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Abstract
The paper dealswith an inverse problemof reconstructingmatrices from theirmarginal
sums. More precisely, we are interested in the existence of r × s matrices for which
only the following information is available: The entries belong to known subsets of
c distinguishable abelian groups, and the row and column sums of all entries from
each group are given. This generalizes Ryser’s classical problem of characterizing
the set of all 0–1-matrices with given row and column sums and is a basic problem
in (polyatomic) discrete tomography. We show that the problem is closely related
to packings of trees in bipartite graphs, prove consistency results, give algorithms
and determine its complexity. In particular, we find a somewhat unusual complexity
behavior: the problem is hard for “small” but easy for “large” matrices.
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1 Introduction

The present paper deals with the inverse problem of reconstructing matrices from
their marginal sums. The task of understanding the combinatorial structure of all 0–1-
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matriceswith given rowand column sumswas addressedbyRyser [17] already in 1960;
see also [3]. It is closely related to degree sequences of graphs, and—by identifying
the 1-entries of such amatrix with point sets inR2 orZ2—can, in retrospective, also be
viewed as an anticipation of the field of discrete tomography. Since then, a rich theory
has been developed which is centered around the task of determining (theoretically
and algorithmically) discrete structures by information about their interaction with
certain query sets. For surveys see [1,10,12], and other sources quoted there. More
than half a century after Ryser’s work discrete tomography is a well-established field
with seminal results reaching into combinatorics, geometry, geometry of numbers,
commutative algebra, optimization and other fields.

Its many practical applications inmaterials science, physics, and various other areas
(see e.g. [1]) have fueled studies in dimensions higher than 2, for X-rays in more than
two directions, for other query sets—most notably hyperplanes, leading to the discrete
Radon transform—with other image domains (modelling e.g. grey values in images)
and for objects which are composed of different types of elements, the polyatomic or
colored case.

As Ryser [17] showed, the classical binary monoatomic case for 2 directions can be
solved easily and in polynomial time. The problem becomesNP-hard, however, when
more than two directions are involved [8], see also [4]. The corresponding integer case
where the entries of the unknown matrix are in Z can be modeled via systems of linear
Diophantine equations and can therefore also be solved in polynomial time for any
fixed number of directions.

The situation changes if more than one class of atoms (often called colors) is
present. Then, the binary case becomes NP-hard even when X-ray information about
the unknown matrix is given only for the rows and columns, i.e., in the two coordinate
directions [6].

As we will show, polyatomic tomography overZ depicts a different behavior, being
NP-hard for matrices with a small number of rows (or columns) but easy for matrices
of larger size. It will turn out that the problem is intimately related to packings of trees
in (bipartite) graphs, whose study was initiated by Tutte [20] and Nash-Williams [15].
This connection will be used to determine (even in the general case, i.e., for matrix
entries restricted to distinguishable but otherwise arbitrary abelian groups) when the
reconstruction problem from row and column sums can be solved for a given number
of colors. Let us further remark that the problemwe are considering can also be viewed
as a special variant of the multi-commodity flow problem which therefore also depicts
the same (possibly unexpected) complexity behavior.

The present paper is organized as follows. In Sect. 2 we will introduce the problems
formally and state the main results. Section 3 will show how the polyatomic problem
relates to tree packings, prove our main existence theorem, and the efficiency part
of Theorem 2.2. In Sect. 4 we will deal with the computational complexity of the
problem and prove the hardness part of Theorem 2.2. The final Sect. 5 will provide an
interpretation as a multi-commodity flow problem, make some concluding remarks
and state some open problems.
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2 Notation andMain Results

We will now introduce the relevant notion in great enough generality to be able to
formulate our main results and also place them into the perspective of, partly classical,
known results.

Throughout the paper N, Z and R denote the sets of positive integers, integers and
reals, respectively, and let N0 = N ∪ {0} and [n] = { j ∈ N : j ≤ n} for each n ∈ N.

Further, let c, r , s ∈ N, and let G1, . . . ,Gc be abelian groups (written additively).
(The groups need not be different but are to be distinguished, i.e., should be thought
of as a pair consisting of an abelian group and an index from [c], sometimes referred
to as its color.) In the following, we are interested in (colored) r × s matrices M =
(
μ

(�i j )

i j

)
i∈[r ], j∈[s] with entriesμ

(�i j )

i j ∈ G�i j for some �i j ∈ [c]with prescribed row and
column sums for each of the groups G1, . . . ,Gc.

