mit 200 μ L 0,01 % Triton X-100 in PBS gemischt. Des Weiteren wurde mit einer 0,2 mg/mL BSA-Stocklösung eine Standardreihe mit 0 μ g, 2 μ g, 4 μ g, 6 μ g und 8 μ g BSA vorbereitet, die mit 0,01 % Triton X-100 in PBS auf je 400 μ L Gesamtvolumen gebracht wurde. Anschließend wurden je Probe 600 μ L verdünntes Bradford-Reagenz (1:4 in Aqua dest.) zugegeben, gemischt und für 5 Minuten bei Raumtemperatur inkubiert. Je 200 μ L wurden in eine 96-Well Microplatte überführt und die Extinktion bei 595 nm am Multiwellreader MultiskanTM FC gemessen. Von den Messwerten wurde der 0 μ g-Messwert der Standardreihe als Hintergrund abgezogen. Anhand linearer Regression der Standardreihe konnten aus den ermittelten Extinktionswerten die Proteinkonzentrationen der Proben berechnet werden.

3.2.2 c) SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Zum Nachweis bestimmter Proteine in einem Gesamtproteinextrakt werden diese anhand ihrer molekularen Masse elektrophoretisch aufgetrennt, auf eine Membran übertragen (Western Blot) und anschließend mittels einer immunologischen Nachweisreaktion visualisiert. Erstmals wurde die Auftrennung von Proteinen mittels des diskontinuierlichen SDS-PAGE von Laemmli beschrieben (Laemmli, 1970). Die gelelektrophoretische Auftrennung der Proteine erfolgte unter denaturierenden Bedingungen. Durch Zugabe von Dithiothreitol (DTT), welches eine reduktive Spaltung der Disulfidbrücken induziert, und dem Aufkochen der Proben werden Sekundär- und Tertiärstrukturen der Proteine aufgehoben. Das anionische Detergens Natriumdodecylsulfat (SDS) kann somit proportional zur Länge der Polypeptidkette an die Proteine binden und überdeckt durch seine negative Ladung die Eigenladung der Aminosäureseitenketten. Folglich wandern die Proteine im elektrischen Feld umgekehrt proportional zum Logarithmus ihres Molekulargewichts in Richtung Anode. Die Proteine durchlaufen im senkrecht stehenden Gelsystem zwei Polyacrylamidgele mit unterschiedlichem pH-Wert. Das auf der Kathodenseite liegende Sammelgel, das folglich zuerst durchlaufen wird, konzentriert die Proteine in einem schmalen Band. Anschließend bewirkt die Änderung des pH-Wertes im Trenngel die Auftrennung der Proteine. Durch die Wahl der Polyacrylamidkonzentration kann die Porengröße im Trenngel beeinflusst werden, was den optimal aufgetrennten Molekulargewichtsbereich steuert. So bewirken niedrige Konzentrationen eine gute Auftrennung im hochmolekularen Bereich und umgekehrt.

	Trenngel (5 mL)				Sammelgel (2 mL)
	<u>8 %</u>	<u>10 %</u>	<u>12 %</u>	<u>15 %</u>	
Aqua dest.	2,3 mL	1,9 mL	1,6 mL	1,1 mL	1,4 mL
Rotiphorese® Gel 30	1,3 mL	1,7 mL	2,0 mL	2,5 mL	330 µL
1,5 M Tris pH 8,8	1,3 mL	1,3 mL	1,3 mL	1,3 ml	-
1,5 M Tris pH 6,8	-	-	-	-	250 µL
10 % SDS	50 µL	50 µL	50 µL	50 µL	20 µL
10 % APS	50 µL	50 µL	50 µL	50 µL	20 µL
TEMED	4 μL	4 μL	4 μL	4 μL	2 μL

TABELLE 3.19: ZUSAMMENSETZUNG DER SDS-POLYACRYLAMIDGELE

Zum Gießen der Gele wurden der Mini-PROTEAN® Tetra Cell Gießstand benutzt. Zuerst wurden die vorbereiteten Gießkammern unmittelbar nach Zugabe von APS und TEMED mit je 4,5 mL Trenngel der gewünschten Polyacrylamidkonzentration befüllt und mit einem Milliliter Isopropanol überschichtet. Nachdem das Geld auspolymerisiert war (ca. 45 min) wurde Isopropanol abgegossen und das frisch zubereitete Sammelgel bis zur Oberkante eingefüllt und sofort die entsprechenden Kämme (10- oder 15-well) für die Ladekammern zur späteren Proteinlysatbeladung eingesteckt.

Währenddessen wurde die gewünschte Menge Proteinlysat mit 5X Ladepuffer versetzt, für 10 Minuten bei 98 °C denaturiert und anschließend kurz abzentrifugiert. Die auspolymerisierten Gele wurden in die 2D-Geleelektrophoreseapparatur eingesetzt und der Tank entsprechend der Markierung mit 1X Laufpuffer aufgefüllt. Pro Ladekammer wurden 15 µg gewünschtes Gesamtproteinlysat aufgetragen. Um ein gleichmäßiges Fokussieren der Lauffront im Sammelgel sicherzustellen wurde die Gelelektrophorese mit einer Spannung von 90 V gestartet, bis die Lauffront das Trenngel erreicht hat. Die folgende Auftrennung erfolgte bei 130 V.

TABELLE 3.20: PUFFER FÜR DIE SDS-PAGE

Reagenz	Zusammensetzung
5X Ladepuffer	10 % SDS
	50 % Glycerol
	250 mM DTT
	0,05 % Bromphenol-Blue
	mit Aqua dest. Auf 10 mL auffüllen (Aliquots bei -20 °C lagern)
1X SDS-Laufpuffer	25 mM Tris
	192 mM Glycin
	0,1 % SDS
	mit Aqua dest. auf benötigtes Volumen auffüllen

3.2.2 d) Semi-Dry Western Blot

Die in der SDS-PAGE aufgetrennten Proteine wurden mittels Semi-Dry Western Blot auf eine PVDF-Membran übertragen, um sie anschließend mit spezifischen Antikörpern nachweisen zu können.

ABBILDUNG 3.1: SCHEMATISCHE DARSTELLUNG DES SEMI-DRY WESTERN BLOT.

Dargestellt ist der Aufbau des Sandwiches mit den in Puffer getränkten Blottingpapieren zum Übertragen der Proteine aus dem Polyacrylamidgel auf die PVDF-Membran mittels Semi-Dry Western Blot.

Die hier verwendete Semi-Dry Western Blot Apparatur besteht aus zwei horizontalen Plattenelektroden, zwischen denen ein Sandwich aus Blottingpapieren, PVDF-Membran und Polyacrylamidgel platziert wird (Abbildung 3.1). Die dafür verwendeten Membranen und Blottingpapiere wurden auf die benötigte Größe zugeschnitten. Es wurde ein diskontinuierliches Puffersystem zwei Anoden- und einem Kathodenpuffer verwendet. Sechs Stück Blottingpapier wurden in Anodenpuffer I, drei in Anodenpuffer II und 9 in Kathodenpuffer getränkt. Die PVDF-Membran wurde für 5 Minuten in reinem Methanol aktiviert und anschließend 5 Minuten in Anodenpuffer II äquilibriert. Die Blottingpapiere, PVDF-Membran und Polyacrylamidgel wurden wie in Abbildung 3.1 gezeigt platziert und ein zum Gel senkrecht gerichtetes elektrisches Feld angelegt, wodurch die Proteine mit angelagertem SDS in Richtung Anode auf die PVDF-Membran übertragen wurden. Der Semi-Dry Blot erfolgte in der Trans-Blot® SD Semi Dry Transfer Cell für 1 h 20 min bei 225 mA, wobei sich die Stromstärke aus der Größe des Gels errechnet (max. 5 mA/cm²).

Reagenz	Zusammensetzung
Anodenpuffer I	300 mM Tris
	20 % Methanol
	Mit Aqua dest. auf benötigtes Volumen auffüllen
Anodenpuffer II	25 mM Tris
	20 % Methanol
	Mit Aqua dest. auf benötigtes Volumen auffüllen
Kathodenpuffer	25 mM Tris
	20 % Methanol
	40 mM 6-Aminocaproic acid
	Mit Aqua dest, auf benötigtes Volumen auffüllen

TABELLE 3.21: PUFFER FÜR SEMI-DRY WESTERN BLOT

3.2.2 e) Immundetektion von Proteinen

Das Prinzip der Immundetektion beruht auf der spezifischen Bindung eines Antikörpers (Primärantikörper) an das zu detektierende Antigen (Protein). Ein weiterer Antikörper (Sekundärantikörper), an den das Enzym *horseradish peroxidase* (HRP) gekoppelt ist, bindet an den Primärantikörper und ermöglicht durch enzymatische Katalyse einer luminolbasierten Chemilumineszenz Reaktion die Visualisierung der gewünschten Proteine.

Nach dem Semi-dry Western Blot wurde die Membran zusammen mit dem Primärantikörper über Nacht bei 4 °C auf dem Taumelrollenmischer in einem 50 mL Reaktionsgefäß in 5 mL TBS-T mit 5 % Magermilchpulver oder 5 % BSA inkubiert. Am nächsten Tag wurde die Membran 3x 7 Minuten in Waschpuffer (TBS-T) auf dem Rüttler gewaschen. Anschließend erfolgte eine zweistündige Inkubation mit dem enzymgekoppelten Sekundärantikörper, entsprechend verdünnt in 5 mL TBS-T mit 5 % Magermilchpulver, in einem 50 mL Reaktionsgefäß bei 4 °C auf dem Taumelrollenmischer. Wieder erfolgte dreimaliges Waschen mit TBS-T bevor die Membran für 1 Minute in einem 1:1 Gemisch der Lösungen A und B des SignalFire[™] ECL Reagent inkubiert und anschließend die Chemilumineszenz am ChemiDoc[™] XRS+ detektiert wurde. Aufnahme und Auswertung der aufgenommenen Bilder erfolgte mit der Image Lab Software.

Reagenz	Zusammensetzung
10X TBS	200 mM Tris
	1,4 M NaCl
	auf pH 7,6 mit Essigsäure einstellen
1X TBS-T	1X TBS
	0,1 % Tween-20

TABELLE 3.22: PUFFER FÜR SEMI-DRY WESTERN BLOT

3.2.3 Arbeiten mit Nukleinsäuren

3.2.3 a) RNA Isolation aus Zellen

Zur Gewinnung von mRNA aus Zellen wurde das RNeasy® Mini Kit (Qiagen) verwendet. Bei erstmaliger Nutzung dieses Kit muss darauf geachtet werden den Puffer RPE 1:5 mit reinem Ethanol zu verdünnen. Die benötigte Menge Lysepuffer wurde frisch vor Benutzung mit 1 % 2-Mercapthoethanol versetzt. Das Medium wurde von den Zellkulturschalen gesaugt und die Zellen einmalig mit PBS gewaschen. Anschließend wurden 150 µL Lysepuffer pro Well einer 6-Well Platte oder 500 µL pro 10 cm Schale auf die Zellen gegeben und bei Raumtemperatur für 10 Minuten inkubiert. Anschließend wurde das Lysat mit Hilfe von Zellschabern von den Schalen gekratzt und in ein 1,5 mL Reaktionsgefäß überführt. Dem Lysat wurde 1 Volumen 70 % Ethanol zugefügt und die Lösung mittels Auf- und Abpipettieren homogenisiert bis keine Schlieren mehr zu sehen waren. Das Lysat wurde auf eine im Kit enthaltene RNA-Bindesäule pipettiert. Maximales Ladevolumen waren 700 µL. Die Säule wurde bei 12.000 rpm für 15 Sekunden bei Raumtemperatur zentrifugiert und der Überstand verworfen. War mehr als 700 µL Lysat vorhanden wurde dieser Schritt entsprechend wiederholt. Anschließend wurde die Säule mit 700 µL RW1 Puffer versetzt. Nach dem Zentrifugieren für 15 Sekunden bei 12.000 rpm wurde die Säule zweimal mit je 500 µL RPE Puffer gewaschen. Nach dem ersten Waschschritt wurde für 15 Sekunden, nach dem zweiten für eine Minute bei 12.000 rpm zentrifugiert um die Membran gut zu trocknen. Der Durchfluss wurde jeweils verworfen. Die Säulen wurden anschließend auf saubere 1,5 mL Reaktionsgefäße gesetzt. Zur Elution der RNA wurden 100 µL nukleasefreies Wasser auf die Membran gegeben, für 10 Minuten inkubiert und anschließend bei 12.000 rpm für eine Minute zentrifugiert. Nach Konzentrations- und Reinheitsbestimmung erfolgte die Lagerung der RNA bei - 80 °C.

3.2.3 b) Photometrische Analyse der RNA-Konzentration und -Reinheit

Mittels eines Spektralphotmeters (NanoDrop[™] ND-1000) wurde die Konzentration und Reinheit von RNA-Lösungen bestimmt. Die Konzentration wurde anhand der Absorption bei 260 nm und einem RNA-spezifischen Extinktionskoeffizienten über die angepasste Beer-Lambert Gleichung berechnet. Die Reinheit der Probe bzw. Verunreinigungen durch Proteine wurden über das Verhältnis der Absorption bei 260 nm zur Absorption bei 280 nm ermittelt. Ein Quotient von ~ 2.0 spricht für eine ausreichend reine Probe.

3.2.3 c) cDNA Synthese

Die reverse Transkription von RNA in cDNA erfolgte mit der M-MLV Reverse Transkriptase in Ansätzen von 20 μ L mit 250 ng RNA. Zuerst wurde ein RNA-Mix hergestellt, der aus 250 ng RNA, 1 μ L Hexanucleotide Mix (10X) sowie 1 μ L dNTP Mix (10 mM) bestand und mit nukleasefreiem Wasser auf 12 μ L aufgefüllt wurde. Dieser Mix wurde kurz abzentrifugiert und 5 Minuten bei 65 °C inkubiert um die Sekundärstrukturen der RNA aufzulösen. Anschließend wurde der Mix wieder auf Eis gestellt. Es folgte die Zugabe von 4 μ L First-Strand Buffer (5X), 2 μ L DTT (100 mM) und 1 μ L nukleasefreiem Wasser. Nach zweiminütiger Inkubation bei 37 °C wurde 1 μ L M-MLV Reverse Transkriptase zugegeben, 10 Minuten bei Raumtemperatur und anschließend 50 Minuten bei 37 °C inkubiert. Anschließend erfolgte die Enzyminaktivierung bei 70 °C für 15 Minuten. Die cDNA wurde daraufhin mit einem Volumen nukleasefreiem Wasser verdünnt und direkt für eine PCR eingesetzt oder bei – 20 °C gelagert.

3.2.3 d) Polymerase Kettenreaktion (PCR)

Die Polymerase Kettenreaktion diente zur Amplifikation und dem Nachweis der HPV16 E6 und E7 Gene in den HNSCC-Zelllinien. Für die Amplifikation im Real-Time PCR Cycler wurde KAPA SYBR® FAST eingesetzt. Der enthaltene fluoreszierende Nukleinsäure Farbstoff bindet dsDNA während der Amplifikation und kann entsprechend detektiert werden. Das entstehende Fluoreszenzsignal ist direkt proportional zur DNA-Konzentration (Wittwer et al., 1997).

Pro 25 µL Reaktionsansatz wurden die Komponenten in folgender Reihenfolge in einer 96well PCR-Platte pipettiert: 12,5 µL 2x KAPA SYBR® FAST qPCR Master Mix, 1 µL Primer forward (10 µM), 1 µL Primer reverse (10 µM), 8,5 µL nukleasefreies Wasser, 2 µL cDNA. Die Platte wurde mit einer transparenten Folie abgeklebt, für 1 Minute bei 2.500 rpm abzentrifugiert und die PCR im CFX96[™] Real-Time PCR Detection System mit folgendem Programm laufen gelassen:

	Temperatur	Zeit	
	95 °C	3 min	Denaturierung
	95 °C	15 s	Denaturierung
45 x	60 °C	15 s	Annealing
	70 °C	30 s	Elongation + Messung
	65 °C − 96 °C	0,05 °C / 5 s	Schmelzkurvenanalyse

TABELLE 3.23: PCR-PROGRAMM

TABELLE 3.24: PRIMER FÜR HPV16 E6 / E7 PCR

Primer	Sequenz
HPV16 E6 forward	5' - CAAACCGTTGTGTGATTTGTTAATTA - 3'
HPV16 E6 reverse	5' - GCTTTTTGTCCAGATGTCTTTGC - 3'
HPV16 E7 forward	5′ - TTTGCAACCAGAGACAACTGA - 3′
HPV16 E7 reverse	5' - GCCCATTAACAGGTCTTCCA - 3'

3.2.3 e) Gelelektrophorese von Nukleinsäuren

Zur Überprüfung der in der PCR erhaltenen Fragmente wurden das PCR-Produkt in einer Agarosematrix elektrophoretisch der Länge nach aufgetrennt. Zur Herstellung eines 2 % Agarosegels wurden 2,4 g Agarose abgewogen und in 120 mL 1X TBE-Puffer in der Mikrowelle erhitzt und aufgelöst. Volumenverluste durch Verdampfen wurden mit 1X TBE-Puffer wieder ausgeglichen und die Lösung auf einem Magnetrührer langsam abgekühlt. In die noch flüssige Agaroselösung wurden 10 µL des DNA-Farbstoff peqGREEN gemischt und anschließend blasenfrei in eine für die horizontale Elektrophoreseeinheit passende Form gegossen und ein Kamm für die Geltaschen eingesteckt. Nachdem das Gel vollständig auspolymerisiert war, wurde das Gel in die horizontale Elektrophoreseeinheit transferiert, der Kamm gezogen und mit 1X TBE-Puffer bedeckt.

Zum Auftragen der Proben wurden 10 μ L des PCR-Produkts mit 2 μ L Ladepuffer (6X) gemischt und in die Geltasche pipettiert. Neben den PCR-Produkten wurde zur Abschätzung der Fragmentlängen ein DNA-Größenstandard aufgetragen. Hierfür wurde 1 μ L peqGOLD 100 bp DNA-Leiter mit 2 μ L Ladepuffer (6X) und 9 μ L nukleasefreiem Wasser gemischt und ebenfalls auf das Gel aufgetragen.

Die Auftrennung der Fragmente erfolgte über 2,5 Stunden bei 90 V. Die Visualisierung der aufgetrennten DNA-Fragmente erfolgte mittels UV-Licht im Geldokumentationsgerät (E-BoX VX2/20M).

3.2.3 f) Genexpressions analyse (Sureprint G3 Human Gene Expression 8x60K Microarray)

Um durch Bestrahlung induzierte Veränderungen in der Genexpression zu analysieren kam ein *whole genome microarray* (SurePrint G3 Human Gene Expression 8x60K Microarray) der Firma Agilent Technologies zum Einsatz.

Hierfür wurde RNA 3 h nach Bestrahlung wie unter 3.2.3 a) auf Seite 55 beschrieben aus den Zellen gewonnen. Als Referenz wurde zum selben Zeitpunkt auch RNA unbehandelter Zellen isoliert. Die weitere Probenaufbereitung erfolgte am Zentrum für Allergie und Umwelt der Technischen Universität München wie in Zissler et al. (2018) beschrieben. Aus der RNA wurde cDNA gewonnen, welche wiederum in cRNA umgeschrieben wurde, wobei Cy3-CTP für die Fluoreszenzmarkierung der cRNA sorgte. Nach Hybridisierung dieser markierten cRNA an *den microarray slide* konnte dieser am SureScan Microarray Scanner ausgelesen werden. Die signifikant hoch- bzw. herunterregulierten Gene für jede Behandlung (Änderung in der Expressionsstärke $\log 2 > 1,5$) wurden in Listen zusammengefasst und an mich weitergegeben. Die weitere Auswertung dieser Listen erfolgte in Excel.

3.2.4 Bestrahlungsexperimente

Für die Bestrahlungsexperimente wurden die Zellen 24 h vor Behandlung ausgesät. Neben den zu bestrahlenden Zellen wurde stets eine unbestrahlte Kontrolle als Referenz mit ausgesät. Diese wurde analog zum behandelten Ansatz für die Dauer der Behandlung aus dem Brutschrank entnommen um gleiche Grundbedingungen zu schaffen.

3.2.4 a) Röntgenbestrahlung

Für die Bestrahlung mit hochenergetischen Röntgenstrahlen wurde das Bestrahlungsgerät RS225 der Firma Gulmay Ltd. der Klinik und Poliklinik für Strahlentherapie und Raidologische Onkologie der Technischen Universität München im Zentrum für präklinische Forschung (ZPF) verwendet. Die Zellen wurden in Zellkulturschalen oder –platten mit Deckel auf dem im Gerät befindlichen Tisch bestrahlt. Die Tischhöhe wurde auf 466 mm eingestellt und unter Verwendung des Filters #3 die Bestrahlung bei einer Spannung von 70 kV und einer Stromstärke von 10 mA durchgeführt. Eine Minute Bestrahlung entsprach mit diesen Einstellungen einer Dosis von 1 Gy.

3.2.4 b) Alphateilchen-Emitter-Behandlung

Die Vorbereitungen zur zielgerichteten Alphateilchen-Emitter-Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (Abbildung 1.5, S. 19) und dessen Applikation wurden aus strahlenschutzrechtlichen Gründen im Labor der Klinik für Nuklearmedizin am Klinikum rechts der Isar der TU München von Dr. Christof Seidl durchgeführt. Zuerst wurde der monoklonale Antikörper Cetuximab an den bifunktionalen Chelator CHX-A"-DTPA gekoppelt (Mirzadeh et al., 1990). Das alphateilchenemittierende Radionuklid ²¹³Bi wurde aus einem ²²⁵Ac/²¹³Bi Generatorsystem des Institut für Transurane der Europäischen Kommision in Karlsruhe gewonnen (Morgenstern et al., 2012). Zu dem ²¹³Bi-Eluat wurden in geeigneter Pufferlösung 100 µg des chelatierten Antikörper gegeben und ungebundenes ²¹³Bi durch Größenausschluss-Chromatographie (PD-10 Säulen) vom Alphateilchen-Emitter-Immunokonjugat ²¹³Bi-CHX-A"-DTPA-Cetuximab abgetrennt (Wulbrand et al., 2013). Die Reinheit des ²¹³Bi-Immunokonjugats wurde mittels Dünnschichtchromatografie bestimmt (Nikula et al., 1995). Die Bestimmung der Radioaktivität erfolgte durch Messung am Gamma-Counter Typ 1480 Wizard TM 3 (gemessene Counts x 18,0375 = Aktivität A(0) in kBq). Unter Berücksichtigung des Zerfallsgesetzes (T1/2 (213Bi) = 45,6 Minuten) wurde die Aktivität zum Zeitpunkt t (in Minuten) nach Messung von ²¹³Bi-CHX-A"-DTPA-Cetuximab errechnet.

$$A(t) = (0,5)^{\frac{t}{T_{1/2}}} \times A(0)$$

Zur Behandlung mit der gewünschten Aktivitätskonzentration wurde dann das entsprechende Volumen unter einer Sicherheitswerkbank direkt auf die Zellen gegeben und diese bei 37 °C und 5 % CO₂ weiterinkubiert.

3.2.4 c) ²¹³Bi-CHX-A"-DTPA-Cetuximab-Bindungsassay

Um zu bestimmen ob, und wieviel einer zugegebenen Menge eines Radioimmunkonjugats an die Zellen bindet, wurde ein Antikörperbindungstest durchgeführt, wie er in Abbildung 3.2 schematisch dargestellt ist.

ABBILDUNG 3.2: SCHEMATISCHE DARSTELLUNG DES ²¹³BI-CHX-A"-DTPA-CETUXIMAB-BINDUNGSASSAY.

Dargestellt ist der Ablauf des Bindungsassay - leicht modifiziert nach Nikula et al. (1999) - bei dem die Aktivität des an die Zellen gebundenen Radioimmunkonjugats gemessen und mit der gesamt zugegebenen Aktivität ins Verhältnis gesetzt wurde.

Eine Million Zellen wurde abgelöst und als Einzelzellsuspension in 500 µL Zellkulturmedium mit einer definierten Menge²¹³Bi-CHX-A"-DTPA-Cetuximab für 30 Minuten auf Eis inkubiert. Nach Zugabe von 500 µL PBS wurden die Zellen abzentrifugiert (3 Minuten bei 1.200 rpm) und der Überstand in einem neuen Messbehälter gesammelt. Das Zellpellet wurde nochmals in 500 µL PBS resuspendiert, abzentrifugiert und der Überstand wieder in einem separaten Messbehälter aufbewahrt. Anschließend wurde die Aktivität des Zellpellet und der abgenommenen Uberstände im Gamma-Counter bestimmt. Der Quotient aus der im Zellpellet zugegebener Aktivität beschreibt Maß gemessenen und gesamt das der Radioimmunkonjugatbindung an die Zellen. Bei der Berechnung muss der zwischenzeitliche Zerfall des Radionuklids berücksichtigt werden.

3.2.5 Statistische Auswertungen

Die statistische Auswertung zur Prüfung auf signifikante Unterschiede beim Vergleich von experimentellen Gruppen wurden mit der Software GraphPad Prism durchgeführt. Hierfür wurde der ungepaarte T-Test angewendet, da eine Normalverteilung der gemessenen Parameter angenommen wurde. Die grafische Darstellung der Ergebnisse erfolgte ebenfalls mittels GraphPad Prism. Alle Versuche wurden mindestens drei Mal durchgeführt.

4 ERGEBNISSE

4.1 Nachweis der HPV16-Transkripte E6 und E7 in HNSCC-Zelllinien

Ein Schwerpunkt dieser Dissertation war der Vergleich von HPV-positiven und –negativen Zelllinien. Mit Hilfe einer RT-PCR und spezifischen Primern wurde die Transkription und somit das Vorhandensein der HPV16 E6- bzw. E7-Gensequenzen in den Zelllinien UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-154, UPCI-SCC-111 und 93VU147T überprüft.

ABBILDUNG 4.1: GELELEKTROPHORESE NACH RT-PCR ZUM NACHWEIS VON HPV16 E6- UND E7-GENSEQUENZEN IN HNSCC-ZELLLINIEN.

Aus 6 HNSCC-Zelllinien (UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-154, UPCI-SCC-111 und 93VU147T) wurde RNA isoliert. Diese wurde in cDNA umgeschrieben, welche als Template für eine PCR mit den HPV16 E6 und E7 spezifischen Primern diente.

In den drei Zelllinien UD-SCC-2, UPCI-SCC-154 und 93VU147T konnten die HPV16-Gene E6 und E7 über die spezifisch amplifizierten Fragmente der Größe 89 bp bzw. 214 bp nachgewiesen werden. UD-SCC-3, UD-SCC-5 und UPCI-SCC-111 wiesen einen negativen HPV-Status auf.

4.2 **Proliferation nach** *in vitro* **Chemotherapie**

Ziel dieses Experiments war zu prüfen, ob der HPV-Status von HNSCC-Zelllinien einen Einfluss auf die Proliferation nach Behandlung mit Chemotherapeutika hat. Hierfür wurden sechs HNSCC-Zelllinien mit unterschiedlichem HPV-Status (3 HPV-positiv, 3 HPV-negativ) mit je vier unterschiedlichen Chemotherapeutika behandelt. Cisplatin ist ein etabliertes, DNA-schädigendes Zytostatikum, welches auch in der Klinik standardmäßig verwendet wird. Auch Cetuximab, ein monoklonaler Antikörper gegen den epidermalen Wachstumsfaktor-Rezeptor, ist für die Klinik zugelassen und blockiert durch Bindung an der extrazellulären Ligandbindungsdomäne des EGFR dessen onkogene Aktivität. U0126, ein spezifischer Dual-Kinase-Inhibitor für MEK1 und MEK2, wird experimentell eingesetzt und führt zur Inaktivierung des Erk1/2-Signalwegs. Der spezifische Akt-Kinase-Inhibitor MK-2206 wurde bereits in diversen Phase II Studien bei unterschiedlichen Entitäten angewandt (Ramanathan et al., 2015, Ma et al., 2015, Konopleva et al., 2014, Xing et al., 2019).

ABBILDUNG 4.2: EINFLUSS DES HPV-STATUS AUF DIE PROLIFERATION VON HNSCC-ZELLLINIEN NACH Behandlung mit Chemotherapeutika.

Proliferationsanalyse von 6 HNSCC-Zelllinien (93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-111, UPCI-SCC-154) mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige unbehandelte Kontrolle und gruppiert nach HPV-Status. Die Auswertung erfolgte zehn Tage nach einmaliger Behandlung mit Chemotherapeutika (Cisplatin: 0,25 μ M, Cetuximab: 0,25 μ M, U0126: 25 μ M, MK-2206: 5 μ M). Dargestellt sind die Einzeldaten in schwebenden Balken (min-max) mit Linie am Mittelwert, sowie Signifikanzen zwischen HPV-Gruppen (p ≤ 0,05 = *, p ≤ 0,001 = **, p ≤ 0,0001 = ***).

Behandlung mit Cisplatin führte bei der verwendeten Konzentration von 0,25 μ M bei den HPV-negativen Zelllinien zu einer minimalen Proliferationsinhibition (Mittelwert 96,2 %), während die durchschnittliche Proliferation bei den HPV-positiven Zelllinien nur 70,1 % der unbehandelten Kontrolle betrug. Cetuximab (0,25 μ M) hingegen zeigte auch bei den

HPV-negativen Zellen Einfluss auf die Proliferation, wobei auch hier ein stärkerer Effekt bei den HPV-positiven zu beobachten war (76,0 % vs. 51,0 %). Analog verhielt es sich bei Inhibition von MEK1/2 mit U0126 (25 μ M), wobei hier die Abhängigkeit vom HPV-Status am ausgeprägtesten war (53,3 % vs. 13,3 %) und die HPV-positiven Zelllinien am einheitlichsten in ihrer Proliferation eingeschränkt waren. MK-2206 (5 μ M) hatte unabhängig vom HPV-Status einen starken antiproliferativen Effekt (22,0 % vs. 17,9 %) (Abbildung 4.2).

Signifikant unterschiedliches, vom HPV-Status der Zelllinien abhängiges Ansprechen auf die *in vitro* Chemotherapie konnte also bei Cisplatin, Cetuximab und U0126 festgestellt werden (Tabelle 4.1).

Behandlung	HPV	Proliferation	Standard- abweichung	p-Wert	Signifikanz-niveau
Cisplatin (0,25 μM)	-	96,2 %	15,8	0.0104	*
	+	70,1 %	21,9	.,	
Cetuximab (0,25 μM)	-	76,0 %	7,9	0,0128	*
	+	51,0 %	25,5		
U0126 (25 μM)	-	53,3 %	17,9	1,1 x 10 ⁻²⁴	***
	+	13,3 %	5,2		
ΜΚ-2206 (5 μΜ)	-	22,0 %	19,5	0,3925	nicht signifikant
	+	17,9 %	14,6		

TABELLE 4.1: STATISTISCHER VERGLEICH (UNGEPAARTER T-TEST) DER PROLIFERATION (MITTELWERTE, NORMALISIERT GEGEN UNBEHANDELTE VERGLEICHSGRUPPE) ABHÄNGIG VOM HPV-STATUS

4.3 Klonogenes Überleben nach *in vitro* Chemotherapie

Neben der Proliferation wurde auch das klonogene Überleben der HNSCC-Zelllinien nach Behandlung mit den Chemotherapeutika überprüft. HPV-negative Zelllinien reagierten auf die *in vitro* Chemotherapie abhängig von der verwendeten Substanz mit einer durchschnittlichen Reduktion der Kolonienzahl auf 76 - 97 %. Im Vergleich dazu war bei jeder angewandten Behandlung das klonogene Überleben der HPV-positiven Zelllinien signifikant geringer (Tabelle 4.2).

ABBILDUNG 4.3: EINFLUSS DES HPV-STATUS AUF DAS KLONOGENE ÜBERLEBEN VON HNSCC-ZELLLINIEN NACH BEHANDLUNG MIT CHEMOTHERAPEUTIKA.

Analyse des klonogenen Überleben von 6 HNSCC-Zelllinien (93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-111, UPCI-SCC-154) mittels Kristallviolettfärbung und manuellem Zählen der Kolonien, normalisiert auf die jeweilige unbehandelte Kontrolle und gruppiert nach HPV-Status. Die Auswertung erfolgte zehn Tage nach einmaliger Behandlung mit Chemotherapeutika (Cisplatin: 0,25 μ M, Cetuximab: 0,25 μ M, U0126: 25 μ M, MK-2206: 5 μ M). Dargestellt sind die Einzeldaten in schwebenden Balken (min-max) mit Linie am Mittelwert, sowie Signifikanzen zwischen HPV-Gruppen (p \leq 0,05 = *, p \leq 0,001 = **, p \leq 0,001 = ***).
TABELLE 4.2: STATISTISCHER VERGLEICH (UNGEPAARTER T-TEST) DES KLONOGENEN ÜBERLEBENS (MITTELWERTE, NORMALISIERT GEGEN UNBEHANDELTE VERGLEICHSGRUPPE) ABHÄNGIG VOM HPV-STATUS

Behandlung	HPV	Klonogenes Überleben	Standard- abweichung	p-Wert	Signifikanz- niveau
Cisplatin (0.25 uM)	-	85,9 %	14,0	0.0017	**
- T (2, - L, .)	+	67,1 %	5,4	-,	
Catuvinch (0.25 uM)	-	96,6 %	13,2	0.0031	**
Cetuximab (0,25 µM)	+	57,9 %	30,6	0,0031	
10126 (25 - 34)	-	84,4 %	44,1	0.0002	***
00126 (25 μΜ)	+	13,1 %	11,4	0,0002	
N# 2207 /5 ND	-	75,5 %	64,9	0.0400	
MK-2206 (5 μM)	+	26,4 %	13,3	0,0408	<i>4</i> .

4.4 **Proliferation nach Bestrahlung**

Strahlentherapie ist ein probates Mittel zur Behandlung von Tumoren, um zusätzlich, nach chirurgischer Resektion verbliebenes malignes Gewebe abzutöten. Auch zur präventiven Therapie von eventuell vorhandenen residualen lokalen Lymphknotenmetastasten wird Bestrahlung eingesetzt.

Mit Hilfe des Kristallviolettbasierten Proliferationsassays sollte die antiproliferative Wirkung von zielgerichteter Alphateilchen-Emitter-Therapie oder Röntgenstrahlen auf HNSCC-Zelllinien getestet werden. Hierbei wurde auch untersucht, ob es abhängig vom HPV-Status Unterschiede im Ansprechen auf experimentelle Radiotherapie gab.

4.4.1 Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab

Zur experimentellen Therapie der HNSCC-Zelllinien wurde das radioaktive Immunkonjugat bestehend aus dem Alphateilchen-Emitter ²¹³Bi, dem Chelator CHX-A"-DTPA sowie dem daran gekoppelten monoklonalen anti-EGFR-Antikörper Cetuximab verwendet. Ein Bindungsassay zeigte, dass im Mittel 63 % des zugegebenen Radioimmunkonjugats erfolgreich an alle verwendeten Zelllinien binden konnte. ²¹³Bi-CHX-A"-DTPA ohne Cetuximab hingegen wies nahezu keine Bindung auf (Abbildung 4.4).

ABBILDUNG 4.4: BINDUNGSFÄHIGKEIT VON ²¹³BI-CHX-A"-DTPA/-CETUXIMAB AN HNSCC-ZELLLINIEN.

Ausgehend von der bestätigten Bindung von ²¹³Bi-CHX-A"-DTPA-Cetuximab an die verwendeten HNSCC-Zelllinien wurde die Proliferationsfähigkeit der Zellen zehn Tage nach Behandlung mit verschiedenen Aktivitätskonzentrationen von 9,25 bis 74 kBq/mL ermittelt. Hierbei zeigte sich bereits bei den geringsten Aktivitätskonzentrationen ein starker Abfall der Proliferation verglichen zu unbehandelten Zellen. Dieses Verhalten war vor allem bei den

Bindungsassay des Radioimmunkonjugats ²¹³Bi-CHX-A"-DTPA-Cetuximab bzw. ²¹³Bi-CHX-A"-DTPA ohne gekoppelten Antikörper an die HNSCC-Zelllinien 93VU147T (93VU), UD-SCC-2 (UD2), UD-SCC-3 (UD3), UD-SCC-5 (UD5), UPCI-SCC-111 (UP111) und UPCI-SCC-154 (UP154). Dargestellt ist das Verhältnis der an 3x10⁶ Zellen gebundenen Radioaktivität zur gesamt eingesetzten Radioaktivität (18,5 kBq/mL) in Prozent mit Standardabweichung als Fehlerbalken.

Zelllinien 93VU147T, UD-SCC-2 und UPCI-SCC-154 besonders ausgeprägt (Abbildung 4.5 A, B, F). Die Zelllinie UD-SCC-5 (Abbildung 4.5 D) zeigte mittleres, UD-SCC-3 und UPCI-SCC-111 (Abbildung 4.5 C, E) im Verhältnis schlechteres Ansprechen auf die zielgerichtete Therapie mit dem Alphateilchen-Emitter.

ABBILDUNG 4.5: WIRKUNG VON ²¹³BI-CHX-A"-DTPA-CETUXIMAB AUF DIE PROLIFERATION VON HNSCC-ZELLLINIEN.

Proliferationsanalyse von 6 HNSCC-Zelllinien (A: 93VU147T, B: UD-SCC-2 (UD2), C: UD-SCC-3 (UD3), D: UD-SCC-5 (UD5), E: UPCI-SCC-111 (UP111), F: UPCI-SCC-154 (UP154)) mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige unbehandelte Kontrolle. Die Auswertung erfolgte zehn Tage nach einmaliger Behandlung mit unterschiedlichen Aktivitätskonzentrationen von ²¹³Bi-CHX-A"-DTPA bzw. ²¹³Bi-CHX-A"-DTPA-Cetuximab. Dargestellt sind die einzelnen Replikate mit horizontaler Linie am entsprechenden Mittelwert.

