
robotics

Article

Fast Approximation of Over-Determined
Second-Order Linear Boundary Value Problems by
Cubic and Quintic Spline Collocation

Philipp Seiwald * and Daniel J. Rixen

Department of Mechanical Engineering, Chair of Applied Mechanics, Technical University of Munich,
Boltzmannstraße 15, 85748 Garching, Germany; rixen@tum.de
* Correspondence: philipp.seiwald@tum.de

Received: 3 May 2020; Accepted: 23 June 2020; Published: 25 June 2020
����������
�������

Abstract: We present an efficient and generic algorithm for approximating second-order linear
boundary value problems through spline collocation. In contrast to the majority of other approaches,
our algorithm is designed for over-determined problems. These typically occur in control theory,
where a system, e.g., a robot, should be transferred from a certain initial state to a desired target state
while respecting characteristic system dynamics. Our method uses polynomials of maximum degree
three/five as base functions and generates a cubic/quintic spline, which is C2/C4 continuous and
satisfies the underlying ordinary differential equation at user-defined collocation sites. Moreover,
the approximation is forced to fulfill an over-determined set of two-point boundary conditions,
which are specified by the given control problem. The algorithm is suitable for time-critical
applications, where accuracy only plays a secondary role. For consistent boundary conditions,
we experimentally validate convergence towards the analytic solution, while for inconsistent
boundary conditions our algorithm is still able to find a “reasonable” approximation. However,
to avoid divergence, collocation sites have to be appropriately chosen. The proposed scheme is
evaluated experimentally through comparison with the analytical solution of a simple test system.
Furthermore, a fully documented C++ implementation with unit tests as example applications
is provided.
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1. Introduction

1.1. Literature Review

In almost every field of natural science and engineering we face differential equations, which are
typically used for modeling dynamical systems. Especially in engineering, the more specific case of
boundary value problems (BVP) is very prominent. In other words, one often searches for the behavior
of the investigated system between some kind of fixed, i.e., known, spatial or temporal boundaries.
One can try to derive the analytical solution to the problem, however for complex systems this can be
difficult or even impossible. In such cases, it can be sufficient to approximate the solution for which a
variety of techniques exists.

Methods based on finite differences approximate the derivatives by difference quotients to obtain
a system of equations which depends only on the primal function. This allows a solution to be found
by formulating a linear system of (algebraic) equations representing the transformed system at certain
grid points. In contrast, shooting methods aim at the iterative solution of an equivalent initial value
problem (IVP), which is typically easier to handle than the original BVP. While for single shooting
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the IVP is evaluated over the complete time interval, multiple shooting considers a partitioned time
domain. Another technique is given by the finite element approach, which is mainly used for partial
differential equations (PDE) as they occur, for example, in structural-, thermo-, and fluid dynamics.
Typically finite element methods are based on a weak formulation of the residual and on splitting the
considered domain into elements on which the local base functions to approximate the solution are
defined. Although designed for PDEs, they can be applied to the simpler case of ordinary differential
equations (ODE), which are the focus of this contribution (see, for example, [1]). A variety of other
techniques exist. However, these three groups appear to be used the most in the field of engineering.

In the following, we approximate the solution through spline collocation using piecewise
polynomial trial functions, which is a well-known technique to solve BVPs, see, for example, [2–4].
Over the past decades, various algorithms emerged, which can be classified into two types. The first
type, also known as smoothest spline collocation (or just spline collocation as in [5]), aims at matching
the differential equation at one collocation site per spline segment, which is typically a knot or the
mid-point of the segment, while simultaneously forcing the spline to have maximum smoothness,
i.e., highest possible continuity [5]. The second type, in [5] called Gaussian collocation, removes the
constraints on higher order continuity and instead uses more collocation sites, which are typically
chosen to be the Gaussian points of each segment. This class, which is also called orthogonal spline
collocation [6], originates from [3] and aims at maximizing the order of convergence. In order to
also provide a competitive convergence for the first type of methods, special variants for quadratic
and quintic spline collocation have been proposed in [7] and [8], respectively. Optimal methods for
quadratic and cubic splines on non-uniform grids, i.e., for an inhomogeneous segmentation of the
spline, have been presented in [5].

Note that in addition to general purpose codes, such as COLSYS (FORTRAN) for non-linear
mixed-order systems of multi-point boundary value ODEs [9], highly specialized algorithms,
which aim at obtaining the best possible approximation for certain use cases, have also been
published. Recent examples are methods for integro-differential equations [10] or fractional differential
equations [11], which occur in certain material models exhibiting memory effects. Along with
ODEs, various kinds of (multi-variable) PDEs have been investigated. See [6] for a survey on
corresponding Gaussian collocation methods. Note that, for PDEs, the time domain is typically
discretized using finite differences, e.g., by the Crank–Nicholson approach as used in [6], or the
second-order backward difference in [10], while spline collocation is used for approximating the
spacial variables. Lastly, methods for differential algebraic equations (DAE) have also been developed,
e.g., the COLSYS extension COLDAE [12] for semi-explicit DAEs of index 2 and fully implicit DAEs of
index 1.

In our opinion, despite the variety of techniques, there is still a lack of simple methods prioritizing
execution time over approximation quality, which is essential for time critical control applications.
The aim of this contribution is to provide an algorithm satisfying these needs while focusing on the
special case of second-order linear ODEs, which are very common for dynamic systems. Moreover,
we focus on over-determined BVPs, i.e., where more boundary conditions (BC) are given than necessary.
This may at first seem to be a restriction of our algorithm since it needs more information than other
implementations; however, it allows us to also consider inconsistent BVPs, i.e., the case where no exact
solution to the problem exists.

1.2. Motivation

It might appear strange to search for an approximation of something that actually does not exist.
However, we face exactly this situation during walking pattern generation for our humanoid robot
LOLA, cf. Figure 1 left. In particular, we use a simplified model of the robot’s multi-body dynamics,
cf. Figure 1 right, to plan the center of mass (CoM) motion over a certain time horizon. The planned
CoM motion resembles the dynamics of the model, which can be formulated as second-order linear
ODE, and is constrained to certain values on position-, velocity- and acceleration-level at the boundaries
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of the planning horizon. This leads to an overdetermined BVP of the type investigated in this
contribution. The BCs at the beginning reflect the current state of the robot, e.g., the standing pose
in front of a platform, while the BCs at the end represent the target state, e.g., the standing pose on
the other side of the obstacle, cf. Figure 2. For a seamless motion of the robot it is crucial to guarantee
the satisfaction of the BCs, i.e., a perfect match of the boundary states. In contrast, it is sufficient to
approximate the dynamics of the underlying ODE since it is derived from a simplified model which
is an approximation in itself. This is the key idea behind the formulation of an over-determined
BVP, which may thus not have a proper “real” solution. To the authors knowledge, all comparable
algorithms assume that a solution of the BVP exists, while most of them also require it to be unique
and “sufficiently” smooth.

Figure 1. Humanoid robot LOLA developed at the Chair of Applied Mechanics, Technical University
of Munich (TUM). The proposed algorithm is used within the walking pattern generation framework
of LOLA, see [13] for details. The robot is 1.8 m tall and weights about 60 kg. Left: photo and kinematic
configuration of the system with 24 actuated degrees of freedom. Right: simplified model of multi-body
dynamics with torso mass mt, foot mass m f and torso mass moment of inertia Θt which (together with
the ground reaction forces/torques) contribute to the ordinary differential equation (ODE) describing
the center of mass (CoM) dynamics (blue).

Explaining the technical details of the walking pattern generation framework of LOLA goes beyond
the scope of this paper. Instead, the interested reader is referred to [13], in which the application
of the proposed algorithm is presented. The publication [13] comes with an accompanying video,
see [14], which visualizes the sequential steps of the walking pattern generation pipeline of LOLA.
The simulations and experiments presented in the video show the successful application of our
algorithm. In the following, we do not further restrict ourselves to this special application. Since the
proposed algorithm is generic, we derive it in the most general way since it may be useful also for
different applications in robotics.
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Figure 2. Visual interpretation of the over-determined boundary value problem (BVP): the start and
end pose (left/right) represent the boundary conditions, while the intermediate motion (transparent)
tries to approximate the inherent system dynamics of the simplified model.

1.3. Additional Remarks

Our method can be seen as smoothest spline collocation, i.e., it belongs to the “first” type as
classified in Section 1.1. We do not apply special techniques to increase the order of convergence,
but instead adhere to its basic form. This leads to a much simpler derivation and implementation.
In addition it makes the algorithm faster by sacrificing approximation quality. This complies with
the needs of our target application as explained in Section 1.2. We emphasize that our focus lies on
simplicity, robustness, and efficiency. Thus we will not search for a mathematical formulation of the
convergence order. Instead, the algorithm is evaluated mainly through experiments, where runtime
performance is our primary concern.

