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Abstract

Flexible components integration is one of the major challenges in the current fourth
industrial revolution aiming at the computerization of manufacturing. Its focus is inter-
operability, virtualization, decentralization, real-time capability, service orientation, and
modularity. Especially in the domain of industrial robots exchanging robots and their
tools in production lines is connected with a high adaption e�ort. A typical robot work
cell is composed of devices from various manufacturers, which rely on their speci�c
control interfaces. To reduce the setup and recon�guration time, a hardware-agnostic
Plug & Produce system is required.

In this doctoral thesis, I am presenting a solution for the following research question:
How can a Plug & Produce industrial robot cell be built up in a way that single system
components and robot tools can be exchanged without the need of reprogramming or
manually adapting control applications. To answer this question, I am splitting the main
question into multiple smaller challenges.

Information exchange between system components is an essential part of adaptable sys-
tems. Therefore, I �rst evaluate the performance of di�erent communication protocols
which are typically used in the industrial automation domain. This evaluation includes
OPC UA, ROS, DDS, and MQTT and evaluates the round-trip time, throughput, and
other metrics such as CPU load in di�erent situations.

Based on the results of this evaluation, I use OPC UA for the detailed implementation of
my proposed Plug & Produce system architecture. To achieve a Plug & Produce system
without the necessity of pre-con�guration, automatic component detection is necessary.
Based on the de�nition of the OPC UA Discovery Services, I implement local discovery
mechanisms in the used open-source OPC UA stacks and evaluate their applicability.

After a component is discovered in the network, it needs to semantically describe its
low-level functionalities, also called skills, so that other components in the system can
re-use these skills. The main contribution of this thesis is a strongly typed generic skill
model that can be used as a control interface for any Industry 4.0 component, be it either
hardware or software, with a focus on reusability of skills across di�erent platforms and
domains. This skill model is based on the semantic annotation of OPC UA, but can also
be adapted to other middlewares as long as they provide comparable features. On hard-
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ware components, the presented skill model is implemented by device adapters which
provide proprietary hardware-dependent functionalities through the generic OPC UA
skill interface. The hierarchical composition of such skills allows for additional abstrac-
tion and grouping of functionalities. Based on this skill model, I provide various C++
classes as part of my proposed system architecture, used to detect available skills in the
network (Skill Detector), or control such skills (Generic Skill Client).

The proposed skill model and its concepts are evaluated on three di�erent robot cells
consisting of robots and tools from di�erent manufacturers. The control of the compo-
nents is achieved via my generic skill interface described in this thesis. The overall Plug
& Produce architecture is evaluated in a robot work cell setup with a robot, tool changer,
and two grippers (parallel and vacuum) — all controlled through my OPC UA skill inter-
face. Di�erent components and their skills are automatically detected and parametrized
based on the higher-level task.

The evaluation shows the signi�cant bene�t of the proposed system and its applicability
in a Plug & Produce environment in the �eld of robot-supported industrial production.
Although it is necessary to adapt existing hardware to support the proposed semantic
skill concept, the initial one-time e�ort yields reoccurring e�ciency gains in system
recon�guration. In particular, small lot production bene�ts from reduced changeover
times.
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Zusammenfassung

Die Integration �exibler Komponenten ist eine der größten Herausforderungen in der
gegenwärtigen vierten industriellen Revolution, die auf die Digitalisierung und Moder-
nisierung der Fertigungsindustrie abzielt. Ihr Schwerpunkt liegt auf Interoperabilität,
Virtualisierung, Dezentralisierung, Echtzeitfähigkeit, Serviceorientierung und Modu-
larität. Insbesondere im Bereich der Industrieroboter ist der Austausch von Robotern
und ihren Werkzeugen in Produktionslinien mit einem hohen Anpassungsaufwand ver-
bunden. Eine typische Roboterarbeitszelle setzt sich aus Geräten verschiedener Herstel-
ler zusammen, die ihre eigenen spezi�schen Steuerungsschnittstellen anbieten. Um die
Einrichtungs- und Rekon�gurationszeit zu reduzieren, ist ein hardware-agnostisches
Plug & Produce-System erforderlich.

In dieser Doktorarbeit präsentiere ich eine Lösung für die folgende zentrale Forschungs-
frage: Wie kann eine Plug & Produce Industrieroboterzelle aufgebaut werden, die einen
einfachen Austausch einzelner Systemkomponenten und Roboterwerkzeuge ermög-
licht, ohne dass eine Neuprogrammierung oder Anpassung von Steuerungsapplikatio-
nen erforderlich ist. Um diese Frage zu beantworten, teile ich die Hauptfrage in mehrere
kleineren Problemstellungen auf.

Bei anpassungsfähigen Systemen ist der Informationsaustausch zwischen Systemkom-
ponenten ein wesentlicher Bestandteil. Daher untersuche ich zunächst die Leistungs-
fähigkeit verschiedener Kommunikationsprotokolle, die typischerweise im Bereich der
industriellen Automatisierung verwendet werden. Diese Evaluierung umfasst OPC UA,
ROS, DDS und MQTT und bewertet die Round-Trip-Zeit, den Durchsatz und andere
Metriken wie die CPU-Last in verschiedenen Situationen.

Auf der Grundlage der Ergebnisse dieser Evaluierung verwende ich für die detaillierte
Implementierung meiner leistungsfähigen Plug & Produce-Systemarchitektur OPC UA
als Kommunikationsprotokoll. Um ein Plug & Produce-System ohne der Notwendigkeit
einer Vorkon�guration zu erreichen, ist eine automatische Komponentenerkennung er-
forderlich. Basierend auf der De�nition der OPC UA Discovery Services implementiere
ich lokale Erkennungsmechanismen in den verwendeten Open Source OPC UA Stacks
und evaluiere deren Anwendbarkeit.
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Nachdem eine Komponente im Netzwerk erkannt wird, muss sie ihre Low-Level-
Funktionalitäten, auch Skills genannt, semantisch beschreiben, sodass andere Kompo-
nenten im System diese Skills wiederverwenden können. Als Hauptbeitrag dieser Arbeit
entwickle ich ein stark typisiertes generisches Skill-Modell, das als Steuerungsschnitt-
stelle für jede beliebige Industrie 4.0-Komponente, sei es Hardware oder Software, ver-
wendet werden kann, wobei der Schwerpunkt auf der Wiederverwendbarkeit von Skills
über verschiedene Plattformen und Domänen hinweg liegt. Dieses Skill-Modell basiert
auf der semantischen Modellierung von OPC UA, es kann aber von jedem Kommuni-
kationsprotokoll umgesetzt werden, welches ähnliche Funktionalitäten bietet. Das hier
vorgestellte Skill-Modell wird auf Hardware-Komponenten durch Geräteadapter imple-
mentiert, die proprietäre hardwareabhängige Funktionalitäten über meine generische
OPC UA Skill-Schnittstelle bereitstellen. Die hierarchische Zusammensetzung solcher
Skills ermöglicht eine zusätzliche Abstraktion und Gruppierung von Funktionalitäten.
Auf der Grundlage dieses Skill-Modells stelle ich unter anderem verschiedene C++ Klas-
sen als Teil der von mir vorgeschlagenen Systemarchitektur zur Verfügung, die zur Er-
kennung verfügbarer Skills im Netzwerk (Skill Detector) oder zur Steuerung solcher
Skills (Generic Skill Client) verwendet werden.

Das vorgeschlagene Skill-Modell und dessen Konzepte werden auf drei verschiedenen
Roboterzellen evaluiert, die aus Robotern und Werkzeugen von verschiedenen Herstel-
lern bestehen. Die Steuerung dieser Komponenten wird über die von mir vorgeschla-
gene Skill-Schnittstelle erreicht. Die komplette Plug & Produce-Architektur wird in ei-
ner Roboterarbeitszelle mit einem Roboter, einem Werkzeugwechsler und zwei Greifern
(parallel und vakuum) evaluiert, wobei alle Komponenten über meine generische OPC
UA Skill-Schnittstelle gesteuert werden. Verschiedene Komponenten und ihre Skills
werden automatisch erkannt und auf der Grundlage der übergeordneten Aufgabe para-
metrisiert.

Die Auswertung zeigt den erheblichen Nutzen des von mir vorgeschlagene Systems
und deren Anwendbarkeit in einem Plug & Produce-System im Bereich der roboterge-
stützten industriellen Fertigung. Obwohl es notwendig ist, die vorhandene Hardware
über spezielle Geräte-Adapter zu integrieren, um das vorgeschlagene Konzept der se-
mantischen Skills zu unterstützen, führt der anfängliche einmalige Aufwand zu wieder-
kehrenden E�zienzgewinnen bei der Rekon�guration des Systems. Insbesondere die
Kleinserienfertigung pro�tiert von reduzierten Umrüstzeiten.
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1 Introduction

In the last years and up to the current year 2020, there is a strong trend to lot-size
one production, which means that every produced product is unique in its production
process. This is a strong contrast to typical production lines where one speci�c product
is produced many times the same way, such as a car body. To adapt to this new trend,
�exible production cells are required which are easy to recon�gure and to adapt.

1.1 The Big Picture

The transition from rigid production lines to automated �exible production cells is cur-
rently connected with a lot of e�ort and existing problems:

• Suitable devices need to be purchased, which are compatible with existing de-
vices in the setup. Device manufacturers did not yet agree on an established
communication and control standard for industrial automation devices.

• After unpacking the device, a suitable adapting software or hardware com-
ponent needs to be developed to adapt the proprietary interfaces, to be able to
integrate them into the existing environment.

• This adaption has the e�ect that the device can communicate with other devices
in the same system, but other devices are not yet able to automatically detect
this new device and adapt their process to it.

• A more generic functionality description is required which allows hardware-
agnostic composition of functionality to achieve a real Plug & Produce system.

• Exchanging a device by other devices with similar functionality but from di�erent
manufacturers typically requires reprogramming of the control application to
adapt to the new device properties.

The described problems in �exible component integration are major challenges in Plug
& Produce production environments. The term Plug & Produce was formed around the
year 2000 by [Arai et al., 2000]. The authors de�ne the term as a “methodology to intro-
duce a new manufacturing device into a manufacturing system easily and quickly”. The
main idea behind the Plug & Produce concept is derived from the well-known Plug &
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Play concept in the domain of computer systems: A Universal Serial Bus (USB) device
can be plugged into a computer and is immediately available to be used without the need
to manually program a driver for it. A USB mouse manufacturer can re-use the existing
implementation of such USB drivers to support its basic functionality. If a mouse sup-
ports more advanced features, the manufacturer can develop a speci�c driver, which still
implements the basic USB mouse protocol, extended with the special functionality.

Achieving the same level of automated integration of components in manufactur-
ing shop �oors is still a major challenge. The Multi-Annual-Roadmap (MAR) of the
EU SPARC programme [SPARC, 2020] especially identi�es con�gurability as one of the
key system abilities of Plug & Produce systems. Standardized interfaces, and the iden-
ti�cation of system functionalities, are basic requirements to achieve automatic con�g-
uration of devices.

The German Industry 4.0 Index 2019 [Staufen AG, 2019] shows that in the year 2019
companies are struggling with transforming their automation e�orts from small scale
individual projects to implementing the concept of smart factories on operational basis.
This study also shows the main motivation behind adopting Industry 4.0: improvement
of internal e�ciency, increase in transparency of processes, and reduction of costs.

This thesis is addressing the main motivation behind Industry 4.0 by presenting novel
concepts for smart factories, with a focus on the area of industrial robots and their
components.

In the �eld of industrial robots there are multiple challenges which must be addressed to
implement the concept of Plug & Produce. Di�erent types of robots (articulated, scara,
cartesian, spherical, parallel, cylindrical, and others) and their functionality must be
described in a generic standardized way. To handle Plug & Produce of robot tools (e.g.,
parallel gripper, vacuum gripper, drilling tool, screwdriver), they also need a generic
description of their functionality and interfaces, which allow easy integration without
reprogramming. Software algorithms and other software components automatically
need to adapt to new system con�gurations. At the same time, the interface to the
composed system should not change to ensure that higher-level components are still
able to control the system.

1.2 Bene�ts of Flexible and Standardized Integration

Flexible component integration will allow easy set-up of �exible manufacturing sys-
tems, especially industrial robot cells, and thereby reducing integration time by using
well-de�ned interfaces and device descriptions. Algorithms, which are based on these
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interfaces, can be reused for the newly setup system, even if it is from a di�erent man-
ufacturer or if it combines di�erent components.

The approach proposed in this thesis also leads to a lower change-over e�ort, if the
manufacturing cycle is modi�ed, or the shop �oor setup changes. Additionally, the en-
gineering complexity of the whole system is reduced by decoupling and re-using stan-
dardized interfaces and therefore the �rst-time-right quality increases.

By using current standards and collaborating with standardization groups for future
standardization activities, long term sustainability of this thesis results is signi�cantly
increased, and interoperability of di�erent manufacturers is improved. Due to standard-
ized interfaces, information can be easily accessed and extracted from the system and
used for other use-cases, e.g., predictive maintenance, anomaly detection, or process
optimization. The current trend of predictive maintenance and big data analysis re-
quires a lot of data which, in the best case, is gathered through identical non-changing
interfaces [Yan et al., 2017].

1.3 Research Question

The main research question which is addressed in this thesis is shown in Figure 1.1 and
stated as the following:

How can a Plug & Produce industrial robot cell be built up in a way that
single system components and robot tools can be exchanged without the
need of reprogramming or manually adapting control applications?

This is an important feature for the current Industry 4.0 movement, where new ma-
chines need to be integrated into shop �oors on demand with as little re-con�guration
and re-programming as possible.

To answer this question, additional subsequent questions need to be answered: Which
communication protocol and middleware is the best suitable one for this use-case? How
can an automatic device detection and initialization be achieved, similar to USB devices?
How are functionalities of a device best described to be reusable and controllable gener-
ically? Is such a system able to compete performance-wise with traditional systems?

The next section gives some proposed solutions to these questions. The proposed solu-
tions are elaborated further in the progress of this thesis.
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Figure 1.1: The main research question of this thesis shown on the example of an industrial
robot, multiple tools, and control applications. Exchange of a component should
not require any reprogramming of the remaining components.

1.4 Proposed Solutions

My main research question is split up into multiple subsequent questions. Proposed
solutions and approaches how to answer these subsequent questions are discussed in
this section.

The �rst step to achieve a Plug & Play like architecture is to �nd a suitable commu-
nication channel and protocol between the components, i.e., an evaluation of mid-
dlewares must be conducted. A middleware is a combination of software tools and
standardized protocols supporting the information exchange between di�erent compo-
nents of a system. Di�erent middlewares are currently used in the industrial domain,
e.g., Robot Operating System (ROS), Data Distribution System (DDS), Message Queue
Telemetry Transport (MQTT), or Open Platform Communications Uni�ed Architecture
(OPC UA). All these middlewares provide a varying feature set for di�erent use-cases.
Thus, designing a Plug & Produce system requires the evaluation of middlewares and
comparing their features for suitability especially for Industry 4.0 applications. The
main contribution in this part is to create a comprehensive comparison and evaluation
of current middlewares and communication platforms for the application of Plug & Pro-
duce, especially in the �eld of industrial automation and robotics.

Since a suitable communication platform only provides a basic way of communication
and information exchange without any system-speci�cs, the next step will be to de�ne
a concept for system con�guration based on the middleware. Newly plugged in compo-
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nents should automatically announce their services to other components in the system.
Independent of the component’s type it must con�gure itself for the network architec-
ture and then be able to discover the server where it should register itself. One of the
major issues in this step is to �nd the correct server in any network setup since there
may be many controlling servers on di�erent hierarchical levels. Thus, hierarchical
discovery must be implemented in a way that a device or component itself does need
as less pre-con�guration as possible but is still able to cover a wide area of applications.
The expected contribution will be a transparent discovery system which allows easy im-
plementation for system integrators and component manufacturers, and easy detection
of new components in the system to use their provided services.

As soon as a newly plugged in component is detected by its controlling entity (server)
there are two steps necessary: �rst the component needs to o�er its functionality
through basic methods (skills), and the server needs to know how to control the compo-
nent by using additional semantic information associated with the component’s descrip-
tion. O�ering skills implies that the device must implement a device adapter which
wraps the robot’s (or more generally the device’s) functionality to allow other compo-
nents to trigger the skill through the middleware. A main contribution of this thesis is
to �nd a generalized way of implementing the device adapters for di�erent sensors and
actors, especially industrial robots and its tools, and at the same time being able to also
support more specialized devices or subtypes.

The device’s self-description is used by the controlling entity or server to detect the
device type and its functionality. Based on this self-description, the server must de-
cide which operations the device can perform and for which tasks it is suitable. The
major challenge for the self-description is to develop a general understanding which
allows de�ning at least the device’s basic functionality in common terms. Since there
are di�erent device types, it is particularly challenging to �nd a common ground for all
these types and still provide enough �exibility to also support more constrained device
types.

Using hierarchical structuring of components, where one super component can have
multiple subcomponents, allows abstraction of low-level functionalities and at the same
time composing an easy to use interface for the combined components. Since a su-
per component consists of multiple sub-components, recon�guration of components
also needs to be handled. It should be possible to replace subcomponents with similar
components or remove these, without the need of reprogramming the super compo-
nent.
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Figure 1.2: The structural layout of this thesis. The main contributions which correspond to
the four main chapters are marked with dashed boxes, each of which was published
in a peer-reviewed paper.
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1.5 Structure of the Thesis

As shown in Figure 1.2 this thesis starts with an overview of current approaches in
the industrial automation domain, followed by proposed solutions and related work.
The proposed solutions from previous section are then separated in their own chapters
within this thesis. These chapters describe the research results leading to a solution for
each of the described problems. At the end, these results are evaluated in multiple real-
world robotic system demonstrators showing the applicability of the proposed system
architecture and standardized interfaces.

Throughout this thesis I will use the exempli�ed setup shown in Figure 1.3 to highlight
the relevance of each main chapter as part of the whole system architecture.

The central communication platform is an Ethernet-based middleware. Hardware com-
ponents (bottom) represent devices being part of the system setup, while software com-
ponents (top) represent algorithms required for process execution. Since almost every
manufacturer delivers devices with proprietary interfaces, they require additional de-
vice adapters to be able to communicate with other components. Components can use
skill composition to create higher-level functionality through low-level skills.

Figure 1.3: Exempli�ed system setup with hardware (bottom) and software (top) components
connected through an Ethernet-based middleware.
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2 From Industry 1.0 to Industry 5.0

The manufacturing industry is under constant change and new challenges come with
new customer requirements. Over the last decades new inventions allowed new ways
for producing goods, while at the same time the demands for more complex and cus-
tomized products increased proportionally.

This chapter gives a short overview of the major historical changes in industrial automa-
tion, from the industrial revolution to the digital transformation. In addition, signi�cant
current technologies and concepts are described which are referenced in this thesis.

2.1 A retrospective on industrial automation

For centuries, human workforce was used to manufacture goods by hand. Within the
last 250 years, these processes of manufacturing changed signi�cantly due to di�erent
momentous inventions. The past industrial revolution can be separated into four main
periods and extended by an outlook on a possible next signi�cant change after today.
Main characteristics of each period are given in Table 2.1 and described in the following
sections.

Industrial
Revolution

1st 2nd 3rd 4th 5th

Period 1780 - 1870 1870 - 1941 1941 - 2010 2010 - Today Future

Driving
Factor

Mechanization Electri�cation Automation Digitalization Personalization

Main
Invention

Steam Engine Assembly
Lines

Electronics &
Computer

Connected
Devices

AI &
Collaboration

Table 2.1: Main characteristics from the �rst Industrial Revolution up to the current 4th revo-
lution, with a possible next industrial change in the future.
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2.1.1 Industry 1.0 (1780 - 1870)

The �rst industrial revolution was introduced by using the power of water and steam
to aid manufacturer workers and mainly in�uenced the textile industry. A �xed date
cannot be determined, when the �rst industrial revolution started [Freeman and Soete,
1997]. It was around the year 1780 when in Great Britain the manufacturing of cloths
changed from small decentralized cottages to more centralized manufacturing. This
was possible with increasing use of mechanical machines: In 1784 Edmund Cartwright
invented the power loom supported by the �rst steam engines, which increased the
production of a single worker by more than 40 times [Ayres, 1989]. First versions of
such steam engines were already developed by the beginning of the year 1700. Only
when James Watt made some fundamental changes to the initial design in the years 1778
and following, more and more industries started to use the rotary power of the steam
engines to drive their machinery. Steam-powered iron production, new inventions in
chemical processing, and development of machining tools for milling, cylinder boring
and screw cutting gave the that industrial change an even bigger momentum.

2.1.2 Industry 2.0 (1870 - 1941)

The steam engine was constantly improved, its e�ciency increased, reaching higher
rotation speeds while decreasing the energy consumption. New processes for ironing
lead to the invention of steel, which provided higher quality and production speedup
to support the new demands for such materials, especially for new railroad tracks and
structural steel for buildings. With the �rst electrical generators around 1870, and the
invention of the light bulb and the telephone, the way people worked and lived fun-
damentally changed [Constable and Somerville, 2004]. Before that time people mainly
worked during daylight, when now they could work in multiple shifts even during the
night with the support of arti�cial light. This change also introduced the transition
to production lines where one worker performed one speci�c task, instead of building
the whole product in parallel. Henry Ford perfected this shift to mass production by
introducing the �rst assembly line for car manufacturing around the year 1915. With
electricity came new developments in the ironing industry (Aluminum) and electrical
motors empowered the development of new machines. The start of the second world
war mainly marks the end of this second industrial revolution.
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2.1.3 Industry 3.0 (1941 - 2010)

The invention of more complex electronic devices, such as the transistor and, later, in-
tegrated circuit chips led to the next signi�cant change in industrial manufacturing.
Therefore, this period is sometimes also referred as digital revolution. In the �rst stages,
fully automated machines supplemented or even replaced human operators. Further ad-
vances in the information technology allowed even more automation in manufacturing,
e.g., by the development of Programmable Logic Controllers (PLC) in the late 1960s.

Early computers, such as the Zuse Z3 (1941) or ENIAC (1945), were signi�cantly im-
proved, to reach the compactness of a home computer around 1970. Local connection
of these devices had a major in�uence on the manufacturing shop �oor. The most sig-
ni�cant invention was the World Wide Web (WWW) by Tim Berners-Lee in 1989. In
the following years many more intelligent devices were developed (e.g., digital cameras,
smartphones, tablets), which sped up the transition to a more digital age.

Another signi�cant invention was the industrial robot: In 1938 Gri�th P. Taylor in-
vented the Robot Gargantua, a crane-like device used to set wooden blocks in pre-
programmed patterns. Unimation was the �rst company to produce a robot for indus-
trial usage in the years following 1961, called Unimate [Nof, 1985]. KUKA was the �rst
company to build a robot which had six electro mechanically driven axes in the year
1973, which they named Famulus [Singh and Sellappan, 2013]. Over the years the �eld
of robotics made many advancements, one of which are humanoid robots imitating the
human biology.

2.1.4 Industry 4.0 (2010 - Today)

The term Industry 4.0 (I4.0) is often used as a synonym for the fourth industrial revo-
lution and originates from the German government, when it released its new high-tech
strategy in the year 2011 with the goal of computerization of manufacturing.

The main trend of I4.0 includes the introduction of new technologies in manufactur-
ing, i.e., interoperability, virtualization, decentralization, real-time capability, service
orientation, and modularity [Directorate General for Internal Policies, 2016]. The goal
is to highly interconnect machines, sensors, and other devices vertically and horizon-
tally, while collecting data in the cloud for more intelligent, decentralized decision of
product-based manufacturing.

Vertical integration stands for interconnecting all levels of an enterprise, from the pro-
duction line up to the high-level business processes. Horizontal integration incorpo-
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rates the interconnection of all machines, devices, and human workers on one level
even across di�erent locations [Schebek et al., 2017].

With these achievements in �exible manufacturing, small- and medium-sized enter-
prises (SME) should reach a higher level of competitiveness. Nowadays, SMEs need to
cope with increasing customization demands from their customers [Koch et al., 2014;
Perzylo, Rickert, et al., 2019]. In an adaptable manufacturing shop �oor new intelligent
machines and devices need to be integrated as fast and easy as possible, and the time to
set up and con�gure should be short [Mehrabi et al., 2000].

This challenge of fast and easy integration of new devices and machines is still not
solved and it is the focus of this thesis.

2.1.5 Industry 5.0 - What the future could be

This subsection is a visionary outlook to the future. It is based on current trending
technologies which may play an important role in future manufacturing. All presented
industrial revolutions had or have the impact, that people can do their jobs quicker
and more e�ciently. Therefore, it is straightforward to assume, that the �fth industrial
revolution will deal with challenges and tasks currently performed by human workers.
Looking at the solutions developed in Industry 4.0, human workers are still required
for machine maintenance, shop �oor planning, setup, and to assist machines while han-
dling complex tasks. At the same time research currently focuses on automating almost
everything while the human worker is sometimes forgotten [Kinzel, 2017]. The future
needs to focus on reintegrating human hands and minds back into the industrial world.
This can be achieved by strong collaboration of humans and machines and introducing
more Arti�cial Intelligence (AI) into these systems. The human intelligence needs to
work together with cognitive computing. Humans will add additional value to the tasks
of machines to converge from mass production to mass customization and personaliza-
tion.

2.2 Reference Models and Guidelines

One of the central aspects of I4.0 is the concept of components, which have a corre-
sponding digital counterpart. This digital counterpart is often called digital twin as it
represents a digital version of the corresponding component. To achieve a common un-
derstanding for symbols, alphabet, vocabulary, grammar, semantics, and culture, di�er-
ent guidelines and reference models have been developed. This section brie�y describes
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three well-known publications, while there are many more similar documents available
by di�erent organizations.

2.2.1 Reference Architecture Model Industrie 4.0 (RAMI 4.0)

One of the widely accepted models is the Reference Architecture Model Industrie 4.0
(RAMI 4.0) [ZVEI, 2015b] by a union of various organizations (ZVEI, VDI/VDE, DKE,
Verband Deutscher Maschinen- und Anlagenbau e. V. (VDMA) and more). RAMI 4.0
collects the essential elements of Industry 4.0 in a three-dimensional layer structure as
shown in Figure 2.1.

The RAMI 4.0 model can be used especially for the migration into the Industry 4.0 world
as it is a tool to locate a new concept inside the model’s coordinate system. Its goal is
to give an orientation for standardization activities and show missing links between
speci�c concepts to have a common understanding on those concepts.

Figure 2.1: Three-dimensional map showing the most important aspects of Industry 4.0 accord-
ing to RAMI [ZVEI, 2015b].

The Hierarchy Levels axis on the right side represents various functionalities inside a
production facility according to the IEC 62264 standard, extended with Product and
Connected World. It separates the axis into possible hierarchical levels where the tech-
nology can be assigned to, from the Product Level, through Field Level, Stations, whole
Enterprises up to the Cloud.

The Life Cycle & Value Stream axis on the left represents the life cycle of a production
line or product: an instance is created from a type. Type is subdivided into development
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and maintenance usage, going from the construction of a product (drawings, construc-
tion plans) to its model maintenance, e.g., manuals or software updates. Instance is
subdivided into production and maintenance usage for a speci�c product instance, i.e.,
the production of a product, its serial number, maintenance cycles or error messages.

The third axis Layers de�nes the digital location of a concept and hereby assigns a spe-
ci�c functionality to that component. The two top layers business and functionality
cover organization and business processes and the functionality of a product. Infor-
mation describes which data a product has to include, while communication describes
the methodology to access this data. Integration provides the transition between the
physical and digital world, while asset is the real physical product.

2.2.2 VDMA Guideline for the Introduction of OPC UA

A more technical related guideline for the adaption of Industry 4.0 concepts, especially
OPC UA, was released by VDMA in 2017 [VDMA and Fraunhofer IOSB-INA, 2017].

The authors state the following:

The self-information capability of Industry 4.0 communication reduces
the con�guration e�ort and facilitates user understanding. [. . . ] The infor-
mation model is the “operating manual”, which describes the use of compo-
nents, machines, and plants.

These statements are not only truly relevant in the context of this thesis, but also for
the adaption of Industry 4.0 concepts in SMEs.

The authors suggest adapting OPC UA in existing production environments in three
migration steps:

1. In the �rst step one should focus on implementing OPC UA interfaces for existing
devices and provide data for condition monitoring.

2. The second step goes already in the direction of standardized models for speci�c
domains (OPC UA Companion Speci�cations, see Section 4.2.1).

3. In the last step, a more advanced information model should be developed, which
supports hardware-independent communication between di�erent I4.0 compo-
nents.

Many enterprises already focus their work onto creating OPC UA interfaces for con-
dition monitoring in their shop �oors. Only a few are already at the second step to
integrate existing companion speci�cations. For the last step, hardware-independent
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models are still missing and currently being developed. This is also where the results of
this thesis are signi�cantly contributing in collaboration with the VDMA, by providing
a concept for a generic skill interface within the corresponding working group.

2.2.3 Industry 4.0 Component & Asset Administration Shell

Based on the RAMI 4.0, ZVEI released a reference model for an Industry 4.0 compo-
nent [ZVEI, 2015a]. It is the �rst model based on RAMI 4.0 and describes basic properties
of cyber-physical systems, especially hardware and software components. An impor-
tant property of such a component is that it collects all relevant data throughout its life
cycle electronically in a secure container. This secure container is de�ned as Asset Ad-
ministration Shell (AAS). This container contains data (Computer-Aided Design (CAD),
connection diagrams, manuals), provides certain functions (project planning, con�gu-
ration), and o�ers services to access its data and functions. It is a digital twin of the
physical product.

The encapsulation of components using the administration shell provides a standardized
interface for other I4.0 components, and to higher level control systems. Additionally,
such I4.0 components can be logically nested to group multiple sub-components into a
bigger component (see Figure 2.2).

This thesis focuses on the extension of the component’s functionality and standardized
description of its service interface to achieve easier integration of such components into
a complex production setup.
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Figure 2.2: The administration shell embodies machines, devices or sensors and provides a stan-
dardized interface to other Industry 4.0 components. An administration shell may
also act as a logically nested group of multiple sub-components [ZVEI, 2015b].
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Already 20 years ago, recon�gurable manufacturing was identi�ed as one of the six
key challenges for the year 2020 by the National Research Council [National Research
Council, 1998]. In [Yusuf et al., 1999] the authors identi�ed agile manufacturing as a
key technology for an increasingly competitive market of fast changing customer re-
quirements, while one of the major research issues is the de�nition of component in-
terfaces using scienti�c knowledge [Mehrabi et al., 2000]. Especially cost consideration,
increased customer choice, and easy integration of new devices is one of the most im-
portant drivers of agility and evolvable production systems. More than ten years later,
the German government released their new high-tech strategy in 2010 (see Section 2.1.4)
and de�ned �exible and agile manufacturing as one of the main paradigms of the 21st
century, while forming the term Industry 4.0.