Neben der Wirkung von Chelator-Antikörper-gekoppeltem ²¹³Bi sollte auch die Wirkung ohne Cetuximab getestet werden, um unspezifische Effekte von ²¹³Bi-CHX-A"-DTPA zu ermitteln. Die Zelllinien 93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5 und UPCI-SCC-154 (Abbildung 4.5 A-D, F) zeigten nur wenig verminderte Proliferation. Der Unterschied zur entsprechenden Aktivitätskonzentration bei zielgerichtetem Vorgehen war bei diesen Zelllinien stets signifikant (Tabelle 4.3). Ausnahme bildete die Zelllinie UPCI-SCC-111 (Abbildung 4.5 E), bei der mit 9,25 kBq/mL ein signifikant Ansprechen nur besseres von ²¹³Bi-CHX-A"-DTPA-Cetuximab vorlag. Bei 18,50 kBq/mL bestand kein Unterschied mehr und bei höheren Aktivitätskonzentrationen kehrte sich die antiproliferative Wirkung dahingehend um, dass ²¹³Bi-CHX-A"-DTPA ohne Cetuximab das signifikant stärkere Ansprechen zeigte (Tabelle 4.3).

Zusätzlich zur unspezifischen Wirkung von ²¹³Bi-CHX-A"-DTPA ohne Cetuximab wurde auch die antiproliferative Wirkung von Cetuximab alleine untersucht, da ja auch bei Gabe des Radioimmunkonjugats geringe Mengen des monoklonalen Antikörpers zum Einsatz kommen, der potentiell therapeutische Wirkung zeigen könnte.

213Bi-CHX-A"-DTPA-	Cetuximab	Proliferation	Standardabweichung	p-Wert	Signifikanzniveau
<u>93VU147T</u>					
9.25 kBa/mL	-	101,1 %	7,7	1.9 x 10 ⁻¹⁶	***
) <u>_</u>	+	12,8 %	7,3	,	
18.50 kBa/mL	-	94,4 %	9,6	1.1 x 10 ⁻¹⁷	***
	+	7,4 %	2,9	1,1 / 10	
37 kBa/mI	-	86,1 %	8,2	2 2 x 1 0-18	***
37 kBq/mL	+	5,8 %	2,4	2,2 X 10	
74 l.P.o./m	-	71,3 %	4,3	2.2×10^{-20}	***
74 kBq/mL	+	6,4 %	2,9	∠,∠ x 10°20	

TABELLE 4.3: STATISTISCHER VERGLEICH (UNGEPAARTER T-TEST) DER PROLIFERATION (MITTELWERTE, NORMALISIERT GEGEN UNBEHANDELTE VERGLEICHSGRUPPE) NACH BEHANDLUNG MIT VERSCHIEDENER AKTIVITÄTSKONZENTRATIONEN VON ²¹³BI-CHX-A"-DTPA-CETUXIMAB UND ²¹³BI-CHX-A"-DTPA.

ERGEBNISSE

²¹³ Bi-CHX-A"-DTPA-	Cetuximab	b Proliferation Standardabweichung		p-Wert	Signifikanzniveau
UD-SCC-2					
9,25 kBq/mL	-	94,6 %	5,6	9,1 x 10 ⁻⁷	***
	+	46,3 %	19,6		
18 50 kBa/mI	-	89,8 %	5,2	1 1 x 10 -10	***
10,50 Kbq/mL	+	28,4 %	13,8	1,1 × 10	
37 kBa/mI	-	85,8 %	4,5	47×10-14	***
57 KbqmL	+	16,9 %	9,8	4,7 × 10	
74 kB c/m I	-	77,9 %	5,0	2 7 × 10-15	***
74 KDQ/IIL	+	13,5 %	7,2	2,7 X 10-13	
UD-SCC-3					
9,25 kBq/mL	-	88,2 %	11,6	0,0093	**
	+	73,5 %	11,5		
18,50 kBg/mL	-	82,1 %	11,5	0,0084	**
ŕF	+	63,4 %	16,2	,	
37 kBq/mL	-	75,2 %	10,9	0,0045	**
-	+	48,6 %	22,9		
74 kBq/mL	-	76,0 %	4,3	0,0008	***
	+	44,4 %	23,3		
UD-SCC-5					
9,25 kBq/mL	-	105,2 %	3,4	2,5 x 10 ⁻¹³	***
	+	62,8 %	6,5		
18,50 kBq/mL	-	97,7 %	5,8	4,3 x 10 ⁻¹³	***
-	+	41,1 %	8,4		
37 kBq/mL	-	95,7 %	5,2	1,5 x 10 ⁻⁹	***
P	+	28,0 %	18,2		
74 kBa/mL	-	89,5 %	7,0	8,1 x 10-11	***
74 KDq/mL	+	20,8 %	14,8	-,	

²¹³ Bi- CHX-A"-DTPA-	Cetuximab	Proliferation	Standardabweichung	p-Wert	Signifikanzniveau	
UPCI-SCC-111						
9,25 kBg/mL	-	100,4 %	7,0	0,0006	***	
· r	+	85,1 %	8,6			
10 50 LD / L	-	77,9 %	12,0	0.0505		
18,50 kBq/mL	+	68,7 %	9,2	0,0707	nicht signifikant	
37 kBq/mL	-	6,9 %	6,7	0,0002	***	
	+	42,4 %	21,1			
7410 / 1	-	0,8 %	0,1	0.0012	**	
74 KBQ/ML	+	29,6 %	21,1	0,0013		
UPCI-SCC-154						
9 25 kBa/mI	-	100,5 %	4,1	65 x 10-14	***	
9,25 KDQ/IIIL	+	19,7 %	12,0	0,5 X 10		
	_	931%	7.6			
18,50 kBq/mL		<i>JOJ</i> I /0	7,0	7,9 x 10 ⁻²⁰	***	
	+	8,5 %	0,8			
37 kBa/mL	-	89,5 %	9,2	8 1 x 10 ⁻¹⁸	***	
57 KDQ/IIL	+	5,6 %	2,7	0,2 / 10		
	_	69.7%	73			
74 kBq/mL	-	07,7 /0	ۍ ۲	9,9 x 10 ⁻¹⁸	***	
	+	4,5 %	2,0			

ERGEBNISSE

Die Menge an Cetuximab variierte bei Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab abhängig davon wieviel Zeit nach Eluierung des radioaktiven Nuklids bereits vergangen war, da die Halbwertszeit mit 45,6 Minuten recht gering ist. So musste in Abhängigkeit der vergangenen Zeit und benötigter Aktivitätskonzentration mehr oder weniger Radioimmunkonjugat zugegeben werden. In der Regel wurde Cetuximab mit einer Konzentration zwischen 0,69 nM bei eher niedrigen und 2,74 nM bei eher hohen Aktivitätskonzentrationen eingesetzt. Bis auf 93VU147T und UPCI-SCC-154 sprachen die verwendeten Zelllinien nur gering auf die gegebenen Cetuximab-Konzentrationen an (Abbildung 4.6).

ABBILDUNG 4.6: WIRKUNG VON CETUXIMAB OHNE ²¹³BI-CHX-A"-DTPA AUF HNSCC-ZELLLINIEN.

Proliferationsanalyse von 6 HNSCC-Zelllinien (A: 93VU147T (93VU), B: UD-SCC-2 (UD2), C: UD-SCC-3 (UD3), D: UD-SCC-5 (UD5), E: UPCI-SCC-111 (UP111), F: UPCI-SCC-154 (UP154)) mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige unbehandelte Kontrolle. Die Auswertung erfolgte zehn Tage nach einmaliger Behandlung mit unterschiedlichen Konzentrationen von Cetuximab. Dargestellt sind die entsprechenden Mittelwerte mit Standardabweichungsbereich. Der Konzentrationsbereich von Cetuximab, welcher auch bei der Gabe von ²¹³Bi-CHX-A"-DTPA-Cetuximab zum Einsatz kam (Abbildung 4.5) ist als grau hinterlegter "relevanter Bereich" gekennzeichnet.

Die Ergebnisse der Proliferationsanalyse nach Behandlung von Zelllinien mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (Abbildung 4.5, Seite 69) wurden wieder hinsichtlich des HPV-Status gruppiert (Abbildung 4.7), wobei in diesem Fall die Zelllinie UPCI-SCC-111 ausgeschlossen wurde, da bei dieser das nicht zielgerichtete Vorgehen mit ²¹³Bi-CHX-A"-DTPA ohne Cetuximab zu starker Proliferationsinhibition führte (Abbildung 4.5 E, Seite 69 und Tabelle 4.3, Seite 70).

ABBILDUNG 4.7: EINFLUSS DES HPV-STATUS AUF DIE PROLIFERATION BEI BEHANDLUNG MIT ²¹³BI-CHX-A"-DTPA-CETUXIMAB.

Proliferationsanalyse von 5 HNSCC-Zelllinien (93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-154) mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige unbehandelte Kontrolle und gruppiert nach HPV-Status. Die Auswertung erfolgte zehn Tage nach einmaliger Behandlung mit unterschiedlichen Aktivitätskonzentrationen von ²¹³Bi-CHX-A"-DTPA-Cetuximab. Dargestellt sind die einzelnen Replikate mit horizontaler Linie am entsprechenden Mittelwert.

Bei jeder verwendeten Aktivitätskonzentration (9,25 – 74 kBq/mL) zeigte die HPV-positive Gruppe ein im Mittel viel stärkeres Ansprechen bezüglich Inhibition der Proliferationsfähigkeit. Zu sehen ist, dass die Differenz zwischen den HPV-Gruppen bei der niedrigsten Aktivitätskonzentration von 9,25 kBq/mL mit rund 42 % am höchsten ist und erst bei den höheren kBq/mL-Werten auf ca. 25 % zurückgeht. Der Unterschied zwischen den HPV-Gruppen war bei jeder verwendeten Aktivitätskonzentration statistisch hoch signifikant (Tabelle 4.4). Auch die Berechnung der *area under curve* (AUC) in GraphPad Prism zeigte, dass der Unterschied der beiden Gruppen über den gesamten Bereich von 0 – 72 kBq/mL hoch signifikant war (AUC_{HPV-neg} = 3484, AUC_{HPV-pos} = 1323; p = 0,0007 (ungepaarter t-Test)). TABELLE 4.4: STATISTISCHER VERGLEICH (UNGEPAARTER T-TEST) DER PROLIFERATION (MITTELWERTE, NORMALISIERT GEGEN UNBEHANDELTE VERGLEICHSGRUPPE) ABHÄNGIG VOM HPV-STATUS NACH BEHANDLUNG MIT VERSCHIEDENEN AKTIVITÄTSKONZENTRATIONEN VON ²¹³BI-CHX-A"-DTPA-CETUXIMAB.

²¹³ Bi-CHX-A"-DTPA- Cetuximab	HPV	Proliferation	Standard- abweichung	p-Wert	Signifikanzniveau
9.25 kBa/mL	-	68,1 %	10,6	2.9 x 10 ⁻¹³	***
	+	26,3 %	20,0	_)/ // 10	
18,5 kBq/mL	-	52,2 %	17,0	6,4 x 10 ⁻¹⁴	***
	+	14,8 %	12,6		
37 kBq/mL	-	38,3 %	22,8	2,7 x 10 ⁻⁹	***
	+	9,5 %	7,9		
74 kBq/mL	- nL		22,6	6,1 x 10 ⁻⁸	***
r	+	8,1 %	6,0		

4.4.2 Bestrahlung mit Röntgenstrahlung

Hochenergetische Röntgenstrahlung stellt eine Standardmethode zur Therapie von Kopf-Hals-Tumoren dar. Mit Hilfe der Gulmay RS225 Bestrahlungseinheit wurden sechs HNSCC-Zelllinien mit Dosen von 0-14 Gy bestrahlt um die Auswirkung dieser Therapieform auf die Proliferationsfähigkeit zu testen.

Dabei konnte festgestellt werden, dass die Zelllinien teils sehr unterschiedlich auf bestimmte Strahlendosen ansprechen (Abbildung 4.8 A). So zeigten die Zelllinien UD2, UP154 und 93VU direktes Ansprechen ab 0,5 - 1 Gy, während UD3 erst ab 2 Gy, UD5 über 2 Gy und UP111 erst über 4 Gy eine Reduktion in ihrem Proliferationsverhalten aufwiesen. Ab 12 Gy konnte zwischen den Zelllinien kein Unterschied mehr festgestellt werden.

ABBILDUNG 4.8: WIRKUNG VON HOCHENERGETISCHER RÖNTGENSTRAHLUNG AUF DIE PROLIFERATION VON HNSCC-ZELLINIEN.

Proliferationsanalyse von 6 HNSCC-Zelllinien (UD-SCC-2 (UD2), UPCI-SCC-154 (UP154), 93VU147T (93VU), UD-SCC-3 (UD3), UD-SCC-5 (UD5), UPCI-SCC-111 (UP111)) mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige unbehandelte Kontrolle. Die Auswertung erfolgte zehn Tage nach einmaliger Bestrahlung am Gulmay RS-225 (70 kV, 10 mA, Tischhöhe 466 mm, Filter #3) mit unterschiedlichen Dosen hochenergetischer Röntgenstrahlung. A: Darstellung jeder einzelnen Zelllinie mit Mittelwerten und Standardabweichung. B: Nach HPV-Status gruppierte Darstellung der einzelnen Replikate als Punkte mit horizontaler Linie am entsprechenden Mittelwert.

Die erhobenen Daten wurden wieder anhand des HPV-Status zusammengefasst. Dies resultierte bezüglich der Proliferationsdaten in zwei distinkten Gruppen, wobei die HPV-positive Gruppe ein direktes Ansprechen auf Röntgenbestrahlung ab einer Dosis von 0,5 Gy zeigte, wohingegen die HPV-negative Gruppe erst über 2 Gy mit eingeschränkter Proliferation reagierte (Abbildung 4.8 B). Der Unterschied im Proliferationsverhalten der beiden Gruppen war bei einer Dosis von 0,5 bis 8 Gy stark ausgeprägt und bis 10 Gy hoch signifikant (Tabelle 4.5). Bei einer höheren Strahlendosis als 10 Gy konnte kein Unterschied zwischen den Gruppen festgestellt werden. Die Berechnung der *area under curve* (AUC) in GraphPad Prism zeigte, dass über den gesamten Bereich von 0 – 14 Gy die HPV-negative Gruppe (AUC = 703,7) deutlich von der HPV-positiven Gruppe (AUC = 389) zu unterscheiden war (p < 0,0001; ungepaarter t-Test).

Dosis	HPV	Proliferation	Standard- abweichung	p-Wert	Signifikanzniveau
0.5 C v	-	106,1 %	4,6	17×10-9	***
0,5 Gy	+	91,9 %	5,8	1,7 × 10	
1 Gv	-	105,2 %	4,8	6.6 x 10 ⁻¹⁰	***
i Cy	+	84,2 %	6,4	0,0 X 10	
2 Gy	-	103,7 %	8,4	1,6 x 10 ⁻¹¹	***
ž	+	67,9 %	12,9		
4 Gy	-	81,6 %	22,1	6.6 x 10 ⁻⁹	***
	+	34,9 %	13,4		
6 Gy	-	55,1 %	24,8	3,3 x 10 ⁻⁷	***
	+	16,7 %	6,9		
8 Gy	-	34,7 %	21,7	2,6 x 10 ⁻⁵	***
ž	+	9,6 %	2,9		
10 Gy	-	14,5 %	9,7	0,0035	**
5	+	7,0 %	2,7	·	
12 Gy	-	7,8 %	5,4	0,1579	nicht signifikant
2	+	5,7 %	2,5		U
14 Gy	-	4,1 %	2,1	0,1324	nicht signifikant
5	+	5,3 %	2,6		

TABELLE 4.5: : STATISTISCHER VERGLEICH (UNGEPAARTER T-TEST) DER PROLIFERATION (MITTELWERTE, NORMALISIERT GEGEN UNBEHANDELTE VERGLEICHSGRUPPE) ABHÄNGIG VOM HPV-STATUS NACH BEHANDLUNG MIT HOCHENERGETISCHER RÖNTGENSTRAHLUNG

4.4.3 Fraktionierte Bestrahlung mit Röntgenstrahlung (5x 2 Gy)

In der Regel werden Patienten an mehreren aufeinander folgenden Tagen bestrahlt, um die Gesamtdosis auf verträglichere Einzeldosen aufzuteilen. Um diesen Sachverhalt im Zellkulturexperiment zu untersuchen, wurden Zelllinien an fünf konsekutiven Tagen mit einer jeweiligen Einzeldosis von 2 Gy bestrahlt.

ABBILDUNG 4.9: FRAKTIONIERTE RÖNTGENBESTRAHLUNG IM VERGLEICH ZU EINMALIGER RÖNTGENGEBESTRAHLUNG UND BEHANDLUNG MIT ²¹³BI-CHX-A"-DTPA-CETUXIMAB.

Proliferationsanalyse von 6 HNSCC-Zelllinien (UD-SCC-2 (UD2), UPCI-SCC-154 (UP154), 93VU147T (93VU), UD-SCC-3 (UD3), UD-SCC-5 (UD5), UPCI-SCC-111 (UP111)) mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige unbehandelte Kontrolle. A: Zellen wurden an fünf konsekutiven Tagen mit einer jeweiligen Einzeldosis von 2 Gy bestrahlt (Gulmay RS-225; 70 kV, 10 mA, Tischhöhe 466 mm, Filter #3). Die Auswertung erfolgte zehn Tage nach der letzten Bestrahlung. Dargestellt sind die Mittelwerte mit Standardabweichung. B: Ergebnisse der Proliferationsanalyse nach einmaliger Behandlung mit 37 kBq/mL ²¹³Bi-CHX-A"-DTPA-Cetuximab, Röntgenbestrahlung mit 2 Gy bzw. 10 Gy sowie der fraktionierten Röntgenbestrahlung (5x 2 Gy) im direkten Vergleich (Einzelergebnisse der Zelllinien sind entsprechend ihrem HPV-Status gruppiert). Dargestellt sind die Einzeldaten in schwebenden Balken (min-max) mit Linie am Mittelwert, sowie Signifikanzen zwischen HPV-Gruppen (p > 0,05 = nicht signifikant (ns), p ≤ 0,05 = *, p ≤ 0,001 = ***).

Das Ergebnis der Proliferationsanalyse zeigte ein immenses Ansprechen der Zellen auf die fraktionierte Röntgenbestrahlung (Abbildung 4.9 A). Die gemessene Extinktion bei 595 nm entsprach nach dieser Behandlung gemittelt über alle sechs Zelllinien nur noch 7,89 % der unbehandelten Kontrolle (Standardabweichung 5,36). Abbildung 4.9 B zeigt, dass die Verabreichung einer Einzeldosis von 10 Gy eine nahezu identische Proliferationsinhibition verursachte wie die Fraktionierung dieser Gesamtdosis auf 5x 2 Gy. Lediglich der Unterschied

zwischen der HPV-positiven und –negativen Gruppe war bei der fraktionierten Röntgenbestrahlung nicht signifikant (p = 0,0562). Im Vergleich zur zielgerichteten Alphateilchen-Emitter-Therapie konnte beobachtet werden, dass eine Einzeldosis des Alphateilchen-Emitters mit einer Aktivität von 37 kBq/mL bei den HPV-positiven Zellen einen ähnlich starken Effekt hatte wie die fünfmalige Behandlung mit je 2 Gy Röntgenstrahlung. Die Einzeldosis von 2 Gy hatte wie bereits unter 4.4.2 beschrieben nur bei den HPV-positiven Zellen Auswirkung auf die Proliferation.

4.5 Klonogenes Überleben nach Bestrahlung

Neben der Proliferation wurde auch das klonogene Überleben der HNSCC-Zelllinien nach den unterschiedlichen experimentellen Strahlentherapien analysiert. Dabei konnte beobachtet werden, dass die HPV-positiven Zelllinien bei den jeweiligen Bestrahlungen stets eine niedrigere relative Kolonienzahl aufwiesen als die HPV-negativen (Abbildung 4.10).

ABBILDUNG 4.10: EINFLUSS DES HPV-STATUS AUF DAS KLONOGENE ÜBERLEBEN VON HNSCC-Zelllinien nach unterschiedlicher Strahlentherapie.

Analyse des klonogenen Überleben von 6 HNSCC-Zelllinien (93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-111, UPCI-SCC-154) mittels Kristallviolettfärbung und manuellem Zählen der Kolonien, normalisiert auf die jeweilige unbehandelte Kontrolle und gruppiert nach HPV-Status. Die Auswertung erfolgte zehn Tage nach einmaliger Behandlung mit 37 kBq/mL ²¹³Bi-CHX-A"-DTPA-Cetuximab, einmaliger Röntgenbestrahlung mit 2 Gy und fraktionierter Röntgenbestrahlung (5x 2 Gy). Dargestellt sind die Einzeldaten in schwebenden Balken (min-max) mit Linie am Mittelwert, sowie Signifikanzen zwischen HPV-Gruppen ($p \le 0.05 = *, p \le 0.001 = ***$).

Der Unterschied in der mittleren relativen Kolonienzahl war bei der zielgerichteten Alphateilchen-Emitter-Therapie am ausgeprägtesten (29,4 % vs. 81,4 %, p = 1,22 x 10⁻⁷). Aber auch die Unterschiede bei einmaliger und fraktionierter Röntgenbestrahlung waren hoch signifikant (p = 1,8 x 10⁻⁹ bzw. p = 0,0001). Den stärksten Effekt auf die relative Kolonienzahl hatte die fraktionierte Bestrahlung mit 5x 2 Gy. Vor allem bei den HPV-positiven Zellen konnten hier kaum noch Kolonien nachgewiesen werden wie in Abbildung 4.11 zu erkennen ist.

ABBILDUNG 4.11: KOLONIEBILDUNGSANALYSE NACH BESTRAHLUNG (BEISPIELHAFT FÜR 2 ZELLLINIEN).

Fixierte und kristallviolettgefärbte Zellkolonien auf einer 6-well-Platte zur Analyse des klonogenen Überleben nach zehn Tagen ohne Behandlung (ctrl) bzw. zehn Tage nach einmaliger Behandlung mit 37 kBq/mL ²¹³Bi-CHX-A"-DTPA-Cetuximab, einmaliger Röntgenbestrahlung mit 2 Gy und fraktionierter Röntgenbestrahlung (5x 2 Gy). Dargestellt sind beispielhaft die Zelllinien UD-SCC-2 und UD-SCC-5.

4.6 Zellzyklusanalyse

Um das unterschiedliche Proliferations- und Koloniebildungsverhalten nach Bestrahlung weiter charakterisieren zu können, wurde der Zellzyklus der HNSCC-Zelllinien analysiert. Mittels Fluoreszenzanfärbung der DNA und Durchflusszytometrie wurde der DNA-Gehalt jeder einzelnen Zelle bestimmt und daraus ein Profil der Zellzyklusverteilung der Gesamtpopulation erstellt (Abbildung 4.12). Betrachtet man den Durchschnittswert aller sechs Zelllinien kommt man bei der unbehandelten Kontrolle auf eine Zellzyklusverteilung der Phasen G1, S und G2 wie folgt: 61.2 %, 24.5 %, 14.3 %. Nach Bestrahlung mit Röntgenstrahlung

der Dosis 2 Gy erhöhte sich der Anteil der sich in G2-Phase befindlichen Zellen auf 26 %, während Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab der Aktivität 37 kBq/mL eine Erhöhung auf rund 62 % verursachte. Der S-Phasen-Anteil blieb dabei nahezu konstant (Abbildung 4.12 A). Der ausgeprägte Anstieg der G2-Phasen-Population nach Behandlung mit zielgerichteter alpha-Strahlentherapie war in beiden HPV-Gruppen gleichermaßen zu beobachten, wohingegen die Erhöhung der G2-Phasen-Population bei Röntgenstrahlung fast ausschließlich bei den HPV-positiven Zellen auftrat (Abbildung 4.12 B).

ABBILDUNG 4.12: ZELLZYKLUSANALYSE VON HNSCC-ZELLLINIEN NACH BESTRAHLUNG.

Analyse der Zellzyklusverteilung von sechs HNSCC-Zelllinien ohne Behandlung bzw. 24 h nach Bestrahlung mit Röntgenstrahlung (2 Gy) und Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (37 kBq/mL). Dargestellt sind Mittelwerte mit Standardabweichung als Fehlerbalken, sowie Signifikanzen zwischen HPV-Gruppen ($p \le 0,05 = *$, $p \le 0,001 = **$, $p \le 0,0001 = ***$). A: Darstellung der Zellzyklusphasenverteilung, gemittelt über alle sechs verwendete Zelllinien (93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-111, UPCI-SCC-154). B: Darstellung des Anteils an Zellen in der G2-Phase mit Gruppierung der Ergebnisse nach HPV-Status. C: Darstellung der Zellzyklusphasenverteilung, gemittelt über die HPV-positiven Zelllinien (93VU147, UD-SCC-2, UD-SCC-154). D: Darstellung der Zellzyklusphasenverteilung, gemittelt über die HPV-negativen Zelllinien (UD-SCC-3, UD-SCC-5, UPCI-SCC-111).

4.7 Western Blot Analysen

Mittels Western Blot Analyse von Gesamtproteinextrakten wurde stichprobenartig untersucht, welche Signalwege nach Bestrahlung aktiv sind. Gerade in Hinsicht auf das stark unterschiedliche Proliferationsverhalten lag der Fokus dabei auf den potentiell onkogenen Signalwegen des HNSCC, wie zum Beispiel EGFR, AKT und ERK, sowie der DNA-Schadensantwort über p53 (Abbildung 4.13).

Eine strahleninduzierte Phosphorylierung des DNA Doppelstrangbruchsensors ATM an Serin 1981 konnte nur bei der Zelllinie UD2 festgestellt werden. Bei 93VU war nur in der unbehandelten Kontrolle sowie nach Röntgenbestrahlung ein Signal zu detektieren. In allen Zelllinien konnte kein Signal detektiert werden. Auch der DNAanderen Doppelstrangbruchmarker vH2AX (pS139) zeigte eine stark unterschiedliche Abundanz. Tendenziell war aber vor allem nach Verwendung von Alphateilchen die stärkste Aktivierung zu beobachten. Der DNA-Reparaturfaktor Rad51 zeigte bei allen Zelllinien eine verstärkte Expression nach Alphateilchen-Behandlung, bei Röntgenstrahlung war das nur bei einigen Zelllinien in schwächerer Form zu beobachten. Die Gesamtexpression des Tumorsuppressors p53 war von der Bestrahlung nicht beeinflusst, wobei UP154 kaum und UD3 gar keine Expression aufwies. Auch UD2 hatte im Vergleich nur eine schwache Expression von p53. Die strahleninduzierte Phosphorylierung von p53 an Serin 15 konnte in jeder Zelllinie – außer UD3 – nachgewiesen werden. Alphateilchen hatten hier wieder einen stärkeren Effekt als Röntgenstrahlen. In zwei von den sechs Zelllinien kam es nach Bestrahlung zu einer erhöhten Expression von p21, dem direkten Target des Transkriptionsfaktors p53. In den anderen vier Zelllinien kam es allerdings zu einer Verringerung der p21-Proteinmenge. Ein einheitlicher Zusammenhang zu den p53 oder p53 pS15 Signalen konnte jedoch nicht festgestellt werden. Das von Caspasen gespaltene Fragment von PARP (cleaved PARP), welches ein Apoptosemarker ist, war bei den HPV-positiven Zelllinien nach Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab verstärkt zu sehen. Bei UD3 war cleaved PARP behandlungsunabhängig, bei UD5 und UP111 gar nicht zu detektieren. Cyclin D1, nötig für den Übergang von der G1 zur S-Phase des Zellzyklus, war in vier von sechs Zelllinien durch Alphateilchenbehandlung in seiner Abundanz reduziert. Hingegen die Aurorakinasen A und B, regulatorische Proteine in der späten G2-Phase und Mitose, waren durch Bestrahlung zumeist verstärkt exprimiert.

		HPV (+)			HPV (-)															
		UD	2		93VI	J		UP1	54		UD3	<u> </u>		UD5		ι	J P111	_		
2 Gy	-	+	-	-	+	-	-	+	-	-	+	-	-	+	-	-	+	-		
37 kBq/mL	-	-	+	-	-	+	-	-	+	-	-	+	-	-	+	-	-	+		
	4	- seather	-	annia	-													1	ATM pS198	1
	-	-	-	-	-	-				•	-	-							γH2AX pS1	139
			-	-	-	-	-	-	-	-	-	-			-			-	Rad51	
		-	-	-	-	-							-	-	-	-		-	p53	
		-	-			-			-					-	-			-	p53 pS15	
	-	-	-	-	-		-	-	-	-			-	-	-	-		-	p21	
	-	-	-		wijes	-	-	-	-	-	-	-	-	-	-		19. ing		PARP	
				•	-	-				-	-	-							cleaved PA	RP (D214)
	310			-	-	-				-	-				•			•	Cyclin D1	
	-	-			-	-	-	-	-	-	-	-	-	-	-			-	Aurorakina	se A
	-	-	-	-	-	-		-	-	-	-	-						•	Aurorakina	se B
		-	-						-	-		-			•			4-1-	EGFR pY10	68
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		AKT	
	-	-	-	-	-	-	-	-	-	-	-	-		-				•	AKT pS473	
	-	-	-	=	=	=	=	=	=	-	-	=	-	=	=	-	-		ERK 1/2	
		-	-					-	=	-	-	-				-			ERK 1/2 pT	202/Y204
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		•	p38	
		-	•	-		100 AU	andsel	s an		-	-	-	and the		ine -	-			p38 pT180/	Y182
	-	-	-	-	-	-	-	-	-	-	-	-	-		- •			-	mTOR pS24	.48
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	Tubulin	

ABBILDUNG 4.13: PROTEINEXPRESSION UND POSTTRANSLATIONALE REGULATION NACH BESTRAHLUNG.

Dargestellt sind die Westernblotanalysen von 6 HNSCC-Zelllinien (HPV-positiv: UD2, 93VU, UP154; HPV negativ: UD3, UD5, UP111). Gesamtproteinlysate wurden 24 h nach einmaliger Bestrahlung mit Röntgenstrahlen (2 Gy) oder Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (37 kBq/mL) gesammelt und je 15 µg Gesamtprotein mittels SDS-PAGE aufgetrennt und per Semi-Dry Blot auf eine PVDF-Membran übertragen. Nach Inkubation mit Primärantikörper und HRP-gekoppelten Sekundärantikörper erfolgte nach Zugabe von Substratlösung die Detektion der Chemilumineszenz am Bio-Rad ChemiDoc XRS+.

Bezüglich der proliferativen Signalwege konnte man beim EGF-Rezeptor unter Alphateilchen-Emitter-Behandlung eine starke Aktivierung durch Phosphorylierung von Tyrosin 1068 beobachten. Die vielfältigen Signalwege, die dem EGFR nachgeschalten sind wurden auch betrachtet. Hierbei konnte weder bei AKT, p38 oder mTOR eine Aktivierung festgestellt werden. Lediglich die aktivierenden Phosphorylierungen der mitogenabhängigen Kinasen ERK1 und ERK2 waren bei den HPV-positiven Zelllinien nach Bestrahlung verstärkt. Tubulin diente als Kontrolle für gleich konzentrierte Proteinlysate und ergab innerhalb der Probenreihen der jeweiligen Zelllinien die gleichen Signalstärken.

4.8 Veränderungen in der Genexpression nach Bestrahlung

Um eine durch Bestrahlung induzierte genregulatorische Veränderung erfassen zu können, wurde die Abundanz von RNA nach Bestrahlung mit Hilfe eines RNA-Arrays (Agilent Technologies SurePrint G3 Human Gene Expression 8x60K Microarray) anhand zwei beispielhafter Zelllinien mit unterschiedlichem HPV-Status (UD-SCC-2 und UD-SCC-5) bestimmt und analysiert.

Änderung der Genexpression

ABBILDUNG 4.14: DURCH BESTRAHLUNG VERÄNDERTE GENEXPRESSION ZWEIER HNSCC-ZELLLINIEN.

Dargestellt ist die Anzahl regulierter Gene (Änderung in der Expressionsstärke log2 > 1,5) bei den HNSCC-Zelllinien UD-SCC-2 und UD-SCC-5 zum Zeitpunkt 3 Stunden nach Bestrahlung mit Röntgenstrahlung (2 Gy) bzw. Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (37 kBq/mL) im Vergleich zu unbehandelten Kontrollen. Zusätzlich ist die jeweilige Schnittmenge der Zelllinien (UD-SCC-2 & UD-SCC-5) dargestellt. Bestimmung der Genexpression erfolgte mit Hilfe des Agilent Technologies SurePrint G3 Human Gene Expression 8x60K Microarray. Die Behandlung mit dem Alphateilchen-Emitter beeinflusste bei beiden Zelllinien im Vergleich zur Röntgenstrahlung die Expression von weitaus mehr Genen. Des Weiteren konnte festgestellt werden, dass bei der HPV-positiven Zelllinie UD-SCC-2 die Veränderung in der Genexpression bei der jeweiligen Behandlung deutlich stärker ausgeprägt war als bei UD-SCC-5. Es konnten nur wenige Gene identifiziert werden, die in beiden Zelllinien gleichermaßen von der Behandlung beeinflusst waren. So waren nur 7 % (210 von 3009) der Gene, die bei UD-SCC-2 unter Alphateilchenbehandlung verändert exprimiert waren, auch bei UD-SCC-5 reguliert. Bei Röntgenbestrahlung betrug dieser Wert nur 1,4 % (14 von 1005) (Abbildung 4.14).

ABBILDUNG 4.15: BEHANDLUNGSSPEZIFISCHE VERÄNDERUNG DER GENEXPRESSION.

Dargestellt ist die Anzahl der Gene, die exklusiv für eine Behandlung bzw. bei beiden Behandlungen gleich reguliert war (Änderung in der Expressionsstärke log2 > 1,5). Messung der Genexpression erfolgte bei den HNSCC-Zelllinien UD-SCC-2 und UD-SCC-5 zum Zeitpunkt 3 Stunden nach Bestrahlung mit Röntgenstrahlung (2 Gy) bzw. Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (37 kBq/mL) im Vergleich zu unbehandelten Kontrollen. Bestimmung der Genexpression erfolgte mit Hilfe des Agilent Technologies SurePrint G3 Human Gene Expression 8x60K Microarray.

Die Veränderung des Genexpressionsmusters nach Behandlung mit Alphateilchen war zu großen Teilen exklusiv für diese Bestrahlungsart. So gab es bei beiden Zelllinien nur rund 14 % Übereinstimmung von der durch ²¹³Bi-CHX-A"-DTPA-Cetuximab veränderten Genexpression mit der von Röntgenstrahlung. Dementgegen waren 43,2 % bzw. 62 % (UD-SCC-2 bzw. UD-SCC-5) der Gene, die durch Röntgenstrahlen in ihrer Expression verändert waren, auch durch Alphateilchen beeinflusst (Abbildung 4.15).

4.9 Durchflusszytometrische Bestimmung von γH2AX

Um die Auswirkung der verschiedenen Strahlenarten auf die DNA-Integrität und die DNA-Reparaturaktivität der HNSCC-Zelllinien nach Bestrahlung zu vergleichen, wurde die an Serin 139 phosphorylierte Histonvariante H2A.X (=γH2AX) analysiert. Diese gilt als zuverlässiger Marker für DNA-Doppelstrangbrüche. γH2AX akkumuliert am Ort des Schadens und sorgt dort für die Rekrutierung und Aktivierung von DNA-Reparaturfaktoren. Erst nach Resolution des Doppelstrangbruchs wird γH2AX wieder dephosphoryliert. Mittels Immunfluoreszenzfärbung und Durchflusszytometrie wurde γH2AX an drei Zeitpunkten (0,5 h, 6 h, 24 h) nach Bestrahlung (2 Gy, 37 kBq/mL) quantifiziert.

Die spezifische Immunfluoreszenzfärbung von γ H2AX wurde anhand von Fluoreszenzmikroskopie kontrolliert. Nach Röntgenbestrahlung mit 1 Gy zeigten die Zellen im Nukleus lokalisiert vermehrte Foci von γ H2AX. Einige Zellen zeigten auch ohne Bestrahlung eine gewisse Basisabundanz von γ H2AX, welche aber im Vergleich zu den bestrahlten Zellen sowohl quantitativ, als auch qualitativ geringer ausfiel (Abbildung 8.2, Seite 131).

Mittels Durchflusszytometrie wurde die durchschnittliche Fluoreszenzintensität von antiγH2AX-FITC gefärbten Zellen analysiert. Dies ergab bei den eingesetzten Behandlungen (Röntgenstrahlung mit 2 Gy oder ²¹³Bi-CHX-A"-DTPA-Cetuximab mit 37 kBq/mL) für jede verwendete Zelllinie eine in Relation zu unbehandelten Zellen unterschiedliche Fluoreszenzintensität (Abbildung 4.16).

Abbildung 4.16: Durchflusszytometrische Analyse von γH2AX nach Bestrahlung.

Durchflusszytometrische Analyse des mittels Immunfluoreszenzfärbung markierten DNA-Doppelstrangbruch-Markers γH2AX an drei Zeitpunkten (0,5 h, 6 h, 24 h) nach Bestrahlung mit Röntgenstrahlung (2 Gy) oder Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (37 kBq/mL). Dargestellt ist die relative γH2AX-Fluoreszenztintensität für sechs verwendete HNSCC-Zelllinien (93VU147T (93VU), UD-SCC-2 (UD2), UD-SCC-3 (UD3), UD-SCC-5 (UD5), UPCI-SCC-111 (UP111), UPCI-SCC-154 (UP154)) normalisiert gegen die Ergebnisse unbehandelter Zellen. Dargestellt sind Mittelwerte mit Standardabweichungsbereich.

