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It has been speculated for a long time that neutrinos from a supernova (SN) may undergo fast flavor
conversionsnear the collapsed stellar core.Weperformadetailed studyof this intriguingpossibility, for the first
time analyzing two time-dependent state-of-the-art three-dimensional (3D) SN models of 9M⊙ and 20M⊙
from recent papers of Glas et al. Both models were computed with multidimensional three-flavor neutrino
transport based on a two-moment solver, and both exhibit the presence of the so-called lepton-number emission
self-sustained asymmetry (LESA). The transport solution does not provide the angular distributions of the
flavor-dependent neutrino fluxes, which are crucial to track the fast flavor instability. To overcome this
limitation, we use a recently proposed approach based on the angular moments of the energy-integrated
electron lepton-number distribution up to second order, i.e., angle-energy integrals of the difference between νe
and ν̄e phase-space distributionsmultiplied by corresponding powers of the unit vector of the neutrinovelocity.
With thismethodwe find the possibility of fast neutrino flavor instability at radii smaller than∼20 km,which is
well interior to the neutrinosphere where neutrinos are still in the diffusive and near-equilibrium regime. Our
results confirm recent observations in a two-dimensional (2D) (axisymmetric) SN model and in 2D and 3D
models with a fixed matter background, which were computed with Boltzmann neutrino transport. However,
the flavor unstable locations are not isolated points as discussed previously, but thin skins surrounding volumes
where ν̄e are more abundant than νe. These volumes grow with time and appear first in the convective layer of
the proto-neutron star (PNS), where a decreasing electron fraction and high temperatures favor the occurrence
of regions with negative neutrino chemical potential. Since the electron fraction remains higher in the LESA
dipole direction, where convective lepton-number transport out from the nonconvective PNS core slows down
the deleptonization, flavor unstable conditions become more widespread in the opposite hemisphere. This
interesting phenomenon deserves further investigation, since its impact on SN modeling and possible
consequences for SN dynamics and neutrino observations are presently unclear.
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I. INTRODUCTION

The deepest supernova (SN) regions provide a unique
laboratory to probe neutrino flavor conversions in a non-
linear regime, where the neutrino evolution is determined
mainly by their mutual interactions. Indeed, at distances
r≲Oð102Þ km from the center of the SN, the neutrino
density nν is so high that it dominates the flavor evolution,
leading to self-induced neutrino flavor conversions [1–3].
These have been a topic of intense investigation for over a
decade [4–10]. See Refs. [11–14] for recent reviews.
In this context, a peculiar type of self-induced flavor

conversions, called “fast” instabilities [4,8,10,15–28], is
expected to lead to flavor conversions developing on
very short distances, r≲Oð1Þ m. Fast flavor conversions
have been associated with “crossings” in the electron-
neutrino lepton number (ELN) angular distribution, i.e.,
with a change of sign in the difference between νe and ν̄e
number densities as a function of the emission angle
[16,18,24]. Conditions for crossings in the ELN were
expected to be possible in the neutrino decoupling region
in SN cores, where the different flavors have significantly
different angular distributions.
This possibility of fast flavor conversions and their

potential effects on SN dynamics and nucleosynthesis
has stimulated several studies to assess the occurrence of
fast instabilities in different SN models. A first study in this
direction was performed in [29], where a dedicated analysis
of the angular distributions of the neutrino radiation field
for several spherically symmetric [one-dimensional (1D)]
SN simulations has not found any crossing in the ELN near
the neutrinosphere. More generally, two- (2D) or three-
dimensional (3D) models can exhibit a large-scale dipole in
the ELN emission, termed lepton-emission self-sustained
asymmetry (LESA) [30], which also makes a crossing more
likely to occur. In this context, the first analyses of fast
instabilities in multidimensional SN models have recently
been performed in [31,32]. In [31] the authors extracted
three snapshots from numerical data in 2D and 3D SN
simulations and looked for ELN crossings in the angular
distributions of νe and ν̄e. They found favorable conditions
in extended regions with the radius of 50–70 km. Then, by
a linear stability analysis of the neutrino equations of
motion, they identified the strength of this instability for a
representative point. However, their neutrino distributions
were obtained from neutrino transport calculations done in
a postprocessing step, dropping the time dependence of
both hydrodynamical and neutrino quantities and ignoring
matter motions entirely. Hence they are not fully self-
consistent. Conversely, in [32] the authors used fully self-
consistent simulations in 2D, computing neutrino transport
with a multiangle Boltzmann solver coupled to hydro-
dynamics. Applying linear stability analysis near the
neutrinosphere, they found no positive signatures of con-
version at least for the spatial points and times studied in
their particular model.

Furthermore, in [33] the claim was made that in the
preshock region, at r ≃Oð100Þ km, the residual coherent
neutrino-nucleus scatterings could produce a tiny crossing
in the ELN, whose presence has been confirmed by the
inspection of various numerical simulations. Despite the
smallness of the crossing, according to a stability analysis it
would be enough to trigger significant fast conversions.
However, for a cautioning argument against overinterpret-
ing results of stability analyses, see [34].
Recently, two publications, based again on the SN

models considered in [31,32], reported positive detections
of locations of ELN crossings deep inside the proto-neutron
star (PNS) when investigating the self-consistent 2D core-
collapse simulation of an 11.2M⊙ star computed with
Boltzmann neutrino transport [35] and 3D Boltzmann
neutrino-transport results for a fixed matter background
at some instants during the postbounce evolution of
11.2M⊙ and 27M⊙ progenitors [36]. Because the diffusive
conditions for neutrinos in the deep PNS interior imply that
the angular distributions of both νe and ν̄e are nearly
isotropic, ELN crossings were found only in regions where
the “asymmetry parameter”Γ ¼ nν̄e=nνe , i.e., the ratio of the
number densities of both neutrino types, is close to unity (see
also [26]). Consequently and naturally in the equilibrium
diffusion regime, the chemical potential of νe nearly
vanishes in these regions. The authors of [35] speculated
that the appearance of light nuclei (among them α particles
as the dominant species) is causal for the development of
such instability conditions. Just as Delfan Azari et al. [35],
Abbar et al. [36] diagnosed ELN crossings in deep regions
inside the PNS only in a small number of isolated points at
the analyzed postbounce moments. They also correlated
their occurrencewith locations where the chemical potential
of electron neutrinos nearly vanishes and pointed out that the
electron fraction Ye is relatively low there and the temper-
ature is close to maximal values.
These interesting results motivate the need to extend the

search for fast instabilities to other state-of-the-art and fully
self-consistent multidimensional SN models. However,
most multi-D SN simulations [30,37–46] evolve only the
(energy-dependent) angular integrals (“moments”) of the
neutrino phase-space distributions with time, and not
the fully angle-dependent distributions. Reference [39],
used in [32,35], is a welcome exception. The lack of
detailed angular information seems to preclude a linear
stability analysis that requires knowing these distributions.
To overcome this limitation, some of us have recently
proposed an alternative method to diagnose the possibility
of fast instabilities in the absence of detailed knowledge
of the ELN distributions [47]. This recipe is based on
identifying a specific Fourier mode of the flavor instability
field called the “zero mode,” which has an easily calculable
growth rate depending only on the angular moments of the
ELN up to second order. It has been shown with numerical
examples that the growth rate of this mode, calculated from
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the stability analysis, nicely approximates the growth of
flavor conversions for the same mode in detailed numerical
calculations.
The purpose of the present work is to use this new