Between these �rst steps in the direction of a Plug & Produce system for industrial
manufacturing and today (year 2020), a lot of research has led to current advances. This
chapter gives an overview of the current state of the art and related work not only at the
beginning of writing this thesis (year 2015), but also current research results separated
into multiple sections, similar to the main chapters of this thesis. I also show the research
gaps in the related work and explain how this thesis solves the research gaps.

3.1 Field Bus and Middleware Communication

A substantial part of automation systems is information, the processing of information,
and the �ow of information. The importance of this information is growing proportion-
ally with the size of such systems. In a Plug & Produce system, exchange of information
is one of the key components. Therefore, I take a deeper look into state of the art and
related work in the area of �eld busses and middlewares to identify the applicability of
current solutions for my proposed system.

A �rst attempt in structuring the information �ow was made within the scope of
computer-aided manufacturing (CAM [Chang and Wysk, 1997]). The resulting struc-
ture, with a strict subdivision of information processing into hierarchical levels, is nowa-
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days known as the automation pyramid shown on the left-hand side of Figure 3.1. The
automation pyramid itself is not standardized, but rather is a concept to structure infor-
mation �ow [Sauter et al., 2011].

Figure 3.1: Automation pyramid and the transition to a fully connected non-layered Industry
4.0 architecture.

The automation pyramid is separated into multiple levels:

• The enterprise resource planning (ERP) is mainly a product-driven system that
aims to integrate all business processes such as procurement, material manage-
ment, logistics, sales, distribution, �nancial accounting, production and more.

• Manufacturing execution systems (MES) act as a bridge between the o�ce and
shop �oor and are managing the information on the product to be produced, avail-
ability of production resources, and scheduling of the production itself.

• Supervisory control and data acquisition (SCADA) is responsible for the execution
of a production recipe by controlling multiple lower-level devices and monitor the
execution. A SCADA system typically controls multiple PLCs.

• Programmable logic controllers (PLC) are controlled by the SCADA system and
are typically hard real-time systems to control and regulate directly connected
machines and sensors.

• On the �eld level, there are �nal control elements such as sensors and actuator.

Every layer needs a way to exchange information with its neighboring layer. Typically,
the higher layers (ERP, MES) use IP-based communication protocols, while lower lev-
els (SCADA, PLC) use di�erent types of proprietary �eld busses (e.g., controller area
network (CAN), PROFIBUS, Modbus). With the success of Ethernet-based networks,
signi�cant e�ort was directed into getting this protocol down to the lowest �eld level.
Due to the lack of real-time capabilities, it resulted in even more dedicated solutions,
such as PROFINET or EtherCAT. Therefore, there are various protocols involved in the
di�erent layers. A more detailed look into these industrial communication protocols
can be found in [Wollschlaeger et al., 2017].
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The Time Sensitive Networking (TSN) working group within IEEE was formed in 2012,
and has its goal to close this gap by de�ning a standard for real-time capable Ethernet.
This technology will allow using standard Ethernet even on the �eld level and therefore
replace currently used �eld busses [Decotignie, 2005]. Using real-time capable Ethernet-
based middlewares the goal is to avoid a strictly layered architecture and transition
to a fully interconnected system with one single middleware, as shown in Figure 3.1
on the right-hand side. Such interconnected systems allow communication between
all components without protocol translation, and can be used together with a cloud
infrastructure, where sensor data is directly pushed into cloud databases for predictive
maintenance systems.

To ensure high performance on the information �ow, choosing a performant and
feature-rich middleware is crucial. Therefore, numerous performance tests have al-
ready been conducted in various domains. In the IoT domain the question of the com-
munication protocol’s performance evaluation is seen as a crucial one, because usual
scenarios include resource-constrained devices communicating with each other over
low bandwidth or unreliable wireless networks. In [Chen and Kunz, 2016] a compari-
son of bandwidth consumption and latency of most common IoT protocols, including
MQTT, Constrained Application Protocol (CoAP), and DDS is given, where the authors
conclude that DDS outperforms MQTT in poor network conditions while consuming
higher bandwidth. Since CoAP is based on User Datagram Protocol (UDP), unpre-
dictable packet loss may occur. In [Mun et al., 2016] the authors evaluate CoAP, MQTT,
MQTT For Sensor Networks (MQTT-SN), Transmission Control Protocol (TCP), and
WebSockets, and compare energy performance and CPU power consumption for each
of the protocols. It can be seen from the results that protocols with low implementa-
tion overhead, like TCP and WebSockets, result in a lower energy consumption which
correlates to the induced CPU load. A performance comparison of data usage and the
time spent to send and receive messages for MQTT and OPC UA can be found in [Rocha
et al., 2018]. The authors conclude that MQTT uses marginally less data to transmit the
same payload, while OPC UA delivers lower performance in transmitting a message to
multiple clients. Unfortunately, the authors do not state which implementations they
use, therefore the results are not comparable to other similar research results.

Other papers present performance evaluations for a speci�c protocol: [Veichtlbauer et
al., 2017] shows the good performance of an OPC UA server in a �eld device, measuring
response times, memory, and CPU utilization of an OPC UA Server running on an Al-
tera Cyclone I FPGA. [Cavalieri and Cutuli, 2010] evaluates the performance of di�erent
OPC UA features, such as security, binary transport, and Simple Object Access Proto-
col (SOAP) transport, while [Haskamp et al., 2017] gives an overview of the features
of di�erent OPC UA implementations, including open62541, an open-source C (C99)
implementation of OPC UA used in my thesis. A more detailed comparison between
ROS and ROS2, especially considering di�erent DDS implementations such as Connext,
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OpenSplice, and Fast RTPS is evaluated in [Maruyama et al., 2016]. They show that us-
ing DDS for ROS2 gives a signi�cant performance improvement compared to ROS1.

A survey of supported communication paradigms between OPC UA and DDS is pre-
sented in [Pfrommer et al., 2016], with a focus on how both protocols can be run in
hybrid deployments.

There are still major gaps in the presented middleware evaluations, such as the the-
oretical comparison of the protocol de�nitions, a side-by-side comparison of various
features of used middlewares, and the performance especially in non-ideal situations,
e.g., if there is a high network or high CPU load caused by other applications. Therefore,
my evaluation in Chapter 4 is not only comparing the performance of multiple protocols
(OPC UA, DDS, MQTT, ROS) in di�erent situations (idle, high CPU load, high network
load) using a single test suite, but is also investigating the theoretical performance com-
parison based on its binary package de�nition. The evaluation also focuses on typical
industrial use cases, e.g., by evaluating the performance of multiple nodes on the same
host, showing signi�cant di�erences between the presented protocols.

3.2 Automatic Device Discovery

Automatic recon�guration of system components in a Plug & Produce system depends
on the ability to automatically discover newly plugged-in devices and components. This
is not only important in the industrial domain, but also in various other domains such
as home entertainment, Internet of Things (IoT), or networks in general.

In home and o�ce networks, Universal Plug and Play (UPnP) allows detecting speci�c
services on the network automatically, such as printers or �le shares. The Devices Pro-
�le for Web Services (DPWS) is the successor of UPnP and was especially developed
for embedded devices [OASIS, 2009]. The combination of DPWS and the Web Services-
Discovery (WS-Discovery) allows automatic detection of DPWS-enabled devices within
the network. A service on a DPWS-enabled device can be invoked by the clients using
Web Services technology. The service interface is described using the Web Services De-
scription Language (WSDL) which must be known to the client before calling a speci�c
function. DPWS uses XML-based SOAP messages encapsulated in HTTP and trans-
ported via UDP or TCP. A possible solution for Ad-hoc �eld device integration using
DPWS is shown in [Hodek and Schlick, 2012].

The comparison of DPWS with OPC UA shows that OPC UA is more suitable for limited
hardware due to its �exibility in implementing small OPC UA applications with a spe-
ci�c purpose: It requires less memory by a factor of more than 90% [Dürkop et al., 2012],
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even if those applications do not entirely ful�ll the requirements of device-level Service-
oriented Architecture (SOA) [Cândido et al., 2010]. In typical Service-oriented Archi-
tectures, DPWS is often used for service discovery and device integration [Eichhorn
et al., 2010]. Compared to DPWS, OPC UA has better support for resource limited em-
bedded devices using the Nano Embedded Device Server Pro�le with low requirements
on the hardware performance (ARM9, 100Mhz, 64KB) [Imtiaz and Jasperneite, 2013].
Additionally, OPC UA has a well-de�ned meta model compared to the open approach
of DPWS which o�ers greater extensibility, and more importantly, interoperability.

In [Dürkop et al., 2013] OPC UA is used for auto con�guration of real-time ethernet
systems. The authors’ approach is to use a prede�ned OPC UA server where the device
must register itself, without any automatic detection. Additionally, the focus of this
paper is on speci�c real-time ethernet devices. OPC UA is currently in the process
of integrating Time-Sensitive Networking (TSN), and thus con�guration of real time
ethernet in combination with automatic device discovery can be simpli�ed to non-real-
time ethernet [Nsaibi and Leurs, 2016].

Service discovery based on substring matching is used in the Service Location Protocol
(SLP) de�ned as the RFC 2608 standard [Guttman, 1999], and is often used in LAN-
enabled printers or to �nd network shares. It is mainly used in local networks, where
each service is associated with a speci�c URL and a set of name/value pairs. SLP does
not support more advanced semantic description of devices and their properties.

Automatic component discovery has to not only discover a device’s presence, but it
must also be able to determine the extended semantic functionality description, which
is still a research gap, especially in the domain of industrial automation. The OPC UA
Discovery Speci�cation Part 12, released in July 2015 [OPC Foundation, 2015], is a fairly
new addition to the standard and is adding device discovery to OPC UA, while discovery
of device functionality is still missing in this speci�cation. In the year 2016, at the time
when I evaluated automatic device discovery, it was therefore not yet well implemented
and evaluated, but already a very good basic ingredient to automatically discovering de-
vices in the network. In Chapter 5, I present the basic concepts of the OPC UA Discovery
Service set, including its multicast capabilities, and add the concept of hierarchical dis-
covery to allow subdividing the network into multiple workstations and sub-devices.
Since the basic implementation was still missing in almost all open source OPC UA im-
plementations, I also implemented this part of the speci�cation and contributed it to the
open source community.
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3.3 Device Description & Administration Shell

The transport of information between di�erent entities in an industrial automation sys-
tem is achieved via the used middleware or communication protocol. These middle-
wares typically do not cover the description and modeling of the transported informa-
tion, especially assigning higher-level semantic meaning is typically not possible.

To achieve a Plug & Produce system, devices need to come with a speci�c self-
description, so that other components in the system can infer the device’s function-
ality, the semantic meaning, and especially infer the type of information which is trans-
ported.

On the level of �eld bus systems, the Device Description Language (DDL) has been
developed in the 1990s to formally describe the parameters of �eld level device types. A
software component can use di�erent �eld devices described with DDL. DDL has laid
the basis for uni�cation and international standardization of device descriptions, e.g.,
Electronic DDL (EDDL) or Field Device Integration (FDI), all of which are used mainly
for �eld busses [Runde et al., 2013].

These device descriptions focus on the �eld level, while OPC UA is aiming for a higher
goal, to not only act as a device description, but as a component description for all levels,
from ERP to Field Bus, while being platform- and manufacturer independent. Since there
can be various types of components along these di�erent levels, it is not trivial to get to
one single description which �ts all use-cases, especially for Plug & Produce. [Schleipen
et al., 2015] shows that self-describing devices are essential to get to a Plug & Produce
system.

Considering OPC UA gaining popularity, various researchers are aiming for modeling
di�erent services of manufacturing systems in OPC UA. Since robots make up a core
component of such systems, it is important to explore how OPC UA can be used for
robots e�ectively. The focus hereby lies especially in making robots easily exchangeable
in the Industry 4.0 environment.

The recently released OPC UA Companion Speci�cation for Robotics Part 1 [OPC Foun-
dation, 2019a] was a �rst step in the direction of standardized OPC UA information
models for industrial robots. Part 1 focuses on the vertical integration and describes the
robot setup (e.g., power trains, axes, joint values), and mainly provides data for predic-
tive maintenance, but does not de�ne robot control interfaces. Getting to a standardized
interface for robot control, including all di�erent types of robots and their properties is
not trivial. The next parts of this Companion Speci�cation aim for a higher-level task
control interface, through which a client can control complete program execution, but
not single robot movements.
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Previous publications by [Pfrommer et al., 2014], [Ferreira and Lohse, 2012]
and [Schleipen et al., 2014] introduce skills and how these can be used in manufac-
turing systems in a broad sense. All these publications use AutomationML to generate
their skill descriptions for an OPC UA server. AutomationML (Automation Markup Lan-
guage) is an open standard XML-based data format for the storage and exchange of plant
design data [Drath et al., 2008]. It can be used to model basic functionalities and skill
interfaces, but introduces a further dependency on AutomationML. One of the goals of
my thesis is to keep the number of dependencies as low as possible. Every additional de-
pendency introduces a considerable hurdle to adapting a new concept in an SME which
may need separate experts for every used technology. As shown throughout this thesis,
a generic skill interface can be achieved by solely using OPC UA, without the additional
dependency of AutomationML.

ROS is a community-driven middleware with support for various hardware by imple-
menting the corresponding device drivers and providing a Publish/Subscribe interface.
Hardware-independent robot control in ROS is implemented via ros_control [Meeussen
et al., 2017], and similar via a speci�c Hardware Robot Information Model (HRIM) again
based on ROS [Zamalloa et al., 2018]. Same as [Pedersen et al., 2015], where the authors
present generic robot skills for manufacturing, ros_control only focuses on controlling
robots, but does not provide a generic interface for other hardware components, such as
grippers or other tools used in robot work cells. Di�erent hardware in ROS is integrated
with di�erent interface descriptions, and therefore require distinct control applications.
Pedersen also lists various advantages of using skills in combination with production
systems, i.e., they are generic and allow product variety, programming skills needs to
be intuitive, and they abstract the hardware layer. The presented skill model allows
the abstraction of speci�c robot actions in combination with a task-level programming.
Hereby, the authors focus is not speci�cally on the exchangeability and standardized
interfaces as it is for this thesis.

The EU funded RobMoSys project1 mainly focuses on the composition of robotics ap-
plications based on a skill de�nition integrated in a bigger software architecture, by ap-
plying model-driven techniques. It introduces a completely new ecosystem, which may
result in a smaller motivation to adapt this complex system, especially for small- and
medium-sized enterprises. On the RobMoSys Wiki2 the authors claim that “OPC UA
does not speci�cally aim for composition and is less suitable for composition of soft-
ware components. It misses adequate abstractions and concepts, however, composabil-
ity starts being addressed in OPC UA”. As shown as part of this thesis, the statement
is not valid, as OPC UA is well suitable for composition and abstraction and additional
technologies, introducing more dependencies, are not required.

1https://robmosys.eu/
2https://robmosys.eu/wiki/other_approaches:opc-ua, last modi�ed: 2019/05/20
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It has already been shown that it is possible to automatically generate a device spe-
ci�c OPC UA address space based on various data sources [Girbea et al., 2011] and use
self-describing devices for Plug & Produce [Schleipen et al., 2015]. The proposed ap-
proach, which uses the combination of custom PLC interfaces and custom algorithms,
is still missing a concept to ensure a standardized interface for similar device categories.
Other ideas present similar approaches, while they are all lacking a standardized com-
munication and data model infrastructure or focus especially on general manufacturing
systems, while neglecting the complexity of robots and their tools [Azaiez et al., 2016;
Dürkop et al., 2014; Hammerstingl and Reinhart, 2015; Scheifele et al., 2014].

A technology-independent function interface based on the PLCopen3 model is described
in [Kaspar et al., 2018]. The authors de�ne an OPC UA model based on OPC UA Pro-
grams by using PLCopen function blocks. Using these PLCopen based OPC UA pro-
grams the authors show that controlling a KUKA iiwa robot is possible through OPC UA.
Even switching the gripper during runtime requires little recon�guration from the user.
It is mentioned in their conclusion that the next step is to implement interfaces in which
entire robots can be swapped out and continue to ful�ll a task, provided they match a
speci�c interface. Abstraction of higher-level functionality (i.e., software components)
is not handled at all.

All mentioned related work is mainly focusing on device descriptions for a speci�c lim-
ited use-case, or based on multiple di�erent technologies. To achieve an easy component
integration in Plug & Produce systems and low implementation e�ort, a device descrip-
tion is required which builds preferrably on one single technolgy and is well de�ned.
This description also has to be generic in such a way that it can be used across all levels,
from �eld devices up to the enterprise level. This is where my skill model presented
in Chapter 6 has its strength: I show that not only robots from di�erent manufacturers
can be completely replaced without changing the client application, but also complete
software components.

Similar to the approach of [Kaspar et al., 2018], my colleagues present in [Dorofeev and
Zoitl, 2018] skill-based engineering using OPC UA Programs [OPC Foundation, 2019b]
in combination with IEC 61499. OPC UA Programs provide a mechanism for the seman-
tic description, invocation, and result feedback of stateful long-running functionalities.
These concepts are improved in Chapter 6 by extending OPC UA Programs and their
parameterization interface. More speci�cally, I de�ne a concept to list input and out-
put parameters in a common place and give the presented skills a semantic meaning.
In [Dorofeev and Wenger, 2019] it is shown that skill-based architectures provide many
advantages in comparison to traditional hierarchical approaches, especially for �exible
component exchange.

3http://www.plcopen.org/
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3.4 Plug & Produce

The term Plug & Produce was shaped around the year 2000 by [Arai et al., 2000]. The
authors describe the core concept of Plug & Produce as a methodology which allows
to introduce new manufacturing devices easily and quickly into production systems.
Since then, various approaches were presented to achieve Plug & Produce systems. In
this section, I am listing some of the most relevant research results which existed before
the start of my thesis, and list current relevant research results.

Adaptive recon�guration of the network (�at and multi-level hierarchies) based on de-
vice changes is one of the basic principles of Plug & Produce systems. [Knoll, 2001]
evaluates the performance of highly dynamic distributed sensor networks and the im-
pact on the network performance in robot applications and proposes an analytical model
to evaluate di�erent network types. Based on these research results, optimal placement
of system components can be automatically determined. Enhancing the component
description with additional semantic data not only allows to improve this automatic
placement but is also necessary for the interaction of di�erent system components.

In [Pfrommer et al., 2015], a Plug & Produce system is proposed, which focuses on the
theoretical background of mapping skills to products, processes, and resources. Com-
pared to my approach, they use a custom developed model which does not build upon
well-established standards such as OPC UA. A combination of Semantic Web technolo-
gies and OPC UA is shown in [Jirkovsky et al., 2018]. The authors propose to use a
central database to store semantic device information. This may be di�cult to achieve
on shop �oors, in which devices are regularly exchanged. Also, when new devices or
device types hit the market, this central database needs constant updates. My approach
reduces this disadvantage with self-describing components without a need for central
data storage. Other approaches that are based on IEC 61499 function blocks [Dai et al.,
2019; Lepuschitz et al., 2011] use custom communication protocols for the connection
of components. In [Girbea et al., 2014], a set of services for a service-oriented architec-
ture based on OPC UA is presented. However, automatic discovery was not included.
In [Perzylo, Profanter, et al., 2019], my colleagues and I show how OPC UA information
models can be automatically transformed to an ontology-based representation, which
allows to link the encoded information to other models, e.g., geometry, layout and topol-
ogy, and process and product models. Particularly relevant for production system engi-
neering and semantic interoperability of manufacturing resources, skills can be anno-
tated with capability meta-models, which provide a semantic understanding of a skill’s
scope [Perzylo, Grotho�, et al., 2019].

A recent approach to achieve Plug & Play on the sensor level by retro�tting is presented
in [Panda et al., 2020], where the authors based their work on the discovery mechanisms
I published in my paper [Profanter et al., 2018], which is described in more detail in
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Chapter 5. The description of the sensor interface is done through AutomationML in
combination with eCl@ss and the sensor data is then published to the cloud. Since this
publication focuses on the sensor level, the control interface for devices is not evaluated
and still a major gap.

A reference architecture for a Plug & Produce system based on OPC UA and PLCopen
is presented in [de Melo and Godoy, 2019; Koziolek et al., 2018], similar to the OpenPnP
reference architecture [Koziolek et al., 2019; Koziolek et al., 2020] where the authors base
their architecture on a IEC-61131 runtime, or [Panda et al., 2018] focusing on transform-
ing EDDL descriptions into the OPC UA address space. These publications mainly focus
on �eld devices and correspondingly the presented architecture can be used for signal
mapping, but not for a generic skill concept. Especially the integration of high-level
software components through the same standardized interface is not shown in these
publications. Still, the authors show that the presented Plug & Produce concept “en-
ables a faster commissioning process and minimizes the risk for human error due to
high automation”. In Plug & Produce systems, reducing errors and achieving a fault
tolerant control is an important aspect to avoid total failure [Kambhampati et al., 2006].
This aspect gets even higher importance when using industrial robots which can be
dynamically plugged into the production line [Maeda et al., 2007].

The publicly funded AutoPnP4 project presents a model-based Plug & Produce approach
especially for the higher-level production planning [Kainz et al., 2013]. The used mod-
els describe the type of station (machine or human cell), the current con�guration, and
deployed production plans. Primitive operation descriptions (e.g., drilling, transport,
supply), their attributes (e.g., material, duration) and the modeled capabilities are used
for automated higher-level material �ow modeling, production planning, and schedul-
ing [Keddis et al., 2014]. The evaluation of the AutoPnP project shows that using pre-
modeled production system components reduces the changeover time on recon�gura-
tion. Still, the initial modeling of the six used Modular Production System (MPS) stations
from Festo took the authors approximately a week. In my presented approach I am not
only targeting Plug & Produce on the level of stations, but also inside such stations with-
out the need of manually crafting models for each station. Therefore, my approach is an
enabler for the AutoPnP project as it also provides automated sub-station composition
and standardized interfaces between components.

Another relevant term in the area of �exible industrial automation is the Recon�gurable
Manufacturing System (RMS) paradigm. It is de�ned as a system “for rapid adjustment
of production capacity and functionality, in response to new circumstances, by rear-
rangement or change of its components” [Mehrabi et al., 2000]. Such components can
be hardware or software. A robot cell based on the RMS paradigm using ROS is shown
in [Gašpar et al., 2020]. As shown in Chapter 4, ROS is not as performant as OPC UA and

4http://www.autopnp.com

28

http://www.autopnp.com


3 State of the Art & Related Work

its semantic expressiveness is limited. This is also, why in the mentioned work the au-
thors use a central MongoDB database for skill exchange, which may not be practicable
in the context of self-describing devices and skills.

Previously mentioned publications mainly focus on achieving Plug & Produce via pre-
de�ned speci�c variables, and do not focus on a more generic approach for controlling
any component. Generic control of components using skills based on OPC UA Pro-
grams is also shown in [Zimmermann et al., 2019] and was published at the same time
as my relevant paper describing generic robot skills. The presented approach is simi-
lar to my approach with one signi�cant di�erence: The focus of my skill model is not
only on hardware-speci�c functionalities, but also software components, while keeping
the same interface description. My proposed solution aims at providing a generic sys-
tem architecture based on standardized skill models that can be applied to any type of
component in the system, be it hardware or software.

In doing so, I focus on reusing well-established standards such as OPC UA and keeping
the number of inter-dependencies as low as possible, e.g., by building on the discov-
ery mechanisms of OPC UA and supporting standardization activities in various active
working groups.
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Partial results of the presented work in this chapter are published in my peer-reviewed
publication [Profanter, Tekat, et al., 2019]. I am the main author of this publication,
and my main contributions are in further detail described in this chapter. Some �gures
created and partial text written by me in this publication are directly included in this
chapter.

This chapter presents an extensive evaluation to answer the research question: “Which
communication protocol is the best suitable one for the Plug& Produce use-case?”.

Middlewares are used as a general communication platform for any components in a
system. Figure 4.1 is already known from Section 1.5 and highlights the focus of this
chapter.

Figure 4.1: Exempli�ed system setup with di�erent Industry 4.0 components. Chapter 4 focuses
on the Ethernet-based Middleware part.
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In the �rst section, I present the de�nition and basic requirements for a middleware in
the domain of industrial automation. This is followed by an overall overview of the main
characteristics on a subset of speci�c middlewares which have a high market relevance
in the domain of industrial automation and IoT: OPC UA, DDS, ROS, and MQTT [Balador
et al., 2017; Kaur and Kaur, 2017; Tsardoulias and Mitkas, 2017; Wollschlaeger et al.,
2017].

This chapter is completed with an evaluation of these middlewares regarding their pack-
age overhead of each underlying protocol and the description of my custom developed
software library for middleware performance evaluation, which can be adapted to any
protocol. It delivers the corresponding performance values in a common format to com-
pare it to other results. The evaluation includes performance measurements on di�erent
hardware to identify the suitability especially for real-time control of industrial robot
systems which require low latency and reliable transport. During the evaluation exe-
cution, various system parameters and round-trip times were measured and compared
afterwards.

4.1 Middleware De�nition & Requirements

In [Bernstein, 1993] a middleware is de�ned as follows:

To help solve customers’ heterogeneity and distribution problems, and
thereby enable the implementation of an information utility, vendors are
o�ering distributed system services that have standard programming inter-
faces and protocols. These services are called middleware, because they sit
“in the middle”, layering above the OS and networking software and below
industry-speci�c applications.

This de�nition includes some important points for the industrial automation domain.
A middleware is a collection of services to abstract the operating system and network-
ing software. These services must support standard protocols for vendor independence
to be used in distributed systems. A middleware bridges the gap between software ap-
plications of various programming languages and individual subsystems on di�erent
hardware platforms and operating systems.

Over the last two decades, di�erent middlewares and standardized protocols have been
developed. Some of them with a strong focus on real-time communication, while others
focus on Ethernet-based protocols which are slowly replacing conventional and propri-
etary �eld bus communication [Decotignie, 2005; Neumann, 2007; Rüth et al., 2017].
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Since my goal is to cover all hierarchical levels of the automation pyramid, an ethernet-
based middleware, including platform independence of the operating system, is
mandatory for my proposed Plug & Produce system. A major advantage of Ethernet-
based protocols over conventional �eld bus communication is the required hardware:
These protocols re-use already existing Ethernet hardware and therefore this middle-
ware communication can be more easily integrated into existing networks. A speci�c
�eld bus normally requires special expensive hardware and custom protocol implemen-
tations. Additional requirements for a future-proof middleware are privacy, integrity
and security. Information exchange with other system components is security critical,
therefore encryption and authentication is mandatory for generic systems. Informa-
tion management and semantic modeling is another crucial requirement to trans-
parently process data from di�erent sources and provide this data in an understandable
format to other components. Modularity and standardization allows replacing sys-
tem components and therefore subsystems can rely on standardized interfaces for mod-
ularity. This leads to low-cost integration of subsystems and includes the ability to react
on changed requirements or new subsystems. These new subsystems need to be seam-
lessly integrated by providing service detection and orchestration. Since the number
of system components may be large, scalability is also a signi�cant performance factor
of a suitable middleware.

Some of these requirements are also listed in [Trunzer et al., 2019] as basic requirements
for an Industry 4.0 architecture. Supporting all these requirements makes a speci�c
middleware an ideal basis for my proposed Plug & Produce architecture. In Section 4.3
I compare the middlewares based on their features and implemented requirements. The
following section gives an overview on the middlewares I am using for the performance
comparison.

4.2 Middleware Overview

A middleware is typically developed for a speci�c use-case in mind. Therefore, every
protocol implementation has its own strengths and downsides in various domains. This
section shows the main characteristics of the chosen middlewares with a focus on the
IoT and Industry 4.0 (I4.0) domains.

4.2.1 OPC Uni�ed Architecture (OPC UA)

Open Platform Communications Uni�ed Architecture (OPC UA) is a service-oriented
communication protocol for machine-to-machine communication. It has its origin in
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industrial automation and is emerging into many other domains. OPC UA is the suc-
cessor of the OPC Classic communication protocol. Both are standardized by the OPC
Foundation1. OPC Classic was only available for the Microsoft Windows platform, as it
was using the COM/DCOM (Distributed Component Object Model) for data exchange,
compared to OPC UA which is platform independent.

In 2008 the OPC Foundation has released the �rst version of the OPC UA speci�cation,
which improves many features from the OPC Classic framework. The main goal of
OPC UA is to provide an open cross-platform communication protocol with a strong
focus on a semantic information model to describe the transferred data. The �rst speci-
�cation was also released as the IEC 62541 (International Electrotechnical Commission)
speci�cation. Further extended and corrected speci�cation documents are freely avail-
able on the o�cial OPC Foundation web page2.

OPC UA has a wide distribution and high adaption momentum in European manufactur-
ing and is gaining more and more importance worldwide [Drahos et al., 2018]. A signif-
icant di�erence to other middlewares is its strong semantic data description model: The
base speci�cation de�nes the Core Information Model of OPC UA while additional Com-
panion Speci�cations allow the extension of the base model as shown in Figure 4.2.

Figure 4.2: OPC UA has the strength in its information model capabilities. The Core Informa-
tion Models can be extended via Companion Speci�cations.

1https://opcfoundation.org/
2http://reference.opcfoundation.org/
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Figure 4.2 shows the main layers of OPC UA. On the network side, OPC UA supports
two main messaging patterns: Request-Response and Publish-Subscribe. In Request-
Response, there is one TCP connection for one communication channel, while Publish-
Subscribe uses UDP multicast to send data from one publisher to many subscribers.
In addition to TCP and UDP, OPC UA also supports other lower-level communication
methods, like plain Ethernet frames (ETH). Since UDP itself does not support Quality
of Service (QoS) by default, OPC UA is since 2019 gradually adapting TSN to achieve
real-time ethernet capabilities similar to a proprietary �eld bus.

On top of the Network Layer is the Address Space. It is the data storage, also called infor-
mation model, of an OPC UA instance. OPC UA provides di�erent services to access the
information model inside the server. The main access services are browsing for infor-
mation, reading, and writing variables, and executing methods. More advanced services
allow the modi�cation of the information model itself by adding or deleting nodes and
references. In OPC UA every data element is represented as a node in a directed graph,
where the edges represent references. Every node has properties speci�c to its node
type. This is similar to typical graph databases. The address space meta model de�nes
the structure of the OPC UA address space, i.e., di�erent node types (Objects, Variables,
References, Views), their properties, and reference types. The address space services
are extended with data and event noti�cations which notify the client or subscriber on
changed data values. A detailed explanation of the OPC UA address space concepts and
modeling notation is given in the Appendix A.