More precisely, suppose that, for � ∈ [c], we are given R(�) = (
ρ

(�)
1 , . . . , ρ

(�)
r

) ∈
G

r
�, and S(�) = (

σ
(�)
1 , . . . , σ

(�)
s

) ∈ G
s
�. Then we want to find a matrix M = (

μ
(�i j )

i j

)

such that

s∑

j=1
�i j=�

μ
(�i j )

i j = ρ
(�)
i for i ∈ [r ], � ∈ [c] and

r∑

i=1
�i j=�

μ
(�i j )

i j = σ
(�)
j for j ∈ [s], � ∈ [c].

(2.1)

Let us point out again that each element μ
(�i j )

i j of the matrix M carries the information
which of the c groups it belongs to—specified by (its color) �i j . As usual, a sum over
the empty set is, by convention, the neutral element of the underlying group.

Clearly, a necessary condition for such a matrix M to exist is that each (R(�), S(�))

is balanced, i.e.,

r∑

i=1

ρ
(�)
i =

s∑

j=1

σ
(�)
j for � ∈ [c]. (2.2)

Using the notation

R = (R(1), . . . , R(c)), S = (S(1), . . . , S(c)), G = (G1, . . . ,Gc)

we say that our row and column sum data (R,S) is balanced (for G ) if (2.2) holds for
each � ∈ [c]. Given a balanced pair (R,S), letAc

G (R,S) denote the set of all colored
matrices in

(⋃
�∈[c] G�

)
r×s satisfying (2.1).

In the followingwewill focus on the questionwhenAc
G (R,S) is nonempty. In some

cases, the elements of M ∈ Ac
G (R,S) will be further restricted to subsets W (�) ⊂ G�

for each � ∈ [c]. Setting W = (W (1), . . . ,W (c)), let for given c,G ,W the subset
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of Ac
G (R,S) of all matrices

(
μ

(�i j )

i j

)
i∈[r ], j∈[s] whose entries are restricted to W , i.e.,

μ
(�i j )

i j ∈ W (�i j ) for each (i, j) ∈ [r ] × [s], be denoted by Ac
G ,W (R,S). Then we are

dealing with the problem

ColRysc(G ,W )

Given r , s and correspondingbalanced (R,S), does there existM ∈ Ac
G ,W (R,S)?

Let us remark that—as the notation indicates—c,G andW are (arbitrary but) fixed
whenever we refer to the problem ColRysc(G ,W ), while the dimensions r and s and
the parameters in (R,S) specify the different instances. Note that we may assume
without loss of generality that 2 ≤ r ≤ s.

The name ColRysc(G ,W ) is chosen in reverence for Ryser, as it describes a
colored version of his original “monoatomic” problem studied in [17]. In fact, for
c = 1, G = (Z), W = ({0, 1}), ColRysc(G ,W ) asks for a 0–1 matrix with given
row and column sums (computed inZ). As it is well known, this and the corresponding
reconstruction problem to compute such a matrix can be solved in polynomial time,
[17]; see also [3] or [12]. Let us mention that the monoatomic case has also been
studied over rings other than Z; see [2] and the papers quoted there.

Further, for c = 1,G = (Z),W = (Z), each instance ofColRysc(G ,W ) gives rise
to a system of linear Diophantine equations and can therefore be solved efficiently.
Even if X-ray information in more than two directions is given, the problem can
be formulated as a system of linear Diophantine equations and still be solved in
polynomial time; see e.g. [14, Sect. 7].

On the other hand, whenG� = Z andW� = {0, 1} for all � ∈ [c], ColRysc(G ,W )

constitutes the “classical” polyatomic case where a planar hybrid material is only
accessible by X-ray information (at atomic scale) in the standard coordinate directions
for each of the c types of different materials. Let us stress the fact that the positions of
the colors, i.e., the assignments (i, j) �→ �i j , are by no means fixed “externally” but
are part of the solution. ThereforeColRysc(G ,W ) does not simply decompose into c
monoatomic problems with restricted support which can be solved independently. In
fact, as it is well known, ColRysc(G ,W ) isNP-complete, for every c ≥ 2, [6]. (Note
that [6] regards the neutral elements of all groups together as an additional color.)