As summarized in Section 1.1, there exist numerous methods for solving linear BVPs or spline
interpolation/collocation in general. For most approaches, solving a large-sparse or small-dense linear
system of equations (LSE) represents the main workload. To overcome this bottleneck, parallelized
algorithms have been developed, which typically exploit the special structure of the involved matrices,
e.g., the scheme proposed in [15] for staircase matrix structures. Although we aim at efficiency,
we do not consider explicit parallelization as acceleration technique. This is because our algorithm
is designed for embedded systems which typically feature only few physical CPU cores running
also other time-critical tasks. Moreover, the use of GPUs, e.g., through CUDA or OPENCL, is often
not feasible since the CPU–GPU interface lacks capabilities for hard real-time requirements. Finally,
dedicated to our target application, we only consider (comparatively) small problems with runtimes
≈ 1 ms. For such systems the performance boost obtained through parallelization is likely to be
canceled out by the synchronization overhead. Nevertheless, our algorithm may also be used for
large scale problems. In this case an “off the shelf” parallel solver for dense LSEs may be used,
cf. [16]. However, one should keep in mind that by using an iterative scheme execution time is not
deterministic anymore, and, even worse, the solver might not converge. As an alternative, there exists
an efficient way for the parallel solution of decoupled, multi-dimensional BVPs, which takes advantage
of intermediate results, see Appendix C for details.
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2. Materials and Methods

In the following, two versions of our algorithm are presented: one using a cubic spline and the
other using a quintic spline for approximating the BVP. As the derivations and resulting algorithms
are similar, we show the connecting links by presenting both methods in parallel. The version
based on cubic splines is naturally simpler, although, using quintic splines leads to a smoother
approximation. Indeed it is C4- instead of C2-continuous, which can be preferable for some use
cases. Moreover, quintic splines allow us to directly preset first and second-order derivatives at both
boundaries, which otherwise requires the introduction of virtual control points and in turn can lead
to poor results, as discussed in Section 3. Although deriving the proposed collocation algorithm
for quintic splines is more advanced than its cubic counterpart, overall performance is superior,
because the same approximation quality can be obtained with less collocation sites and hence with
less computational effort as shown in Section 3. However, this requires the underlying ODE to be
sufficiently smooth. Note that, in contrast to our intention, most other investigations choose quintic
splines for approximating fourth-order ODEs, e.g., in [8,10,11,17] (similar to choosing cubic splines for
second-order ODEs).

We highlight that the proposed method is not only inspired by, but is also heavily based on the
interpolation and collocation algorithms presented in [18,19], respectively. The main contribution
of this paper is the combination, extension and runtime optimization of those methods. Moreover,
we provide a detailed and self-contained derivation together with a fully documented open-source
C++ reference implementation.

Having a background in mechanical engineering, the authors intention is to present a simple and
self-contained derivation of the proposed algorithm, which can be easily understood, implemented,
and extended by readers also lacking a dedicated mathematical background.

2.1. Problem Statement

Consider the second-order linear time-variant ODE

α(t) F̈(t) + β(t) Ḟ(t) + γ(t) F(t) = τ(t) for t ∈ [t0, tn] (1)

where Ḟ(t) and F̈(t) denote the first and second derivative of the unknown function F(t) with respect
to time t, i.e.,

Ḟ(t) =
dF(t)

dt
and F̈(t) =

d2 F(t)
dt2 .

Note that t does not have to represent time. However, this synonym is used in the following due
to the typical appearance of (1) in dynamical systems. The coefficients α, β, γ, and the right-hand side
τ are arbitrary, in general nonlinear, but known functions of t. Let system (1) be constrained by the BCs

F(t0) = F0 , Ḟ(t0) = Ḟ0 , F̈(t0) = F̈0 ,

F(tn) = Fn , Ḟ(tn) = Ḟn , F̈(tn) = F̈n ,
(2)

where t0 and tn define the considered time interval t ∈ [t0, tn] and F0, Ḟ0, F̈0, Fn, Ḟn, F̈n are user-defined
constants. Then system (1) together with the BCs (2) represents the second-order linear two-point
BVP for which an approximation is to be found. Note that (2) considers Dirichlet, Neumann,
and second-order BCs independently of each other. In contrast, various other algorithms assume Robin
BCs, i.e., a linear combination of Dirichlet and Neumann BCs, which is not equivalent to our approach.
Due to (2), the BVP is over-determined and the existence of a solution F(t) depends on the consistency
of the BCs with the ODE.

In the following, we investigate the approximation of F(t) through spline collocation, i.e.,
we generate a spline y(t) which satisfies the underlying ODE (1) at a user-defined set of distinct
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collocation sites {tk}, numbered in increasing order, which lie within the considered interval
(t0, tn), i.e.,

α(tk) ÿ(tk) + β(tk) ẏ(tk) + γ(tk) y(tk) = τ(tk) for t0 < tk < tk+1 < tn . (3)

Moreover, y(t) is forced to fulfill the BCs (2) at t0 and tn, i.e.,

y(t0) = y0 = F0 , ẏ(t0) = ẏ0 = Ḟ0 , ÿ(t0) = ÿ0 = F̈0 ,

y(tn) = yn = Fn , ẏ(tn) = ẏn = Ḟn , ÿ(tn) = ÿn = F̈n .
(4)

Here we use y(t) to denote the approximating spline while the exact solution is represented by
F(t). For clarity, we also use different denominations for {tk} and {yk} by using the terms collocation
sites and collocation points, respectively. While {tk} are user-defined parameters, {yk} describe the
solution to be found.

Since the proposed collocation algorithm is strongly related to the interpolation of cubic/quintic
splines, which may not be common to some readers, spline interpolation is recapitulated in Section 2.3.
Then, the proposed collocation method is derived in Section 2.7. Moreover, we reuse core elements of
the interpolation algorithm during collocation, thus we cannot omit its derivation.

2.2. Spline Parametrization

Before diving into the derivation of algorithms, one first has to decide which spline representation
to use. In the literature, formulations such as basis splines (B-splines) are common, since they feature
inherent continuity and local control, which typically leads to banded systems [20]. In general,
B-splines do not pass through their control points, which seems to make interpolation difficult at
first sight; however, efficient algorithms for interpolation and collocation exist, see, for example, [21].
In [20], it has been shown that B-splines might not be as stable and efficient as other representations,
namely monomial and Hermite type bases, especially when it comes to implementation. In particular,
monomial bases have been recommended due to their superior condition, and thus lower roundoff
errors. For all three forms, B-spline, Hermite type, and monomial, the core operation during Gaussian
collocation is typically the solution of an almost block diagonal (ABD) linear system of equations [6,21].
A generic solver for these type of systems is SOLVEBLOK [22], while the special structure occurring for
monomial bases is exploited by ABDPACK [23] with increased speed and lower memory consumption.
Unfortunately, for smoothest spline collocation as presented in the following, the corresponding
collocation matrix is dense, thus we cannot apply these algorithms. However, when compared to
Gaussian collocation, the count of collocation sites and thus the dimension of the corresponding LSE is
much smaller, which can lead to comparable performance.

Despite the popularity of B-splines, we use the so-called piecewise polynomial (PP) form [21],
which describes the spline through the coefficients of interconnected, but independently defined,
polynomial segments. We use a special type of monomial bases, namely the canonical form of the
polynomials, which may not be as efficient as the choice in [20]; however, it makes our algorithm
much simpler. By using this formulation, continuity between the spline segments needs to be explicitly
established. The evaluation of the resulting spline, however, boils down to the evaluation of a single
polynomial belonging to the corresponding segment, which is in general much quicker than evaluating
the equivalent B-spline form. The evaluation of B-splines of degree p with the well-known de Boor’s
algorithm [24] takes O(p2) +O(p) operations [25]. There are optimized versions of it as proposed
in [25,26]; however, these are numerically less stable [27]. In contrast, evaluating a polynomial of degree
p with Horner’s method [28] takes only 2 p, i.e., O(p), operations [29]. This is essential for time-critical
applications, where the resulting spline has to be evaluated as quickly as possible. Note that we are
free to construct the spline in B-spline formulation and convert it to the corresponding PP form in a
post-processing step, see [21]. However, this introduces an additional (expensive) step which we try to
avoid since, in our case, not only the evaluation but also the construction of the spline is time critical.
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Let the spline y(t) be defined as

y(t) = si(ξi(t)) for t0 ≤ ti ≤ t < ti+1 ≤ tn with i = 0, . . . , n− 1 , (5)

where si represents the i-th of the n > 1 spline segments parametrized by the normalized interpolation
parameter ξi. We call t ∈ [t0, tn] and ξi ∈ [0, 1] the global and local interpolation parameters,
respectively, for which we choose the linear mapping

ξi(t) =
1
hi

t− ti
hi

= (t− ti) gi (6)

with hi > 0 as the duration of the i-th segment hi = ti+1 − ti and its reciprocal gi = 1/hi.
The partitioning of the spline into n segments is visualized in Figure 3. In the following,
we predominantly derive expressions in local segment space, i.e., with respect to ξi, since this makes
the notation clearer, especially in Section 2.7. Note that, in contrast to some other approaches, we do
not require homogeneous partitioning, thus the segmentation can be chosen arbitrarily as long as
spline knots do not coincide. However, in Section 2.3, we show that for best numerical stability uniform
partitioning should be used.

Figure 3. Segmentation and parametrization of the investigated spline y(t). The spline consists of
n interconnected segments, which share the interior knots with their neighbors. Each segment is
described through the local interpolation parameter ξi ∈ [0, 1] (blue).