A set of di�erent information models builds up the address space meta model. There are
various core information models speci�ed as part of the OPC UA speci�cation, which are
extended by o�cial Companion Speci�cations, e.g., for Robotics or Device Information.
An important feature of OPC UA is the possibility to extend existing information models
with vendor-speci�c custom models.

A deeper insight into the OPC UA information modelling can be found in Section 6.4.1
and on my webpage3. Major parts of that website’s content were written by myself as
part of this doctoral thesis. Other topics on my website include getting started with
OPC UA, implementation hints, and information model documentation.

4.2.2 Data Distribution Service (DDS)

DDS is a middleware with a focus on highly dynamic distributed systems. It is stan-
dardized by the Object Management Group (OMG)4. According to the OMG’s website,

3https://opcua.rocks/custom-information-models/
4https://portals.omg.org/dds/
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DDS is one of many protocols used in industry sectors such as railway networks, air
tra�c control, smart energy, medical services, military and aerospace, and industrial
automation5.

Similar to OPC UA, every DDS participant is started in its own process, which can be
a publisher, subscriber, or both to decouple the participants in space, time, and �ow
between publishers and subscribers. DDS provides a typed interface, which can be used
to read and write data. To achieve real-time capabilities, it has built-in Quality of Service
(QoS) policy options, which are used for the communication channel [Pardo-Castellote,
2003].

Due to its data centric architecture, DDS uses a global data space as information storage
where any participant can read and write. This data is not speci�cally stored inside one
process but located in a distributed way across the publishers. Depending on the QoS
policy, a speci�c amount of data and historical values are stored or cached. DDS sup-
ports many QoS policies, where mostly used ones are: durability (store data for future
subscribers), lifespan (how long is the data valid), presentation (order of received pack-
ages), reliability (best-e�ort or reliable transmission), and deadlines (maximum time
until new data is expected).

Single data values are identi�ed in DDS via topics: It has a unique key, i.e., string name,
and it is bound to a speci�c type. Therefore, each published data package describes
itself, whereas in OPC UA the client browses the information model and infers the data
description beforehand, without the need of reading and parsing the type description
repeatedly.

DDS supports dynamic discovery without a central instance, similar to OPC UA (see
Chapter 5). This discovery process allows to automatically �nd matches between a
publisher and subscriber topic, independent of the process location.

4.2.3 Robot Operating System (ROS)

ROS is not an operating system in the sense of process scheduling, but more like a
structured communication interface on top of a host’s operating system. The main goals
of ROS can be summarized as: peer-to-peer, tools-based, multi-lingual, thin, free and
open-source [Quigley et al., 2009]. It was originally developed by Willow Garage and
now maintained by the Open Source Robotics Foundation (OSRF) together with a large
community6.

5https://www.dds-foundation.org/who-is-using-dds-2/
6http://www.ros.org/
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The main target of ROS is the research community as it provides a large ecosystem of
tools and algorithms, called ROS packages, encouraging collaborative robotics software
development. These ROS packages are mostly available as open-source software and
are one of the strong points of this middleware.

Similar to DDS, ROS uses the Publish-Subscribe pattern, but on established TCP connec-
tions instead of connection-less UDP. A process which is publishing, or subscribing is
called ROS node. The central roscore component manages the orchestration and discov-
ery for ROS topics, which is a speci�c stream of data. A ROS topic is simply identi�ed by
its name. The data structure transferred inside a topic must be known to all subscribers,
and typically cannot be updated on-the-�y during runtime.

ROS2, the successor of ROS, was released in the year 2019. In ROS2 the communication
protocol implementation changed from a proprietary protocol to DDS, therefore it is
built on top of the DDS protocol itself and supports various DDS implementations.

4.2.4 Message Queuing Telemetry Transport (MQTT)

MQTT is a lightweight Publish-Subscribe middleware which is widely used in the IoT
domain. MQTT is open-source and focuses on a small code footprint and e�cient band-
width usage while handling high-latency and low bandwidth network connections.

The Organization for the Advancement of Structured Information Standards (OASIS)
de�ned MQTT in the year 2014 as the protocol for IoT7.

The central component of MQTT is the so-called broker. It stores all the data from every
communication participant. This allows small devices to just �re and forget new data
values, and therefore such devices do not need to store data over a long period. The data
itself is grouped hierarchically, similar as it is achieved with DDS, and multiple devices
can publish on the same topic. MQTT supports a basic set of QoS policies, e.g., to de�ne
how often a message should be re-sent until it is acknowledged, or if the data should be
cached on the broker side.

7https://www.oasis-open.org/news/pr/foundational-iot-messaging-protocol-mqtt-becomes-
international-oasis-standard, accessed July 2020
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4.3 Feature Comparison

An overview of the most important features of the middlewares is shown in Table 4.1.
These features are described in more detail in the following paragraphs.

Table 4.1: Comparison of the protocols used in the evaluation and their main features.
OPC UA ROS DDS MQTT

Communication TCP, UDP, ETH TCP, UDP TCP, UDP, SHM TCP

Patterns Request-Response,
Pub-Sub

Request-Response,
Pub-Sub

(Request-Response),
Pub-Sub Pub-Sub

QoS (Yes) No Yes Yes
Authentication User, PKI (Mac) PKI User, PKI
Encryption Yes No Yes Yes
Standard API No No Yes No
Semantic Data Yes No No No

Usage domain OPC UA focuses on device interoperability, therefore its entire speci-
�cation was de�ned with this in mind. It is an ideal candidate for systems where many
devices are used. In comparison, DDS has a strong focus on software integration in
mainly a single system type, where the hardware does not change over time. This is
one of the main reasons why OPC UA is adopting really fast in the industrial automa-
tion domain: Typical productions lines are built up using di�erent types of devices in
highly �exible environments. In air tra�c control, where DDS is often used, all system
components are mainly from one manufacturer, and they are �ne-tuned for this �nal-
ized system. The focus of ROS is on hardware abstraction and integration of di�erent
algorithms into one big system, hereby targeting the research community. Many robotic
research laboratories and robotics applications use ROS for a quick setup and algorithm
re-usability. The number of commercial products supporting ROS is still extremely low.
In contrast, MQTT is focusing on one speci�c use-case: low network bandwidth and
latency requirements. Therefore, MQTT is not as feature-rich as other presented Mid-
dlewares.

Communication The main task of a middleware is to exchange data with other sys-
tem components. There exist many ways to achieve this task. The most typical and
universally used way is to establish a TCP connection between two components. TCP
has the main advantage that it handles connection parameters, package resending and
package ordering as a built-in feature. TCP payload is encapsulated by an Internet Pro-
tocol (IP) frame, which holds data like source and destination port and IP addresses.
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This IP payload is carried by an Ethernet (ETH, IEEE 802.3) frame to include the source
and destination MAC (Media-Access-Control) address and prioritizing tags. All the pre-
sented middlewares support TCP as its communication type.
UDP is also based on IP but does not establish a dedicated connection between two
endpoints or handles data retransmission. Since no established connection is needed,
UDP is very suitable for Publish-Subscribe setups where a single publisher can send data
to multiple subscribers. MQTT is the only middleware which does not provide a UDP
connection. All data is sent via TCP to the central broker which distributes the data to
all subscribers. MQTT-SN is an extension for MQTT adding UDP [Stanford-Clark and
Truong, 2013]. In ROS all clients must support TCPROS, which is a ROS-speci�c TCP
protocol, and optionally they can also support UDPROS based on UDP which is, status
as of July 2020, only implemented in the C++ derivative of ROS.
OPC UA has an additional communication protocol support for direct sending of Ether-
net 802.3 (ETH) frames without the usage of IP and TCP or UDP. The speci�cation al-
lows to directly send ethernet frames, which is especially required in combination with
TSN [Pfrommer et al., 2018]. TSN adds real-time networking capabilities to OPC UA
which can be used for QoS.
DDS supports shared memory (SHM) data exchange if two DDS participants are running
on the same host system. Using shared memory instead of link-local connections on the
same host reduces the overhead by removing the necessity to send data packages down
to the network layer inside the operating system. Some DDS implementations handle
the switch between SHM or network-based communication transparently to the imple-
mented application.

Messaging pattern There are two main network-oriented architectural patterns,
which describe the way how data is exchanged [Hohpe and Woolf, 2003]. Using Request-
Response, one side sends a request to a speci�c entity which is directly responding to
this request. It is typically implemented as synchronous communication and especially
common in Client-Server architectures.
The Publish-Subscribe (Pub-Sub) pattern is a one-to-many connection: A publisher
which sends the data does not necessarily know its subscribers. Depending on the spe-
ci�c implementation, the number of publishers and subscribers for the same data is not
necessarily limited. Multiple publishers can publish to one subscriber, or there are mul-
tiple subscribers for a publisher. This pattern introduces better network scalability but
reduces the component �exibility on the published data structure since all participants
need to be updated, while in bigger system setups they are sometimes not known.
MQTT, ROS, and DDS mainly use the Pub-Sub pattern for data exchange. OPC UA was
�rst speci�ed for the Request-Response pattern, more speci�cally Client-Server, and in
the year 2018 extended with the Pub-Sub pattern. Aside of Pub-Sub, ROS natively pro-
vides a Request-Response pattern, called ROS Service. DDS has a de�ned standard for
Request-Response, but it is only available in a few implementations.
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Quality of Service (QoS) QoS de�nes policies which can be applied to the data stream
to assign di�erent priorities or latency requirements to data packages. This allows ap-
plications to guarantee a speci�c quality of their provided communication service. Such
QoS policies are important for real-time applications, especially in safety-critical envi-
ronments. A higher QoS requirement typically leads to higher protocol and communi-
cation overhead.
DDS provides an extensive set of QoS policies, e.g., to de�ne deadlines and lifespan,
durability for late-joining participants, reliability for re-sending data on loss, and many
more. MQTT de�nes a basic set of three QoS levels: level zero is best-e�ort delivery
without the guarantee that the data is delivered. Level one guarantees that the message
is delivered at least once to the receiver but could also be sent multiple times. Level two
guarantees that each message is received only once by the intended recipients. OPC UA
does not explicitly de�ne QoS in its speci�cation, but by relying on TSN, real-time capa-
bility can be achieved in Pub-Sub communication. The TSN speci�cation de�nes many
features for real-time networks. ROS does not de�ne any QoS at all.

Authentication & Encryption Nowadays, every connected system should include
authentication mechanisms for participants, to ensure they are allowed to receive and
especially send data to other components in the system. This is crucial for safety-critical
systems, especially in connection with hardware devices which may harm human be-
ings. In addition to the authentication, the data itself should be encrypted to avoid
clear-text data in the network stream for additional security.
OPC UA and MQTT support authentication via a username and password or by using a
private key infrastructure (PKI). DDS only supports PKI authentication. ROS has even
less authentication capabilities: it only supports MAC address-based authentication by
using third-party packages.
Compared to DDS, MQTT and OPC UA, ROS is the only middleware which does not
support application layer encryption: Data is sent as plaintext to other participants and
is therefore not recommended using it in the industrial domain.

Standard API & Implementation A standard Application Programming Interface
(API) does not in�uence the communication itself, but rather on the implementation
side. DDS is the only middleware in the list which de�nes a standard API in its speci�-
cation. This de�nition regulates how methods and data structures must be named. The
goal is to achieve an easy exchange of the underlying implementation without chang-
ing the source code. My experiment with two DDS implementations (RTI Connext and
PrismTech OpenSplice) using C++ showed that the main functionalities are exchange-
able. As soon as it gets to more speci�c con�guration settings, the API of both imple-
mentations di�er, therefore such a standard API only provides a limited advantage. The
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corresponding example source code is available under the Public Domain License on
GitHub8

Semantic Data Representation To achieve semantic interoperability, �exible sys-
tem integration requires a semantic description of the transported information to au-
tomatically infer its meaning without the need to code everything by hand. OPC UA
has a feature-rich semantic annotation of the data by connecting available data nodes
via speci�c reference types with each other. This semantic model is called OPC UA In-
formation Model and can be mapped to typical semantic graph databases as it is shown
in [Perzylo, Profanter, et al., 2019]. ROS, DDS, and MQTT use topic names to give the
data a speci�c meaning. This string name must be parsed by clients to infer its meaning
which could lead to misinterpretation or even wrong data matching.

4.4 Package Overhead

Every middleware protocol needs to include some meta information in the transmitted
data to correctly decode and interpret the data on the remote side. These package head-
ers require additional bits or bytes to be added to the data payload itself and therefore
it is introducing an additional package overhead. The complete data package (header
and payload) is then forwarded to the corresponding underlying protocol, e.g., TCP or
UDP, to be transmitted.

Depending on the used protocol, the size of the package header di�ers, and therefore has
a direct in�uence on the maximum theoretical bandwidth which can be reached. This
section gives an overview of the package overhead for OPC UA, ROS, DDS, and MQTT
based on the corresponding protocol speci�cation. The evaluation was performed on
di�erent payload sizes (0 bytes, 100 bytes, 1000 bytes, 10000 bytes) since the header size
may vary in these di�erent cases.

Table 4.2 shows the protocol payload size which is passed from the middleware (OSI
Layer 5, Session) to the UDP/TCP connection (OSI Layer 4, Transport). Since this is the
payload for the transport protocol, its size is not in�uenced by lower-level protocols,
e.g., if the ethernet frame needs to be split into multiple frames due to its Maximum
Transmission Unit (MTU, typically 1500 bytes). The table also includes the required
number of bytes, which are sent at the beginning of a connection establishment and
at the end for connection shutdown. The following values for each middleware are

8https://github.com/Pro/dds-temperature
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constructed from the protocol de�nition and then veri�ed using Wireshark9 network
protocol analyzer.

Table 4.2: Package size in bytes transmitted as TCP/UDP payload for each protocol with given
payload in bytes. The protocol overhead is calculated by the di�erence between data
payload size and the TCP/UDP payload. The connection column is the sum of bytes
for connection establishment and shutdown.

Payload 0 100 1000 10000 Connection

OPC UA C/S 96 196 1096 10 096 632
ROS 8 108 1008 10 008 8915
DDS 88 188 1088 10 088 8348
MQTT 5 105 1006 10 006 17

OPC UA To achieve comparable results between the used protocols, a simple write
request to a variable was implemented, without the use of encryption. Encryption would
add additional overhead, which would invalidate the comparability of the results.
The following steps are performed in OPC UA before and after a write request or any
other service call can be executed:

1. open secure channel (OpenSecureChannelRequest): 132 bytes
2. get available endpoints (GetEndpointsRequest): 93 bytes
3. create a session (CreateSessionRequest): 138 bytes. The size depends on the host-

name, in this case localhost:4840 was used
4. activate the session (ActivateSessionRequest): 137 bytes. The size depends on the

identity token length, in this case open62541-anonymous-policy was
used

5. send write request
6. close the session (CloseSessionRequest): 75 bytes
7. close the secure channel (CloseSecureChannelRequest): 57 bytes
8. Sum of bytes for connection overhead: 632 bytes

ROS During the startup phase, every ROS node sends an XMLRPC request to the
central roscore to exchange information about the current system state and available
publisher and subscriber for the node’s topics. If there is a matching topic from another
node, a dedicated TCP connection is established between these two nodes using the
TCPROS protocol. During the shutdown phase, the ROS node sends another XMLRPC
request to the roscore to announce that it will go o�ine.

9https://www.wireshark.org/
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1. outgoing XMLRPC requests to register with roscore: 5693 bytes
2. Subscriber node connects to Publisher via TCPROS
3. Publisher node sends publishing info: 176 bytes
4. Publish data
5. outgoing XMLRPC requests for the shutdown: 3046 bytes
6. Sum of bytes for connection overhead: 8915 bytes

DDS DDS does not use a central component but relies on its discovery process to �nd
other participants in the same subnet. Since this discovery process is not standardized
in the speci�cation, the sequence and payload during this discovery process heavily
depends on the used implementation. For the following evaluation, the eProsima Fast
RTPS implementation was used. In the discovery phase, the participant sends out a
multicast message to discover other participants and periodically sends a heartbeat. Af-
ter two participants discovered each other, they exchange information about published
and provided topics. This whole process sums up to 8348 bytes encapsulated in RTPS
(Real-Time Publish Subscribe) packages delivered as UDP payload.

1. Send multicast message to discover participants
2. Periodically send heartbeat
3. Receive response of subscriber
4. Publish data
5. Disconnect from subscriber

MQTT MQTT uses its own TCP-based lightweight binary protocol. Its lightweight
implementation can also be seen by looking at the number of bytes required for con-
nection establishment to the broker. Note that the number of bytes transmitted in the
following steps is dependent on the topic name. In this calculation a topic name with
one single character was used.

1. Connect command: 15 bytes
2. Publish data
3. Disconnect request: 2 bytes
4. Sum of bytes for connection overhead: 17 bytes

The overall evaluation of package overhead shows that MQTT has the smallest over-
head for connection establishment and the smallest overhead when sending out data
messages. The package overhead of MQTT is almost the same as for ROS: Both pro-
tocols use dedicated TCP channels for di�erent topics. This avoids the necessity to
send additional metadata, as the channel is internally annotated with the corresponding
metadata during the connection establishment. Yet, ROS requires the highest number
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of bytes for connection handling. This is because XMLRPC messages are uncompressed
XML text, which is directly sent over the network. The package overhead of DDS and
OPC UA for data messages is higher, since these two protocols only use one single TCP
connection, where di�erent data values can be sent through the same channel, enclosed
with the corresponding data description. This requires additional metadata to identify
the data type. OPC UA is on the last place when it comes to the package overhead since
it provides the highest amount of additional annotation data for each data package.
Compared to ROS and MQTT, DDS and OPC UA support the additional feature to trans-
mit additional diagnostic information with every package, e.g., to include the server per-
formance or other vendor-dependent diagnostics. In ROS and MQTT this data needs to
be collected separately.

4.5 Performance Evaluation

To test the performance of OPC UA, DDS, ROS, and MQTT, I developed a test suite
which allows testing di�erent protocol implementations with the same testing mecha-
nisms. The test suite is available as open-source software on my GitHub Account10. It is
designed to deliver reproducible results with a single command, which also logs various
key performance values (CPU, memory, RTT) in a �le for later statistical evaluation.

4.5.1 Testing Setup

The hardware setup for the performance evaluation is shown in Figure 4.3. It is com-
posed of a Linux client and Linux server PC which are connected via a Gigabit Ethernet
switch (TP-Link TL-SG1024DE). Both Linux machines have the following speci�cation:
Intel i7-8700K CPU with 3.70GHz and 64GB RAM running on Ubuntu 16.04.4 with
Preempt-RT Kernel 4.14.59-rt37. The real-time kernel was used to ensure high perfor-
mance and reproducibility on the tests. An initial evaluation of the setup, independent
of middleware protocols, results in an average round-trip time (RTT) ping of 0.35ms
between the two Linux machines. A measurement of the bandwidth using the Linux
iperf command resulted in a value of up to 724Mbit/s.

To measure the round-trip time (RTT) of a package, the request-reply pattern was im-
plemented, where the server provides methods which can be called from the client side.
For MQTT, DDS, and OPC UA Pub-Sub the request-reply pattern was implemented by
using two separate topics: One for sending the request and the other for the reply. In

10https://github.com/Pro/middleware_evaluation
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Figure 4.3: Middleware performance test setup to measure CPU usage, RAM usage, messages
per second, and round-trip-time (RTT).

addition to the RTT, the following metrics are determined during the test run: CPU
usage, RAM usage, messages per second.

All tests were executed with two distinct modes: The ACK mode sends a request with
the given size and waits for a simple acknowledgement message (1 byte), which is useful
to measure the response time for a single message. In the Echo mode, the transmitted
package is echoed by the remote side in the response package to measure the through-
put. The tests are executed sequentially repeating every payload 5000 times without
any waiting time in between. As soon as the acknowledgement or echo response is re-
ceived, the next package is sent. The �rst payload size is 2 bytes, repeated 5000 times,
and then the payload is doubled for the next step, until a payload size of 32768 bytes is
reached.

In addition to the ACK and Echo modes, a resting RTT test was performed: Before
sending the next ACK request, the client waits for a random time between 0 and 3
seconds. This step is repeated as often as possible within 30 seconds and then the RTT
is measured.

To test the performance of the middlewares in non-ideal scenarios, where other pro-
cesses on the end-device cause high CPU load or there is high tra�c on the network,
third party tools were used to generate extensive network tra�c and additional CPU
load. Ostinato is a tra�c generator which can create sequential interleaved streams of
di�erent protocols at di�erent rates to generate an arti�cial network load [Srivastava et
al., 2014]. This results in a full capacity utilization of the network stack. The stress11

tool was used to create arti�cial CPU load. It is designed to apply con�gurable CPU,
memory, I/O, and disk stress on the system.

As a �nal step, the performance of the middleware was evaluated, while 500 server in-
stances of the same protocol are started at the same time on the server machine. The
client machine will then simultaneously send 10 packages with a payload of 10 240 bytes
to 10 nodes running on the server machine. These 10 nodes immediately forward the re-

11https://people.seas.harvard.edu/~apw/stress/
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ceived package to the next node on the same machine. The last step is repeated 50 times
on the server side, which results in 10 internal sending streams running in parallel. The
last node sends the received messages back to the client, which will then measure the
complete RTT of all 10 messages. The whole process is repeated 100 times to get an
average value and eliminate outliers. This test will show the suitability of the protocol
for the use case, where a lot of nodes are running on the same host and data is ex-
changed primarily between these nodes. This setup is often used with ROS, e.g., where
a ROS node is reading a camera image, another node subscribes to this image, applies
preprocessing, and outputs the result in a new topic.

The following implementations of each protocol were used, all of which are available
as open-source software. The used version of every implementation is the latest stable
version in early November 2018. Commercial stacks exist for OPC UA, DDS, and MQTT,
but are not included in this evaluation.

• open62541: OPC UA implementation. License MPL2.0. Version 0.3-rc2 for
Client-Server, and Version df58cf8 of the master branch for Pub-Sub which was,
as of November 2018, not included in the release version yet.

• ROS C++: ROS implementation. License BSD. Version Kinetic Kame
• eProsima Fast RTPS: DDS implementation. License Apache 2, Version 1.6.0
• Eclipse Paho MQTT C: MQTT implementation. License EPL1.0. Version 1.2.1

4.5.2 Performance Results

This subsection presents the results from the testing setup as described previously. I
used the most common C/C++ open-source implementations of every protocol. For
some protocols there exist other implementations in di�erent programming languages,
commerial and open-source. Therefore, the results are only valid for the used imple-
mentation and may look di�erent for other implementations of the same protocol.

Figures 4.4 to 4.7 show an excerpt of some of the most interesting results from the exe-
cuted tests. Visualization as box plots was used, which allows to see the median value
(marked with a cross), upper and lower quartiles, and the variability outside the quar-
tiles (marked by whiskers). Single points indicate outliers. The corresponding numeric
values for the average round-trip-time (RTT) are also shown in Table 4.3. In addition to
the protocols described in previous sections, two simple echo/ACK servers were imple-
mented in C that listen for TCP and UDP connections and return the received data to the
sender (echo) or acknowledge (ACK) the data by sending one single byte as a response.
The results of these raw TCP and UDP implementations are included in the �gures and
show the best reachable RTT for the corresponding tests without any overhead from a
speci�c middleware implementation.
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(a) Echo RTT for di�erent data message size using OPC UA Client-Server via TCP on Idle, CPU Load, and
Network Load.

(b) Echo RTT for di�erent data message size using OPC UA Publish-Subscribe via UDP on Idle, CPU Load,
and Network Load.

Figure 4.4: Plots showing the RTT results for OPC UA Client-Server, and OPC UA Publish-
Subscribe for an excerpt of the collected data.

Figures 4.4a, 4.4b and 4.5a to 4.5c show the box plots for all four protocols with the RTT
of the message which is being sent to the server side and immediately returned by it.
The �rst column of box plots shows the values for the system idle state (no additional
load on the CPU or network). The second box column shows the RTT with 100 percent
CPU server load, and the last box column shows the RTT under high network load.

Comparing the values for the server in idle state (�rst box column) versus the one with
high CPU load (second box column), the test results indicate that the RTT of OPC UA
and ROS does not correlate to the CPU load of the host and is nearly the same as in the
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Table 4.3: Average RTT in microseconds for echo and ACK mode with various payloads (in
bytes) as visualized in Figures 4.4a, 4.4b and 4.5a to 4.5c. Lower numbers are better.
The minimum value of each load type across all middlewares (excluding raw TCP
and UDP) is marked as: Min Idle , Min CPU , Min Net , Min ACK .

Mode Middleware Load 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768

Ec
ho

OPC UA C/S
Idle 520 283 288 280 270 270 360 313 456 546 606 978 1003 1171 1770
CPU 279 258 233 260 276 265 284 293 310 346 461 752 830 955 1467
Net 875 869 876 858 827 864 866 871 875 860 1056 1158 1248 1397 1894

OPC UA P/S
Idle 590 589 510 338 162 270 169 174 305 469 521 446 395 1142 1924
CPU 224 177 178 182 183 265 188 206 242 373 529 620 618 1083 1676
Net 919 930 880 902 911 864 921 901 924 936 1003 1019 1110 1286 1641

MQTT
Idle 584 629 645 641 581 601 622 699 694 725 716 920 1186 1225 1511
CPU 912 905 912 917 911 934 945 944 964 1015 1094 1540 1582 1504 1843
Net 1017 1042 1038 1033 1040 1027 1054 1039 1085 1135 1239 1347 1456 1622 2029

ROS
Idle 618 628 446 396 398 182 296 319 495 814 698 1007 1273 1486 1823
CPU 256 320 295 252 190 305 332 317 359 421 563 1077 1114 952 1427
Net 1017 1014 1009 1012 982 1021 1011 963 1040 1063 1124 1263 1343 1488 1884

DDS
Idle 726 234 236 243 247 252 251 279 270 314 343 454 495 802 1144
CPU 624 631 626 625 624 628 622 644 659 442 351 464 489 782 1050
Net 1091 1086 1070 1111 1063 1088 1102 1099 1123 1114 1184 1190 1270 1432 1806

TCP Idle 250 253 284 303 254 255 307 270 289 315 273 823 811 892 1261

UDP Idle 241 231 208 213 208 162 168 198 238 193 263 263 268 893 1398

A
CK

OPC UA C/S Idle 383 354 301 294 306 291 293 321 310 305 481 710 681 969 1033
OPC UA P/S Idle 185 180 199 207 196 190 180 195 215 279 222 277 298 785 1265
MQTT Idle 647 602 556 518 606 626 636 646 650 643 629 575 556 740 800
ROS Idle 642 537 321 168 157 248 623 608 437 197 226 871 992 1192 1377
DDS Idle 320 228 234 236 241 243 244 242 252 272 275 355 343 514 784
TCP Idle 235 243 283 187 239 279 196 208 189 237 58 71 81 167 338
UDP Idle 259 223 220 190 155 153 164 169 174 215 359 317 255 502 725

idle state. I used a Preempt-RT Linux kernel where all middleware-related processes
are set to the highest priority. MQTT and DDS show a signi�cant slowdown of approx-
imately 300 µs compared to the idle state. This leads to the conclusion, that the Paho
MQTT and eProsima Fast RTPS implementations require more CPU power to process
the messages and are thus slowed down when the CPU utilization is at 100 percent.

The results of the RTT during high network load (second box column) show that pro-
tocols using TCP (OPC UA Client-Server, MQTT) were less in�uenced by a network
interface running at maximum capacity than protocols using UDP (OPC UA Pub-Sub,
DDS, ROS). All protocols show a slowdown of more than 400 µs.

The combined view in Figure 4.6a and 4.6b shows the direct comparison of the proto-
cols, including a simple TCP and UDP echo/ACK server implemented in C. The raw
UDP implementation is the fastest approach for exchanging messages of small sizes,
which are either acknowledged or echoed back, closely followed by TCP, which has a
better performance for bigger message sizes. Excluding the results of TCP and UDP, the
open62541 OPC UA Pub-Sub and Client-Server implementation described in [Pfrommer
et al., 2018] is the fastest middleware for almost all package sizes independent of the ap-
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plied system load. eProsima Fast RTPS is in second place, followed by ROS, and then
MQTT. The diagrams also indicate that MQTT has the highest number of outliers.

To investigate further which components of a middleware have the highest impact on
the RTT, I executed additional tests using the OpenDDS middleware. It features a zero-
copy or memory allocation mode for sending back the echo message. This has shown
that the way messages are read from the socket and then forwarded to the user code
has a high impact on the RTT. Typically, the received message is duplicated and moved
in memory multiple times from the operating system’s socket until it reaches the im-
plementation. Memory allocations are an expensive operation. Additionally, OpenDDS
was signi�cantly slower than Fast RTPS, which shows that the serialization of messages
may also lead to higher RTT. The eProsima Fast RTPS and open62541 OPC UA imple-
mentations pass constant data pointers to the user code, whereas MQTT and ROS use
multiple copy operations to duplicate the data.

Figure 4.7a shows the RTT for sequential requests, where the client waited a random
number of seconds (between zero and three) to send one single request (4 bytes payload)
and waited for the ACK messages. This test was repeated 100 times to get an averaged
value. These results indicate that DDS needs more time to reactivate from the resting
state compared to other middleware protocols. It could be the case that the eProsima Fast
RTPS implementation is closing the connection sockets after a short period of resting
time, and therefore new connections take more time to set up. For OPC UA, MQTT, and
ROS, the values are similar to the ones in Figure 4.6b, which shows the ACK RTT.

At last, 500 instances running on the same remote host was evaluated, which exchange a
lot of data between each other, as described in Section 4.5.1. For OPC UA Client-Server,
500 OPC UA servers using di�erent enpoint ports were started on the remote host. The
client sends 10 simultaneous write requests with a payload of 10 240 bytes and every
server forwards this request to the next local server in line, resulting in 50 write requests
per package, multiplied by 10 simultaneous streams. The last 10 servers return the value
to the client, which measures the overall time. For OPC UA Pub-Sub, MQTT, ROS, and
DDS, the same procedure is achieved by using topics with di�erent names and starting
multiple processes. One of the biggest issues for this test was the resource usage of ROS
and DDS. Starting 500 ROS nodes forces the CPU to work at full capacity and �lled 60GB
of the total 64GB of installed RAM on that host. Using Fast RTPS, it was not possible to
start more than 100 nodes, as the CPU was already working at full capacity, and the DDS
nodes were unable to discover any topics after some time. To still conduct the tests for
DDS, the OpenDDS implementation was used as an alternative, which supports more
e�cient shared memory. The high load is the result of the discovery process in ROS
and DDS: as explained in Section 4.4, these two protocols produce a higher number of
packages with more data compared to OPC UA and MQTT. Therefore, the e�ciency
of the connection setup and teardown implementation has a high impact on the CPU
usage, especially if there are multiple instances started on the same host.
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This test shows that the open62541 OPC UA Client-Server implementation is still the
fastest protocol and is even faster than the DDS shared memory implementation. The
reason for the huge performance gap to MQTT and ROS is the direct TCP connection
between nodes in OPC UA, whereas MQTT uses stateless UDP connections, and ROS
is slowed down by the high CPU load it produces on the host. In [Maruyama et al.,
2016], the authors also state that for small data, shared memory does not improve the
latency compared to local loopback. Therefore, shared memory communication does
not improve the performance on small data packages, but it may have a signi�cant per-
formance improvement if there is a signi�cant amount of network tra�c in parallel.