Grundsätzlich führte Röntgenstrahlung zu einer relativ konstanten, über den Beobachtungszeitraum tendenziell rückläufigen Signalerhöhung (2,25-fach nach 0,5 h; 1,8-fach nach 24 h), wohingegen bei zielgerichteter Alphateilchen-Therapie mit ionisierender Strahlung nach initial ähnlichem, leicht geringeren Effekt ein stärker werdendes Signal (1,60-fach nach 0,5 h; 2,51-fach nach 24 h) beobachtet werden konnte (Abbildung 4.17). Diese über alle sechs verwendete Zelllinien gemittelten behandlungsabhängigen Unterschiede waren statistisch signifikant.

Um einen möglichen Einfluss von HPV auf den γH2AX-Status zu untersuchen, wurden die Ergebnisse der Durchflusszytometrie anhand des HPV-Status der Zellen gruppiert. Unter Verwendung von Röntgenstrahlen (Abbildung 4.18 A) zeigten die HPV-positiven Zelllinien ein leicht erhöhtes γH2AX-Fluoreszenzsignal. Dieser Unterschied war teilweise signifikant. Auch nach Behandlung mit dem Alphateilchen-Emitter-Konjugat (Abbildung 4.18 B) war das

Signal der γ H2AX-Färbung in der HPV-positiven Gruppe tendenziell stärker, signifikant war diese Beobachtung jedoch nicht.

Abbildung 4.17: Gemittelte γ H2AX-Intensität von sechs HNSCC-Zelllinien nach Bestrahlung.

Durchflusszytometrische Analyse des mittels Immunfluoreszenzfärbung markierten DNA-Doppelstrangbruch-Markers γ H2AX an drei Zeitpunkten (0,5 h, 6 h, 24 h) nach Bestrahlung mit Röntgenstrahlung (2 Gy) oder Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (37 kBq/mL). Dargestellt ist die relative γ H2AX-Fluoreszenztintensität gemittelt über alle sechs verwendete HNSCC-Zelllinien (93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-111, UPCI-SCC-154) normalisiert gegen die Ergebnisse unbehandelter Zellen. Dargestellt sind Mittelwerte mit Standardabweichung als Fehlerbalken. A: Darstellung der Signifikanzen (ungepaarter T-Test) zwischen den Behandlungen (p $\leq 0,05 = *, p \leq 0,001 = **, p \leq 0,0001 = ***$). B: Darstellung des zeitlichen Fluoreszenzintensitätsverlauf mit roten Trendlinien berechnet nach zentriertem nichtlinearem Regressionsmodell.

Abbildung 4.18: Einfluss des HPV-Status auf die yH2AX-Intensität nach Bestrahlung.

Durchflusszytometrische Analyse des mittels Immunfluoreszenzfärbung markierten DNA-Doppelstrangbruch-Markers γ H2AX an drei Zeitpunkten (0,5 h, 6 h, 24 h) nach A: Bestrahlung mit Röntgenstrahlung (2 Gy) oder B: Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (37 kBq/mL). Die relativen γ H2AX-Fluoreszenzintensitäten sechs einzelner HNSCC-Zelllinien (Abbildung 4.16) wurden nach ihrem HPV-Status gruppiert und als Mittelwerte mit Standardabweichung als Fehlerbalken dargestellt. Signifikanzen (ungepaarter T-Test) zwischen den HPV-Gruppen sind mit Sternchen markiert (p \leq 0,05 = *, p \leq 0,001 = **, p \leq 0,0001 = ***).

4.10 siRNA-vermittelter Knockdown von DNA-Reparaturfaktoren

Um den Einfluss bestimmter DNA-Reparaturfaktoren auf das Proliferationsverhalten per se und nach Bestrahlung zu testen, wurde die Expression repräsentativer Faktoren verschiedener DNA-Reparaturmechanismen mittels siRNA-vermittelter RNA-Interferenz unterdrückt, beziehungsweise vermindert. Reparatur von DNA-Doppelstrangbrüchen erfolgt in der Regel mittels homologer Rekombination (HR) oder nicht-homologer Endverknüpfung (engl. nonhomologous end joining, NHEJ). Für HR wird RAD51 benötigt, bei NHEJ spielt die DNA-Ligase 4 (LIG4) eine wichtige Rolle. Für Einzelstrangbruchreparatur mittels Basenexzisionsreparatur (BER) ist das X-Ray repair cross-complementing protein 1 (XRCC1) als wichtiges Plattformprotein nötig. Mittels Western Blot Analysen konnte der erfolgreiche siRNAvermittelte Knockdown dieser drei Reparaturfaktoren zum Zeitpunkt 48 h nach Transfektion nachgewiesen werden (Abbildung 4.19, S. 89). Zu diesem Zeitpunkt wurden die Zellen auch für den Proliferationsassay ausgesät.

ABBILDUNG 4.19: NACHWEIS DES KNOCKDOWN VON DNA-REPARATURFAKTOREN.

Western Blot Analyse von Gesamtproteinlysaten (15 μ g) der HNSCC-Zelllinien UD-SCC-2, UD-SCC-3, UD-SCC-5, 93VU147T, UPCI-SCC-111 und UPCI-SCC-154. Die Gesamtproteinlysate wurden 48 h nach Transfektion zum siRNA-vermitteltem Knockdown der DNA-Reparaturfaktoren RAD51, LIG4 und XRCC1 gewonnen und auf das jeweils entsprechende Protein getestet.

Bei allen verwendeten Zelllinien wurde die Proliferation durch Knockdown von RAD51 hoch signifikant beeinträchtigt. Dabei war der Effekt unterschiedlich stark ausgeprägt, so dass beispielsweise bei UD-SCC-5 die Proliferationsrate noch 90 % der Kontrolle entsprach, wohingegen bei UD-SCC-2 nur knapp 25 % erreicht wurden. Der Knockdown von LIG4 oder

XRCC1 zeigte nur bei UD-SCC-2 und UD-SCC-3 signifikante Auswirkungen auf die Proliferation (Abbildung 4.20, S. 90).

ABBILDUNG 4.20: AUSWIRKUNG DES KNOCKDOWN VON DNA-REPARATURFAKTOREN AUF DIE PROLIFERATION VON HNSCC-ZELLLINIEN.

Proliferationsanalyse von 6 HNSCC-Zelllinien mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige unbehandelte Kontrolle. Die Zellen wurden 48 h nach Transfektion der siRNAs gegen RAD51, LIG4 und XRCC1 für den Proliferationsassay ausgesät. Dargestellt sind die Mittelwerte mit Standardabweichung sowie Signifikanzen zwischen unbehandelter Kontrolle und den jeweiligen Knockdowns ($p \le 0.05 = *, p \le 0.001 = **, p \le 0.0001 = ***$).

Um zu prüfen, ob die Zelllinien abhängig vom HPV-Status auf einen Knockdown der DNA-Reparaturfaktoren reagieren, wurden die Ergebnisse des Proliferationsassays entsprechend dem HPV-Status gruppiert (Abbildung 4.21, S. 91). Bei Knockdown von RAD51 hatte die HPV-negative Gruppe im Vergleich zur untransfizierten Kontrollgruppe eine gemittelte Proliferationsrate von 80 % während die HPV-positiven Zelllinien im Mittel nur noch 43,8 % erreichten. Dieser Unterschied zwischen den HPV-Gruppen war statistisch hoch signifikant ($p \le 0,0001$). Wie bei Betrachtung der einzelnen Zelllinien bereits ersichtlich, war der antiproliferative Effekt bei Knockdown von LIG4 oder XRCC1 weit weniger ausgeprägt. So betrug die normalisierte Proliferationsrate der HPV-negativen bzw. HPV-positiven Gruppe bei Knockdown von LIG4 93,2 % bzw. 87,6 % und bei Knockdown von XRCC1 97,6 % bzw. 91,5 %. Der jeweilige Unterschied zwischen den HPV-Gruppen war hier nicht statistisch signifikant (p = 0,29 bzw. p = 0.09).

ABBILDUNG 4.21: EINFLUSS DES HPV-STATUS AUF DIE PROLIFERATION VON HNSCC-ZELLLINIEN NACH KNOCKDOWN VON DNA-REPARATURFAKTOREN.

Gruppierung der Ergebnisse aus Abbildung 4.20 nach HPV-Status. Dargestellt sind die Einzeldaten in schwebenden Balken (min-max) mit Linie am Mittelwert, sowie Signifikanzen zwischen HPV-Gruppen ($p > 0.05 = ns, p \le 0.005 = *, p \le 0.001 = ***$).

Die Wirkung des Knockdowns der DNA-Reparaturfaktoren auf die Proliferation wurde zusätzlich mit Bestrahlung kombiniert. So konnte getestet werden, inwieweit die bekannte antiproliferative Wirkung von Röntgenstrahlung bzw. zielgerichteter Alphateilchen-Behandlung durch vorherigen Knockdown der DNA-Reparaturfaktoren moduliert wird. Dabei zeigte sich, dass der Knockdown jedes getesteten DNA-Reparaturfaktors die bereits reduzierte Proliferation nach Bestrahlung (2 Gy) oder Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (9,25 kBq/mL) weiter signifikant reduzierte. Davon ausgenommen war nur die HPV-positive Gruppe bei Knockdown von XRCC1 und gleichzeitiger Behandlung mit dem Alphateilchen-Emitter. Am stärksten war der zusätzliche antiproliferative Effekt bei Knockdown von RAD51 (Abbildung 4.22). So konnten bei Bestrahlung mit 2 Gy bei der HPV-negativen bzw. HPV-positiven Gruppe durchschnittlich nur 58,5 % bzw. 51,4 % der Proliferation der Kontrollgruppe ohne Knockdown erreicht werden. Bei Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (9,25 kBq/mL) waren es 59,7 % bzw. 45,0 %. Unterschiede zwischen den HPV-Gruppen bei den jeweiligen Behandlungen waren nicht statistisch signifikant. Weitere Einzelwerte können der Tabelle 4.6 auf Seite 93 entnommen werden.

ABBILDUNG 4.22: ANTIPROLIFERATIVER EFFEKT VON BESTRAHLUNG WIRD DURCH DNA-REPARATUR-FAKTOR-KNOCKDOWN VERSTÄRKT.

Proliferationsanalyse von 6 HNSCC-Zelllinien (93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5, UPCI-SCC-111, UPCI-SCC-154) mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige bestrahlte Kontrollgruppe ohne Knockdown und gruppiert nach HPV-Status. Die Zellen wurden 48 h nach Transfektion der siRNAs gegen RAD51, LIG4 und XRCC1 für den Proliferationsassay ausgesät. Die Auswertung erfolgte zehn Tage nach einmaliger Bestrahlung mit Röntgenstrahlung (2 Gy) oder Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab (9,25 kBq/mL). Dargestellt sind Mittelwerte mit Standardabweichung als Fehlerbalken und das Signifikanzniveau gegenüber der jeweiligen bestrahlten Kontrollgruppe ohne Knockdown ($p > 0,05 = ns, p \le 0,001 = **, p \le 0,0001 = ***$).

TABELLE 4.6: : STATISTISCHER VERGLEICH (UNGEPAARTER T-TEST) DER PROLIFERATION NACH KNOCKDOWN VON DNA-REPARATURFAKTOREN (MITTELWERTE, NORMALISIERT GEGEN JEWEILIGE BESTRAHLTE VERGLEICHSGRUPPE OHNE KNOCKDOWN) ABHÄNGIG VOM HPV-STATUS NACH ZUSÄTZLICHER BEHANDLUNG MIT HOCHENERGETISCHER RÖNTGENSTRAHLUNG (2 GY) ODER DEM ALPHATEILCHEN-EMITTER ²¹³BI-CHX-A"-DTPA-CETUXIMAB (9,25 kBQ/ML).

	HPV	Proliferation	Standard- abweichung	p-Wert	Signifikanzniveau	
2 Gy						
+ siRAD51	-	58,5 %	30,0	0.470		
	+	51,4 %	27,4	0,470	filen signifikant	
+ siLIG4	-	76,1 %	22,6			
	+	70,3 %	17,2	0,395	nicht signifikant	
+ siXRCC1	-	79,6 %	21,1			
	+	86,2 %	23,3	0,380	nicht signifikant	

9,25 kBq/mL

+ siRAD51	-	59,7 %	36,5	0 159	nicht signifikant	
	+	45,0 %	39,0	0,137		
+ siLIG4	-	74,3 %	25,4	0 059	nicht signifikant	
	+	56,1 %	30,5	0,007		
+ siXRCC1	-	82,0 %	26,1	0,183	nicht signifikant	
	+	104,0 %	63,4			

5 DISKUSSION

5.1 HPV-Assoziation korreliert mit besserem Ansprechen auf *in vitro* Chemo- und Strahlentherapie

Ende des 20. Jahrhunderts wurde erkannt, dass es neben den historisch klassischen HNSCC mit starkem Tabak- und/oder Alkoholkonsum als Hauptrisiko auch eine mit dem humanen Papillomavirus assoziierte Subgruppe der Malignitäten im Kopf-Hals-Bereich gibt (Gillison et al., 2000). Mit steigender Inzidenz dieser viral assoziierten Tumore, die vor allem im Oropharynx vorzufinden sind, wurde in einer Vielzahl retrospektiver Studien sichtbar, dass sich bei dieser Patientengruppe anhand statistischer Kenngrößen wie 3-/5-Jahresüberleben oder Rezidiv Rate eine deutlich bessere Prognose ableiten lies (Ang and Sturgis, 2012, Albers et al., 2017).

Anhand drei HPV-positiver und drei HPV-negativer HNSCC-Zelllinien wurde in dieser Arbeit das Ansprechen auf in vitro Chemo- bzw. Strahlentherapie analysiert. Dabei konnte gezeigt werden, dass HPV-assoziierte HNSCC-Zelllinien auf Cisplatin, Cetuximab und den MEK1/2-Inhibitor U0126 mit einer signifikant stärkeren Proliferationsinhibition reagierten als die HPV-negative Vergleichsgruppe. Der AKT-Kinase-Inhibitor MK2206 zeigte in beiden Gruppen eine ähnliche Wirkung (Abbildung 4.2, S. 64). Beim Koloniebildungsassay hingegen war für alle eingesetzten Wirkstoffe ein besseres Ansprechen der HPV-positiven Gruppe zu beobachten (Abbildung 4.3, S. 66). Cisplatin ist ein DNA-interkalierendes Therapeutikum und wird bei vielen Krebserkrankungen erfolgreich eingesetzt (Siddik, 2003). Patienten mit HPVpositivem Oropharynxkarzinom profitieren besonders stark von einer Radiochemotherapie mit Cisplatin (Ang et al., 2010). Auch in dieser Arbeit konnte bei Betrachtung von sechs verschiedenen Zelllinien in vitro gezeigt werden, dass die HPV-positive Gruppe eine signifikant stärkere Inhibition der Proliferation und Koloniebildung nach einem Beobachtungszeitraum von zehn Tagen aufwies. Das gleiche galt für Cetuximab, einem therapeutischen, chimären monoklonalen Antikörper gegen den EGFR, welcher für die Therapie von HNSCC zugelassen ist. Bonner et al. (2006) konnte zeigen, dass eine Strahlentherapie mit Cetuximab einer alleinigen Strahlentherapie im lokal fortgeschrittenen HNSCC überlegen ist. Die Patienten, die am meisten von dieser Therapie profitierten waren jünger, insgesamt gesünder und hatten ein Oropharynxkarzinom mit kleinem Primarius, jedoch ausgeprägter Lymphknotenbeteiligung. Der HPV-Status wurde in dieser Studie nicht erfasst, doch die genannten Charakteristika deuten auf eine erhöhte HPV-Assoziation innerhalb dieser Gruppe hin. Es gibt jedoch auch Studien, die zu dem Ergebnis kommen, dass HPV-negative HNSCC stärker von anti-EGFR-Therapie profitieren (Mirghani and Blanchard, 2018). Im Zuge der potentiellen Therapiedeeskalation bei HPV-assoziierten HNSCC wurden dennoch zwei große randomisierte Phase III-Studien designt, bei denen in der Radiochemotherapie Cisplatin durch Cetuximab ersetzt wurde (RTOG 1016, De-ESCALaTE HPV). Ziel der Studien ist es, die durch Cisplatin hervorgerufene Toxizität zu verringern. Erste Ergebnisse bescheinigten Cetuximab in diesen Studien jedoch ein schlechteres Abschneiden bezüglich Überleben und Rezidiv Raten bei vergleichbarer Toxizität (Gillison et al., 2019, Mehanna et al., 2019). Der Einsatz von Cetuximab als deeskalierende Therapiemaßnahme ist also bereits frühzeitig in diesen Studien in Frage zu stellen. Neben diesen zugelassenen Therapeutika wurden für die experimentelle in vitro Chemotherapie auch downstream Signalwege des EGFR angegriffen. ERK 1/2 bzw. AKT wurden durch U0126 bzw. MK2206 inhibiert, da diese Signalwege eine wichtige Rolle bei der Regulation von Proliferation und Apoptose spielen (Steelman et al., 2011). Im HNSCC sind Schlüsselenzyme dieser Signalwege häufig mutiert oder dysreguliert und wirken tumorfördernd (Bose et al., 2013). Die Blockade von ERK 1/2 war vor allem bei der HPV positiven Gruppe sehr effektiv bezüglich Proliferationshemmung und eingeschränkter Koloniebildung. Mit weiteren Untersuchungen könnte geklärt werden, ob ERK 1/2- oder auch AKT-Blockade Einfluss auf die Radiosensitivität von HNSCC-Zelllinien hat (Munshi and Ramesh, 2013).

Neben der Chemosensitivität konnte gezeigt werden, dass HPV-assoziierte HNSCC-Zelllinien sowohl bei hochenergetischer Röntgenstrahlung, als auch bei Verwendung eines experimentellen Alphateilchen-Emitter-Immunkonjugat gegen den EGFR (²¹³Bi-CHX-A"-DTPA-Cetuximab) mit einer signifikant stärkeren Inhibition der Proliferation reagierten, als dies für HPV-negative Zelllinien der Fall war (Abbildung 4.7, S. 74; Abbildung 4.8, S. 76). Vor allem das Ansprechen auf geringe Strahlendosen/Aktivitätskonzentrationen zeigt die erhöhte Radiosensitivität sehr deutlich. Auch beim klonogenen Überleben war der Unterschied zwischen den HPV-Gruppen deutlich und stets signifikant. Die fraktionierte Bestrahlung mit an fünf konsekutiven Tagen verabreichten Einzeldosen von je 2 Gy hatte eine vergleichbare

antiproliferative Wirkung wie die einmalig verabreichte Dosis von 10 Gy (Abbildung 4.9, S. 78). Diese Behandlungsmodalität war somit sehr effektiv, was auch im Koloniebildungsassay deutlich zu sehen war (Abbildung 4.10, S. 79). Die HPV-positive Gruppe zeigte auch hier wieder ein signifikant besseres Ansprechen, wobei auch die HPV-negativen Zelllinien bei der fraktionierten Bestrahlung kaum noch Proliferation oder Koloniebildung zeigten. Die Ergebnisse bezüglich der erhöhten Radiosensitivität HPV-positiver HNSCC Zelllinien deckt sich mit der Mehrheit der in der Literatur zu findenden in vitro Studien (Arenz et al., 2014, Rieckmann et al., 2013, Kimple et al., 2013, Dok et al., 2014). Allerdings existieren auch Arbeiten, bei denen kein Unterschied (Nagel et al., 2013) oder gar eine geringere Radiosensitivität von HPV-positiven Zelllinien gefunden wurde (Spanos et al., 2009). Es sollte beachtet werden, dass bei den Studien unterschiedliche Zelllinien und auch eine unterschiedliche Anzahl an Zelllinien miteinander verglichen wurde. So können sich je nach Auswahl des Zelllinienpanels die Ergebnisse teils ganz erheblich unterscheiden, da nicht jede HPV-positive oder HPV-negative Zelllinie identisches Ansprechen zeigt. In Abbildung 4.8 (S. 76) sieht man beispielsweise deutlich, dass die HPV-negative Zelllinie UD-SCC-3 ab einer Strahlendosis von 4 Gy ein ähnliches Ansprechen zeigt wie die hier am wenigsten radiosensitive HPV-positive Zelllinie UD-SCC-2. Würde man nur diese beiden Zelllinien miteinander vergleichen, könnte kein signifikant unterschiedliches Ansprechen gezeigt werden (AUCuD₂ = 434, AUCuD₃ = 472, p = 0,17 (ungepaarter t-Test)). An diesem Beispiel wird deutlich, dass es wichtig ist größere Gruppen miteinander zu vergleichen. Zudem muss immer bedacht werden, dass es im Einzelfall Zellinien gibt, welche in ihrem individuellen Verhalten nicht dem der gesamten Gruppe entsprechen. In dieser Arbeit war daher die jeweilige Gruppenstärke n = 3.

Generell ist das 2D-Zellkulturmodell nur sehr eingeschränkt mit den *in vivo* erhobenen Studiendaten vergleichbar. So verglich Spanos et al. (2009) das Ansprechen von HPVpositiven und HPV-negativen Zellen auf Radio- und Cisplatintherapie *in vitro* mit dem Ansprechen im Mausmodell. Dabei kamen komplett konträre Ergebnisse heraus und es konnte geschlussfolgert werden, dass ein funktionierendes Immunsystem für ein besseres Ansprechen der HPV-positiven Tumore in der Maus nötig ist. Neben dem Immunsystem gibt es noch eine Vielzahl weiterer Faktoren, welche dem simplen 2D-Zellkulturmodell fehlen. Gerade in soliden Tumoren beeinflussen auch Faktoren wie Hypoxie oder extrazelluläre Matrix das Therapieansprechen (Eke and Cordes, 2011). Ziel dieser Arbeit war jedoch die grundsätzliche Wirksamkeit der angewandten Behandlungen auf zellulärer Ebene an einer möglichst großen Anzahl an Zelllinien unabhängig von weiteren Faktoren zu testen. Aus diesem Grund wurde hier das 2D-Zellkulturmodell gewählt und die Ergebnisse auf Abhängigkeit vom HPV-Status der Zelllinien überprüft. Auch ein 3D-Zellkulturmodell oder gar ein Tiermodell hätten in dieser Hinsicht keine relevante Mehrinformation versprochen. Des Weiteren muss beachtet werden, dass mit den verwendeten Methoden keine dynamische Echtzeitmessung der Proliferation bzw. Koloniebildung vorgenommen wurde, sondern an einem definierten Zeitpunkt eine Momentaufnahme der Situation gemacht wurde. Dieser Zeitpunkt wurde zehn Tage nach Behandlung gewählt, damit potentielle Unterschiede zwischen behandelten und unbehandelten Zellen deutlicher und aussagekräftiger in Erscheinung treten. Eine starke Inhibition der Proliferation darf zudem nicht als Induktion von Zelltod interpretiert werden. Dieser kann zwar stattfinden, wird mit dieser Methode jedoch nicht gemessen. Eine separate quantitative Zelltodmessung wie ein Annexin V Assay oder Nachweis von aktiven Effektorcaspasen könnte hier weitere wichtige Daten liefern. So haben beispielsweise Kimple et al. (2013) und Arenz et al. (2014) bei HPV-positiven HNSCC-Zelllinien nach in vitro Bestrahlung verstärkte Apoptose detektiert, während Rieckmann et al. (2013) dies nicht zeigen konnte. Um das Ansprechen auf den Alphapartikel-Emitter noch differenzierter zu analysieren, könnte der EGFR-Status jeder Zelllinie näher betrachtet werden. Würde man beispielsweise mittels Immunfluoreszenzfärbung die Menge an membranständigen EGFR vor Verabreichung des Radioimmunkonjugats mit internalisiertem EGFR nach Zugabe von ²¹³Bi-CHX-A"-DTPA-Cetuximab vergleichen, könnte man diese Daten mit der Stärke des Ansprechens auf Korrelation überprüfen.

5.2 Zielgerichtete Alphateilchen-Therapie mit ²¹³Bi-CHX-A"-DTPA-Cetuximab übertrifft die antiproliferative Wirkung von hochenergetischer Röntgenstrahlung

Strahlentherapie mit externer Photonenstrahlung ist eine wichtige Säule bei der Behandlung von Plattenepithelkarzinomen des Kopf-Hals-Bereiches, sei es als adjuvante Therapie nach chirurgischer Resektion, Monotherapie oder in Kombination mit Chemotherapie. Resistenz gegenüber dieser Therapieform bietet daher oft keine Alternativen und geht meist mit einer schlechten Prognose einher (Perri et al., 2015). Neben der Resistenz ist auch die immense Toxizität der Strahlentherapie nicht zu unterschätzen, welche oft auch erst Jahre nach Behandlung auftritt und die Lebensqualität nachhaltig beeinträchtigt. Typische Komplikationen sind Fibrosen, Atrophie oder Nekrosen der Schleimhäute der Mundhöhle, Geschmacksverlust, Xerostomie und Zahnverlust (Bourhis et al., 2005). Unter anderem aus diesen Gründen wird an zielgerichteter Alphateilchen-Emitter-Therapie geforscht. Durch spezifische Bindung einer hochenergetischen Strahlenquelle mit kurzer Reichweite an Tumorzellen sollen im Idealfall Strahlenresistenz und Toxizität minimiert werden.

In dieser Arbeit wurde hierfür das radioaktive Isotop ²¹³Bi mittels eines bi-funktionalen Chelators, CHX-A"-DTPA, an Cetuximab gekoppelt. Dieses Radioimmunkonjugat mit einer Halbwertszeit von nur 45,6 Minuten soll an den im HNSCC stark überexprimierten EGF-Rezeptor binden und somit als hochenergetische Strahlenquelle direkt an den Tumorzellen wirken. Mit Hilfe eines Bindungsassays konnte nachgewiesen werden, dass dieses Radioimmunkonjugat mit einem Anteil von durchschnittlich 63 % an die verwendeten HNSCC-Zelllinien bindet (Abbildung 4.4, S. 68). Bei anderen in vitro Studien mit ²¹³Bi und gegen den EGFR gerichteten Antikörpern wurden Bindungsraten von 39 % (Pfost et al., 2009) bis 78,3 % (Wulbrand et al., 2013) erreicht. Bei der Zelllinie UD-SCC-5 wurden in einer vorherigen Studie Werte von 53,7 % erreicht (Pickhard et al., 2014), was mit der Bindungsrate in dieser Arbeit sehr gut übereinstimmt. Bei einem Bindungsassay von ²¹³Bi-Cetuximab an die Blasenkarzinomzelllinie EJ28-luc hielten Autenrieth et al. (2018) eine Bindung von ≥ 10 % für ausreichend, während ≤ 3% als unzureichend oder unspezifisch galten. In dieser Arbeit betrug die mittlere unspezifische Bindung von unkonjugiertem ²¹³Bi-CHX-A"-DTPA an die verwendeten HNSCC-Zelllinien knapp 2 % (Median 0,8 %). Es konnte also gezeigt werden, dass das Radioimmunkonjugat hochspezifisch und in hinreichender Menge an die Tumorzellen bindet, was für die Wirkung von zielgerichteter Alphateilchen-Emitter-Therapie grundlegend ist. Dies spiegelte sich bei den Ergebnissen des Kristallviolett-basierten Proliferationsassay wieder. Bei den Zellinien 93VU147T, UD-SCC-2, UD-SCC-3, UD-SCC-5 und UPCI-SCC-154 hatte das Radioimmunkonjugat²¹³Bi-CHX-A"-DTPA-Cetuximab stets eine statistisch signifikant stärkere Auswirkung auf die Proliferation als ungekoppeltes ²¹³Bi-CHX-A"-DTPA. Ausnahme war die Zelllinie UPCI-SCC-111, bei welcher ab einer

Aktivitätskonzentration von 37 kBq/mL das ungekoppelte Radionuklid einen viel stärkeren Effekt hatte als bei dem zielgerichteten Ansatz mit Cetuximab. Die Proliferationsinhibition mit ²¹³Bi-CHX-A"-DTPA-Cetuximab war in einem mit den anderen Zelllinien vergleichbaren Bereich (Abbildung 4.5, S. 69; Tabelle 4.3, S. 70). Die starke Proliferationsinhibition durch ²¹³Bi-CHX-A"-DTPA ohne den gekoppelten anti-EGFR-Antikörper Cetuximab kann nicht durch eine unspezifische Bindung an die Zelllinie UPCI-SCC-111 erklärt werden, da diese Möglichkeit durch den Bindungsassay ausgeschlossen wurde (Abbildung 4.4, S. 68). Auch ohne Chelator CHX-A"-DTPA hatte reines ²¹³Bi ähnliche Auswirkungen auf die Proliferation (Abbildung 8.1, S. 131). UPCI-SCC-111 wird also als einzig hier getestete Zelllinie von in Lösung befindlichem ²¹³Bi in der Proliferation beeinträchtigt, ohne dass hierfür eine Bindung des Radionuklids an die Zellen nötig ist. In den Arbeiten anderer Arbeitsgruppen wurde ein solches Phänomen bislang nicht beschrieben. Auf Grund dieser unerklärlichen Beobachtung wurde die Zelllinie UPCI-SCC-111 nicht in die weitere Gruppenanalyse bzgl. Ansprechen in Abhängigkeit vom HPV-Status miteinbezogen. Eine weitere wichtige Kontrolle war die alleinige Gabe von Cetuximab in den Mengen, welche auch durch Applikation des Radioimmunkonjugats eingesetzt wurden. Hier zeigte sich, dass zwei Zelllinien (93VU147T und UPCI-SCC-154) zwar durch eine solche Dosis in ihrer Proliferation beeinflusst waren, aber bei weitem nicht in dem Ausmaß wie es bei Einsatz von 213Bi-CHX-A"-DTPA-Cetuximab der Fall war (vergleiche Abbildung 4.5, S. 69 und Abbildung 4.6, S. 73). Die restlichen Zelllinien zeigten weitaus weniger Ansprechen auf diese im relevanten Bereich von 0,69 - 2,74 nM liegenden Konzentrationen von Cetuximab. Die antiproliferative Wirkung des Radioimmunkonjugats lässt sich also zu größten Teilen auf das Alphateilchen emittierende Radionuklid ²¹³Bi und nicht Cetuximab zurückführen. Wie in Abschnitt 5.1 beschrieben, zeigten HPV-positive Zelllinien - wie bei hochenergetischer Röntgenstrahlung - auch unter zielgerichteter Alphateilchen-Emitter-Therapie eine signifikant stärkere Proliferationsinhibition. Vergleicht man das Ansprechen gegenüber hochenergetischer Röntgenstrahlung (Abbildung 4.8, S. 76) mit dem auf ²¹³Bi-CHX-A"-DTPA-Cetuximab (Abbildung 4.7, S. 74), ist erkennbar, dass auch bei den HPV-negativen Zelllinien bereits eine sehr geringe Aktivitätskonzentration des Radioimmunkonjugats zu einer Reduktion in der Proliferation führt. Bei niedrigdosierter hochenergetischer Röntgenstrahlung kam es hierbei teils zu einer unveränderten minimal verstärkten oder Proliferation. Die bereits gegenüber Röntgenstrahlung sensitiveren HPV-positiven Zelllinien zeigten aber auch ein drastischeres

Ansprechen auf die Alphateilchen. Beide Gruppen sprechen also stärker auf niedrige Aktivitätskonzentrationen von ²¹³Bi-CHX-A"-DTPA-Cetuximab an als sie dies bei niedrig dosierter Röntgenstrahlung der Fall ist. Nun werden hier Aktivitätskonzentrationen in kBq/mL mit Dosisangaben in Gy verglichen. Bequerel (Bq) ist die Maßeinheit, welche angibt, wie viele Atomkerne einer radioaktiven Substanz im Mittel pro Sekunde zerfallen. Gray (Gy) hingegen gibt die pro Masse absorbierte Energie durch ionisierende Strahlung an. Bei externer Röntgenbestrahlung ist dieser Wert eindeutig zu bestimmen, da die Energieverteilung von Röntgenstrahlung auf eine zweidimensionale Zellschicht bekannt ist. Schwieriger verhält es sich beim Einsatz von zielgerichteter Alphateilchen-Emitter-Therapie. Hier ist die Dosis abhängig von verschiedenen Faktoren wie Expressionsstärke und Verteilung der Zielstruktur (EGFR) auf der Zelloberfläche, Anzahl der an eine Zelle gebundenen Radioimmunkonjugate und Internalisierung der Strahlenquelle, was eine noch effektivere Schädigung der DNA bewirken würde. Ein weiterer Faktor ist die Dichte des Zellverbundes, wodurch Zellen auch von an Nachbarzellen gebundenen Radioimmunkonjugaten bestrahlt werden können. Da diese Gegebenheiten bei jeder Wiederholung des Experiments unterschiedlich sein können, ist es nicht praktikabel eine exakte Dosisbestimmung durchzuführen, weshalb die Angabe der Aktivitätskonzentration in diesem Fall die gängige Praxis darstellt (Lee et al., 2018). Die in dieser Arbeit genutzten Aktivitätskonzentrationen wurden anhand von Literaturdaten (Wulbrand et al., 2013, Pickhard et al., 2014) und bestehenden Vorarbeiten festgelegt. In diesem untersuchten Bereich gab es bei Verwendung der zielgerichteten Alphateilchen-Emitter-Therapie keinen Toleranzbereich, in dem Sinne, dass ab Verwendung von kleinsten Aktivitätskonzentrationen es zur proliferationsinhibierenden Wirkung kam. Eine Resistenz gegenüber Alphateilchen scheint hier also weniger wahrscheinlich, als dies bei hochenergetischer Röntgenstrahlung der Fall ist. Diese Hypothese sollte jedoch im Tierversuch überprüft werden, gegebenenfalls mit wiederholter Gabe von Alphateilchen-Emitter.

5.3 Molekulare Auswirkungen von *in vitro* Strahlentherapie bei HNSCC-Zelllinien

Wie in dieser Arbeit bereits diskutiert wurde hat *in vitro* Strahlentherapie eine antiproliferative Wirkung auf HNSCC-Zelllinien. Dabei sind Unterschiede in Abhängigkeit vom HPV-Status der Tumorzelllinien sowie der Bestrahlungsart zu beobachten. Teil dieser Arbeit war es auch die molekularen Gründe für diese Unterschiede zu charakterisieren. Dabei wurden der Zellzyklus, diverse Proteine relevanter Signalwege, sowie allgemeine Genexpressionsveränderungen betrachtet. Zudem wurden der DNA-Doppelstrangbruchmarker γH2AX sowie der Einfluss des Knockdowns verschiedener DNA-Reparaturfaktoren auf die Proliferation analysiert.

Ionisierende Strahlung beeinflusst die Integrität der DNA durch Schädigung des Zucker-Phosphat-Rückgrats, der Nukleinbasen oder durch Induktion von Einzel- oder Doppelstrangbrüchen. Letztere haben die größte biologische Auswirkung, da ihre Reparatur komplexer ist und somit die Wahrscheinlichkeit von Mutationen und schwerwiegenden chromosomalen Veränderungen ansteigt (Lomax et al., 2013). Je höher die Ionisierungsdichte (LET) der Strahlung ist, desto komplexer sind die entstehenden DNA-Schäden. Modellberechnungen ergaben, dass bei *high*-LET Strahlung wie Alphateilchen im Vergleich zu *low*-LET Strahlung wie hochenergetischer Röntgenstrahlung rund doppelt so viele komplexe Schädigungen entstehen (Goodhead, 1994, Nikjoo et al., 1999). In dieser Arbeit wurde das Vorhandensein von DNA-Doppelstrangbrüche mit Hilfe des Markers γH2AX analysiert. Die Histonvariante H2A.X wird am Ort des Doppelstrangbruches an Serin 139 phosphoryliert (= γ H2AX) und bleibt in diesem Zustand, bis der Schaden behoben ist. Die Anzahl solcher yH2AX-Foci korreliert dabei mit der Anzahl an Doppelstrangbrüchen (Rothkamm and Lobrich, 2003). Immunfluoreszenzfärbungen ergaben, dass die verwendeten Zelllinien im unbestrahlten Zustand bereits relativ viele Foci hatten, was die quantitative Auswertung mittels Fluoreszenzmikroskopie erschwerte (siehe Abbildung 8.2, S. 135). Aus diesem Grund wurde das yH2AX-Signal per Durchflusszytometrie quantifiziert. Es konnte gezeigt werden, dass bei Alphateilchen-Behandlung die Zahl der Schädigungen im Verlauf von 24 h zunehmend war, während bei hochenergetischer Röntgenstrahlung das Signal eher abnahm (Abbildung 4.17, S. 88). Interessanterweise war die relative Signalerhöhung zum ersten
beobachteten Zeitpunkt 0,5 h nach Bestrahlung bei hochenergetischer Röntgenstrahlung stärker als bei high-LET Alphateilchen. Dies könnte damit zusammenhängen, dass bei Röntgenstrahlung ein einmaliger Bestrahlungsvorgang stattfindet, bei dem die Dosis vollständig an einem definierten Zeitpunkt zugeführt wird. Bei Applikation des löslichen Alphateilchen-Emitter-Konjugats hingegen wirkt die zugegebene Radioaktivität in Abhängigkeit der Halbwertszeit (T_{1/2} = 45,6 min) und Bindungskinetik des Antikörpers an die Tumorzellen über einen längeren Zeitraum. Der Schaden akkumulierte somit womöglich erst über die Zeit. Diese Beobachtung deckt sich mit den Ergebnissen einer Studie von Pickhard et al. (2014), bei der auch eine HNSCC-Zelllinie mit anti-EGFR-gerichteten Alphateilchen und hochenergetischer Röntgenstrahlung behandelt wurde. Eine Reduktion des erhöhten yH2AX-Signals im weiteren Verlauf ist ein Anzeichen für erfolgte Reparatur oder Eliminierung von Zellen mit nicht zu reparierendem Schaden. Jenner et al. (1993) zeigte bereits an einer V79-4 Hamsterzelllinie, dass Doppelstrangbrüche, welche durch Alphateilchen induziert wurden langsamer repariert werden als solche von low-LET Gammastrahlung. Die hierbei verwendete Alphateilchen-Quelle war allerdings kein im Zellkulturmedium gelöstes und spezifisch an die Zellen lokalisiertes Radionuklid, sondern ein fokussierter Strahl von Alphateilchen. Dies lässt den Schluss zu, dass die Komplexität der DNA-Schäden bei high-LET-Strahlung ausgeprägter und die Reparaturrate somit selbst bei einer zeitlich definierten Applikation von Alphateilchen geringer ist. Neben dem Vergleich der unterschiedlichen Bestrahlungsmodalitäten wurde in dieser Arbeit auch noch ein möglicher Zusammenhang zum HPV-Status der Zelllinien betrachtet. Es konnte gezeigt werden, dass bei HPV-positiven Zelllinien nach hochenergetischer Röntgenbestrahlung die Intensitätserhöhung des yH2AX-Signals signifikant stärker ausfiel, als dies in der HPV-negativen Gruppe der Fall war. Dies traf sowohl nach 0,5 h als auch nach 24 h zu. Es ist davon auszugehen, dass der initiale physische Schaden bei gleicher Dosisapplikation identisch ist. Ein Unterschied der γH2AX-Intensität 0,5 h nach Bestrahlung ließe sich also damit erklären, dass die HPV-negativen Zelllinien entweder innerhalb dieses kurzen Zeitraums bereits einen Großteil der Schäden repariert haben, oder aber dass die DNA-Schadensantwort hier geringer ausfällt. Sprich pro DNA-Doppelstrangbruch werden weniger H2AX-Moleküle phosphoryliert, was zu einer geringeren Gesamtintensität von yH2AX führen würde. Bei zielgerichteter Alphateilchen-Behandlung war eine ähnliche HPV-abhängige yH2AX-Detektion zu beobachten. Die Effekte waren hier jedoch nicht statistisch signifikant. Rieckmann et al. (2013) analysierte in einer Studie zum Thema der erhöhten Radiosensitivität von HPV-positiven Zelllinien auch yH2AX nach Bestrahlung und konnte dort 24 h nach Bestrahlung bei den HPV-positiven Zelllinien mehr Foci des DNA-Doppelstrangbruchmarkers nachweisen. Diese Beobachtung wurde als verringerte DNA-Reparaturkapazität beschrieben. Es sollte jedoch beachtet werden, dass die beobachteten Unterschiede nicht sehr groß waren, selbst wenn statistische Signifikanz vorlag. Innerhalb der Gruppen zeigten die Zelllinien auch heterogene Ergebnisse. Dies bestätigte sich auch bei Betrachtung von yH2AX mittels Western Blot Analysen 24 h nach Bestrahlung (Abbildung 4.13, S. 83). Hier waren die Unterschiede in der Signalintensität auch sehr gering und die Heterogenität unter den Zelllinien stark ausgeprägt. Wie bei den Proliferationsanalysen schon beschrieben, würde die Analyse von einer noch größeren Anzahl an Zelllinien Sinn machen, um die Aussagekraft der Ergebnisse zu erhöhen. Des Weiteren müssten die Ergebnisse auch in vivo überprüft werden, um Prognosen bezüglich der Wirksamkeit dieses Behandlungsansatzes am Patienten treffen zu können.

