
Knowledge Aggregation with Subjective Logic in Multi-Agent
Self-Adaptive Cyber-Physical Systems

Ana Petrovska
Technical University of

Munich

Munich, Germany

petrovsk@tum.de

Sergio Quijano
Technical University of

Munich

Munich, Germany

sergio.quijano@in.tum.de

Ilias Gerostathopoulos
Vrije Universiteit

Amsterdam

Amsterdam, Netherlands

i.g.gerostathopoulos@vu.nl

Alexander Pretschner
Technical University of

Munich

Munich, Germany

pretschn@in.tum.de

ABSTRACT

Modern software systems, such as cyber-physical systems (CPSs),

operate in complex and dynamic environments. With the continu-

ous and unanticipated change in the operational environment, these

systems are subjected to a variety of uncertainties. Self-adaptive

CPSs (SACPSs) can adjust their behavior or structure at run-time as

a response to the changes in their perceived environment. Namely,

self-adaptation is commonly realized through a MAPE-K feed-

back loop incorporating newly derived knowledge obtained by

the sensed data from the run-time monitoring, during the opera-

tion of decentralized SACPSs. However, to build the knowledge,

the need for run-time observations’ aggregation and reasoning

emerges, since the observations made by the decentralized systems

might be conflicting. In this paper, we propose an approach for

observations aggregation and knowledge modeling in SACPSs that

is domain-independent and can deal with inaccurate, partial, and

conflicting observations, based on the formalisms of Subjective

Logic.
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1 INTRODUCTION

In recent years, the fast growth of cost-effective embedded sys-

tems with continuously increasing computation power has created

a solid foundation for the emergence and expansion of omnipresent

Cyber-Physical Systems (CPSs) across different domains, with grow-

ing socio-economic influence. CPSs are embedded systems that are

distributed, networked, and interconnected. Examples range from
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environmental monitoring systems to robotic fleets and self-driving

cars. Their close connection to the physical world means that they

are exposed to high uncertainty during their operation. Namely,

modern CPSs need to be able to operate efficiently and reliably

within a continually changing, uncertain, and unanticipated envi-

ronment (execution context) [25, 27, 29]. The context is the relevant

part of the environment for a particular system. When the system

under consideration is a CPS, then the relevant objects contained

in the context can be other homogeneous and heterogeneous sys-

tems, entities, and processes in the physical world or cyberspace,

including humans.

A common approach to deal with run-time changes and un-

certainties is to make the CPSs self-adaptive. Self-adaptation is

traditionally realized by an adaptation logic based on closed feed-

back loop—MAPE-K, with four consecutive functions, i.e.,Monitor,

Analyse, Plan, Execute with shared Knowledge among all the ele-

ments of the loop [11, 12, 23]. The Knowledge component comprises

models of the CPSs and the context where they are operating.

Due to the dynamicity of the CPSs and their execution context,

these models cannot be created based on assumptions made at

design time, but instead they need to be models at run-time [5, 6, 15,

34]. Concretely, the run-time contextmodel should get continuously

updated in response to the changes in the context, reflecting the

actual operational context during the execution of the CPSs. To

update the model—and accoringly the Knowledge component—the

need for run-time information aggregation and reasoning, of what

each CPSs individually observes, emerges.

When the systems are complex and heterogeneous, like CPSs,

a single MAPE loop for managing all adaptations in the system

may not be sufficient [28, 36]. Instead, self-adaptive CPSs (SACPSs)

typically feature more than a single MAPE loop. Having multiple

control loops in SACPSs also raises a number of challenges in their

development and operation. A main challenge is how to coordinate

the operation of the different MAPE loops. To address this, previous

works have proposed the use of design patterns for decentralized

MAPE control loops in self-adaptive systems [36].