method of analysis to scan the different regions in self-
consistent, state-of-the-art 3D SN models with fully 3D
two-moment neutrino transport for the possibility of fast
flavor conversions therein. Specifically, we employ two
time-dependent stellar core-collapse (and explosion) sim-
ulations for 9M⊙ and 20M⊙ progenitors recently pub-
lished by the Garching group [45,46]. Both of these
simulations exhibit the LESA phenomenon. We will
demonstrate that the direct evaluation of discretized
numerical data provided by computational models leads
to the identification of only a few, isolated points of ELN
crossings. We will argue that instead of being such point-
like locations, the regions of fast flavor instability are thin
2D layers that first appear around small 3D volumes in the
convective layer of the PNS, and which grow with time as
the convective and diffusive transport of the electron-lepton
number drives a decrease of Ye in the PNS convection layer.
We also observe a strong hemispheric asymmetry of the
thin layer of flavor instability correlated with the asym-
metry of PNS convection leading to the LESA phenome-
non. The regions of ELN crossings are much more
extended in the hemisphere opposite to the LESA dipole
direction, where PNS convection is weaker and Ye is lower.
Our analysis thus shows that the locations of ELN crossings
are not dotlike and fluctuating because of stochastic
hydrodynamical variations, but they are long-lasting and
large-scale structures (for possibly important implications
of this fact, see [34]).
In Sec. II, we describe our method for diagnosing

instabilities based on the angular moments of the neutrino
phase-space distributions. In Sec. III we present the results
of our search for fast flavor instability in the two inves-
tigated 3D SNmodels, first by directly using the discretized
output of the numerical simulations in the instability
condition (Sec. III A), which leads to the identification
of only a few isolated points of flavor instability located
interior to the neutrinospheres in the convective shell of the
PNS. In Sec. III B we discuss the conditions for ELN
crossings. We argue that this direct analysis on the discrete
numerical mesh fails to correctly identify the regions of
flavor instability, which are actually thin 2D layers in 3D
space. We propose an alternative, better strategy to find
these layers containing the locations of flavor instability.
In Sec. IV we present the time evolution of the instability
layers in our two model runs (Sec. IVA) and explain the
reason for the development of the relevant physical con-
ditions (Sec. IV B). We also discuss their correlation with
the dipole of the lepton-number emission and the asym-
metry of the electron distribution in the PNS convection
layer connected with the LESA phenomenon. Finally, in
Sec. V, we conclude with a brief summary.

II. FAST INSTABILITIES AND MOMENTS OF
NEUTRINO DISTRIBUTIONS

A. Instability equation

To track the existence of the fast neutrino flavor
instability one has to perform a linear stability analysis
of the neutrino equations of motion. We refer the interested
reader to [22] for a detailed discussion of this analysis and
for the related publications. Here, we simply mention that
in the growing literature about fast flavor conversions, a
novel approach to study these effects was recently proposed
in [17]. This is based on the dispersion relation for the
frequency and wave number ðω;kÞ in the mean field of
νeνx coherence, which is essentially the off-diagonal
element of the neutrino density matrix ϱðp;x; tÞ that we
will call S in the following. One looks for solutions of the
linearized equations for the flavor evolution in the form

S ∼ eiðk·x−ωtÞ: ð1Þ

Typically such a solution may exist only if ω and k are
related by an appropriate equation, called the dispersion
relation. Loosely speaking, if either k or ω develop
imaginary parts leading to positive real arguments in the
exponential, the solution is expected to grow in space or
time, thus signaling an “instability.” Unfortunately, iden-
tifying the instabilities rests upon a more complicated
analysis that requires a full characterization of the complex
analytic structure of the dispersion relation [18].
In [47] some of us proposed a simpler analytical tool

to diagnose the fast neutrino instability. Our proposal is
based on identifying a specific Fourier mode of the flavor
instability field that we call the “zero mode” in a corotating
frame, in which one can gauge away the matter term from
the neutrino equations of motion. We labeled this zero
mode as k ¼ 0.1

This is motivated by the fact that the calculation of ω for
this mode is significantly simpler than a full characteriza-
tion of the dispersion relations, Dðω;kÞ [18]. In fact, for
this mode the dispersion relation becomes

Dðω; 0Þ ¼ det

�
ημν þ 1

ω
Vμν

�
¼ 0 ð2Þ

with ημν ¼ diagðþ1;−1;−1;−1Þ, i.e., Dðω; 0Þ is a poly-
nomial in ω. The specific model of SN neutrino popula-
tions and their angular distributions, encoded in the
ELN, only enters the equation through the tensor Vμν

1A remark is in order. Our method does not completely exclude
the presence of an instability for those points where we find
ImðωÞ ¼ 0. Indeed, as our analysis is based only on the zero
mode k ¼ 0, there might be a k ≠ 0 that is unstable. Therefore,
one cannot exclude larger instability regions than those that we
will show. The reader is referred to [48] for a comparison of
instability regions obtained with different instability criteria.
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(with μ, ν ¼ 0, 1, 2, 3) that contains the angular moments of
the neutrino distributions up to second order in the neutrino
velocity, namely,

Vμν ¼
Z

dv
4π

vμvνGv; ð3Þ

where vμ ¼ ð1;p=EÞ, i.e., the zeroth component of the
velocity four-vector is 1 and the spatial components are
given by the unit vector v ¼ p=E (with E ¼ jpj). The
function

Gv ¼
ffiffiffi
2

p
GF

Z
∞

0

dEE2

2π2
½fνeðE; vÞ − fν̄eðE; vÞ� ð4Þ

is the difference of the phase-space occupation functions
integrated over energy space, i.e., the angular distribution
of the ELN [15]. Here we assume that νx and ν̄x have
identical distributions. Therefore, Vμν depends on the
angular moments of the neutrino-species dependent phase
space distributions up to second order in the neutrino
velocities, i.e.,

Vμν ¼ hvμvνiνe − hvμvνiν̄e ; ð5Þ

where the notation h� � �iνα refers to

h� � �iνα ≡
ffiffiffi
2

p
GF

Z
d3p
ð2πÞ3 ð� � �ÞfναðpÞ: ð6Þ

These (energy-integrated) moments are related to the
difference of the number densities (nν) of νe and ν̄e, the
corresponding difference of the number-flux densities (Fr

ν),
and the difference of the second angular moments of the νe
and ν̄e number distributions (Prr

ν ) as follows:

V00ð
ffiffiffi
2

p
GFÞ−1 ¼ nνe − nν̄e ≡ Δnν; ð7Þ

V0rð
ffiffiffi
2

p
GFÞ−1 ¼ ðFr

νe − Fr
ν̄eÞc−1 ≡ ΔFνc−1; ð8Þ

Vrrð
ffiffiffi
2

p
GFÞ−1 ¼ Prr

νe − Prr
ν̄e
≡ ΔPrr

ν ; ð9Þ

where for later quantitative evaluation we have reintro-
duced the factors c in the expressions in the right-hand side
(RHS) of these relations.
We remind the reader that the two-moment “M1”

neutrino-transport scheme used in [45,46] evolves the
“00” and the “0i” components (with i ∈ fr; θ;ϕg being
radius r, polar angle θ, and azimuthal angle ϕ of the polar
coordinate system) of the moments in Eq. (6) in time for all
neutrino species. The system of moment equations of the
transport solver is closed by an algebraic relation for
nonevolved moments (i.e., for the “ij” components of
the tensor with i ≥ 1 and j ≥ 1), which depend on the “00”
and the “0i” components (see, e.g., [49]).