In the case of cubic splines (left subscript C), each segment Csi represents a polynomial of
degree three,

Csi(ξi) = Cai ξ3
i + Cbi ξ2

i + Cci ξi + Cdi with i = 0, . . . , n− 1 (7)

where Cai, Cbi, Cci, and Cdi are its constant coefficients. The first two derivatives of Csi(ξi(t)) with
respect to t are obtained by applying the chain rule:

C ṡi(ξi) =

(
dCsi
dt

)
=

(
∂Csi
∂ξi

)(
dξi
dt

)
=

3
hi

Cai ξ2
i +

2
hi

Cbi ξi +
1
hi

Cci , (8)

C s̈i(ξi) =

(
d2

Csi
dt2

)
=

(
∂2

Csi

∂ξ2
i

)(
dξi
dt

)2
+

(
∂Csi
∂ξi

)(
d2 ξi
dt2

)
︸ ︷︷ ︸

=0

=
6
h2

i
Cai ξi +

2
h2

i
Cbi . (9)

For quintic splines (left subscript Q), each segment Qsi represents a polynomial of degree five,

Qsi(ξi) = Qai ξ5
i + Qbi ξ4

i + Qci ξ3
i + Qdi ξ2

i + Qei ξi + Q fi with i = 0, . . . , n− 1 (10)
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where Qai, Qbi, Qci, Qdi, Qei, and Q fi are its constant coefficients. As in the cubic case, we obtain the
first four derivatives of Qsi(ξi(t)) with respect to t through the chain rule:

Q ṡi(ξi) =

(
dQsi

dt

)
=

5
hi

Qai ξ4
i +

4
hi

Qbi ξ3
i +

3
hi

Qci ξ2
i +

2
hi

Qdi ξi +
1
hi

Qei , (11)

Q s̈i(ξi) =

(
d2

Qsi

dt2

)
=

20
h2

i
Qai ξ3

i +
12
h2

i
Qbi ξ2

i +
6
h2

i
Qci ξi +

2
h2

i
Qdi , (12)

Qs(3)i (ξi) =

(
d3

Qsi

dt3

)
=

60
h3

i
Qai ξ2

i +
24
h3

i
Qbi ξi +

6
h3

i
Qci , (13)

Qs(4)i (ξi) =

(
d4

Qsi

dt4

)
=

120
h4

i
Qai ξi +

24
h4

i
Qbi . (14)

2.3. Spline Interpolation: Preliminaries

In the following, we recall how a given set of n + 1 data points {(ti, yi)} with i = 0, . . . , n can
be interpolated with a C2 or C4 smooth cubic or quintic spline, respectively. The derivation explicitly
uses the PP form of the spline and leads to the same algorithm as presented in [18], except for slight
modifications in notation. Note that [18] only deals with quintic splines. However, the method for cubic
segments presented in this paper is a simplified version of the same scheme. Moreover, the derivation
is investigated in more detail than it is in [18]. Readers not interested in these details are referred to
Algorithm 1 which summarizes the results of this section.

In contrast to [18], we only consider the case of predefined first- and second-order derivatives
at the boundaries of the quintic spline, i.e., we assume ẏ0, ÿ0, ẏn, and ÿn to be given (as indicated in
Figure 3). For the cubic counterpart, we lose two degrees of freedom, allowing us to predefine only
two constraints out of {ẏ0, ÿ0, ẏn, ÿn}. For the remainder of this section, we restrict ourselves to the
case of predefined second-order time derivatives ÿ0 and ÿn as this allows an efficient algorithm similar
to the one presented for quintic splines. Note that this choice includes the common case of natural
cubic splines, i.e., ÿ0 = ÿn = 0. For cubic splines, we postpone the enforcement of the remaining
boundary conditions, i.e., ẏ0 and ẏn, to the end of Section 2.7.

In the following, we only consider distinct and ascending interpolation sites, i.e., t0 ≤ ti < ti+1 ≤
tn for i = 0, . . . , n− 1.

2.4. Cubic Spline Interpolation: Derivation

Since our goal is a spline which passes through the given data points {(ti, yi)}, we enforce the
interpolation constraints

Csi(ξi)
∣∣∣
ξi=0

!
= yi for i = 0, . . . , n− 1 (n eqs.) ,

Csi(ξi)
∣∣∣
ξi=1

!
= yi+1 for i = 0, . . . , n− 1 (n eqs.) .

(15)

Furthermore, we aim at C2 continuity, thus we further require that

C ṡi(ξi)
∣∣∣
ξi=1

!
= C ṡi+1(ξi+1)

∣∣∣
ξi+1=0

= ẏi+1 for i = 0, . . . , n− 2 (n− 1 eqs.) ,

C s̈i(ξi)
∣∣∣
ξi=1

!
= C s̈i+1(ξi+1)

∣∣∣
ξi+1=0

= ÿi+1 for i = 0, . . . , n− 2 (n− 1 eqs.) .
(16)



Robotics 2020, 9, 48 9 of 33

Inserting (7) and (9) into (15) and in the second row of (16) allows us to reformulate the spline
coefficients as

Cai = − 1
6 ÿi h2

i + 1
6 ÿi+1 h2

i ,

Cbi = + 1
2 ÿi h2

i ,

Cci = −yi +yi+1 − 1
3 ÿi h2

i − 1
6 ÿi+1 h2

i ,

Cdi = +yi ,

(17)

where ÿi for i = 1, . . . , n− 1 are the n− 1 unknowns which have to be computed using the remaining
n− 1 equations given by the first row of (16). For this purpose, we expand the first row of (16) with (8)
and insert Cai, Cbi, Cci and Cci+1 from (17) to obtain

hi−1 ÿi−1 + 2 (hi−1 + hi) ÿi + hi ÿi+1 =
6
hi

(yi+1 − yi)−
6

hi−1
(yi − yi−1) , (18)

which holds for i = 1, . . . , n− 1. This equation can be considered as defining intermediate unknowns
ÿi and can be written as LSE of the form

C A CX = CB (19)

with C A ∈ R(n−1)×(n−1) and CX, CB ∈ Rn−1 given by

C A =



CD1 CU1 0

CL2 CD2 CU2
. . . . . . . . .

CLi CDi CUi
. . . . . . . . .

CLn−2 CDn−2 CUn−2

0 CLn−1 CDn−1


, CX =



CX1

CX2
...

CXi
...

CXn−2

CXn−1


, CB =



CB1

CB2
...

CBi
...

CBn−2

CBn−1


, (20)

and their elements

CDi = 2 (hi−1 + hi) , CXi = ÿi for i = 1, . . . , n− 1 , (21)

CUi = hi , CLi+1 = CUi for i = 1, . . . , n− 2 , (22)

CBi =
6
hi

(yi+1 − yi)−
6

hi−1
(yi − yi−1) + CΛi for i = 1, . . . , n− 1 , (23)

CΛi =



−h0 ÿ0 − hn−1 ÿn for n = 2 , (≡ −CL1 CX0 − CUn−1 CXn)

−h0 ÿ0 for n > 2∧ i = 1 , (≡ −CL1 CX0)

−hn−1 ÿn for n > 2∧ i = n− 1 , (≡ −CUn−1 CXn)

0 else

. (24)

Herein CLi, CDi, and CUi ∈ R represent the lower diagonal, diagonal, and upper diagonal
elements of C A, respectively. Note that C A only depends on the choice of {ti}, thus it can be reused in
case we need to perform further interpolations with the same segmentation {ti}. While C A represents
the interpolation sites {ti}, the interpolation points {yi} are encoded in CB. The additional term CΛi
incorporates the BCs such that we can write the system in the neat form of (20). From the solution

CX we can directly obtain the unknowns ÿi which in turn can be used together with the data points
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{(ti, yi)} and BCs to compute the segment coefficients (17) such that the spline y(t) is fully defined.
Note that C A is symmetric, i.e., C A = C AT ; however, we do not make use of this property.

Although one can compute CX from (19) using an arbitrary solver for linear systems of equations,
there is a more efficient way for doing so: since C A is tridiagonal, we can solve (19) with the
Thomas algorithm [30,31]. Derived from an LU decomposition of C A, one performs a recursive
forward elimination

CHi :=


CU1

CD1
for i = 1 ,

CUi

CDi − CLi CHi−1
for i = 2, . . . , n− 2

, (25)

CPi :=


CB1

CD1
for i = 1 ,

CBi − CLi CPi−1

CDi − CLi CHi−1
for i = 2, . . . , n− 1

(26)

followed by a backward substitution

CXi =

{
CPn−1 for i = n− 1 ,

CPi − CHi CXi+1 for i = n− 2, n− 3, . . . , 1
. (27)

Computing CX out of C A and CB thus boils down to 5 n− 9 operations. Note that in contrast
to [31] where A ∈ Rn×n in our case C A ∈ R(n−1)×(n−1), thus n changes to n− 1 for computing the
count of operations in total [31]. Since C A is symmetric and positive definite, one may think of using
an algorithm based on Cholesky factorization instead of LU decomposition, as this has proven to be
approximately twice as efficient where applicable. However, this rule of thumb seems to be no longer
valid for the special case of tridiagonal matrices: the Cholesky factorization T = L D−1

L LT in [32],
where the computation of the lower diagonal matrix L exploits the special structure and the diagonal
matrix DL is used to avoid evaluating expensive square roots, leads to 7 n− 10 operations in total.

The numerical stability of cubic spline interpolation is shown in Appendix A.1.

2.5. Quintic Spline Interpolation: Derivation

As previously mentioned, the following is a detailed version of the derivation given in [18]. Just as
in the cubic case, our task is to pass through the given data points {(ti, yi)}, thus we enforce the
interpolation constraints

Qsi(ξi)
∣∣∣
ξi=0

!
= yi for i = 0, . . . , n− 1 (n eqs.) ,

Qsi(ξi)
∣∣∣
ξi=1

!
= yi+1 for i = 0, . . . , n− 1 (n eqs.) .

(28)

We use the additional degrees of freedom to enforce not only C2, but instead C4 continuity with

Q ṡi(ξi)
∣∣∣
ξi=1

!
= Q ṡi+1(ξi+1)

∣∣∣
ξi+1=0

= ẏi+1 for i = 0, . . . , n− 2 (n− 1 eqs.) ,

Q s̈i(ξi)
∣∣∣
ξi=1

!
= Q s̈i+1(ξi+1)

∣∣∣
ξi+1=0

= ÿi+1 for i = 0, . . . , n− 2 (n− 1 eqs.) ,

Qs(3)i (ξi)
∣∣∣
ξi=1

!
= Qs(3)i+1(ξi+1)

∣∣∣
ξi+1=0

= y(3)i+1 for i = 0, . . . , n− 2 (n− 1 eqs.) ,

Qs(4)i (ξi)
∣∣∣
ξi=1

!
= Qs(4)i+1(ξi+1)

∣∣∣
ξi+1=0

= y(4)i+1 for i = 0, . . . , n− 2 (n− 1 eqs.) .