In this work, we focus on SACPSs in which MAPE-K loops are

structured according to the Master-Slave pattern [36]. In this pat-

tern, one or more MAPE-K loops at a lower level perform decentral-

ized monitoring and execution of the adaptation actions. However,

centrally, there is a single high-level MAPE-K loop that performs

analysis on the monitored data, updates the knowledge, and does

the planning accordingly (Figure 1). In particular, the high-level

MAPE-K loop needs to reason on the uncertain, inaccurate, and

potentially conflicting observations coming from the decentralized

monitoring, which, once aggregated, they become knowledge.
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Knowledge aggregation in SACPSs that follows the Master-Slave

pattern or any other pattern with decentralized monitoring and cen-

tralized analysis is essential since it can have a significant influence

on the subsequent phases of planning and executing. Consider, for

example, the case of a route planning algorithm that relies on knowl-

edge aggregation from distributed sensors from multiple agents,

which may give conflicting readings. Knowledge aggregation in

SACPSs is also challenging, since, as mentioned above, it needs to

take into account the inherent uncertainties related to each moni-

tor and provide ways to synthesize and consolidate knowledge in

different cases where conflicts arise.

Figure 1: Modified Master-Slave pattern from [36]..

Although knowledge and its aggregation is an important concern

for MAPE-K patterns as also acknowledged by Weyns et al. [36],

there is a scarcity of approaches for modeling self-adaptation knowl-

edge that allows for capturing uncertainty at a local level and for

effectively aggregating knowledge for decision making at a global

level. Instead, knowledge modeling is typically treated as a domain-

specific task, leading to ad-hoc solutions to knowledge aggregation.

In response, in this paper, we present an approach for obser-

vations aggregation and knowledge modeling in SACPSs that is

domain-independent and can deal with reasoning on inaccurate,

partial, and conflicting observations. Concretely, our approach uses

Subjective Logic to build knowledge by aggregating partial ob-

servations of the context made by each agent in a decentralized

multi-agent SACPSs.

Subjective Logic is an enriched probabilistic logic-based frame-

work for artificial reasoning, based on which Subjective Opinions

about a knowledge item from the different monitors are created.

Additionally, Subjective Logic proposes different fusion operators

that allow aggregating the opinions to a final actionable set of

knowledge items in the analysis phase, based on which the run-

time context model in the Knowledge component is accordingly

updated, and later utilized to plan the next adaptation actions.

In short, the main contributions of the paper are the following:
• A subjective logic-based approach for knowledge aggrega-

tion in decentralized monitoring of partial context observa-

tion in SACPSs.

• An open-source implementation of a ROS-based simulated

multi-robot system, based on the robotics use case, further

explained in Section 2.

2 RUNNING EXAMPLE

To motivate the need for knowledge aggregation in self-adaptive

systems and illustrate our approach, we introduce a reference prob-

lem from the domain of CPSs, in particular from the robotics domain,

which is also used as a running example throughout the paper.

The reference problem is comprised of several cleaning robots

operating in the same context, e.g., a room. Each robot is able

to autonomously move to a destination while avoiding 1) static

obstacles (e.g., walls, furniture, etc.) and 2) dynamic obstacles (e.g.,

other robots, humans) along its way. New dirt tasks continuously

appear in the room, and the robots discover them in a distributed

manner with a 2D laser LIDAR scanner, capable of sensing 360

degrees radius. The robot’s observation space is determined by

the scanning distance of the laser scanner, which is less than the

room’s dimensions. Hence, each robot can only observe partially

the room in which it operates. Consequently, the robots can detect

the newly appearing dirt tasks only if they are within their range

of observation.

The mission of the robots is to keep the room as clean as possible

by discovering the dirt tasks and then cleaning themmost efficiently.

However, the fact that the robots have only a partial observation of

the room brings inefficiency to the overall performance, for example,

when one part of the room is getting dirtier than the other.

Therefore, the partial observations made by each robot are sent

periodically to a Cleaning Controller, whose responsibility is
to aggregate the received observations and assign the discovered

dirt tasks to the robots, while respecting the optimality criteria.

Once a dirt task is assigned to the robot, it navigates and moves to

the location of the corresponding task, accomplishes it, and then

navigates to the next task in its queue.

We model the context as a grid map with a size equal to the size

of the room (Figure 3). The cells in the grid are either occupied by

static obstacles, or by dynamic obstacles: robots or dirt tasks. A

context variable models whether a specific cell of the grid map has

a dirt task or not, so there are as many context variables as cells in

the map of the room. Dirt tasks appear per cell; therefore, in the

paper, we use dirt task and dirt cell interchangeably.