The present paper addresses existence issues and the question of efficient com-
putability for the general problem ColRysc(G ,W ). In particular, we give the
following existence theorem for general G .

Theorem 2.1 Let c, r , s ∈ N with 2 ≤ r ≤ s and

c ≤
⌊ rs

r + s − 1

⌋
.

Then, for any corresponding pair (R,S) which is balanced over G , there exists a
matrix M ∈ Ac

G (R,S).

Note that the condition in Theorem 2.1 is, in particular, satisfied when

r ≥ c + 1 and s ≥ (r − 1)2
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or

r ≥ 2c.

Thismeans that the answer to any “large” instance ofColRysc(G ,G ) is always “yes”.
The proof of Theorem 2.1 will be given in Sect. 3. There, we will also discuss natural
conditions under which the given condition is sharp; see Theorem 3.8.

The proof of Theorem 2.1 utilizes packings of spanning trees in complete bipartite
graphs and will even show that a matrix in Ac

G (R,S) can actually be computed
efficiently, whenever the group operations are algorithmically accessible. Since we do
notwant to overload the paperwith technical details, wewill formulate our algorithmic
results only for the integer case, i.e., forG = Z = (Z, . . . ,Z)where we can naturally
employ the standard binary Turing machine model.

The following results deal with the complexity of ColRysc(Z ,Z ) and ColRysc
(Z ,N0) where N0 = (N0, . . . ,N0). While ColRysc(Z ,Z ) is in P for r ≥ c + 1
it turns out, in particular, that this problem is NP-hard in general.

Theorem 2.2 Let c ∈ N. When all instances are restricted to those for which c+1 ≤
r ≤ s, then ColRysc(Z ,Z ) can be solved in polynomial time.

For any c ∈ N\{1}, ColRysc(Z ,W ) is NP-complete both for W = Z and
W = N0. TheNP-hardness persists even if all instances are restricted to those where
the number of rows is fixed to some r∗ ∈ {2, . . . , c}. Moreover, when c ∈ N\{1},
ColRysc(Z ,N0) is NP-complete for any fixed r∗ ≥ c + 1.

The first part of Theorem 2.2 will follow from the (more general) proof given in
Sect. 3 while the hardness result will be proved in Sect. 4.

Let us remark that the dramatic drop in complexity of ColRysc(Z ,Z ) from
r∗ ≤ c to r∗ ≥ c + 1 may be phrased intuitively as “Small instances are hard while
large instances are easy.” Of course, in the hardness statement only r∗ is fixed but s
is still part of the input. Anyway it is more common that problems do not get easier if
previously fixed parameters become part of the input.

3 Tomography and Spanning Trees

In this section wewill first consider themonoatomic case, i.e., c = 1, for which we can
use a simplified notation. LetG be an abelian group, 0G its neutral element, G = (G),
r , s ∈ N with 2 ≤ r ≤ s, R = (ρ1, . . . , ρr ) ∈ G

r , S = (σ1, . . . , σs) ∈ G
s , R = (R),

and S = (S). As before, we assume that (R,S) is balanced, which simply means that
(R, S) is balanced. Further, Ac

G (R,S) will be denoted by AG(R, S).
We show how the existence of a matrix M ∈ AG(R, S) is related to the existence of

spanning trees in complete bipartite graphs. As it is standard fare, (R, S) is naturally
associated with a vertex weighted complete bipartite graph as follows.

Let A = {a1, . . . , ar }, B = {b1, . . . , bs} denote the bipartition of the vertex set of
Kr ,s , and regard, for i ∈ [r ] and j ∈ [s], the values ρi , σ j as weights associated with
the vertices ai and b j , respectively. We speak of Kr ,s as (R, S)-weighted.
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Now, for i ∈ [r ] and j ∈ [s], each edge ei j of Kr ,s corresponds to the position
(i, j) of the desired matrix M . Hence we are interested in assigning weightsμi j to the
edges whose row and column sums add up to R and S, respectively. Note that there is
some connection to the 1–2–3-conjecture; see e.g. [19] and the papers quoted there.