(29)
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Inserting (10), (11), and (12) into (28) and into the first two rows of (29) allows us to reformulate
the spline coefficients to

Qai = −6 yi +6 yi+1 −3 ẏi hi −3 ẏi+1 hi − 1
2 ÿi h2

i + 1
2 ÿi+1 h2

i ,

Qbi = +15 yi −15 yi+1 +8 ẏi hi +7 ẏi+1 hi + 3
2 ÿi h2

i −ÿi+1 h2
i ,

Qci = −10 yi +10 yi+1 −6 ẏi hi −4 ẏi+1 hi − 3
2 ÿi h2

i + 1
2 ÿi+1 h2

i ,

Qdi = + 1
2 ÿi h2

i ,

Qei = +ẏi hi ,

Q fi = +yi ,

(30)

where ẏi and ÿi for i = 1, . . . , n− 1 are the 2 (n− 1) unknowns which we still have to determine using
the remaining 2 (n− 1) equations given by the last two rows of (29). In particular, we expand the
fourth row of (29) with (14) and insert Qai, Qbi, and Qbi+1 from (30) to obtain

− 56 g3
i−1 ẏi−1 − 8 g2

i−1 ÿi−1 − 64 ẏi (g3
i−1 + g3

i ) + 12 ÿi(g2
i−1 − g2

i )− 56 g3
i ẏi+1 + 8 g2

i ÿi+1 =

= −120 g4
i (yi+1 − yi)− 120 g4

i−1 (yi − yi−1) .
(31)

In the same manner, we expand the third row of (29) with (13) and insert Qai, Qbi, Qci and Qci+1
from (30) which leads to

− 8 g2
i−1 ẏi−1 − gi−1 ÿi−1 − 12 ẏi (g2

i−1 − g2
i ) + 3 ÿi(gi−1 + gi) + 8 g2

i ẏi+1 − gi ÿi+1 =

= 20 g3
i (yi+1 − yi)− 20 g3

i−1 (yi − yi−1) .
(32)

Both (31) and (32) hold for i = 1, . . . , n− 1 which allows casting them in the form of

Q A QX = QB (33)

with Q A ∈ R2(n−1)×2(n−1) and QX, QB ∈ R2(n−1) given by

Q A =



QD1 QU1 0
QL2 QD2 QU2

. . . . . . . . .

QLi QDi QU i
. . . . . . . . .

QLn−2 QDn−2 QUn−2

0 QLn−1 QDn−1


, QX =



QX1

QX2
...

QX i
...

QXn−2

QXn−1


, QB =



QB1

QB2
...

QBi
...

QBn−2

QBn−1


, (34)

and their block components

QDi =

[
64 (g3

i−1 + g3
i ) 12 κ (g2

i−1 − g2
i ) gi

12 κ (g2
i−1 − g2

i ) gi 3 κ2 (gi−1 + gi) g2
i

]
, QX i =

 −ẏi

1
κ gi

ÿi

 for i = 1, . . . , n− 1 , (35)

QU i =

[
56 g3

i 8 κ g2
i gi+1

−8 κ g3
i −κ2 g2

i gi+1

]
, QLi+1 = QUT

i for i = 1, . . . , n− 2 , (36)
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QBi =

[
−120 g4

i (yi+1 − yi)− 120 g4
i−1 (yi − yi−1)

20 κ g4
i (yi+1 − yi)− 20 κ g3

i−1 gi (yi − yi−1)

]
+ QΛi for i = 1, . . . , n− 1 , (37)

QΛi =



[
56 g3

0 ẏ0 + 8 g2
0 ÿ0 + 56 g3

n−1 ẏn − 8 g2
n−1 ÿn

8 κ g2
0 g1 ẏ0 + κ g0 g1 ÿ0 − 8 κ g3

n−1 ẏn + κ g2
n−1 ÿn

]
for n = 2
(≡ −QL1 QX0 − QUn−1 QXn)

,

[
56 g3

0 ẏ0 + 8 g2
0 ÿ0

8 κ g2
0 g1 ẏ0 + κ g0 g1 ÿ0

]
for n > 2∧ i = 1
(≡ −QL1 QX0)

,

[
56 g3

n−1 ẏn − 8 g2
n−1 ÿn

−8 κ g3
n−1 ẏn + κ g2

n−1 ÿn

]
for n > 2∧ i = n− 1
(≡ −QUn−1 QXn)

,

0 else

.

(38)
Just as in the cubic case, QLi, QDi, and QU i ∈ R2×2 represent the lower diagonal, diagonal, and

upper diagonal blocks of Q A, respectively. As suggested in [18], the additional parameter κ in the
definitions (35)–(38) is chosen as

κ =

√
64
3

. (39)

From an analytical point of view, κ has no influence on the solution QX (at least if κ 6= 0). However,
it improves numerical stability which is verified in Appendix A.2.

As for the cubic spline Q A is symmetric and only depends on the choice of {ti}, while the
interpolation points {yi} are contained in QB. As before, the additional term QΛi incorporates the
BCs such that we can write the system in the form of (34). In contrast to the cubic case, the solution

QX represents not only ÿi, but also ẏi, which is now additionally required to compute the segment
coefficients from (30).

Since Q A is block-tridiagonal, we can again solve (33) efficiently with the generalization of the
Thomas algorithm to block-tridiagonal matrices [31]. Based on an LU decomposition of Q A, we first
run a recursive forward elimination

QH i :=

 QD−1
1 QU1 for i = 1 ,

(QDi − QLi QH i−1)
−1

QU i for i = 2, . . . , n− 2
, (40)

QPi :=

 QD−1
1 QB1 for i = 1 ,

(QDi − QLi QH i−1)
−1 (QBi − QLi QPi−1) for i = 2, . . . , n− 1

(41)

followed by a backward substitution

QX i =

{
QPn−1 for i = n− 1 ,

QPi − QH i QX i+1 for i = n− 2, n− 3, . . . , 1
. (42)

Computing QX out of Q A and QB requires at a maximum 36 n− 60 operations. Again [31] uses
A ∈ R2 n×2 n while in our case Q A ∈ R2(n−1)×2(n−1) holds, thus n changes to n− 1 for computing the
count of operations in total [31]. For this upper bound, explicit computation of the inverse of QD1

and (QDi − QLi QH i−1) by Gaussian elimination is assumed, which in practice should be avoided by
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solving a 2× 2 LSE instead [31]. Thus, a corresponding implementation can be expected to require
even less operations.

In Appendix A.2, the interested reader can find considerations on the numerical stability of quintic
spline interpolation.

2.6. Algorithm for Cubic/Quintic Spline Interpolation

Since the presented derivation is rather lengthy, the key steps for interpolating cubic/quintic
splines following the proposed method are summarized in Algorithm 1.

Algorithm 1: Cubic/Quintic Spline Interpolation.
Input: Interpolation parameters consisting of

• n + 1 distinct and ascending interpolation sites {ti},
• their corresponding data values {yi},
• BCs {ÿ0, ÿn} (cubic) or {ẏ0, ÿ0, ẏn, ÿn} (quintic) at t0 and tn

where i = 0, . . . , n and n > 1.

Output: Cubic/quintic spline, consisting of n interconnected segments in PP form, which

• interpolates the given data values at all spline knots {t0, . . . , tn},
• is C2 (cubic) or C4 (quintic) continuous at interior spline knots {t1, . . . , tn−1},
• satisfies the BCs.

begin
Cubic: Setup CLi, CDi, CUi, and CBi from (21), (22), (23), and (24)
Quintic: Setup QLi, QDi, QU i, and QBi from (35), (36), (37), and (38)

Cubic: Compute CXi using the recursive scheme given in (25), (26), and (27)
Quintic: Compute QX i using the recursive scheme given in (40), (41), and (42)

Cubic: Extract ÿi from CXi and compute segment coefficients Cai, Cbi, Cci, and Cdi using
(17)

Quintic: Extract ẏi, ÿi from QX i and compute segment coefficients Qai, Qbi, Qci, Qdi, Qei,
and Q fi using (30)

end

For details on convergence order and approximation error of quintic spline interpolation,
the interested reader is referred to [18] where these issues have been experimentally investigated
for various examples.

2.7. Spline Collocation: Derivation

The following is based on the collocation algorithm presented in [19,33]. However, we extend the
method from cubic to quintic splines. Moreover, we do not use natural splines, but instead integrate
the boundary conditions directly into the scheme. Lastly, in contrast to [19,33], we do not need to
modify the right-hand side of (1), thus leading to a “true” collocation of the ODE for all collocation
sites, which are chosen to be the interior spline knots. As runtime performance is of the highest priority
for our application, we choose smoothest spline collocation. This minimizes the count of (expensive)
collocation sites, thus reduces the count of equations to solve, and instead uses the available degrees of
freedom to force C2 (cubic spline) or C4 (quintic spline) continuity. Moreover, in our application, y(t) is
used as input for controlling the motion of a robot, thus a smooth y(t) is equivalent to small changes
in joint accelerations, i.e., motor jerks, which in turn improves overall stability during locomotion.
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As stated in Section 2.1, we require the approximation y(t) to fulfill the underlying ODE at certain
collocation sites {tk}, see (3), while simultaneously satisfying the boundary conditions as specified in
(4). Note that we use the index k instead of i to highlight that our new task consists in collocating the
ODE at the interior knots, i.e., k = 1, . . . , n− 1 rather than the previously investigated interpolation at
all knots, i.e., i = 0, . . . , n. Furthermore, it should be pointed out that although (3) holds, this does
not imply that y(tk) = F(tk), ẏ(tk) = Ḟ(tk), or ÿ(tk) = F̈(tk). In other words, y(t) will not coincide
with the real solution F(t) at the collocation sites {tk}. However, it will behave similarly at these spots
(meaning that they will satisfy the same Equation (1)), which is illustrated in Figure 4.