III. SEARCH FOR FAST INSTABILITIES

A. Direct analysis of discretized numerical results

In this work we employ energy-integrated angular
moments of the neutrino number distribution provided
by the neutrino transport solver used in the considered
3D SN simulations of Refs. [45,46], Models s9.0 FMDH
and s20 FMDH there. Appropriate normalization constants
as specified in Eqs. (7)–(9) are applied in order to match the
quantities in Eq. (3). We choose to work mainly in the
comoving frame of the stellar fluid (fluid frame), where SN
neutrino transport usually provides its output quantities.
Equivalent results in terms of flavor instabilities are
obtained in the laboratory frame, i.e., the rest frame of
the stellar center. We will briefly demonstrate this later.
We mainly focus on our progenitor with 9M⊙ and

discuss similarities as well as differences compared to the
20M⊙ simulation. Figure 1 displays Aitoff projections of
the 9M⊙ model for postbounce times of t ¼ 300 ms and
500 ms (upper two panels) and of the 20M⊙ star for t ¼
200 ms after bounce (bottom panel). Different radial
directions in the 3D simulations correspond to discretized
values of the zenith angle θ and azimuthal angle ϕ. Points
(ϕ; θ) are marked by green color if the solutions of Eq. (2)
yield ImðωÞ > 0 for at least one value of the discretized
radial coordinate r in the range 10 km ≤ r ≤ 30 km. If the
color is blue, then ImðωÞ ¼ 0 for all radii; i.e., there is no
instability.
In the 9M⊙ model at 300 ms we find instability

points only in the interval of ½12; 15� km and for very
specific directions, i.e., a few isolated and unconnected
pairs of values (ϕ; θ). As specified in the plots, ImðωÞ ∼
Oð10–100Þ m−1 at unstable locations, which means the
flavor instability can develop over a timescale even shorter
than a nanosecond. In the middle and lower panels of Fig. 1
we witness a larger number of points of instability than in
the upper panel.
Nonzero values of ImðωÞ in the 9M⊙ model occur only

later than ∼300 ms after bounce, whereas in the 20M⊙ the
condition for flavor instability shows up earlier and more
points with a positive imaginary part of ω are present
already at 200 ms.
We note in passing that we have not detected any points

of flavor instability between the neutrino-decoupling region
and the SN shock (at r ≥ 30–50 km, depending on the
postbounce time). Some authors have speculated about the
possibility that ELN crossings might occur in this region in
multidimensional models and, indeed, Ref. [31] as well as
Refs. [36,50] have reported such locations in 2D and 3D
simulations of an 11.2M⊙ star. In this context, however, it
is important to keep in mind that our moment-based
criterion employs differences of angle and energy integrals
of the neutrino distribution functions. Such an integral
criterion is not necessarily sensitive enough to diagnose
low-level crossings in the angular distributions of νe and ν̄e,
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i.e., small differences in the distribution functions leading
to a reversed ordering of the distributions in some narrow
region or in a sparsely populated part of the angle space,
as, e.g., spotted in the preshock domain as a consequence
of a small fraction of neutrinos that are backscattered in
collisions with infalling nuclei [33].
Our findings are reminiscent of the individual points of

ELN crossings that were identified deep inside the PNS by
[35] in the 2D simulation of this 11.2M⊙ model and by
[36] in the 3D simulations of the same 11.2M⊙ progenitor
and of a 27M⊙ model. In the following section we will
argue that the regions of fast-flavor instability form thin 2D
layers in 3D space rather than isolated points, and the
identification of individual points in our analysis is an
artifact connected with the discretization of the physical
variables in the numerical treatment. This conclusion does
probably also apply to the results of the previous inves-
tigations in Refs. [35,36].

B. Conditions for ELN crossings

Similar to Refs. [35,36] our points of flavor instability
are located deep inside the PNS, i.e., below the neutrino-
spheres in a region where neutrinos diffuse and their phase-
space distributions are very close to those of local chemical
equilibrium.
Before we discuss in detail why we—and probably also

the references mentioned above—have found only isolated
points instead of extended regions of flavor instability, we
will introduce a simplified and approximative criterion for
the instability, which makes the underlying physics more
transparent. To achieve this, we take advantage of the fact
that the nonradial moments are much smaller than the
radial ones in the diffusive core where we find instability.
Moreover, in this region Vrr ¼ Vθθ ¼ Vϕϕ holds because
the neutrino phase-space distributions are nearly isotropic.
In this limit, which effectively corresponds to the 1D case,
Eq. (2) is explicitly quadratic in ω, namely

ðωþ V00Þðω − VrrÞ þ ðV0rÞ2 ¼ 0; ð10Þ
with the solution

ω ¼ 1

2

�
Vrr − V00 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV00 þ VrrÞ2 − 4ðV0rÞ2

q �
: ð11Þ

With the additional relation that Vrr ¼ 1
3
V00, which is valid

to high accuracy in the diffusion regime, the condition for
instability becomes

F ¼ 16

9
ðV00Þ2 − 4ðV0rÞ2 < 0: ð12Þ

In terms of the differences of number densities Δnν and
radial fluxes ΔFr

ν of νe and ν̄e [see Eqs. (7) and (8)] this
instability condition reads

FIG. 1. Aitoff projections for the log10 Im½ω� obtained by
solving Eq. (2) in the case of the 9M⊙ star at t ¼ 300 ms and
500 ms after core bounce (upper two panels) and of the 20M⊙
star at 200 ms post bounce (bottom panel). The plots are obtained
by selecting the largest log10 Im½ω� in the radial range of
½10; 30� km.
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F ð
ffiffiffi
2

p
GFÞ−1 ¼

16

9
ðΔnνÞ2 −

4

c2
ðΔFr

νÞ2 < 0: ð13Þ

The presence of flavor instability is thus mostly dependent
on V00 and V0r, i.e., on the differences of the neutrino
number densities and number-flux densities of νe and ν̄e.
We explicitly checked that Eq. (11) gives almost identical
results to what is shown in Fig. 1.
A subtlety concerns the evaluation of the instability

condition either with the moments in the reference frame
comoving with the stellar fluid, where the neutrino quan-
tities (i.e., the angular moments) are computed by the
numerical transport code, or in the laboratory frame. In a
full-angle treatment of the neutrino transport this corre-
sponds to the question whether ELN crossings shall be
searched for with the angular distributions of νe and ν̄e in
the comoving frame or in the lab frame. We will show here
that at the level of the angular moments, which we use for
our analysis, the results are basically independent of the
specific frame where the neutrino moments are evaluated.
For fluid velocities ṽ ≪ c, the lab-frame and comoving
frame moments are related to the lowest order in ṽ=c
through

nlabν ≈ nν; ð14Þ

Fr;lab
ν ≈ Fr

ν þ ṽrnν; ð15Þ

Prr;lab
ν ≈ Prr

ν : ð16Þ

In the frame transformations of nν [Eq. (14)] and Prr
ν

[Eq. (16)] we omit terms such as 1
c2 ṽiF

i
ν and 1

c2 ṽ
rFr

ν,
respectively. Since ṽ ≪ c holds and in the diffusion regime
interior to the neutrinospheres also 1

c jFi
νj ≪ nν applies,

2 the
disregarded terms are many orders of magnitude smaller
than the leading ones that we retain in Eqs. (14) and (16).
Replacing the comoving-frame quantities in Eq. (13) by the
lab-frame ones of Eqs. (14)–(16), we obtain