Actually, for later applications to the polyatomic case, we are interested in sparsity,
i.e., in assigning 0G to as many edges of Kr ,s as possible. Let G = (V , E) be a
spanning subgraph of Kr ,s , i.e., V = A∪ B. The graph G naturally inherits the vertex
weights (R, S), and is called compensable if there exist edge weights ωi j ∈ G such
that

∑

j∈[s]
ei j∈E

ωi j = ρi , i ∈ [r ], (3.1)

∑

i∈[r ]
ei j∈E

ωi j = σ j , j ∈ [s]. (3.2)

Edge weights satisfying (3.1) and (3.2) will be called compensating.
Recall that, by our general assumption, (R, S) is balanced, hence the sum of the

weights of the vertices in A coincides with that of B, i.e., the trivial condition for
compensability is satisfied. The following observation is obvious, but crucial.

Remark 3.1 LetG = (V , E) be a spanning subgraph of the (R, S)-weighted complete
bipartite graph Kr ,s . Then edge weights ωi j ∈ G for ei j ∈ E are compensating if and
only if the matrix M = (μi j ) with entries

μi j =
{

ωi j if ei j ∈ E,

0G else,

for i ∈ [r ] and j ∈ [s] is in AG(R, S).

Next we show that actually each arbitrary spanning tree leads to a matrix in
AG(R, S).

Theorem 3.2 Let Kr ,s be (R, S)-weighted. Then any spanning tree T in Kr ,s is com-
pensable.

Proof We select a vertex of T as root, say, without loss of generality, a1, and arrange
the other vertices of T in layers L0, . . . , Lq according to their edge distance to a1.
Since Kr ,s is bipartite, the vertices of each layer belong either all to A or all to B
and consecutive layers contain vertices of different sets of this bipartition. Of course,
L0 = {a1}.

Note that for each p ∈ {1, . . . , q} and each vertex v in L p there is a unique edge
that joins v to a vertex from L p−1; it will in the sequel be denoted by ev . Further, let
Ev denote the subset of the edge set ET of T of those edges which join v to a vertex
from L p+1.
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Fig. 1 (a–d) Illustration of the algorithm in the proof of Theorem 3.2 for G = Z. (a) The weights of the
vertices are given below the nodes in the boxes. (b–d) Successively, the edges connected to the previously
satisfied layer are set to their final value (unframed). (e) The same procedure is described as a successive
construction of an integer 3× 4 matrix with the prescr ibed row and column sums. Positions that are never
touched are marked with “×”. The other positions correspond to the edges of the tree and are updated step
by step

We will now assign appropriate edge weights ω(e) for e ∈ ET layer by layer. For
an illustration see Fig. 1.

To simplify the notation, τ(v) will denote the given weight of v, i.e., τ(v) = ρi for
v = ai ∈ A and τ(v) = σ j for v = b j ∈ B. In the following, we say that the vertex v

is satisfied if, for v = ai ∈ A, the condition (3.1) and, for v = b j ∈ B, the condition
(3.2) is satisfied.

We start with the vertices of Lq . Since each such vertex v is a leaf of T we can set
ω(ev) = τ(v), and thus satisfy v.

Now let p ∈ [q − 1], Pp = L p+1 ∪ · · · ∪ Lq and suppose, edge weights have been
chosen for all edges in {ev : v ∈ Pp} in such a way that all the vertices in Pp are
satisfied. For v in L p we now choose

ω(ev) = τ(v) −
∑

e∈Ev

ω(e),

which, consequently, satisfies v.
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Equivalently, the construction can be described in terms of the weights τ(v) for
v in L p. Let Tv be the vertex set of the connected component of the subgraph of T
induced by {v} ∪ Pp which contains v. Now, suppose that v ∈ A. Then

ω(ev) =
∑

w∈Tv∩A

τ(w) −
∑

w∈Tv∩B

τ(w). (3.3)

For v ∈ B, the roles of A and B in (3.3) are reversed.
By the successive construction all vertices of V \{a1} are satisfied. Moreover,

since (R, S) is balanced, (3.3) yields

∑

v∈L1

ω(ev) =
∑

w∈B
τ(w) −

∑

w∈A\{a1}
τ(w) =

s∑

j=1

σ j −
r∑

i=2

ρi = ρ1.