The multi-robot cleaning system is subject to external (contex-

tual) and internal (system) uncertainties, manifested via the contin-

uous appearance of tasks in the room and different sensor uncer-

tainties, respectively. Occasionally, each robot will mistakenly sense

a dirt task when there is none, and on the contrary, fail to sense

an actual task. This potentially results in different robots holding

different opinions regarding the space they observe, which requires

appropriate conflict resolution during the aggregation process.

In this setting, each robot is an agent of the SACPS and can be

modeled via a low-level MAPE-K loop (with respect to the Master-

Slave pattern). Each robot independently monitors its surroundings

and executes actions to accomplish its assigned tasks. Cleaning
Controller has the role of the high-level MAPE-K loop performing

the centralized analysis and planning.

3 BACKGROUND ON SUBJECTIVE LOGIC

Subjective Logic (SL) [19, 20] is a framework for artificial reason-

ing, in which the general idea is to enrich probabilistic logic by ex-

plicitly including (1) uncertainty about probabilities and (2) subjec-

tive belief ownership. It allows to express a degree of (un)certainty

about a subjective belief (called opinion).

To reason with propositions whose truth values are uncertain,

Bayesian probability and statistics can also be employed [18]. How-

ever, this type of probabilistic logic does not allow to seamlessly

model situations where different agents express their beliefs about
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the same proposition. SL explicitly integrates the subjective nature

and ownership of beliefs in its formalism, allowing the combina-

tion of different beliefs about the same proposition. Nevertheless,

the interpretation of a SL opinion in the Bayesian perspective is

possible by mapping opinions into probability distributions [19].

SL is based on the Dempster-Shafer Theory of evidence (DST), a

flexible theoretical framework to represent uncertainty introduced

by Dempster [13] and Shafer [32]. In particular, DST’s rule of com-

bination, originally proposed for merging sources of evidence in

DST, is also used in SL where it represents a method of preference

combination embodied in SL’s belief constraint operator [21]. More-

over, the idea of explicit representation of ignorance is inherited

from the Dempster-Shafer belief theory [19, 32].

3.1 Subjective Logic Opinions

The fundamental building block of SL is a subjective opinion

that represents the amount of uncertainty on the degree of truth

about a proposition. The representation of a subjective opinion is a

composite function consisting of belief masses, uncertainty mass

and base rate. An opinion expresses a belief about the state of a

variable which takes its values from a domain (t.e., a state space).

A domain represents all the possible states of a variable situation.

Domains can be binary or n-ary. A binary domain can be denoted

X = {x ,x}, where x is the complement of x . Binary domains are
typically used when modeling situations that have only two alter-

natives, such as the case of our running example, where a location

in the map can either have dirt or not. Situations with more than

two alternatives have n-ary domains. If X denotes a binary or an

n-ary domain, X can be a random variable which takes its values

from X. For instance, we model a situation in our running example

using binary random variables X that take their values from the

binary domain X = {dirt, no_dirt}.

Binomial Opinion Representation. In SL, the notationwA
X
is used

to denote opinions, where X indicates the target variable or propo-

sition to which the opinion applies, and A indicates the agent who

holds the opinion. Opinions on binomial variables (e.g. variables

with domain X = {x ,x}) are called binomial opinions, and a special
notation is used for their mathematical representation.

Definition 1 (Binomial Opinion [20] ). Let X = {x ,x} be a binary
domain with binomial random variable X ∈ X. A binomial opinion

about the truth/presence of value x is the ordered quadrupletwx =

(bx ,dx ,ux ,ax ), where the additivity requirement bx +dx +ux = 1

is satisfied, and where the respective parameters are defined as

bx : belief mass in support of x being TRUE (i.e. X = x ),
dx : disbelief mass in support of x being FALSE (i.e. X = x ),
ux : uncertainty mass representing the vacuity of evidence,
ax : base rate, i.e., prior probability of x without any evidence.

Opinions with ux = 1 and ux = 0 are called vacuous and dog-

matic, respectively. Finally, the expected probability of a binomial

opinion about value x is defined by: P(x) = bx + axux
Illustration on the Running Example. In our running example,

each robot R issues an opinion for each cell (i, j) that they are able
to observe. A binomial opinion about the presence of dirt on a cell

is the ordered quadrupletwR
i, j = (bx ,dx ,ux ,ax ) with

bx : belief mass in support of a tile being dirty,
dx : disbelief mass in support of no dirt,

ux : uncertainty of the sensor observation,
ax : 1/2 (taking an unbiased viewpoint).
The belief mass distribution is calculated as a function of the

robot’s sensor range and the distance to a detected object. In Section

4 we discuss the details of the detection process and the correspond-

ing belief/disbelief and uncertainty masses calculation.