F ð
ffiffiffi
2

p
GFÞ−1 ¼

16

9
ðΔnlabν Þ2

�
1 −

9

4

ṽ2r
c2

�

−
4

c2
ΔFr;lab

ν ðΔFr;lab
ν − 2ṽrΔnlabν Þ

< 0: ð17Þ

Since ṽr ≪ c and, as we shall argue below, the condition
can be fulfilled only when Δnν ≈ Δnlabν ≈ 0, the relation in
Eq. (17) is basically identical with

F ð
ffiffiffi
2

p
GFÞ−1 ≈

16

9
ðΔnlabν Þ2 − 4

c2
ðΔFr;lab

ν Þ2 < 0; ð18Þ

which is identical to the instability condition of Eq. (13).
Figure 2 confirms that indeed it does not matter whether

the analysis is performed with lab-frame or comoving-
frame moments for the neutrinos. The figure shows, in both
reference frames, radial profiles of the number densities nν
of νe and ν̄e individually and their difference for the 9M⊙
model at a postbounce time of 300 ms (four upper left
panels); the corresponding second angular moments Prr

ν

and their difference (four upper right panels); the radial
neutrino-flux densities Fr

ν and their difference (four lower
left panels); and the “flavor-instability functional” F of
Eqs. (13) and (18) (four lower right panels). The angular
direction (θ, ϕ) for the radial ray was chosen such that one
of the instability points visible in the top plot of Fig. 1 was
crossed. This can be seen in the four panels on the lower
right of Fig. 2, where at r ≈ 14 km the flavor-instability
condition is fulfilled. The four upper left panels demon-
strate that at this location nνe and nν̄e are approximately
equal. Lab-frame and comoving-frame quantities exhibit
exactly the same behavior.
A comparison of the four upper left and four upper right

panels shows that the same conclusion can be drawn from
inspection of Prr

ν , because in the diffusion region Prr
ν ¼ 1

3
nν

is very well fulfilled. This relation does not hold any longer
when neutrinos begin to decouple from the stellar medium
near the neutrinosphere and undergo the transition to free
streaming outside. In this case Prr

ν → nν asymptotically for
r → ∞, and therefore our flavor-instability conditions of
Eqs. (13) and (18) are not valid any more. In the displayed
model this is the case for radii r≳ 30 km, for which reason
the negative values of the flavor-instability functional for
r≳ 40 km do not signal flavor instability in this region
exterior to the PNS.
The two lower right bottom panels of Fig. 2 also display

the term 16
9
ðΔnνÞ2 as part of the flavor-instability functional

for comparison with the full expression. One can see that
this term usually dominates the second one, 4

c2 ðΔFr
νÞ2, by

several (typically by 2–3) orders of magnitude. This can
also be directly verified by comparing Δnν in the upper left
panels with 1

cΔF
r
ν displayed in the lower left panels. We

remark in passing that strongly negative values of the ν̄e
flux in the comoving frame occur because of a local
temperature maximum that drives the diffusion flux of
ν̄e inward while the more degeneracy-driven diffusion flux
of νe can still be outward directed. Although the lab-frame
and comoving-frame fluxes are considerably different
(because the advective component vrnν can dominate the
diffusive component in the convection layer of the PNS),
the radial profiles of ΔFr

ν are more similar for lab-frame
and comoving-frame fluxes, and the instability functional
F in the lower right panels does not exhibit any visible
frame dependence.

2This can easily be verified by comparing the left panels in the
top and third rows of Fig. 2 for r ≲ 30 km and taking into account
that jFθ

νj ≈ jFϕ
ν j≲ jFr

νj.
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There are severe consequences of this huge imbalance
between the first and the second terms in the flavor-
instability functional F when searching for ELN crossing
points by evaluating the functional with discretized numeri-
cal results. To detect such points, i.e., in order to find grid
locations where F < 0, the term 16

9
ðΔnνÞ2 must be very

close to zero at exactly such grid positions, because only
then can the small second term lead to a negative value
of F . If, however, the discrete grid points are too far away
from the root of F , the values of 16

9
ðΔnνÞ2 at these points

may be so large that the second term 4
c2 ðΔFr

νÞ2 does not
achieve to produce negative values of F . This, in fact, is
likely to happen in the far majority of all cases where the
physical conditions enable flavor instability, and only in a
minor fraction of such locations do the discretized spatial
points of the computational grid coincide incidentally with
locations where the combination of terms can yield F < 0,
and thus signal the presence of flavor-unstable conditions.
An example of such a missed point of instability can also

be spotted in Fig. 2. The plots ofF in the lower right panels

FIG. 2. Radial profiles of the basic (energy-integrated) angular moments nν, Fr
ν, and Prr

ν for νe and ν̄e as well as their differences Δnν,
ΔFr

ν, and ΔPrr
ν along a radial direction at ðθ;ϕÞ ¼ ð107°; 57.4°Þ in our 9M⊙ model at 300 ms after bounce. The four panels on the lower

right display the corresponding flavor-instability functionalF and, for comparison, the first term of it, 16
9
ðΔnνÞ2, as labeled in the panels.

FAST NEUTRINO FLAVOR INSTABILITY IN THE NEUTRON- … PHYS. REV. D 101, 063001 (2020)

063001-7



show two local minima between 10 km and 20 km. Only in
the case of the left one does the minimum of F reach a
negative value, but for the right one the minimum is still on
the positive side. Is the condition of flavor instability also
fulfilled at this position and just not detected by the
numerical analysis? Indeed, this is the situation as visual-
ized in detail by a close-up of the region of the two local
minima of F in Fig. 3 with crosses marking the positions of
all radial mesh points of the computational grid. The orange
line in the two panels corresponds to the radial direction
chosen for the profiles in Fig. 2. It is obvious that Δnν
(upper panel of Fig. 3) has two zero crossings and becomes
negative between these two roots. If a mesh point happens
to be close to the root, the small, second term in Eqs. (13)
and (18) achieves to drive F (lower panel) to the negative
side. Such a situation occurs for the left one of the two roots
along the radial direction at ðθ;ϕÞ ¼ ð107°; 57.4°Þ and for
the right root in the case of ðθ;ϕÞ ¼ ð111°; 57.4°Þ. If,
however, the mesh points are too far away from the root,
then F remains positive at all discrete points of the grid.
This is the situation for the direction corresponding to
ðθ;ϕÞ ¼ ð109°; 57.4°Þ displayed in Fig. 3, although also in
this case Δnν possesses two roots. The fourth selected case
in this figure for ðθ;ϕÞ ¼ ð105°; 57.4°Þ does not exhibit any
change in the sign of Δnν.