So a1 is also satisfied, which completes the proof. ��
Note that, apart from simple computations in T , the construction only involves

operations in G. Hence, if these are algorithmically accessible, the corresponding
matrix can be constructed efficiently. Since we do not want to go into additional
technical details we formulate the result in the following corollary only for Z, where
we can apply the standard binary Turing machine model.

Corollary 3.3 LetG = Z. Given an (R, S)-weighted Kr ,s , and a spanning tree in Kr ,s ,
compensating edge weights can be computed in polynomial time.

Next we turn to the case of an arbitrary number c of colors. As Remark 3.1 and
Theorem 3.2 suggest we will now aim at packing c spanning trees into Kr ,s . Let us
remark that the study of packings of subgraphs into graphs goes back a long way;
e.g. [15,20] for spanning trees, [11] for cliques and stable sets, and [15,18] for other
packing problems with a particular view towards combinatorial optimization.

AgraphG admits a packing of c spanning trees if there exist (at least) c edge-disjoint
spanning trees in G. Equivalently, we say that c spanning trees can be packed into G.
Let stp(G) denote G’s spanning tree packing number, i.e., the maximal number of
spanning trees which can be packed into G. Initiated by work of Tutte [20] and Nash-
Williams [15], stp(G) has been studied extensively. Of course, we are particularly
interested in the spanning tree packing number for complete bipartite graphs. Note
first that, as Kr ,s has rs edges while each spanning tree in Kr ,s has r + s − 1 edges,
rs/(r + s − 1)� is a trivial upper bound for stp(Kr ,s). As it turns out, this bound is
tight, [16, Sect. 3.4]; see also the references cited there.

Proposition 3.4 For r , s ∈ N with 2 ≤ r ≤ s,

stp(Kr ,s) =
⌊

rs

r + s − 1

⌋
. (3.4)

It is now easy to complete the proof of Theorem 2.1.
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Proof of Theorem 2.1 Let r , s ∈ Nwith 2 ≤ r ≤ s such that c ≤ rs/(r + s − 1)� and
let (R,S) be balanced over G . Further, let T (1), . . . , T (c) be edge-disjoint spanning
trees according to Proposition 3.4. If we associate, for � ∈ [c], with T (�) the vertex
weights (R(�), S(�)) then T (�) is compensable by Theorem 3.2. Finally, by Remark 3.1
any compensating edge weighting directly translates to an entry μ

(�)
i j ∈ G� of the

desired matrix M satisfying (2.1). Note that the nonzero elements are restricted to the
positions (i, j) whose corresponding edges are in T (�). Finally we fill all entries of M
which do not correspond to an edge of any of the c trees with neutral elements 0G�

of
any of the groups G�. Then M ∈ Ac

G (R,S). ��

As in the monoatomic case, the efficient computation of such a matrix M ∈
Ac
G (R,S) relies on the appropriate algorithmic accessibility of the group operations.

In addition, we need to be able to compute a maximum tree packing in Kr ,s . This
can be done efficiently even for general graphs; see [18, Sect. 51.5a] for a complexity
survey with references.

Proposition 3.5 For each graph G, stp(G) edge-disjoint spanning trees in G can be
computed in polynomial time.

With the aid ofCorollary 3.3 andProposition 3.5, the proof of Theorem2.1 therefore
yields, in particular, the following corollary.

Corollary 3.6 When all instances are restricted to those for which 2 ≤ r ≤ s and
c ≤ rs/(r + s − 1)�, then ColRysc(Z ,Z ) can be solved in polynomial time.

This corollary allows us to prove the efficiency part of Theorem 2.2. Recall that,
by the remark after Theorem 2.1, Corollary 3.6 covers already the cases that r ≥
c + 1, s ≥ (r − 1)2 and r ≥ 2c. So we are left with the situation that r and s are
bounded by constants, and we can use the fact that ColRysc(Z ,Z ) becomes easy
for fixed r and s. Indeed, we can simply enumerate all (constantly many) partitions
P1, . . . , Pc of [r ] × [s] (where empty sets are allowed) such that the matrix positions
in P� contain only elements of G�. Then, for � ∈ [c], we solve in polynomial time
the c systems of linear Diophantine equations in the variables ξ

(�)
i j for (i, j) ∈ P� that

encode the row and column sum conditions. This will produce integer solutions for
each color or decide infeasibility in polynomial time.