Figure 4. The computed spline y(t) (black) approximating the real solution F(t) (green).
The approximation satisfies the underlying ODE at the specified collocation sites {tk} (blue),
and fulfills the boundary conditions (BC) at t0 and tn (orange), but do not necessarily coincide at
the collocation points.

As first step, we introduce the auxiliary variables λ, η, and r which are defined as

Cλ :=
[
y1, . . . , yn−1

]T
, Cη :=

[
ÿ1, . . . , ÿn−1

]T
, Cr :=

[
y0, ÿ0, yn, ÿn

]T
,

Qλ :=
[
y1, . . . , yn−1

]T
, Qη :=

[
ẏ1, ÿ1, . . . , ẏn−1, ÿn−1

]T
, Qr :=

[
y0, ẏ0, ÿ0, yn, ẏn, ÿn

]T
,

(43)

where Cλ, Cη, Cr and Qλ, Qη, Qr are the corresponding counterparts for the case of cubic and quintic
splines, respectively. While λ represents the (yet unknown) collocation points {yk}, η contains their
corresponding first (and second) time derivatives, which can be seen as “internal” unknowns, as they
will be implicitly defined through an embedded spline interpolation. Lastly, r depicts the BCs,
where we lack ẏ0 and ẏn in the case of cubic splines as has been previously explained.

From (17), (30), and (43) we observe that the spline segments si are linear with respect to λ, η,
and r, i.e.,

si(ξi) =

(
∂si(ξi)

∂λ

)
︸ ︷︷ ︸

known

λ +

(
∂si(ξi)

∂η

)
︸ ︷︷ ︸

known

η+

(
∂si(ξi)

∂r

)
r︸ ︷︷ ︸

known

for i = 0, . . . , n− 1 (44)

holds. The gradients are fully defined by the spline partitioning {ti}, which is assumed to be known.
Thus the construction of the spline y(t) is equivalent to the search for a corresponding λ and η.
Note that to obtain (44), we used (17) and (30), which in turn were derived from fulfilling the
interpolation condition together with enforcing continuity of the second time derivative (cubic spline),
or first and second time derivative (quintic spline) at the interior knots. In order to accomplish full C2

and C4 continuity, we further make use of A X = B from (19) and (33), which represents continuity of
the first time derivative (cubic spline) or third and fourth time derivative (quintic spline), respectively.
In particular, we observe from (23), (24), (37), and (38), that B is linear with respect to λ and r, thus

A X = B =

(
∂B
∂λ

)
︸ ︷︷ ︸

known

λ +

(
∂B
∂r

)
r︸ ︷︷ ︸

known

(45)
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holds, where the gradients again depend only on the known partitioning {ti}. We further observe that,
according to the definitions (21), (35) and (43), we can write the mapping

X = S η with CS := I and QS := diag (QS1, . . . , QSn−1) where QSi :=

[
−1 0
0 1

κ gi

]
(46)

with I being the identity matrix of appropriate size. Since A and S are constant, by “constant” we
mean in this context that an expression does not depend on the yet unknown λ or η, and assumed to
be non-singular, it is clear from (45) that not only B, but also X and thus η are linear with respect to λ

and r. Hence one can write

X =

(
∂X
∂λ

)
λ +

(
∂X
∂r

)
r and η =

(
∂η

∂λ

)
λ +

(
∂η

∂r

)
r . (47)

Note that A and QS only depend on the known {ti}, which allows us to safely differentiate (45)
with respect to λ and r to obtain

A
(

∂X
∂λ

)
︸ ︷︷ ︸

S
(

∂η

∂λ

) =

(
∂B
∂λ

)
︸ ︷︷ ︸

known

and A
(

∂X
∂r

)
︸ ︷︷ ︸
S
(

∂η

∂r

) =

(
∂B
∂r

)
︸ ︷︷ ︸

known

. (48)

which we can use to compute the yet unknown gradients in (47). Note that this can be done very
efficiently due to the (block-)tridiagonal form of A as already discussed in Section 2.3. Since S is
diagonal, this property also holds for the product A S. However, for best numerical stability, one
should solve for the gradients of X first and use the mapping (46) to obtain the gradients of η afterwards,
which is of negligible cost since S, and thus also S−1, is diagonal. The right-hand sides necessary to
solve (48) only depend on {ti} and are derived in Appendix B. Lastly, we insert η from (47) into (44)
and obtain

si(ξi) =

[(
∂si(ξi)

∂λ

)
+

(
∂si(ξi)

∂η

)(
∂η

∂λ

)]
λ +

[(
∂si(ξi)

∂r

)
+

(
∂si(ξi)

∂η

)(
∂η

∂r

)]
r (49)

or equivalently

si(ξi) = ∇λsi(ξi) λ +∇rsi(ξi) r (50)

with the known spline gradients

∇λsi(ξi) :=
[(

∂si(ξi)
∂λ

)
+
(

∂si(ξi)
∂η

) (
∂η
∂λ

)]
, ∇rsi(ξi) :=

[(
∂si(ξi)

∂r

)
+
(

∂si(ξi)
∂η

) (
∂η
∂r

)]
. (51)

We can obtain the corresponding expressions for the first and second time derivatives by following
the exact same scheme. In particular, we get

ṡi(ξi) = ∇λ ṡi(ξi) λ +∇r ṡi(ξi) r , s̈i(ξi) = ∇λ s̈i(ξi) λ +∇r s̈i(ξi) r (52)

with

∇λ ṡi(ξi) :=
[(

∂ṡi(ξi)

∂λ

)
+

(
∂ṡi(ξi)

∂η

)(
∂η

∂λ

)]
, ∇r ṡi(ξi) :=

[(
∂ṡi(ξi)

∂r

)
+

(
∂ṡi(ξi)

∂η

)(
∂η

∂r

)]
,

(53)

∇λ s̈i(ξi) :=
[(

∂s̈i(ξi)

∂λ

)
+

(
∂s̈i(ξi)

∂η

)(
∂η

∂λ

)]
, ∇r s̈i(ξi) :=

[(
∂s̈i(ξi)

∂r

)
+

(
∂s̈i(ξi)

∂η

)(
∂η

∂r

)]
.

(54)
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Although computing the spline gradients can be done very efficiently, their mathematical
representation is rather lengthy. A formulation of the gradients, which is ready for implementation, is
given in Appendix B.

Lastly, we fulfill the dynamics of the ODE by inserting (50) and (52) into (3), which leads to

α(tk) s̈k(ξk = 0) + β(tk) ṡk(ξk = 0) + γ(tk) sk(ξk = 0) = τ(tk) (55)

for t0 < tk < tn and tk < tk+1 with k = 1, . . . , n− 1. This can be formulated as LSE

Acollλ = Bcoll (56)

with

Acoll =



Acoll,1
...

Acoll,k
...

Acoll,n−1


∈ R(n−1)×(n−1) , Bcoll =



Bcoll,1
...

Bcoll,k
...

Bcoll,n−1


∈ R(n−1) (57)

where the k-th row of Acoll and Bcoll corresponds to the collocation site tk and is given by

Acoll,k = α(tk)∇λ s̈k(0) + β(tk)∇λ ṡk(0) + γ(tk)∇λsk(0) ∈ R1×(n−1) , (58)

Bcoll,k = τ(tk)− [α(tk)∇r s̈k(0) + β(tk)∇r ṡk(0) + γ(tk)∇rsk(0)] r ∈ R . (59)

Note that we choose a partitioning of the spline such that the collocation sites coincide with the
starting (“left”) knot of each segment, i.e., ξk = 0, see Figure 4. This allows us to skip the computation
of certain spline gradients. Since the underlying ODE is of order two, only gradients of the last three
coefficients, i.e., Cbi, Cci, Cdi (cubic) or Qdi, Qei, Q fi (quintic), have to be computed, for details see
Appendix B. This simplifies the implementation and improves the overall performance. Solving (56)
for λ represents the key operation (i.e., bottleneck for large n) of the proposed collocation method,
since Acoll is in general dense while all other operations are either simple explicit expressions or linear
systems in (block-)tridiagonal form, which can be solved efficiently. This justifies our strategy to
minimize the count of collocation points (and thus the dimension of Acoll) and instead force high
order continuity.

As soon as λ has been obtained, we can compute η directly from (47), since the gradients of η

with respect to λ and r are already available as by-products of computing λ, see (48). From λ, η and r
the segment coefficients can finally be computed using (17) or (30).