3.2 Combination of Subjective Logic Opinions

When there are more than one opinions for a proposition, there

is often the need to merge or combine them into a single collec-

tive opinion. Such knowledge aggregation with Subjective Logic

can be realized through a process called Belief fusion [20]. Multi-

ple distinct agents, denoted A1, A2, ... AN , can produce different

and possibly conflicting opinionswA1

X
,wA2

X
,...wAN

X
about the same

variable X . Multi-source fusion consists of merging the different

sources into a single source that can be denoted �(A1,A2, ...,AN ),

and mathematically fusing their opinions into a single opinion

denotedw
�(A1,A2, ...,AN )
X

.

Subjective logic provides a variety of operators, generalizing

and extending operators from binary logic and probability calculus,

including different belief fusion operators: averaging belief fusion,

cumulative belief fusion, weighted belief fusion, consensus & compro-

mise fusion, and belief constraint fusion [33]. Each of these fusion

operations is designed to determine the shared belief and uncer-

tainty of a group of evidence sources, with different applications

depending on how evidence should be combined.

In the rest of the section, we detail on the Cumulative Belief

Fusion and Consensus & Compromise Fusion operators, which we

have experimented with in the running example.

Cumulative Belief Fusion (CBF). CBF is suitable when it is as-

sumed that the amount of independent evidence increases with

the inclusion of more independent sources [20, 22]. If no dogmatic

opinion is present, CBF cumulates the evidence parameters of all

opinions. Alternatively, only dogmatic opinions are considered in

the cumulation of evidence. Vacuous opinions have no influence

on the result. Applying CBF to non-conflicting, uncertain opinions

reduces the uncertainty of the resulting opinion. On the other hand,

applying CBF to conflicting opinions with the same uncertainty

mass has the effect of canceling them out. The CBF operator is

associative, commutative, and non-idempotent. The last property

means that the fusion of equal opinions will in general produce an

opinion that is different from the initial ones.

Consensus & Compromise Fusion (CCF). CCF is suitable when

there is a need for keeping shared beliefs from different sources

and transforming conflicting beliefs into compromise belief [20].

Conflict resolution is achieved by first computing a consensus, con-

serving the agreed weight of all sources, and then computing a

weighted compromise for the residue belief mass based on the rela-

tive uncertainty and the corresponding base rates [33]. Similar to

CBF, vacuous opinions are neutral elements in CCF fusion. Con-

trary to CBF though, CCF is idempotent, meaning that fusing equal

opinions produces the same opinion. Technically, the calculation

of CCF consists of three phases, namely the consensus phase, the

compromise phase, and the normalization phase[22, 33].

Illustration on the Running Example. The different robots in our

running example are the agents that hold independent opinions
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Figure 2: Overview of the approach.

about the cells that they observe being dirty or not. CBF is known

to be well suited for fusing opinions coming from sensor-generated

evidence [22], while CCF is well suited for fusing opinions coming

from different experts. Both operators can be used in the running

example, since they can cope with shared beliefs (e.g. robots de-

tecting dirt in a cell with low confidence), conflicting beliefs (e.g.

when a robot detects dirt in a cell due to sensor noise while another

does not), and vacuous opinions (e.g. a robot does not observe a

cell at all since it is out of its LIDAR range). Choosing CCF over

CBF allows us to better deal with totally conflicting opinions at the

cost of higher uncertainty in the merged opinion.

4 APPROACH

4.1 Overview of the Approach

Our approach assumes that there are several MAPE-K loops in

the adaptation logic of the SACPS under study and that the MAPE-K

loops are structured accordingly to the Master-Slave pattern [36].

In particular, there are several decentralized Monitor and Execute

components, and single centralized Analysis and Plan components,

as depicted in the overview of the approach in Figure 2.

Monitor.Monitor components belong to the lower-level MAPE-K

loops. They make independent observations about the SACPS itself

and the context in which the SACPSs operate. These observations

are partial—only cover part of the context, and incorrect—they may

includemistakes due to sensor noise and inaccuracies. EachMonitor

has a Subjective Opinion Creator entity, which is responsible for

creating Subjective Logic opinions from each agent about different

context variables. Once the Subjective Logic opinions are created,

they are independently forwarded to the Analysis component. The

Subjective Opinion Creator is further explained in Section 4.2.