Um den Grund für die eingeschränkte Proliferation nach Bestrahlung und möglicherweise auch Auswirkung der DNA-Schadensantwort näher zu untersuchen, wurde eine Zellzyklusanalyse durchgeführt. Hierbei konnte gezeigt werden, dass vor allem die Alphateilchen-Emitter-Behandlung eine Akkumulation aller HNSCC-Zellen in der Zellzyklusphase G2 zur Folge hatte. Bei Verwendung von hochenergetischer Röntgenstrahlung der Dosis 2 Gy zeigte sich dies nur bei den HPV-positiven Zelllinien (Abbildung 4.12, S. 81). Diese Beobachtung deckt sich mit dem Ansprechen auf die jeweilige Bestrahlung. Dies legt die Vermutung nahe, dass die Inhibition der Proliferation durch einen Zellzyklusarrest in der Phase G2/M verursacht wird, was auch bereits von anderen Arbeitsgruppen beschrieben wurde (Yong et al., 2012, Vallon et al., 2012, Wendt et al., 2006, Arenz et al., 2014, Rieckmann et al., 2013). Man muss hierbei allerdings berücksichtigen, dass die Zellzyklusanalyse 24 h nach Behandlung der Zellen durchgeführt wurde und der beobachtete Zellzyklusarrest unter Umständen nicht persistent aufrechterhalten wird. Da die durchflusszytometrische Analyse lediglich auf der Quantifizierung des DNA-Gehalts einer jeden einzelnen Zelle basiert, besteht zudem die Möglichkeit, dass es sich bei den betrachteten Ereignissen um tetraploide Zellen handelt, welche nach übersprungener Mitose wieder in der G1- oder G0-Phase verweilen. Diese sind vom DNA-Gehalt nicht von diploiden G2-Phase-Zellen unterscheidbar. Die verstärkte Expression der G2/M-Phase-Marker Aurorakinase A und B nach Bestrahlung sprechen zumindest zum beobachteten Zeitpunkt jedoch für einen G2-Phase-Arrest. Auch die in 4 von 6 Fällen verminderte Expression des G1-Phase Cyclin D1 ist ein Indiz, das gegen eine übersprungene Mitose zu diesem Zeitpunkt spricht (Abbildung 4.13, S. 83). Zur weiteren Abklärung müsste die Zellzyklusanalyse in einem weiterreichenden Zeitfenster durchgeführt und mit einer umfassenden Analyse der verschiedenen Zellzyklusmarker wie Cyclin D1, Cyclin E und Cyclin B komplementiert werden. Die Analyse der Aktivierung von p53 an Serin 15 und dessen downstream-target p21 mittels Western Blot (Abbildung 4.13, S. 83) zeigte keine p53-abhängige Regulation nach Bestrahlung. Sowohl hochenergetische Röntgenstrahlung, als auch das Alphateilchen-Emitter-Konjugat führten zu einer Phosphorylierung von p53 an Serin 15. Diese posttranslationale Modifikation ist Teil der intrazellulären DNA-Schadensantwort und stabilisiert p53 (Tibbetts et al., 1999, Shieh et al., 1997). Allerdings konnte in diesem Fall weder eine Stabilisierung von p53 noch eine Aktivierung des downstream-targets p21 festgestellt werden. Man muss jedoch beachten, dass hier nur der Zeitpunkt 24 h nach Bestrahlung betrachtet wurde. Veränderungen der Signalwegekönnen jedoch sehr kurzfristig nach einem Stimulus ablaufen. Nicht immer bleibt der Effekt auf Proteinebene über einen längeren Zeitraum sichtbar. Eine Aktivität von p53 war in den HPV-negativen Zelllinien aber auch nicht zu erwarten, da diese p53-Mutationen tragen (siehe Tabelle 3.1, S. 31), welche die Funktion möglicherweise beeinträchtigen (Poeta et al., 2007). Im Fall von UD-SCC-3 führt dies dazu, dass p53 gar nicht erst exprimiert wird, was sich auch in der fehlenden p21-Expression wiederspiegelt. In den HPV-positiven Zelllinien trägt theoretisch das virale Onkoprotein E6 dazu bei, dass die Funktion von p53 eingeschränkt ist (Mesri et al., 2014). Allerdings ist nicht auszuschließen, dass nach einem starken Stimulus das an sich funktional vorliegende p53 nicht doch an der DNA-Schadensantwort beteiligt ist. Dies würde möglicherweise zum besseren Ansprechen der HPV-positiven Zelllinien bei Bestrahlung beitragen. Ein in diesem Zusammenhang weiterer wichtiger Punkt wäre eine Analyse des Zelltods. Arenz et al. (2014) und Kimple et al. (2013) konnten zeigen, dass HPVpositive HNSCC-Zelllinien nach Bestrahlung mit Röntgenstrahlung verstärkt Apoptose zeigen. Rieckmann et al. (2013) hingegen konnte dies nicht feststellen. Bezüglich der Behandlung von HPV-positiven HNSCC-Zelllinien mit einem Alphateilchen-Emitter existieren noch keine veröffentlichten Daten. In einer Arbeit von Vallon et al. (2012) wurde jedoch beschrieben, dass ein Konjugat aus ²¹³Bi und dem tumour-homing peptide F3 bei der Ovarialkarzinomzelllinie OVCAR-3 Apoptose und Nekrose induziert. Seidl et al. (2005) hingegen berichteten bei Behandlung einer Magenkarzinomzellinie (HSC45-M2) mit dem Radioimmunkonjugat ²¹³Bi-d9MAb, welches gegen E-Cadherin gerichtet ist, von einem Zelltod, der sich von Apoptose unterscheidet und nicht über Aktivierung der Caspase 3 abläuft. Obwohl sich die Nachweismethoden bzgl. Zelltod in diesen beiden Veröffentlichungen unterschieden haben, lassen die unterschiedlichen Ergebnisse darauf schließen, dass sich die vorliegenden Zelltodmechanismen je nach Entität und Zelllinie unterscheiden dürften. In dieser Arbeit konnte mittels Western Blot lediglich bei Verwendung des Alphateilchen-Emitters für die HPV-positiven Zelllinien eine verstärkte Häufigkeit des Spaltprodukts von PARP nachgewiesen werden, welches ein Apoptosemarker ist. Bei hochenergetischer Röntgenstrahlung war dies nicht der Fall (Abbildung 4.13, S. 83). Weitere gängige Apoptose-/Nekrose-Nachweismethoden, wie beispielsweise die durchflusszytometrische Bestimmung der Bindung von Annexin V an Phosphatidylserin an Zelloberflächen apoptotischer Zellen, waren auf Grund technischer und methodischer Limitationen beim Arbeiten mit radioaktiven Materialien nicht durchführbar, da für diese Nachweismethode die Zellen nicht fixiert und zu einem späteren Zeitpunkt analysiert werden können.

Da eine eingeschränkte Proliferation nach Bestrahlung festgestellt werden konnte, wurden auch proliferative Signalwege mittels Western Blot analysiert. Dabei war nach zielgerichteter Alphateilchen-Behandlung im Gegensatz zu Röntgenbestrahlung vor allem eine starke Phosphorylierung des EGF-Rezeptor an Tyrosin 1068 zu beobachten. Schmidt-Ullrich et al. (1996) beschrieb auch für Röntgenstrahlung eine Aktivierung des EGFR, jedoch nur für einen sehr kurzen Zeitraum (< 20 min) nach Bestrahlung. Bezüglich der Autophosphorylierung des EGFR nach Gabe von ²¹³Bi-CHX-A"-DTPA-Cetuximab ist zu beachten, dass auch Cetuximab alleine zu dieser Autophosphorylierung führen kann, ohne dass es dabei zur Aktivierung der *downstream* Signalwege kommt (Yoshida et al., 2008). Es ist aber nicht auszuschließen, dass hier eine Alphateilchen-induzierte Aktivierung vorliegt. Eines der wichtigsten *downstream targets* des EGFR, die Kinase AKT, war 24 h nach Bestrahlung jedoch nicht aktiviert, was über die Phosphorylierung an Serin 473 überprüft wurde. Es ist also nicht davon auszugehen, dass eine langfristige Stimulation des EGFR-Signalwegs vorlag. Neben EGFR und AKT wurden auch die Kinasen ERK 1/2 betrachtet, welche an der Regulation von Proliferation und Zelltod beteiligt sind (Mebratu and Tesfaigzi, 2009). Nach Bestrahlung konnte eine aktivierende

Phosphorylierung dieser Kinasen beobachtet werden, welche mit positivem HPV-Status assoziiert war. In einer Arbeit von Tang et al. (2002) wurde bereits beschrieben, dass ERK nach DNA-Schäden aktiviert werden kann und je nach Stärke des Schadens Zellzyklusarrest oder Apoptose vermittelt. Diese Aktivierung findet durch die Serin-Proteinkinase ATM statt, welche ein zentraler Regulator der DNA-Schadensantwort ist. In dieser Arbeit konnte eine Aktivität von ATM anhand der Phosphorylierung von Serin 1981 nach Bestrahlung jedoch nur bei UD-SCC-2 festgestellt werden. Bei 93VU147T konnte ATM pS1981 zwar detektiert werden, jedoch kam es hierbei nicht zu einer Verstärkung des Signals nach Bestrahlung. Möglicherweise war der Zeitpunkt 24 h nach Bestrahlung für die Analyse von ATM zu spät. Die Beobachtung der stärkeren Proliferationsinhibition der HPV-positiven Zelllinien deutet allerdings darauf hin, dass die Aktivierung von ERK 1/2 hier einen Einfluss auf das stärkere Ansprechen hat. In der Regel wird ERK 1/2 aber vor allem auch über den EGF-Rezeptors und die subsequente Signalkaskade Ras-Raf-MEK aktiviert. Eine EGFR-vermittelte Aktivierung ist hier jedoch aufgrund der fehlenden Aktivierung von AKT eher unwahrscheinlich. Eine weitere Möglichkeit der Aktivierung von ERK 1/2 ist die Familie der Zytokinrezeptoren (Winston and Hunter, 1996). Dies wurde in dieser Arbeit jedoch nicht näher überprüft.

Neben der Überprüfung dieser spezifischen Signalwege wurde auch eine umfassende Genexpressionsanalyse (Agilent Technologies SurePrint G3 Human Gene Expression 8x60K Microarray) als Screening Methode durchgeführt. Bei UD-SCC-2 (HPV positiv) und UD-SCC-5 (HPV negativ) wurde drei Stunden nach Bestrahlung mit hochenergetischer Röntgenstrahlung bzw. Behandlung mit Alphateilchen-Emitter die Änderung in der Genexpression im Vergleich zu den unbehandelten Zellen ermittelt. Eine Änderung wurde dabei durch eine verringerte oder verstärkte Expression von Genen definiert (Änderung in der Expressionsstärke log2 > 1,5). Es konnte festgestellt werden, dass bei beiden untersuchten Zelllinien das Radioimmunkonjugat ²¹³Bi-CHX-A"-DTPA-Cetuximab im Vergleich zu Röntgenstrahlung 3-4-mal so viele Gene in ihrer Expression beeinflusst. Aber auch zwischen den Zelllinien gab es quantitative Unterschiede. So wurden bei der HPV-positiven Zelllinie UD-SCC-2 je nach Behandlungsmodalität ca. 2,3 – 3,4-mal mehr Gene abweichend zur unbehandelten Kontrolle reguliert als bei UD-SCC-5 (Abbildung 4.14, S. 84). Ob dieser quantitative Unterschied abhängig vom HPV-Status ist oder ein zelllinienspezifisches Spektrum abbildet, kann auf Grund dieser kleinen Vergleichsgruppe nicht beurteilt werden.

In einer Studie von Seidl et al. (2010) wurde ebenfalls die Veränderung in der Genexpression bei einer Magenkarzinom-Zelllinie nach zielgerichteter Alphateilchen-Behandlung ermittelt und mit rund 2000 Genen sechs Stunden nach Behandlung beziffert. Der Schwellenwert für die Anderung in der Genexpression betrug hier allerdings log2 > 2. Im Vergleich hierzu betrug die Anzahl der unterschiedlich exprimierten Gene für UD-SCC-2 bzw. UD-SCC-5 in dieser Dissertation 3009 und 1282. Diese Bandbreite deutet auf eine für jede Zelllinie individuelle Anzahl von Genen hin, welche nach einer Behandlung verändert exprimiert wird. Der Anteil der Gene, welche nicht nur bei Alphateilchen-Behandlung, sondern auch bei Röntgenbestrahlung verändert exprimiert war betrug jedoch für beide untersuchten Zelllinien ca. 14 % (Abbildung 4.15, S. 85). Trotz diesem sehr ähnlichen Verhältnis war die Übereinstimmung zwischen den Zelllinien sehr gering. Auch dies ist ein Hinweis auf ein für jede Zelllinie sehr individuelles Ansprechen bzgl. der Genregulation. Um abzuklären, ob je nach Behandlung bestimmte molekularbiologischen Maßnahmen auf genregulatorischer Ebene angesprochen werden, könnten die entsprechenden Gene auf Basis biologischer Prozesse kategorisiert (z.B. mittels GO-Terms) und quantifiziert werden. Eine derartige Form der Auswertung wurde auch in der Studie von Seidl et al. (2010) mit Hilfe der Datenbank PANTHER vorgenommen und hatte zum Ergebnis, dass die ermittelte Änderung in der Genexpression einen starken Einfluss auf die Zellzyklusprogression haben könnte. Wie bereits beschrieben war der G2/M-Arrest unter Alphateilchen-Behandlung auch in dieser Arbeit deutlich zu erkennen und stärker als bei Röntgenbestrahlung (Abbildung 4.12, S. 81).

5.4 Der Einfluss des Knockdowns von DNA-Reparaturfaktoren auf die Proliferation und Radiosensitivität von HNSCC-Zelllinien

Wie im vorherigen Kapitel bereits beschrieben, erzeugt ionisierende Strahlung DNA-Schäden. Neben Basenmodifikationen und Quervernetzungen der DNA-Doppelstranghelix kommt es zu Einzelstrang- und Doppelstrangbrüchen. Diese Schäden werden von Sensorproteinen erkannt und ein für den jeweiligen Schadenstyp spezifischer DNA-Reparaturmechanismus aktiviert. Für Einzelstrangbrüche ist das die Basenexzisionsreparatur (BER), für Doppelstrangbrüche die nicht-homologe Endverknüpfung (NHEJ) und homologe Rekombination (HR) (Lomax et al., 2013). Um die Abhängigkeit der in dieser Arbeit verwendeten Zelllinien gegenüber den einzelnen Reparaturwegen ohne und mit Bestrahlung zu analysieren, wurden jeweilige Schlüsselfaktoren mittels siRNA-vermitteltem Knockdown transient unterdrückt. Ein transienter Knockdown bietet die Möglichkeit kurzfristige Effekte zu erzielen und zu analysieren. Bei einem langanhaltendem Knockdown oder Knockout hingegen könnten Schäden akkumulieren und so ungewünschte Nebeneffekte hervorrufen. Vor allem der Knockdown des für HR zentralen Proteins RAD51 (Helleday et al., 2007) beeinträchtigte die Proliferation der Zelllinien bereits ohne zusätzliche Bestrahlung enorm (Abbildung 4.20, S. 90). Ein Grund hierfür könnte sein, dass die homologe Rekombination auch Doppelstrangbrüche repariert, welche in der S-Phase bei der Replikation entstehen. Diese replikationsassoziierten Doppelstrangbrüche stellen die quantitativ größte Quelle an intrinsischen Doppelstrangbrüchen dar (Lieber, 2010). Werden diese Schäden nicht effizient repariert kann dies zu Zellzyklusarrest oder Apoptose führen. Auffällig war, dass die HPVpositiven Zelllinien stärker auf den Knockdown von RAD51 reagierten (Abbildung 4.21, S. 91). Möglicherweise induziert das in HPV-positiven Zelllinien verminderte, aber funktional vorliegende p53 nach einem solchen Doppelstrangbruch effektiver einen Zellzyklusarrest oder Apoptose. Der Knockdown von LIG4 oder XRCC1 hatte ohne zusätzliche Bestrahlung kaum Auswirkung auf die Proliferation der Zellen. NHEJ, welches Ligase IV benötigt (Frit et al., 2014, Srivastava et al., 2012), wird vor allem für die Reparatur von DNA-Doppelstrangbrüchen genutzt, welche nicht auf Replikationsdefekte zurückzuführen sind. Diese sind ohne exogene Faktoren wie Bestrahlung seltener und haben daher unter Umständen keinen großen Einfluss auf die Proliferation der verwendeten Zelllinien. Des Weiteren existiert auch eine alternative Form des NHEJ, welches für das Zusammenfügen der gebrochenen DNA-Enden Ligase IV nicht benötigt (Frit et al., 2014). Dies könnte LIG4 abhängiges NHEJ substituieren. Der Knockdown von XRCC1 zeigte vergleichbare Ergebnisse. Die Basenexzisionsreparatur, für die XRCC1 ein sehr wichtiges Plattformprotein darstellt, repariert DNA-Einzelstrangbrüche (Hoeijmakers, 2001). Werden diese nicht repariert, könnten sie spätestens bei der DNA-Replikation zu DNA-Doppelstrangbrüchen führen (Caldecott, 2003). Diese werden allerdings sehr zuverlässig mittels homologer Rekombination repariert. Ohne zusätzliche extrinsische Schadensquelle wie beispielsweise Strahlung, scheint sicher der Knockdown von XRCC1 also weder bei den HPV-positiven wie HPV-negativen Zelllinien auf die Proliferation auszuwirken. Zusammenfassend kann man also vermuten, dass der transiente Knockdown von DNA-Reparaturfaktoren ohne zusätzliche Bestrahlung vor allem dann eine antiproliferative Wirkung zeigt, wenn kein zuverlässiger Backup-Mechanismus vorhanden ist und wenn die Zahl der intrinsischen Schäden relativ hoch ist. Es sollte zudem beachtet werden, dass zu Beginn des Proliferationsassays die Expression und somit Funktion der entsprechenden Proteine durch siRNA zwar unterdrückt, diese im Verlauf des Assays (innerhalb 10 Tage) aber irgendwann wiederhergestellt war. Eine Möglichkeit dies zu umgehen wäre ein Tetracyclin-induzierbares shRNA-Vektor System, welches allerdings wesentlich aufwändiger zu etablieren ist (Gomez-Martinez et al., 2013).

Im nächsten Schritt sollte eine Beeinflussung der Radiosensitivität durch die entsprechenden Knockdowns analysiert werden. Auch hier zeigte sich, dass RAD51 der wichtigste der hier untersuchten Reparaturfaktoren war und die Radiosensitivität stark signifikant erhöhte (Abbildung 4.22, S. 92). Eine ähnliche Beobachtung konnte auch Du et al. (2011) nach Knockdown von RAD51 machen. Aber auch der Knockdown von LIG4 zeigte eine Verstärkung der Proliferationsinhibition im Vergleich zu alleiniger Bestrahlung. Auffällig war, dass sowohl bei siRAD51, als auch bei siLIG4 nur bei den HPV-positiven Zelllinien ein Unterschied zwischen hochenergetischer Röntgenstrahlung und zielgerichteter Alphateilchen-Behandlung zu sehen war. Möglicherweise spielt auch hier wieder das potentiell funktionale p53 eine Rolle, welches nach high-LET Behandlung aktiviert wird. Knockdown von XRCC1 zeigte in diesem Vergleich die geringste Erhöhung der Radiosensitivität. Dies lässt darauf schließen, dass die Reparatur von Einzelstrangbrüchen für die verwendeten Zelllinien eine untergeordnete Rolle spielt.

5.5 Ausblick

Die Ergebnisse dieser Arbeit zeigen einen eindeutigen Zusammenhang zwischen HPV-Status von HNSCC-Zelllinien und dem Ansprechen auf *in vitro* Chemotherapie und Bestrahlung. Dennoch konnten die zugrundeliegenden molekularen Mechanismen nicht abschließend geklärt werden. Vor allem eine Untersuchung hinsichtlich Apoptoseinduktion in den behandelten Zellen steht noch aus. Unklar ist, ob die erhöhte Chemo- und Radiosensitivität HPV-assoziierter Zelllinien mit dem an sich funktionell vorliegenden, aber durch das virale Onkoprotein E6 beeinträchtigten Tumorsuppressor p53 in Zusammenhang steht. Aus diesem Grund soll in HPV-positiven Zelllinien die Expression von p53 mittels RNA-Interferenz unterdrückt und Veränderungen in der Radiosensitivität analysiert werden. Sinkt diese, wäre das ein starker Hinweis auf eine regulatorische Wirkung von p53. Die genauen Mechanismen, ob z.B. durch einen Knockdown der Zellzyklus oder Apoptoseinduktion nach Bestrahlung verändert reguliert sind, könnte mittels Durchflusszytometrie analysiert werden. Auch bei den HPV-negativen Zelllinien könnte ein solcher Knockdown durchgeführt werden, um sicherzustellen, dass die p53-Mutationen in diesen Zelllinien bereits für eine p53-unabhängige DNA-Schadensantwort sorgen. Ein p53-Knockdown sollte in diesen Zelllinien also kaum Auswirkungen auf Proliferation, Apoptose oder Zellzyklus nach Bestrahlung haben. Falls der p53-Knockdown in den HPV-assoziierten Zelllinien keine Veränderungen hinsichtlich der Radiosensitivität zeigt, können auch die viralen Onkoproteine E6 und E7 in HPV-negativen Zelllinien exprimiert werden. Dies erfolgt über eine retrovirale Transduktion der entsprechenden Genabschnitte. Auch hier kann im Anschluss die Radiosensitivität hinsichtlich Proliferation, Zellzyklus und Apoptose analysiert und ein direkter Zusammenhang mit den viralen Onkoproteinen überprüft werden.

Hinsichtlich der überlegenen Wirkung von zielgerichteter Alphateilchen-Behandlung gegenüber hochenergetischer Röntgenstrahlung kann eine tiefergehende Analyse von Apoptoseinduktion und des Zellzyklus inklusive Aneuploidie auch wichtige Rückschlüsse auf die molekularen Gründe dieser stärkeren antiproliferativen Effekte bringen. Zudem kann die systematische Auswertung der Gesamtgenexpressionsdaten mittels bioinformatischer Methoden, wie die Analyse der Häufung von Expressionsänderungen in bestimmten Signalwegen oder zellulären Prozessen (z.B. PANTHER-Klassifizierungssystem) diese Analyse unterstützen. Auch die EGFR-Expression und Internalisierung nach Bindung von ²¹³Bi-CHX-A"-DTPA-Cetuximab soll mit den Ansprechraten der Zelllinien korreliert werden, da dies bereits einen starken Einfluss auf die Effektivität dieser zielgerichteten Behandlung haben kann.

Für zielgerichtete Alphateilchen-Behandlung liegen bei anderen Entitäten, beispielsweise dem resektionsresistenten Prostatakarzinom oder Blasenkarzinom, bereits vielversprechende klinische Studien vor. Die *in vitro*-Daten in dieser Arbeit zeigten eine hohe Wirksamkeit auch gegenüber HNSCC-Zelllinien. Aus diesem Grund sollte der nächste Schritt die Translation dieser Anwendung in die Klinik sein. Hierfür muss aber zuvor noch zwingend die

111

Wirksamkeit, Biodistribution und Toxizität des Radioimmunkonjugats *in vivo* am Mausmodell überprüft werden.

6 ZUSAMMENFASSUNG

Jährlich erkranken rund 890.000 Menschen mit einem durchschnittlichen Alter von knapp 60 Jahren an Malignomen des Kopf-Hals-Bereichs. Einen Großteil davon stellt das Plattenepithelkarzinom (HNSCC) dar, welches je nach Lokalisation oft schwer chirurgisch entfernbar ist. Aus diesem Grund ist die Strahlentherapie eine wichtige Säule bei der Behandlung dieser Krebserkrankungen. Seit rund zwei Jahrzehnten wird immer deutlicher, dass HNSCC, welche mit dem humanen Papillomvirus (HPV) assoziiert sind, ein deutlich besseres Überleben aufweisen und besser auf Strahlentherapie ansprechen. Hiervon sind vor allem Patienten mit HPV-assoziierte Oropharynxkarzinomen betroffen. Sowohl für diese jüngere, Patientengruppe, als auch für andere Kopf-Hals-Tumore ist es wichtig, die Therapieoptionen stetig zu verbessern, um die Überlebenschancen zu erhöhen und gleichzeitig die teils starken Spätfolgen von Bestrahlungen zu minimieren. Ein vielversprechender Ansatz, welcher in anderen Entitäten bereits in klinischen Studien zum Einsatz kommt, ist die zielgerichtete Therapie mit Alphateilchen (TAT). Dieser Therapieansatz bietet die Möglichkeit eine hochenergetische Strahlenquelle (high-LET) unmittelbar am Tumor wirken zu lassen und dabei das umliegende Gewebe durch eine sehr geringe Reichweite (25 - 100 µm) bestmöglich zu schonen.

In dieser Arbeit sollte der Einfluss von HPV auf HNSCC-Zelllinien bezüglich des Ansprechens auf *in vitro* Chemotherapie, Röntgenbestrahlung und TAT untersucht werden. Die zielgerichtete Alphateilchen-Behandlung mit ²¹³Bi-CHX-A"-DTPA-Cetuximab zeigte bei HNSCC-Zelllinien eine starke Wirkung bezüglich der Inhibition von Proliferation und Koloniebildung. Wie auch bei hochenergetischer Röntgenstrahlung und *in vitro* Chemotherapie war hierbei das Ansprechen der HPV-assoziierten Zelllinien signifikant stärker ausgeprägt. Allerdings konnte mit TAT auch bei den eher strahlenresistenten HPVnegativen Zelllinien deutliche Effekte erzielt werden. Als möglicher Grund für diese überlegene biologische Wirkung von *high*-LET Strahlung konnte ein stärkerer Einfluss auf den Zellzyklus, d.h. eine Akkumulation von Zellen in G2-Phase, festgestellt werden. Bei hochenergetischer Röntgenstrahlung war dies nur bei den besser ansprechenden HPVpositiven Zelllinien zu beobachten, während dieser Effekt bei TAT unabhängig vom HPV-Status vorlag. Eine weitere Beobachtung war ein länger anhaltendes, tendenziell akkumulierendes Vorhandensein des DNA-Doppelstrangbruchmarkers γH2AX. Zudem zeigte eine *whole genome microarray* Analyse, dass TAT einen deutlich ausgeprägteren Einfluss auf die Regulation der Gesamtgenexpression hatte. Insgesamt konnte in dieser Arbeit gezeigt werden, dass die Behandlung von HNSCC mit ²¹³Bi-CHX-A"-DTPA-Cetuximab ein vielversprechender Ansatz ist, der nach Abklärung im Tiermodell für klinische Studien in Frage kommen sollte.

7 LITERATURVERZEICHNIS

- Agrawal, N., Frederick, M. J., Pickering, C. R., Bettegowda, C., Chang, K., Li, R. J., Fakhry, C., Xie, T. X., Zhang, J., Wang, J., Zhang, N., El-Naggar, A. K., Jasser, S. A., Weinstein, J. N., Trevino, L., Drummond, J. A., Muzny, D. M., Wu, Y., Wood, L. D., Hruban, R. H., Westra, W. H., Koch, W. M., Califano, J. A., Gibbs, R. A., Sidransky, D., Vogelstein, B., Velculescu, V. E., Papadopoulos, N., Wheeler, D. A., Kinzler, K. W. & Myers, J. N. <u>2011</u>. "Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1". *Science*, 333, 1154-7.
- Albers, A. E., Qian, X., Kaufmann, A. M. & Coordes, A. <u>2017</u>. "Meta analysis: HPV and p16 pattern determines survival in patients with HNSCC and identifies potential new biologic subtype". *Scientific Reports*, 7.
- Ang, K. K., Harris, J., Wheeler, R., Weber, R., Rosenthal, D. I., Nguyen-Tan, P. F., Westra, W. H., Chung, C. H., Jordan, R. C., Lu, C., Kim, H., Axelrod, R., Silverman, C. C., Redmond, K. P. & Gillison, M. L. <u>2010</u>. "Human papillomavirus and survival of patients with oropharyngeal cancer". N Engl J Med, 363, 24-35.
- Ang, K. K. & Sturgis, E. M. <u>2012</u>. "Human papillomavirus as a marker of the natural history and response to therapy of head and neck squamous cell carcinoma". *Semin Radiat Oncol*, 22, 128-42.
- Arenz, A., Ziemann, F., Mayer, C., Wittig, A., Dreffke, K., Preising, S., Wagner, S., Klussmann, J. P., Engenhart-Cabillic, R. & Wittekindt, C. <u>2014</u>. "Increased radiosensitivity of HPVpositive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis". *Strahlenther Onkol*, 190, 839-46.
- Argiris, A., Karamouzis, M. V., Raben, D. & Ferris, R. L. <u>2008</u>. "Head and neck cancer". *Lancet*, 371, 1695-709.
- Autenrieth, M. E., Seidl, C., Bruchertseifer, F., Horn, T., Kurtz, F., Feuerecker, B., D'alessandria, C., Pfob, C., Nekolla, S., Apostolidis, C., Mirzadeh, S., Gschwend, J. E., Schwaiger, M., Scheidhauer, K. & Morgenstern, A. 2018. "Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: a pilot study". *Eur J Nucl Med Mol Imaging*, 45, 1364-1371.
- Begum, S., Cao, D., Gillison, M., Zahurak, M. & Westra, W. H. <u>2005</u>. "Tissue distribution of human papillomavirus 16 DNA integration in patients with tonsillar carcinoma". *Clin Cancer Res*, 11, 5694-9.
- Bewersdorf, J., Bennett, B. T. & Knight, K. L. <u>2006</u>. "H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy". *Proc Natl Acad Sci U S A*, 103, 18137-42.
- Blot, W. J., Mclaughlin, J. K., Winn, D. M., Austin, D. F., Greenberg, R. S., Preston-Martin, S., Bernstein, L., Schoenberg, J. B., Stemhagen, A. & Fraumeni, J. F., Jr. <u>1988</u>. "Smoking and drinking in relation to oral and pharyngeal cancer". *Cancer Res*, 48, 3282-7.
- Bonner, J. A., Harari, P. M., Giralt, J., Azarnia, N., Shin, D. M., Cohen, R. B., Jones, C. U., Sur, R., Raben, D., Jassem, J., Ove, R., Kies, M. S., Baselga, J., Youssoufian, H., Amellal, N., Rowinsky, E. K. & Ang, K. K. <u>2006</u>. "Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck". *N Engl J Med*, 354, 567-78.
- Bose, P., Brockton, N. T. & Dort, J. C. **2013**. "Head and neck cancer: from anatomy to biology". *Int J Cancer*, 133, 2013-23.
- Bourhis, J., Etessami, A. & Lusinchi, A. <u>2005</u>. "New trends in radiotherapy for head and neck cancer". *Ann Oncol*, 16 Suppl 2, ii255-7.

- Bowers, G., Reardon, D., Hewitt, T., Dent, P., Mikkelsen, R. B., Valerie, K., Lammering, G., Amir, C. & Schmidt-Ullrich, R. K. <u>2001</u>. "The relative role of ErbB1-4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells". *Oncogene*, 20, 1388-97.
- Bowman, T., Garcia, R., Turkson, J. & Jove, R. <u>2000</u>. "STATs in oncogenesis". *Oncogene*, 19, 2474-88.
- Braakhuis, B. J., Snijders, P. J., Keune, W. J., Meijer, C. J., Ruijter-Schippers, H. J., Leemans, C. R. & Brakenhoff, R. H. <u>2004</u>. "Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus". *J Natl Cancer Inst*, 96, 998-1006.
- Bradford, M. M. <u>1976</u>. "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding". *Anal Biochem*, 72, 248-54.
- Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. <u>2018</u>. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries". *CA Cancer J Clin*, 68, 394-424.
- Bussink, J., Van Der Kogel, A. J. & Kaanders, J. H. <u>2008</u>. "Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer". *Lancet Oncol*, *9*, 288-96.
- Caldecott, K. W. 2003. "XRCC1 and DNA strand break repair". DNA Repair (Amst), 2, 955-69.
- Califano, J., Van Der Riet, P., Westra, W., Nawroz, H., Clayman, G., Piantadosi, S., Corio, R., Lee, D., Greenberg, B., Koch, W. & Sidransky, D. <u>1996</u>. "Genetic progression model for head and neck cancer: implications for field cancerization". *Cancer Res*, 56, 2488-92.
- Cancer Genome Atlas, N. <u>2015</u>. "Comprehensive genomic characterization of head and neck squamous cell carcinomas". *Nature*, 517, 576-82.
- Castedo, M., Perfettini, J. L., Roumier, T., Andreau, K., Medema, R. & Kroemer, G. <u>2004</u>. "Cell death by mitotic catastrophe: a molecular definition". *Oncogene*, 23, 2825-37.
- Chaturvedi, A. K., Engels, E. A., Pfeiffer, R. M., Hernandez, B. Y., Xiao, W., Kim, E., Jiang, B., Goodman, M. T., Sibug-Saber, M., Cozen, W., Liu, L., Lynch, C. F., Wentzensen, N., Jordan, R. C., Altekruse, S., Anderson, W. F., Rosenberg, P. S. & Gillison, M. L. <u>2011</u>. "Human papillomavirus and rising oropharyngeal cancer incidence in the United States". *J Clin Oncol*, 29, 4294-301.
- Chung, C. H., Parker, J. S., Karaca, G., Wu, J., Funkhouser, W. K., Moore, D., Butterfoss, D., Xiang, D., Zanation, A., Yin, X., Shockley, W. W., Weissler, M. C., Dressler, L. G., Shores, C. G., Yarbrough, W. G. & Perou, C. M. <u>2004</u>. "Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression". *Cancer Cell*, 5, 489-500.
- D'souza, G., Kreimer, A. R., Viscidi, R., Pawlita, M., Fakhry, C., Koch, W. M., Westra, W. H. & Gillison, M. L. <u>2007</u>. "Case-control study of human papillomavirus and oropharyngeal cancer". *N Engl J Med*, 356, 1944-56.
- Dai, M., Clifford, G. M., Le Calvez, F., Castellsague, X., Snijders, P. J., Pawlita, M., Herrero, R., Hainaut, P., Franceschi, S. & Group, I. M. O. C. S. <u>2004</u>. "Human papillomavirus type 16 and TP53 mutation in oral cancer: matched analysis of the IARC multicenter study". *Cancer Res*, 64, 468-71.
- Denaro, N., Russi, E. G., Adamo, V. & Merlano, M. C. <u>2014</u>. "State-of-the-art and emerging treatment options in the management of head and neck cancer: news from 2013". *Oncology*, 86, 212-29.

Dok, R., Kalev, P., Van Limbergen, E. J., Asbagh, L. A., Vazquez, I., Hauben, E., Sablina, A. & Nuyts, S. <u>2014</u>. "p16INK4a impairs homologous recombination-mediated DNA repair in human papillomavirus-positive head and neck tumors". *Cancer Res*, 74, 1739-51.