2.8. Satisfying First Order Boundary Conditions for Cubic Splines

The presented method for cubic spline collocation respects y0, ÿ0, yn, and ÿn as BCs. However,
our task was to fulfill all BCs given in (4), which seems at first to be only possible with quintic spline
collocation. Also satisfying the first-order BCs, i.e., ẏ0 and ẏn, can be achieved with moderate effort.
For that purpose we insert two auxiliary knots, the so-called virtual control points tvirt,1 and tvirt,2,
which give us the necessary degrees of freedom to introduce additional constraints. The term “virtual”
highlights that these points are not used as collocation sites. Both, tvirt,1 and tvirt,2, have to lie within
the specified start- and endtime and must not coincide with the collocation sites. This way the spline
remains properly partitioned. For simplicity, we place the virtual control points at the centers of the
(originally) first and last segments, i.e.,

tvirt,1 :=
torig,0 + torig,1

2
and tvirt,2 :=

torig,n−1 + torig,n

2
. (60)
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Obviously, inserting two knots leads to a different segmentation of the spline, i.e., n → n + 2;
however, the boundaries and collocation sites remain unchanged. If we adapt the indexing such that
t1 := tvirt,1 and tn−1 := tvirt,2, all findings derived so far are also valid for this case. The only difference
is that we do not force y(t) to fulfill the underlying ODE at t1 and tn−1 anymore. Instead, we satisfy
the BCs ẏ0 and ẏn by replacing the first and last row of Acoll and Bcoll with

Acoll,1 = ∇λ ṡ0(ξ0 = 0) , Bcoll,1 = ẏ0 −∇r ṡ0(ξ0 = 0)r ,

Acoll,n−1 = ∇λ ṡn−1(ξn−1 = 1) , Bcoll,n−1 = ẏn −∇r ṡn−1(ξn−1 = 1)r .
(61)

In this way the resulting cubic spline fulfills all BCs given in (4), satisfies the underlying ODE at
the specified collocation sites, and is C2 continuous at the interior spline knots (which include tvirt,1

and tvirt,2).

2.9. Algorithm for Cubic/Quintic Spline Collocation

We summarize our findings in Algorithm 2. Note that, for the case of cubic splines,
the modification necessary to satisfy first-order BCs is already integrated.



Robotics 2020, 9, 48 18 of 33

Algorithm 2: Cubic/Quintic Spline Collocation.
Input: Collocation parameters consisting of

• starttime t0 and endtime tn with t0 < tn defining the boundaries of the spline,
• n− 1 distinct and ascending collocation sites {tk} with t0 < tk < tn,
• coefficients α(tk), β(tk), γ(tk), and right-hand side τ(tk) of the underlying ODE at the

collocation sites,
• BCs {y0, ẏ0, ÿ0, yn, ẏn, ÿn} at t0 and tn

where k = 1, . . . , n− 1 and n > 1.

Output: Cubic/quintic spline, consisting of n = norig + 2 (cubic) or n = norig (quintic)
interconnected segments in PP form, which

• satisfies the underlying ODE (1) at the given collocation sites,
• is C2 (cubic) or C4 (quintic) continuous at interior spline knots,
• satisfies the BCs.

begin
Cubic: Compute virtual control points using (60) and remap indices n→ n + 2

Cubic: Setup CLi, CDi, CUi, (∂CBi/∂Cλ), and (∂CBi/∂Cr) from (21), (22), and (A16)
Quintic: Setup QLi, QDi, QU i, (∂QBi/∂Qλ), and (∂QBi/∂Qr) from (35), (36), (A31), and
(A32)

Solve (48) for (∂X/∂λ) and (∂X/∂r) through the recursive scheme given in (25), (26), and
(27) (cubic) or (40), (41), and (42) (quintic) while using (∂B/∂λ), and (∂B/∂r) instead of
B as right-hand sides

(Note that the recursive scheme allows block-wise operations on the right-hand side, i.e., computing all columns

of (∂X/∂λ) and (∂X/∂r) in parallel. For quintic splines this can be done very efficiently through LU

decomposition of (QDi − QLi Q H i−1).)

Compute (∂η/∂λ) and (∂η/∂r) from S−1 (∂X/∂λ) and S−1 (∂X/∂r)

Compute the spline gradients ∇λsk(0), ∇λ ṡk(0), ∇λ s̈k(0), ∇rsk(0), ∇r ṡk(0), and ∇r s̈k(0)
from (51), (53), (54) and Appendix B for all collocation sites

Cubic: Additionally compute the spline gradients ∇λ ṡ0(0), ∇r ṡ0(0), ∇λ ṡn−1(1), and
∇r ṡn−1(1)

Assemble Acoll and Bcoll using (57), (58), (59) (and (61) in cubic case) and solve (56) for λ

Compute η from (47)

Cubic: Extract yi from Cλ and ÿi from Cη and compute Cai, Cbi, Cci, and Cdi using (17)
Quintic: Extract yi from Qλ and ẏi, ÿi from Qη and compute Qai, Qbi, Qci, Qdi, Qei, and Q fi
using (30)

end

3. Results

3.1. Implementation

Algorithm 2 delivers a detailed description of the proposed collocation method which can be
used as a reference during implementation. However, we also provide a fully documented C++
implementation through our free and open-source library BROCCOLI [34] (see Supplementary). For best
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usability, the library is designed to be header-only and uses the (also header-only) cross-platform linear
algebra system EIGEN [35] as sole dependency. Although BROCCOLI also has other dependencies,
only EIGEN is required for the functionality discussed in this paper. Aside from basic matrix and
vector operations, we use EIGEN to solve dense linear systems of equations such as A−1

coll Bcoll in (56),
but also QD−1

1 (·) and (QDi − QLi QH i−1)
−1(·) in (40) and (41). In particular, we use a Householder

rank-revealing QR decomposition with column-pivoting, see ColPivHouseholderQR in EIGEN, since it
provides the best trade-off between speed, accuracy, and robustness for our use case. Note that for
large scale systems solving A−1

coll Bcoll turns out to be the bottleneck, cf. Figure 11. Thus, in this case one
might choose a parallel solver for (56) instead, for example PartialPivLU in EIGEN with OPENMP
enabled. In addition to the variants CubicSplineCollocator and QuinticSplineCollocator for
spline collocation, see ode module of BROCCOLI, cubic and quintic spline interpolation, see curve
module of BROCCOLI, as specified in Algorithm 1, is also implemented. An overview over the
structure of the source code related to our collocation method is given in Appendix C. Lastly, unit tests,
similar to the evaluation presented in the following, are shipped with BROCCOLI. These can be used as
example applications.

3.2. Test System

In order to evaluate the proposed method and its variants, a simple mass-spring-damper system
is considered, see Figure 5 (left). For the sake of simplicity, we do not consider external excitation, i.e.,
τ(t) := 0. The corresponding ODE (1) describing the system dynamics simplifies to

α F̈(t) + β Ḟ(t) + γ F(t) = 0 (62)

where α, β, and γ are constants representing the mass and (linear) damping/stiffness coefficients of
the system, respectively.

Figure 5. Left: mass-spring-damper system used for validation. Right: analytical solution for the
underdamped case (α = 1, β = 1, γ = 10), the overdamped case (α = 1, β = 10, γ = 10) and the
critically damped case (α = 1, β = 10, γ = 25). The solution is plotted for the initial conditions F0 = 1,
Ḟ0 = 0.

Using textbook mathematics, we can find the analytical solution given by

F(t) =



eσ1 t

[
F0 cos(σ2t) +

(
Ḟ0 − F0 σ1

σ2

)
sin(σ2 t)

]
for

β2

4 α2 −
γ

α
< 0

(underdamped)
,

(
Ḟ0 − F0 (σ1 − σ2)

2 σ2

)
e(σ1+σ2)t +

(
F0 (σ1 + σ2)− Ḟ0

2 σ2

)
e(σ1−σ2)t for

β2

4 α2 −
γ

α
> 0

(overdamped)
,

eσ1 t
[

F0 +
(

Ḟ0 − F0 σ1

)
t
] for

β2

4 α2 −
γ

α
= 0

(critically damped)

(63)
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where we used the initial conditions F(t0 = 0) = F0 and Ḟ(t0 = 0) = Ḟ0, and the abbreviations

σ1 := − β

2 α
and σ2 :=

√∣∣∣∣ β2

4 α2 −
γ

α

∣∣∣∣ . (64)

The characteristic shape of each branch of (63) is visualized in Figure 5 (right) for the
parametrization α = 1, β = 1, γ = 10 in the underdamped case, α = 1, β = 10, γ = 10 in the
overdamped case, and α = 1, β = 10, γ = 25 in the critically damped case. For the rest of this paper
we will adhere to this parametrization. Moreover, we assume the initial conditions to be given with
F0 = 1, Ḟ0 = 0. Note that by choosing σ1 < 0 we obtain asymptotically stable behavior. As we never
constrained the underlying ODE to be stable, our algorithm can also be used to approximate instable
systems. Since tests with β = −1 showed results comparable to the underdamped case (with β = 1),
we omit an explicit discussion of this case for brevity. Lastly, we point out that although (62) describes
a very simple system, we also successfully applied the proposed algorithm to the much more complex
walking-pattern generation system of our humanoid robot LOLA, cf. [13]. However, the properties
and characteristics of the proposed method can be better investigated and explained by means of a
less complex test system.

3.3. Convergence for Consistent and Inconsistent Boundary Conditions

As already mentioned, we focus on over-determined BVPs. Thus, we consider two cases for
evaluating our algorithm. For the first analysis, we use the initial conditions y0 = F0 = 1, ẏ0 = Ḟ0 = 0
and correspondingly ÿ0 = F̈0 = −γ/α, see (62), together with the analytical solution given in (63)
to compute the BCs yn = Fn, ẏn = Ḟn, and ÿn = F̈n at tn = 5. In this way, the BCs are guaranteed
to be consistent because they belong to the same analytic solution F(t). In the second case, we keep
the initial BCs unchanged, but force yn = ẏn = ÿn = 0 for tn = 5 which deviates from the previous
solution Fn, Ḟn, and F̈n, especially in the underdamped case, as can be clearly seen in Figure 5 right.
Thus, the second analysis handles inconsistent BCs.