Discretization effects are therefore the reason why only
very few points with ELN crossings could be identified by
the analysis so far. Consequently, only individual, isolated
points of instability appeared on the three panels of Fig. 1.
This problem would become even more severe if the
resolution of the computational grid used in our SN
simulations had been coarser.
Our case is only an example how numerical discretiza-

tion effects may impede the possibility to detect flavor-
unstable conditions that occur in narrowly delimited spatial
regions. A specific condition, such as, e.g., our instability
criteria of Eqs. (2), (13), and (18) or any other analytical
criterion relating physical quantities that are available on a
discrete numerical mesh, may fail to identify the spatial
locations of instability. We speculate that also the inves-
tigations in Refs. [35,36], determining ELN crossings by
using angular distributions, suffered from the finite numeri-
cal resolution of the underlying SN simulations and there-
fore failed to find more spatial points of flavor-unstable
conditions.
Actually, the problems encountered in our analysis with

discretized physical variables can easily be circumvented.
Evaluating the relations of Eqs. (13) or (18) to search for
spatial locations where F < 0 (or for roots of F ) on a mesh
of discrete points is not a promising strategy. Instead, it is
preferable to look for regions where Δnν changes its sign,
which we understood as a sufficient condition to obtain
roots of F .3 When Δnν changes its sign between two grid
points, there must be a root of this quantity between the two
points. Close to this root F will become negative, unless
ΔFr

ν vanishes in this region. In such a pathological and
very rare situation our approximate flavor-instability cri-
terion based on a few angular moments of the neutrino
phase-space distributions does not provide conclusive
information.

IV. TIME EVOLUTION AND PHYSICAL
CONDITIONS FOR ELN CROSSINGS

A. Time evolution

With the approximative but numerically robust criterion
of sign changes of Δnν, we have evaluated our 9M⊙ and
20M⊙ models in time to track the evolution of the volume
of ELN crossings interior to the PNS in our 9M⊙ and
20M⊙ simulations.

FIG. 3. Radial profiles of Δnν (upper panel) and F (lower
panel) in the vicinity of the two local minima of F visible around
∼14 km in Fig. 2 in the case of our 9M⊙ simulation at 300 ms
after bounce. Besides the radial direction chosen for Fig. 2, three
other radial directions with neighboring zenith angles for a fixed
azimuthal angle of ϕ ¼ 57.4° are shown, too. The individual
radial mesh points of the computational grid are marked by
crosses.

3Strictly speaking, a sign change of Δnν is not necessary to get
F < 0, but this condition for F can also be fulfilled when Δnν
dips nearly to zero while still remaining positive. However,
because Δnν and 1

cΔF
r
ν are orders of magnitude different in the

diffusion regime (compare left panels in the second and fourth
rows of Fig. 2), such a situation is highly fine-tuned and not as
common in hot PNSs as sign changes of Δnν. This is obvious
from our analysis of the time evolution of PNSs in two 3D SN
simulations.
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FIG. 4. Top row: Aitoff projections of Δnν ¼ nνe − nν̄e (left) and the variations of Ye relative to the angle-averaged value (right) at a
radius of 14 km inside the PNS and postbounce time of 300 ms for our 9M⊙ model. The directions of the x, y, and z axes of the
computational polar grid are denoted by black crosses. Second row: Corresponding cross-sectional cuts in the x-z, y-z, and x-y planes
with Δnν color coded. Third row: Variations of Ye in these cut planes. The radius of r ¼ 14 km is marked by black circles. Bottom row:
Radial velocities of the stellar plasma, ṽr, in the cut planes. The convective shell in the PNS is visible by the quasiregular pattern of
convection cells. In the plots of Δnν red indicates positive values, blue indicates negative values, the boundaries between both are
locations with Δnν ≈ 0, where flavor instability, i.e., ELN crossings, is expected (highlighted by yellow lines). The first small raisinlike
volumes with ν̄e excess signaled by negative Δnν can be found at locations of particularly low Ye (intense blue hues for negative Ye
fluctuations relative to the average value). The spatial variations of Ye are connected to lepton-rich convective updrafts, which carry the
electron-lepton number from the convectively stable PNS core outward, and more lepton-poor convective downdrafts. Larger red
patches that mark buoyantly rising plasma in the bottom panels are therefore correlated with bigger orange regions in the panels of the
third row, and more extended blue inward flows in the bottom panels coincide with the deepest-blue areas in the panels of the third row.
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For the 9M⊙ model we show Δnν and the normalized
fluctuations of the electron fraction, ðYe − hYeiÞ=hYei
(the angle brackets indicate averages over zenith and
azimuthal angles), in full-sphere Aitoff projections at a
radius of r ¼ 14 km as well as cross-sectional cuts
in the x-z, y-z, and x-y planes at postbounce times of

300, 400, 500, and 600 ms in Figs. 4, 5, 6, and 7,
respectively.
The fluctuations of Ye are connected to convective

updrafts and downdrafts in the convection layer of the
PNS (see Refs. [30,45]). Convective updrafts carry
electron-lepton number from the convectively stable

FIG. 5. Same as Fig. 4, but at 400 ms after core bounce. At this time the LESA lepton-emission dipole has become prominent and its
direction is indicated by a black asterisk on the Aitoff projections and by a black arrow in the cross-sectional cuts. During all of the
model evolution the LESA dipole vector direction is close to the þy axis (see Model s9.0 FMDH in Fig. 3 of [45]).
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high-density core of the PNS outward and therefore exhibit
higher values of Ye than the angle average. In contrast,
convective downdrafts are more lepton poor, which also
means that they contain more neutrons, which makes them
specifically heavier so that they sink inward. The pattern
of Ye fluctuations mirrors the familiar cell pattern of
convection in spherical shells.

The zero crossings of Δnν, and thus the locations very
close to the flavor instability, are highlighted by yellow
lines surrounding the volumes of negative values col-
ored in blue. The physical thickness of these boundary
layers of the Δnν < 0 volumes, i.e., the “skins” in which
the flavor-instability condition is fulfilled, can be
roughly estimated from Eqs. (13) or (18) by making

FIG. 6. Same as Fig. 4, but at 500 ms after core bounce. Regions of negative Δnν are more widespread in the anti-LESA direction
where Ye is lower.
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use of the diffusion approximation to express the lepton-
number flux, ΔFr

ν¼Fr
νe−F

r
ν̄e through Fr

νi¼−Dνi∂nνi=∂r,
where Dνi ¼ 1

3
cλνi is the diffusion coefficient and λνi the

(energy-averaged) mean free path. Introducing a mean
free path λ̄ suitably averaged between νe and ν̄e, we can

write for the effective neutrino-lepton number flux in the
diffusion regime:

ΔFr
ν ¼ −

1

3
cλ̄

∂ðΔnνÞ
∂r : ð19Þ

FIG. 7. Same as Fig. 4, but at 600 ms after core bounce. The LESA dipole is very prominent at this time, corresponding to a clear
hemispheric asymmetry of Ye in the convective shell inside the PNS and the overlying outer PNS layers. Volumes with Δnν < 0 and
flavor-unstable boundaries are concentrated mostly in the hemisphere pointing opposite to the LESA dipole vector (which is indicated
by black asterisks and arrows).
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The requirement for flavor instability, F < 0 [Eqs. (13)
and (18)], implies that jΔFr

νj > 2
3
jΔnνjc, or, using

Eq. (19), that the radial scale height of changes of
the lepton-number density must be smaller than 1

2
λ̄:

����Δnν
�∂ðΔnνÞ

∂r
�

−1
���� < 1

2
λ̄: ð20Þ

This means that the thickness of the skins of flavor
instability is only a fraction of the νe-ν̄e-averaged mean
free path λ̄, which is on the order of meters in the PNS
region of relevance. This skin thickness is 1 to 2 orders
of magnitude below the spatial resolution of the best 2D
and 3D simulations, which explains why a direct
evaluation of the flavor-instability criterion on the
discrete grid points of the computational mesh can find,
basically incidentally, only very few locations of ELN
crossings.
Around 300 ms the first spots of flavor instability can be

seen near the radius of 14 km. However, while some
moments earlier a small number of individual, isolated
points may have fulfilled the instability conditionF < 0, at
300 ms these points have already grown to 2D surfaces
enclosing noticeable volumes where Δnν < 0. Such raisin-
like inclusions are concentrated around regions where Ye is
10%–15% lower than the average. At 400 ms the Δnν < 0
volumes have considerably grown and partly merged,
enveloped by a coherent surface, besides still existing
smaller droplets. This trend continues until our last dis-
played snapshot at 600 ms. It is obvious that by this time
the quadrupole-dominated pattern of concentrations of

instability regions that characterizes the situation at
400 ms and 500 ms has evolved to a distribution that is
clearly dominated by a prominent dipolar asymmetry.
While in one hemisphere there are extended blue 3D
regions with Δnν < 0, the opposite hemisphere still exhib-
its only scattered spots where this condition is fulfilled. As
time goes on these blue regions grow along with a
decreasing electron fraction and rising density because
the PNS gradually deleptonizes and contracts. It is obvious
that the large-scale quadrupolar and dipolar asymmetries
of these regions correlate with such asymmetries in the
relative variations of Ye.
Figure 8 visualizes by 3D volume rendering the situation

in the 9M⊙ model at the postbounce time of t ¼ 300 ms,
when the first scattered “raisins” with Δnν < 0 inside and
flavor-unstable conditions in their skins have grown. This is
compared to the situation at 600 ms when a whole 3D shell
between ∼10 km and ∼14 km with ν̄e excess over νe has
developed, more widespread on one side of the PNS than
on the other one. This hemispheric asymmetry is connected
to the LESA phenomenon and establishes in correlation
with the growing dipole amplitude of the LESA, which can
be seen in the Aitoff projections of the normalized lepton-
number flux, ΔFν=hΔFνi ¼ ðFνe − Fν̄eÞ=hΔFνi (evaluated
far outside the PNS at r ¼ 400 km; Fig. 9), and of the Ye
distribution inside the PNS at r ¼ 14 km (Figs. 4–7).
The black asterisks in the Aitoff plots in all of these

figures and the black arrows in the cross-sectional cuts of
Figs. 4–7 mark the dipole directions of the lepton-number
flux. These markers are missing in the plots for t ¼ 300 ms,
because at that early time the emission dipole is not well
developed. But once it is present in a clear way, the dipole

FIG. 8. 3D volume renderings of Δnν in the 9M⊙ model at 300 ms after bounce (left) and 600 ms after bounce (right). Red hues
indicate excess of νe and thus positiveΔnν, blue hues excess of ν̄e, and therefore negative values ofΔnν. Flavor-unstable locations are in
between near Δnν ¼ 0 (whitish areas). First “raisins” with flavor-unstable skins become visible at about 300 ms, whereas at 600 ms
flavor-unstable locations can be found near a radius of 14 km in the whole convective layer of the PNS. Note the pronounced
hemispheric asymmetry of the flavor-unstable 2D surface, which is connected in the anti-LESA direction and is more perforated in the
hemisphere which the LESA dipole vector points to (namely the þy direction, as indicated by the white arrow next to the tripod).
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direction is extremely stable in the 9M⊙ model, varying
only very little around the þy direction of the polar
coordinate grid of the computation (see Model s9.0
FMDH in Fig. 3 of [45]). It is evident from all these
figures that ELN crossings are less favored on the hemi-
sphere in the direction of the LESA dipole vector. As we
will discuss in more detail in Sec. IV B, the reason for this
observation is the higher electron fraction in the PNS
convective shell on this side. As discussed in [45] (see also
[30]), convection inside the PNS is stronger in the hemi-
sphere of the LESA dipole direction. This stronger con-
vection transports the electron-lepton number more
efficiently out from the edge of the nonconvective central
core of the PNS, thus raising the Ye in the convective shell
as well as in the overlying near-surface layers of the PNS up
to the neutrinospheres.
Figure 10 presents the evolution of the flavor-instability

regions in our 20M⊙ model by color-coded Aitoff
projections and cross-sectional cuts of Δnν in analogy to
Figs. 4–7. The time sequence shows the same basic features
as visible in the 9M⊙ model, just accelerated because the
PNS grows faster in mass due to the higher mass-infall rate
in the more massive progenitor. Spots with flavor-unstable
conditions are visible already at 170 ms after bounce near a
radius of 14 km and have grown to large coherent structures
at 220 ms. At 270 ms the regions of Δnν < 0 dominate
and form a coherent shell around r ¼ 14 km. The very few

remaining volumes with Δnν > 0 in this shell have
essentially disappeared until 370 ms after bounce. The
direction of the LESA emission dipole is indicated by white
asterisks in the Aitoff projections and black arrows in the
cross-sectional cuts at the times when a strong dipole of the
lepton-number emission exists. Again one can notice that
flavor-unstable conditions are more widespread in the anti-
LESA direction, where the electron fraction is lower than in
the hemisphere the LESA dipole vector is pointing to.
Accordingly, the last islands with νe excess (i.e., Δnν > 0)
can be found on this side of the PNS (see panels for
t ¼ 270 ms in Fig. 10).
In the following section we will explain the physical

connection between the conditions of flavor instability
and the evolution of electron fraction Ye, density ρ, and
temperature inside the PNS in more detail.

B. Properties of ELN crossing points

Naturally, the relation Δnν ¼ nνe − nν̄e ≈ 0, which we
recognized in Sec. III B as a necessary condition for ELN
crossings in a regime where neutrinos diffuse and are close
to local chemical equilibrium, implies that μνe ¼ μe þ μp −
μn ≈ 0 holds for the electron-neutrino chemical as a
function of the chemical potentials of electrons, protons,
and neutrons. Only then can νe and ν̄e in local chemical
equilibrium have nearly equal number densities. This was
pointed out already in Refs. [35,36].

FIG. 9. Aitoff projections of the color-coded electron lepton-number flux, ΔFν ¼ Fνe − Fν̄e , normalized to the angle-averaged value
at a radius of 400 km in the 9M⊙ model at 300, 400, 500, and 600 ms after core bounce (panels from top left to bottom right). The
development of a pronounced LESA dipole at t > 300 ms is obvious, the dipole direction is indicated by black asterisks and is always
close to the þy axis of the computational polar grid (see Model s9.0 FMDH in [45]).
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FIG. 10. Time evolution of the regions of fast flavor instability in the 20M⊙ model, visualized by Aitoff projections of Δnν at 14 km
for 170, 220, 270, and 370 ms after core bounce. Corresponding cross-sectional cuts are also shown with r ¼ 14 km indicated by a black
circle. At 270 ms and 370 ms a strong LESA dipole has formed (see Model s20 FMDH in [45]); its vector direction is marked by white
asterisks in the Aitoff projections and black arrows in the cuts. Within only 50 ms initial “raisins” with Δnν < 0 (blue) grow to large
“pancakes” within a shell around r ¼ 14 km. At 270 ms nearly the whole shell is included with a few remaining “holes” of Δnν > 0
(red) remaining in the hemisphere of the LESAvector direction. At 370 ms the shell has become wider with no remaining holes. Yellow
lines indicate the flavor-unstable locations at the boundaries between regions of Δnν < 0 and Δnν > 0.
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But what is the reason why fast flavor unstable
conditions develop in an increasing volume in the
newborn NS? The relation of the chemical potentials that
determines μνe suggests that low Ye and correspondingly