Doorbar, J. 2005. "The papillomavirus life cycle". J Clin Virol, 32 Suppl 1, S7-15.

- Dr. Peter Kaatsch, D. C. S., Prof. Dr. Alexander Katalinic, Dr. Stefan Hentschel, Dr. Sabine Luttmann, Christa Stegmaier, Dr. Mechthild Waldeyer-Sauerland, Pd Dr. Annika Waldmann, Dr. Sandra Caspritz, Dr. Monika Christ, Dr. Anke Ernst, Dr. Juliane Folkerts, Dr. Jutta Hansmann, Dr. Stefanie Klein, Dr. Kristine Kranzhöfer, Dr. Beatrice Kunz, Dr. Katrin Manegold, Dr. Andrea Penzkofer, Dr. Kornelia Treml, Dr. Susanne Weg-Remers, Dr. Kerstin Wittenberg, Dr. Benjamin Barnes, Dr. Joachim Bertz, Nina Buttmann-Schweiger, Dr. Stefan Dahm, Julia Fiebig, Dr. Jörg Haberland, Dr. Klaus Kraywinkel, Antje Wienecke, Dr. Ute Wolf <u>2017</u>. Krebs in Deutschland für 2013/2014, Robert Koch-Institut & Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V.
- Du, L., Chen, X., Cao, Y., Lu, L., Zhang, F., Bornstein, S., Li, Y., Owens, P., Malkoski, S., Said, S., Jin, F., Kulesz-Martin, M., Gross, N., Wang, X. J. & Lu, S. L. <u>2016</u>. "Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFbeta signaling". *Oncogene*, 35, 4641-52.
- Du, L. Q., Wang, Y., Wang, H., Cao, J., Liu, Q. & Fan, F. Y. <u>2011</u>. "Knockdown of Rad51 expression induces radiation- and chemo-sensitivity in osteosarcoma cells". *Med Oncol*, 28, 1481-7.
- Duensing, S. & Munger, K. <u>2002</u>. "The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability". *Cancer Res*, 62, 7075-82.
- Eke, I. & Cordes, N. <u>2011</u>. "Radiobiology goes 3D: how ECM and cell morphology impact on cell survival after irradiation". *Radiother Oncol*, 99, 271-8.
- El-Deiry, W. S. <u>2003</u>. "The role of p53 in chemosensitivity and radiosensitivity". *Oncogene*, 22, 7486-95.
- Elmore, S. 2007. "Apoptosis: a review of programmed cell death". Toxicol Pathol, 35, 495-516.
- Engelman, J. A., Luo, J. & Cantley, L. C. <u>2006</u>. "The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism". *Nat Rev Genet*, *7*, 606-19.
- Eriksson, D. & Stigbrand, T. <u>2010</u>. "Radiation-induced cell death mechanisms". *Tumour Biol*, 31, 363-72.
- Fakhry, C., Westra, W. H., Li, S., Cmelak, A., Ridge, J. A., Pinto, H., Forastiere, A. & Gillison, M. L. <u>2008</u>. "Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial". *J Natl Cancer Inst*, 100, 261-9.
- Ferlay J, E. M., Lam F, Colombet M, Mery L, Piñeros M, Znaor a, Soerjomataram I, Bray F <u>2018</u>. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer.
- Frit, P., Barboule, N., Yuan, Y., Gomez, D. & Calsou, P. <u>2014</u>. "Alternative end-joining pathway(s): bricolage at DNA breaks". *DNA Repair (Amst)*, 17, 81-97.
- Gillison, M. L., Koch, W. M., Capone, R. B., Spafford, M., Westra, W. H., Wu, L., Zahurak, M. L., Daniel, R. W., Viglione, M., Symer, D. E., Shah, K. V. & Sidransky, D. <u>2000</u>. "Evidence for a causal association between human papillomavirus and a subset of head and neck cancers". *J Natl Cancer Inst*, 92, 709-20.
- Gillison, M. L. <u>2004</u>. "Human papillomavirus-associated head and neck cancer is a distinct epidemiologic, clinical, and molecular entity". *Semin Oncol*, 31, 744-54.

- Gillison, M. L., D'souza, G., Westra, W., Sugar, E., Xiao, W., Begum, S. & Viscidi, R. <u>2008</u>.
 "Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers". *J Natl Cancer Inst*, 100, 407-20.
- Gillison, M. L., Alemany, L., Snijders, P. J., Chaturvedi, A., Steinberg, B. M., Schwartz, S. & Castellsague, X. <u>2012</u>. "Human papillomavirus and diseases of the upper airway: head and neck cancer and respiratory papillomatosis". *Vaccine*, 30 Suppl 5, F34-54.
- Gillison, M. L., Trotti, A. M., Harris, J., Eisbruch, A., Harari, P. M., Adelstein, D. J., Sturgis, E. M., Burtness, B., Ridge, J. A., Ringash, J., Galvin, J., Yao, M., Koyfman, S. A., Blakaj, D. M., Razaq, M. A., Colevas, A. D., Beitler, J. J., Jones, C. U., Dunlap, N. E., Seaward, S. A., Spencer, S., Galloway, T. J., Phan, J., Dignam, J. J. & Le, Q. T. <u>2019</u>. "Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial". *Lancet*, 393, 40-50.
- Goldkorn, T., Balaban, N., Shannon, M. & Matsukuma, K. <u>1997</u>. "EGF receptor phosphorylation is affected by ionizing radiation". *Biochim Biophys Acta*, 1358, 289-99.
- Gomez-Martinez, M., Schmitz, D. & Hergovich, A. <u>2013</u>. "Generation of stable human cell lines with Tetracycline-inducible (Tet-on) shRNA or cDNA expression". *J Vis Exp*, e50171.
- Goodhead, D. T. <u>1994</u>. "Initial events in the cellular effects of ionizing radiations: clustered damage in DNA". *Int J Radiat Biol*, 65, 7-17.
- Goodhead, D. T. <u>2006</u>. "Energy deposition stochastics and track structure: what about the target?". *Radiat Prot Dosimetry*, 122, 3-15.
- Graham, S., Dayal, H., Rohrer, T., Swanson, M., Sultz, H., Shedd, D. & Fischman, S. <u>1977</u>. "Dentition, diet, tobacco, and alcohol in the epidemiology of oral cancer". *J Natl Cancer Inst*, 59, 1611-8.
- Grandis, J. R. & Tweardy, D. J. <u>1993</u>. "Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer". *Cancer Res*, 53, 3579-84.
- Grandis, J. R., Drenning, S. D., Chakraborty, A., Zhou, M. Y., Zeng, Q., Pitt, A. S. & Tweardy, D. J. <u>1998</u>. "Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro". *J Clin Invest*, 102, 1385-92.
- Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. & Scott, O. C. <u>1953</u>. "The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy". *Br J Radiol*, 26, 638-48.
- Hall, E. J. & Giaccia, A. J. <u>2012</u>. *Radiobiology for the Radiologist,* Philadelphia, PA 19103 USA, Lippincott Williams & Wilkins, a Wolter Kluwer business.
- Hanssen-Bauer, A., Solvang-Garten, K., Sundheim, O., Pena-Diaz, J., Andersen, S., Slupphaug, G., Krokan, H. E., Wilson, D. M., 3rd, Akbari, M. & Otterlei, M. <u>2011</u>. "XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage". *Environ Mol Mutagen*, 52, 623-35.
- Harada, H. <u>2011</u>. "How can we overcome tumor hypoxia in radiation therapy?". *J Radiat Res*, 52, 545-56.
- Hashibe, M., Brennan, P., Benhamou, S., Castellsague, X., Chen, C., Curado, M. P., Dal Maso,
 L., Daudt, A. W., Fabianova, E., Fernandez, L., Wunsch-Filho, V., Franceschi, S., Hayes,
 R. B., Herrero, R., Koifman, S., La Vecchia, C., Lazarus, P., Levi, F., Mates, D., Matos,
 E., Menezes, A., Muscat, J., Eluf-Neto, J., Olshan, A. F., Rudnai, P., Schwartz, S. M.,
 Smith, E., Sturgis, E. M., Szeszenia-Dabrowska, N., Talamini, R., Wei, Q., Winn, D. M.,
 Zaridze, D., Zatonski, W., Zhang, Z. F., Berthiller, J. & Boffetta, P. <u>2007</u>. "Alcohol

drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium". *J Natl Cancer Inst*, 99, 777-89.

- Hauser, U., Balz, V., Carey, T. E., Grenman, R., Van Lierop, A., Scheckenbach, K. & Bier, H. 2002. "Reliable detection of p53 aberrations in squamous cell carcinomas of the head and neck requires transcript analysis of the entire coding region". *Head Neck*, 24, 868-73.
- Helleday, T., Lo, J., Van Gent, D. C. & Engelward, B. P. <u>2007</u>. "DNA double-strand break repair: from mechanistic understanding to cancer treatment". *DNA Repair (Amst)*, 6, 923-35.
- Heusinkveld, M., Goedemans, R., Briet, R. J., Gelderblom, H., Nortier, J. W., Gorter, A., Smit, V. T., Langeveld, A. P., Jansen, J. C. & Van Der Burg, S. H. <u>2012</u>. "Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer". *Int J Cancer*, 131, E74-85.
- Hoeijmakers, J. H. <u>2001</u>. "Genome maintenance mechanisms for preventing cancer". *Nature*, 411, 366-74.
- Hori, K., Sen, A. & Artavanis-Tsakonas, S. <u>2013</u>. "Notch signaling at a glance". *J Cell Sci*, 126, 2135-40.
- Horn, D., Hess, J., Freier, K., Hoffmann, J. & Freudlsperger, C. <u>2015</u>. "Targeting EGFR-PI3K-AKT-mTOR signaling enhances radiosensitivity in head and neck squamous cell carcinoma". *Expert Opin Ther Targets*, 19, 795-805.
- Ihrler, S., Mollenhauer, M. & Weiler, C. <u>2014</u>. "Tumorentitäten und pathohistologische Grundlagen". *In: Kopf-Hals-Malignome.* München: W. Zuckerschwerdt Verlag.
- Jenner, T. J., Delara, C. M., O'neill, P. & Stevens, D. L. <u>1993</u>. "Induction and rejoining of DNA double-strand breaks in V79-4 mammalian cells following gamma- and alpha-irradiation". *Int J Radiat Biol*, 64, 265-73.
- Ke, L. D., Adler-Storthz, K., Clayman, G. L., Yung, A. W. & Chen, Z. <u>1998</u>. "Differential expression of epidermal growth factor receptor in human head and neck cancers". *Head Neck*, 20, 320-7.
- Khanna, K. K. & Jackson, S. P. <u>2001</u>. "DNA double-strand breaks: signaling, repair and the cancer connection". *Nat Genet*, 27, 247-54.
- Kim, L., King, T. & Agulnik, M. <u>2010</u>. "Head and neck cancer: changing epidemiology and public health implications". *Oncology (Williston Park)*, 24, 915-9, 924.
- Kimple, R. J., Smith, M. A., Blitzer, G. C., Torres, A. D., Martin, J. A., Yang, R. Z., Peet, C. R., Lorenz, L. D., Nickel, K. P., Klingelhutz, A. J., Lambert, P. F. & Harari, P. M. <u>2013</u>. "Enhanced radiation sensitivity in HPV-positive head and neck cancer". *Cancer Res*, 73, 4791-800.
- Klussmann, J. P., Gultekin, E., Weissenborn, S. J., Wieland, U., Dries, V., Dienes, H. P., Eckel, H. E., Pfister, H. J. & Fuchs, P. G. <u>2003</u>. "Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus". *Am J Pathol*, 162, 747-53.
- Klussmann, J. P., Mooren, J. J., Lehnen, M., Claessen, S. M., Stenner, M., Huebbers, C. U., Weissenborn, S. J., Wedemeyer, I., Preuss, S. F., Straetmans, J. M., Manni, J. J., Hopman, A. H. & Speel, E. J. <u>2009</u>. "Genetic signatures of HPV-related and unrelated oropharyngeal carcinoma and their prognostic implications". *Clin Cancer Res*, 15, 1779-86.
- Konopleva, M. Y., Walter, R. B., Faderl, S. H., Jabbour, E. J., Zeng, Z., Borthakur, G., Huang, X., Kadia, T. M., Ruvolo, P. P., Feliu, J. B., Lu, H., Debose, L., Burger, J. A., Andreeff, M., Liu, W., Baggerly, K. A., Kornblau, S. M., Doyle, L. A., Estey, E. H. & Kantarjian,

H. M. <u>2014</u>. "Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia". *Clin Cancer Res*, 20, 2226-35.

- Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Simopoulos, C., Turley, H., Talks, K., Gatter, K. C. & Harris, A. L. <u>2002</u>. "Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer". *Int J Radiat Oncol Biol Phys*, 53, 1192-202.
- Kreimer, A. R., Alberg, A. J., Daniel, R., Gravitt, P. E., Viscidi, R., Garrett, E. S., Shah, K. V. & Gillison, M. L. <u>2004</u>. "Oral human papillomavirus infection in adults is associated with sexual behavior and HIV serostatus". *J Infect Dis*, 189, 686-98.
- Kreimer, A. R., Clifford, G. M., Boyle, P. & Franceschi, S. <u>2005</u>. "Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review". *Cancer Epidemiol Biomarkers Prev*, 14, 467-75.
- Kundu, S. K. & Nestor, M. <u>2012</u>. "Targeted therapy in head and neck cancer". *Tumour Biol*, 33, 707-21.
- Kuo, L. J. & Yang, L. X. <u>2008</u>. "Gamma-H2AX a novel biomarker for DNA double-strand breaks". *In Vivo*, 22, 305-9.
- Kutler, D. I., Auerbach, A. D., Satagopan, J., Giampietro, P. F., Batish, S. D., Huvos, A. G., Goberdhan, A., Shah, J. P. & Singh, B. <u>2003</u>. "High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia". *Arch Otolaryngol Head Neck Surg*, 129, 106-12.
- Laemmli, U. K. <u>1970</u>. "Cleavage of structural proteins during the assembly of the head of bacteriophage T4". *Nature*, 227, 680-5.
- Lansford, C. D., Grenman, R., Bier, H., Somers, K. D., Kim, S. Y., Whiteside, T. L., Clayman, G. L., Welkoborsky, H.-J. & Carey, T. E. <u>1999</u>. "Head and neck cancers". *In: Human cell culture*. Dordrecht ; Boston: Kluwer Academic Publishers.
- Lauber, K., Ernst, A., Orth, M., Herrmann, M. & Belka, C. <u>2012</u>. "Dying cell clearance and its impact on the outcome of tumor radiotherapy". 2.
- Lee, D., Li, M., Bednarz, B. & Schultz, M. K. <u>2018</u>. "Modeling Cell and Tumor-Metastasis Dosimetry with the Particle and Heavy Ion Transport Code System (PHITS) Software for Targeted Alpha-Particle Radionuclide Therapy". *Radiat Res*, 190, 236-247.
- Leemans, C. R., Braakhuis, B. J. & Brakenhoff, R. H. <u>2011</u>. "The molecular biology of head and neck cancer". *Nat Rev Cancer*, 11, 9-22.
- Leemans, C. R., Snijders, P. J. F. & Brakenhoff, R. H. <u>2018</u>. "The molecular landscape of head and neck cancer". *Nat Rev Cancer*, 18, 269-282.
- Lewis, A., Kang, R., Levine, A. & Maghami, E. <u>2015</u>. "The New Face of Head and Neck Cancer: The HPV Epidemic". *Oncology (Williston Park)*, 29, 616-26.
- Licitra, L., Felip, E. & Group, E. G. W. <u>2009</u>. "Squamous cell carcinoma of the head and neck: ESMO clinical recommendations for diagnosis, treatment and follow-up". *Ann Oncol*, 20 Suppl 4, 121-2.
- Lieber, M. R. <u>2010</u>. "The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway". *Annu Rev Biochem*, 79, 181-211.
- Lin, C. J., Grandis, J. R., Carey, T. E., Gollin, S. M., Whiteside, T. L., Koch, W. M., Ferris, R. L. & Lai, S. Y. <u>2007</u>. "Head and neck squamous cell carcinoma cell lines: established models and rationale for selection". *Head Neck*, 29, 163-88.
- Lin, R. J., Lubpairee, T., Liu, K. Y., Anderson, D. W., Durham, S. & Poh, C. F. <u>2013</u>. "Cyclin D1 overexpression is associated with poor prognosis in oropharyngeal cancer". J Otolaryngol Head Neck Surg, 42, 23.

- Lomax, M. E., Folkes, L. K. & O'neill, P. <u>2013</u>. "Biological consequences of radiation-induced DNA damage: relevance to radiotherapy". *Clin Oncol (R Coll Radiol)*, 25, 578-85.
- Lui, V. W., Hedberg, M. L., Li, H., Vangara, B. S., Pendleton, K., Zeng, Y., Lu, Y., Zhang, Q., Du, Y., Gilbert, B. R., Freilino, M., Sauerwein, S., Peyser, N. D., Xiao, D., Diergaarde, B., Wang, L., Chiosea, S., Seethala, R., Johnson, J. T., Kim, S., Duvvuri, U., Ferris, R. L., Romkes, M., Nukui, T., Kwok-Shing Ng, P., Garraway, L. A., Hammerman, P. S., Mills, G. B. & Grandis, J. R. <u>2013</u>. "Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers". *Cancer Discov*, *3*, 761-9.
- Lyu, X., Zhang, M., Li, G., Jiang, Y. & Qiao, Q. <u>2019</u>. "PD-1 and PD-L1 Expression Predicts Radiosensitivity and Clinical Outcomes in Head and Neck Cancer and is Associated with HPV Infection". *J Cancer*, 10, 937-948.
- Ma, B. B., Goh, B. C., Lim, W. T., Hui, E. P., Tan, E. H., Lopes Gde, L., Lo, K. W., Li, L., Loong, H., Foster, N. R., Erlichman, C., King, A. D., Kam, M. K., Leung, S. F., Chan, K. C. & Chan, A. T. <u>2015</u>. "Multicenter phase II study of the AKT inhibitor MK-2206 in recurrent or metastatic nasopharyngeal carcinoma from patients in the mayo phase II consortium and the cancer therapeutics research group (MC1079)". *Invest New Drugs*, 33, 985-91.
- Makvandi, M., Dupis, E., Engle, J. W., Nortier, F. M., Fassbender, M. E., Simon, S., Birnbaum, E. R., Atcher, R. W., John, K. D., Rixe, O. & Norenberg, J. P. <u>2018</u>. "Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations". *Target Oncol*, 13, 189-203.
- Martinez, I., Wang, J., Hobson, K. F., Ferris, R. L. & Khan, S. A. <u>2007</u>. "Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas". *Eur J Cancer*, 43, 415-32.
- Masterson, L., Moualed, D., Liu, Z. W., Howard, J. E., Dwivedi, R. C., Tysome, J. R., Benson, R., Sterling, J. C., Sudhoff, H., Jani, P. & Goon, P. K. <u>2014</u>. "De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis of current clinical trials". *Eur J Cancer*, 50, 2636-48.
- Mcdevitt, M. R., Sgouros, G., Finn, R. D., Humm, J. L., Jurcic, J. G., Larson, S. M. & Scheinberg, D. A. <u>1998</u>. "Radioimmunotherapy with alpha-emitting nuclides". *Eur J Nucl Med*, 25, 1341-51.
- Mebratu, Y. & Tesfaigzi, Y. <u>2009</u>. "How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer?". *Cell Cycle*, *8*, 1168-75.
- Mehanna, H., Beech, T., Nicholson, T., El-Hariry, I., Mcconkey, C., Paleri, V. & Roberts, S. <u>2013</u>.
 "Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer--systematic review and meta-analysis of trends by time and region". *Head Neck*, 35, 747-55.
- Mehanna, H., Robinson, M., Hartley, A., Kong, A., Foran, B., Fulton-Lieuw, T., Dalby, M., Mistry, P., Sen, M., O'toole, L., Al Booz, H., Dyker, K., Moleron, R., Whitaker, S., Brennan, S., Cook, A., Griffin, M., Aynsley, E., Rolles, M., De Winton, E., Chan, A., Srinivasan, D., Nixon, I., Grumett, J., Leemans, C. R., Buter, J., Henderson, J., Harrington, K., Mcconkey, C., Gray, A., Dunn, J. & De, E. H. P. V. T. G. <u>2019</u>. "Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial". *Lancet*, 393, 51-60.
- Mesri, E. A., Feitelson, M. A. & Munger, K. <u>2014</u>. "Human viral oncogenesis: a cancer hallmarks analysis". *Cell Host Microbe*, 15, 266-82.

- Michna, A., Schötz, U., Selmansberger, M., Zitzelsberger, H., Lauber, K., Unger, K. & Hess, J. <u>2016</u>. "Transcriptomic analyses of the radiation response in head and neck squamous cell carcinoma subclones with different radiation sensitivity: time-course gene expression profiles and gene association networks". *Radiat Oncol*, 11, 94.
- Mifsud, M., Eskander, A., Irish, J., Gullane, P., Gilbert, R., Brown, D., De Almeida, J. R., Urbach, D. R. & Goldstein, D. P. <u>2017</u>. "Evolving trends in head and neck cancer epidemiology: Ontario, Canada 1993-2010". *Head Neck*, 39, 1770-1778.
- Mirghani, H. & Blanchard, P. <u>2018</u>. "Treatment de-escalation for HPV-driven oropharyngeal cancer: Where do we stand?". *Clin Transl Radiat Oncol*, *8*, 4-11.
- Mirzadeh, S., Brechbiel, M. W., Atcher, R. W. & Gansow, O. A. <u>1990</u>. "Radiometal labeling of immunoproteins: covalent linkage of 2-(4isothiocyanatobenzyl)diethylenetriaminepentaacetic acid ligands to immunoglobulin". *Bioconjugate Chemistry*, 1, 59-65.
- Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. <u>2004</u>. "Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules". *Cancer Cell*, *5*, 429-41.
- Moeller, B. J. & Dewhirst, M. W. <u>2006</u>. "HIF-1 and tumour radiosensitivity". *Br J Cancer*, 95, 1-5.
- Moody, C. A. & Laimins, L. A. <u>2010</u>. "Human papillomavirus oncoproteins: pathways to transformation". *Nat Rev Cancer*, 10, 550-60.
- Moreno-Lopez, L. A., Esparza-Gomez, G. C., Gonzalez-Navarro, A., Cerero-Lapiedra, R., Gonzalez-Hernandez, M. J. & Dominguez-Rojas, V. <u>2000</u>. "Risk of oral cancer associated with tobacco smoking, alcohol consumption and oral hygiene: a case-control study in Madrid, Spain". *Oral Oncol*, 36, 170-4.
- Morgenstern, A., Bruchertseifer, F. & Apostolidis, C. <u>2012</u>. "Bismuth-213 and actinium-225 -generator performance and evolving therapeutic applications of two generatorderived alpha-emitting radioisotopes". *Curr Radiopharm*, 5, 221-7.
- Morgenstern, A., Apostolidis, C., Kratochwil, C., Sathekge, M., Krolicki, L. & Bruchertseifer, F. **2018**. "An overview of targeted alpha therapy with 225Actinium and 213Bismuth". *Curr Radiopharm*.
- Munger, K., Baldwin, A., Edwards, K. M., Hayakawa, H., Nguyen, C. L., Owens, M., Grace, M. & Huh, K. <u>2004</u>. "Mechanisms of human papillomavirus-induced oncogenesis". J Virol, 78, 11451-60.
- Munshi, A. & Ramesh, R. <u>2013</u>. "Mitogen-activated protein kinases and their role in radiation response". *Genes Cancer*, 4, 401-8.
- Murugan, A. K., Hong, N. T., Fukui, Y., Munirajan, A. K. & Tsuchida, N. <u>2008</u>. "Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas". *Int J Oncol*, 32, 101-11.
- Nagel, R., Martens-De Kemp, S. R., Buijze, M., Jacobs, G., Braakhuis, B. J. & Brakenhoff, R. H. <u>2013</u>. "Treatment response of HPV-positive and HPV-negative head and neck squamous cell carcinoma cell lines". *Oral Oncol*, 49, 560-6.
- Nikjoo, H., O'neill, P., Terrissol, M. & Goodhead, D. T. <u>1999</u>. "Quantitative modelling of DNA damage using Monte Carlo track structure method". *Radiat Environ Biophys*, 38, 31-8.
- Nikula, T. K., Curcio, M. J., Brechbiel, M. W., Gansow, O. A., Finn, R. D. & Scheinberg, D. A. <u>1995</u>. "A rapid, single vessel method for preparation of clinical grade ligand conjugated monoclonal antibodies". *Nucl Med Biol*, 22, 387-90.
- Nikula, T. K., Mcdevitt, M. R., Finn, R. D., Wu, C., Kozak, R. W., Garmestani, K., Brechbiel, M. W., Curcio, M. J., Pippin, C. G., Tiffany-Jones, L., Geerlings, M. W., Sr., Apostolidis, C.,

Molinet, R., Geerlings, M. W., Jr., Gansow, O. A. & Scheinberg, D. A. <u>1999</u>. "Alphaemitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry". *J Nucl Med*, 40, 166-76.

- Nordsmark, M., Bentzen, S. M., Rudat, V., Brizel, D., Lartigau, E., Stadler, P., Becker, A., Adam, M., Molls, M., Dunst, J., Terris, D. J. & Overgaard, J. <u>2005</u>. "Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study". *Radiother Oncol*, 77, 18-24.
- O'rorke, M. A., Ellison, M. V., Murray, L. J., Moran, M., James, J. & Anderson, L. A. <u>2012</u>. "Human papillomavirus related head and neck cancer survival: a systematic review and meta-analysis". *Oral Oncol*, 48, 1191-201.
- O'sullivan, B., Huang, S. H., Perez-Ordonez, B., Massey, C., Siu, L. L., Weinreb, I., Hope, A., Kim, J., Bayley, A. J., Cummings, B., Ringash, J., Dawson, L. A., Cho, B. C., Chen, E., Irish, J., Gilbert, R. W., Hui, A., Liu, F. F., Zhao, H., Waldron, J. N. & Xu, W. <u>2012</u>. "Outcomes of HPV-related oropharyngeal cancer patients treated by radiotherapy alone using altered fractionation". *Radiother Oncol*, 103, 49-56.
- Özcan-Wahlbrink, M., Schifflers, C. & Riemer, A. B. <u>2019</u>. "Enhanced Radiation Sensitivity of Human Papillomavirus-Driven Head and Neck Cancer: Focus on Immunological Aspects". *Frontiers in Immunology*, 10.
- Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M. & Bonner, W. M. <u>2000</u>. "A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage". *Curr Biol*, 10, 886-95.
- Pedrero, J. M., Carracedo, D. G., Pinto, C. M., Zapatero, A. H., Rodrigo, J. P., Nieto, C. S. & Gonzalez, M. V. <u>2005</u>. "Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma". *Int J Cancer*, 114, 242-8.
- Pelucchi, C., Gallus, S., Garavello, W., Bosetti, C. & La Vecchia, C. <u>2008</u>. "Alcohol and tobacco use, and cancer risk for upper aerodigestive tract and liver". *Eur J Cancer Prev*, 17, 340-4.
- Perez-Ordonez, B., Beauchemin, M. & Jordan, R. C. <u>2006</u>. "Molecular biology of squamous cell carcinoma of the head and neck". *J Clin Pathol*, 59, 445-53.
- Perri, F., Pacelli, R., Della Vittoria Scarpati, G., Cella, L., Giuliano, M., Caponigro, F. & Pepe, S. <u>2015</u>. "Radioresistance in head and neck squamous cell carcinoma: Biological bases and therapeutic implications". *Head Neck*, 37, 763-70.
- Perry, M. E. <u>1994</u>. "The specialised structure of crypt epithelium in the human palatine tonsil and its functional significance". *J Anat,* 185 (Pt 1), 111-27.
- Pfost, B., Seidl, C., Autenrieth, M., Saur, D., Bruchertseifer, F., Morgenstern, A., Schwaiger, M. & Senekowitsch-Schmidtke, R. <u>2009</u>. "Intravesical alpha-radioimmunotherapy with 213Bi-anti-EGFR-mAb defeats human bladder carcinoma in xenografted nude mice". *J Nucl Med*, 50, 1700-8.
- Pickering, C. R., Zhang, J., Yoo, S. Y., Bengtsson, L., Moorthy, S., Neskey, D. M., Zhao, M., Ortega Alves, M. V., Chang, K., Drummond, J., Cortez, E., Xie, T. X., Zhang, D., Chung, W., Issa, J. P., Zweidler-Mckay, P. A., Wu, X., El-Naggar, A. K., Weinstein, J. N., Wang, J., Muzny, D. M., Gibbs, R. A., Wheeler, D. A., Myers, J. N. & Frederick, M. J. <u>2013</u>. "Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers". *Cancer Discov*, 3, 770-81.
- Pickhard, A., Piontek, G., Seidl, C., Kopping, S., Blechert, B., Misslbeck, M., Brockhoff, G., Bruchertseifer, F., Morgenstern, A. & Essler, M. <u>2014</u>. "(2)(1)(3)Bi-anti-EGFR

radioimmunoconjugates and X-ray irradiation trigger different cell death pathways in squamous cell carcinoma cells". *Nucl Med Biol*, 41, 68-76.

- Pickhard, A. C., Margraf, J., Knopf, A., Stark, T., Piontek, G., Beck, C., Boulesteix, A. L., Scherer, E. Q., Pigorsch, S., Schlegel, J., Arnold, W. & Reiter, R. <u>2011</u>. "Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways". *BMC Cancer*, 11, 388.
- Pilch, D. R., Sedelnikova, O. A., Redon, C., Celeste, A., Nussenzweig, A. & Bonner, W. M. <u>2003</u>. "Characteristics of gamma-H2AX foci at DNA double-strand breaks sites". *Biochem Cell Biol*, 81, 123-9.
- Poeta, M. L., Manola, J., Goldwasser, M. A., Forastiere, A., Benoit, N., Califano, J. A., Ridge, J. A., Goodwin, J., Kenady, D., Saunders, J., Westra, W., Sidransky, D. & Koch, W. M. <u>2007</u>. "TP53 mutations and survival in squamous-cell carcinoma of the head and neck". *N Engl J Med*, 357, 2552-61.
- Posner, M. R., Lorch, J. H., Goloubeva, O., Tan, M., Schumaker, L. M., Sarlis, N. J., Haddad, R. I. & Cullen, K. J. <u>2011</u>. "Survival and human papillomavirus in oropharynx cancer in TAX 324: a subset analysis from an international phase III trial". *Ann Oncol*, 22, 1071-7.
- Prati, B., Marangoni, B. & Boccardo, E. <u>2018</u>. "Human papillomavirus and genome instability: from productive infection to cancer". *Clinics (Sao Paulo)*, 73, e539s.
- Ramanathan, R. K., Mcdonough, S. L., Kennecke, H. F., Iqbal, S., Baranda, J. C., Seery, T. E., Lim, H. J., Hezel, A. F., Vaccaro, G. M. & Blanke, C. D. <u>2015</u>. "Phase 2 study of MK-2206, an allosteric inhibitor of AKT, as second-line therapy for advanced gastric and gastroesophageal junction cancer: A SWOG cooperative group trial (S1005)". *Cancer*, 121, 2193-7.
- Reed, A. L., Califano, J., Cairns, P., Westra, W. H., Jones, R. M., Koch, W., Ahrendt, S., Eby, Y., Sewell, D., Nawroz, H., Bartek, J. & Sidransky, D. <u>1996</u>. "High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma". *Cancer Res*, 56, 3630-3.
- Rettig, E. M. & D'souza, G. <u>2015</u>. "Epidemiology of head and neck cancer". *Surg Oncol Clin N Am*, 24, 379-96.
- Rieckmann, T., Tribius, S., Grob, T. J., Meyer, F., Busch, C. J., Petersen, C., Dikomey, E. & Kriegs, M. <u>2013</u>. "HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity". *Radiother Oncol*, 107, 242-6.
- Rischin, D., Young, R. J., Fisher, R., Fox, S. B., Le, Q. T., Peters, L. J., Solomon, B., Choi, J., O'sullivan, B., Kenny, L. M. & Mcarthur, G. A. <u>2010</u>. "Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial". *J Clin Oncol*, 28, 4142-8.
- Roberts, J. N., Buck, C. B., Thompson, C. D., Kines, R., Bernardo, M., Choyke, P. L., Lowy, D. R. & Schiller, J. T. <u>2007</u>. "Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan". *Nat Med*, 13, 857-61.
- Rödel, F., Martin, D., Balermpas, P., Wieland, U., Winkelmann, R., Riekmann, T., Falk, S., Rödel, C. & Fokas, E. <u>2019</u>. "Modulation of radiation sensitivity and antitumor immunity by viral pathogenic factors: Implications for radio-immunotherapy". *Biochim Biophys Acta Rev Cancer*, 1871, 126-137.
- Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. <u>1998</u>. "DNA doublestranded breaks induce histone H2AX phosphorylation on serine 139". *J Biol Chem*, 273, 5858-68.
- Rothkamm, K. & Lobrich, M. <u>2003</u>. "Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses". *Proc Natl Acad Sci U S A*, 100, 5057-62.

- Rousseau, A., Lim, M. S., Lin, Z. & Jordan, R. C. <u>2001</u>. "Frequent cyclin D1 gene amplification and protein overexpression in oral epithelial dysplasias". *Oral Oncol*, 37, 268-75.
- Rubin Grandis, J., Melhem, M. F., Gooding, W. E., Day, R., Holst, V. A., Wagener, M. M., Drenning, S. D. & Tweardy, D. J. <u>1998</u>. "Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival". *J Natl Cancer Inst*, 90, 824-32.
- Rutherford, E. <u>1899</u>. "VIII. Uranium radiation and the electrical conduction produced by it". *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,* 47, 109-163.
- Rutherford, E. & Royds, T. <u>1909</u>. "XXI. The nature of the α particle from radioactive substances". *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 17, 281-286.
- Samuels, Y., Diaz, L. A., Jr., Schmidt-Kittler, O., Cummins, J. M., Delong, L., Cheong, I., Rago, C., Huso, D. L., Lengauer, C., Kinzler, K. W., Vogelstein, B. & Velculescu, V. E. <u>2005</u>.
 "Mutant PIK3CA promotes cell growth and invasion of human cancer cells". *Cancer Cell*, 7, 561-73.
- Saotome, K., Morita, H. & Umeda, M. <u>1989</u>. "Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs". *Toxicol In Vitro*, 3, 317-21.
- Scheckenbach, K., Wagenmann, M., Freund, M., Schipper, J. & Hanenberg, H. <u>2012</u>.
 "Squamous cell carcinomas of the head and neck in Fanconi anemia: risk, prevention, therapy, and the need for guidelines". *Klin Padiatr*, 224, 132-8.
- Schlecht, N. F., Franco, E. L., Pintos, J. & Kowalski, L. P. <u>1999</u>. "Effect of smoking cessation and tobacco type on the risk of cancers of the upper aero-digestive tract in Brazil". *Epidemiology*, 10, 412-8.
- Schmidt-Ullrich, R. K., Valerie, K., Fogleman, P. B. & Walters, J. <u>1996</u>. "Radiation-induced autophosphorylation of epidermal growth factor receptor in human malignant mammary and squamous epithelial cells". *Radiat Res*, 145, 81-5.
- Schmidt-Ullrich, R. K., Mikkelsen, R. B., Dent, P., Todd, D. G., Valerie, K., Kavanagh, B. D., Contessa, J. N., Rorrer, W. K. & Chen, P. B. <u>1997</u>. "Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation". *Oncogene*, 15, 1191-7.
- Schwartz, S. R., Yueh, B., Mcdougall, J. K., Daling, J. R. & Schwartz, S. M. <u>2001</u>. "Human papillomavirus infection and survival in oral squamous cell cancer: a population-based study". *Otolaryngol Head Neck Surg*, 125, 1-9.
- Seidl, C., Schrock, H., Seidenschwang, S., Beck, R., Schmid, E., Abend, M., Becker, K. F., Apostolidis, C., Nikula, T. K., Kremmer, E., Schwaiger, M. & Senekowitsch-Schmidtke, R. <u>2005</u>. "Cell death triggered by alpha-emitting 213Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death". *Eur J Nucl Med Mol Imaging*, 32, 274-85.
- Seidl, C., Port, M., Apostolidis, C., Bruchertseifer, F., Schwaiger, M., Senekowitsch-Schmidtke, R. & Abend, M. <u>2010</u>. "Differential gene expression triggered by highly cytotoxic alphaemitter-immunoconjugates in gastric cancer cells". *Invest New Drugs*, 28, 49-60.
- Seidl, C. <u>2014</u>. "Radioimmunotherapy with alpha-particle-emitting radionuclides". *Immunotherapy*, 6, 431-58.