In the following, we only focus on the underdamped and overdamped case, since the critically
damped case can be seen as a special form of these with σ2 → 0. By evaluating both cases, we
aim at covering oscillating and non-oscillating dynamics. Moreover, we run tests for different
counts of collocation sites ν := |{tk}|, where we use a uniform segmentation of the spline, i.e.,
hi = hi+1∀ i. For cubic and quintic spline collocation without virtual control points ν = n − 2
holds. In contrast, ν = n− 4 holds for cubic spline collocation with virtual control points. Note that
an inhomogeneous partitioning hi 6= hi+1 is evaluated per default in the unit tests provided with
BROCCOLI. The approximation of the BVP by spline collocation with consistent BCs and ν = 1, . . . , 100
is depicted in Figure 6. Note that for cubic spline collocation without virtual control points, the BCs ẏ0

and ẏn are violated (see Section 2.7).
For the case of consistent BCs, we observe that the approximation y(t) indeed converges for

increasing ν to the analytical solution F(t). From a qualitative point of view, the convergence
order using a quintic spline (Figure 6 right column) is clearly higher than the corresponding cubic
counterparts (Figure 6 left and center column). In order to compare convergence using a quantitative
measure, we use the root mean square (RMS) of the approximation error e(t) and of the residual r(t),
defined as

RMS(e) :=

√
1

tn − t0

∫ tn

t0

[e(t)]2 dt with e(t) := F(t)− y(t) , (65)

RMS(r) :=

√
1

tn − t0

∫ tn

t0

[r(t)]2 dt with r(t) := α ÿ(t) + β ẏ(t) + γ y(t) . (66)
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Figure 6. Consistent BCs: convergence of the approximation y(t) (blue and green) towards the analytic
solution F(t) (black, dashed) for ν = 1, . . . , 9, 30, 50, 70, 100. The top row belongs to the underdamped
case while the bottom row represents the overdamped case. From left to right: approximation with
cubic spline without virtual control points (left), cubic spline with virtual control points (center) and
quintic spline (right). The corresponding best approximation νmax is drawn in bold blue.

For numerical evaluation of (65) and (66), we discretize the embedded integral using a time step
size of ∆t = 0.01 for which we obtain the results presented in Figure 7 left. Since we stop the test
series at νmax = 100, we find the optimum for all variants to be at νopt = νmax. However, due to
convergence, we expect the theoretical optimum to be at νopt → ∞. We observe that also from an
quantitative point of view, quintic spline collocation clearly outperforms the cubic variants for the
same ν. Furthermore, forcing first-order BCs through virtual control points of the cubic spline seems
to have a negative influence, especially for increasing ν. The influence of virtual control points on the
residual is visualized in Figure 8 where peaks in r(t) occur at these spots. Note that without virtual
control points, the first-order boundary conditions at t0 = 0 and tn = 5 are missed. Thus, in contrast to
the collocation sites, the residual does not drop to zero at the boundaries. By comparing the left and
right plot of Figure 8, we observe that r(t) behaves similarly for consistent and inconsistent BCs.

For consistent BCs, we can state that, at least for the investigated test system, the proposed
algorithm leads to an approximation which converges to the real solution where the “speed” of
convergence depends on the chosen variant of Algorithm 2. For inconsistent BCs, however, our analysis
draws a different picture: while we can find an optimal count of collocation sites νopt for each variant
and test case, the approximation diverges for ν→ ∞, see Figure 7 right and Figure 9. Note that this was
expected since we are attempting to find an approximation of a solution which does not actually exist.
For small ν, we still find a “reasonable” y(t) where the spline is still able to smooth out the wrong BCs.
However, as we refine the segmentation of the spline, it gets harder to compensate the error, which in
turn leads to undesired oscillations of y(t). Note that although we call this behavior divergence,
our collocation algorithm still satisfies all constraints that we defined: using a given partitioning,
it fulfills the BCs and satisfies the underlying ODE at the given collocation sites. Thus, the divergence
is not a fault of the proposed algorithm, but rather is due to the non-existence of the solution F(t).
Moreover, the sensitivity to undesired oscillations depends heavily on the underlying BVP: for our
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target application of real-time motion planning, we did not observe any oscillations up to ν = 104.
The critical value for ν is expected to be even higher. However, we could not determine it due to
memory limitations of our test system.

Figure 7. Root mean square (RMS) of error e(t) and residual r(t) as defined in (65) and (66). The left
subscript differs between cubic C and quintic Q spline collocation. Moreover, for cubic spline
collocation, we identify the variants without virtual control points (i.e., free first-order boundaries ẏ0,
ẏn) and with virtual control points by the right subscript free and virt, respectively. The left plot belongs
to the case of consistent BCs while the right one was obtained using inconsistent BCs. Note that for
inconsistent BCs an analytic solution does not exist, thus the error e(t) is not defined and we consider
only the residual r(t).

Figure 8. Residual r(t) as defined in (66) for consistent (left) and inconsistent (right) BCs in the
underdamped case. For best presentation, the count of collocation sites is chosen as ν = 4 such that the
collocation sites (dots) are given by {tk} = {1, 2, 3, 4}. For cubic spline collocation, the left subscript
C and for the quintic counterpart Q is used. Moreover, the right subscripts free and virt are used to
differentiate between the variants without and with virtual control points, respectively. The virtual
control points are highlighted with circles.
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Figure 9. Inconsistent BCs: approximation y(t) (blue, green, and orange) and reference system F(t)
(black, dashed) for ν = 1, . . . , 4, νopt, 13, 15, 17, 20. The top row belongs to the underdamped case
while the bottom row represents the overdamped case. From left to right: approximation with cubic
spline (no virtual control points, left), cubic spline (with virtual control points, center) and quintic spline
(right). The corresponding best approximation νopt is drawn in bold blue. Diverging approximations
for ν > νopt are colored orange.

In order to avoid undesired oscillations, an optimal ν has to be chosen, which seems to be difficult
at the first sight, since in practice we do not know the analytical solution, and thus cannot evaluate
e(t). However, one can use the residual r(t) as measure for the approximation error and use this
to formulate a governing optimization for finding νopt. Moreover, one can also use a non-uniform
segmentation to give specific sections more weight. Such adaptive techniques for automatic mesh
refinement have also been developed for other collocation methods, see, for example, [36]. However,
for our application it is sufficient to choose hi once (fixed), thus we withhold this idea for future
investigations.

3.4. Runtime Analysis

In the following, we present measurements, which have been made by using the implementation
given in BROCCOLI with the version primo (v1.0.0 - commit 89280c69). We used an AMD Ryzen 7
1700X 8x (16x) @3.40GHz with 32GB DDR4 RAM @2133MHz as hardware backend and Ubuntu 18.04.2
LTS 64bit (Linux kernel 4.15.0-51) together with Clang (version 6.0.0-1) on optimization level 3 as
software basis. Although our algorithm is sequential, we run different test cases on four physical cores
of the CPU in parallel. For all tests simultaneous multi-threading (SMT) was disabled in the BIOS.
For runtime evaluation, we take 1000 samples for every code section in Algorithm 2 and choose the
minimum execution time as reference to minimize the risk of wrong measurements due to high system
load and context switching effects.

In Figure 10 (left), we present runtime measurements for all three variants of our algorithm. We
restrict our analysis to the case of an underdamped parametrization and consistent BCs since we expect
comparable results for the other test cases. Since our algorithm has a deterministic runtime which only
depends on the chosen variant (cubic/quintic, with/without virtual control points) and ν, there is

https://gitlab.lrz.de/AM/broccoli/commit/89280c692c9efce4b751dabbe23220089a96c4b9
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no reason why it should be faster or slower with another parametrization. We observe that quintic
spline collocation is more expensive than the cubic counterparts for the same ν, which complies with
theory since the (block-)tridiagonal system for quintic splines is twice the size of the tridiagonal system
for cubic splines. However, for increasing ν, the gap becomes smaller since solving the collocation
equations, where Acoll is of the same dimension for cubic and quintic splines, becomes the bottleneck,
see Figure 11. Note that there is only a small difference in runtime between cubic spline collocation
with and without virtual control points. This also complies with theory, since the only difference is
two additional spline knots, which increases the dimension of Acoll by two. Lastly, the small ripples in
Figure 10 (left) are due to vectorization and SIMD optimizations handled by EIGEN and the compiler,
which give slightly better performance if the dimension of arrays in memory are a multiple of two.

Figure 10. Left: (minimum) runtime T and condition C of Acoll for running Algorithm 2 over count of
collocation sites ν. Right: root mean square (RMS) of residual r(t) as defined in (66) over (minimum)
runtime T. The left subscript C and Q belong to the cubic or quintic spline version of the algorithm,
respectively. Moreover, the right subscript indicates if cubic spline collocation was performed without
(free) or with (virt) virtual control points. All measurements were performed using the underdamped
parametrization and consistent BCs.

Comparing runtimes for the same ν might not be a meaningful basis for choosing a method.
Instead, one is typically interested in getting the best approximation in the shortest time. For this
purpose, the RMS of the residual r(t) is plotted over runtime in Figure 10 (right). As can be seen,
quintic spline collocation significantly outperforms both other variants. Moreover, bad convergence of
cubic spline collocation with virtual control points is also visible in this comparison. In addition to
measuring total runtime, we also performed a detailed analysis on the relative cost of each code section
of Algorithm 2 during quintic spline collocation. Figure 11 demonstrates that in the vicinity of ν ≈ 160,
evaluating the block-tridiagonal systems to enforce BCs and continuity, and solving Acoll λ = Bcoll for
actual collocation share approximately the same portion of total runtime. With increasing ν, solving
for λ becomes more relevant since the corresponding system is dense while the block-tridiagonal LSE
can be solved efficiently using the recursive scheme discussed in Section 2.3.