Let us close this section with a result on the tightness of the bound c ≤
rs/(r + s − 1)� in Theorem 2.1. While, by Proposition 3.4, the right hand side is
tight for stp(Kr ,s), its tightness in Theorem 2.1 actually depends on the underlying
groups. For instance, if all groups are trivial, i.e.,G� = ({0G�

},+), it follows trivially
from the convention that sums over the empty set yield the neutral element of the
underlying group, that solutions exist for any number c.

As it turns out, however, the bound in Theorem 2.1 is tight if the involved groups are
“arithmetically rich enough”. To be more precise, let us call a group G arithmetically
rich, if for each r , s with 2 ≤ r ≤ s there exist R ∈ (G\{0G})r , S ∈ (G\{0G})s such
that (R, S) is balanced and for each I ⊂ [r ], J ⊂ [s] with 1 ≤ |I | ≤ r − 1 and
1 ≤ |J | ≤ s − 1,
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∑

i∈I
ρi �=

∑

j∈J

σ j .

Such a pair (R, S) will be called rich.

Remark 3.7 Z is arithmetically rich.

Proof For r = s = 2 choose (R, S) = ((2, 2), (1, 3)). Then, of course, (R, S)

is balanced and rich. So let 2 ≤ r and 2 < s and take R = (1, . . . , 1) ∈ Z
r ,

S = (r , . . . , r , (2 − s)r) ∈ Z
s . Then (R, S) is balanced. Also, for I ⊂ [r ], J ⊂ [s]

with 1 ≤ |I | ≤ r − 1 and 1 ≤ |J | ≤ s − 1, we have 0 <
∑

i∈I ρi < r while∑
j∈J σ j is a multiple of r . Thus

∑
i∈I ρi �= ∑

j∈J σ j , i.e., (R, S) is rich; hence Z is
arithmetically rich. ��

As it turns out, the bound in Theorem 2.1 is tight, whenever all involved groups are
arithmetically rich.

Theorem 3.8 Let c ≥ 2 and 2 ≤ r ≤ s, let all groups in G be arithmetically rich, and
suppose Ac

G (R,S) �= ∅ for all balanced (R,S). Then c ≤ rs/(r + s − 1)�.
Proof For each � ∈ [c], let (R(�), S(�)) be rich. Let M ∈ Ac

G (R,S) and, for each
� ∈ [c], let P� ⊂ [r ] × [s] denote the positions of M carrying elements from G�

different than 0G�
. Note that each row and column of M must contain at least one

such position. Let H� be the graph with node set [r ] × [s] and edges between any two
nodes in P� which differ only in one coordinate. Suppose that H� was not connected,
and let I� ⊂ [r ], J� ⊂ [s] be inclusion minimal such that one connected component
of H� lies in I × J . But then, of course, 1 ≤ |I�| ≤ r − 1, 1 ≤ |J�| ≤ s − 1, and

∑

i∈I�
ρ

(�)
i =

∑

j∈J�

σ
(�)
j ,

contradicting the choice of (R,S). Hence H� is connected. Therefore the associated
subgraph of Kr ,s induced by the edges that correspond to P� contains a spanning tree.
Hence M leads to a packing of spanning trees Kr ,s , and thus c ≤ stp(Kr ,s). ��

4 Computational Complexity

Let us now turn to the hardness results asserted in Theorem 2.2. First note that for
ColRysc(Z ,Z ) and ColRysc(Z ,N0) membership in NP is clear. To prove NP-
hardness we will use a transformation from

Strong Partition

Given n ∈ N and ν1, . . . , νn ∈ N such that, both, n and ν = ∑n
i=1 νi are even;

does there exist N ⊂ [n] such that

|N | = n

2
and

∑

i∈N
νi =

∑

i∈[n]\N
νi?
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(a)

S (1)

R (1)

S (2)

R (2)

S (3)

R (3)

S (4)

R (4)