4.6 Summary & Discussion

This chapter gives an overview of the features and performance of some well known
middlewares in the �eld of industrial automation and Internet of Things: OPC UA,
ROS, DDS, and MQTT. The feature comparison shows that every middleware has its
strengths and weaknesses. Therefore, there does not exist a single truth on the best
middleware for everything.
OPC UA has its strength in the semantic modeling of information. ROS is mainly used
for controlling robots and their modules for research purposes and provides many pre-
implemented feature packages. DDS has an extensive set of Quality of Service settings,
whereas MQTT mainly focuses on a lightweight Publish-Subscribe protocol.

The performance comparison of the used open-source protocol implementations shows
that open62541 for OPC UA and eProsima Fast RTPS for DDS deliver high performance,
whereas the MQTT and ROS implementations show a signi�cant slowdown in the RTT
of packages sent to the server. It can also be seen that open62541 is based on a very
performant implementation, con�rming the results published in [Cenedese et al., 2019]
where di�erent open-source OPC UA stacks (open62541, freeOpcUa (C++), freeOpcUa
(Python)) are compared and open62541 clearly outperforms other implementations.

This chapter also answers the initially stated question “Which communication proto-
col is the best suitable one for the Plug-and-Produce use-case?”. OPC UA, especially its
open-source implementation open62541, is a very performant protocol implementation
and therefore an ideal candidate for the industrial automation domain. Typically, in-
dustrial applications require low-latency communication and securely encrypted data
exchange to avoid damages. In addition to its performance, OPC UA includes a rich se-
mantic description model which is essential for Plug & Produce, as the following chap-
ters will show in more detail.
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(a) Echo RTT for di�erent data message size using ROS on Idle, CPU Load, and Network Load.

(b) Echo RTT for di�erent data message size using MQTT on Idle, CPU Load, and Network Load.

(c) Echo RTT for di�erent data message size using DDS on Idle, CPU Load, and Network Load.

Figure 4.5: Plots showing the echo RTT measurement results for ROS, MQTT, and DDS for an
excerpt of the collected data.
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(a) RTT for sending and receiving data messages using di�erent protocols.

(b) RTT for sending data with a simple ACK message using di�erent protocols.

Figure 4.6: Plots showing the direct RTT comparison between the protocols for echo and ACK
messages.
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(a) Resting RTT for sending a payload of 4 bytes waiting ran-
domly between 0 and 3 seconds.

(b) RTT for sending 10 packages (10240 byte payload) through
500 nodes on another host.

Figure 4.7: Plots showing the resting RTT and the RTT for high data routing on the remote
host.
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Partial results of the presented work in this chapter are published in my peer-reviewed
publication [Profanter et al., 2018]. I am the main author of this publication, and my
main contributions are in further detail described in this chapter. Some �gures created
and partial text written by me in this publication are directly included in this chapter.

All components within a generic Plug & Produce system should require as little pre-
con�guration as possible resulting in reduced integration time. Due to this constraint,
components need to implement a concept which allows to automatically detect other
participants in the system. This is called automatic device discovery.

Figure 5.1 is already known from Section 1.5 and highlights the focus of this chapter:
The discovery of components in the system.

In this chapter, I propose a novel hierarchical architecture for a multi-level Plug & Pro-
duce system. This architecture is used to automatically discover other I4.0 components
in the network and allows optional hierarchical grouping of devices. First, I present
di�erent requirements which must be ful�lled by components for such a system. In the
previous chapter, I show the comparison of di�erent middlewares, and why OPC UA
outperforms feature-wise and performance-wise in this comparison. This chapter is
based on another important feature of OPC UA: the discovery service set. I present a
deeper insight into the OPC UA discovery service set, which is a basis of the presented
novel architecture, followed by a short overview of di�erent open-source OPC UA im-
plementations, and their implementation status of the discovery service set. On top of
the features of the service set, I de�ne the hierarchical Plug & Produce architecture and
evaluate it. The focus of this evaluation lies on the applicability of the hierarchical ar-
chitecture for easy integration of new devices. A more detailed evaluation is given in
the follow-up chapters, together with the additional concepts described later.

My developed source code, as part of this chapter, is available as open-source on GitHub
in various projects and described in more detail in this chapter.
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Figure 5.1: Exempli�ed system setup with di�erent Industry 4.0 components. Chapter 5 focuses
on the automatic component discovery based on OPC UA, and the skill detector
concept.

5.1 Plug & Produce Component Requirements

The lifecycle of intelligent I4.0 components (e.g., sensors, devices, workstations, soft-
ware) can be separated into four di�erent phases (see Figure 5.2): Discovery, Con�gura-
tion, Production, and Recon�guration. To ensure easy integration and interaction of other
components with the component itself, every phase must meet di�erent requirements
which I present in this section, separated by the mentioned phases.

5.1.1 Discovery Phase

As described in Chapter 2 and de�ned in [ZVEI, 2015b], Ethernet-based communication
is the highly recommended communication method for I4.0 components. It is typically
based on IP. Every participant in an IP network generally requires an IP address and a
corresponding port number. There exist various automatic and non-automatic methods
to assign IP addresses and TCP or UDP ports to devices. The most straight-forward way
is to pre-con�gure every device or component (i.e., machines, devices, sensors) with a
speci�c address, adapted to the speci�c factory �oor and its corresponding network
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Figure 5.2: Lifecycle phases of an intelligent I4.0 Component (Discovery, Con�guration, Pro-
duction, Recon�guration) with substages in Discovery

setup. Using this approach, new components cannot be easily integrated into the fac-
tory, as not only new components need to be con�gured, but also the con�guration of
existing components needs to be adjusted to accommodate the change. This is an error
prone process.

To achieve a more Plug & Produce-friendly setup without any factory-speci�c pre-
con�guration, the components need to be able to discover other components automati-
cally. This discovery process can be further subdivided into four stages: Plug-in, Register,
Operating, and Plug-out (see Figure 5.2). One of the few middlewares which can handle
these stages is OPC UA. More technical details on the discovery process of OPC UA can
be found in the next Section 5.2.

The Plug-in stage is the �rst step, in which the component needs to set up its commu-
nication stack, announce its presence to other components, and get a list of all available
components in the network. In Ethernet-based communication this is typically achieved
via Dynamic Host Con�guration Protocol (DHCP), which is used for automatic assign-
ment of IP addresses to devices. The next step for the component is to announce itself
by sending out a multicast message to all network devices in the current subnet, e.g.,
using Zero-con�guration networking (zeroconf). Other devices should then respond
with a corresponding message containing information on how the network device can
be contacted, i.e., its IP address and TCP or UDP port.
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After the list of all the network devices is available, the I4.0 component must select
the correct device to Register itself. By registering itself, the component tells other
devices that it is available. The register message also needs to include additional iden-
ti�cation data of the component itself. The major issue in this stage is to understand
the topological structure of components, so that the component can register with the
correct supervising component. Typical industrial setups are hierarchically grouped de-
vices, i.e., the work cells in a production line are controlled by one central entity, every
workstation can consist of multiple subsequent devices which are again hierarchically
controlled [Brandenbourger and Durand, 2018]. The main goal of this abstraction is to
reduce the complexity with every level. The task of the supervising components is to
keep track of all enclosed available devices and to connect di�erent I4.0 components
on the same hierarchy level with each other. To be able to recognize the type of the
component, each Plug & Produce device should have embedded information about its
capabilities, skills, data input and output, and the di�erent key performance indicators
(KPI) it provides.

After registering, the component is in the Operating stage, which is the normal exe-
cution mode where the component is periodically checking the current network status
and re-registering with the register server to indicate that it is still alive. This ensures
that the list of available devices is consistent, e.g., if the network connection is broken,
or the device itself is not available anymore it must be removed from the list.

During the Plug-out stage the I4.0 component unregisters itself from the supervising
component. Unregistering may occur gracefully if the device is shut down normally,
or abruptly if the network connection is broken. In the latter case the component it-
self has no way to notify the Local Discovery Server (LDS) about its plugged-out state.
Therefore, the periodic re-register in the operating phase is used as a mean to detect the
broken connection. In the worst case, a client trying to connect to an o�ine component
will only then detect that the device is o�ine, and therefore must wait for the connec-
tion timeout. If the device is shut down normally, it �rst issues an unregister service
call and with this immediately noti�es other servers that it is shutting down.

5.1.2 Con�guration Phase

After the communication channel for the I4.0 component is set up, and it is connected
to the corresponding control entities, the component needs to be con�gured to perform
its designated task.
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Automatic con�guration is still one of the major challenges, and a highly researched
topic, as shown in the “Plattform Industrie 4.0”1 project. Semantic reasoning must be
performed to get from complex product speci�cations and system requirements to the
execution of production steps. Additionally, the question must be answered, how a sin-
gle con�guration for a product can be split and deployed to di�erent components or
machines to allow hierarchical execution of the necessary production steps. Academic
experiments such as MGSyn [Cheng et al., 2012] or F++ [Keddis et al., 2015] have ap-
plied game-based reasoning or search-based techniques to create distributed recipes or
orchestration plans, based on a prede�ned skill library of every machine and high-level
speci�cation.

In Chapter 6, I present a generic semantic device and component description which
allows initial automatic con�guration and parametrization of execution functionalities
based on the proposed generic skill model. Combined with semantic reasoning a Plug
& Play system can be achieved.

5.1.3 Production & Recon�guration Phase

After the component is con�gured and all required information is gathered, an I4.0
component needs to provide the services to start the execution and to achieve its task.
Each such service, i.e., a basic action of the device, can be de�ned as a skill. Depending
on the complexity of the component, multiple skills or a combination of base skills
may be presented to the upper control component. A more detailed description on skill
composition is given in Chapter 7.

It is also necessary for a component, to handle di�erent events in the production phase,
e.g., if a new job is started, while the old job is still running. Additionally, the component
must be able to handle errors which may occur on the hardware or software side during
execution of the skill, on the upper level, or if another collaborating component fails to
execute its task.

If there is a production running at the moment, while a new component is plugged into
the system, all involved components need to be able to handle recon�guration during
run-time correspondingly, in the simplest case by ignoring new devices until a new
production cycle is started. The same holds true if a required component is unplugged.
Therefore, an intelligent I4.0 component must handle switching jobs when a new pro-
duction task arrives, including the case where the hardware is altered, or a collaborat-
ing device changes its status. Additionally, the communication channel may change
(online/o�ine) and thus needs to be updated accordingly. Moreover, in the recon�gu-

1http://www.plattform-i40.de/
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ration phase the I4.0 component can receive new parameters for executing its existing
skills, e.g., for optimizing the execution speed or power consumption, and new product
variants can be also introduced to the system.

5.2 OPC UA Discovery Services

As shown in Chapter 4, OPC UA is a performant and feature-rich protocol. A particu-
larly important feature for the Plug & Produce concept are the OPC UA’s Discovery Ser-
vices speci�ed in Part 12 of the o�cial OPC UA Speci�cation [OPC Foundation, 2015].
Part 12 and partially Part 4 of the speci�cation describe how OPC UA applications can
be discovered on a computer or network. It includes the general discovery process,
LDS and Global Discovery Server (GDS) concepts, and certi�cate management within
GDS.

In this section, I describe the discovery process and LDS functionality, and summarize
the concept of application discovery in OPC UA. This summary provides a basic under-
standing on what OPC UA Discovery can do, and which additional functionalities are
required to ful�ll the previously mentioned requirements to implement a real Plug &
Produce system. A more detailed technical explanation of the described concepts can
be found in the OPC UA speci�cation Part 12.

The discovery process de�nes how OPC UA Clients can �nd OPC UA Servers and how
such a server can be reached. Therefore, the discovery mechanisms can be separated
into two parts: the client discovery and the server announcement.

A client can use di�erent methodologies to �nd a server. The most basic concept is a
list of prede�ned hard-coded discovery URLs of server endpoints. This is not optimal
for adaptable I4.0 components, which are used in di�erent environments since this list
needs to be updated manually. A more �exible approach is to contact a locally running
server on the same host with a well-known port number. In OPC UA terminology this
server is called LDS. A LDS o�ers speci�c services like FindServers or FindServersOnNet-
work that can be called to get a list of servers which were discovered by this instance in
the same subnet. The LDS is monitoring server announcements on the multicast sub-
net or is querying the GDS for known servers. A client can even get a list of servers
by just monitoring multicast announcements itself, which makes the system even more
�exible.

On the server side a corresponding discovery mechanism needs to be implemented:
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The Local Discovery Server (LDS) is an OPC UA server instance running on a host. It
typically keeps track of all OPC UA servers on the same host since they must explicitly
register with the LDS, which is by default listening on port 4840. In more complex
setups, other OPC UA servers outside of the current host can also explicitly register
themselves with a speci�c LDS.

The Local Discovery Server with Multicast Extension (LDS-ME) is an extension of the
LDS. It additionally keeps track of all the servers that announce themselves on the local
multicast subnet. Servers on the same host can register themselves directly, whereas
other LDS-ME servers are detected by multicast announcements. Server instances on
a host can register themselves with the server on localhost port 4840, which then an-
nounces the registered server via multicast to other hosts. This avoids the necessity to
de�ne speci�c IP addresses beforehand.

The Global Discovery Server (GDS) is another type of discovery server and can be used
for discovery among multiple subnets, and in subnets where host names cannot be dis-
covered directly (for the multicast announcements, host names must be discoverable).
A GDS may also implement certi�cate management services for distribution and central
trust management of certi�cates for other OPC UA applications. Certi�cates are used
in OPC UA for encryption and authentication to ensure clients and servers are talking
to the expected entity. In typical setups the IP address is statically de�ned, or DNS is
used to determine the IP address of the GDS.

Since my goal is to avoid pre-con�guration of components, my focus lies on the case
where a client uses the LDS-ME server on the same host to �nd other servers and other
Industry 4.0 components correspondingly so that no component needs to be con�gured
with speci�c IP addresses beforehand. This is also the basic concept which I use in all
the evaluation experiments in later chapters.

Figure 5.3 shows the sequence of the discovery process: In the �rst step the Server on
machine A registers with its LDS-ME. When machine B is plugged in, its LDS-ME is-
sues a multicast probe on which the LDS-ME on machine A responds with a multicast
announcement. The LDS-ME on machine B now knows all the available servers on the
network. Finally, the client on machine B queries these servers and selects the desired
remote server on machine A. Using this information, the connection between both ma-
chines can be established without any pre-con�guration. The only necessary piece of
information is the port on which the local LDS-ME is running, which is normally port
4840, as de�ned in the OPC speci�cation.

The OPC UA speci�cation already provides basic concepts for device discovery, i.e., how
the multicast messages are handled and how the registration on the LDS-ME is done.
OPC UA does not include the concept of hierarchical LDS-ME servers, which is one of
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Machine AMachine B

Figure 5.3: By using the Multicast Subnet discovery process, the secondly attached machine B
queries a prede�ned or discovered server for all known servers on the network and
can then contact the desired endpoint on machine A.

the concepts I describe in Section 5.4. Also, the semantic identi�cation as described in
Section 5.1.2 is not part of the discovery services and is described as part of Chapter 6.

The next section compares di�erent open-source OPC UA stacks and shows the required
additional implementation e�ort from my side to get the discovery service set up and
running in C/C++ and Java.

5.3 Comparison of OPC UA Implementations

To implement Plug & Produce in OPC UA a software stack must be selected which
supports the discovery service set. More speci�cally, it must support the Local Discov-
ery Server with Multicast Extension (LDS-ME). There exist many commercial OPC UA
stacks in di�erent programming languages but unfortunately, as of the year 2017 when
I investigated this topic, only very few already provided an implementation for LDS-
ME. There were even less open-source implementations which support LDS including
multicast discovery.

Since my research topic requires the extension of the OPC UA stack, and my goal is to
make my research results open to the public world and therefore rely on open-source
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software for easy adaption, I was looking for open-source OPC UA implementations. An
additional requirement is that the resulting software needs to support microcontrollers
to develop device adapters as described in the next chapter. Most industrial-grade mi-
crocontroller frameworks only support compiling C/C++ code, while some higher-level
control applications rely on Java. Therefore, the focus of the following comparison lies
on open-source C/C++ and Java implementations of OPC UA.

There also exist other open-source implementations for C#2, Python3, and
JavaScript4.

5.3.1 Comparison of C/C++ OPC UA Stacks

In this section, I compare di�erent open-source OPC UA stacks. Commercial OPC UA
stacks are not part of this comparison since I need to extend the OPC UA implementation
in the progress of my thesis, which is not possible for closed-source implementations.
All the following OPC UA stacks can be compiled under Linux and Windows, some of
them also support OS X or microcontroller targets.

open62541 (MPL-2.0, like LGPL, but includes static linking) [Palm et al., 2014]. It pro-
vides an API for both, server and clients, and supports nearly all features of the
di�erent discovery sets, except (initially) the Discovery Service Set. Now in the
year 2020, more than 4 years after initially writing this chapter, Publish-Subscribe
and many more features have been added. The implementation is certi�ed with
the OPC Foundation Compliance Test Tool (CTT). The information model can be
automatically generated out of XML �les. This project is actively developed, and
new features are constantly being added. It is now one of the most supported
and starred open-source stacks. Aside of Linux and Windows many platforms are
supported, e.g., OS X, QNX, Android and embedded systems.
https://github.com/open62541/open62541

OpenOpcUA (CECILL-C, like GPL with no fork option). It provides an API for server
and client development and allows to dynamically load UA information models
from XML �les. It is also tested with the CTT. Its main disadvantage is that a one-
time fee is requested to access the codebase. The last release was in September
2018.
http://www.openopcua.org

ASNeG OpcUaStack (Apache License, 2.0). It provides an API for servers and clients
with only basic functionality, i.e., reading, writing, and monitoring OPC UA Vari-

2https://github.com/OPCFoundation/UA-.NETStandard
3https://github.com/FreeOpcUa/python-opcua
4https://github.com/node-opcua/node-opcua
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ables.
http://asneg.de

FreeOpcUa (LGPL). It is a server and client library with support for most of the basic
OPC UA service sets, except the discovery service set. Since 2015 contributions
to this project rapidly decreased and only a few features have been added. In the
year 2019 only 4 commits were made on GitHub.
https://github.com/FreeOpcUa/freeopcua

UAF Uni�ed Architecture Framework (LGPL). It only implements the OPC UA
client side and does not support OPC UA servers. Additionally, it is based on
the commercial C++ OPC UA Software Developers Kit from Uni�ed Automation,
which is required to develop applications.
https://github.com/uaf/uaf

OPC Foundation AnsiC provides an o�cial reference implementation under a dual-
license, proprietary for OPC Foundation Members and GPL for everybody else.
In March 2017, the LDS-ME server implementation was released as Beta for Win-
dows only. Beginning of 2019 this repository was declared end-of-life since the
OPC Foundation decided to focus on their .NET implementation.
https://github.com/OPCFoundation/UA-AnsiC-Legacy

When starting my thesis in 2016, none of the above stacks fully supported the Discovery
Service Set, especially the LDS-ME was missing. The OPC Stack from the OPC Foun-
dation included, as of May 2017, a beta release of a stand-alone LDS-ME, but due to its
GPL license, and the requirement to disclose the application code built upon the LDS-
ME code, it did not meet the necessary requirements. In addition, this o�cial AnsiC
reference implementation is since beginning of 2019 declared as discontinued.

Due to its high popularity, open license, and many of the required features already im-
plemented, I decided to use the open62541 stack as the basis for my software architec-
ture. Now, mid of 2020, this decision proved to be the right one: it is still very actively
developed with a lot of commercial companies backing it.

One of the most important features, the LDS-ME Server, was in 2017 not yet included in
the stack as it was the case for all other open-source stacks. My steps for implementing
LDS-ME is further described in Section 5.5.1.

5.3.2 Comparison of Java OPC UA Stacks

Aside of the most used commercial stacks from Uni�ed Automation, Prosys, and Asco-
Lab there are only a few open-source implementations of OPC UA in pure Java. It is
possible to encapsulate a C stack from the previous subsection using Java Native Inter-
face (JNI), which would result in a less portable but more performant data serialization.
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Here I compare the only two well-known open-source stacks, which use pure Java and
implement most of the OPC UA features.

OPC Foundation Java is the o�cial implementation by the OPC Foundation and re-
leased under a dual-license, proprietary for OPC Foundation Members and GPL
for everybody else. It provides the basic tools to implement OPC UA servers and
clients, but only included example code for the Nano pro�le which does not sup-
port the discovery service set. Like the AnsiC implementation of the OPC Founda-
tion, the development of the Java stack has been discontinued beginning of 2019
with a reference to the o�cial .NET implementation.
https://github.com/OPCFoundation/UA-Java-Legacy

Eclipse Milo is a project under the Eclipse Foundation and therefore licensed under
EPL-1.0. It includes a fully functional stack, client, and server SDK, however it is
missing certain functionality, especially LDS-ME.
https://github.com/eclipse/milo

Since the o�cial OPC Foundation reference implementation for Java has been discon-
tinued, the only major open-source Java implementation is the Eclipse Milo project.
Therefore, I decided to use the Eclipse Milo for my implementation and testing of Plug
& Produce for operating system independent Industry 4.0 components. Aside of the
presented open-source projects, there are also a few commercial stacks available, which
support Java.

5.4 Hierarchical Component Discovery

My proposed architecture for automatic device discovery using OPC UA with LDS-ME
consists of an intelligent Manufacturing Service Bus (MSB) which is responsible for de-
tecting other I4.0 components on the network, and to con�gure the component when it
is plugged in. Such a component may be an intelligent workstation which is embodied
by an administration shell to provide the needed services for discovery. This work-
station also contains an OPC UA Server responsible for discovering newly plugged-in
devices on the workstation itself and providing this information to the MSB. The general
architecture is shown in Figure 5.4.

The MSB acts as the centralized communication mean, which makes it possible to move
from the automation pyramid to a more vertically and horizontally integrated automa-
tion platform by using the same middleware on all layers, as shown in Figure 3.1. Its
responsibility is also to tell a requesting workstation which other workstations are cur-
rently available so that the two workstations can directly communicate with each other.
To detect other components on the network, the MSB must implement LDS-ME.
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Figure 5.4: Proposed architecture for hierarchical Plug & Produce. The Manufacturing Service
Bus (MSB) can discover workstations. Each workstation provides discovery func-
tionality for devices within the workstation.

A workstation is a super component which encompasses other components in logical
terms to act as a unit, and to abstract the underlying components for a higher level.
As shown in Figure 2.2 and described in RAMI 4.0 [ZVEI, 2015b], nestability of I4.0
components requires such components to have more than one communication inter-
face on di�erent abstraction levels and a component management for subcomponents.
The interface on the upper level is connected to the MSB and is used for registering the
workstation, and to receive corresponding con�guration data from the MSB. The com-
ponent management is implemented as an OPC UA Server which can receive control
commands from the MSB, and if necessary, forward these commands to the subcom-
ponents, i.e., devices. To be detectable by devices which belong to the workstation, the
workstation also needs to implement its own LDS-ME server that listens on the lower
level interface for new device announcements.

A device can be a single actor, like a motor, or a sensor which delivers speci�c mea-
surement data for the higher level or other devices on the same workstation. In a more
complex system structure, a device could be a workstation with subcomponents. For
the sake of simplicity, I focus in this chapter on the case where a device is an actor or
a sensor without subcomponents. Still, this more complex use-case is supported by the
presented architecture as shown in later chapters.

In the following paragraphs, I present the hierarchical discovery process which is part
of my novel hierarchical Plug & Produce architecture. The discovery process is respon-
sible for automatic device detection inside the network, which avoids pre-con�gured IP
addresses.
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An exempli�ed discovery process with multiple levels of hierarchy is shown in Fig-
ure 5.5 and explained in more detail in this section. This setup consists of the MSB and
two workstations with two devices each resulting in two levels of hierarchy. In general,
an OPC UA Server can support multiple service sets at the same time, therefore it can
be a standard OPC UA Server which provides methods and data to clients and at the
same time o�er the LDS-ME functionality. Additionally, an OPC UA Server cannot call
a method on another OPC UA Server directly and thus needs to use an OPC UA Client
to call the corresponding con�guration methods on the lower-level server. Therefore,
the green boxes in Figure 5.5 represent an OPC UA server with additional LDS-ME func-
tionality and built-in clients.
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Figure 5.5: Discovery process with multiple levels of hierarchy. The Manufacturing Service Bus
controls Workstations which in return control Devices.
1© The component’s OPC UA server detects the LDS-ME server through multicast

and registers itself with the LDS.
2©The LDS-ME Server creates a new client to communicate with the OPC UA Server.
3© The Client calls the con�guration method on the Server and controls its actions.

The detailed process for automatic device discovery as shown in Figure 5.5 is as fol-
lows:

1. When a workstation, device, or component is plugged in, it gets assigned an IP
address and the corresponding subnet using DHCP. After network initialization,
the OPC UA server on the plugged-in device issues a multicast probe (see Fig-
ure 5.3). All LDS-ME servers within the same subnet respond with a multicast
announcement, including information how the LDS-ME server can be contacted.
With this information the newly plugged in OPC UA server can register itself with
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the LDS-ME server. This step completes the Plug-In and Register stages described
in Section 5.1.

2. The new server is stored in a list and an OPC UA client is created to be able
to connect to the newly registered server. An OPC UA server cannot directly
communicate with another OPC UA server.

3. The newly instantiated client then calls a prede�ned con�guration method on
the server with con�guration parameters, e.g., how often status updates should
be sent (Con�guration phase). This client instance is also used in the Operating
phase for controlling the workstation or device, respectively.

4. If a device or workstation is gracefully shut down, it must unregister itself from
the upper LDS-ME server. If it is disconnected by a network or software fault,
the controlling server either detects the downtime through its controlling client
or through the LDS-ME server which checks if the underlying component peri-
odically re-registers itself. An additional heartbeat implementation can be used
to detect component downtime even faster.

If the network link is down or the LDS-ME server is not running when a new component
is plugged in, the multicast probe is sent after a short retry interval to make sure the
registering succeeds as soon as possible.

5.5 Implementation & Evaluation

This section shows the necessary parts of code I had to implement in both open-source
OPC UA stacks to evaluate my proposed architecture. The implementation of the hier-
archical discovery architecture is then evaluated.

5.5.1 Implementing LDS-ME

Since neither open62541, nor Eclipse Milo did support the full LDS-ME, I �rst had to im-
plement this feature set according to the OPC UA Speci�cation Part 12 [OPC Foundation,
2015], to be able to create con�guration-less Plug & Produce Industry 4.0 components.
The features of the discovery service set are described in Section 5.2.

In the open62541 C/C++ stack, the services for LDS without multicast were already
implemented. This includes RegisterServer to allow other server instances to register
themselves with the LDS, FindServers to allow clients to get a list of registered servers,
and GetEndpoints which returns the list of available connection endpoints of the LDS.
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For my speci�c architecture proposal, the complete LDS-ME functionality is required,
especially the multicast announcement.

The �rst step to get LDS-ME into open62541 was to evaluate di�erent open-source Mul-
ticast Domain Name System (mDNS) implementations, which can be used within the
open62541 project in consensus with the MPL-2.0 license. The corresponding discussion
with the core developers of open62541 can be found on GitHub5. For easy integration
and support on embedded devices the mDNS library must be self-contained without any
external dependencies. The only fully functional library which meets this requirement
and is less restrictive than the MPL-2.0 license is the mdnsd library, which I adapted to
be compilable under Linux, Windows and OS X and �xed various bugs. The improved li-
brary source code is available on GitHub6. Based on this library, I implemented the mul-
ticast mechanism for automatic detection of other running instances within the same
subnet as shown in Figure 5.3. This mainly consisted of integrating the mdnsd library
into the core and handle multicast messages. Finally, I implemented the RegisterServer2
service, which allows other instances to register with additional multicast information,
and FindServersOnNetwork which returns not only explicitly registered OPC UA servers,
but also the ones detected through multicast messages. These changes were compiled
as a pull request with more than 3000 lines of code modi�cations and contributed to the
base repository of open624517, where it is now integrated into the master branch and
latest releases.

With this signi�cant contribution I was nominated as a core developer of the open62541
stack where I contributed many new features and bug �xes during my free time over
the last few years.

For the Eclipse Milo project, the same amount of work had to be performed: After I
extended the basic methods RegisterServer, FindServers, and GetEndpoints, the jmDNS
library was used to add mDNS support to Java. This enables Milo to detect other mul-
ticast enabled OPC UA instances on the network and to keep a list of known OPC UA
servers. Additionally, the RegisterServer2 and FindServersOnNetwork were implemented,
and then again compiled into a pull request with around 3000 lines of code modi�ca-
tions, to be submitted to the Eclipse Milo project on GitHub8. Unfortunately, this pull
request is after four years still not completely merged into the master branch and is still
pending.

5https://github.com/open62541/open62541/issues/701
6https://github.com/pro/mdnsd
7https://github.com/open62541/open62541/pull/732
8https://github.com/eclipse/milo/pull/89
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5.5.2 Hierarchical Discovery Evaluation

This section presents a preliminary evaluation of the basic discovery features. A more
detailed evaluation of the whole discovery process is included in later chapters of this
thesis.

OPC UA de�nes how data should be serialized on the wire, therefore di�erent OPC UA
stacks are able to directly communicate with each other. This is also the case for the dis-
covery services: LDS-ME servers from di�erent vendors should be able to discover each
other and to exchange data. I evaluated the compatibility of my presented implemen-
tations in open62541 and Milo, including the applicability of the presented hierarchical
architecture, by creating dummy workstations and devices which need to register with
the corresponding LDS-ME server. Di�erent combinations of open62541 and Milo are
used to show their compatibility. Additionally, both implementations are tested against
the o�cial OPC Foundation reference implementation of the LDS-ME server written in
C9.