Running example. Each robot in our running example represents a

monitor component. It periodically senses its own position and the

presence of dirt tasks in the room. Its observations are both partial,

due to limited range of its LIDAR sensors, and sometimes incorrect,

due to noise in its LIDAR sensors. For illustration, Figure 3 shows

that each robot, at a point in time, can only observe part of the

context.

Analysis. The analyzer is a centralized component in our ap-

proach that collects the Subjective Logic Opinions from the dis-

tributed Monitor components and updates the run-time context

model in the Knowledge component. In particular, the Knowledge

Aggregator entity is responsible for combining the opinions from

different agents about different context variables using a Subjective

Logic operator.

Running example. In our running example, the Analyzer is a com-

ponent housed in Cleaning Controller. It aggregates the partial
observations by fusing the opinions made by robots for the cells that

they are observing. The Knowledge Aggregator is further explained

in Section 4.3.

Plan. The Planner is another centralized component in our ap-

proach that is responsible for selecting adaptation actions or plans,

which are later being executed by each lower-level MAPE-K loop.

We assume that the Planner relies on the run-time context model

represented by the context variables, upon which agents issue opin-

ions in the previous step. However, we do not prescribe how to

perform planning: any planning approach (e.g., rule-based, goal-

oriented) can be used within our approach.

Running example. In our running example, the Planer is also part of

the centralized Cleaning Controller. It takes as input the aggre-
gated knowledge in terms of fused opinions about the appearance of

dirt tasks in the cells. The discovered, unassigned tasks are assigned

to the robots, as exlained in Section 2.

Execute. Executor components belong to the lower-level MAPE-

K loops. They obtain adaptation actions or plans from the Planner

of the higher-level MAPE-K loop and independently execute them.

Running example. In the running example, each robot represents

an Executor component. It keeps a self-adaptive priority queue of

the locations of the dirt tasks that a robot needs to accomplish. The

queues of the robots are modified at run-time, based on the distance

of the robot closest to the newly appeared cleaning task. As long

152



D
r

R1

R2

R3

߱߱ଵଵ,ଵଵ,ଵ߱߱ோଵ ଵଵோோ

߱߱,,,߱߱߱߱ோோோ
Figure 3: Grid map and partial context observation

as there are tasks in its queue, each robot picks the next task and

navigates autonomously to the corresponding cell to clean the task.

4.2 Subjective Opinion Creator

A robot R issues a subjective opinion wR
i, j for each cell (i, j) in

the grid map that it is within its detection range r (Figure 3). This
opinion depends on the Euclidean distance D of the cell from the

robot andmodels whether that cell contains dirt or not. In particular,

the parameters of an opinionwR
i, j = (bX ,dX ,uX ,aX ) are calculated

by the following formulas:

bX =

{
1 − uX , for X = dirt
0.0,otherwise

dX =

{
1 − uX , for X = no_dirt
0.0,otherwise

uX =min(0.99,
D

r
) aX = 1/2

The further a cell is from the robot, the higher the uncertainty

mass uX of the robot’s opinion. Observations at the edge of LI-

DAR sensor range are considered highly uncertain, but can still

contribute during knowledge aggregation; hence, we assign an un-

certainty value of 0.99 instead of a totally uncertain opinion (i.e.,

uX = 1). If a robot detects dirt on a cell, the belief mass bX be-

comes the complement of uX and the disbelief mass dX for that cell

becomes zero. On the contrary, if no dirt is detected, bX becomes

zero and dX becomes the complement of uX . The base rate aX is

always considered to be the default base rate for a binary domain,

i.e. aX = 1/2. Finally, no subjective opinions are issued for (i) cells
which are occupied by static obstacles (e.g. walls) since these are

assumed to be accurately detected, (ii) cells that lie outside of the

detection range of the robot.

4.3 Knowledge Aggregator

When the system is first initialized, the run-time context model

does not contain information that the Analyzer can use to carry out

its tasks. We model this situation by creating a vacuous subjective

opinion for each cell of the context grid map. This initialization

serves two purposes in our subjective logic approach: (1) a vac-

uous opinion will inform the analyzer that there is no previous

knowledge about a context variable and (2) when the first knowl-

edge aggregation is executed, the existing vacuous opinions do not

influence in the final result.