1 1 2 3 4 7
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 0 0 0

9
9
0

3
3
0

0
0
6

0
0
0

(b) 2 3 4
1 1 7

1 1 1
1 1 1

1 1 1 1 1 1

Fig. 2 Construction of the transformation for I = (6; 1, 1, 2, 3, 4, 7). I is a yes-instance of Strong
Partition since, for N = {3, 4, 5}, we have ∑

i∈N νi = ∑
i∈[n]\N νi . (a) Corresponding instance J of

ColRysc(Z ,Z ); here c = 4, r∗ = 3, n = 6, ν = ∑n
i=1 νi = 18. (b) From left to right, four matrices

having the given row and column sums (R(�), S(�)) (� ∈ [4]). The nonzero entries constructed in the proof
are highlighted

As it easily follows from [13] (see also [9, Prob. SP13 and comments]), Strong
Partition is NP-complete. Let us now begin with ColRysc(Z ,Z ), and, accord-
ingly, fix r∗ ∈ {2, . . . , c}.

Let I = (n; ν1, . . . , νn) be an instance of Strong Partition and suppose without
loss of generality that n ≥ r∗. In the following we construct an equivalent instance
J = (r∗, n;R,S) of ColRysc(Z ,Z ); see Fig. 2 for an example illustrating the
construction. For each � ∈ [c] we define (potential) row and column sums

R(�) = (
ρ

(�)
1 , . . . , ρ

(�)
r∗

) ∈ Z
r∗

and S(�) = (
σ

(�)
1 , . . . , σ (�)

n

) ∈ Z
n

as follows. Let

(
ρ

(1)
1 , . . . , ρ

(1)
r∗

) = (
ν
2 , ν

2 , 0, . . . , 0
)
,

(
σ

(1)
1 , . . . , σ

(1)
n

) = (ν1, . . . , νn),
(
ρ

(2)
1 , . . . , ρ

(2)
r∗

) = ( n
2 , n

2 , 0, . . . , 0
)
,

(
σ

(2)
1 , . . . , σ

(2)
n

) = (1, . . . , 1),

and for each � ∈ [c] with 3 ≤ � ≤ r∗ let

(
ρ

(�)
1 , . . . , ρ

(�)
r∗

) = (n · δi�)1≤i≤r∗ ,
(
σ

(�)
1 , . . . , σ (�)

n

) = (1, . . . , 1),

where δi j is the usual Kronecker delta. Finally, for each � ∈ [c] with r∗ < � ≤ c, let

(
ρ

(�)
1 , . . . , ρ

(�)
r∗

) = (0, . . . , 0),
(
σ

(�)
1 , . . . , σ (�)

n

) = (0, . . . , 0).

Note, first, that each of the pairs (R(�), S(�)) is balanced for each � ∈ [c]; hence
we have constructed an instance J of ColRysc(Z ,Z ). Of course, the construction
requires only polynomial time.
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Now we show that I and J are equivalent. Suppose, first, that I is a yes instance
of Strong Partition and let N ⊂ [n] be such that ∑i∈N νi = ∑

i∈[n]\N νi . We fill

the entries of an r∗ × n matrix M = (μ
(�i j )

i j ) as follows:

μ
(1)
1, j = ν j for j ∈ N , and μ

(1)
2, j = ν j for j ∈ [n]\N ;

μ
(2)
1, j = 1 for j ∈ [n]\N and μ

(2)
2, j = 1 for j ∈ N ;

μ
(�)
�, j = 1 for j ∈ [n] and � ∈ {3, . . . , r∗}.

Note that the matrix is now filled completely. In particular, colors � > r∗ are never
used. Clearly, M ∈ Ac

Z ,Z (R,S).

Conversely, let J be a yes-instance of ColRysc(Z ,Z ), and let M = (
μ

(�i j )

i j

) ∈
Ac
Z ,Z (R,S). By the choice of S, each column contains at least one nonzero entry

of each color � ∈ [r∗], which adds up to a total of r∗ · n positions filled with nonzero
entries. Hence for each color � ∈ [r∗] there is exactly one nonzero entry in each
column, and its value is given by the prescribed column sum. This also implies that
for none of the colors � ≥ r∗ + 1, any of the entries of M is of that color, i.e., �i j �= �

for i ∈ [r∗], j ∈ [n], � ≥ r∗ +1. Hence μ
(�)
�, j = 1 for j ∈ [n] and � ∈ {3, . . . , r∗}, i.e.,

the �-th row of M is filled with 1’s of the color � for � ∈ {3, . . . , r∗}. Also �i j /∈ {1, 2}
for i ≥ 3. Now, with N = { j ∈ [n] : �1, j = 1}, the row sum equalities imply that