- Seiwert, T. Y., Zuo, Z., Keck, M. K., Khattri, A., Pedamallu, C. S., Stricker, T., Brown, C., Pugh, T. J., Stojanov, P., Cho, J., Lawrence, M. S., Getz, G., Bragelmann, J., Deboer, R., Weichselbaum, R. R., Langerman, A., Portugal, L., Blair, E., Stenson, K., Lingen, M. W., Cohen, E. E., Vokes, E. E., White, K. P. & Hammerman, P. S. <u>2015</u>. "Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas". *Clin Cancer Res*, 21, 632-41.
- Sethi, S., Ali-Fehmi, R., Franceschi, S., Struijk, L., Van Doorn, L. J., Quint, W., Albashiti, B., Ibrahim, M. & Kato, I. <u>2012</u>. "Characteristics and survival of head and neck cancer by HPV status: a cancer registry-based study". *Int J Cancer*, 131, 1179-86.
- Sgouros, G. 2008. "Alpha-particles for targeted therapy". Adv Drug Deliv Rev, 60, 1402-6.
- Sheu, J. J., Hua, C. H., Wan, L., Lin, Y. J., Lai, M. T., Tseng, H. C., Jinawath, N., Tsai, M. H., Chang, N. W., Lin, C. F., Lin, C. C., Hsieh, L. J., Wang, T. L., Shih Ie, M. & Tsai, F. J. <u>2009</u>. "Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma". *Cancer Res*, 69, 2568-76.
- Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. <u>1997</u>. "DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2". *Cell*, 91, 325-34.
- Siddik, Z. H. <u>2003</u>. "Cisplatin: mode of cytotoxic action and molecular basis of resistance". *Oncogene*, 22, 7265-79.
- Simard, E. P., Torre, L. A. & Jemal, A. <u>2014</u>. "International trends in head and neck cancer incidence rates: differences by country, sex and anatomic site". *Oral Oncol*, 50, 387-403.
- Smeets, S. J., Braakhuis, B. J., Abbas, S., Snijders, P. J., Ylstra, B., Van De Wiel, M. A., Meijer, G. A., Leemans, C. R. & Brakenhoff, R. H. <u>2006</u>. "Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus". *Oncogene*, 25, 2558-64.
- Smeets, S. J., Brakenhoff, R. H., Ylstra, B., Van Wieringen, W. N., Van De Wiel, M. A., Leemans, C. R. & Braakhuis, B. J. <u>2009</u>. "Genetic classification of oral and oropharyngeal carcinomas identifies subgroups with a different prognosis". *Cell Oncol*, 31, 291-300.
- Smith, E. M., Ritchie, J. M., Summersgill, K. F., Klussmann, J. P., Lee, J. H., Wang, D., Haugen, T. H. & Turek, L. P. <u>2004</u>. "Age, sexual behavior and human papillomavirus infection in oral cavity and oropharyngeal cancers". *Int J Cancer*, 108, 766-72.
- Snow, A. N. & Laudadio, J. <u>2010</u>. "Human papillomavirus detection in head and neck squamous cell carcinomas". *Adv Anat Pathol*, 17, 394-403.
- South, A. P., Cho, R. J. & Aster, J. C. <u>2012</u>. "The double-edged sword of Notch signaling in cancer". *Semin Cell Dev Biol*, 23, 458-64.
- Spanos, W. C., Nowicki, P., Lee, D. W., Hoover, A., Hostager, B., Gupta, A., Anderson, M. E. & Lee, J. H. <u>2009</u>. "Immune response during therapy with cisplatin or radiation for human papillomavirus-related head and neck cancer". *Arch Otolaryngol Head Neck Surg*, 135, 1137-46.
- Sriuranpong, V., Park, J. I., Amornphimoltham, P., Patel, V., Nelkin, B. D. & Gutkind, J. S. <u>2003</u>. "Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system". *Cancer Res*, 63, 2948-56.
- Srivastava, M., Nambiar, M., Sharma, S., Karki, S. S., Goldsmith, G., Hegde, M., Kumar, S., Pandey, M., Singh, R. K., Ray, P., Natarajan, R., Kelkar, M., De, A., Choudhary, B. & Raghavan, S. C. <u>2012</u>. "An inhibitor of nonhomologous end-joining abrogates doublestrand break repair and impedes cancer progression". *Cell*, 151, 1474-87.

- Steelman, L. S., Chappell, W. H., Abrams, S. L., Kempf, R. C., Long, J., Laidler, P., Mijatovic, S., Maksimovic-Ivanic, D., Stivala, F., Mazzarino, M. C., Donia, M., Fagone, P., Malaponte, G., Nicoletti, F., Libra, M., Milella, M., Tafuri, A., Bonati, A., Basecke, J., Cocco, L., Evangelisti, C., Martelli, A. M., Montalto, G., Cervello, M. & Mccubrey, J. A. <u>2011</u>. "Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging". *Aging (Albany NY)*, 3, 192-222.
- Steenbergen, R. D., Hermsen, M. A., Walboomers, J. M., Joenje, H., Arwert, F., Meijer, C. J. & Snijders, P. J. <u>1995</u>. "Integrated human papillomavirus type 16 and loss of heterozygosity at 11q22 and 18q21 in an oral carcinoma and its derivative cell line". *Cancer Res*, 55, 5465-71.
- Stransky, N., Egloff, A. M., Tward, A. D., Kostic, A. D., Cibulskis, K., Sivachenko, A., Kryukov, G. V., Lawrence, M. S., Sougnez, C., Mckenna, A., Shefler, E., Ramos, A. H., Stojanov, P., Carter, S. L., Voet, D., Cortes, M. L., Auclair, D., Berger, M. F., Saksena, G., Guiducci, C., Onofrio, R. C., Parkin, M., Romkes, M., Weissfeld, J. L., Seethala, R. R., Wang, L., Rangel-Escareno, C., Fernandez-Lopez, J. C., Hidalgo-Miranda, A., Melendez-Zajgla, J., Winckler, W., Ardlie, K., Gabriel, S. B., Meyerson, M., Lander, E. S., Getz, G., Golub, T. R., Garraway, L. A. & Grandis, J. R. <u>2011</u>. "The mutational landscape of head and neck squamous cell carcinoma". *Science*, 333, 1157-60.
- Sturgis, E. M., Wei, Q. & Spitz, M. R. <u>2004</u>. "Descriptive epidemiology and risk factors for head and neck cancer". *Semin Oncol*, 31, 726-33.
- Talamini, R., Vaccarella, S., Barbone, F., Tavani, A., La Vecchia, C., Herrero, R., Munoz, N. & Franceschi, S. <u>2000</u>. "Oral hygiene, dentition, sexual habits and risk of oral cancer". *Br J Cancer*, 83, 1238-42.
- Tang, D., Wu, D., Hirao, A., Lahti, J. M., Liu, L., Mazza, B., Kidd, V. J., Mak, T. W. & Ingram, A. J. <u>2002</u>. "ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53". *J Biol Chem*, 277, 12710-7.
- Telmer, C. A., An, J., Malehorn, D. E., Zeng, X., Gollin, S. M., Ishwad, C. S. & Jarvik, J. W. 2003. "Detection and assignment of TP53 mutations in tumor DNA using peptide mass signature genotyping". *Hum Mutat*, 22, 158-65.
- Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S. Y., Taya, Y., Prives, C. & Abraham, R. T. <u>1999</u>. "A role for ATR in the DNA damageinduced phosphorylation of p53". *Genes Dev*, 13, 152-7.
- Tota, J. E., Chevarie-Davis, M., Richardson, L. A., Devries, M. & Franco, E. L. <u>2011</u>.
 "Epidemiology and burden of HPV infection and related diseases: implications for prevention strategies". *Prev Med*, 53 Suppl 1, S12-21.
- Travasso, C. <u>2013</u>. "Betel quid chewing is responsible for half of oral cancer cases in India, finds study". *BMJ*, 347, f7536.
- Trizna, Z. & Schantz, S. P. <u>1992</u>. "Hereditary and environmental factors associated with risk and progression of head and neck cancer". *Otolaryngol Clin North Am*, 25, 1089-103.
- Vallon, M., Seidl, C., Blechert, B., Li, Z., Gilbertz, K. P., Baumgart, A., Aichler, M., Feuchtinger, A., Gaertner, F. C., Bruchertseifer, F., Morgenstern, A., Walch, A. K., Senekowitsch-Schmidtke, R. & Essler, M. <u>2012</u>. "Enhanced efficacy of combined (213)Bi-DTPA-F3 and paclitaxel therapy of peritoneal carcinomatosis is mediated by enhanced induction of apoptosis and G2/M phase arrest". *Eur J Nucl Med Mol Imaging*.
- Van Houten, V. M., Tabor, M. P., Van Den Brekel, M. W., Kummer, J. A., Denkers, F., Dijkstra, J., Leemans, R., Van Der Waal, I., Snow, G. B. & Brakenhoff, R. H. <u>2002</u>. "Mutated p53 as a molecular marker for the diagnosis of head and neck cancer". *J Pathol*, 198, 476-86.

- Vaupel, P., Kelleher, D. K. & Hockel, M. <u>2001</u>. "Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy". *Semin Oncol*, 28, 29-35.
- Velly, A. M., Franco, E. L., Schlecht, N., Pintos, J., Kowalski, L. P., Oliveira, B. V. & Curado, M. P. <u>1998</u>. "Relationship between dental factors and risk of upper aerodigestive tract cancer". *Oral Oncol*, 34, 284-91.
- Vermeulen, K., Van Bockstaele, D. R. & Berneman, Z. N. <u>2003</u>. "The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer". *Cell Prolif*, 36, 131-49.
- Vermorken, J. B. & Specenier, P. <u>2010</u>. "Optimal treatment for recurrent/metastatic head and neck cancer". *Ann Oncol*, 21 Suppl 7, vii252-61.
- Vivanco, I. & Sawyers, C. L. <u>2002</u>. "The phosphatidylinositol 3-Kinase AKT pathway in human cancer". *Nat Rev Cancer*, 2, 489-501.
- Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., Snijders, P. J., Peto, J., Meijer, C. J. & Munoz, N. <u>1999</u>. "Human papillomavirus is a necessary cause of invasive cervical cancer worldwide". *J Pathol*, 189, 12-9.
- Wendt, J., Radetzki, S., Von Haefen, C., Hemmati, P. G., Guner, D., Schulze-Osthoff, K., Dorken, B. & Daniel, P. T. <u>2006</u>. "Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells". *Oncogene*, 25, 972-80.
- White, J. S., Weissfeld, J. L., Ragin, C. C., Rossie, K. M., Martin, C. L., Shuster, M., Ishwad, C. S., Law, J. C., Myers, E. N., Johnson, J. T. & Gollin, S. M. <u>2007</u>. "The influence of clinical and demographic risk factors on the establishment of head and neck squamous cell carcinoma cell lines". *Oral Oncol*, 43, 701-12.
- Whitehouse, C. J., Taylor, R. M., Thistlethwaite, A., Zhang, H., Karimi-Busheri, F., Lasko, D. D., Weinfeld, M. & Caldecott, K. W. 2001. "XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair". *Cell*, 104, 107-17.
- Windon, M. J., D'souza, G., Rettig, E. M., Westra, W. H., Van Zante, A., Wang, S. J., Ryan, W. R., Mydlarz, W. K., Ha, P. K., Miles, B. A., Koch, W., Gourin, C., Eisele, D. W. & Fakhry, C. <u>2018</u>. "Increasing prevalence of human papillomavirus-positive oropharyngeal cancers among older adults". *Cancer*, 124, 2993-2999.
- Winston, L. A. & Hunter, T. <u>1996</u>. "Intracellular signalling: putting JAKs on the kinase MAP". *Curr Biol*, 6, 668-71.
- Wittekind, C. 2017. TNM-Klassifikation maligner Tumoren, Weinheim, Wiley-VCH.
- Wittwer, C. T., Herrmann, M. G., Moss, A. A. & Rasmussen, R. P. <u>1997</u>. "Continuous fluorescence monitoring of rapid cycle DNA amplification". *Biotechniques*, 22, 130-1, 134-8.
- Woolgar, J. A. & Triantafyllou, A. <u>2009</u>. "Pitfalls and procedures in the histopathological diagnosis of oral and oropharyngeal squamous cell carcinoma and a review of the role of pathology in prognosis". *Oral Oncol*, 45, 361-85.
- Worden, F. P., Kumar, B., Lee, J. S., Wolf, G. T., Cordell, K. G., Taylor, J. M., Urba, S. G., Eisbruch, A., Teknos, T. N., Chepeha, D. B., Prince, M. E., Tsien, C. I., D'silva, N. J., Yang, K., Kurnit, D. M., Mason, H. L., Miller, T. H., Wallace, N. E., Bradford, C. R. & Carey, T. E. <u>2008</u>. "Chemoselection as a strategy for organ preservation in advanced oropharynx cancer: response and survival positively associated with HPV16 copy number". *J Clin Oncol*, 26, 3138-46.
- Wulbrand, C., Seidl, C., Gaertner, F. C., Bruchertseifer, F., Morgenstern, A., Essler, M. & Senekowitsch-Schmidtke, R. **2013**. "Alpha-particle emitting 213Bi-anti-EGFR

immunoconjugates eradicate tumor cells independent of oxygenation". *PLoS One,* 8, e64730.

- Xing, Y., Lin, N. U., Maurer, M. A., Chen, H., Mahvash, A., Sahin, A., Akcakanat, A., Li, Y., Abramson, V., Litton, J., Chavez-Macgregor, M., Valero, V., Piha-Paul, S. A., Hong, D., Do, K. A., Tarco, E., Riall, D., Eterovic, A. K., Wulf, G. M., Cantley, L. C., Mills, G. B., Doyle, L. A., Winer, E., Hortobagyi, G. N., Gonzalez-Angulo, A. M. & Meric-Bernstam, F. <u>2019</u>. "Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation". *Breast Cancer Res*, 21, 78.
- Yong, K. J., Milenic, D. E., Baidoo, K. E. & Brechbiel, M. W. <u>2012</u>. "(212)Pbradioimmunotherapy induces G(2) cell-cycle arrest and delays DNA damage repair in tumor xenografts in a model for disseminated intraperitoneal disease". *Mol Cancer Ther*, 11, 639-48.
- Yoshida, T., Okamoto, I., Okabe, T., Iwasa, T., Satoh, T., Nishio, K., Fukuoka, M. & Nakagawa, K. <u>2008</u>. "Matuzumab and cetuximab activate the epidermal growth factor receptor but fail to trigger downstream signaling by Akt or Erk". *Int J Cancer*, 122, 1530-8.
- Zissler, U. M., Jakwerth, C. A., Guerth, F. M., Pechtold, L., Aguilar-Pimentel, J. A., Dietz, K., Suttner, K., Piontek, G., Haller, B., Hajdu, Z., Schiemann, M., Schmidt-Weber, C. B. & Chaker, A. M. <u>2018</u>. "Early IL-10 producing B-cells and coinciding Th/Tr17 shifts during three year grass-pollen AIT". *EBioMedicine*, 36, 475-488.

8 ANHANG

8.1 Alphateilchen-Emitter-Behandlung: unkonjugierte Kontrolle

ABBILDUNG 8.1: : WIRKUNG VON ²¹³BI ODER ²¹³BI-CHX-A"-DTPA AUF DIE PROLIFERATION VON HNSCC-ZELLLINIEN.

Proliferationsanalyse von 6 HNSCC-Zelllinien (93VU147T (93VU), UD-SCC-2 (UD2), UD-SCC-3 (UD3), UD-SCC-5 (UD5), UPCI-SCC-111 (UP111), UPCI-SCC-154 (UP154)) mittels Kristallviolettfärbung und Bestimmung der Extinktion bei 595 nm, normalisiert auf die jeweilige unbehandelte Kontrolle. Die Auswertung erfolgte zehn Tage nach einmaliger Behandlung mit unterschiedlichen Aktivitätskonzentrationen von ²¹³Bi bzw. ²¹³Bi-CHX-A"-DTPA. Dargestellt sind die jeweiligen Mittelwerte eines Triplikats mit Standardabweichung als Fehlerbalken.

8.2 Immunfluoreszenzfärbung von γH2AX (pS139)

anti-γH2AX pS139 - FITC

Abbildung 8.2: γ H2AX-Immunfluoreszenzfärbung bei HNSCC-Zelllinien

Fluoreszenzmikroskopieaufnahmen der γ H2AX-Färbung von mit und ohne Röntgenstrahlung (1 Gy) behandelten und 30 Minuten später fixierten HNSCC-Zellen (93VU147T (93VU), UD-SCC-2 (UD2), UD-SCC-3 (UD3), UD-SCC-5 (UD5), UPCI-SCC-111 (UP111), UPCI-SCC-154 (UP154)). Zellen wurden mit Hoechst33342 gegengefärbt. Für die Immunfluroreszenzfärbung wurde ein Sekundärantikörper mit gekoppeltem Fluorophore FITC verwendet. Die Bilder wurden am Leica DMI 6000 aufgenommen, Maßstabsbalken 50 μ M.

8.3 Sureprint G3 Human Gene Expression 8x60K Microarray: Rohdaten

TABELLE 8.1: LISTE DER IM VERGLEICH ZUR UNBEHANDELTEN KONTROLLE REGULIERTEN GENE 3H NACH BEHANDLUNG (ÄNDERUNG DER GENEXPRESSION LOG2 > 1,5) FÜR DIE HNSCC-ZELLLINIEN UD-SCC-2 UND UD-SCC-5.

UD-SCC-2						UD-SCC-5					
Upregulation			Downregulation		_	Upregulation			Downregulation		
37 kBq/mL	2 Gy		37 kBq/mL	2 Gy		37 kBq/mL	2 Gy		37 kBq/mL	2 Gy	
ABCC4	AATBC		AASDH	AASDH		ABCD1	ABCG5		ААТК	ADARB2	
ABCD3	AATK		AATK	ABHD1		ABCD3	ABTB2		ABAT	ANKRD20A2	
ABHD17C	ABCD3		ABAT	ABLIM1		ABCG2	ACSM5		ABCA12	ARRDC5	
ABHD6	ABCG1		ABCA3	ABO		ABCG5	ACTR3BP5		ACP5	CLIP3	
ABTB2	ABL2		ABHD14B	ADAM33		ABI1	ADAM7		ACSS2	CNTLN	
ACACA	ABLIM3		ABHD8	AHRR		ACER1	ADAMTS19		ADAM19	DNAJC5G	

UD-SCC-2 Upregulation Downregulation			Upre	egulation	5 Dowr	Downregulation	
37 kBg/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBg/mL	2 Gy
ACAT2	ACCSL	ABL1	ANGPTL4	ACPT	ΑΚΑΡ7	ADAM21	DPF3
ACER1	ACOT11	ABTB1	ANKRD20A5P	ACSM2B	AKNA	ADAMTS13	EGR1
ACKR3	ACTA2-AS1	ACADS	ANLN	ACSM5	ALAS2	ADARB2	FGF21
ACOT11	ADAMTS7	ACCS	AOAH	ACTA2	APOL4	ADHFE1	FOXD3
ACTA2-AS1	ADM	ACOXL	APOLD1	ACTG2	AOP7P1	ADM2	GRIK1-AS1
ACTBL2	AFMID	ACTG1P17	ARHGAP11A	ACTI 6B	ARHGEE15	ADRA1D	KIAA1683
ACTG1P4	AGAP9	ACVR1	ARHGAP32	ACTR3BP2	ATE3	AHR	LAMB2P1
ΔርΤG2	AGEG1	ΔC\/R2B	ARHGEE39	ACTR3BP5	47GP1		LINC01193
ACTI 10	AHCTE1	ACYP1	ARI 6IP1		BCI 2I 11	ALDOC	Inc- Al 359736 1-2
ACTN1					DME	ALDK1	Inc-METTL11A-
					C11orf04		5
ACTNA	ALGII	ADCK4		ADATO	C110(194		100100130091
ACIN4	ALSZ	ADCY6	ATG4C	ADA12	Clorf220	ANKRAZ	LOC100506860
ACTR3B	AMOTL1	ADCYAP1R1	ATL2	ADNP	CACNA1B	ANKRD12	LOC388849
ACTR5	ANAPC1	ADD3	ATOH1	AGFG2	CAND1	ANKRD20A2	LOC401320
ACTR8	ANKRD18A	ADIRF-AS1	ATP6V0D2	AGXT	CCDC114	ARHGAP24	LOC653602
ADAM8	ANKRD27	ADM2	ATP6V1B1	AJUBA	CCDC182	ARHGAP25	LRRTM3
ADAMTS1	ANKRD36BP2	AGBL2	AURKA	AKAP12	CCDC87	ARHGAP44	NRG2
ADAMTS12	ANTXRL	AGPAT4-IT1	AURKAPS1	AKAP7	CCNA1	ARPIN	ODF2L
ADAMTS14	APC	AHR	AURKB	AKNA	CD3E	ARRDC5	OR2T2
ADAMTS7	APP	AHSA2	AUTS2	АКТЗ	CEACAM3	ASB2	OR6C68
ADAMTSL2	AREL1	AIM1	B3GALT2	ALAS2	CEACAM4	ASCL3	PDPR
ADARB1	ARF3	AK9	B3GALT5-AS1	ALDH1A3	CELSR1	ASNS	PPP1R3C
ADCY1	ARHGAP23	АКАР9	BAALC-AS2	ANGPTL6	CFAP74	ATF3	PSAPL1
ADM	ARHGEF10	AKNA	BAI2	ANKMY1	CFH	ATL1	REC114
ADRA2C	ARHGEF25	AKTIP	BANP	ANKRD30BP3	CHDH	ATP2B2	RNA5-8S5
ADRB2	ASAP1-IT1	ALDH1L1	BHLHE40	ANKRD33	CHRNE	ATP6AP1L	SLITRK6
AEN	ASH1L	ALDH1L2	BNIPL	ANKRD33B	CLDN24	B3GALT4	SPG20-AS1
AGAP9	ATAD3B	ALDOB	BORA	ANKRD54	CNOT4	BBC3	STEAP2
AGFG1	ATP6V0D1	ALPK1	BRD8	ANO1	CNTN6	BHLHE40	TRABD2A
AGPAT5	ATP6V1C2	ALS2	BRSK1	ANO7	COL5A1	BNIP3	TRIM34
AGPAT9	ATP7A	AMPH	BTG1	AOC2	CSRNP1	BRI3	
AHCTF1	ATP8	AMZ2P1	BUB1	AP1S3	CTAG1A	C12orf80	
AIF1L	B3GNT8	ANG	BUB1B	APBB2	CTBP2	C15orf52	
AIM1L	BAALC-AS1	ANKMY2	C12orf66	APCDD1L	CTXN1	C15orf65	
AK4	BAIAP2	ANKRA2	C17orf67	APCDD1L-AS1	CXCL12	C1QTNF9B	
AKAP1	BEST4	ANKRD20A2	C6orf223	APLP1	CXXC5	C2orf27A	
AKR1C1	BPESC1	ANKRD20A5P	C9orf131	APOL4	CYTH4	CABYR	
AKR1C3	BRK1	ANKRD24	CACHD1	APOOP5	DENND3	CAMK1D	
AKR1C4	BTBD7	ANLN	CADM1	AQP7P1	DIP2C	CASC8	
ALB	BTG2	ANO6	CAPN9	ARAF	DLGAP1-AS3	CATSPER2	
ALDH1B1	BTN2A1	ANP32E	CASC2	ARAP2	DNAH10OS	CBS	
ALDOC	BTN2A3P	ANTXR2	CASS4	AREG	DNAJB13	CCDC171	
ALG11	C12orf79	ANXA2R	CBLB	ARHGAP23	DOK5	CCNG2	
ALG2	C17orf105	ANXA4	CCDC121	ARHGAP30	DPT	CCNL2	

Upreg	ulation	Downre	gulation	Upreg	gulation	Downregulation
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL 2 Gy
ALOX12	C1orf140	APAF1	CCDC151	ARHGDIB	DRD3	CD177
AMER1	C1orf229	APBB1	CCDC69	ARHGEF15	DSCR10	CDKL1
AMIGO3	C20orf96	APOBEC3B	CCDC77	ARHGEF38	DUSP8	CEL
AMOTL1	C2orf48	APOLD1	CCL20	ARPC5	DYNC2LI1	CEP44
AMPD3	C3AR1	AR	CCNA2	ARRDC4	EDNRA	CEP68
ANAPC1	C5orf42	ARAP2	CCNB1	ART5	ЕРНВ6	CERS1
ANKRD18A	C6orf106	ARAP3	CCNF	ASPHD2	ETNK1	CHAC1
ANKRD18B	C8G	AREG	CCNG2	ATXN3L	FAAHP1	СНБА
ANKRD42	C9orf106	ARHGAP11A	CD72	ATXN7L2	FAM109B	CHRFAM7A
ANXA3	CA5B	ARHGAP12	CDC25B	B3GALT5-AS1	FAM153A	CHST1
AP1M2	CAB39L	ARHGAP18	CDC25C	BAALC-AS2	FAM180A	CITED2
APC2	CACNA2D1	ARHGAP19	CDCA2	BAD	FAM214B	CLCN6
APOA5	CALCRL	ARHGAP27	CDCA3	BAMBI	FAM217B	CLECL1
APOC1	CAMSAP2	ARHGAP31	CDCA8	BARHL1	FCER1G	CLIC4
AOP3	CANX	ARHGAP33	CDON	BBOX1	FCN1	CLIP3
AOP6	CARD6	ARHGEE2	CENPA	BCI 11A	FER116-AS1	
ARC	CASKIN1	ARHGEF25	CENPE	BCI 11B	FEAR2	
AREL 1	CBI N4	ARHGEF28	CEP55	BCOBI 1	FL 136000	
ARG2	CBX1	ARHGEF38	CEAP74	BDKRB1	FL 137201	
				RETI	FL 142022	C0782111
	CCDC144A		CHERD	BLOCIS	FL342022	CRERRE
	CCDC145		CKADOL	BLOCISS	FOSEI	CROCC
ARHGEFIU	CONK		CKAPZL			
ARHGEF16	CCINK CCINK	ARIDSB	CKS2	BMP8B	FPG1-INNI3K	
ARHGEF4	CONT	ARLEIPT		BNCI	FXYDS	CTAGE4
ARIDSA		ARL6IP5		BNIPL	GABRB1	CIH
ARL4C	CDC42	ARMC9	CNTRL	BPIFB2	GDF5	CXCL8
ARMC5	CDK13	ARNTL	CPB1	BRPF3	GLYCTK	СҮР26А1
ARPC5	CDR2L	ARRDC1	CPEB3	BTN2A3P	GNG4	CYP4F2
ASAP1-IT1	CENPP	ASAP3	CPN1	C11orf94	GPIHBP1	CYP4F3
ASB2	CEP83	ASH1L-AS1	CSAG4	C11orf95	GPR142	D2HGDH
ASCL2	CES1	ASPM	CSH1	C12orf54	GPR20	DAAM2
ASIC1	CFAP44	ATAT1	CWF19L2	C17orf50	GPR78	DAPK2
ASPHD2	CHAT	ATF7IP	CXCL1	C1orf106	GUCY1B2	DCLK1
ATAD3B	CHD6	ATG2A	CXCL8	C1orf186	HIST1H1B	DDIT4
ATAD3C	CISD3	ATOH8	CXCR3	C1QTNF9B-AS1	HIST1H1D	DENND1A
ATF3	CNST	ATP6AP1L	CYP4Z1	C2CD4C	HIST1H4E	DENND2D
ATG16L1	COPG1	ATP6V0D2	DBF4	C3orf70	HRASLS5	DEPTOR
ATG9B	CRYBG3	ATP6V0E2	DCLRE1C	C9orf152	HRH2	DET1
ATP10B	CTAG1A	ATP6V1G2	DEPDC1	C9orf69	HUS1B	DFNB59
ATP13A2	CTNNAL1	ATP7A	DEPDC1B	CA2	IL12RB1	DHRS12
ATP2A2	CTNNB1	ATP8B2	DLGAP5	CAB39	IL15	DHRS3
ATP2B1	CXorf23	ATP8B5P	DNM1P46	CACHD1	IL18RAP	DICER1-AS1
ATP5A1	CYGB	ATXN7L1	DRD3	CACNG3	IL21R-AS1	DIRC3
ATP8A2	CYP27C1	AURKA	ECT2	CACNG4	ITGA11	DKFZP586B0319

	Upregulation	D-SCC	z Dowr	nregulation	-		Upregulation	JD-3CC-5	Downregulation
37 kBq/mL	2 Gy		37 kBq/mL	2 Gy]	37 kBq/mL	2 Gy		37 kBq/mL 2 Gy
B3GALNT2	CYP4F8		AURKAPS1	EDA		CACNG8	IZUM01R		DKFZp667F0711
B3GALT6	CYTH1		AURKB	EGFEM1P		CAMK2N1	JPH2		DKFZp686M1136
B4GALT1	DCAF5		AVL9	EGR1		CAMLG	KCNG3		DNM3
BAG1	DDI2		AZIN2	EGR3		CAND1	KCNN2		DNMT3B
BAGE	DDRGK1		B3GALT2	EHBP1		CARD10	KIAA1804		DOC2GP
BAIAP2	DDX17		B3GALT4	EHHADH		CASP7	KIF3C		DOK7
BATF3	DDX6		B3GALT5-AS1	ENPP5		CC2D2A	KRTAP13-4		DPF3
BCL11B	DEFB1		B3GNT3	EPOR		CCDC182	KRTAP1-5		DPRXP4
BCL2L11	DENND2C		BAALC-AS2	ERI2		CCDC87	KRTAP3-1		DUSP6
BCL2L13	DGCR10		BAD	FABP12		CCDC9	KRTAP5-5		ECM2
BCL6B	DGKZ		BAG3	FAM104B		сск	LARGE		EDEM1
BCL9L	DHX57		BAHCC1	FAM110A		CCND3	LBX2-AS1		EGEL6
BCB	DI G1		BAIAP2-AS1	FAM126A		CCNF1	LCF2A		EGIN3
BCRP2	DMTE1		BAIAD211	EAM230B		CONE2			EGP1
			DAIAF2LI	FAMEAA		CD14			ENCI
DDNE	DNAU14		DAJE I	FAM04A		CD14			ENUO
BDINF	DNALC27		DAL2D	FAM72A		CD244	LIMZ		ENRO
BECNIPI	DNAJC27		BBSID	FAM72D		CD3E	LINCOUO92		
BEGAIN	DNAJC3		BB29	FAM83D		CD3EAP	LINC00423		EPB41
BEND3	DNMT3A		BCL11A	FBXO22		CDC25A	LINC00494		EPOR
BEST4	DOCK5		BCL2L12	FCRLA		CDC42SE1	LINC00630		ERICH2
BET1L	DOCK7		BCL3	FLJ30064		CDC45	LINC00687		ERRFI1
BFSP1	DPEP3		BEND7	FOS		CDH16	LINC00963		ETV5
ВІК	DPRXP4		BIRC5	FZD2		CDKL5	LINC00989		EXD3
BIN1	DPY19L3		BNIP3	G2E3		CDKN1C	LINC01118		EYA2
BMP6	DUSP26		BNIPL	GALNT9		CDR2L	LINC01197		F2RL2
BMP7	DYRK1A		BORA	GAS2L3		CDRT1	LL22NC03-63E9	9.3	FAHD1
BMS1P20	E2F7		BRD8	GEM		CEACAM4	Inc-AC118344.1	l-1	FAM107B
BRI3BP	ECEL1		BREA2	GGN		CEACAM7	Inc-C5orf25-1		FAM110C
BRMS1	ECEL1P2		BSPRY	GNG13		CECR2	Inc-CDS1-2		FAM120A
BSN	ECHDC3		BTBD8	GOLGA7B		CENPO	2517M22.14.1-	1	FAM227B
BTBD11	EFNA5		BTG1	GPSM2		CENPU	Inc-EFR3B-2		FAM228B
BYSL	EIF4G3		BTN2A2	GPX3		CFAP58	Inc-EMX2-1		FAM84B
C10orf2	ELK4		BUB1	GRK1		CGB	Inc-GTF2E2-1		FBXO32
C12orf49	ENDOV		BUB1B	GSTM4		CGRRF1	Inc-KBTBD5-2		FLJ37201
C14orf159	ENGASE		BVES-AS1	GTSE1		CHFR	Inc-METTL11A-	1	FLJ43315
C14orf169	ENTPD1-AS1		C11orf42	GUCY1B3		CHORDC1	Inc-POLR2F-1		FLJ46906
C15orf39	EPC1		C11orf54	GYG2		CHRNE	Inc-PPP2R2A-2		FNIP1
C17orf51	EPPK1		C11orf65	HCG4B		CHST11	Inc-SULF1-3		FOS
C17orf96	ERVMER34-1		C11orf68	НСР5В		CIDEC	Inc-WRNIP1-2		FOXA1
C1orf122	ESRRG		C11orf70	HES1		CLDN24	LOC100129473		FOXD3
C1orf189	ETNK1		C11orf71	HJURP		CLDN6	LOC100129931		FRAS1
C1orf233	ETV5		C11orf74	HMMR		CLEC4G	LOC100130264		FTCDNL1
C1orf54	EVA1C		C11orf80	HNF4G		CLSPN	LOC100130705		FUT11
C1QTNF9B-	AS1 EVI5		C12orf66	HOXB13		CLTB	LOC100131372		GABPB2
	UD-S	CC-2		UD-SCC-5					
-----------	----------	--------------	-------------------	-----------	--------------	----------------	--	--	
Upre	gulation	Downre	gulation	Upre	gulation	Downregulation			
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL 2 Gy			
C2CD2	EWSR1	C12orf76	HPD	CNKSR3	LOC100131792	GARS			
C2orf72	EXOC8	C14orf132	HYLS1	CNNM2	LOC100132207	GCHFR			
C2orf88	FAM106B	C14orf28	IER5	CNTD2	LOC100132356	GDF15			
C3AR1	FAM106CP	C14orf93	IFT74	CNTN6	LOC100422737	GGACT			
C3orf70	FAM107B	C15orf27	IGLON5	COL12A1	LOC100506374	GNA13			
C5orf42	FAM160B1	C17orf104	ІТРКВ	COL13A1	LOC101060524	GPNMB			
C7orf26	FAM171B	C19orf54	JADE1	COL14A1	LOC101926907	GPT2			
C8G	FAM21C	C1orf106	JAKMIP3	COL4A1	LOC101927285	GRAMD1C			
C9orf114	FAM223A	C1RL	KALRN	COQ4	LOC101928356	GRB10			
CA11	FAM57B	C20orf194	KBTBD2	CORT	LOC101929709	GRIK1-AS1			
CA5B	FAM98B	C21orf62-AS1	KCNK17	COX6A2	LOC102723564	HCAR3			
CA5BP1	FANCA	C2orf48	KIAA1107	CPA4	LOC102723804	HDAC5			
CABLES1	FAXC	C2orf68	KIAA1244	CPA5	LOC102724434	HEATR5A			
CADM2	FBRSL1	C2orf74	KIF14	CRABP2	LOC145845	HES6			
CAMK1D	FCHO2	C2orf81	KIF18A	CRACR2A	LOC146880	ННАТ			
CAMK2N1	FCRL6	C5	KIF20A	CRYGA	LOC286382	HRK			
CAMKK2	FEM1A	C5orf34	KIF20B	CRYM-AS1	LOC401320	ICK			
CAMTA1	FERMT1	C6orf1	KIF23	CSHL1	LOC441204	IFIT1			
CAND1.11	FGF22	C6orf165	KIF2C	CSRNP1	LOC727721	IFIT2			
CANX	FHL2	C8orf44	KLF10	CTAG1A	LPO	IFT81			
CARD11	FLCN	C8orf48	KLF6	CTDP1	LYPD3	IL17RD			
CARD18	FLJ11710	CABYR	KLRG1	CTRB2	MAGEB5	IL20RB			
CASC8	FLJ39080	CALCOCO1	KNSTRN	CTRC	MALRD1	IMMP2L			
CASP9	FLJ41170	CALCRL	KRT27	CUX2	MAP4	INPP4B			
CCDC101	FLJ45513	CAMK1	LENEP	CYCS	MB21D2	INSIG1			
CCDC137	FNIP1	CAMK4	LGI2	CYP1A1	MEG3	ITGA2			
CCDC172	FOSL2	CAMTA2	LGI4	CYP1B1	MSI1	IZUM01			
CCDC58	FOXN2	CAP2	LINC00442	CYP26B1	MST152	JADE2			
CCDC86	FOXQ1	CAPN1	LINC00607	CYP27C1	MYOG	JDP2			
ССК	FRRS1	CAPN5	LINC00858	CYP2B6	NBAT1	KANTR			
CCND1	FSCN2	CAPN9	LINC00886	CYR61	NDST1	KCNG1			
CCND2	FUBP3	CAPS2	LINC00955	CYTH4	NIP7	KDM7A			
CCNE1	FUT7	CARF	LINC01197	DAB1	NOL4L	KIAA0040			
CCNT1	FXYD3	CARHSP1	LINC01205	DACT1	NR0B2	KIAA0754			
CD247	GARNL3	CASC10	LINC01550	DCBLD2	NRP2	KIAA1683			
CD38	GCC2	CASC2	LINGO1	DCLK2	OK/SW-CL.58	KIF6			
CD3EAP	GDAP1	CASC5	LIPE LL22NC03-	DCTN1	OPTC	KISS1R			
CD55	GGT5	CASKIN2	75H12.2	DDIAS	OR10H4	KLF9			
CD70	GIT1	CASP1	LMCD1	DENND3	OR1S1	KLHL24			
CDC25A	GLUD1P3	CASP4	LMO7DN	DGCR11	OR2M7	KLRG1			
CDC42	GNAO1	CASP5	Inc-C2orf65-1	DGCR14	OR2W5	KPRP			
CDC6	GNPTAB	CASZ1	Inc-CIB4-1	DHRS2	OR4D10	LAMA1			
CDCP1	GOLGA8EP	CATSPER3	Inc-CPNE5-1	DIAPH2	OR52A1	LAMB2P1			
CDH1	GOLGB1	CBL	Inc-LANCL2-1	DIS3L2	OR5H1	LDLR			