low μe might allow μνe to drop to zero and even to negative
values.
Figure 11 displays radial profiles of these and other

quantities in the LESA and anti-LESA directions of the

FIG. 11. Radial profiles of mass density (ρ; top left), temperature (T; top right), difference of νe and ν̄e number densities (Δnν; second
row left), electron fraction (Ye; second row right), gas entropy per nucleon (s; third row left), mass fraction of light nuclei, including α
particles, that exist besides free neutrons and protons (Xle; third row right), chemical potentials of electrons and electron neutrinos
(μe, μνe ; bottom left), and chemical potential difference between neutrons and protons (μn − μp; bottom right) in our 9M⊙ model at 300,
400, 500, and 600 ms after core bounce. Solid lines display the profiles in the direction of the LESA dipole, dashed lines in the opposite
direction. At 300 ms, when the LESA dipole is still very weak, the later direction of the LESA dipole vector is chosen, because it stably
remains in the close vicinity of the þy axis of the computational polar grid once it has developed in this model (see Model s9.0 FMDH
in Fig. 3 of [45]). On the density profiles the locations of the neutrinospheres of νe and ν̄e (defined by a spectrally averaged total optical
depth of 1) are marked by an asterisk or bullet, respectively. The convective shell inside the PNS can be recognized by the region where
the entropy profile is flat.
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9M⊙ model at four postbounce times. Inspecting the
different panels shows that the locations where fast flavor
instability is possible (Δnν ≈ 0) lie within the convective
shell in the interior of the PNS; the convective layer can be
recognized by the convectively flattened gradient of the
entropy per nucleon, s. However, neither Ye nor μe reach a
local minimum where the electron-neutrino chemical
potential develops a trough near zero or below, and also
the abundances of α particles or light elements up to 4He are
not particularly abundant in general in the regions where
ELN crossings are favored, in contradiction to arguments in
[35]. This can be directly concluded from a comparison
of the LESA and anti-LESA directions in Fig. 11. In the
hemisphere opposite to the LESA dipole vector, Ye as well
as the abundances of α particles and light elements are
lower than in the hemisphere the LESA vector points to.
Nevertheless, flavor unstable locations are more wide-
spread in the anti-LESA direction at late times (500,
600 ms after bounce) when the dipole is strong (as
discussed in Sec. IVA). Lower values of Ye enhance the
possibility of flavor instability, but they are not causal in the
first place.
Instead of being linked to peculiarities in the Ye profile,

the μνe trough is found in a region where μ̂≡ μn − μp
possesses a local maximum, because high values of μ̂
reduce μνe ¼ μe − μ̂ compared to μe. The local maximum
of μ̂ again correlates tightly with a local temperature
maximum, which is a relic of shock heating by the initial
propagation of the strong shock front formed at the moment
of core bounce. The close connection between maxima
of μ̂ and T can easily be understood from considering
nondegenerate, nonrelativistic, and noninteracting neutrons
and protons as an approximation of nucleons in the
subnuclear regime. For such Boltzmann gases the chemical
potential of particle species i ¼ n; p with number
density ni and rest-mass mi is given by μi ¼ mic2þ
kBT lnðΛ3

th;ini=2Þ, where Λth;i ¼ hð2πmikBTÞ−1=2 is the
thermal wavelength, kB the Boltzmann constant, and h
the Planck constant. With Q≡ ðmn −mpÞc2 one therefore
gets

μ̂≡ μn − μp ¼ Qþ kBT ln

�
nn
np

�
mp

mn

�
3=2

	
: ð21Þ

This relation explains the direct dependence of μ̂ on the
plasma temperature, and it also implies that lower Ye in the
hemisphere opposite to the LESA vector reduce μνe not
only through lower values of μe but also through higher
ratios of nn=np.

4 Non-negligible effects due to nucleon

interactions in the density regime of interest between
some 1013 g cm−3 and ∼1014 g cm−3 may lead to quanti-
tative changes but do not qualitatively affect this argument.
The development of regions with negative electron-

neutrino chemical potential, μνe < 0, inside the PNS does
not only depend on temperature and Ye but also on density.
This can be concluded from Fig. 12, where the evolution of
the 9M⊙ and 20M⊙ models is compared. The upper panel
displays the growth of the volume of regions with μνe < 0.
Vertical black lines mark the two earliest instants displayed
for both simulations in Fig. 4 and Fig. 10, respectively. The
solid lines represent angular averages of the quantities over
the whole sphere at r ¼ 14 km, and the crosses indicate the
conditions inside the (still very small) volumes that fulfill
Δnν < 0 at 300 ms (170 ms) in the 9M⊙ (20M⊙) model
(the two instants marked by the vertical black lines). Since
the conditions in the μνe < 0 volumes are special and for
some quantities tend to be extreme compared to the
conditions on the rest of the sphere, the crosses do not
lie on the curves of the angular averages.5

The crosses in the second panel of Fig. 12 show that at
the marked instants the electron-neutrino chemical poten-
tial begins to become negative in the raisinlike spots that are
visible in the Aitoff projections of the two models (Figs. 4
and 10), whereas the angle-averaged values of μνe at r ¼
14 km are still somewhat higher, with a monotonically
decreasing trend with time. The remaining three panels
contain the evolution of density, electron fraction, and
temperature, again angle averaged at r ¼ 14 km. In both
models flavor-unstable raisin skins begin to occur when
the density reaches roughly 5 × 1013 g cm−3, whereas Ye
and temperature are different between the two models at
this time.
From Fig. 13 it becomes clear where these differences

originate from. The plot shows a set of isocontours for
different, fixed values of the electron fraction (color coded)
in the density-temperature plane. All contours are defined
by the condition μνe ¼ 0. At each point ðρ; TÞ this con-
dition is fulfilled only for a single value of the electron
fraction. Each μνe ¼ 0 contour encloses a ρ-T domain
where μνe > 0 for the Ye value of the contour, whereas
μνe < 0 holds for the same Ye value outside of this μνe ¼ 0

contour (see also Figs. 11 and 12 in Ref. [51]).
In the inset of Fig. 13, the evolution tracks of both SN

models in the ρ-T-Ye space, with all quantities angle
averaged at r ¼ 14 km, are superimposed on the contours
of vanishing neutrino chemical potential. The tracks start at
low values of temperature and density with a high value of
the electron fraction, and evolve from the lower left to the
upper right of the inset as the PNS contracts and heats up by
compression and conversion of electron degeneracy energy

4We note that the logarithmic dependence of μ̂ on nn=np is
weak, but also μe depends logarithmically on ne when electrons
are nondegenerate, and μe is proportional to n1=3e when electrons
are extremely degenerate.