∑

i∈N
νi =

∑

i∈[n]\N
νi = ν

2
and |N | = n

2
,

which concludes the proof of the reduction for ColRysc(Z ,Z ).
To prove theNP-hardness of ColRysc(Z ,N0)we can apply (a simplified version

of) the same construction. Just observe that a row sum 0 for any color implies that no
(nonzero) entry of the matrix M in that row can be of that color. Hence, for larger r ,
the construction can just be amended by 0 row sums. Now all hardness assertions of
Theorem 2.2 have been established.

Note that over Z, the argument on zero row sums forcing zero values in the matrix
is obviously wrong. So this additional freedom of realizing row sums 0 in a nontrivial
way is actually responsible for the drastic drop in complexity over Z which is shown
in Theorem 2.2.

5 Final Remarks

We conclude with some final remarks and open problems.
Let us first point out that the problem we are considering can be viewed as a special

variant of themulti-commodity flow problem. In fact, let the node sets A = {a1, . . . , ar }
and B = {b1, . . . , bs}of Kr ,s correspond to r supply and s demand stations for c liquids
which can be transported through pipes (modeled by the edges of Kr ,s). No pipe can
be used for different liquids, and the quantities of flow are integer (say, in order to
guarantee a certain precision for subsequent mixtures).
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Now, suppose we are given c different integer quantities of demand or supply,
respectively, at each node such that the total demand equals the total supply for each
of the c liquids. In this situation we will speak of a service request.

Given a service request, we are interested in facilitating the transport in integer
quantities in such away that all demands and supplies aremet and no two liquids use the
same pipe. Note that negative flows are not prohibited, i.e., flows may transport some
liquid from a demand to a supply station in order to satisfy all demands and supplies at
each node. Clearly, this asks for consistency (and subsequently, the reconstruction of a
solution) of the corresponding instances of ColRysc(Z ,Z )with all groups being Z.

Actually, if we require a “general solution”, i.e., that the pipes are reserved for
individual liquids so as to guarantee that every possible service request can be exe-
cuted with the same assignment of liquids to pipes, we are exactly in the situation of
Theorem 2.1.

Of course, in the context of multi-commodity flow some questions arise naturally.
For instance, bounds on the capacity of the pipes lead to corresponding restrictions
of W . Similarly, when only nonnegative flows are allowed the entries of our colored
matrix are confined toN0. Then, of course, we are in the situation ofColRysc(Z ,N0)

and Theorem 2.2 provides a correspondingNP-hardness result. Note that, if the capac-
ities are bounded above by 1 and negative flow is prohibited we are actually dealing
with binary tomography for c classes of atoms which is NP-hard for c ≥ 2, [6].

Let us now mention two open problems in discrete tomography. In spite of the
computational simplicity of the classical monochromatic binary tomography problem
of reconstructing a 0–1 matrix from its row and column sums (the “classical Ryser
problem”), the complexity status of the corresponding counting problem (“Determine
the number of solutions!”) is, most annoyingly, still open. Some restricted variants are,
however, known to be related to the problem of computing the permanent of a matrix
and are thus #P-hard; [7]. See also [2] for counting results over finite fields. Perhaps
even more surprisingly, while the consistency problem for the 2-atom case for two
directions is NP-hard, [6], the complexity status of the corresponding uniqueness and
counting problems remains unknown. (The ambiguity of exchanging neutral elements
0G�

is avoided by regarding them together as an extra color.)
Our present paper has focused on the polyatomic case for X-rays in two directions.

It is, of course, natural to ask similar questions for X-rays in more than two directions
or query sets other than lines, particularly hyperplanes, as they lead to the Radon
transform. As it turns out, the situation is more complicated then, exceeds by far the
scope of the present paper and is therefore deferred to a subsequent article. Let us
just mention that the results of Sect. 3 can, to some extent, be generalized, leading to
packings of certain hypertrees in associated hypergraphs.
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