Upreg	gulation	Downr	egulation	Upre	gulation	Downregulation
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL 2 Gy
CDH3	GOLIM4	CBX3	Inc-POLR2F-1	DKFZp434J0226	OR8U1	LEKR1
CDHR3	GPHA2	CBX3P2	Inc-TGFBRAP1-5	DLEU1	PALM3	LGALS8
CDK13	GPR135	CBX7	Inc-THNSL1-2	DLX1	PCDH7	LIF
CDK5R1	GPR150	CC2D1B	LOC100128591	DLX2	PCDHB13	LINC00472
CDK6	GPR179	CCDC102A	LOC100129648	DLX3	PDPK1	LINC00521
CDKN1C	GPX6	CCDC106	LOC100130548	DNAAF2	PGC	LINC00659
CDON	GRIN3A	CCDC109B	LOC100507420	DNAH10	PLAC9	LINC00963
CDR2L	GTF3C4	CCDC114	LOC101927934	DNAH10OS	PLEKHS1	LINC00965
CDV3	GTF3C5	CCDC122	LOC101928236	DNAH17	PPP4R1L	LINC01003
СЕВРА	GVINP1	CCDC136	LOC101928343	DNAJA1	PRSS38	LINC01004
CELSR3	HAPLN2	CCDC151	LOC101929450	DNAJA1P5	PSMD9	LINC01133
CENPN	HAS3	CCDC18	LOC102724384	DNAJB1	RABEPK	LINC01183
CEP83	HCAR3	CCDC28A	LOC284930	DNAJB13	RASD1	LINC01193
CFAP44	HCG18	CCDC42B	LOC440300	DNAJB2	RASGRP2	LINC01512
CGA	HECTD4	CCDC61	LOC730101	DOCK3	RAX	LINC01546
СНКА	HERC2	CCDC8	LRRC23	DOCK5	RGCC	LINC01564
CHPE	HES2	CCDC82	LRRC42	DPT	RNASE13	LINC-PINT
CHPF2	HIF3A	CCDC88A	LY6G5C	DPY19L1	ROR1	
CHRNAS	HIST1H2AC	CCHCR1	MIAT	DPYSI 3	RP111	Inc-AP002478 1-1
CHST10	HIST1H2RE	CCNA2	MITE	DRD3	RUNX2	Inc-CCDC284-1
CHST15	HIST1H3B	CCNB1	MK167	DSCR10	SCVL2	Inc-CCDC33-1
CHSV1		CONR2	MKL2	DUOXA1	SEPRING1	Inc-CHST4-3
		CONDER1	MILTO	DUSR	SERTAD1	
(1001		CONE	MMACHC	DZIR1	SLC1A7	Inc ERD44.2
		CONG1		5252	SLCIA	
CIRBP-ASI		CONCE	IVIIVIP20	E2F2	SLC25A5	
		CCNG2			SLC25AZ	Inc-RP11-
CRIMITIA	HKDCI	CD109	MUCSAC	EDNI	SLC25A45	298P3.4.1-1
	HLA-A	CD97		EDNDA	SLC28AI	
CLSPN	HM13	CDC20		EDNRA	SLC2AIO	
CLU	HMCN2	CDC25B	NCAPG	EFCABIO	SLC38A3	
CLUH		CDC2SC	NCUAZ	EFEMPI	SLC43A2	INC-IMEDS-1
		CDC42BPA			SLUU4A1-ASI	
			NEK2			100100120384
	TF1073	CDCAS				r0c100130c01
CNKSR3	нотвьз	CDCAS		EFK3B	SUAIZ	100100130691
CNNM1	HSPB11	CDCP2	NEURLIB	EGFR-AS1	SPG7	100100133669
CNNM3	нгряз	CDH12	NEASC	ELFN2	SPN	LOC100190986
CNST	HSPG2	CDK1	NKX2-8	ELN	STAB2	LOC100506411
CNTFR	HYMAI	CDK18	NLRC5	EPB41L5	SULT1C3	LOC100506753
COA7	IAPP	CDK19	NOX1	ERVMER34-1	SUPT3H	LOC100506860
COBL	ICMT	CDK5RAP2	NR1I3	ESR1	SYNGR3	LOC101927136
COL12A1	IFIT2	CDKN2B-AS1	NR3C2	ETNK1	SYT2	LOC102723456
COL18A1	IFITM10	CDKN2D	NUF2	ETS1	SYT5	LOC283038
COL1A1	IL16	CDKN3	OR2T4	ETS2	SZT2	LOC391322

Upreg	ulation	Downre	gulation	Upre	gulation	Downregulation
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL 2 Gy
COL27A1	IMMT	СЕВРВ	OR52R1	EXOC3L1	TAS2R5	LOC399715
COL7A1	INE1	CEBPZOS	OR6Y1	F2R	TBC1D10C	LOC440173
COLGALT1	ING5	CECR5-AS1	ORAI3	FAM107A	TCOF1	LOC648149
CPA4	INVS	CENPA	OSBPL10	FAM109B	TLE1	LOC729860
CPLX1	IQSEC3	CENPE	OTUB2	FAM111B	TMEM176B	LOXL4
CPQ	JPX	CENPF	PAFAH2	FAM138A	TMEM201	LPIN1
CPT1C	KANK3	CENPI	PAQR3	FAM180A	TMEM8C	LRCH1
CR2	KCNG3	CENPL	PCDH11X	FAM209A	TMSB15B	LRP2
CRABP2	KCNIP4	CEP112	PCDHB4	FAM214B	TNR	LSS
CREB5	KCNK7	CEP170	PF4	FAM217B	TNRC18	LTC4S
CRYBG3	KCNQ10T1	CEP192	PID1	FAM25A	TNRC6C	LY96
CRYM	KCNV2	CEP44	PIF1	FAM46B	TP53TG3C	LYPD6
CSRP1	KDM6B	CEP55	PIM1	FAM46C	TRIM62	LYRM9
CTNNAL1	KIAA1244	CEP70	РКІВ	FAM76A	TRMT13	LYSMD4
CTRL	KIAA1804	CERCAM	PLD1	FAM84A	TRPC6	MAB21L3
CTU1	KIFC1	CES3	PLEKHG4B	FANCB	TTLL9	MAFF
CTU2	KIRREL	CETN3	PLK1	FAS	TUNAR	MAP3K13
CUL3	KLHL41	CETN4P	POU5F1B	FAXDC2	VAV2	MAP3K5
CXCL14	KLRG2	CFAP43	PPM1E	FBXL13	VPS37A	MECOM
CXCL16	KMT2C	CFAP74	PPP4R1L	FBXO22	XLOC_I2_010118	MEIOB
CXCL2	KMT2E	CHADL	PRPF40B	FCGBP	XLOC_12_010831	MIPOL1
CXorf56	KRTAP3-3	CHD2	PSMB11	FCN1	XLOC_12_015848	MKNK2
CYCS	LAMA4	CHD3	PSRC1	FER1L6-AS2	ZIC4	ММАВ
CYGB	LATS1	CHRD	PTGR2	FERMT2	ZNF329	MMP11
CYP20A1	LCE1D	CIC	PUS10	FFAR2	ZNF507	MNT
CYP26A1	LENG9	СІТ	QIQN5815	FGF2	ZNF702P	MSM01
CYP26C1	LGALS3	CKAP2	RAB28	FLJ13744	ZNF703	MST1
CYP27B1	LGALS8	CKAP2L	RACGAP1	FLJ36000	ZNF77	MTL5
CYP27C1	LINC-ROR	СКАР5	RACGAP1P	FLJ37201	ZNF800	MXI1
CYP51A1	LINC00354	CKMT2-AS1	RBFOX1	FLJ40039	ZSCAN1	MYO5C
DACT1	LINC00504	CLDN4	RGR	FLJ42022		MYOM2
DAPL1	LINC00657	CLDND2	RHBDD1	FLJ45950		NDRG1
DBIL5P	LINC00673	CLEC19A	RNASE4	FOLH1B		NDUFA4L2
DBT	LINC00852	CLEC4G	RPGRIP1L	FOLR2		NEAT1
DCAF5	LINC00865	CLHC1	RSG1	FOSL1		NFAM1
DDX18	LINC00883	CLSTN3	RTKN2	FOXC2		NINL
DDX19A	LINC00884	CMYA5	SAMD13	FOXI2		NKD2
DDX21	LINC00888	CNRIP1	SAMD9L	FOXP1		NMRK1
DDX31	LINC00908	CNTRL	SAPCD2	FOXRED2		NPAS2
DDX51	LINC00969	CNTROB	SCUBE1	FSTL3		NR2F1
DDX54	LINC01000	COG4	SDCCAG8	FUT4		NR2F1-AS1
DDX56	LINC01001	CRAT	SDPR	FZD4		NUDT6
DENND4C	LINC01347	CREB3L4	SENP7	GABRB1		NUDT7
DEPTOR	LINC01521	CREBRF	SGOL2	GABRG2		NUPR1

Upreg	ulation	Downre	gulation	UD-SCC-:	Downregulation
37 kBa/mL	2 Gv	37 kBa/mL	2 Gv	37 kBa/mL 2 Gv	37 kBa/mL 2 Gv
DERL3	LINC01588	CRHR1-IT1	SHISA3	GADD45B	NUPR1I
DGCR11	Inc-AF131215.3.1-	CRTC1	SI C1A1	GASS	NYNRIN
DGCR14	Inc-AF131215.4.1-	CRV7	SIC45A3	GAST	ODE21
DCCDR		CKT2		CRDE	OCT
DGCK8	INC-UBLB-4	CSFI	SLITERE	GBP5	
DGKD	Inc-CPIVI-1	CSF2RB	SUCSE	GCK	OLFMILZA
DGKE	Inc-DIO2-3	CSH1	SPDL1	GDF5	OMA1
DHCR7	Inc-GGCT-1	CTDSP2	SPOCK2	GDPD5	OR6C68
DHX33	Inc-GLIPR1-3	CTPS2	SRP14-AS1	GFOD1	OR8B3
DHX34	Inc-HMGA1-3	CTSK	SSBP3	GGNBP1	PADI1
DHX37	Inc-IL6-2	CUL4B	ST18	GINS4	PAQR3
DIAPH1	Inc-KIAA1324L-1	CXCR3	STAMBPL1	GJB2	PARP4
DIMT1	Inc-KLF14-2	CXorf30	STARD13	GJB3	PAX8-AS1
DIO2	Inc-KLHL36-1	CXXC4	STARD8	GJB4	PCK2
DIO3	Inc-LTBP3-2	CYBRD1	STIL	GLYATL3	PCSK9
DIS3	Inc-MYC-2	CYFIP2	STK16	GLYCTK	PDCD4
DIS3L2	Inc-RGL4-1	CYP39A1	STK17B	GNG13	PDE5A
DKC1	239B22.1.1-1	CYP4X1	SULT6B1	GNG4	PDE6A
DKFZp547J222	Inc-RTL1-2	CYP4Z1	SWT1	GPAT2	PDK1
DLD	Inc-SIK1-2	DACH1	SYCE1	GPD1	PDP1
DLG1	Inc-VIP-1	DALRD3	SYTL4	GPER1	PGPEP1
DLL3	Inc-WDR73-5	DAZ1	TAF1L	GPIHBP1	PHGDH
DNAH14	Inc-WNT8A-2	DAZ2	TAF5	GPR142	PHLDA1
DNAJC11	Inc-ZNF2-1	DAZL	TAS2R19	GPR153	PHYKPL
DNAJC2	LOC100128198	DBN1	TBC1D8B	GPR158-AS1	PLA2G10
DNAJC25	LOC100128398	DBNDD2	TCF23	GPR39	PLB1
DNAJC27	LOC100128563	DBP	TEKT4P2	GPR78	PLCB1
DNAJC3	LOC100129380	DCAF16	TESK2	GPRC5B	PLEKHH2
DNLZ	LOC100129447	DCLK2	TGIF1	GPRIN2	PLIN2
DNPEP	LOC100130051	DDB2	THAP7-AS1	GRHL1	PLIN4
DOCK5	LOC100130152	DDR1	THOC1	GRHL3	PMAIP1
DOHH	LOC100130276	DDX59	TMCC2	GRIK3	PNMA6A
DOK3	LOC100130417	DEF6	TMEFF2	GRIN2C	PNRC1
DOLK	LOC100130429	DENND3	TMEM106A	GRIN2D	POGZ
DPEP3	LOC100132356	DENND4C	TMEM187	GUSBP11	POLI
DPH2	LOC100132363	DEPDC1	TMIE	GZF1	PPARGC1A
DPP10-451	100100132368	DEPDC1B	TMOD2	H19	PDFIRD2
DPYSL3	LOC100133130	DENA5	TPX2	H2AFX	PPIL6
	10010010001	DENR21	TRIMEO	HRA2	PDD1P26
	100100100096	DCKA			PDD1P36
DUGD2	FOCTOOTA0380				
DUSP2					PDOC1
DOSP26	LUC100499194	DICER1-AS1	TRUAP	HIS11H4D	PKUS1
DUSP8	LOC100506191	DIDO1	TRPM6	HIST2H3A	PRR15
DYRK1A	LOC100996405	DIRAS1	TSHB	HIVEP3	PRSS22
DYRK2	LOC101927104	DISC1	TSPAN32	HLA-DPA1	PRSS8

Upreg	ulation	Downre	gulation	•	Upregulation	00-300-3	Downregulation
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		37 kBq/mL 2 Gy		37 kBq/mL 2 Gy
ECE2	LOC101927151	DLG3	ттк		HLA-DQB1		PSAT1
EDN1	LOC101927910	DLGAP5	TUBB8		HMGCLL1		PSPH
EDRF1	LOC101929452	DLX1	UBALD2		HNRNPD		PTGS2
EEF2KMT	LOC101929964	DLX4	UHRF2		HOTAIR		РТР4АЗ
EFHD2	LOC101930611	DLX6-AS1	USP17L7		HOXC13		PTPRB
EGLN1	LOC102467146	DMC1	USP27X-AS1		HRASLS5		PTPRR
EHD3	LOC102723979	DMKN	UXT		HRH2		РХК
EIF1AX	LOC102724049	DMRTA2	WIPF3		HSPA1A		RAB26
EIF3J	LOC142937	DMTF1	WNT4		HSPA6		RAP1GAP
EIF4E2	LOC149351	DMXL1	ZBED3-AS1		HUS1B		RCOR2
ELAC2	LOC158863	DNAJC18	ZEB1-AS1		ICAM1		REC114
ELK4	LOC202181	DNAJC4	ZFHX2		ID2		RHEBL1
ELL2	LOC285043	DNASE1	ZFP36		ID3		RIMKLA
ELOVL3	LOC285178	DNM3	ZNF165		IFF01		RNASE4
EME2	LOC285629	DNMT3A	ZNF177		IFITM5		RNF122
EMILIN2	LOC389834	DOCK10	ZNF20		IFNLR1		RNF208
ENDOD1	LOC400590	DOPEY1	ZNF488		IL11		RNF213
ENTPD1-AS1	LOC400863	DOPEY2	ZNF492		IL15		RNFT2
ENTPD4	LOC401320	DPP4	ZNF578		IL17A		RPGRIP1
ENTPD7	LOC401557	DRAM2	ZNRD1-AS1		IL18RAP		RPL37A
EPAS1	LOC649305	DSTNP2	ZSCAN12		IL22RA1		RPS6KA5
EPB41	LOC727993	DUSP13			IL24		RRAGD
EPB41L4B	LOC79999	DUSP19			IL6		RSPO4
EPC1	LOXL3	DUSP5P1			IL7R		SAMD10
EPCAM	LPGAT1	DUSP6			ІРБКЗ		SAMD12
EPGN	LPP	DYNC2H1			IPW		SBK1
EPHA4	LRCH1	DYRK1B			IRX1		SCGN
ЕРНВ6	LRP11	DZIP3			IRX2		SCNN1A
EPPK1	LRRC16A	E2F8			ISLR2		SDPR
EPT1	LRRC37A6P	ECT2			IVL		SEC31B
ERGIC1	LRRC3C	EFCAB6			IZUMO1R		SESN2
ERVMER34-1	LRRC75A	EFCAB7			JAM2		SETD5
ESX1	LTK	EGR1			JPH2		SETDB2
ETV4	LYZL1	EHD2			JUN		SH3BGR
EVA1C	MAGEA6	EHHADH			KANK3		SIM2
EVI5	MALAT1	EID2B			KATNBL1		SLC16A3
EVX1	MAP4	EIF3J-AS1			KBTBD4		SLC24A1
EWSR1	MAPK15	EIF4B			KCNAB3		SLC25A10
EXOSC4	MBL1P	ELK3			KCNG3		SLC26A11
EXT1	MCM9	ELL3			KCNJ15		SLC2A9
F12	MCOLN3	EME1			KCNN2		SLC35F3
F3	MDFI	EML2			KCTD5		SLC38A2
F8A1	MDM2	EMP1			KDM5D		SLC38A6
FA2H	MDM4	ENKD1			KIAA1644		SLC6A9

UD-SCC-2			UD-SCC-5				
Upreg	ulation		Downregulation	٦	Upregulation	Г	Downregulation
37 kBq/mL	2 Gy		37 kBq/mL 2 Gy		37 kBq/mL 2 Gy		37 kBq/mL 2 Gy
FAAH	MED1		ENO2		KIAA1804		SLC7A11
FABP5	MEFV		ENPP5		KIF24		SLITRK6
FAM106CP	METTL15		EPB41L5		KIF3C		SMCR6
FAM107B	METTL21A		ЕРНВ2		KIR3DX1		SNAI3-AS1
FAM109A	MGA		ЕРНВЗ		KLC2		SNTB1
FAM110B	MGLL		EPOR		KLF10		SOX9
FAM117B	MIA3		ERBB2		KLK11		SPINK5
FAM124A	MIEF1		ERBB3		KPNA7		SPIRE1
FAM135A	MIER3		ERBB4		KRT14		SPP1
FAM155B	MIMT1		ERCC5		KRT16		SPRY1
FAM159A	MIR100HG		EREG		KRT16P2		SPRY4
FAM167A-AS1	MIR17HG		ERI2		KRT17		ST6GAL1
FAM171B	MIR3916		ESPL1		KRT17P5		ST6GALNAC1
FAM189A2	MIR4435-1HG		EVI5L		KRT28		STC2
FAM207A	MLLT4		EXD3		KRT4		STEAP2
FAM210A	MMP21		EXOC3-AS1		KRT42P		STRA6
FAM217B	MOCS3		EXOC6		KRT6B		SULF1
FAM219A	MON1B		EXTL2		KRT85		SYNDIG1
FAM21C	MON2		FAM102B		KRT9		TBX2-AS1
FAM222A	MORN1		FAM110A		KRTAP13-4		TET1
FAM230A	MPRIP		FAM111A		KRTAP3-1		TEX22
FAM26F	MROH5		FAM114A1		LAMA3		TFPI
FAM27B	MRPL19		FAM122B		LAMC2		THBS3
FAM43A	MSANTD3		FAM122C		LANCL3		THNSL2
FAM43B	MT1F		FAM149A		LCE3C		TK2
FAM46A	MT1X		FAM163B		LFNG		TMCO4
FAM49A	MXD1		FAM166B		LGI3		TMEM184A
FAM58A	МҮСВРАР		FAM167B		LGI4		TMEM187
FAM73B	MYCNOS		FAM175A		LHB		TMEM27
FAM78A	MYH9		FAM183A		LHFPL3-AS2		TMEM56
FAM78B	MYLK4		FAM198B		LHX1		TNFRSF14
FAM83B	MYO3A		FAM19A2		LIM2		TNXB
FAM83F	MY05A		FAM200B		LINC00211		TOB2P1
FAM84B	MYOF		FAM214A		LINC00242		TOX2
FAM86B1	MYRF		FAM214B		LINC00423		TRIB3
FAM86B2	NAA16		FAM228B		LINC00494		TRIM2
FAM86B3P	NAV2		FAM63A		LINC00548		TRIM34
FAM87A	NBPF6		FAM64A	1	LINC00607		TRIM66
FAM91A1	NBPF8		FAM66A	1	LINC00630		TRIQK
FANCA	ND2		FAM66C		LINC00687		TSC22D3
FAT1	ND4L		FAM69B		LINC00689		TSPAN10
FAXC	ND6		FAM72A		LINC00894		TTC25
FBLIM1	NEK10		FAM72D	1	LINC00907		TTLL1
FBRSL1	NES		FAM83D		LINC00934		TUBE1

UD-SCC-2					UD-SCC-5					
Upreg	ulation		Downregulation	1	Upregulation	1	Downreg	ulation		
37 kBq/mL	2 Gy		37 kBq/mL 2 Gy		37 kBq/mL 2 Gy		37 kBq/mL	2 Gy		
FBXL17	NIPAL1		FAM8A1		LINC00964		UBALD2			
FBXO2	NPHP3		FANCE		LINC00989		ULBP1			
FCAR	NPHS2		FANCL		LINC01088		UNC5B-AS1			
FEM1A	NPLOC4		FANK1		LINC01091		UРКЗА			
FGF7	NR4A3		FAXDC2		LINC01116		USP28			
FGFBP1	NYNRIN		FBXL20		LINC01118		VEGFA			
FGFBP2	OPA1		FBXL5		LINC01122		VLDLR			
FGFR1	OR2A2		FBXL8		LINC01165		VLDLR-AS1			
FGFR2	OR2M7		FBXO16		LINC01197		VPS13B			
FHIT	OR4C6		FBXO17		LINC01237		VWCE			
FITM2	OR5W2		FBXO22		LINGO1		WISP2			
FJX1	ORAI2		FBXO24		LL22NC03-63E9.3		WNT5A			
FKBP1A	ORMDL1		FBXO3		LMO7DN		XIRP1			
FKRP	OTX1		FBXO32		Inc-AC118344.1-1		XLOC_I2_000297			
FMNL1	P2RY1		FBXO36		Inc-BTBD10-3		XLOC_I2_008203			
FOXC1	PAN3		FBXO43		Inc-C2orf65-1		XLOC_I2_011265			
FOXD1	PARP4		FBXO5		Inc-C5orf25-1		ZBED3			
FOXD4	PAXBP1		FBXO8		Inc-C9orf50-2		ZC3H6			
FOXRED2	PCDH19		FBXW2		Inc-C9orf69-2		ZCWPW1			
FRMD3	PCLO		FCHO1		Inc-CDS1-2		ZDHHC21			
FSCN2	PDE4D		FCHO2		2517M22.14.1-1		ZG16B			
FST	PDPR		FERMT2		Inc-DPP4-1		ZNF326			
FSTL3	PER1		FEZ2		Inc-EFR3B-2		ZNF516			
FUBP3	PER2		FGD4		Inc-EMX2-1		ZNF740			
FUNDC2	PFN1P2		FGF14-AS2		Inc-FAM82A1-2		ZRANB3			
FUS	PHKA1		FIG4		Inc-GTF2E2-1		ZSCAN5A			
FXN	PIEZO2		FIGF		Inc-HES1-3	I				
FYN	PIP5K1A		FKBP1B		Inc-KBTBD5-2	I				
FZD3	PKD1		FLJ32255		Inc-MMRN1-2	I				
FZD4	PLCB2		FLJ35934		Inc-POLR2F-1	I				
FZD8	PLCH2		FLJ37453		Inc-PPP2R2A-2	I				
FZD9	PLGLB1		FLJ41455		1	I				
G3BP1	PMEPA1		FLJ46875		Inc-SNCA-2	I				
GABARAPL1	PMPCA		FLJ46906		Inc-SNURF-1	I				
GABRB2	POLB		FLT3LG		Inc-SULF1-3	I				
GAGE7	POLE		FMO4		Inc-WRNIP1-2	I				
GAL	POT1		FMR1-AS1		LOC100034248	I				
GALNT14	PPA2		FNBP1		LOC100128170	I				
GALNT18	PPAN-P2RY11		FOCAD		LOC100128317	I				
GALNT2	PPP1R14A		FOS		LOC100129215	I				
GALNT6	PPP1R16B		FOXM1		LOC100129473	I				
GAN	PPP3R1		FOXP2		LOC100129931	I				
GAS1	PPTC7		FPGT-TNNI3K		LOC100130264	I				
GAST	PRM2		FRAT1		LOC100130476					

UD-SCC-5

UD-SCC-2

Upreg	ulation	Downregulation	-	Upregulation	Downregulation
37 kBq/mL	2 Gy	37 kBq/mL 2 Gy		37 kBq/mL 2 Gy	37 kBq/mL 2 Gy
GATA4	PRR20B	FRMD6		LOC100130654	
GATAD2A	PRR3	FRMD6-AS1		LOC100130705	
GATM	PRR34-AS1	FRY		LOC100130872	
GBP1	PSAPL1	FSTL1		LOC100131792	
GCK	PSD	FUT1		LOC100131860	
GDAP1	PSORS1C3	FXR1		LOC100132207	
GEMIN5	PTPN11	FXYD1		LOC100132272	
GFER	PTPN14	FZD2		LOC100132356	
GFOD1	PTPRJ	G2E3		LOC100132593	
GJC1	PTPRK	GALNT9		LOC100289120	
GLCE	PTPRVP	GAS2L3		LOC100422737	
GLUD1P3	PVRL4	GATS		LOC100505920	
GNA11	PVT1	GATSL3		LOC100506014	
GNA15	PXDC1	GBP3		LOC100506374	
GNG4	PXN	GCA		LOC100506731	
GNPTAB	PYCARD	GCNT2		LOC100507420	
GNRH2	PYGO1	GDA		LOC100507431	
GNRHR2	PYY2	GEM		LOC101059906	
GOLM1	RAB12	GEMIN8P4		LOC101059954	
GPAM	RASL11A	GGN		LOC101060524	
GPATCH1	RAVER1	GHR		LOC101927151	
GPATCH4	RBAK	GIPC1		LOC101927202	
GPR125	RBBP4	GJB3		LOC101927285	
GPR135	RBM25	GKAP1		LOC101927801	
GPR183	RBM33	GLIDR		LOC101928233	
GPR56	RBMS1	GLIS2		LOC101928303	
GPRC5A	RBMY1B	GLIS3		LOC101928356	
GPT2	RC3H1	GLRX		LOC101928978	
GPX2	RCC2	GMIP		LOC101929450	
GRB10	REEP3	GNAI1		LOC101929709	
GRIN3A	RELB	GNASAS		LOC102467146	
GRIP1	RFX8	GNG12-AS1		LOC102723564	
GRK5	RGPD6	GP1BB		LOC102723774	
GRM2	RHOQ	GPER1		LOC102724434	
GRWD1	RLIM	GPNMB		LOC145845	
GTF3C4	RMRP	GPR124		LOC149950	
GTPBP3	RN7SK	GPR126		LOC150005	
GTPBP6	RNA1855	GPR146		LOC283485	
GUCY1A3	RNA2855	GPR160		LOC285556	
GUSBP1	RNA5-8S5	GPR162		LOC286382	
GZF1	RNF139-AS1	GPR50		LOC340340	
HAPLN2	RNF19B	GPSM2		LOC389033	
HAUS3	RNF215	GRAMD1A		LOC400043	
HBS1L	RNPC3	GRAMD1C		LOC401286	

UD-SCC-2				UD-SCC-5				
Upi	regulation	Down	regulation	Up	oregulation	Downr	egulation	
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	
HCAR3	RNVU1-18	GRAMD3		LOC401320				
HCFC1	RRBP1	GRHL1		LOC440461				
HDAC2	RUFY2	GRHL3		LOC440864				
HDAC7	S100A5	GRTP1		LOC441204				
HEATR3	S1PR4	GSDMB		LOC644277				
HEATR5A	SAMD4A	GSE1		LOC646736				
HECTD2	SASH1	GTF3C3		LOC727721				
HEG1	SAT1	GTPBP2		LOC727993				
HERC2	SCARNA1	GTSE1		LOC729770				
HEXIM1	SCARNA2	GUCA1B		LOC729870				
HGH1	SCARNA23	GUCY1B3		LOC79160				
HGSNAT	SCARNA5	GULP1		LPAR5				
HIC2	SCARNA7	GYG2		LPHN2				
HID1	SCARNA9	H1FO		LRG1				
HIPK1	SCGB1B2P	H1FX		LRRC10				
HIVEP3	SCGB2B3P	H1FX-AS1		LRRC27				
HK2	SCN3A	H2AFB2		LRRC4				
HLA-A	SCN9A	HAGH		LRRC7				
HLA-B	SCRN1	HBP1		LRRC70				
HLA-DPA1	SCUBE1	HCG27		LRRC8E				
HLA-DQB1	SEC13	HCN3		LY6G5C				
HLF	SETD5	HDAC11		LYPD1				
HM13	SETD7	HDAC5		LYPD3				
HMCN2	SF1	HDGFRP2		MACC1				
HMOX1	SF3B1	HECTD4		MAMDC2				
HNRNPAB	SF3B3	HELZ		MAP3K13				
HNRNPC	SFXN1	HES1		MAP4				
HOXA11	SHANK2	HES5		MAP7D1				
HOXA13	SIGLEC15	HES7		МАРК9				
HOXD10	SIRPB2	HESX1		MATN1				
HOXD11	SKI	HEYL		MB21D2				
HOXD13	SLC13A4	HFE		MCAM				
HPCAL1	SLC22A7	нівсн		мсс				
HPDL	SLC25A27	HIP1		ME3				
HRASLS2	SLC26A5	HIST1H1D		MED15P9				
HRK	SLC30A7	HIST1H2AC		MEFV				
HS6ST1	SLC35F2	HIST1H2AG		MEG3				
HS6ST2	SLC38A2	HIST3H2A		METAP2				
HSF1	SLC39A7	HJURP		METRNL				
HSF2BP	SLC43A2	HLA-DPB1		METTL12				
HSPA14	SLC6A17	HLA-F-AS1		МЕХЗВ				
HSPA2	SLC9A5	HMGA2		MFNG				
HSPA5	SMAP1	HMGB2		MICAL3				
HSPA6	SMG1	HMGCL		MIER3				

UD-SCC-5

UD-SCC-2

Upregulation		Downregulation		Upregulation	Downregulation	
37 kBq/mL	2 Gy	37 kBq/mL 2 Gy		37 kBq/mL 2 Gy	37 kBq/mL 2 Gy	
HSPB8	SMG5	HMHA1		MIR124-2HG		
HYAL2	SNORA28	HMMR		MIR22HG		
HYAL3	SNORA33	HNF4G		MISP		
HYMAI	SNORA71A	HNRNPLL		MKL2		
IARS	SNORA73A	HOOK1		MLYCD		
ICE2	SNORA73B	HOTAIR		MMP10		
IDH3A	SNORA74A	HOXA-AS2		MN1		
IFI27	SNORA81	HOXC4		МОВЗВ		
IFI44L	SNORD15A	HOXC6		MOCS3		
IFI6	SNORD3B-1	HPGD		MPRIP		
IFIT3	SNORD8	HPS3		MRGPRF		
IFITM10	SNRNP40	HS1BP3		MST152		
IFNAR2	SOBP	HS3ST6		MSX1		
IFRD2	SOCS7	HSBP1L1		МТЗ		
IGF1R	SP9	HSD17B11		MUC3A		
IGFBP2	SPAG16	HSD3B7		MUC5AC		
IGFBP3	SPANXB1	HSDL2		MUSTN1		
IGFBP7	SPATA13	HTR3E		MYO15B		
IGFL1	SPATA21	HYLS1		MYO1E		
інн	SPEN	ICA1		MYOG		
ІКВКАР	SPNS2	IER2		NAA30		
IKZF3	SRGAP2B	IER3		NAA38		
IL16	SRRM2	IFI16		NAT1		
IL17D	SRSF6	IFNE		NAT2		
IL17RA	SSH1	IFT140		NBAT1		
IL1RAP	SSH2	IFT172		NCR3		
IL1RN	SSTR3	IFT74		NDST1		
IL4I1	ST3GAL1	IFT80		NDUFB2-AS1		
IMMT	ST6GALNAC5	IFT81		NEDD9		
IMP3	ST7-AS1	IFT88		NEXN		
IMPA2	STAG2	IGBP1		NHLH2		
IMPDH1	STMN1	IGFLR1		NKAPL		
INA	STON1	IGLON5		NLRC5		
ING3	STON2	IKBIP		NOG		
ING5	STRN3	IKZF2		NPTX1		
INHBB	SUN1	IL10RB		NR1I3		
ІРМК	SUPT20HL1	IL11		NRIP3		
ІРРК	SUSD4	IL17REL		NRP2		
IRF1	SYNC	IL20RB		NSG1		
IRF2BP1	TAB2	IL33		NTRK2		
ISCA1	TAF13	ILF3-AS1		NUAK1		
ISG15	TAS2R14	INCENP		NUFIP1		
ISG20	TBC1D10C	ING4		NUMBL		
ISG20L2	TBL1XR1	INHBE		NXPH3		

UD-SCC-2				UD-SCC-5					
Upre	gulation	Downregulation		Upregulation	Downregulation				
37 kBq/mL	2 Gy	37 kBq/mL 2 Gy		37 kBq/mL 2 Gy	37 kBq/mL 2 Gy				
ISM1	TBXAS1	INPP5J		ODF3					
ISM2	TCL1B	INSIG1		OGFRP1					
ISYNA1	TEX13B	INTS8		OK/SW-CL.58					
ITFG2	TEX15	IPO8		ONECUT1					
JAK3	THAP5	IPP		OR10G8					
JMJD4	TIAL1	IQCD		OR10H4					
JOSD1	TINAGL1	IQCJ-SCHIP1		OR1S1					
JUN	TMEM200C	IQGAP3		OR2B6					
KANK1	TMEM44	IQSEC2		OR2M2					
KANTR	TMEM65	IRF2BPL		OR4D10					
KBTBD11	TMEM95	IRF3		OR51B5					
KBTBD6	TNFRSF13C	IRF5		OR52A1					
KBTBD8	TNKS1BP1	ISY1-RAB43		OR52K2					
KCNB1	TOR1AIP2	ITFG3		OR5D16					
KCNC1	TP53INP1	ITGA2		OR5H1					
KCNC4	ТРМЗ	ITGA5		ORC6					
KCNG3	TRA2A	ITM2B		OTOP2					
KCNIP4	TRIP12	ІТРКВ		OVOL1					
KCNJ12	TSC2	IZUMO1R		PADI6					
KCNK12	TSSK1B	JAKMIP3		ΡΑΟΧ					
KCNK5	TSTD3	JAZF1		PAQR7					
KCNQ5-IT1	TTLL13P	JMJD1C		РВХЗ					
KCNS1	TTYH1	JMJD1C-AS1		PBX4					
KCNS3	түмр	JUNB		PCBP4					
KCTD12	UBAP2L	KANSL1L		PCDHA7					
KCTD8	UBE2DNL	KAT2B		PCDHB13					
KDF1	UBE3A	KBTBD2		PCDHGA7					
KDM2B	UBE4B	KCND2		PCDHGB4					
KDM6B	UBR4	КСЛЈЗ		PCDHGC4					
кнк	UBXN7	KCNMB3		PCNX					
KHSRP	UCN2	KDM5B		PCSK1					
KIAA0930	UCP3	KDM5D		PCSK2					
KIAA1024	UNCX	KDM7A		PDE4DIP					
KIAA1671	UPF2	KHDC1		PDLIM5					
KIAA1804	USF1	KIAA0430		PDLIM7					
KIAA2022	USP15	KIAA0586		PGBD5					
KIF26A	USP37	KIAA1107		PHKG2					
KIF26B	USP45	KIAA1211L		PHLDA2					
KIRREL	UTP11L	KIAA1244		PI3					
KLC3	UVSSA	KIAA1324L		PIEZO2					
KLHL29	VAMP2	KIAA1407		PIGQ					
KLHL31	VAPB	KIAA1522		PINLYP					
KLK10	VEGFA	KIF11		PITPNM1					
KLK11	VKORC1	KIF13B	I	PKMYT1					

UD-SCC-5

UD-SCC-2

Upregulation		Downregulation	Upregulation	Downregulation	
37 kBq/mL	2 Gy	37 kBq/mL 2 Gy	37 kBq/mL 2 Gy	37 kBq/mL 2 Gy	
KLRG2	WASF1	KIF14	PLAUR		
KRT14	WDFY3	KIF15	PLEKHA3		
KRT16	WDR3	KIF16B	PLEKHN1		
KRT16P2	WDR66	KIF18A	PLEKHS1		
KRT17	WNT11	KIF1B	PLIN5		
KRT42P	WNT7B	KIF20A	PLK2		
KRT5	WTAP	KIF20B	POLD3		
KRT6A	XLOC_12_000864	KIF23	POLR2E		
KRT6B	XLOC_12_008203	KIF2C	POLR3F		
KRT6C	XLOC_I2_010558	KIF3C	РОМК		
KRTAP13-2	XLOC_I2_011874	KIF4A	POT1		
KRTAP19-1	XLOC_I2_013383	KIFAP3	РРІН		
KRTAP3-3	XLOC_I2_015399	KIFC1	PPM1D		
KRTAP7-1	XRCC2	KITLG	PPP1R3E		
KRTCAP3	YWHAZ	кіг	PRAMEF8		
KTI12	ZBTB20	KLF10	PRDM15		
KYNU	ZBTB21	KLF2	PRKACB		
L1CAM	ZBTB40	KLF6	PRKCDBP		
L2HGDH	ZBTB46	KLF9	PRM2		
L3HYPDH	ZC3H11A	KLHL24	PRR15L		
LAMA3	ZC3H7B	KLHL3	PRSS23		
LAMC2	ZCCHC11	KLHL36	PSMA1		
LANCL2	ZCCHC7	KLHL5	PSMB11		
LARGE	ZDHHC20	KLRG1	PSMC3IP		
LARP4B	ZGRF1	KNSTRN	PSMD9		
LCLAT1	ZMYM2	KNTC1	PTGER2		
LCP1	ZNF124	KRT1	PTP4A1		
LDLRAD3	ZNF217	KRTAP23-1	PTPN21		
LEAP2	ZNF292	KRTAP3-2	PTRF		
LENG9	ZNF326	L3MBTL1	PVRL2		
LETM1	ZNF367	LAG3	PVRL4		
LGI2	ZNF44	LAMB2P1	RABEPK		
LHX6	ZNF451	LASP1	RADIL		
LHX9	ZNF486	LBH	RANBP6		
LINC00313	ZNF497	LCA5	RASD1		
LINC00319	ZNF507	LCNL1	RBM14		
LINC00473	ZNF550	LCORL	RDH16		
LINC00574	ZNF587	LDLR	RELB		
LINC00641	ZNF621	LEFTY1	RGCC		
LINC00673	ZNF708	LEKR1	RGR		
LINC00852	ZNF749	LEPR	RGS3		
LINC00884	ZNF785	LETMD1	RHEB		
LINC00908	ZNF805	LGALS12	RIMBP3		
LINC00909	ZNF813	LGALS4	RNASE1		