No conflict Conflicting observations

Opinion Inputs Aggregation Inputs Aggregation

R1 R2 CBF CCF R1 R2 CBF CCF

bx 0.630 0.010 0.631 0.634 0.000 0.010 0.004 0.004

dx 0.000 0.000 0.000 0.000 0.630 0.000 0.628 0.630

ux 0.370 0.990 0.369 0.366 0.370 0.990 0.369 0.366

ax 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

P(x) 0.815 0.505 0.816 0.817 0.185 0.505 0.188 0.187

Table 1: Knowledge aggregation of two robots’ observations

The knowledge aggregation takes place each time a robot in-

forms the Knowledge Aggregator of a made partial observation of

the context. For the cells covered in the partial observation, subjec-

tive opinions are issued. Additionally, the Knowledge Aggregator

extracts the previously-stored opinions for the corresponding cells

from the Knowledge. For each cell, both opinions are then fused

and aggregated, and the run-time context model in the Knowledge

is updated accordingly. This process is executed with the same

frequency for all the robots scanning their surrounding area.

This aggregation step aims to solve potential conflicting ob-

servations, and at the same time, increase the confidence of the

observations, according to the chosen subjective logic operator.

As an example, let us consider the situation illustrated in Fig-

ure 3, where robots R1 and R2 hold overlapping partially observed
contexts and a dirt cell (depicted with a yellow star) is detected.

When the knowledge aggregator receives the independent partial

observations sent by the robots, it initiates the aggregation process.

Let us further consider two different scenarios: (1) R1 and R2 detect
dirt in the same cell and, (2) R1 does not detect dirt but R2 does.
Using the formulas described in Section 4.2, Table 1 shows the cal-

culated opinions for both scenarios, and the knowledge aggregation

results using CBF and CCF operators.

In both scenarios, we observe improvement in the confidence

of the aggregated observations, i.e., the uncertainty mass in the

aggregated opinion decrease compared to the individual uncertainty

masses of each robot’s opinion (blue cells in Table 1). However,

in the presence of conflicting observations, the resulting belief

masses reflect a consensus and compromise of the individual robots’

opinions (yellow cells in Table 1); this compromise belief is reflected

in the expected probability P(x) calculated as explain in Section 3.1.
The resulting P(x) of the aggregated opinions is then used by the
Analyzer to decide when the detected dirt should be considered as

a goal to be assigned to one of the participating robots.

5 IMPLEMENTATION

In this section, we discuss the implementation of our testbed

based on the reference problem, which was previously described in

Section 2. Robotics is an inherently complex domain, particularly

when considering not only one but multiple agents. So merely

creating and setting up a realistic multi-robot system presents a

challenge by itself. By providing a simulated, yet physically correct

representation of the robots with their sensors and actuators, and

the context where they are operating, our current implementation

provides a foundation for various applications and experiments,

which can also be easily modified accordingly to the individual

needs of other researchers.
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Figure 4: Result for a simulation of 2 robots with and with-

out knowledge aggregation.

In our implementation, the entire communication is based on the

Robot Operating System (ROS). For simulating the robotics system

we use Gazebo [1, 24], and the robots we simulate are TurtleBot

3 Burger1. With our implementation, one can simulate as many

robots, as long the number of robots makes sense in the given room.

Additionally, different room maps, from the one currently consid-

ered in our system, can be used. Gazebo relies on a well-established

physics engines, which enables high physical [10], functional [2]

and visual [31] fidelity. Simulations with high fidelity closely resem-

ble the real world, meaning that the model and even the physics

of the robots, the environment, including the static and dynamic

objects are simulated as realistically as possible. The use of ROS al-

lows the system to be deployed on real, physical robots without any

modification. The source code of the implementation, together with

complete documentation, and installation instructions are avail-

able on the following link: https://github.com/squijanor/knowledge-

aggregation-subjective-logic.git. For subjective logic, we have used

an open-source Java library2.

6 PRELIMINARY EXPERIMENTS

6.1 Setup

The testbed provides a simulation of n robots deployed in a room
spanning 10 x 10m. To evaluate the knowledge aggregation ap-

proaches, we conducted five series of experiments, 10 minutes each.