For this setup I am using a standard Desktop PC with Ubuntu Linux where the LDS-ME
server is directly started. Additionally, two Virtual Machines are set up, which simulate
the two workstations from Figure 5.5. Each workstation contains a simulated device
by directly starting an application within the virtual machine. The plugging in of a
component is simulated by starting the application. In real-world setups a device either
just needs to establish a network connection, or it still needs to boot up �rst. Since this
does not in�uence the functionality of a LDS-ME, these di�erent cases are neglected.

The device will then query the LDS-ME server on the workstation for other known
OPC UA Servers. This query should return the OPC UA Server from the second device on
the same workstation, so that both devices on one workstation are connected with each
other. In my test the device will then just call a method to trigger the time measurement
for the performance evaluation.

Executing these steps with di�erent combinations of my LDS-ME implementations and
the o�cial LDS from the OPC Foundation have shown that all implementations are able
to discover each other. In open62541 the discovery process is signi�cantly faster, as it
takes less than a 500 milliseconds for the workstation and device to �nd the LDS-ME
servers, register with them and then query for known OPC UA servers, to �nally call
the method on the other device. In Eclipse Milo the multicast probe is slower as it takes
up to 7 seconds until the device or workstation detects its counterparts LDS-ME. This is
because the jmDNS implementation is �rst checking if there is already a DNS-SD service
announcement with the same name, using a �xed timeout value of 6 seconds, which is
hardcoded inside the jmDNS implementation. Only afterwards the mDNS probe is sent

9https://github.com/OPCFoundation/UA-LDS
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out and the response from the LDS-ME server is processed. In open62541 such a name
con�ict is handled by immediately announcing itself, and if at the same time another
server with the same name exists, the mDNS implementation within open62541 detects
it and can change its name to a more unique one to retry. Since the o�cial LDS-ME
implementation of the OPC Foundation only provides an LDS-ME server without the
possibility to easily add user code, its performance was not evaluated.

If di�erent network segments are used, as shown in Figure 5.5, a device on one worksta-
tion cannot simply connect to a device on another workstation. Either the network seg-
ments must be connected and corresponding routing tables must be set up, or servers
on a higher level must act as proxies, e.g., a device must call its parent workstation
server, which calls the server on another workstation, which then can call a method on
its underlying device. This introduces additional delays, and it is desirable to keep com-
munication of devices isolated on the same workstation. If additional data is required
from other workstations or subcomponents, this data should be delivered through the
MSB or via data aggregation of higher-level OPC UA servers.

If there are multiple LDS-ME servers running within the same subnet, additional intel-
ligence and pre-con�guration must be added to devices. If a device receives multiple
LDS-ME announcement messages, it must select the correct LDS-ME to register itself.
To solve this issue, the device can be con�gured to only connect to LDS-ME servers with
a speci�c ID, or the main LDS-ME server has some speci�c nodes within its information
model, which a device can query and then decide if it is the LDS-ME it is looking for.

In [Madiwalar et al., 2019] it is shown how the combination of Software-De�ned Net-
working (SDN) in combination with intelligent switches can be used to cope with this
problem. Before the switch forwards the multicast message to other components in the
network, it can use the server’s semantic description to infer the correct parent com-
ponent. The SDN switch then selectively forwards the mDNS message directly to that
component. With this approach the implementation of workstations and their devices
does not need to be changed, as the decision logic is inside the network and can dynam-
ically be adapted.

5.6 Summary & Discussion

In this chapter, I �rst list requirements which must be ful�lled by components to achieve
a real Plug & Produce architecture. This is followed by a more detailed explanation of
the OPC UA discovery service set, and a comparison of di�erent open-source OPC UA
implementations. The proposed hierarchical discovery architecture is the main contri-
bution of this chapter, including the necessary implementation e�orts to get the dis-
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covery functionalities into the open-source stacks. The chapter is concluded by a short
evaluation of the implemented functionalities. A more detailed evaluation of the dis-
covery functionality is given in the next chapters, especially in Chapter 8.

The main take-away message of this chapter is, that it is possible to implement auto-
matic component discovery for the Plug & Produce concept on the network side us-
ing OPC UA Local Discovery Servers with Multicast Extension (LDS-ME). The discov-
ery service set allows easy integration of new devices into the network without any
network-speci�c pre-con�guration. Using multiple hierarchies of LDS-ME, it is possible
to create modular workstations which abstract underlying devices to the middleware.
Still, a common semantic interface between these components is required.

As compared in this chapter, there are many open-source implementations for OPC UA,
whereas open62541 for C/C++ and Eclipse Milo for Java provide a manufacturer-friendly
license with most of the OPC UA features already implemented.

The next chapter is describing in more detail the device adapter concept which adds the
semantic abstraction of underlying device functionality and uses the discovery func-
tionality described in this chapter.
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Adapter

Partial results of the presented work in this chapter are published in my peer-reviewed
publication [Profanter, Breitkreuz, et al., 2019]. I am the main author of this publication,
and my main contributions are in further detail described in this chapter. Some �gures
created and partial text written by me in this publication are directly included in this
chapter.

Figure 6.1 is already known from Section 1.5 and highlights the focus of this chapter.
In Section 1.1, I described the necessity to have an abstraction of low-level device func-
tionality and its proprietary interfaces, to be able to integrate them into the existing
environment. In this chapter, I present a solution for such device adapters based on
my generic skill concept. I show that this generic skill concept can be used to adapt
any device components, and even software components, to make them Plug & Produce
ready.

6.1 Capability and Skill De�nition

Before I describe the generic skill model, I give a de�nition of the terms Capability and
Skill. The following de�nition is based on the publication1 [Perzylo, Grotho�, et al.,
2019]:

In general, a skill provides the (executable) capability of something to cause
an e�ect on something. [ . . . ] a skill may be described by a set of proper-
ties. Thus, a skill can be considered a property carrier. [ . . . ] a skill can be
characterized by its input, output, and transient conditions.

This quote already contains a very compact de�nition of a Skill and is similar to other
relevant publications, like [Bedenbender et al., 2019].

1A. Perzylo was a colleague at fortiss where I conducted most of my research for this thesis.
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Figure 6.1: Exempli�ed system setup with di�erent Industry 4.0 components. Chapter 6 focuses
on the abstraction of hardware components using device adapters, and the de�nition
of a generic semantic skill model.

A Capability is de�ned as the ability to execute a speci�c action which causes a spe-
ci�c e�ect. This e�ect can be a physical e�ect (e.g., object position changed), or a non-
physical e�ect (e.g., detecting an object in a vision system). Note that a capability only
describes the action and its e�ect, but not the necessary parameters and execution steps
to perform the action. Some example capabilities are: AttachObjectCapability (e�ect:
object is attached to gripper or device), PickAndPlaceCapability (e�ect: Object is moved
from one position to another), DetectObjectCapability (e�ect: A speci�c object is de-
tected in the current camera image). The list of capabilities is endless and there is, to
the best of my knowledge, not yet a comprehensive established standard to describe
di�erent capabilities required for real-world applications.

A Skill provides the execution of a speci�c capability. The capability itself does not
specify, how the e�ect is reached, compared to the skill which consists of one or mul-
tiple steps to achieve the desired e�ect. The skill typically requires a set of parameters
to trigger the execution, and provides a set of transition events (e.g., start, halt, sus-
pend, resume) during its execution. The result of the skill execution is either success
if the described capability e�ect is achieved, or an error state if the e�ect cannot be
reached. To further specify the execution result, additional output parameters char-
acterize a skill. An example for a skill is the PickAndPlaceSkill which implements the
previously mentioned PickAndPlaceCapability on a speci�c robot and gripper combina-
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tion. Typical input parameters for such a skill are the pick and place positions, and the
required gripper span.

By using capabilities as a reference inside a skill, it is possible to have di�erent speci�c
implementations for the same capability (or e�ect) inside a system. The capability de-
scription can be extended semantically and annotated with additional properties. This
is not further described in this thesis as I mainly focus on the execution, parameter
mapping, and combination of skills. The skill de�nitions and examples in this thesis
can easily be extended with a reference to a speci�c capability. The interested reader is
pointed to [Perzylo, Grotho�, et al., 2019] which shows a possible approach to seman-
tically annotate capabilities.

6.2 Generic Skill Model

In the previous section, I de�ned the terms Capability and Skill. To get from the theo-
retical de�nition to the implementation of a skill, I de�ne a generic skill model in this
section. This model describes the basic requirements of such a generic model, and the
interfaces to interact with the skill.

6.2.1 Requirements & De�nition

The generic skill model is the basis for having generic hardware-independent compo-
nent skills. I de�ne the following requirements to be necessary for a generic interface:

• A skill is classi�ed by a corresponding type de�nition and reference to a capa-
bility description

• It has a set of base properties which identify and describe the skill
• It has an optional set of input parameters which con�gure the skill execution
• It has an optional set of output parameters which represent the result of the

skill execution
• It can be in various states depending on the underlying hardware or the execution

result. There is a minimum set of states which every skill must support
• There are methods which trigger state transitions between these prede�ned

states
• The skill implementation may trigger a state change internally, e.g., if the execu-

tion is �nished, or an error occurred
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As noted in previous chapters, I am using OPC UA as communication platform and
basis for semantic models. Therefore, I describe the generic skill model semantically
inside the OPC UA address space. Using OPC UA allows having a well-known and
easy to integrate interface to the skill. Since OPC UA is already employed in many
industrial shop �oors, this even lowers the integration e�ort of the new skill model.
While de�ning the skill model, I am also focusing on building it on already existing
well-de�ned concepts instead of reinventing the wheel. The �nal model is released on
GitHub as open-source2 and excerpts of the resulting model description are shown in
Appendix B.

One could think about a simple model where the skill functionality is simply wrapped
by a method call. According to the o�cial speci�cation, OPC UA methods are meant
for short-running tasks with a limit of 10 seconds while OPC UA Programs can model
more complex long-running tasks [OPC Foundation, 2019b]. In addition, methods are
stateless and do not provide any feedback while they are active. Due to these drawbacks,
I am using the OPC UA Speci�cation Part 10 “Programs” as a basis of my skill model. A
program in OPC UA represents a state machine which provides basic methods to trigger
state changes and includes input and output variables for the client. It also de�nes
a basic set of states which every program must support: Halted, Ready, Running, and
Suspended. For every state change the OPC UA server emits an event which may contain
additional information on the state change itself. Using this approach, it is possible to
model long-running processes using the OPC UA information model, while adhering to
the modeling principles of OPC UA.

An OPC UA Program already ful�lls most of the previously listed requirements. I in-
troduce the SkillType as a subtype of the OPC UA ProgramStateMachineType and extend
it with a set of base properties. The SkillType model, including its inherited properties,
is shown in Figure 6.2 using the OPC UA notation (see Appendix A). This SkillType is
the base type of all the skills o�ered by any system component. It extends the de�ni-
tion of OPC UA Programs with a mandatory Name property. Since this type is the base
type for all skills, a client can easily browse the whole namespace of an OPC UA server
and �nd all skill instances (see Section 7.2). The SkillType inherits the program state
machine which provides methods for triggering state changes in the state machine. For
every state change, an OPC UA event is emitted by the server, independent if the state
change was triggered by a client or internally. A client can create monitored items to
receive event noti�cations and therefore be immediately noti�ed of these state changes.
Since an OPC UA Program is based on the FiniteStateMachineType of OPC UA, the list
of prede�ned states is �xed. However, it is still possible to create sub-states for these
prede�ned states, which makes this state machine very �exible.

2https://github.com/pro/opcua-device-skills
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Figure 6.2: OPC UA model of the SkillType in OPC UA modeling notation and its subtypes (blue).
SkillType is a subtype of a ProgramStateMachineType. It adds additional parameters
(green) to the inherited children. ISkillControllerType is an Interface (yellow) group-
ing all the supported skills of a component inside the Skills object. The Gripper-
SkillType is an example for a speci�c skill subtype. Further details on the OPC UA
notation can be found in Appendix A.

Additionally, I de�ne the ISkillControllerType interface. Every component which imple-
ments skills must implement this interface and list the supported skills at least inside the
Skills object. Thus, a skill instance must be listed inside the Skills object, and optionally
also as a child of other nodes in the address space. An OPC UA interface adds additional
mandatory and optional modeling rules to the implementing object node, similar to
object-oriented interface programming. This ensures that all the skills are listed inside
a common well-known Skills object node. This allows any client to immediately get a
list of all the available skills without browsing the whole information model. Inside the
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OPC UA address space a node can have multiple hierarchical references, and therefore
the same node instance can appear in multiple places.

The state change methods to control any instance of the SkillType always remain the
same for all the speci�c skill implementations. This provides a generic interface for all
clients. The evaluation in Chapter 8 shows that the same interface is supporting many
di�erent skill implementations. A skill can be parameterized using the ParameterSet ob-
ject as shown in the example in the next section. The ParameterSet contains variables
which need to be set by the client. For example, the target joint values for moving a robot
are set for the corresponding variable inside the parameter set. The client then calls the
Start method which starts the execution of the skill which internally reads the parame-
ters and performs the movement. Every skill type has prede�ned states and transitions.
Starting the execution of the skill is only allowed if the skill is in the corresponding
ready state.

Using this concept, it is possible to easily model a huge set of generic functionalities as
a skill. Interface-wise, only the parameter set changes. The skill type can be used for
various hardware: robots, tools, cameras, manufacturing machines, and many more. My
model is not limited to only hardware but can also be used for software components: A
software component can provide more complex functionality by reusing skills of other
components. For example, this could be an object detection software component which
takes a camera image as input, and outputs the detected objects. With this, one can
simply exchange the underlying implementation while keeping the same interface to
the algorithm.

In addition, it is possible to hierarchically compose skills, as described in more detail
in Section 7.3. A robot controller can implement a movement skill, and an attached
gripper enclosed by a separate OPC UA server can provide a corresponding gripper skill.
The robot and gripper skills are completely independent. A new software component
references to the PickPlaceSkillType to implement a basic pick-and-place functionality,
by synchronizing and controlling the lower-level skill state machines of the robot and
the gripper. This software component can be reused for any combination of robot and
gripper hardware if both are using my generic skill model for moving and gripping. A
robot which already combines a gripper with motion axes can directly provide the Pick-
and-Place skill in addition to the other move skills. More details on skill composition is
given in Section 7.3.
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6.2.2 Application of the Generic Skill Model for Industrial
Robots

In this section, I present an example application of the generic skill model for typi-
cal industrial robots. Industrial robots in general support two types of target position
notation: either in cartesian space or in joint space. In addition, the type of movement
from the current position to the speci�ed target position can be a linear movement (LIN,
straight line) or a point-to-point movement (PTP, typically faster but not a straight line).
Some robot manufacturers support more types of movements, e.g., circular movements,
where a third point is speci�ed, and the movement is calculated along a circle. Since
the presented model is generic in such a way, that other skill types can easily be added,
I will focus on the LIN and PTP movements.

In Figure 6.3 the skill type hierarchy for the most basic robot skills is shown. All skills
moving the robot based on a speci�c tool frame must be subtypes of the MoveSkillType.
The MoveSkillType de�nes the mandatory ToolFrame parameter, which indicates the
frame on the robot, which should be used to reach the target. Most robot manufacturers
allow de�ning di�erent frames for di�erent tools.

Point-to-Point (PTP) movements are de�ned as the abstract PtpMoveSkillType, lin-
ear (LIN) movements de�ned as the abstract LinearMoveSkillType. Since a PTP move-
ment is based on the robot axes, the required parameters are an array of maximum
acceleration and maximum speed values for each axis. The LIN movement requires
six acceleration and six speed parameters: the �rst three for the position, the last
three for the orientation. The abstract PTP and LIN move skills are again sub-typed
into cartesian and joint movements, where the client can either de�ne the new pose
in cartesian space, or by setting the new joint angles. This results in four more skill
types: CartesianLinearMoveSkillType, JointLinearMoveSkillType, CartesianPtpMoveSkill-
Type, JointPtpMoveSkillType. To reuse the parameter de�nition for both cartesian skill
types and joint skill types, I am using the concept of interfaces: The ICartesianMoveSkill-
ParameterType adds two Parameters: TargetPosition as the goal position in cartesian
space (ThreeDFrameType) and an optional AxisBounds two-dimensional array which
can limit the solutions of the inverse kinematics calculation. IJointMoveSkillParameter-
Type adds the TargetJointPosition array which gives the absolute target joint angle for
every axis.

The previously mentioned skill types currently take absolute coordinates as input. It is
possible to extend the model to support relative coordinates by adding a Boolean pa-
rameter to theMoveSkillType which allows the distinction between absolute and relative
coordinates. Another approach is to add more skill types, one for absolute, and one for
relative movements each.
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Figure 6.3: Robot skill types which could be implemented by a robot (blue). The required pa-
rameters (green) are inherited from the corresponding supertype. Cartesian and
joint skill types inherit the interface (yellow) to avoid duplication of parameter sets.
The OPC UA modeling notation is used, as described Appendix A.
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Some robot manufacturers provide real-time position streaming interfaces. In this case,
a remote client is sending new joint positions in a speci�ed control frequency. To sup-
port this kind of robot movements, I de�ne the PositionStreamSkillType which takes the
target joint position as a parameter. As soon as this skill is started, the execution will
continuously check for new values in the target position parameter and instruct the
robot to move to that joint position. This position streaming skill can be composed by
a software component which provides higher-level more complex robot movements.
The concept of re-using existing skills is called skill composition and explained in more
detail in Chapter 7.

For a more complex setup, where two robots need to move synchronized, position
streaming in combination with real-time capable communication is required [Huang
et al., 2019]. This is not the focus of this thesis. The interested reader is referred to
the VDMA OPC UA working group SOArc (service-oriented architecture and real-time
control), where I am also contributing the results of this thesis with the common goal to
de�ne a generic real-time capable skill execution interface based on OPC UA Publish-
Subscribe in combination with TSN.

My de�nition of skill types only de�nes the parameters which are required for the spe-
ci�c skill type. It does not de�ne if and how the robot manufacturer needs to implement
the functionality internally and therefore acts as an abstraction layer of the underlying
implementation. A robot manufacturer may also decide to only support a smaller sub-
set of the skill types. Every skill type can also be extended by manufacturers to include
additional properties such as the control frequency or additional movement types. If
these new skill types are part of a well-known standard, clients can automatically use
them without the need of time-consuming re-programming.

To be able to evaluate my new skill concept, I extend the newly released OPC UA Com-
panion Speci�cation for Robotics [OPC Foundation, 2019a]. This speci�cation is only
supporting read access to robot data. A control interface is still missing and as of August
2020 work in progress, at least on the task level. I am also contributing to that work-
ing group to integrate the results of this thesis and to accelerate the development of a
common standard.

My extension of the Robotics Companion speci�cation de�nes a SkillMotionDeviceType
which implements the ISkillControllerType interface in addition to the base objects of
the MotionDeviceType. The Skills object contains instances of the SkillType de�nition
and lists all the available skills the robot provides as shown in Figure 6.2.

The additional skill types for a simple gripper are shown in Figure 6.2: GraspGripper-
SkillType and ReleaseGripperSkillType de�ne a skill where the gripper is supposed to
grasp an object (e.g., close the �ngers) or release it (e.g., open the �ngers).
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The extended skill model and the robotics Companion Speci�cation are available as a
NodeSet2.xml �le on my GitHub repository3.

6.3 Device Adapter Concept

In current shop �oor setups, di�erent devices from various manufacturers are used,
each with several parameters to tune and with proprietary control interfaces. Integrat-
ing such devices with varying interfaces into a standardized Industry 4.0 shop �oor is
called brown�eld integration. In comparison, green�eld integration assumes that
all devices are controllable through the same interface speci�cation.

Brown�eld integration can be achieved by developing an adapter which abstracts the
manufacturer dependent interfaces and provides a standardized interface, as shown in
Figure 6.4. In this section, I give a brief overview of device adapters based on my pre-
viously presented skill model. A device adapter is implemented in software and can
either be deployed directly on the device, or for resource-limited devices on an external
controller connected via input/output ports directly to the device. It consists of a low-
level proprietary interface to connect to the hardware, and a high-level interface. This
high-level interface is using an OPC UA server which contains the semantic model for
describing the provided skills and the device properties.

Figure 6.4: A device adapter provides the functionality of a device through adapting its propri-
etary interface using the semantic OPC UA skill model.

The functionality of the device is o�ered through semantic skills as de�ned in Sec-
tion 6.1. These skills can then be re-used by other components or directly controlled by
clients. In my setup the device adapter is responsible for abstracting the lower-level de-
vice functionality through skills. Such a device adapter can also be the implementation

3https://github.com/pro/opcua-device-skills

82

https://github.com/pro/opcua-device-skills


6 Generic Skill Concept & Device Adapter

subset of the AAS (see Section 2.2.3). The AAS typically includes more functionalities,
like component properties or geometric descriptions, which is not in the scope of my
thesis.

6.4 Skill Model & Device Adapter Implementation

After the de�nition of the Skill model and introducing the concept of Device Adapters,
I describe in this section how the skill model de�nition can be transformed into a real-
world execution experiment. I also describe the necessary contributions to the used
open-source OPC UA stack, to achieve this goal.

In Chapter 4, I have shown that the open62541 open-source implementation of OPC UA
is one of the best performing open-source protocol implementations compared to im-
plementations of MQTT, ROS, and DDS and other OPC UA implementations. Therefore,
I am using open62541 as the basis for my developed applications. open62541 is a soft-
ware library developed in C99 while I am using C++ for my experiments and integrating
open62541 as a library component.

6.4.1 Information Modeling Pipeline

OPC UA organizes all the nodes inside an address space. This address space can be
extended by custom information models as shown in Figure 4.2.

Every custom information model or Companion Speci�cation is released in the o�-
cial NodeSet2 XML format. This �le contains all the nodes and references between the
nodes inside this speci�c information model. For more complex information models,
typically the more intuitive OPC UA ModelDesign format is used. It contains the same
information as the NodeSet2 format but is less verbose and simpler to read and write.
Listing 6.1 shows an excerpt of a ModelDesign XML �le, and Listing 6.2 the resulting
NodeSet2 XML de�nition with automatically generated node ids. More complete ex-
cerpts of the de�ned ModelDesign �les are attached in the Appendix B.

All major OPC UA implementations support loading NodeSet2 �les and initializing their
address space correspondingly. Figure 6.5 shows the information modeling pipeline to
get from a custom information model to a running OPC UA server on the example of
the open62541 stack.
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1 <ObjectType SymbolicName="FOR_DI:SkillType" BaseType="OpcUa:ProgramStateMachineType"
IsAbstract="true">

2 <Description>A skill type</Description>
3 <Children>
4 <Property SymbolicName="FOR_DI:Name" DataType="OpcUa:String" ValueRank="Scalar"

ModellingRule="Mandatory">
5 <Description>Name of the skill</Description>
6 </Property>
7 </Children>
8 </ObjectType>
9 <ObjectType SymbolicName="FOR_DI:GripperSkillType" BaseType="FOR_DI:SkillType" IsAbstract="

true">
10 <Description>A gripper skill type</Description>
11 </ObjectType>

Listing 6.1: Excerpt of a ModelDesign XML Example de�ning a very basic SkillType with a
Name property and a GripperSkillType subtype.

1 <UAObjectType NodeId="ns=1;i=15034" BrowseName="1:SkillType" IsAbstract="true">
2 <DisplayName>SkillType</DisplayName>
3 <Description>A skill type</Description>
4 <References>
5 <Reference ReferenceType="HasProperty">ns=1;i=15100</Reference>
6 <Reference ReferenceType="HasSubtype" IsForward="false">i=2391</Reference>
7 </References>
8 </UAObjectType>
9 <UAVariable NodeId="ns=1;i=15100" BrowseName="1:Name" ParentNodeId="ns=1;i=15034" DataType="

String">
10 <DisplayName>Name</DisplayName>
11 <Description>Name of the skill</Description>
12 <References>
13 <Reference ReferenceType="HasTypeDe�nition">i=68</Reference>
14 <Reference ReferenceType="HasModellingRule">i=78</Reference>
15 <Reference ReferenceType="HasProperty" IsForward="false">ns=1;i=15034</Reference>
16 </References>
17 </UAVariable>
18 <UAObjectType NodeId="ns=1;i=15101" BrowseName="1:GripperSkillType" IsAbstract="true">
19 <DisplayName>GripperSkillType</DisplayName>
20 <Description>A gripper skill type</Description>
21 <References>
22 <Reference ReferenceType="HasSubtype" IsForward="false">ns=1;i=15034</Reference>
23 </References>
24 </UAObjectType>

Listing 6.2: Excerpt of NodeSet2 XML generated from the previously shown ModelDesign
example.

The open62541 stack provides a C Application Programming Interface (API) which is
used to add speci�c nodes and references to the server instance. Looking at the pipeline
from right to left, one can manually write such code c© by transferring the graphical
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Figure 6.5: Di�erent options for the information modeling pipeline. Starting with the informa-
tion to be modeled, it is possible to manually write each intermediate format with
increasing complexity ( a©, b©, c©). Di�erent tools can be used to reduce the modeling
e�ort ( d©, e©, f©).

drawings into C code. The maintainability and transferability in this case is extremely
low and there is a high risk that the code is inconsistent.

A more generic approach is to manually write the NodeSet2 XML �le b© based on the
graphical model. This �le is then transpiled with the open62541 nodeset compiler f©
to the corresponding C API code. The resulting code is used during compile time to
initialize the server. O�cial Companion Speci�cations are always released at least in
the NodeSet2 XML format.

Since the NodeSet2 XML format is very verbose, the OPC Foundation de�ned the Mod-
elDesign XML format and provides the open-source UA-ModelCompiler4 e© to auto-
matically generate NodeSet2 XML �les out of ModelDesign. Compared to NodeSet2,
ModelDesign is more object-oriented and easier to write and read. There are very few
graphical GUI tools which support the export as ModelDesign format d© and these tools
only support a limited set of features.

Therefore, the most recommended and generic approach to get from a graphical infor-
mation model to the �nal open62541 code is to manually write the ModelDesign XML
�le a©, and then use the UA-ModelCompiler to generate NodeSet2 �les. These �les can
then be used in other OPC UA stacks, or as an input to the open62541 model compiler to
generate open62541 source code. This is also the approach I am using in this thesis.

The open62541 nodeset compiler is written in Python and converts NodeSet2 XML
�les to compilable C code, which directly initializes the OPC UA server. At �rst, the
open62541 stack only supported a limited set of NodeSet2 de�nitions. As part of this
thesis I extended the open-source implementation of the nodeset compiler to support the

4https://github.com/OPCFoundation/UA-ModelCompiler
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full set of NodeSet2 features. This was necessary as my generic skill model is released in
the NodeSet2 format and uses di�erent features of that format. The pull requests lead-
ing to the current almost complete functionality of the nodeset compiler can be found
on GitHub5 and are included in recent releases of the open62541 stack.

My generic skill model is written in the ModelDesign format. The UA-ModelCompiler is
then used to generate the NodeSet2 XML. To simplify the full pipeline, I integrated var-
ious CMake macros into the open62541 repository. During compile time, NodeSet2 �les
are automatically transpiled and no manual step is needed. I also developed a Docker
Container for UA-ModelCompiler to run it with a single command. A full tutorial on
how to create custom NodeSet2.xml is available online on my web page6.

6.4.2 Generic C++ class model

The nodeset compiler of open62541 converts the NodeSet2 XML format into C source
code which automatically creates all the de�ned nodes and references in the OPC UA
server. This means that for every instance of a SkillType, all the mandatory nodes are
created, but the functionality, especially the handling of the state machine and the skill
functionality is still missing.

This needs to be implemented in addition to the generated code using the open62541
server API. To reuse as much code as possible for di�erent device-speci�c implementa-
tions, I am using object-oriented programming with class inheritance in C++. Figure 6.6
gives an overview of the de�ned classes.

I de�ne a generic abstract Program class which registers the method callbacks for
the state transition methods of an OPC UA Program using the provided server API and
handles the event triggering for state transitions. The SkillBase class extends the
Program class and acts as a basis for all skill implementations. Due to this abstraction,
a speci�c skill implementation only needs to implement the hardware interface and does
not need to handle the OPC UA speci�c con�guration. This is achieved by using lambda
callback functions, which are a feature of the C++11 standard. The �rst step of a client
is to set the parameters of a skill and then call its start method. This method call is
triggering the lambda callback function in SkillBase and forwarded to the concrete
skill implementation. Skill parameters are statically de�ned using template methods,
and transparently initialized in the readParametersmethod to be used in the skill
implementation. State transitions and event handling are done in the Program class
based on the return value of the lambda callback.

5https://github.com/open62541/open62541/pulls?q=is%3Apr+author%3APro+nodeset+
6https://opcua.rocks/custom-information-models
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Figure 6.6: UML Class Diagram for a selection of C++ classes and their class members for the
generic skill model implementation. All classes are abstract. A speci�c skill type
inherits from SkillBase and sets the corresponding method callbacks.

Event noti�cations are an important feature of OPC UA Programs which was missing
in the open62541 OPC UA Stack at the time I started my implementation. Therefore, I
supervised the development of the events support for open62541 together with a student
as part of his bachelor thesis [Breitkreuz, 2019], and extended the features of the nodeset
compiler to be able to include any NodeSet2 XML into the open62541 stack. These
improvements are available to the open-source community as part of the open62541
stack and are alread included in the master branch7.

7https://github.com/open62541/open62541/pull/1739

87

https://github.com/open62541/open62541/pull/1739


6 Generic Skill Concept & Device Adapter

6.5 Summary & Discussion

In this chapter, I present the concept of a device adapter. Device Adapters are necessary
for brown�eld integration where proprietary interfaces need to be adapted by an addi-
tional software to a standardized interface. The device adapter uses a generic skill model
which allows easy integration of system components while keeping the same interface
description. My skill model is described as an OPC UA nodeset, while the implementa-
tion is done using the open-source OPC UA stack open62541 and my own C++-based
skill implementation. In the next chapter I present the software components which are
using the skills of the hardware devices and compose more complex skills based on the
device’s functionality. It allows to re-use skills inside other skill implementations and
therefore achieve plug & produce for di�erent components.

One of the major issues of OPC UA throughout the industry is that there are currently
only a few devices available, which provide an OPC UA interface, even fewer sup-
port speci�c OPC UA Companion Speci�cations. My proposed structure and NodeSet2
de�nition keeps the speci�c implementation and controlling of hardware intentionally
open, so that the e�ort to implement this interface is kept as low as possible for com-
mercial and open-source OPC UA hardware vendors. Still, adapting new interfaces espe-
cially in the domain of industrial automation is a slow process and manufacturers need
to be convinced to adapt such proposed interfaces. To achieve this goal, I am also partic-
ipating in two VDMA OPC UA Companion Speci�cation working groups: OPC UA for
Robotics and OPC UA for Service-oriented Architectures and real-time control8. While
the �rst one aims at standardizing the control interface for robots, the latter is focusing
on a skill interface for various hardware and software components.