UD-SCC-2			UD-SCC-5							
Upreg	ulation	Down	regulation	-	, i	Jpregulation		Down	regulation	
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		37 kBq/mL	2 Gy		37 kBq/mL	2 Gy	
LMF1	ZNF850	LGI3			RNF121					
LMTK3	ZNRF3	LGI4			ROR1					
Inc-AF131215.3.1- 1	ZRSR2	LHX3			RPL23AP7					
Inc-AF131215.4.1- 1	ZSWIM6	LINC00115			RPL28					
Inc-C12orf75-1		LINC00324			RPP30					
Inc-CBLB-4		LINC00339			RRM2					
Inc-CEMP1-1		LINC00471			RTCA					
Inc-GMDS-2		LINC00526			RTKN2					
Inc-HMGA1-3		LINC00534			RTN4RL1					
Inc-INADL-2		LINC00588			RTP3					
Inc-JMJD8-1		LINC00607			RTP5					
Inc-MMRN1-2		LINC00634			RUNX1					
Inc-MYC-2		LINC00649			RUNX2					
239B22.1.1-1		LINC00669			S100A9					
410N8.4.1-2		LINC00847			S1PR3					
Inc-SIK1-2		LINC00886			S1PR4					
Inc-SNURF-1		LINC00934			SCARNA9L					
Inc-TACR2-1		LINC00938			SCGB1A1					
Inc-TARDBP-2		LINC00957			SDC4					
Inc-TRAPPC6B-1		LINC00963			SEMA7A					
Inc-ZNF2-1		LINC01003			SERPINB2					
LOC100127909		LINC01004			SERPINB7					
LOC100128563		LINC01023			SERPINB8					
LOC100129034		LINC01089			SERPINE1					
LOC100129148		LINC01094			SERPING1					
LOC100129516		LINC01096			SFN					
LOC100130051		LINC01119			SGCA					
LOC100130276		LINC01122			SGOL1					
LOC100130548		LINC01133			SH3BP2					
LOC100132111		LINC01139			SHC3					
LOC100132368		LINC01144			SIRPA					
LOC100190986		LINC01344			SKIDA1					
LOC100506374		LINC01503			SLAMF9					
LOC100509445		LINC01572			SLC11A1					
LOC101060085		LINC-PINT			SLC16A9					
LOC101927104		LIPM			SLC25A32					
LOC101929115		LIX1L			SLC30A1					
LOC101929452		LL22NC03-75H12	2		SLC31A2					
LOC102723405		LMNTD2			SLC35G5					
LOC158863		LMO7			SLC38A3					
LOC284219		Inc-ANKRD11-5			SLC43A2					
LOC284581		Inc-ARHGAP26-4			SLC6A3					
LOC284930		Inc-C2orf65-1			SLCO4A1-AS1					
LOC285178		Inc-C9orf147-1			SMIM15					

Downregulation

2 Gy

37 kBq/mL

UD-S	UD-SCC-5	
Upregulation	Downregulation	Upregulation
37 kBq/mL 2 Gy	37 kBq/mL 2 Gy	37 kBq/mL 2 Gy
LOC344887	Inc-CIB4-1	SMIM5
LOC400863	Inc-COPZ2-1	SMPD3
LOC646626	Inc-CSAG1-1	SMR3A
LOC652276	Inc-DET1-1	SMTN
LOC90784	Inc-DHX15-1	SNAPC1
LONRF2	Inc-DYM-1	SNED1
LOXL3	Inc-EIF2AK4-4	SNHG7
LPAR1	Inc-FAM43A-2	SNORA33
LPL	Inc-INTS9-1	SNX16
LPP	Inc-IRF1-1	SNX21
LRFN1	Inc-KIAA0087-2	SNX3
LRIG1	Inc-LANCL2-1	SOCS1
LRP11	Inc-MTERFD3-1	SOCS6
LRP8	Inc-NINJ2-2	SP6
LRRC38	Inc-RP11- 351M8.1.1-1	SPAG1
LRRC3C	Inc-RPL7L1-1	SPATA21
LRRC4	Inc-SIRT4-1	SPG7
LRRC59	Inc-SULF1-3	SPHK1
LRRN3	Inc-TGFBRAP1-5	SPN
LSM11	Inc-TNFRSF18-1	SPOCD1
LTBP3	Inc-ZNF717-1	SPRR1A
LTK	LNP1	SPRR1B
LUC7L	LOC100049716	SPRR2A
LY75	LOC100128219	SPRR2C
LYAR	LOC100128288	SPRR2D
LYG2	LOC100128340	SPRR2E
LYPD6B	LOC100129373	SPRR2F
LYRM4	LOC100129473	SPRR3
LYSMD2	LOC100129534	SPRYD4
LZTS3	LOC100130417	SPSB2
MAFB	LOC100130691	SRSF2
MAGOHB	LOC100131099	SRSF6
MAL2	LOC100131289	SSUH2
MALAT1	LOC100131347	ST3GAL5
MAMLD1	LOC100131564	STARD13
MANEAL	LOC100132057	STARD5
MAP2	LOC100134937	STATH
MAP3K13	LOC100270746	STRC
MAP7	LOC100270804	STXBP5L
MAP7D3	LOC100506036	SUB1
MARC1	LOC100506136	SULT1C3
MARCO	LOC100506797	SUN5
MARVELD2	LOC100506804	SUV39H1
MARVELD3	LOC100507547	SYNE1

UD-S	CC-2	UD-SCC-5					
Upregulation	Downregulation	Upregulation	Downregulation				
37 kBq/mL 2 Gy							
MAST4	LOC101927100	SYNGR3					
MAT2A	LOC101927151	SYT2					
MATN1	LOC101927841	SZT2					
MATN1-AS1	LOC101927934	TAF1L					
MAX	LOC101928236	TAGLN					
MBD1	LOC101928343	TAS2R5					
MBLAC1	LOC101928837	TBC1D10A					
MBLAC2	LOC101928858	TBC1D10C					
MCAM	LOC101929715	твсв					
MCF2L	LOC101930611	TCN1					
MCM9	LOC102723552	TDG					
MDFI	LOC102724384	TECPR2					
MDN1	LOC102725249	TENM3					
MED14OS	LOC145837	TEX19					
MED28	LOC151484	TEX41					
MEPCE	LOC254896	THBS1					
METRNL	LOC283485	TICAM1					
METTL1	LOC284930	TINCR					
METTL21A	LOC286367	TLDC1					
METTL8	LOC339803	TLE1					
МЕХЗВ	LOC388692	TMED7-TICAM2					
MFAP3L	LOC389602	TMEM200B					
MFF	LOC389831	TMEM201					
MFSD12	LOC400684	TMEM40					
MFSD9	LOC400743	TMEM61					
MGC27345	LOC400768	TMEM74					
MGC50722	LOC401320	TMEM8C					
MGLL	LOC441204	TMPRSS11A					
MIA3	LOC554206	TMPRSS11E					
MICA	LOC642236	TMPRSS11F					
MICAL3	LOC643733	TNFAIP3					
MICALL2	LOC644656	TNFRSF11A					
MICB	LOC644838	TNFRSF12A					
MIEF1	LOC653160	TNR					
MIER3	LOC728819	TNRC18					
MINA	LOC728903	TNRC6C					
MIR17HG	LOC728975	TOE1					
MIR503HG	LOC729291	TPBGL					
MITF	LOC730101	ТРО					
МКХ	LOC730257	ТРТЕ2Р6					
MLEC	LPP-AS2	TRAK2					
MLKL	LRCH3	TRIM10					
MLXIP	LRP1B	TRIM44					
MLYCD	LRRC20	TRIM6					

UD-SCC-5	
	_

Upregulation	Downregulation	Upregulation	Downregulation
37 kBq/mL 2 Gy			
MMP17	LRRC23	TRIM62	
MMP23B	LRRC3	TRIML2	
MON1A	LRRC49	TRIOBP	
MPDU1	LRRC61	TRMT13	
MPPED2	LRRC75A	TRPC6	
MPRIP	LRRFIP1	TTLL9	
MPV17L2	LRRIQ1	ТТҮН1	
MPZL2	LRRIQ3	TUBA3C	
MREG	LRSAM1	TUBA3FP	
MRM1	LRTOMT	TUBA4A	
MROH5	LUC7L3	TUBA8	
MRPL12	LY6G5C	TUBB3	
MRPL19	LYPD1	TUNAR	
MRPL38	LYRM9	TUSC8	
MRPL54	LYST	TXNIP	
MRPS17	MAF	TYW1	
MRTO4	MAGEB17	UAP1	
MSI2	MAGEF1	UCN2	
MSX1	MAGI2	UCP3	
MT1A	MAGI3	UHRF1	
MT1B	MANEA	UMODL1	
MT1E	MAP2K5	URAHP	
MT1F	MAP2K6	VNN2	
MT1G	MAP3K11	VPS37A	
MT1H	MAP3K12	WAS	
MT1HL1	MAP3K8	WFDC21P	
MT1L	MAPK12	WNT10A	
MT1X	MARCH7	WNT4	
MT2A	MARCKS	WNT7A	
MTCL1	MBD5	XAB2	
MTFP1	MCM3AP-AS1	XCR1	
MTHFD1L	MCM9	XLOC_I2_008130	
MTUS2	MCMDC2	XLOC_I2_010118	
MUC13	MCTP1	XLOC_I2_015848	
MVD	MECOM	XRRA1	
MX1	MED12	YBX2	
MX2	MEF2C	YEATS2	
MXD1	MEG8	ZAK	
MXI1	MEIOB	ZASP	
MYBBP1A	MERTK	ZBED2	
МҮСВРАР	METTL10	ZBTB11-AS1	
MYCNOS	MFSD6	ZDHHC2	
MYH7	MGAT4C	ZDHHC8	
МҮН9	MGC57346	ZNF185	

UD-SCC-2					
Upre	gulation	Down	regulation		
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		
MYL7		MICAL1			
MYLK		MICB			
MYLK4		MIF4GD			
MYO10		MIR205HG			
MYO1D		MIR31HG			
MYO1E		MIS18BP1			
NAA16		MKI67			
NANOS1		MKL2			
NAT8L		MMRN2			
NAV1		MND1			
NBAT1		MNS1			
NBPF12		MNX1-AS1			
NBPF6		MOAP1			
NBPF8		MORN1			
NCAM1		MORN4			
NCCRP1		MOS			
NCDN		MPDZ			
NCKAP5		MPP4			
NCOA5		MPST			
NCR3LG1		MR1			
ND6		MRAP2			
NDRG1		MROH2A			
NDUFAF2		MROH8			
NDUFAF4P1		MSRB2			
NDUFAF6		MTA3			
NDUFC2		MTMR1			
NEBL		MTMR8			
NEDD4L		MUTYH			
NEFH		MVP			
NEIL2		MXD3			
NEK6		МҮВ			
NETO2		MY01F			
NFATC1		MYO6			
NFIA		MYOZ3			
NFKBIA		N4BP2L1			
NFKBIB		NAB2			
NFYA		NAGS			
NHP2L1		NAT14			
NHS		NBR1			
NIPAL1		NBR2			
NIPAL2		NCAPD2			
NIPAL4		NCAPG			
NKAIN1		NCAPH			
NKX3-1		NCF2			

	UD-SCC-5							
U	pregulation	Down	regulation					
37 kBq/mL	2 Gy		37 kBq/mL	2 Gy				
ZNF316								
ZNF329								
ZNF365								
ZNF451								
ZNF467								
ZNF547								
ZNF703								
ZNF750								
ZNF77								
ZNF852								
ZWINT								
ZYX								

UD-SC		D-SCC-2	C-2			UD-SCC-5		
Upre	gulation	Dow	nregulation	U	pregulation	Downr	egulation	
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	
NOL10		NCR2						
NOL6		NDC80						
NOL8		NDE1						
NOLC1		NEAT1						
NOP14		NECAB3						
NOP16		NEDD4						
NOP2		NEIL3						
NOP56		NEK11						
NOTCH2NL		NEK2						
NOV		NEURL1B						
NOXO1		NFYC-AS1						
NPIPA1		NHLH2						
NPL		NIPSNAP3B						
NPLOC4		NIT1						
NPR3		NMNAT2						
NPTX1		NMRK1						
NPY2R		NOS1AP						
NQ01		NOX1						
NQO2		NOX5						
NR2C2AP		NOXA1						
NR4A3		NPHP1						
NR6A1		NPR1						
NRARP		NR1D1						
NRCAM		NR1D2						
NRP2		NR2F1-AS1						
NSFL1C		NR3C2						
NSMF		NREP						
NT5C2		NRM						
NT5DC3		NRXN1						
NT5E		NSUN7						
NTN1		NTN5						
NTRK2		NUDT13						
NTSR2		NUDT18						
NUAK2		NUDT6						
NUBP1		NUDT7						
NUDT15		NUF2						
NUDT19		NUP50-AS1						
NUP98		NUPR1						
NUS1		NUSAP1						
NXN		OARD1						
NYNRIN		OAZ2						
UAF		OBSL1						
OAS1		ODF2L						
UAS2		OIP5		1				

U	ID-SCC-2		-SCC-5		
Upregulation	Downregulation	Upregulation	Downregulation		
37 kBq/mL 2 Gy					
OASL	OLFML2A				
OGFRP1	OMP				
OLFM2	OPTN				
ONECUT3	OR1N1				
ОРАЗ	OR2M2				
OR2A2	OR52R1				
OR2M5	OR6C68				
ORAI1	OR6Y1				
OSBP2	OR7A17				
OSBPL3	OR8B3				
OSR2	OR8K3				
OTOP2	ORAI3				
OTX1	OSBPL5				
OXNAD1	OSBPL7				
OXR1	OSCP1				
P2RY1	OSGEPL1				
P2RY2	PAAF1				
PABPC4	PAIP2				
PAG1	PALM				
PALLD	PALMD				
PARP12	ΡΑΟΧ				
PAXBP1	PAPLN				
PCDH10	PARD3				
PCDH15	PARD6A				
PCDH19	PARP4				
PCOLCE2	PARP9				
PCSK5	PATL2				
PCSK9	PAXIP1-AS1				
PCYT1A	PAXIP1-AS2				
PDCD11	РВК				
PDE4D	PCM1				
PDIA5	PCSK4				
PDLIM3	PDE4B				
PDLIM5	PDESA				
PDP2					
PDPK	PDLIMZ				
PFI 12	PGC				
PER2	PGPEP1				
PES1	PGPEP1L				
PFKP	PHACTR2				
PFN1P2	PHC1				
•	i I -				

UD-SCC-2				UD-SCC-5				
Upre	gulation	Down	regulation	U	pregulation	Down	regulation	
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	
PGBD5		PHF13						
РНВ		PHF19						
PHF8		PHF21A						
PHKA1		PHTF1						
PHLDA2		PIBF1						
PHLDB2		PIF1						
PIGL		PIGB						
PIGW		PIGZ						
PIGY		PIK3CA						
PINX1		PIM1						
PITPNC1		PJA2						
PITX1		PKN1						
РКI55		PLA2G1B						
PKN3		PLCB3						
PKNOX1		PLD2						
PKP1		PLEKHG2						
PLAC1		PLEKHG4B						
PLAC8		PLEKHH2						
PLAUR		PLIN3						
PLCB2		PLK1						
PLEK2		PLK4						
PLEKHA1		PLS1						
PLEKHA5		PLSCR4						
PM20D2		PMM1						
PMEPA1		PNISR						
PMM2		PNRC1						
PMPCA		PNRC2						
PNN		POC1B						
PNO1		POC5						
PNPT1		POLD4						
POGLUT1		POLR3GL						
POLB		POU5F1B						
POLE		PPFIA4						
POLR1B		PPL						
POLR2E		PPM1E						
POLR2F		PPM1M						
POLR3B		PPOX						
POLR3H		PPP1R13L						
POLR3K		PPP1R18						
POM121		PPP1R35						
POMGNT2		PPP1R36						
РОМК		PPP1R9A						
POMT2		PPP4R1L						
POMZP3		PRAME		I				

UD-SC		-SCC-2	C-2		U	JD-SCC-5		
Upreg	gulation	Down	regulation	U	pregulation	Downr	egulation	
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	
PON3		PRC1						
POP1		PRDM8						
POTEF		PRIMPOL						
ΡΟΤΕΙ		PRKACB						
ΡΟΤΕΚΡ		PRKAR1A						
POTEM		PRKD1						
POU3F1		PRO1082						
PPAN-P2RY11		PROC						
PPAP2B		PROCA1						
PPAT		PRODH						
PPIA		PRORSD1P						
PPIF		PROSER2						
PPM1K		PRPF40B						
PPP1R3B		PRR11						
PPP3R1		PRRT2						
РРТС7		PRSS33						
PQLC1		PRY2						
PRDM13		PSIP1						
PRDM15		PSMD5-AS1						
PRDM8		PSMG3-AS1						
PREB		PSRC1						
PRKAG2		PTCD3						
PRKAR2B		PTGR2						
PRKCE		PTGS2						
PRM2		PTPN12						
PRPF39		PTPN13						
PRPF4		PTPN6						
PRR19		PTPRB						
PRR22		PTPRZ1						
PRR3		PTTG1						
PRR34-AS1		PTTG2						
PRR5		PTTG3P						
PRR5L		PUS10						
PRSS23		PXDNL						
PSD		PXMP4						
PSG5		PYROXD2						
P568		QIQN5815						
PSIVIES		RAB26						
		DAD40						
PTGFS		RAR6R						
PTGS1		RAB9R						
PTN		RACGAP1						
ΡΤΡΔΔ1		RACGAPID						
1		I I MACOAF IF		I				

	UD-SCC-2	UD-SCC-5					
Upregulation	Downregulation	Upregulation	Downregulation				
37 kBq/mL 2 Gy							
PTPN11	RAD21						
PTPN2	RAD21-AS1						
PTPRG	RAD51-AS1						
PTPRJ	RADIL						
PTPRK	RALB						
PTPRU	RALGPS1						
РТХЗ	RAPH1						
PUS1	RASA4						
PUS3	RASA4B						
PUS7	RASSF2						
PVR	RASSF9						
PVT1	RB1						
PWP2	RB1CC1						
PYGO1	RBFOX1						
QRICH2	RBM47						
QTRTD1	RDM1						
RAB12	RECK						
RAB3A	REEP2						
RAG2	REEP4						
RAI14	RFFL						
RANBP2	RFX2						
RAPGEFL1	RFX5						
RARA	RFXAP						
RASA3	RGL2						
RASL11A	RGS17						
RASL11B	RHBDF1						
RASSF10	RHBDL2						
RBAK	RHEBL1						
RBBP4	RHNO1						
RBM14	RHOT1						
RBM19	RHPN1						
RBM25	RHPN1-AS1						
RBM28	RIMS1						
RBM33	RIPPLY3						
RBM39	RMI2						
RBMX2	RNASE4						
RCC2	RNASEL						
RCN1	RNF112						
	RNF214						
KUH13	KINE26						
KELB							
KELI	I KO21	I					

UD-SCC-2			UD-SCC-5					
Upreg	ulation	Down	regulation	<u>ں</u>	pregulation		Down	regulation
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		37 kBq/mL	2 Gy
REP15		RP2						
REXO4		RPH3AL						
RFTN1		RPL13AP17						
RGCC		RPL13P5						
RGMB-AS1		RPL32P3						
RGPD6		RPS29						
RGS11		RSG1						
RGS16		RTKN2						
RGS20		RTN3						
RHBDF2		RUNDC3B						
RHOB		RUNX2						
RHOD		SALL2						
RHOQ		SALL4						
RIMBP3		SAMD13						
RIPPLY2		SAMD9						
RMRP		SAP30						
RN7SK		SAPCD1						
RNA1855		SAPCD2						
RNA28S5		SATB1						
RNA5-8S5		SBF2						
RNASEH2B		SCAMP1-AS1						
RNF125		SCAPER						
RNF139-AS1		SCARA3						
RNF165		SCD5						
RNF182		SCHIP1						
RNF32		SCLT1						
RNVU1-18		SCN1B						
ROCK2		SCN8A						
ROR2		SCRN1						
RPIA		SDCCAG8						
RPL23AP53		SDR16C5						
RPP14		SEC14L4						
RPP25		SEC22C						
RPP40		SEC31B						
RPUSD1		SELPLG						
RRBP1		SEMA4B						
RREB1		SENP7						
RRP1		SEPP1						
RRP12		SEPSECS						
RRP15		SEPT5						
RRP1B		SEPT8						
RRP9		SEPW1						
RRS1		SERAC1						
RSC1A1		SERF2		I				

UD-SCC-2				UD-SCC-5					
Upreg	gulation	Down	regulation	U	pregulation	Downr	egulation		
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		
RSL1D1		SESN3							
RSPO2		SFR1							
RSPO3		SGIP1							
RSPO4		SGOL1							
RTN4R		SGOL2							
RUNX3		SHCBP1							
RYR2		SHISA3							
S100A4		SIGLEC16							
S100P		SIPA1							
S1PR4		SIRT5							
SAMD4A		SIX5							
SAMD5		SKA2							
SART1		SKAP2							
SATB2		SLC12A5							
SBDS		SLC12A6							
SCARNA16		SLC17A5							
SCARNA17		SLC1A1							
SCARNA5		SLC24A1							
SCLY		SLC24A5							
SCX		SLC25A20							
SECTM1		SLC25A21-AS1							
SEH1L		SLC25A24							
SERBP1		SLC25A35							
SERPINA3		SLC25A40							
SERPINB3		SLC25A42							
SERPINB4		SLC27A1							
SERTAD4-AS1		SLC2A11							
SETD7		SLC2A1-AS1							
SF1		SLC35D2							
SFPQ		SLC35E2							
SFXN1		SLC37A1							
SGK223		SLC38A10							
SGPP2		SLC39A10							
SH2B2		SLC44A2							
SH2D1A		SLC45A3							
SH2D3A		SLC4A3							
SH3BP4		SLC6A16							
SH3GL2		SLC7A8							
SH3RF1		SLITRK3							
SHISA5		SLITRK5							
SHQ1		SLITRK6							
SIK1		SMAD3							
SIPA1L2		SMARCA1							
SIPA1L3		SMARCA2		I					

UD-SCC-2			UD-SCC-5					
Upregulation	Downreg	gulation	U	pregulation		Down	regulation	
37 kBq/mL 2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		37 kBq/mL	2 Gy	
SIRPA	SMARCC2							
SIRPB1	SMC1B							
SIX1	SMC4							
SIX2	SMIM14							
SKI	SNAP91							
SLC10A4	SNAR-G1							
SLC16A10	SNCA							
SLC16A3	SNHG3							
SLC19A1	SNX10							
SLC1A5	SNX21							
SLC22A23	SOS2							
SLC22A4	SOSTDC1							
SLC25A21	SOX12							
SLC25A22	SP110							
SLC25A26	SPACA6P							
SLC25A37	SPAG5							
SLC27A4	SPAG6							
SLC29A1	SPARCL1							
SLC29A3	SPATA17							
SLC2A1	SPATA7							
SLC30A1	SPATC1L							
SLC30A2	SPC24							
SLC30A7	SPC25							
SLC31A1	SPG11							
SLC35C1	SPIN3							
SLC35D3	SPRED1							
SLC35E1	SPRR3							
SLC35F2	SPSB3							
SLC35F3	SQRDL							
5103501	SRGAP2							
SI C30A14	SPD14 AC1							
SI C39A8	CEDKJ							
SLC3A2	SRRM4							
SLC5A10	SRSF5							
SLC5A3	SSBP2							
SLC5A6	SSBP3							
SLC6A10P	SSFA2							
SLC6A15	ST18							
SLC6A17	ST3GAL3							
SLC6A6	ST7-AS1							
SLC6A8	ST8SIA1							
SLC7A10	STAG2							
SLC7A2	STARD13							

	UD-SCC-2				UD-SCC-5					
Upreg	gulation	Dowr	regulation	U	pregulation	Downr	egulation			
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy			
SLC7A5		STARD8								
SLC8A2		STAT2								
SLC9A5		STAT6								
SLC9B2		STAU2								
SLCO4A1		STIL								
SLIT1		STK16								
SMC5		STK17B								
SMG1		STK32C								
SMG9		STMN1								
SMOX		STON1								
SNAR-A3		STPG1								
SNCG		SUN2								
SND1-IT1		SVEP1								
SNHG15		SYBU								
SNHG17		SYCE2								
SNORA26		SYNE1								
SNORA28		SYT1								
SNORA33		SYT17								
SNORA73A		SYTL4								
SNORA74A		TACC3								
SNORA81		TAF7L								
SNRNP40		TANC1								
SNX18		TANK								
SOBP		TAS2R19								
SOCS1		ТВСК								
SOCS2		TBX19								
SOCS3		TBX2-AS1								
SOCS7		ТВХ6								
SOX13		TCAF2								
SOX21		TCEAL5								
SOX7		TCEAL6								
SP6		TCF23								
SPAG4		TCF7								
SPANXB1		TDRD1								
SPANXC		TDRD7								
SPATA13		TDRKH								
SPATA21		ТЕКТ4								
SPATA33		TEKT4P2								
SPHK1		TESC								
SPINT2		TESK2								
SPNS2		TFB1M								
SPOCD1		TFEB								
SPRY1		TGFB1I1								
SPTLC1	ļ	TGFBI								

UD-SCC-2				UD-SCC-5					
Upreg	gulation	Down	regulation	- <u> </u>	Ipregulation	Downreg	ulation		
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		
SQSTM1		TGIF1							
SRM		THAP2							
SRPRB		THBS4							
SRSF10		TIAM2							
SRSF2		TIGD7							
SRSF6		TIMP2							
SRSF7		TM4SF1							
SRSF8		TM7SF2							
SRXN1		TMCC2							
SSC4D		TMCO4							
SSH1		TMED3							
SSH2		TMEFF2							
SSTR3		TMEM105							
ST14		TMEM106A							
ST3GAL1		TMEM107							
ST6GALNAC2		TMEM108							
ST6GALNAC6		TMEM116							
STAMBPL1		TMEM136							
STC1		TMEM173							
STEAP3		TMEM187							
STOX1		TMEM19							
STRIP1		TMEM194B							
STX1A		TMEM198B							
STYX		TMEM200B							
SULT1A4		TMEM229B							
SULT4A1		TMEM261							
SUSD4		TMEM44							
SUSD5		TMEM45A							
SVEP1		TMEM47							
SYCE3		TMEM55A							
SYNE4									
SYNW									
TACSTON									
TAC3102									
TAFAB		TMEMOO							
		TML							
		TMPRCC12							
TAOK2		TMTC4							
TARSI 2		TNEAIPR							
TBC1D10C		TNERSE10C							
TBC1D24		TNFRSF14							
TBC1D30		TNESE13B							
TCERS		TNK2							
ILEDS	I	TINKZ		I					

UD-SCC-2				UD-SCC-5					
Upreg	gulation	Dowr	nregulation	U	pregulation	Downr	egulation		
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		
TCF15		TNNI1							
TDRD10		TNRC18							
TEAD1		TNS3							
TEAD4		TOLLIP-AS1							
TERF1		TOM1L1							
TEX15		TOP2A							
TFAP4		тох							
TFPT		TP53INP1							
TG		TP53TG3							
TGFB3		TPTE2P6							
TGM3		TPX2							
THBD		TRAF3IP2							
THEM6		TRAF7							
THRB		TRANK1							
TIGD5		TREM1							
TIMM22		TRERF1							
TIMP3		TREX1							
TINAGL1		TRIB3							
TLE3		TRIM34							
TLR2		TRIM38							
TMA7		TRIM45							
TMEM110		TRIM49							
TMEM115		TRIM59							
TMEM120B		TRIM66							
TMEM150A		TRIM8							
TMEM158		TRIOBP							
TMEM171		TRIQK							
TMEM184B		TROAP							
TMEM185B		TRPT1							
TMEM191B		TSNAXIP1							
TMEM198		TSPAN10							
TMEM2		TSPAN32							
TMEM200C		TSSK3							
TMEM201		TSTD3							
TMEM217		TTC28							
TMEM241		TTC28-AS1							
TMEM30B		TTC39B							
TMEM41A		ттк							
TMEM50B		TTLL1							
TMEM51		ТТҮНЗ							
TMEM52		TUBB8							
TMEM64		TUG1							
TMEM74B		TULP3							
TMEM87A		TWIST1		I					

UD-SCC-2					UD-SCC-5					
Upre	egulation		Dowr	nregulation	U	pregulation	Dowr	nregulation		
37 kBq/mL	2 Gy		37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		
TMEM95			TXNIP							
TMEM97			ТҮК2							
TMEM98			UACA							
TNFAIP2			UAP1L1							
TNFAIP3			UBALD2							
TNFRSF10A			UBE2C							
TNFRSF21			UBE2H							
TNFRSF25			UBR5							
TNRC6C			UFL1							
TNXB			UGT3A1							
TOB1			UHRF1BP1							
TOMM40			UHRF1BP1L							
ТОРЗА			ULBP1							
TOR3A			ULK4							
TP53INP2			UNC13B							
TP53RK			UNC5B-AS1							
ТР63			UNC5CL							
TPCN1			UPF3A							
TPM4			URB1-AS1							
ТРРР			USP17L7							
TPRN			USP19							
TPST2			UTRN							
TRA2A			UXT							
TRAPPC10			VAMP4							
TRDMT1			VAV3							
TRHDE-AS1			VIM							
TRIB2			VPS13D							
TRIM16L			VPS37D							
TRIM29			VPS45							
TRIO			VWA5B1							
TRIP12			WBSCR27							
TRMT1			WDR19							
TRMT61A			WDR31							
TRMU			WDR54							
TRNT1			WDR72							
TRPM2			WDR78							
TSC1			WHSC1							
TSC2			WNK2							
TSEN2			XLOC_12_006958	-						
TSPAN5			XLOC_12_011265							
			XLUC_12_013314	ŧ						
			XPC							
			XRUU4							
1 11111		I	XKINT		I					

UD-SCC-2				UD-SCC-5					
Upregulation		Down	regulation	UU	pregulation	Downre	egulation		
37 kBq/mL 2 Gy		37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		
TTLL5		YAE1D1							
TUBB2A		YEATS4							
TUBB3		YIF1B							
TWIST2		YPEL1							
TXLNG		YPEL3							
TXLNGY		YPEL5							
TXNDC15		ZACN							
TXNL4B		ZBED3-AS1							
TYW1		ZBED6CL							
UBAP1L		ZBED8							
UBAP2L		ZBTB20							
UBE2D4		ZBTB4							
UBE2J1		ZBTB7B							
UBE2O		ZC2HC1A							
UBE2Q2P1		ZC3H7A							
UBE3C		ZCWPW1							
UBE3D		ZDBF2							
UBIAD1		ZDHHC12							
UBTF		ZDHHC2							
UBXN8		ZEB1-AS1							
UCN2		ZFAND6							
UPF2		ZFC3H1							
URB2		ZFHX4-AS1							
USF1		ZFP36							
USH1G		ZFP90							
USP10		ZHX1-C8orf76							
USP36		ZMIZ1							
USP45		ZMYM1							
UST		ZMYM3							
UTP11L		ZMYM6NB							
UTP20		ZMYND10							
VAPB		ZMYND8							
VASH2		ZNF143							
VCX2		ZNF160							
VDR		ZNF177							
VEGFA		ZNF192P1							
VGF		ZNF205-AS1							
VGLL2		ZNF207							
VKORC1		ZNF217							
VPS53		ZNF226							
VPS9D1-AS1		ZNF250							
VSNL1		ZNF274							
VWA5B2		ZNF331							
WDR1		ZNF385A		I					

UD-SCC-2				UD-SCC-5					
Upreg	ulation	Dowr	nregulation	U	pregulation	Down	regulation		
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy		
WDR3		ZNF397							
WDR66		ZNF436-AS1							
WDR74		ZNF514							
WFDC21P		ZNF518B							
WFIKKN1		ZNF524							
WHAMM		ZNF559							
WHAMMP1		ZNF594							
WNT11		ZNF641							
WNT4		ZNF674-AS1							
WWC1		ZNF750							
XLOC_I2_000864		ZNF821							
XLOC_I2_003285		ZNF837							
XLOC_I2_010558		ZRANB2							
XLOC_I2_013383		ZSWIM4							
XLOC_I2_014645		ZXDA							
XPR1									
YBX3									
YTHDF1									
YWHAZ									
ZBTB11-AS1									
ZBTB21									
ZBTB39									
ZBTB7A									
ZBTB7C									
ZC3H11A									
ZC3HAV1									
ZCCHC2									
ZCCHC7									
ZDHHC11									
ZDHHC18									
ZDHHC9									
ZFAND2A									
ZFAND4									
ZFHX3									
ZFYVE9									
ZGLP1									
ZHX3									
ZIC5									
ZMPSTE24									
ZMYND15									
ZMYND19									
ZNF124									
ZNF215									
ZNF275		I							

Upre	egulation	Down	egulation	Upr	egulation	Downre	gulation
37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy	37 kBq/mL	2 Gy
ZNF286A							
ZNF296							
ZNF316							
ZNF326							
ZNF331							
ZNF343							
ZNF354B							
ZNF398							
ZNF451							
ZNF462							
ZNF497							
ZNF503							
ZNF503-AS2							
ZNF550							
ZNF576							
ZNF583							
ZNF593							
ZNF623							
ZNF672							
ZNF696							
ZNF710							
ZNF74							
ZNF777							
ZNF783							
ZNF787							
ZNF813							
ZNF83							
ZNHIT6							
ZNRF1							
ZNRF3							
ZPR1							
ZSCAN25							
ZSWIM6							
ZYX							

9 DANKSAGUNG

Ich möchte mich an dieser Stelle ganz herzlich bei Herrn Univ.-Prof. Dr. med. Henning Bier bedanken, welcher es mir ermöglicht hat diese Dissertation im Forschungslabor der Klinik für Hals-, Nasen- und Ohrenheilkunde am Klinikum rechts der Isar der TU München durchzuführen. Zu tiefst bedauere ich, dass Prof. Bier auf höchst unerwartete, sowie tragische Weise im Oktober 2018 verstorben ist. Möge er in Frieden ruhen.

Besonderer Dank geht zudem an meine Doktormutter Frau PD Dr. Anja Pickhard, welche dieses Promotionsvorhaben von der Planung und Diskussion der Experimente bis hin zur Korrektur der Dissertation stets in herausragender Weise unterstützt hat.

Bedanken möchte ich mich auch bei meiner Zweitbetreuerin Prof. Dr. Gabriele Multhoff und meinem Mentor Dr. Christof Seidl für wertvolle Tipps und Unterstützung.

Ferner danke ich Guido Piontek, der immer ein Ohr für methodische wie fachbezogene Fragestellungen hatte. Die vielen lebhaften Diskussionen und Gespräche waren eine Bereicherung in vielerlei Hinsicht.

Weiterer Dank geht an alle Personen, die mir die Durchführung verschiedenster Experimente ermöglicht haben: Dr. Christof Seidl für die Unterstützung bei der Durchführung der Arbeiten im Strahlenschutzbereich der Klinik für Nuklearmedizin am Klinikum rechts der Isar, Prof. Dr. Multhoff für die Nutzung der Bestrahlungseinheit im TranslaTUM, Prof. Dr. Brockhoff und Dr. Katharina Ilicic für die Unterstützung bei den durchflusszytometrischen Analysen und Dr. Ulrich Zissler für die Messung der Genexpression mittels RNA Microarray.

Vielen Dank auch an Dr. Marie Kristin Fritsche für die tolle Zusammenarbeit im Labor und abwechslungsreiche und humorvolle Gespräche im Büro.

Zuletzt möchte ich meinen Freunden und meiner Familie, allen voran meiner Frau Anna danken, dass sie mich in allen Phasen dieser Arbeit unterstützt und motiviert haben. Danke für die schier unendliche Geduld!

10 EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich bei der promotionsführenden Einrichtung der Fakultät für Medizin, der Technischen Universität München zur Promotionsprüfung vorgelegte Arbeit mit dem Titel:

"Der Einfluss des humanen Papillomavirus (HPV) auf die Wirkung von *in vitro* Chemotherapie, Röntgenbestrahlung sowie zielgerichteter Alphapartikel-Emitter-Therapie (TAT) bei HNSCC-Zelllinien."

in der Hals-, Nasen-, Ohren- und Poliklinik des Universitätsklinikums Rechts der Isar unter Anleitung und Betreuung von Frau PD Dr. med. Anja Pickhard ohne sonstige Hilfe erstellt und bei der Abfassung nur die gemäß § 6 Ab. 6 und 7 Satz 2 angebotenen Hilfsmittel benutzt habe.

Ich habe keine Organisation eingeschaltet, die gegen Entgelt Betreuerinnen und Betreuer für die Anfertigung von Dissertationen sucht, oder die mir obliegenden Pflichten hinsichtlich der Prüfungsleistung für mich ganz oder teilweise erledigt.

Ich habe die Dissertation in dieser oder ähnlicher Form in keinem anderen Prüfungsverfahren als Prüfungsleistung vorgelegt.

Die vollständige Dissertation wurde nicht veröffentlich.

Ich habe den angestrebten Doktorgrad noch nicht erworben und bin nicht in einem früheren Promotionsverfahren für den angestrebten Doktorgrad endgültig gescheitert.

Die öffentlich zugängliche Promotionsordnung der TUM ist mir bekannt, insbesondere habe ich die Bedeutung von § 28 (Nichtigkeit der Promotion) und § 29 (Entzug des Doktorgrades) zur Kenntnis genommen. Ich bin mir der Konsequenzen einer falschen Eidesstattlichen Erklärung bewusst.

Mit der Aufnahme meiner personenbezogenen Daten in die Alumni-Datei bei der TUM bin ich einverstanden.
11 PUBLIKATIONEN

Müller, U., Bauer, C., Siegl, M., Rottach, A., & Leonhardt, H. <u>2014</u>. "TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation." *Nucleic acids research*, 42(13), 8592–8604

Pickhard, A., Siegl, M., Baumann, A., Huhn, M., Wirth, M., Reiter, R., Rudelius, M., Piontek, G., & Brockhoff, G. <u>2014</u>. "The response of head and neck squamous cell carcinoma to cetuximab treatment depends on Aurora kinase A polymorphism." *Oncotarget*, 5(14), 5428–5438