5The crosses correspond to data at r ¼ 14 km and ðθ;ϕÞ ¼
ð109.00°; 57.375°Þ for the 9M⊙ model and ðθ;ϕÞ ¼ ð75.00°;
86.625°Þ for the 20M⊙ case.
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to thermal energy (Joule heating). ELN crossings become
possible when the electron fraction on the track matches the
Ye value of one of the contours, i.e., when the color of
the track and of a contour are the same. The symbols mark
the ðρ; TÞ locations when first noticeable flavor-unstable
spots occur in the two SN runs at r ¼ 14 km (correspond-
ing to the two vertical lines in Fig. 12).
In the 20M⊙ model the mass of the PNS grows faster

than in the 9M⊙ simulation because of the bigger mass-
accretion rate in the more massive progenitor. Therefore the
temperature in the PNS interior increases more rapidly and
more steeply with density, and reaches greater values,
allowing for a match of the electron fraction with one of the
μνe ¼ 0 isocontours more quickly and at a higher value of
Ye. As a consequence, fast flavor unstable conditions occur
earlier in the 20M⊙ model than in the 9M⊙ case.
Compressional and Joule heating and continuous dele-

ptonization are characteristic features of the neutrino-
cooling evolution of newborn NSs. Our study includes a
low-mass NS of a 9M⊙ progenitor as well as a more
massive NS in the 20M⊙ model. Both of them develop
flavor-unstable conditions in an increasing volume of the
convective layer (Fig. 12), and the rising temperature

FIG. 13. Contours of vanishing neutrino chemical potential
(μνe ¼ 0) in the temperature-density plane for different constant
values of Ye (color coded), evaluated for the nuclear equation of
state employed in our 3D SN simulations (SFHo from [52]). The
inset shows a zoom of the density interval between 1013 g cm−3

and 1014 g cm−3 with the evolution paths of the 9M⊙ and 20M⊙
models superimposed, also color coded for the evolving value of
hYei, angle averaged at a radius of 14 km in each model. Along
the tracks hYei decreases as the PNS deleptonizes; the evolution
therefore proceeds from the lower left to the upper right. Spatial
locations of flavor-instability begin to appear when hYei on the
track becomes equal to the Ye of a μνe ¼ 0 contour, which is
visible by the color of the evolution track matching the color of
the contour. The corresponding instants are approximately
marked by symbols, corresponding to the times of the vertical
lines in Fig. 12 (the cross belongs to the 9M⊙ model, the plus to
the 20M⊙ simulation).

FIG. 12. Time-dependent comparison of the 9M⊙ and 20M⊙
models with respect to the development of flavor-unstable skins
around regions of Δnν < 0, measured by the spatial volumes
Vjμνe<0 enclosed by these boundary layers (top panel). Also
displayed is the evolution of quantities that are relevant for
understanding this effect: electron-neutrino chemical potential
(μνe ; second panel), mass density (ρ; third panel), electron
fraction (Ye; fourth panel), and gas temperature (T; bottom
panel), all angle averaged at our representative radius of
r ¼ 14 km. The two vertical black lines mark the earliest mo-
ments of the evolution of both models (300 ms and 170 ms after
bounce, respectively) shown in Figs. 4 and 10. The crosses
indicate the conditions that are found inside the raisinlike
volumes with Δnν < 0 at these early times. Some of these
conditions tend to be extreme compared to the angular averages,
for which reason the crosses do not lie on the curves.
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naturally leads to a match of the decreasing Ye values along
evolution tracks with the Ye of isocontours for μνe ¼ 0

(Fig. 13). We therefore expect that fast flavor unstable
regions in the deep interior of PNSs are a generic
phenomenon during PNS cooling.

V. CONCLUSIONS

We performed a detailed investigation of 3D state-of-the-
art SN models for the presence of fast neutrino flavor
instability as well as to study the favorable conditions.
These fast conversions are associated with crossings in the
angular distribution of the ELN. However, the simulations
we analyzed did not provide the detailed neutrino angular
distributions. To overcome this limitation, we adopted a
novel method for calculating the growth rate of the
instability, which is based only on the angular moments
of the ELN up to second order [47]. We applied our
analysis to SN simulations of 9M⊙ and 20M⊙ progenitors,
which were recently conducted by the Garching group
[45,46]. In both models we found conditions for fast
flavor instability deep inside the PNS in a radial range
of 10 km≲ r≲ 20 km, where all flavors of neutrinos are
in the diffusive regime and close to local chemical
equilibrium.
We thus confirm similar recent detections of locations of

ELN crossings in the PNS interior based on Boltzmann
transport results in 2D time-dependent and 2D/3D fixed-
background SN models in Refs. [35,36]. However, we
showed that the direct evaluation of flavor-instability
conditions with the discretized output of numerical simu-
lations leads to the identification of only a few individual,
isolated points of ELN crossings. We argued that this
finding on grounds of our method, and most likely also by
the approaches used in the previous analyses, is a numerical
artifact and misses the full phenomenology of the physical
effects.
In reality the spatial locations of fast flavor instability are

extended, narrow boundary layers surrounding volumes in
3D space where the ν̄e number density exceeds the νe
number density. These surface layers have a thickness
of roughly a neutrino mean free path and they grow from
the skins of initially scattered, raisinlike inclusions to the
envelopes of increasingly larger regions, until they finally
form the inner and outer surfaces of a closed layer
with nν̄e > nνe .
The region where this happens is located within the

convective layer of the PNS where, on the one hand,
convective transport of the lepton number causes a rapid
decline of the electron fraction, and, on the other hand, a
local temperature maximum is further increased when the
PNS contracts and compression as well as the conversion
of electron-degeneracy energy to thermal energy heat the
stellar plasma. Rising density and temperature combined
with a decreasing electron fraction naturally drive this layer
in the PNS toward conditions where the electron-neutrino

chemical potential is μνe ≤ 0, implying an excess of ν̄e
relative to νe. Since the lepton-number emission dipole
associated with the LESA phenomenon is caused by
stronger PNS convection in the hemisphere of the dipole
direction, conditions for ELN crossings are more wide-
spread in the opposite hemisphere, where PNS convection
is weaker and therefore the electron fraction is not
efficiently replenished by leptons carried outward from
the edge of the nonconvective central core.
Our result backs the findings in [35,36] and points to

ELN crossings in the PNS convection layer as a generic
phenomenon during the cooling evolution of newborn NSs.
In contrast to these previous works we have demonstrated
that the regions of fast flavor unstable conditions are not
fluctuating and pointlike, but instead they are large-scale
and long-lasting spatial structures.
This opens new directions of research. Presently, how-

ever, it is unclear whether fast flavor conversions in the
deep interior of the PNS can have major consequences for
the PNS cooling and/or SN evolution. The instability takes
place in an extremely thin layer where μνe is close to zero.
Since these locations are deep inside the neutrinospheres of
all neutrino species, neutrinos of all flavors are very close to
chemical equilibrium. Therefore μνe ≈ 0 implies that νe and
ν̄e possess phase-space distributions that are very similar
not only to each other but also to those of muon and tau
neutrinos. At such conditions flavor exchange might have
little impact on the overall conditions. Given the impor-
tance of potential effects, our work should stimulate further
investigations. In view of the mutual support between our
results and those obtained in Refs. [35,36], we conclude
that our method based on angular moments is well suitable
to analyze SN models computed with neutrino transport
schemes that do not provide the detailed neutrino angular
distributions.
The presence of fast conversions adds an additional

layer of complexity to SN simulations. The current para-
digm of flavor conversions is based on a separation from
the treatment of neutrino interactions and transport.
However, if fast conversions occur in the region of neutrino
spectra formation or even deep inside the PNS, a self-
consistent characterization of both of these phenomena
will require new strategies for a simultaneous treatment of
flavor oscillations and collisional effects. This will be a
formidable task, since fast flavor conversions occur on time
and length scales much shorter than usually resolved in
global simulations of stellar collapse and explosions.
Therefore, new methodical approaches will be needed. It
is obvious that a huge amount of work still remains to be
done to understand the role of neutrino flavor conversions
in the cores of collapsing stars.
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