8https://opcua.vdma.org/
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Partial results of the presented work in this chapter are published in my peer-reviewed
publication [Profanter, Breitkreuz, et al., 2019] and my publication submitted for re-
view [Profanter et al., 2020]. I am the main author of these publications, and my main
contributions are in further detail described in this chapter. Some �gures created and
partial text written by me in these publications are directly included in this chapter.

Flexible component integration is one of the major challenges in Plug & Produce pro-
duction environments. The main idea behind the Plug & Produce concept is derived
from the well-known Plug & Play concept in the domain of computer systems: A USB
device can be plugged into a computer and is immediately available to be used without
the need to manually program a driver for it. Achieving the same level of automated
con�guration and interface description in manufacturing shop �oors is still a major
challenge. The Multi-Annual-Roadmap (MAR) of the EU SPARC programme [SPARC,
2020] especially identi�es con�gurability as one of the key system abilities of Plug &
Produce systems. Standardized interfaces and the identi�cation of system interconnec-
tion points are basic requirements to achieve automatic con�guration. By implementing
Plug & Produce in the domain of industrial automation, more �exible production shop
�oors, short setup times, and easy recon�guration are achieved.

In Chapter 4, I compare di�erent middlewares and show why OPC UA is a very per-
formant protocol, and an ideal basis for a generic Plug & Produce implementation. The
discovery capabilities of OPC UA are described in Chapter 5 and allow automatic discov-
ery of components in the network. Integrating proprietary hardware devices is achieved
via device adapters which provide an adaption from speci�c interfaces to a more generic
skill interface (Chapter 6). In Chapter 6, I also show the typical information modeling
pipeline for OPC UA and the C++ class model for implementing such skills. In this chap-
ter, I mainly focus on the software components which re-use skills of other components
and either compose new skills out of the base functionality or coordinate the execution
of lower-level skills. Since only the skill implementation itself changes, but not the in-
terface, a Plug & Produce system can be achieved. Figure 7.1 is already known from
Section 1.5 and highlights the focus of this chapter.

Standardized skill interfaces and parameters facilitate easier component exchange and
automatic parametrization with a focus on reusability of skills across di�erent platforms
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Figure 7.1: Exempli�ed system setup with di�erent Industry 4.0 components. Chapter 7 focuses
on the software components in the system and the composition of skills.

and domains. The hierarchical composition of such skills allows additional abstraction
and grouping of functionalities.

7.1 Generic Skill Client

In previous chapter, I de�ne the generic skill model and show its usage inside device
adapters. These device adapters transform proprietary interfaces to the generic skill
model. The de�ned skill model includes a state machine representing the current exe-
cution state of the skill, and a list of input and output parameters. To control the skill
execution, methods of this state machine need to be called. State transitions are re-
ported through the OPC UA event subscription mechanism. Parameters are set through
OPC UA write requests. Figure 7.2 shows the necessary interaction between a client
and the skill server to parametrize a skill, execute it, and monitor its execution state.

The whole control interface of the skill is accessible through standard OPC UA function-
ality and can therefore be controlled by any OPC UA implementation. Since my pro-
posed Plug & Produce system is mainly developed in C++, I decided to create a generic
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Figure 7.2: Necessary interaction steps of a client to control a skill implementing the proposed
generic skill interface.

Skill Client Class in C++ which provides convenience methods to the programmer and
abstracts the complexity of the OPC UA protocol.

It is used to initialize the OPC UA TCP connection to the server, call the state control
methods (Start, Halt, Reset, Resume, Suspend), subscribe to state transitions
and trigger a C++ callback, to set a parameter with a given name to a speci�c value, and
to get the result data of the skill execution. Figure 7.3 shows the UML Class Diagram of
the generic skill client class.

SkillClientwraps the OPC UA client implementation with additional helper func-
tionality, i.e., method calls for state transition trigger, monitoring of the skill state, or
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setting skill parameters. GenericSkillClient extends SkillClient with
additional convenience methods, such as setting a skill parameter based on its name.

Figure 7.3: Partial UML Class diagram of the generic skill client and the provided functionality.

This skill client is used in the software components presented subsequently to control
any device or component which supports the generic skill interface.

7.2 Automatic Skill Detection

In Chapter 5, I describe the OPC UA discovery mechanism, which can be used to �nd
instances of OPC UA servers in the network. In my proposed system architecture, every
component (hardware or software) is accessible through the interface of such a server.
The OPC UA discovery mechanism only detects server instances, i.e., I4.0 components
in the network, but not the speci�c skills which are provided by that component.

Therefore, every component which is using skills from other components in a Plug &
Produce system needs to include a Skill Detector. The Skill Detector is a separate C++
class and manages the listening to server announcements, and the detection of avail-
able skills on newly plugged devices. In addition, it also handles component discon-
nect by listening for the corresponding mDNS messages and removing the skills of that
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component from the available skills list. The remainder of this section describes the
functionality of the skill detector, and how it is used by the component.

In Section 6.2, I de�ne the ISkillControllerType interface. A component, which provides
skills according to my generic skill model, needs to implement this interface. Imple-
menting an inferface in OPC UA is achieved by adding a HasInterface reference from
the main device node to the ISkillControllerType.

The implementation of the ISkillControllerType tells a client that this device supports
the generic skill model, and all available skills of that component are listed under the
Skills node. The main device node can be in any place inside the OPC UA address space
below the Objects folder. In addition, a component can have multiple device nodes, i.e.,
if it consists of multiple subcomponents with di�erent skills, although the typical use
case is only one main device node.

Finally, to get a list of available skills provided by a component, the skill detector per-
forms the following steps:

1. Connect to the newly discovered server
2. Check the namespace array if it includes the prede�ned namespace. If not, the

server is not implementing any nodes presented in this thesis.
3. Recursively browse the Objects folder for any nodes which include a reference to

the ISkillControllerType
4. For all such nodes read all children inside the Skills node and get the referenced

skill type
5. Return the list of found skill nodes to the calling client, i.e., the skill detector.

As soon as a new OPC UA instance announces itself, the skill detector is triggered and
starts browsing the remote server recursively for implemented skill types, as shown
in Figure 7.4. Based on that information it updates its internal hash map which maps
speci�c skill types to OPC UA server instances and node IDs. The component will use
this map to check if a speci�c skill is currently available in the system.

In OPC UA every object node has a speci�c associated object type. This object type can
be extended by subtyping, similar to object-oriented programming. Section 6.2.2 shows
an example for speci�c skill object types.

The list of skills which is reported by the steps above contains the type reference for ev-
ery skill. In other words, it contains the referenced skill type, e.g., the CartesianPtpMove
skill is an instance of the CartesianPtpMoveSkillType. With this additional piece of infor-
mation, the higher-level client code immediately recognizes the semantic meaning and
functionality of the found skill. If there are multiple skills of the same type available, it
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Figure 7.4: Communication sequence between a software component using a skill detector and
an I4.0 component providing a skill. Sequence: server announcement, skill detec-
tion, skill execution, and component shutdown. The skill detector always keeps an
up-to-date map of available skills.

is up to the higher-level client to gather additional information on that component and
decide based on this which skill to choose.

Since the interface for all skills is identical, and only the parameters change, the client
can control any skill it �nds (see Section 7.1). On the other hand, it does not make sense
to control a skill where the client does not know the semantic meaning and its physical
e�ect. Thus, the client implementation should use the associated skill type to infer its
meaning and ignore unknown types. As mentioned in Section 6.2, the base type of every
skill is the SkillType. Companion speci�cations extend the skill model with additional,
more speci�c, skill types as shown in Section 6.2.2. These skill types assign a speci�c
semantic meaning to the skill and de�ne the required and optional parameters.
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This implies that a speci�c set of supported skills is integrated in the client application,
and the client can only handle these types. Due to the fact that skill types are built up
hierarchically, and it is de�ned that more speci�c skills such as ForceCartesianPtpMove,
which is a subtype of CartesianPtpMove, can also be executed through its more generic
type, the client does not necessarily need to know the most speci�c skill type. It can
also just use the more generic interface of a higher type to control the skill. The imple-
mentation of the skill then must make sure it is executing its functionality according to
the de�ned skill type speci�cations, which is in more detail described in Section 8.2.

In more complex setups, the skill type can be associated with additional knowledge mod-
eled in an external knowledge database. A generic skill client is then just instructed by
the higher-level implementation to execute a speci�c skill with a speci�c set of param-
eters. This use-case is also shown as part of the evaluation in the next chapter.

7.3 Skill Composition

An I4.0 component typically provides one or multiple skills to higher-level components.
Such a higher-level component can either directly control the used skills based on its
implementation, or it can provide a higher-level skill functionality by using lower-level
skills and combining their functionality. I de�ne this combination of lower-level skills
to form higher-level functionality as the concept of skill composition.

Figure 7.5 gives an example for skill composition. On the right-hand side there are three
types of robot and tool combinations, each o�ering a speci�c set of skills:

• Robot with built-in Gripper: This is a robot, where the gripper is directly attached
to the end of the robot arm and cannot be easily removed. An example for such a
robot is the Comau e.DO. Its controller should provide the base robot move skills
(PTP and linear movements with cartesian or joint target), and gripper skills, since
the gripper is directly controlled by the robot controller. Combining the move
skills and gripper skills results in a pick and place skill, which can also be directly
provided by the controller.

• Robot with separate gripper component: the robot controller only provides the
move skills; the gripper controller only provides gripper skills. Both do not com-
municate directly with each other.

• Robot with low-level position streaming interface

At the end, the goal is to get a PickPlaceSkill independent of the low-level robot type.
In the �rst case, the robot’s device adapter directly provides the PickPlaceSkill. In the
second case, an additional software component is required which uses the move and
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Figure 7.5: Hierarchical composition of skills. Di�erent robot types can o�er di�erent skills. A
robot with built-in gripper can directly provide a PickPlaceSkill. If there is a separate
robot and gripper component, their functionality can be reused by a software com-
ponent which provides the same PickPlaceSkill. A basic robot controller may only
o�er a PositionStreamSkill, which is used by a generic software component to o�er
higher level skills. These skills can then be reused, e.g., by the PickPlace Software
Component.

gripper skills of the lower-level components and provides a PickPlaceSkill by internally
synchronizing the execution of the used skills. For the third case, �rst a software com-
ponent is required which uses the position streaming skill to provide higher-level robot
move skills. This component needs to implement the corresponding forward and in-
verse kinematics of the robot, and with that also needs to know more about the robot
model itself. This software component then can be used instead of the robot component
in the second case, and therefore a PickPlace skill is available by composing the skills
of multiple other components.

The example above shows how powerful the standardized skill model is. In the composi-
tion shown in the middle, the software component can be used with any robot and grip-
per combination, which implement my generic skill model and the speci�c skill types,
and o�er a standardized PickPlaceSkill. The parameters of the o�ered PickPlaceSkill are
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again standardized, to allow further composition to reach even higher complexity in the
skill functionality and abstract the low-level functionality.

It is important to mention that my skill model does not de�ne, how the implementation
of a skill must look like. It only de�nes the required mandatory and optional parameters
and the semantic meaning or physical e�ect, which a client can expect when executing
the skill.

7.4 Plug & Produce Architecture De�nition

Based on the concepts described in previous sections and chapters, this section de�nes
the overall Plug & Produce architecture and its components. The speci�c system setup
for a Plug & Produce system based on generic skill models may vary depending on used
components and the application domain. As a result, there might not be the one and
only solution. The presented architecture proved to be robust and �exible enough for
various use cases, as shown in the evaluation in Chapter 8. Figure 7.6 shows an overview
of the required modules for a robotic Pick-and-Place system.

Figure 7.6: Possible system architecture to achieve a Plug & Produce System with generic device
skills.

Almost all modules are described in previous sections: OPC UA as Ethernet-based Mid-
dleware (Section 4.2.1), component discovery with LDS-ME (Section 5.2), the generic
semantic skill model (Section 6.2), device adapters (Section 6.3), the skill detector (Sec-
tion 7.2), and the composition of skills (Section 7.3).
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Based on these presented achritecture modules, software components provide higher-
level skill implementations, e.g., to produce a speci�c part, or in the basic example above,
to provide a Pick-and-Place skill. Lower-level components in the resulting Plug & Pro-
duce system can be easily exchanged without the need of adapting the higher-level
control applications.

To deploy a speci�c manufacturing process to this system, an additional module is re-
quired which is responsible for parametrization of high-level skills based on additional
knowledge on the process, product, and resources. Typically, such a module is called
Manufacturing Execution System (MES).

In general, a MES is responsible for managing and monitoring the execution of tasks on
relevant devices on a shop �oor. My de�nition of a semantic Manufacturing Execution
System (sMES) extends this functionality by using semantic information available in
the system, especially in a connected Knowledge Base (KB) as shown in Figure 7.6. In a
generic Plug & Produce system the sMES is the main component, which orchestrates and
triggers the top-level skills. The sMES itself is embedded in a superordinate system that
takes care of the planning and scheduling on the factory level. For the invocation of the
sMES, a high-level process description is used for parametrization, which includes a set
of partially ordered subtasks and a semantic description of requirements that potential
target components have to meet. The low-level skills are dynamically selected based on
their suitability and availability in a particular production environment.

The KB contains models of the used high-level skill types and their parameters for the
process or product and is responsible for persistently storing all relevant knowledge of
the production system. It provides both, an OPC UA-based and a REST-based interface
for enabling other components of the Plug & Produce system to interact with the KB
through SPARQL1 queries and update requests. The knowledge representation itself
uses ontology-based semantic description languages that are speci�ed with the help of
OWL22. The KB further provides means to interpret the semantic models in order to
check for logical inconsistencies and to automatically infer implicit facts from explicitly
represented knowledge.

In particular, the sMES makes use of the KB in order to perform the deployment of indi-
vidual tasks of a manufacturing process to the skills provided by hardware and software
components. With this approach a client just needs to send a manufacturing process’
identi�er to the sMES, which then queries the KB and gets a sequence of skills (types)
and associated parameters that are required for successful execution. Since the function-
ality of the sMES and the KB connection is not the focus of this thesis, further details

1https://www.w3.org/TR/rdf-sparql-query/
2https://www.w3.org/TR/owl2-overview/
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of this concept were developed together with my colleagues at fortiss and published in
a research paper [Perzylo et al., 2020].

In that publication we describe a system for fuse insertion which is built upon my pro-
posed Plug & Produce architecture to integrate di�erent system components. Figure 7.7
shows a picture of the resulting work cell.

Figure 7.7: System setup for Knowledge-based fuse insertion build upon my proposed Plug &
Produce architecture.

The robot and the gripper provide move and gripper skills. The KB includes semantic
knowledge on the process and the resulting skill parameters, i.e., current fuse positions
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and target frames. The sMES uses this information to automatically parametrize the skill
execution and monitor the skill state. Due to the abstraction introduced by my proposed
architecture, system components like the gripper or robot can be easily exchanged with
di�erent hardware as long as they provide the same skill interface.

7.5 Plug & Produce Architecture Implementation

Based on the concepts described in previous sections and chapters, I describe in the
following paragraphs how one can implement the proposed Plug & Produce architecture
using generic device skills.

Device Adapter - Proprietary interface adaption All components in the system
need to implement the presented skill interface to be considered for task deployment.
The current market situation shows that there are not many robot systems on the mar-
ket which support OPC UA natively. Robot manufacturers are currently still in the
process of implementing basic OPC UA functionality such as reading status variables.
Standardization and adoption of more complex interfaces will take some time. There-
fore, a temporary solution is needed to integrate non-compatible devices. In general,
this can be achieved by implementing wrapper components, which wrap proprietary
interfaces to provide the proposed skill interface.

It is similar to develop a new USB mouse. Either a generic USB controller can be used
in the mouse, which is already recognized by common operating systems, or a custom
driver needs to be implemented that is based on the USB speci�cation and may support
special features.

The �rst step to create a new skill implementation is to decide on its parent type based
on already existing skill types, and to de�ne a set of parameters for providing the rep-
resented functionality. Every skill needs to be based on my proposed OPC UA SkillType
to be automatically detectable and controllable by the generic skill client. The created
de�nition then needs to be transferred to an OPC UA NodeSet (see Section 6.4.1), which
is the basis for the resulting address space model in the OPC UA server.

Based on my provided source code, which already abstracts away the skill state machine
and OPC UA initialization (Section 6.4.2), one only needs to implement the speci�c con-
trol of underlying hardware or communication with other skills. My provided code also
includes a generic implementation of a skill client to be used inside a skill implementa-
tion (Section 7.1).
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In the evaluation chapter I give more speci�c implementation examples for such device
adapters.

Local Discovery Services (LDS) To achieve a real Plug & Produce system, newly
plugged-in components must be detected automatically. In Chapter 5, I show how the
OPC UA LDS-ME can be used to automatically �nd OPC UA servers in the network.

As part of this thesis I added support for LDS-ME in the open62541 C++ stack, and the
Eclipse Milo stack. Therefore, both OPC UA implementations can be used to implement
the device adapters, and on-the-�y support the LDS-ME discovery services. The only
step which must be performed is to connect the discovery callback of the stack with,
e.g., the skill detector. An alternative solution would be, that components are con�gured
with static IP addresses, which is not practical in �exible setups.

Skill Detector The skill detector is a custom software implementation inside a com-
ponent which is responsible for �nding all available skills o�ered by other components
as explained in Section 7.2. This functionality is also provided as a C++ class which can
easily be integrated into custom component implementations.

Typically, low-level components do not need to implement the Skill Detector function-
ality as they do not depend on other skills. As soon as a component uses one or multiple
other skills, it should integrate the Skill Detector to ensure that the available skills of
other components are detected. Further details on the skill detection are described in
Section 7.2. In Figure 7.6, examples for such composing software components are shown
on the upper part, namely the Semantic Manufacturing Execution System and the Pick-
and-Place Software Component. Both re-use skills of other components.

Software Components for Skill Composition Device adapters of hardware com-
ponents typically provide basic skills for the adapted component only, e.g., a robot de-
vice adapter provides robot move skills, while a gripper adapter provides gripper skills.
Higher-level components can directly use these skills and implement the correspond-
ing desired functionality. To increase the �exibility and adaptability of the system, it is
recommended to further abstract skills by composing new more abstracted skills. An
example for such skill composition is shown in Figure 7.6 as the Pick-and-Place Soft-
ware component. It uses the skill detector to �nd gripper and move skills in the system
and provides a higher-level Pick-and-Place Skill with more abstracted parameters. The
implementation inside the Pick-and-Place Skill prede�nes the sequence of the executed
lower-level skills.
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Semantic Manufacturing Execution System (sMES) The sMES is orchestrating
the execution of the higher-level skills. Its generic implementation is not process speci�c
as it queries the KB for the skill execution sequence, the expected skill types, and the
corresponding parameters. Therefore, the sMES implementation can be used for any
system, and does not need to be adapted, as long as the KB contains the speci�c process
de�nition.

7.6 Summary & Discussion

In this chapter, I de�ne additional modules which are required to achieve a Plug & Pro-
duce architecture. The generic skill client is used inside a component to parametrize
and control any skill o�ered by other components, given that they adhere to the pre-
sented skill model interface. Using the presented skill detector concept, skills o�ered by
components are automatically detected and can be composed to higher-level function-
ality, which introduces an additional abstraction layer and more �exibility. The sMES
in combination with the KB is used to parametrize high-level skills based on product,
process, and resource models de�ned in the KB.

The cost of this �exibility and con�gurability is performance. The more �exible a system
is, the slower it typically performs since the components are and cannot be optimized
for one speci�c use-case. Still, the presented Plug & Produce architecture allows easy
exchange of hardware and software components, and is therefore very suitable for small
lot size productions where the system setup needs to be adapted to the varying prod-
ucts.
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Partial results of the presented work in this chapter are published in my corresponding
papers mentioned in previous chapters. I am the main author of these publications,
and my main contributions are in further detail described in this chapter. Some �gures
created and partial text written by me in these publications are directly included in this
chapter.

In previous chapters, I de�ned the various concepts necessary to achieve a Plug & Pro-
duce system with generic component skills. In this chapter, I am evaluating the pre-
sented concepts and techniques on di�erent real-world robot demonstrators with dif-
ferent tools and requirements.

The evaluation is separated into multiple parts. In the �rst section, I show the evaluation
of generic robot move skills: three robots from di�erent manufacturers are controlled
through the same skill-based interface to follow the same trajectory along a square.
This is followed by an extension of my skill model with new skill types, especially for
software components and skill re-usage. The evaluation is concluded by a complete
Plug & Produce system evaluation with di�erent software and hardware components
(Universal Robot UR5, Parallel Gripper, Vacuum Gripper, Kelvin Tool Changer) with the
goal to evaluate the applicability of the Plug & Produce concept in the industrial context
while di�erent tools are exchanged via an automatic tool changer.

8.1 Generic Skill Interface for Industrial Robots

In Section 6.2.2, I de�ned speci�c skill types for industrial robots. Figure 8.1 is copied
for convenience and shows again the skill types and their parameters.

All included skill types can in general be performed by any 6-DOF (degrees of freedom)
robot with rotational joints. Linear (LIN) move skills move the robot from one de�ned
position to another in a linear motion, while point-to-point (PTP) movements are along
an arbitrary path. Cartesian movements expect a target position in cartesian coordi-
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Figure 8.1: Robot skill types and their parameters. Identical to Figure 6.3.

nates, while joint movements expect the target position in the robot’s joint angles for
each joint.

These skill types only describe the interface and are not robot manufacturer speci�c,
nor de�ne how the skill is implemented for a speci�c robot. Therefore, I give a spe-
ci�c implementation example of the generic skill model for multiple industrial robots
(Universal Robots UR51, Comau e.DO2, KUKA iiwa3).

Every speci�c robot implementation has its own nodeset de�nition which ex-
tends my OPC UA Companion Speci�cation for robots (fortiss ROB) by de�n-
ing speci�c object instances of the supported move skill types and motion de-
vices, which are de�ned in the o�cial OPC UA Robotics Companion Speci�ca-
tion Part 1 (OPC UA ROB, [OPC Foundation, 2019a]). In my implementation
I created three additional nodesets for every robot I am using in the evalua-
tion: https://fortiss.org/UA/iiwa/ (fortiss IIWA), https://fortiss.org/UA/edo/ (fortiss
EDO), https://fortiss.org/UA/universal_robots/ (fortiss UR). Note that these URLs
are the unique namespace URI of the nodeset and not necessarily URLs which can be
accessed online.

Currently, in the year 2020, industrial robot controllers do not provide any OPC UA
interface which can be used to control such a device. Robot manufacturers provide
a non-standardized interface to control the robot through their own de�ned API. To
show the applicability of the generic skill model in combination with industrial robot
controllers, I developed C++ OPC UA device adapter applications based on the open-

1https://www.universal-robots.com/products/ur5-robot/
2https://edo.cloud/
3https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
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source Robotics Library [Rickert and Gaschler, 2017] and implemented the OPC UA
Robotics Companion Speci�cation with my own extension of skill-speci�c Companion
Speci�cations. The Robotics Library provides, among other useful features, a C++ API
hardware abstraction and kinematics calculation for di�erent robots.

Based on the already presented generic C++ class model in Section 6.4.2, the imple-
mentation for di�erent robots requires implementing the speci�c lambda callbacks to
control the robot based on the skill type, provided parameters, and called state control
methods.

The communication with the Universal Robots UR5 robot was already implemented as
part of the Robotics Library and the C++ API can be used directly. For the Comau e.DO,
which provides a ROS interface, I implemented the corresponding abstraction layer in-
side the Robotics Library, to be able to use the higher-level functionality provided by the
Robotics Library (inverse kinematics, forward kinematics, position control). To control
the KUKA iiwa via the Robotics Library I also implemented a custom protocol based on
TCP, which opens a dedicated TCP socket to the robot controller to send asynchronous
move commands from the client side to a custom developed Java Application on the
KUKA controller.

The OPC UA Robotics Companion Speci�cation Part 1 [OPC Foundation, 2019a] de�nes
nodes for various hardware properties of a robot. To initialize the server’s address space,
a trivial approach would be, to manually write code based on the used OPC UA stack for
every robot and all the required nodes. Another approach is to extend the base speci�-
cation and de�ne more speci�c Companion Speci�cations for every robot type, and then
automatically generate the initialization code (see Section 6.4.1). This allows to simply
reuse the speci�cation as a basis and reduces the implementation e�ort. Therefore, I
created speci�c ModelDesign �les for every robot type and used the pipeline shown
in Section 6.4.1 to automatically generate the corresponding initialization code for the
open62541 stack. This also results in speci�c namespace URIs for every robot.

Figure 8.2 shows the dependencies between the Companion Speci�cations for a spe-
ci�c robot type. The robot-speci�c information models contain concrete instances of
the skill types, and de�ne nodes containing the robot status, e.g., current joint angle
values, currents, or temperatures. Note that the address space initialization code only
generates the nodes and their references, but does not connect the nodes with their im-
plementation, e.g., providing the current joint value, or connecting a method with its
callback (see Section 6.4). My Companion Speci�cations developed as part of this thesis
are available on my GitHub account4.

4https://github.com/pro/opcua-device-skills
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Figure 8.2: Companion speci�cations for a speci�c robot model. The arrows indicate a depen-
dency.

Figure 8.3 shows an example of the implemented address space for the Universal Robot
Device Adapter. The Robotics Companion Speci�cation [OPC Foundation, 2019a] is
extended with additional skill types and axis parameters. In Figure 8.3b the skill state
machine properties (transition methods, current state, last transition) and parameters
on the example of the JointPtpMoveSkill are shown.

Since all my OPC UA servers provide the same move skills independent of the manu-
facturer, a generic robot skill client based on the concepts of Section 7.1 was developed.
This generic client can control any robot implementing the previously described skills
without knowing the robot speci�cations (kinematics, hardware setup). The skill inter-
face can be used for simple robot movements, e.g., to move the robot’s tool-center-point
from one speci�c position to another as a linear motion. The movements are only limited
by the robot’s kinematics and its reachable cartesian space. For more complex trajecto-
ries and scenarios, additional skill types can be de�ned which are used in combination
with the kinematics information in the OPC UA address space. In the OPC UA Robotics
Companion Speci�cation working group it is currently being de�ned how the geometry
and kinematic information of a robot can be included in its address space.

If an error occurs during the execution of a movement, the state machine of the skill
emits a state transition to the Halted state which indicates an error state. This error state
needs to be con�rmed by explicitly calling the reset method on the skill itself. Depending
on the underlying implementation and the controller, the state machine may switch to
the ready state, or stay in the halted state. It is up to the skill implementation to decide
if the current error state allows simple resetting or needs human intervention. A new
skill execution can only be started if the state machine is in the ready state.
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(a) List of Axes and their parameters (b) List of Skills and their parameters

Figure 8.3: Implemented OPC UA address space on the example of a Universal Robots UR5
robot. This shows a screenshot viewed by an OPC UA client.

I evaluate the generic robot skill interface by implementing the following move se-
quence in the robot skill client along a square with the width and height of 10 cm:

1. PTP cartesian move to upper-left corner of square
2. Linear cartesian move to upper-right corner of square
3. Linear cartesian move to lower-right corner of square
4. Linear cartesian move to upper-left corner of square
5. PTP joint move to home position
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First, it is important to mention that all robots have a completely di�erent hardware
setup and joint lengths. Especially the KUKA iiwa has seven degrees of freedom,
whereas the UR5 and the e.DO robot have six. Still, the same CartesianLinearMoveSkill
can be used for cartesian movements since the robot trajectory is interpolated by the
Robotics Library.

The relative cartesian coordinates of the start position vary depending on the robot,
since every robot has its own cartesian space it can reach. In my experiment, this start
position is con�gured based on the robot type. In more complex setups, this informa-
tion could come from a knowledge base or the work cell setup, therefore the client’s
adaptability is not impacted.

A video of all robots executing these steps is available online5 and selected screenshots
are shown in Figure 8.4.

(a) KUKA iiwa: top right (b) KUKA iiwa: bottom right (c) KUKA iiwa: bottom left (d) KUKA iiwa: top left

(e) Universal Robots UR5: top
right

(f) Universal Robots UR5: bot-
tom right

(g) Universal Robots UR5: bot-
tom left

(h) Universal Robots UR5: top
left

(i) Comau e.DO: top right (j) Comau e.DO: bottom right (k) Comau e.DO: bottom left (l) Comau e.DO: top left

Figure 8.4: Photo sequences showing the execution of the square movement. Every robot moves
along a 10cm square clockwise using the same OPC UA client. The whole execution
can be seen in https://youtu.be/w4V9Boh3ZIo.

Using this client my skill model has proven to be very robust and a suitable way for
controlling robots using OPC UA. The skill implementation does not depend on the
duration of the movement.

5https://youtu.be/w4V9Boh3ZIo
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The presented MoveSkillTypes only support sequential robot movements: a new move
command can only be sent after the previous execution has �nished. If blending robot
movements are required, one must use the PositionStreamSkillType directly, or create
a new software component which takes a list of points and blending con�guration to
control the robot via its position streaming interface. It is also possible to extend my
skill de�nition with parallel and sequential skill queues where clients can queue up skill
execution instances, and the device adapter can automatically execute these skills.

A shortcoming of my skill model is the support of atomic operations. A client �rst needs
to set the skill parameters and then call the start method. In the current implementa-
tion, race conditions may occur where another client writes a new set of parameters
in-between another client’s write and start call. This may lead to dangerous behavior.
In my test setup I only allow one client to be connected to the robot. This problem can
be circumvented by adding intermediate ready states: If a skill is ready to receive new
parameters, it is in the ReadyNotCon�gured state. As soon as a client parametrizes a
skill, the internal state changes to ReadyCon�gured. While this state is active, clients
are not allowed to set new parameters but only to start the skill execution. Another
approach is to use the recently updated OPC UA Companion Speci�cation for Devices,
which introduces speci�c parameter locking mechanisms.

One further issue I faced when using the generic client is the di�erent geometries and
workspace areas of the robots. Not all robots can reach the same cartesian position.
Therefore, the client �rst checks, to which robot it is connected and adapts the start
pose correspondingly. Future planned extensions of the Robotics Companion Speci�ca-
tion will include robot kinematic descriptions and geometry information, which allows
generic clients to adapt the target position correspondingly or reject the connected robot
at all if its reachable cartesian space is too small.