For the simulation of the appearance of new tasks, we used a ran-

dom seed in each experiment, and to guarantee a better replication

of the test scenarios, we used a fixed frequency with which the new

tasks are created. We compare these results with a base scenario

without knowledge aggregation. In this scenario, the Cleaning
Controller does not aggregate nor solve conflicts in the observa-
tions made by different robots; instead, it proceeds to create goals

directly from the observations received from every individual robot.

This might result in goals at locations where dirt tasks do not exist

or locations that are different from the real locations of the tasks.

6.2 Preliminary Results

Figure 4 shows first results from experiments comparing no ag-

gregation, and aggregation with CBF and CCF. CBF requires the

1https://www.turtlebot.com/
2https://github.com/vs-uulm/subjective-logic-java

fusion of different sources to increase the confidence in the obser-

vations, whereas CCF trades-off conflict resolution for a higher

uncertainty in the merged result. We used 0.5 as expected probabil-

ity threshold in the aggregated subjective opinions to determine

when the detected task should be assigned as a goal to a robot. By

adjusting this parameter, the effect on the discovery time can be

controlled. In our first experimental results, we see that the discov-

ery time increases for both CBF and CCF. This is expected, since

they need more evidence (and hence time) to create cleaning goals.

The attainment time is roughly the same in all cases.

7 RELATEDWORK

Models@RuntimeModels@Runtime [5, 6, 15, 34] are a promis-

ing approach to managing complexity in run-time environments,

based on software models. They are considered as adaptation mech-

anisms, or rather support for realizing self-adaptive systems. Ac-

cording to [6] the run-timemodels provide “abstractions of run-time

phenomena” and they can be used in a various ways by different

stakeholders. Additionally, the models should represent the system

by reflecting the system and its current state and behavior. Namely,

if the underlying system changes, then the representations of the

system—the models—should also change. Floch et al. in [15] and

Bennaceur et al. in [5] identify the need for mechanisms to reason

about the system and its environment in models@runtime, without

proposing any concrete solution.

Uncertainties in Self-adaptive systems.The term uncertainty

has been broadly discussed across many disciplines and sciences.

However, in the field of self-adaptive systems, uncertainties have a

central role as the main triggers for a system to self-adapt so that

the business continuity of the system can be preserved during run-

time. Across the literature, there have been many proposed works

that have tried to understand the scope and the effects that the

uncertainties have on the dynamic systems[8, 14, 16, 25, 26, 30, 35].

Ramirez et al. [30] classify uncertainties on three different levels,

based on the uncertainties’ sources: uncertainties on the require-

ment level, design level and runtime level. According to the authors,

the potential sources of runtime uncertainties are mainly related to

interactions between the system and its context, including sensor

noise, inaccuracy of sensor measurements, or an unpredictable sys-

tem environment. Besides the proposed mitigation techniques for

unpredictable environment [3, 7, 9, 17, 37], sensor failure [7, 17]

and incomplete information [4, 9, 37], there are no identified tech-

niques to mitigate the rest of the run-time uncertainties including

sensor noise, sensor imprecision and inconsistency [30]. We hope

that with the proposed approach in this paper, we are contributing

towards narrowing this gap.

8 CONCLUSION

In this paper, we propose an approach that uses subjective logic

to collaboratively aggregate the partial observations of the con-

text made by each CPS (robot) in a multi-agent setup. Based on

the aggregated observations, we accordingly update the run-time

context model of the context in the knowledge of the adaptation

logic, which is later utilized by the adaptation logic to analyze and

plan the next adaptation actions.
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Through preliminary experiments, we demonstrated that Subjec-

tive logic is a flexible framework to merge knowledge from different

agents. The provided testbed sets the basis to experiment with dif-

ferent methods for knowledge aggregation. In this work we only

evaluated the application of CBF and CCF operators. In future work,

we plan to evaluate the remaining set of operators, which will pro-

vide a complete insight into the full capabilities of subjective logic

as a means for knowledge aggregation. Also, to guarantee the inter-

nal validity of our testbed, we will conduct different and multiple

trials to determine the statistical soundness of our results. Namely,

we plan to increase the number of experiments, testing different

room distributions and the simulation of multiple robots.
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