The skill model can be extended for more speci�c skill types: The KUKA iiwa robot in-
cludes force-torque sensors in the joints. Therefore, the device adapter should provide
additional force move skills besides the standard move skills. This can be achieved by
subtyping the CartesianLinearMoveSkillType and adding an optional MaxForce parame-
ter. With this hierarchical skill model, the previously presented generic robot client is
accessing the base cartesian move skill type, while a more sophisticated robot client can
also use the force move skill. If the force exceeds the prede�ned limit, the state machine
has additional states to represent that case, i.e., a HaltedForce state. The extension of the
skill model with force move skills is a work which was conducted as a Bachelor The-
sis of one of my supervised students [Breitkreuz, 2019] and therefore not part of this
thesis.
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8.2 Skill Type Extension

A speci�c type de�nition for a skill instance de�nes the semantic meaning of the skill
and its required and optional parameters. Therefore, the skill type is one of the most
essential parts of my presented skill model. All skill types need to be subtypes of the
generic SkillType, which de�nes basic properties of a skill, e.g., the various states and
state control methods. A subtype de�nes the parameters for that speci�c skill type, and
by its unique type name (based on the combination of the namespace URI and the node
id) the semantic meaning is de�ned. Clients, like the skill detector in Section 7.2, use
the type name to search for a speci�c skill type. In the previous section, I show the
extension of the generic skill model for speci�c skill types for an industrial robot.

In this section, I show how my generic skill model can be extended with additional
types for tool changers, grippers, and software components such as a Pick-and-Place
component. These extensions are required for the evaluation in the next sections.

If a skill implements a speci�c type, all its supertypes are also implemented. For in-
stance, a robotic hand could implement a more speci�c hand grasp skill type (subtype
of GraspSkill), while a parallel gripper could implement a parallel force grasp skill type
(subtype of GraspSkill). Both tools still need to support the basic GraspSkill parameters
and therefore other components can still use that base skill, even if they only know the
GraspSkill type, but not its more speci�c (manufacturer-speci�c) types. In this case, the
more generic skill execution must intelligently choose default parameters so that the
semantic meaning of the base skill is still valid, i.e., the object is grasped. Alternatively,
if that is not possible implementation-wise, it must use a di�erent supertype.

Figure 8.5 depicts a simpli�ed overview of the additional skill types that I am describing
in this section, grouped by the corresponding Companion Speci�cation. To visualize the
model, I am using the o�cial OPC UA modeling notation, as described in Appendix A.

The basis for all speci�cations is the OPC UA Default Namespace. Based on that,
I de�ne my own Companion Speci�cations: fortiss Devices, fortiss Robotics, fortiss
Toolchanger, and fortiss Composite Skills. The two latter ones are new, compared to
the types de�ned in Section 6.2.2.

https://fortiss.org/UA/Device/ (fortiss Devices) extends the OPC UA for Devices In-
tegration (DI) nodeset (OPC UA DI) and contains the de�nition of the following types:
SkillType, GripperSkillType, GraspGripperSkillType, GraspGripperSkillType, ReleaseGrip-
perSkillType.

https://fortiss.org/UA/Robotics/ (fortiss Robotics) is based on fortiss DI and the re-
cently released OPC UA Companion Speci�cation for Robotics Part 1 (OPC UA ROB).
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Figure 8.5: Extended OPC UA skill model with robot skill types, gripper skill types, tool changer
skill type, and pick-and-place skill type. The OPC UA modeling notation is used (see
Appendix A).

fortiss ROB contains the move skill types and parameter de�nitions as shown in Fig-
ure 6.3.

https://fortiss.org/UA/KelvinToolchanger/ (fortiss Toolchanger) is based on fortiss
DI and contains speci�c skill types for a tool changer, i.e., ChangeToolSkillType, Drop-
ToolSkillType.

https://fortiss.org/UA/CompositeSkills/ (fortiss Composite Skills) is based on fortiss
DI and is a collection of various software-based composite skills. As an example, it
contains the PickAndPlaceSkillType.

Every speci�c robot and device implementation derives its Companion Speci�cation
from these base speci�cations to add additional device-speci�c nodes and proper-
ties, and especially, to de�ne instances of speci�c skill types. For example, I cre-
ated speci�c Companion Speci�cations for every robot type in the previous sec-
tion: https://fortiss.org/UA/iiwa/ (fortiss IIWA), https://fortiss.org/UA/edo/ (fortiss
EDO), https://fortiss.org/UA/universal_robots/ (fortiss UR).

Parameters and properties of the ProgramStateMachineType, SkillType, and skills de�ned
in the fortiss Robotics speci�cation are described in Section 6.2.2 and not discussed in
more detail here. To summarize their structure, SkillType is the base type for all skill
types. The fortiss Robotics Companion Speci�cation contains skill types speci�c to robot
hardware, e.g., it de�nes a CartesianLinearMoveSkillType with several required param-
eters like TargetPosition or MaxVelocity. The newly introduced skill types and their
parameters are described in more detail here.

111



8 Evaluation

Both the GraspGripperSkillType and ReleaseGripperSkillType are generic skills for any
kind of gripper. The semantics of a grasp is de�ned as activating the gripper hardware
in such a way that a thing or object positioned at the grasp point is getting attached
to it. For a simple parallel gripper this could mean closing its �ngers, while a vacuum
gripper would enable its suction system until an object is attached or a timeout occurs.
Depending on the complexity of the skill implementation, skill states can be used to
indicate a grasp success or failure. Release is de�ned as the opposite action directly
implemented inside the skill, e.g., detaching the object by opening the parallel gripper
or disabling the suction system. However, the speci�c implementation of the skill inside
the component is not de�ned by my model as it di�ers for speci�c gripper hardware. If
a component implements a speci�c skill, it must adhere to the de�ned functionality, to
enable other components to rely on it. The grasp skill has a read-only parameter that
gives basic information on the grip point of the gripper:

• grip point o�set (3DFrameType): o�set and pose from the tool mounting plate to
the grip point

• grip point type (Enumeration): gripping type, i.e., parallel, vacuum-based, or
multi-�nger (hand)

For a robot movement, the grip point o�set is required to move the robot with the
attached gripper to the correct position. The gripping type is required to adapt the grip
point o�set based on the object’s shape: a vacuum gripper normally picks an object
from the top, while a parallel gripper needs to be further down to grasp the object from
the side. This de�nition of a grasp skill is intentionally kept on a basic level to have
a generic interface, such that other components do not have to know how an object
is manipulated. Speci�c grippers may implement multiple instances of a grasp skill to
represent multiple grasp points or implement more speci�c subtypes giving the skill
callee more parametrization possibilities. In future, it may also be necessary to de�ne a
new basic skill type which has a more �exible interface for grip points.

Similar to the gripper skill types, the DetachToolSkillType, AttachToolSkillType, and
ChangeToolSkillType de�ne the semantics of a tool change task. The semantics of the
detach tool skill is to detach a tool, if there is one currently attached, and to place it
at the given location. The attach tool skill attaches a new tool to the tool mounting
plate. The change tool skill is a combination of �rst detaching a tool if present, and then
attaching a new tool. In addition, the skills need to include a reference to a movable
component, on which they are mounted, e.g., a robot �ange. This de�nition does not
restrict how the tool changing steps are performed. For instance, the motion component
can be a robot arm, or other moving devices, like linear axes. Therefore, the connected
motion component de�nes the peculiarity of such tool change skills, and they cannot be
used as stand-alone skills. In my experiment, which is described in the next section, the
tool changer indicates a connection to a robot component and uses its CartesianLinear-
MoveSkillType to reach the tool docking station. As a result, upper-layer components
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do not need to directly control the underlying moving device. This is handled trans-
parently by the speci�c implementation of the tool changer device adapter and its way
of parameterizing underlying skills. Detach tool, attach tool, and change tool provide a
read-only parameter:

• move skill controller endpoint (String): OPC UA endpoint URL of the move com-
ponent used to reach the docking station.

The move skill controller endpoint can either be con�gured statically or automatic skill
detection can be used to �nd the correct endpoint.

In addition to it’s read-only parameter, the detach tool skill type de�nes an input param-
eter tool position (3DFrameType) which gives the absolute coordinate frame (orientation
and position) where the currently attached tool shall be placed. If the internal detach
skill implementation is not able to reach this position, the skill’s state machine should
change to the halt state to indicate an error.

Attach tool and change tool require two additional writable parameters:

• tool position (3DFrameType): absolute coordinate frame indicating the orientation
and position of the tool that shall be attached

• tool app URI (String): application URI of the tool that will be attached. Required
for the skill detector to automatically connect to the tool (via automatic discovery)
after successful attachment, and to read the attached tool properties to provide
that info to other components

The PickAndPlaceSkillType is a composite skill software component, as it reuses other
skills that are available in the system, i.e., gripper skills and move skills. A composite
skill is a skill component which combines the functionality of other skills in the system
to ful�ll its own purpose. Pick-and-Place is semantically de�ned as picking an object
(identi�ed by a speci�c ID) with the given tool, moving the manipulator and placing
the object at a given position with a given orientation. I explicitly did not model its
parameters to include the object size or grasping parameters. This should be handled
by the corresponding Pick-and-Place implementation itself. The caller can rely on the
capability (physical e�ect) that after successful completion the given object is moved to
the target position. It does not need to know how this is achieved. To query the object’s
position, the implementation can, for example, connect to a world model component or
use an object detection skill to �nd the object in the environment. To �nd suitable grasp-
ing parameters, a grasp planning component could be used inside the skill implemen-
tation. This generic de�nition does not limit the trajectory of the robot or other motion
components. If more speci�c options are required (e.g., advanced collision avoidance,
move with force feedback), speci�c subtypes of this generic Pick-and-Place skill can be
introduced to represent that functionality for higher-level components.
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My de�nition of a generic Pick-and-Place skill requires four writable parameters:

• object ID (String): unique identi�er of an object, e.g., used as parameter to query
the world model or vision component

• tool skill controller endpoint (String): OPC UA endpoint URL of the tool skill con-
troller used to control the tool for grasping and releasing the object

• move skill controller endpoint (String): OPC UA endpoint URL of the move com-
ponent or manipulator used to transport the tool with the attached object from
the pick position to the place position

• place position (3DFrameType): target position and orientation of the object

Depending on the Pick-and-Place skill implementation, the move component can be a
robot with a Cartesian linear move skill or any other component controlling the tool
position. There can also be multiple skill implementations of a speci�c type at the same
time with di�erent implementation speci�cs. It is then up to the higher-level component
to select the most suitable one, e.g., based on more speci�c skill types.

In the next section I present the �nal evaluation experiment which was conducted to
evaluate the additional skill types introduced in this chapter, and more importantly, the
whole Plug & Produce architecture presented in my thesis.

8.3 Skill Composition Evaluation

After evaluating the generic interface for industrial robots and de�ning an extension of
the skill types, I evaluated the applicability of the skill composition concept, including a
�rst version of the skill detector for the composition of a robot and tool skills to provide
a Pick-and-Place skill. The theoretical aspect of skill composition is in further detail
described in Section 7.3.

A pick and place task can be described by the following sequence of sub-steps:

1. Move to pick approach position
2. Move to pick position
3. Close gripper
4. Move to pick approach position
5. Move to place approach position
6. Move to place position
7. Open gripper
8. Move to place approach position
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To compare the skill composition with a directly implemented Pick-and-Place skill, I
used two di�erent robot work cells: one work cell consisted of the Comau e.DO robot,
which is delivered with a built-in parallel gripper directly attached to the robot (see
Figure 8.6a). The second work cell is built up with the KUKA iiwa robot and a Schunk
WSG506 parallel gripper (see Figure 8.6b).

(a) Comau e.DO robot with built-in parallel
gripper

(b) KUKA iiwa robot and a Schunk WSG50
Gripper

Figure 8.6: Pick-and-Place work cells used for evaluating a �rst version of the Pick-and-Place
skill, as shown in the second part of the previously linked video: https://youtu.be/
w4V9Boh3ZIo

The major di�erence between the two work cells is the external and internal gripper. On
the Comau e.DO, which has already a proprietary gripper integrated as a seventh joint,
the PickPlaceSkill is implemented on the robot’s OPC UA server. For the external Schunk
WSG50 Gripper mounted on the KUKA iiwa, two separate device adapters are necessary,
while the Pick-and-Place skill is provided through a Software Component as shown in
Figure 8.7. All the device adapters and software components were implemented on a
PC, connected to the corresponding hardware component via ethernet.

In contrast to the parameters de�ned in the previous sections, the implemented Pick-
PlaceSkill uses a slightly modi�ed parameter set to explicitly de�ne the position of the
object to pick instead of just the object identi�er. For this evaluation I did not integrate
an object detection as it would overly complicate the demonstrating use case.

On startup, the Pick-and-Place client is using the Skill Detector implementation in com-
bination with the OPC UA discovery services, to �nd available skills in the network.

6https://schunk.com/de_en/gripping-systems/series/wsg/
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Figure 8.7: Components for the evaluation of skill composition and re-usage by a generic Pick-
and-Place client.

Since on both work cells the same Pick-and-Place skill is provided, the client only needs
to implement that single interface, independent of the underlying hardware. The ob-
ject pick position and place position were prede�ned inside the client implementation.
The endpoints for both, the robot and the tool were automatically detected by the Skill
Detector.

The execution of the Pick-and-Place skill on the e.DO Robot and the KUKA iiwa is also
included in the previously linked video7.

This evaluation shows that by using my presented generic skill model and skill com-
position concept, it is possible to abstract low-level skills via software components to
reach higher-level functionality. The same skill interface with di�erent parameter sets
can be used, independent of the underlying hardware. In this experiment, the additional
software component introduced a small delay of approximately 80ms between the end
of a robot movement and start of the gripper movement. This delay comes from the
communication overhead between the OPC UA client in the software component and
the robot and gripper device adapter.

It is important to mention that exchanging the hardware while keeping the same high-
level functionality is limited by the robot workspace. If the robot workspace signif-
icantly di�ers, the client cannot use prede�ned pick and place positions. A solution
could be to add more intelligence to the client: using the standardized geometry model
structure included in the OPC UA Robotics Companion Speci�cation, a client can infer
the robot’s workspace and adapt the position correspondingly.

7https://youtu.be/w4V9Boh3ZIo
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Still, the common Pick-and-Place interface provides a major advantage compared to the
direct implementation of proprietary interfaces in the client and reduces the integration
e�ort in more complex setups, especially if the used hardware is constantly changing.

8.4 Plug & Produce System Evaluation

The �nal evaluation for a real Plug & Produce scenario with a tool changer and multiple
tools was performed on the third work cell, composed of a Universal Robots UR5, a
Kelvin Tool changer8, and two tools: the parallel gripper Robotiq 2F-859, and the vacuum
gripper Schmalz ECBPi10, as shown in Figure 8.8. A video of the execution can be found
online11 and is described in this section in more detail.

Figure 8.8: Robot work cell used for evaluating the proposed Plug & Play architecture. Com-
posed of the following components: Universal Robots UR5 (1), Kelvin tool changer
(2), Robotiq 2-Finger Gripper (3), Schmalz Vacuum Gripper (4), and custom OPC UA
adapter controllers for these components

8https://www.toolchanger.eu/
9https://robotiq.com/products/2f85-140-adaptive-robot-gripper

10https://www.schmalz.com/en/vacuum-technology-for-automation/vacuum-components/vacuum-
generators/electrical-vacuum-generators/vacuum-generator-ecbpi

11https://youtu.be/xiUZnj5qo00
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To integrate these components into my Plug & Produce system, I developed various
device adapter components responsible for wrapping the proprietary interfaces to my
standard OPC UA skill model. The device adapter concept is in more detail described in
Chapter 6.

Figure 8.9 shows a simpli�ed overview of the components, which are described bottom-
up in the following paragraphs. The source code and OPC UA nodesets that were
developed for the whole system and its components are published on GitHub12. It is
also possible to run the whole system in simulation, as described in the corresponding
README �le on GitHub. Some excerpts of de�ned ModelDesign �les can be found in
the Appendix B.

Figure 8.9: Architecture setup for hierarchical skill composition. Hardware components are
wrapped with a custom OPC UA server and provide their skills to higher-level com-
ponents.

All components described in the following paragraphs are implemented in C++ and
available in my GitHub repository together with the nodesets for each component. The
code uses the open-source open62541 stack13 for OPC UA, through which I am con-
tributing signi�cant parts to the open-source OPC UA community, and with this easing
the integration of my presented concepts into future products. Furthermore, all com-
ponents implement the LDS-ME feature of OPC UA to be discoverable in the network.
The discovery features are in more detail described in Chapter 5.

12https://github.com/opcua-skills/plug-and-produce
13https://github.com/open62541/open62541
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Wi-Fi Microcontroller Boards with OPC UA for close-to-hardware device
adapters Since most of the hardware components require speci�c hardware circuits
to adapt the proprietary interfaces, while providing an Ethernet interface, I decided to
use a microcontroller with built-in Wi-Fi to deploy the component’s device adapter onto
it. I �rst choose the RaspberryPi Zero with Wi-Fi and the Raspbian Operating System.
Due to a boot up time of more than 20 seconds, even after various performance tweaks,
I abandoned the RaspberryPi and chose to use a more suitable microcontroller with
faster startup time for my custom device adapters. A good choice with enough mem-
ory (4MB) to hold the OPC UA information model, and exceedingly small dimensions
(18mm x 32mm) is the TinyPICO board based on the ESP32 platform by Espressif, us-
ing FreeRTOS as its operating system14. I developed an OPC UA server, which can be
directly �ashed onto this microcontroller and provides the basic feature set of OPC UA
through the controller’s Wi-Fi connection. In the following, I will refer to the TinyPICO
board with my customized OPC UA server as TinyUA. The ready-to-use implementation
of TinyUA is available on GitHub15. It takes around 8 seconds for the microcontroller
to power on, join the Wi-Fi network, get the current time via NTP, start the OPC UA
application, and announce itself through the OPC UA discovery services, which is sig-
ni�cantly faster compared to a RaspberryPi. On the long term all the hardware device
adapters described in the following paragraphs should be directly integrated into the
tool itself without the need of additional adapter plates and interfaces. This evaluation
is a proof-of-concept to show that the proposed system is suitable for Plug & Produce
applications.

Kelvin Tool Changer & ADC Adapter The Kelvin Tool Changer16 is a non-active
tool changer: It does not use electricity or pneumatic control to attach or detach tools.
The manual locking mechanism can either be operated by a human or autonomously by
speci�c robot movements and the corresponding docking station. Through an analog
voltage divider pin, it provides the current state of the tool changer (open, intermediate,
locked) and the attached tool ID. Since I also need this data inside the tool changer soft-
ware component for the skill implementation, I decided to split the implementation into
two device adapters. The basic component is a TinyUA server, which uses the analog-
digital converter of the TinyPICO microcontroller to provide the current analog voltage
encoding the tool changer’s state. This voltage value can be read through an OPC UA
variable. The second component is a software component which runs on a PC and pro-
vides the AttachToolSkill, DetachToolSkill, and ChangeToolSkill. It is connected via the
Wi-Fi network to the ADC Adapter to fetch tool changer states. Its startup con�guration
needs to specify, on which robot the tool changer is mounted. This is achieved by simply
passing the robot’s OPC UA server endpoint to the software component. The software

14https://www.tinypico.com/
15https://github.com/Pro/open62541-esp32
16https://www.toolchanger.eu/
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component indicates its ready state after it receives the corresponding announce mes-
sage of the robot. This pre-con�guration is necessary to indicate which move controller
needs to be used to move the mounted tool changer to its docking station. Especially for
the case where there are two or more robots in the same work cell, automatic detection
cannot be achieved easily.

Vacuum Gripper: Schmalz ECBPi The Schmalz ECBPi Vacuum Gripper uses the
IO-Link Protocol as proprietary control interface. To connect the TinyUA board with
that interface, I integrated the IO-Link Master Board from TeConcept with the corre-
sponding software stack. For the hardware setup I developed the electrical circuit as
shown in Figure 8.10. With this setup, the TinyUA board can implement the GraspSkill
and ReleaseSkill directly on the microcontroller and map control commands to the IO-
Link protocol. I constructed and 3D-printed the casing for the microcontroller to mount
it onto the gripper, which is shown in Figure 8.12. This setup only requires an exter-
nal power supply of 24 V and can also be used to adapt any other IO-Link hardware to
OPC UA directly on the tool side.

Figure 8.10: Electrical circuit for connecting the TinyPICO microcontroller to the Schmalz
ECBPi gripper via its IO-Link protocol.

Parallel Gripper: Robotiq 2F-85 The Robotiq Gripper is shipped with a Modbus
RS-485 interface. The serial interface of the TinyUA board can be used together with a
MAX485 level shifter chip to connect to the RS-485 interface. For the hardware setup I
developed the electrical circuit as shown in Figure 8.11. I am using parts of the Robotics
Library [Rickert and Gaschler, 2017] for implementing the Modbus protocol directly on
the ESP32 microcontroller. All put together, the TinyUA board provides the GraspSkill
and ReleaseSkill to other components. Same as for the vacuum gripper, I constructed
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and 3D-printed the casing for the microcontroller to mount it directly onto the Robotiq
gripper, as shown in Figure 8.12.

Figure 8.11: Electrical circuit for connecting the TinyPICO microcontroller to Robotiq 2-Finger
gripper via its Modbus RS485 protocol.

As already mentioned, these custom developed device adapters for the grippers and the
tool changer should in the long run be directly integrated in the tool itself. Since my
source code is available on GitHub, manufacturers can use it as a template to implement
their own OPC UA servers based on my skill model.

Universal Robots UR5 To implement my OPC UA skill model for the real-time in-
terface of the Universal Robots UR5, I developed a separate C++ application, which
combines path planning and robot control abstraction of the Robotics Library [Rickert
and Gaschler, 2017] with the open62541 OPC UA stack. This application provides all
robot movement skills as depicted in Figure 8.5 through the OPC UA interface to other
components. The application is running on a real-time PC to ensure the 8 ms control
frequency required by the controller. This PC is directly connected via its own ethernet
connection to the robot controller. This is an improved version of the Universal Robots
Device Adapter presented in Section 8.1. By contributing to the OPC UA Robotics Com-
panion Speci�cation, I am aiming at directly integrating the proposed skill model into
robot controllers without the need of additional external OPC UA servers.

Pick-and-Place Software Component This component is a software component
which is not directly connected to any hardware but provides its functionality by com-
posing and orchestrating lower-level skills as described in Section 8.3. Every skill can
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Figure 8.12: Custom Wi-Fi OPC UA tool device adapter based on the TinyPICO Microcontroller
board with FreeRTOS. The only external connection required is a 24 V power sup-
ply.

either be implemented within its own server instance or one server instance can imple-
ment multiple skills. The latter case should be preferred where it makes sense, mainly to
reduce the load on the system. Every server instance introduces additional overhead. In
my experiment I developed one software component implementing the PickPlaceSkill.
The internal skill-speci�c implementation receives the ID of the object that should be
picked and queries the world model for the object’s properties (geometry, current pose).
The implementation then searches for a grasp skill on the given tool skill controller. As
explained before, the grasp skill contains a description of the tool pose. Combining this
information with the object’s properties, a grasp planner can determine the optimal
grasp pose for the object. My speci�c implementation of the Pick-and-Place skill just
adds a 5 cm o�set in Z direction for the approach positions to pick and place the ob-
ject. A more advanced implementation could include more complex path planning while
keeping the same interface. Additional semantic information from lower-level gripper
device adapters, such as the maximum gripper span, can be aggregated by this software
component and, e.g., used in grasp planners. When all required information is available,
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the skill implementation searches in its skill type map for a CartesianLinearMoveSkill of
the given move controller and triggers the correct lower-level skill sequence.

Since the move controller endpoint is passed as a parameter to the skill, it is trivial
for the implementation to choose the right robot. It could be the case that there is
more than one robot in the system, with the e�ect of multiple skills of the same type
being available. In this case, a higher-level component would need to intelligently select
the correct endpoint based on additional information from the task or world model,
e.g., robot position and cartesian workspace. In another experiment together with my
colleagues I showed a solution based on SDN to create di�erent network segments and
thereby shift the intelligence from the lower level to a central instance [Madiwalar et al.,
2019].

The execution and automatic adaptation of the Pick-and-Place skill on two di�erent
tools is shown in the previously linked video. Measuring the timing of the system, I
calculated the following averaged values for 5 test runs. These values indicate the time
between starting the component or connecting the power supply respectively, until the
skills of the component are successfully detected by other components.

• Universal Robots UR5: 313ms
• Pick-and-Place component: 211ms
• Kelvin Tool changer component: 253ms
• Robotiq 2F: 8422ms (8.4 s)
• Schmalz ECBPi: 9635ms (9.6 s)

As can be seen, automatic component discovery and skill detection takes in general less
than 300 milliseconds. The Robotiq 2F and Schmalz ECBPi adapters based on TinyUA
take around 9 seconds to boot up and be ready. This higher value stems from summing
up various necessary steps: Bootloader (1.8 s), connect to Wi-Fi (2.9 s), initialize time
with NTP (1.9 s), start the OPC UA application and announce itself (1.8 s). The initializa-
tion of the IO-Link board takes an additional 1.2 seconds on the Schmalz ECBPi TinyUA.
These longer setup times can be reduced by improving the prototypical implementation
of my TinyUA controller. With corresponding e�ort, I am estimating that this startup
time could be reduced to be below 5 seconds.

Overall, this evaluation proofs that the initial hypothesis of a Plug & Produce system
can be achieved, given that more e�ort is necessary for the initial implementation of
component adapters which can be re-used. The following section evaluates the concept
in more depth, and the next chapter discusses strengths and weaknesses of my proposed
system.
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8.5 Summary & Discussion

While a smaller part of this evaluation chapter is looking at the performance of the con-
cept it is not the focus of my thesis. The focus lies on the applicability and extensibility
of the presented generic skill concept and the presented Plug & Produce architecture.

The evaluation in previous sections on three di�erent robot work cells with various
hardware components shows that a very well-performing generic Plug & Produce sys-
tem can be achieved using OPC UA in combination with my generic skill model. The
evaluation is separated into multiple parts: First, I am evaluating the previously pre-
sented skill types on three robots from di�erent manufacturers. This is followed by
evaluating the possibility to extend the presented generic skill model with additional
types, especially for more complex scenarios where software components are necessary.
Since one of the strengths of the skill model is the hierarchical composition of skills, I
also evaluate the automatic skill detection and control of lower-level skills through a
software component for Pick-and-Place. The evaluation is concluded by a complete
system evaluation for a robot work cell with multiple tools and a tool changer. In this
last part I also show the applicability of my presented approaches for a real Plug & Pro-
duce system with custom (Wi-Fi) device adapters and automatic detection of skills in
the system.

Even though all parts of the presented architecture are released as open-source on
GitHub and should therefore ease the adaption of the proposed system, integration
of custom devices still implies signi�cant e�ort. It is necessary to adapt proprietary
protocols and to agree on a common standardized skill model for wide-range adop-
tion of hardware components. As an active member of various joint working groups
of OPC UA and VDMA, I am supporting the standardization process of a generic skill
model in OPC UA. The work leading to this thesis intends to contribute to this process
and bring it closer to its goal. The e�ort of implementing device adapters for speci�c
hardware quickly pays o�, as they signi�cantly reduce the required recon�guration time
especially for small lot production.

My experiments show that component integration based on a Wi-Fi connection does not
necessarily slow down the system. Even robot tools can be e�ciently controlled through
stable Wi-Fi connections. The impact of unstable network connection still needs to be
investigated, though.

In general, it can be seen that for more �exible or generic systems, the �exibility leads to
a higher performance impact. Generic robot movement skills move the robot’s tool cen-
ter point from any valid pose to another, but a speci�cally programmed trajectory still
can be more e�cient. Therefore, an important factor to decide on how �exible a man-
ufacturing system should be is the required level of performance and optimization.
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In this last chapter, I am answering the initial research question and give a summary on
the used key methodologies and techniques which I used to provide an answer to the
question. I also take a closer look into the strengths and weaknesses of my presented
approach. This is followed by showing the relevance of my work not only for the indus-
trial automation domain, but all domains where di�erent hardware components need
to be controlled through a generic interface. This thesis concludes with a take home
message and possible future work.

9.1 Thesis Research Question Revisited

The main research question of this thesis is, as presented in Section 1.3, if it is possible
to build up a Plug & Produce industrial robot cell, where system components and robot
tools can be easily exchanged without the need of reprogramming or adapting higher-
level control components.

In current state-of-the-art robot work cells, components, such as robots or grippers,
typically come with di�erent proprietary interfaces, and therefore these components
cannot easily be exchanged with other components providing the same functionality.

I subdivided the main question into multiple subsequent questions, i.e., which commu-
nication protocol is suitable for a Plug & Produce setup, how components and their
functionality can be automatically discovered, how the provided component services
need to be described, and what performance such a generic Plug & Produce system can
achieve.

9.2 Key Methodologies and Techniques

An answer to the �rst question, to which communication protocol is suitable for a Plug
& Produce setup, I developed a testing framework which can be used to evaluate the
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performance of a variety of communication protocols. Here, I evaluate the round-trip
time, throughput, CPU load and other key performance indices on the implementation
of following commonly used protocols: ROS, DDS, MQTT, and OPC UA. The evaluation
shows that OPC UA is very suitable and delivers an exceptionally good performance. Its
main strength is the semantically described information model and standardized proto-
col.

To achieve automatic component discovery, I extend the open-source OPC UA imple-
mentation open62541 (C) and Eclipse Milo (Java) to support the discovery features of
OPC UA and evaluate both implementations against the o�cial reference implementa-
tion. Based on these discovery services, I develop a skill detector class in C++, which
can be easily integrated into the developed components and is used to �nd all available
skills in the network.

A skill is a speci�c functionality which is o�ered by a hardware or software component.
One of the main contributions of this thesis is the development of a generic skill model
which can be used to access skills of components through a well-de�ned interface. This
skill model is directly modeled in OPC UA as set of Companion Speci�cations and uses
the concept of a �nite state machine to represent the current skill state. The concept of
the presented model is not speci�cally bound to OPC UA, as it can also be implemented
by other middlewares which provide a semantic information model. Parametrization
of a skill execution is achieved through the creation of speci�c skill subtypes for spe-
ci�c functionalities. For example, I create speci�c skill types for an industrial robot
interface, which allow controlling any 6-DOF robot thorough the same interface. Even
robots with more than 6-DOF can be controlled through this interfaces as long as the
skill implementation handles the additional null-space con�gurations correspondingly.
Using skill composition, new more complex skills with higher-level functionality can
be formed by re-using existing skills.

My other signi�cant contribution in this thesis is the generic Plug & Produce archi-
tecture based on the generic skill model. The combination of all previously mentioned
concepts results in an architecture which supports on-the-�y exchange of system com-
ponents, and automatic detection of new skills. A generic skill client is used to connect
to, and control such modeled skills. To be able to use proprietary devices in combination
with the presented skill model, the concept of device adapters is introduced.

These concepts are evaluated on di�erent robot work cells, �rst by evaluating the
generic skill concept to control di�erent industrial robots (Universal Robots UR5, Co-
mau e.DO, KUKA iiwa). This evaluation is followed by composing a Pick & Place skill
based on generic robot and gripper skills and evaluating it on two di�erent robot/tool
combinations without the need of changing the client implementation. Finally, the over-
all Plug & Produce architecture is evaluated on a robot work cell consisting of a robot,
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a tool changer and two di�erent tools, all using custom developed device adapters to
implement the generic skill interface for the proprietary interfaces.

9.3 Strengths and Weaknesses of the Presented
Approach

The results of the experiments on di�erent robot work cells show that my presented
generic skill model and Plug & Produce architecture provides a particularly good per-
formance for easy component exchange in the context of Industry 4.0. The detection of
components and their skills takes less than half a second and even performs well when
using Wi-Fi connections. Since OPC UA provides a standardized protocol, feature-rich
semantic annotation of information, and additional services, such as the discovery ser-
vice set, my presented architecture only depends on OPC UA as its single base tech-
nology, but can also be implemented on other middlewares providing the same set of
features. With the de�ned skill model, skills of any Industry 4.0 component can be
abstracted and controlled through the generic interface. This allows to replace used
hardware without any reprogramming of the control applications. The list of compo-
nents is not limited to hardware abstraction, as the generic skill interface can also be
used for the abstraction of algorithms in software components. Using skill composition,
lower-level skills can further be abstracted and new functionality can be o�ered. Since
skill composition is based on lower-level standardized skill interfaces, it is even possible
to introduce the concept of skill stores where manufacturers and system integrators can
o�er or sell additional functionality, which can simply be downloaded and used to add
an additional range of features to a work cell.

A major hurdle, which currently prevents the direct application of my model is the
fact, that nearly every device comes with its own protocol speci�cation. Therefore, cus-
tom device adapters must be developed (as shown in Chapter 8) which implement my
generic skill model and adapt these proprietary protocols. The e�ort of implementing
work-around adapters for speci�c hardware quickly pays o�, as they signi�cantly re-
duce the required recon�guration time especially for small lot production. The current
momentum for Industry 4.0 is remarkably high, and there are many activities around
standardized models and Companion Speci�cations for di�erent types of hardware. By
actively working in those standardization groups I am contributing to the success and
fast adoption of my presented model. However, it will take even more time until a ma-
jority of components support a common Plug & Produce standard.

The requirement to base all skill implementations on a speci�c skill type assumes that
di�erent manufacturers agree on these skill types, and especially the speci�c set of pa-
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rameters associated to a skill type. This might be a di�cult task, as discussions in cur-
rent OPC UA joint working groups show. Nonetheless, it is necessary to �nd a common
ground on which future improvements can be built. My skill model is very �exible and
allows step-by-step extension with speci�c skill types.

9.4 Relevance to the Industrial Automation Domain

The RAMI 4.0, VDMA Guideline for the Introduction of OPC UA (see Section 2.2), and
the Multi-Annual-Roadmap (MAR) [SPARC, 2020] are highly relevant publications in
the industrial automation domain, and clearly underline the importance of e�cient in-
tegration of system components as one of the basic technologies in the current Industry
4.0 movement. This can only be achieved through a standard interface, and a commonly
agreed communication protocol.

Both, RAMI 4.0 and VDMA strongly recommend using the OPC UA framework for
this component integration. Since my thesis and my presented solutions are based on
OPC UA and directly solve the raised question by de�ning a generic skill interface to
access the component services, the results of my thesis are highly relevant not only
for the industrial automation domain, but for any other domain dealing with di�erent
hardware components connected through a network. For example, in the Internet of
Things domain, my skill model can also be applied to adapt proprietary interfaces.

The di�cult task to convince device manufacturers to agree to a standard for speci�c
skill types can be simpli�ed by reusing already existing standards: Using the OPC UA
dictionary reference, it is possible to link external entities, e.g., the corresponding
eCl@ss or VDI 2860 de�nition, to a speci�c skill type and therefore assign a seman-
tic meaning to it which more clients may understand. Still, the speci�c parameters need
to be agreed upon, or automatically inferred by interpreting its semantic annotations.

In the future, skill implementations that comply with standardized skill types can be
distributed through open software libraries or commercial app stores for manufacturing
skills (skill stores). The German Industry 4.0 Index 2019 [Staufen AG, 2019] shows that
especially small- and medium-sized enterprises will bene�t from such a generic Plug &
Play system.
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9.5 Take-home Message & Future work

As shown in this thesis, it is possible to achieve a particularly good performing Plug
& Produce system based on well-de�ned skill interfaces and using generic software
components which control lower-level skills. Skill composition allows forming new
functionalities based on re-using o�ered skills in the system.

One should keep in mind, that the cost of �exibility and con�gurability is performance.
In general, for more �exible or generic systems, a higher performance impact can be
expected. Executing a sequence of generic skills introduces communication and syn-
chronization overhead, while a dedicated low-level implementation achieving the same
task can achieve higher performance. Therefore, an important factor for deciding on
how �exible a manufacturing system should be is the required level of performance and
optimization. Yet, more �exible systems, as the one presented in this thesis may re-
sult in a small performance impact, but signi�cantly reduce the setup and con�guration
time.

I will continue developing additional device adapters to support more hardware, e.g.,
for automatic robot screwdrivers and force-enabled assembly skills such as peg-in-hole.
The skill model can be extended with additional queuing mechanisms, e.g., to automat-
ically execute skills sequentially or in parallel. Instances of a parametrized skill can be
added to such a queue and automatically started by the queue controller. This will then
also support, for example, blending movements of robot arms, or more e�cient execu-
tion of multiple skills. The presented semantic skill model also needs to be extended
to include a semantic description of device properties in a generic way, e.g., available
gripper span, and possible robot payload, which allows more complex composite skills
based on device capabilities. Since all my developed source code is available on GitHub,
new research can be based on my results.

It is my personal goal to continue collaborating with various standardization groups to
integrate the results of this thesis into newly released OPC UA Companion Speci�ca-
tions, and to collaborate with manufacturers to support their development of new Plug
& Produce ready devices.
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A OPC UA Address Space,
Information Model, & Modelling
Notation

One of the strengths of OPC UA is its semantic information model. The information
model is the structural de�nition of the nodes and references, while the address space
is the concrete implementation of an information model and its node instances inside
an OPC UA server.

The information model can be graphically visualized using the o�cial OPC UA mod-
elling notation.

This Appendix gives an overview of the information model concepts and the o�cial
OPC UA modelling notation.

A.1 OPC UA Address Space & Information Model

An information model de�nes the nodes and their structure provided in the server’s
address space. Similar to object-oriented programming, an information model de�nes
types which can be extended and instantiated. In addition, these types can be semanti-
cally enriched by using speci�c reference types to other nodes. Since the address space
is basically a combination of triples (source node, reference, target node) forming a di-
rected graph, it is easily possible to transfer the knowledge to a typical graph-based
triple store as shown in [Perzylo, Profanter, et al., 2019].

The OPC Foundation de�nes a base information model in the o�cial OPC UA speci�-
cation Part 51. It de�nes necessary base object types, reference types, variable nodes
and more, as de�ned in the OPC UA address space and further explained in this sec-

1https://reference.opcfoundation.org/v104/Core/docs/Part5/
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tion. Based on this section I also wrote an online documentation which is publicly
available2.

A.1.1 The Basics

An OPC UA information model is a collection of nodes and their references. Addition-
ally, the information model itself de�nes the node id within that information model.
The OPC UA address space de�nes the following base node types:

• VariableType: Type de�nition for a variable
• Variable: Instance of a variable type
• ObjectType: Type de�nition for an object node
• Object: Instance of an object type
• Method: Speci�c node type indicating a callable method
• ReferenceType: Type de�nition for a reference
• Reference: Instance of a reference type. A reference connects two nodes in a

directed graph.
• DataType: De�nition of data types used for the value of a variable.
• View: Node to collect a subset of nodes in the address space viewable by a client.

A more detailed description on these node types is given in the OPC UA Speci�cation
Part 33.

Every node is identi�ed by a unique node id inside its speci�c nodeset or namespace.
The nodeset is identi�ed by a unique Namespace URI. A node id is only complete if the
id itself, and the namespace URI are indicated.

A.1.2 Namespace URI and Namespace Index

Every information model must have its own unique identi�cation URI. For the base
OPC UA speci�cation, this URI is http://opcfoundation.org/UA/.

Additional Companion Speci�cations or custom speci�cations de�ne their own names-
pace URI, e.g., http://opcfoundation.org/UA/DI/ for the DI speci�cation.
These namespace URIs do not necessarily have to be accesible URLs, as they only iden-
tify the namespace. Still, it is recommended to provide at least the corresponding Node-
Set2 XML de�nitions under the given URL.

2https://opcua.rocks/address-space/
3https://reference.opcfoundation.org/v104/Core/docs/Part3/
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Inside an OPC UA server, the namespace is identi�ed by a namespace index. Index 0 is
always the base nodeset, and index 1 is for any instances of nodes which do not belong
to a speci�c nodeset. Depending on the use-case, a server can load additional nodesets
into its address space. These nodesets typically start at index 2.

After connecting, a client should always read the namespace array of the server to de-
termine which namespaces are currently loaded in the server, and to be able to match
the namespace URI to a namespace index. It is not guaranteed that a server keeps the
same namespace index after restarting it. Therefore, it is crucial to query the namespace
array after every new connection by a client.

A.1.3 Node ID

A node id uniquely identi�es a node inside its node set. This node id and namespace
index combination is only valid for this speci�c server instance. As explained in previous
section, the namespace index may change during di�erent server instances.

Therefore, the node id always exists of two parts, the namespace index, and the id part.
The id can be one of the following types:

• Numeric
• String
• GUID (Global Unique Identi�er)
• Byte String

Most used are the numeric node id, e.g., for automatic generation of ids, and the string
node id for human-readable node ids. Every information model de�nes the node ids for
all the nodes which are included in the model de�nition.

A.1.4 Variables: Properties and Data Variables

A variable is used to represent a value in the OPC UA address space model. OPC UA
Part 3 de�nes two types of Variables: Properties and Data Variables.

Properties are characteristics of Objects, DataVariables and other nodes de�ned by the
server.
One major di�erence to DataVariables is, that Properties do not allow to have child-
properties. In general, a Property should not have any child nodes and should be a leaf
node.
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Also, a Property BrowseName shall be unique in the context of a Node in order to
uniquely identify it.

Data Variables represent speci�c value collections inside an Object. For a �le this could
be the binary string, while a property is used to provide modi�cation times.
Compared to Properties, DataVariables may also have child DataVariables to form a
more complex structure.

A.1.5 Companion Speci�cations

The OPC UA base information model can be extended through Companion Speci�ca-
tions (see Section 4.2.1). A Companion Speci�cation basically extends the core types
with custom object types or de�nes new variable types.

Some example Companion Speci�cations are: OPC UA for Devices (DI), OPC UA for
Robotics (ROB), or OPC UA for PLCopen.

A full list of o�cially released speci�cations can be obtained on the OPC Foundation
webpage4.

An OPC UA server can implement any combination of given Companion Speci�cations
to provide the corresponding hardware data. The loaded Companion Speci�cations are
listed inside the server’s namespace array variable.

In addition to the o�cially released Companion Speci�cations, anyone can create his
own Companion Speci�cation which extends the basic OPC UA node set with custom
types and de�nitions.

A.2 Graphical Modeling Notation

To visualize the information model with all its speci�cs, typical UML models do not
provide enough features. Therefore, the OPC Foundation developed a speci�c OPC UA
Modeling Notation. It is similar to the UML notation with some more extensions shown
in Figure A.1.

This graphical notation can be used to fully visualize the information represented in an
information model and is easier to understand compared to XML �les.

4https://opcfoundation.org/developer-tools/speci�cations-opc-ua-information-models
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Figure A.1: Extended OPC UA modelling notation used for visualizing the information model
throughout this thesis.

There are three main concepts: Node Types, Node Instances, and Node References.

Node types are depicted as blue boxes with a hard shadow. The four di�erent types (Ob-
jectType, VariableType, DataType, ReferenceType) all have their own separate shape. A
speci�c kind of node type is the InterfaceType. It is shown as a yellow box with faded
shadow to indicate its special meaning.

Node instances use the same shape as their corresponding type node, but are depicted
without a shadow and with gray or green background. An object type node may have
mandatory and optional child nodes. Mandatory child nodes must be instantiated by
the object instance and are marked with a solid border line. Optional child nodes can be
instantiated by an object instance, depending on the use-case, and have a dashed border
line.

A reference between two nodes is generally shown with a directed arrow connection.
Since the OPC UA speci�cation de�nes a set of commonly used standard references,
they have separate arrow types. Custom reference types are typically subtyping one of
these reference types. These connecting lines can have optional labels to indicate the
reference subtype.

In Figure 6.2 on page 77 and in Figure 6.3 on page 80 I show some examples how this
graphical notation looks on a speci�c example.
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This chapter contains some excerpts of my custom OPC UA Companion Speci�cations
as ModelDesign �les. Section 6.4.1 describes how these ModelDesign �les are used to
initialize the address space of an OPC UA server. The complete set of ModelDesign �les
is available in my GitHub repository1.

B.1 ModelDesign Excerpt: Skill De�nition

Excerpt of the fortiss DI ModelDesign XML �le2 de�ning the SkillType, which is a sub-
type of the ProgramStateMachineType, and its parameters, as well as transition meth-
ods. This excerpt also includes the de�nition of the ISkillControllerType interface, and
speci�c skill types such as the GraspGripperSkillType and ReleaseGripperSkillType.

1 <?xml version="1.0" encoding="utf−8"?>
2 <ModelDesign xmlns="http://opcfoundation.org/UA/ModelDesign.xsd">
3 <!−− Additional metadata. Full �le see https://github.com/opcua−skills/skills−common/blob/master/deps/robotics_cs/deps/

device/fortissDeviceModel.xml −−>
4 <ObjectType SymbolicName="DEVICE:SkillType" BaseType="OpcUa:ProgramStateMachineType" IsAbstract="true">
5 <Description>A skill type</Description>
6 <Children>
7 <Property SymbolicName="DEVICE:Name" DataType="OpcUa:String" ValueRank="Scalar" ModellingRule="None">
8 <Description>Name of the skill</Description>
9 </Property>

10 <Property SymbolicName="OpcUa:MaxInstanceCount" DataType="OpcUa:UInt32" ValueRank="Scalar"
11 ModellingRule="Mandatory"/>
12 <Object SymbolicName="OpcUa:FinalResultData" TypeDe�nition="OpcUa:BaseObjectType"
13 ModellingRule="Optional"/>
14 <Method SymbolicName="OpcUa:Halt" ModellingRule="Mandatory"/>
15 <Method SymbolicName="OpcUa:Reset" ModellingRule="Mandatory"/>
16 <Method SymbolicName="OpcUa:Resume" ModellingRule="Mandatory"/>
17 <Method SymbolicName="OpcUa:Suspend" ModellingRule="Mandatory"/>
18 <Method SymbolicName="OpcUa:Start" ModellingRule="Mandatory"/>
19 </Children>
20 </ObjectType>
21
22 <ObjectType SymbolicName="DEVICE:GripperSkillType" BaseType="DEVICE:SkillType" IsAbstract="true">
23 <Description>A gripper skill type</Description>
24 </ObjectType>

1https://github.com/opcua-skills/plug-and-produce
2https://github.com/opcua-skills/skills-common/blob/master/deps/robotics_cs/deps/device/

fortissDeviceModel.xml
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25
26 <ObjectType SymbolicName="DEVICE:GraspGripperSkillType" BaseType="DEVICE:GripperSkillType" IsAbstract="false">
27 <BrowseName>GraspGripperSkill</BrowseName>
28 <Description>Close the gripper to its minimum width</Description>
29 <Children>
30 <Object SymbolicName="DI:ParameterSet" ModellingRule="Optional">
31 <Children>
32 <Variable SymbolicName="DEVICE:Force" TypeDe�nition="OpcUa:AnalogItemType" DataType="OpcUa:Double"
33 ModellingRule="Optional" ValueRank="Scalar" AccessLevel="ReadWrite">
34 <Description>The gripper force</Description>
35 </Variable>
36 </Children>
37 </Object>
38 </Children>
39 </ObjectType>
40
41 <ObjectType SymbolicName="DEVICE:ReleaseGripperSkillType" BaseType="DEVICE:GripperSkillType" IsAbstract="false">
42 <BrowseName>ReleaseGripperSkill</BrowseName>
43 <Description>Open the gripper to its maximum width</Description>
44 <Children>
45 <Object SymbolicName="DI:ParameterSet" ModellingRule="Optional">
46 <Children>
47 <Variable SymbolicName="DEVICE:Force" TypeDe�nition="OpcUa:AnalogItemType" DataType="OpcUa:Double"
48 ModellingRule="Optional" ValueRank="Scalar" AccessLevel="ReadWrite">
49 <Description>The gripper force</Description>
50 </Variable>
51 </Children>
52 </Object>
53 </Children>
54 </ObjectType>
55
56 <ObjectType SymbolicName="DEVICE:ISkillControllerType" BaseType="OpcUa:BaseInterfaceType" IsAbstract="true"
57 SupportsEvents="true">
58 <Description>The interface de�nition for a skill controller type. Represents an object which contains skill
59 instances.
60 </Description>
61 <Children>
62 <Property SymbolicName="DEVICE:Name" DataType="OpcUa:LocalizedText" ValueRank="Scalar"
63 ModellingRule="Optional"/>
64 <Object SymbolicName="DEVICE:Skills" TypeDe�nition="OpcUa:BaseObjectType" ModellingRule="Mandatory">
65 <Description>Contains the skills of the Component</Description>
66 <Children>
67 <Object SymbolicName="DEVICE:Skill__No_" TypeDe�nition="DEVICE:SkillType"
68 ModellingRule="OptionalPlaceholder">
69 <BrowseName>Skill_&lt;No&gt;</BrowseName>
70 </Object>
71 </Children>
72 </Object>
73 </Children>
74 </ObjectType>
75 </ModelDesign>

Listing B.1: Excerpt of the fortiss DI ModelDesign XML �le de�ning the SkillType and its
parameters, and speci�c gripper skill types.
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B.2 ModelDesign Excerpt: Robot Skill Types

Excerpt of the fortiss Robotics ModelDesign XML �le3 de�ning the hierarchical structure
and parameters of the LinearMoveSkillType, which is based on the MoveSkillType, and
the interface de�nition of the ICartesianMoveSkillParameterType.

1 <?xml version="1.0" encoding="utf−8"?>
2 <ModelDesign xmlns="http://opcfoundation.org/UA/ModelDesign.xsd">
3 <!−− Additional metadata. Full �le see https://github.com/opcua−skills/skills−common/blob/master/deps/robotics_cs/

fortissRoboticsModel.xml −−>
4
5 <ObjectType SymbolicName="FOR_ROB:MoveSkillType" BaseType="DEVICE:SkillType" IsAbstract="true">
6 <Description>Move a robot using a speci�c tool frame</Description>
7 <Children>
8 <Object SymbolicName="DI:ParameterSet" ModellingRule="Mandatory">
9 <Children>

10 <Variable SymbolicName="FOR_ROB:ToolFrame" TypeDe�nition="OpcUa:BaseDataVariableType" DataType="OpcUa:
String"

11 ModellingRule="Mandatory" ValueRank="Scalar" AccessLevel="ReadWrite">
12 <Description>The name of the tool frame to be used for the motion</Description>
13 </Variable>
14 </Children>
15 </Object>
16 </Children>
17 </ObjectType>
18
19
20 <ObjectType SymbolicName="FOR_ROB:LinearMoveSkillType" BaseType="FOR_ROB:MoveSkillType" IsAbstract="true">
21 <Description>Move a robot using a speci�c tool in a linear motion</Description>
22 <Children>
23 <Object SymbolicName="DI:ParameterSet" ModellingRule="Mandatory">
24 <Children>
25 <Variable SymbolicName="FOR_ROB:MaxAcceleration" TypeDe�nition="OpcUa:AnalogUnitType"
26 DataType="OpcUa:Double" ModellingRule="Mandatory" ValueRank="Array"
27 ArrayDimensions="6" AccessLevel="ReadWrite">
28 <Description>Maximum acceleration of the robot should move. First three parameters are for x,y,z in m/s^2.
29 The next three for orientation in rad/s^2
30 </Description>
31 </Variable>
32 <Variable SymbolicName="FOR_ROB:MaxVelocity" TypeDe�nition="OpcUa:AnalogUnitType"
33 DataType="OpcUa:Double" ModellingRule="Mandatory" ValueRank="Array"
34 ArrayDimensions="6" AccessLevel="ReadWrite">
35 <Description>Maximum velocity of the robot should move. First three parameters are for x,y,z in m/s. The
36 next three for orientation in rad/s
37 </Description>
38 </Variable>
39 </Children>
40 </Object>
41 </Children>
42 </ObjectType>
43
44 <!−− Additional ObjectType de�nitions, e.g., PtpMoveSkillType, IJointMoveSkillParameterType, JointLinearMoveSkillType, ...

−−>
45
46 <ObjectType SymbolicName="FOR_ROB:ICartesianMoveSkillParameterType" BaseType="OpcUa:BaseInterfaceType"
47 IsAbstract="true"
48 SupportsEvents="true">
49 <Description>The interface de�nition of a cartesian move skill.

3https://github.com/opcua-skills/skills-common/blob/master/deps/robotics_cs/fortissRoboticsModel.
xml
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50 </Description>
51 <Children>
52 <Object SymbolicName="OpcUa:FinalResultData" ModellingRule="Mandatory">
53 <Children>
54 <Variable SymbolicName="FOR_ROB:ForcesExceeded" TypeDe�nition="OpcUa:ThreeDVectorType"
55 ModellingRule="Mandatory" ValueRank="Scalar" AccessLevel="Read">
56 <Description>The amount by which the force limits were exceeded</Description>
57 </Variable>
58 <Variable SymbolicName="FOR_ROB:ForcesMax" TypeDe�nition="OpcUa:ThreeDVectorType"
59 ModellingRule="Mandatory" ValueRank="Scalar" AccessLevel="Read">
60 <Description>Maximum force measured during execution of the skill</Description>
61 </Variable>
62 </Children>
63 </Object>
64 <Object SymbolicName="DI:ParameterSet" ModellingRule="Mandatory">
65 <Children>
66 <Variable SymbolicName="FOR_ROB:TargetPosition" TypeDe�nition="OpcUa:ThreeDFrameType"
67 DataType="OpcUa:ThreeDFrame" ModellingRule="Mandatory" ValueRank="Scalar"
68 AccessLevel="ReadWrite">
69 <Description>Absolute goal position in cartesian space</Description>
70 </Variable>
71 <Variable SymbolicName="FOR_ROB:AxisBounds" TypeDe�nition="OpcUa:BaseDataVariableType"
72 DataType="OpcUa:Range" ModellingRule="Mandatory" ValueRank="Array"
73 AccessLevel="ReadWrite">
74 <Description>De�ne a range within which the joints should end up in. Used to limit the solutions for the
75 inverse kinematics calculation.
76 </Description>
77 </Variable>
78 </Children>
79 </Object>
80 </Children>
81 </ObjectType>
82
83 <ObjectType SymbolicName="FOR_ROB:FortissMotionDeviceType" BaseType="ROB:MotionDeviceType" IsAbstract="false">
84 <!−− Additional parameters for MotionDevice, e.g., �ange load. −−>
85 </ObjectType>
86
87 </ModelDesign>

Listing B.2: Excerpt of the fortiss Robotics ModelDesign XML �le de�ning the basic robot move
skills and their parameters.

B.3 ModelDesign Excerpt: Skill Instantiation
Example for a Universal Robot

Excerpt of the fortiss UR ModelDesign XML �le4 which is creating a speci�c instance
of a MotionDeviceSystemType, implementing the ISkillControllerType interface, and
instantiating di�erent robot move skills inside the Skills node on the example of a Uni-
versal Robots UR5.

4https://github.com/opcua-skills/plug-and-produce/blob/master/robot/universal-robots/opcua/
universalRobotsModel.xml
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1 <?xml version="1.0" encoding="utf−8"?>
2 <ModelDesign xmlns="http://opcfoundation.org/UA/ModelDesign.xsd">
3 <!−− Additional metadata. Full �le see https://github.com/opcua−skills/plug−and−produce/blob/master/robot/universal−

robots/opcua/universalRobotsModel.xml −−>
4
5 <Object SymbolicName="ROB_UR:UrMotionSystem" TypeDe�nition="ROB:MotionDeviceSystemType">
6 <Description>The UR Robot</Description>
7 <References>
8 <Reference IsInverse="true">
9 <ReferenceType>ua:Organizes</ReferenceType>

10 <TargetId>DI:DeviceSet</TargetId>
11 </Reference>
12 </References>
13 <Children>
14 <Object SymbolicName="ROB:MotionDevices" TypeDe�nition="ua:BaseObjectType" ModellingRule="Mandatory">
15 <Children>
16 <Object SymbolicName="ROB_UR:UrRobot" TypeDe�nition="FOR_ROB:FortissMotionDeviceType"
17 ModellingRule="Mandatory">
18 <BrowseName>UR Robot</BrowseName>
19 <Children>
20 <Object SymbolicName="ROB:Axes" TypeDe�nition="ua:BaseObjectType" ModellingRule="Mandatory">
21 <Description>Contains the axis set of the motion device.</Description>
22 <Children>
23 <Object SymbolicName="ROB:Axis_1" TypeDe�nition="ROB:AxisType" ModellingRule="Mandatory">
24 <Description>The bottom−most axis</Description>
25 <Children>
26 <Property SymbolicName="ROB:Name" DataType="ua:String" ValueRank="Scalar"
27 ModellingRule="Optional">
28 <Description>Joint0</Description>
29 </Property>
30 <Property SymbolicName="ROB:MotionPro�le" DataType="ROB:AxisMotionPro�leEnumeration"
31 ValueRank="Scalar" ModellingRule="Mandatory">
32 <Description>The kind of axis motion as de�ned with the AxisMotionPro�leEnumeration.
33 </Description>
34 <DefaultValue>
35 <!−− 1 = ROTARY −−>
36 <uax:UInt16>1</uax:UInt16>
37 </DefaultValue>
38 </Property>
39 <Object SymbolicName="DI:ParameterSet" ModellingRule="Mandatory">
40 <Children>
41 <Variable SymbolicName="ROB:ActualPosition" TypeDe�nition="ua:AnalogUnitType"
42 DataType="ua:Double" ModellingRule="Mandatory">
43 <Description>The axis position inclusive Unit and RangeOfMotion.</Description>
44 </Variable>
45 <Variable SymbolicName="ROB:ActualSpeed" TypeDe�nition="ua:AnalogItemType"
46 DataType="ua:Double" ModellingRule="Mandatory">
47 <Description>The axis speed on load side (after gear/spindle) inclusive Unit.</Description>
48 </Variable>
49 <Variable SymbolicName="ROB_UR:ActualCurrent" TypeDe�nition="ua:BaseDataVariableType"
50 DataType="ua:Double" ModellingRule="Mandatory">
51 <Description>Actual joint current</Description>
52 </Variable>
53 <Variable SymbolicName="ROB_UR:Temperature" TypeDe�nition="ua:BaseDataVariableType"
54 DataType="ua:Double" ModellingRule="Mandatory">
55 <Description>Joint Temperature</Description>
56 </Variable>
57 </Children>
58 </Object>
59 </Children>
60 </Object>
61 <!−− Additional children de�ning remaining axes −−>
62 <Object SymbolicName="ROB:Axis_2" TypeDe�nition="ROB:AxisType" ModellingRule="Mandatory"/>
63 <Object SymbolicName="ROB:Axis_3" TypeDe�nition="ROB:AxisType" ModellingRule="Mandatory"/>
64 <Object SymbolicName="ROB:Axis_4" TypeDe�nition="ROB:AxisType" ModellingRule="Mandatory"/>
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65 <Object SymbolicName="ROB:Axis_5" TypeDe�nition="ROB:AxisType" ModellingRule="Mandatory"/>
66 <Object SymbolicName="ROB:Axis_6" TypeDe�nition="ROB:AxisType" ModellingRule="Mandatory"/>
67 </Children>
68 </Object>
69 </Children>
70 </Object>
71 </Children>
72 </Object>
73 <Object SymbolicName="ROB:Controllers" TypeDe�nition="ua:BaseObjectType" ModellingRule="Mandatory">
74 <Children>
75 <Object SymbolicName="ROB_UR:UrController" TypeDe�nition="ROB:ControllerType" ModellingRule="Mandatory">
76 <BrowseName>UR Controller</BrowseName>
77 <Children>
78 <Object SymbolicName="DEVICE:Skills" TypeDe�nition="ua:BaseObjectType" ModellingRule="Mandatory">
79 <Children>
80 <Object SymbolicName="ROB_UR:JointLinearMoveSkill" TypeDe�nition="FOR_ROB:

JointLinearMoveSkillType"
81 ModellingRule="Mandatory">
82 </Object>
83 <Object SymbolicName="ROB_UR:JointPtpMoveSkill" TypeDe�nition="FOR_ROB:JointPtpMoveSkillType"
84 ModellingRule="Mandatory">
85 </Object>
86 <Object SymbolicName="ROB_UR:CartesianLinearMoveSkill"
87 TypeDe�nition="FOR_ROB:CartesianLinearMoveSkillType" ModellingRule="Mandatory">
88 </Object>
89 <Object SymbolicName="ROB_UR:CartesianPtpMoveSkill" TypeDe�nition="FOR_ROB:

CartesianPtpMoveSkillType"
90 ModellingRule="Mandatory">
91 </Object>
92 </Children>
93 </Object>
94 </Children>
95 <References>
96 <Reference IsInverse="false">
97 <ReferenceType>ua:HasInterface</ReferenceType>
98 <TargetId>DEVICE:ISkillControllerType</TargetId>
99 </Reference>

100 </References>
101 </Object>
102 </Children>
103 </Object>
104 </Children>
105 </Object>
106 </ModelDesign>

Listing B.3: Excerpt of the fortiss UR ModelDesign XML �le de�ning a speci�c robot instance
and its skills on the example of a Universal Robots UR5.
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