Lastly, we want to point out that the condition of Acoll gets worse for increasing count
of collocation sites ν, see Figure 10 left. Thus, there might be an upper limit of ν for the
proposed algorithm.
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Figure 11. Runtime (percentile) of relevant steps of Algorithm 2 relative to total runtime for quintic
spline collocation. Code sections with negligible execution time are not plotted and also not accounted
for total runtime. The measurements were obtained by using an extended time horizon tn = 50 and
the parametrization α = 1, β = 0.1, γ = 10 (underdamped) to allow a better representation of high
counts of collocation sites of up to ν = 300.

4. Discussion

As shown in the previous section, the presented algorithm performs well if the BCs are
consistent and fully known. Even in the case of inconsistent BCs, we still obtain a reasonable
approximation as long as we carefully pick the collocation sites. However, if we exceed the optimum,
undesired oscillations may occur, which is an indicator for putting too much emphasis on satisfying
the underlying ODE while simultaneously trying to compensate the “broken” BCs. In order to
automatically determine an optimal partitioning of the spline, a higher level optimization may be
applied, which will be the focus of further investigations.

Obviously, if the investigated BVP is well-posed, i.e., if it is not over-determined, other techniques
should be preferred over our approach. However, for applications where the enforcement of certain
BCs is more important than approximating the underlying dynamics, the proposed method seems
to be a valid approach. Moreover, we want to emphasize that no variable recursion or iteration is
involved. This makes execution time predictable, which is especially relevant for real-time applications
such as in our use case.

Comparing different variants of our algorithm showed that collocation using a quintic spline is
in general superior to using the somewhat simpler cubic splines. Note that although its derivation is
more involved, the final implementation is of approximately the same complexity, since virtual control
points have to be introduced in the cubic case. At this point, we also want to emphasize that, based on
the results of our study, we do not recommend to use cubic spline collocation with virtual control
points. Although the full set of BCs is satisfied, the additional knots seem to significantly downgrade
convergence. However, other choices of tvirt,1 and tvirt,2 may lead to different results.

Within this contribution, we only considered second-order BVPs. An extension to ODEs of higher
order seems to be straightforward, since only the collocation equations, see (58) and (59) have to be
extended by the corresponding gradients while the overall dimension of Acoll and Bcoll stays the same.
Moreover, our approach may be applied to nonlinear systems as well, by using the common approach
of linearization and embedding the scheme into a Newton iteration.

Lastly, we want to highlight that our focus lies on runtime efficiency. However, for embedded
systems especially, memory consumption may also be a limiting factor. Although we expect our
algorithm to have similar requirements when compared to other techniques, we have not looked into
this issue so far.
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Appendix A. Considerations on Numerical Stability

Appendix A.1. Cubic Spline Interpolation

The Thomas algorithm is guaranteed to be numerically stable if C A is diagonally dominant, i.e., if

|CDi| = |2 (hi−1 + hi)| > |CLi|+ |CUi| = |hi−1|+ |hi| for i = 1, . . . , n− 1 (A1)

holds [30], whereas for i = 1 and i = n− 1 we use CL1 = 0 and CUn−1 = 0, respectively. As is easily
verified with (A1), this holds true for any choice of hi−1 > 0 and hi > 0 (i.e., for distinct and ascending
interpolation sites), thus the presented method is always stable.

Appendix A.2. Quintic Spline Interpolation

The presented scheme for solving block-tridiagonal systems is a special form of block-Gaussian
elimination without pivoting and is guaranteed to be numerically stable if Q A is block-diagonally
dominant, i.e., if

Γi :=
∥∥∥QD−1

i

∥∥∥ (‖QLi‖+ ‖QU i‖) ≤ 1 for i = 1, . . . , n− 1 (A2)

holds for an arbitrary matrix norm ‖·‖ [37]. Note that for i = 1 and i = n− 1 we set QL1 = 0 and

QUn−1 = 0, respectively. In order to verify (A2) for QDi, QLi, and QU i as specified in (35) and (36),
we assume a constant ratio ω = gi/gi−1 = gi+1/gi to obtain

http://www.mdpi.com/2218-6581/9/2/48/s1
http://www.mdpi.com/2218-6581/9/2/48/s1
https://gitlab.lrz.de/AM/broccoli
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−8 κ −κ2 ω

]
︸ ︷︷ ︸

=:QÛ i(ω)

(A3)

and further

Γi(ω) =
∥∥∥QD−1

i (ω)
∥∥∥ (‖QLi(ω)‖+ ‖QU i(ω)‖) =

∥∥∥QD̂
−1
i (ω)

∥∥∥ (∥∥∥Q L̂i(ω)
∥∥∥+ ∥∥∥QÛ i(ω)

∥∥∥) (A4)

which shows that Γi does not depend on gi for a constant ratio ω. It can be easily verified through
numerical evaluation of (A4) that a homogeneous partitioning of the spline, i.e., ω = 1, results in the
lowest value for Γi. Using the spectral matrix norm and the special choice of κ given in (39) leads to

Γi(ω = 1) ≈ 1.24 � 1 for i = 2, . . . , n− 2 . (A5)

Unfortunately, condition (A2) is violated, even for the ideal case of a homogeneously partitioned
spline. However, (A2) represents a sufficient but not necessary condition for numerical stability,
thus we can still use Γi as a measure for the pivotal growth [37] which should be minimized. In doing
so, we can conclude that for best numerical stability one should use a “reasonable” ratio ω which is
close to 1.

Note that the special choice of κ in (39) has been suggested in [18] to minimize Γi and thus
optimize numerical stability. This intention becomes clear when observing that

∥∥∥QD̂
−1
i (ω = 1)

∥∥∥
2
=

√
λmax

(
QD̂
−T
i (ω = 1) QD̂

−1
i (ω = 1)

)
=


1

6 κ2 >
1

128
for κ2 <

64
3

,

1
128

for κ2 ≥ 64
3

where λmax(. . . ) denotes the maximum eigenvalue of a given matrix. Since both
∥∥∥Q L̂i(ω)

∥∥∥
2

and∥∥∥QÛ i(ω)
∥∥∥

2
, increase with growing |κ|, the optimum (39) is chosen. This finding can be easily verified

through numerical investigation. Note that numerical stability only depends on |κ|, thus one could
also choose the negative form κ = −

√
64/3.

Appendix B. Spline Gradients

In the following, explicit expressions for the spline gradients used in (51), (53), and (54) are given.
Note that the gradients differ depending on the type of the underlying spline (cubic/quintic).

Appendix B.1. Cubic Spline Gradients

From (7), (8), and (9) we obtain for each variable Cρ ∈ {Cλ, Cη, Cr} and each segment Csi with
i = 0, . . . , n− 1 (

∂Csi(ξi)

∂Cρ

)
=

(
∂Cai
∂Cρ

)
ξ3

i +

(
∂Cbi
∂Cρ

)
ξ2

i +

(
∂Cci
∂Cρ

)
ξi +

(
∂Cdi
∂Cρ

)
, (A6)

(
∂C ṡi(ξi)

∂Cρ

)
=

3
hi

(
∂Cai
∂Cρ

)
ξ2

i +
2
hi

(
∂Cbi
∂Cρ

)
ξi +

1
hi

(
∂Cci
∂Cρ

)
, (A7)

(
∂C s̈i(ξi)

∂Cρ

)
=

6
h2

i

(
∂Cai
∂Cρ

)
ξi +

2
h2

i

(
∂Cbi
∂Cρ

)
. (A8)
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Moreover, by using the indices u = 1, . . . , n− 1, v = 1, . . . , n− 1, and w = 1, . . . , 4 to specify
the elements of

Cλ = [Cλ1, . . . , Cλu, . . . , Cλn−1]
T = [y1, . . . , yu, . . . , yn−1]

T

Cη = [Cη1, . . . , Cηv, . . . , Cηn−1]
T = [ÿ1, . . . , ÿv, . . . , ÿn−1]

T

Cr = [Cr1, . . . , Crw, . . . , Cr4]
T = [y0, ÿ0, yn, ÿn]

T

(A9)

we obtain

(
∂Cai
∂Cλ

)
= 0 ,

(
∂Cbi
∂Cλ

)
= 0 ,

(
∂Cci
∂Cλu

)
=


−1 for u = i ,

1 for u = i + 1 ,

0 else

(
∂Cdi
∂Cλu

)
=

{
1 for u = i ,

0 else
, (A10)

(
∂Cai
∂Cηv

)
=


− h2

i
6 for v = i ,

h2
i

6 for v = i + 1 ,

0 else

,
(

∂Cci
∂Cηv

)
=


− h2

i
3 for v = i ,

− h2
i

6 for v = i + 1 ,

0 else

(A11)

(
∂Cbi
∂Cηv

)
=

{
h2

i
2 for v = i ,

0 else
,

(
∂Cdi
∂Cη

)
= 0 , (A12)

(
∂Cai
∂Crw

)
=


− h2

i
6 for i = 0∧ w = 2 ,

h2
i

6 for i = n− 1∧ w = 4 ,

0 else

,
(

∂Cci
∂Crw

)
=



−1 for i = 0∧ w = 1 ,

− h2
i

3 for i = 0∧ w = 2 ,

1 for i = n− 1∧ w = 3 ,

− h2
i

6 for i = n− 1∧ w = 4 ,

0 else

,

(A13)(
∂Cbi
∂Crw

)
=

{
h2

i
2 for i = 0∧ w = 2 ,

0 else
,

(
∂Cdi
∂Crw

)
=

{
1 for i = 0∧ w = 1 ,

0 else
, (A14)

which can easily be derived from (17) and the definition of Cλ, Cη, and Cr. Note that for ξi = 0 the
computation of (

∂Cai
∂Cλ

)
,
(

∂Cai
∂Cη

)
, and

(
∂Cai
∂Cr

)
(A15)

can be skipped entirely since up to the second time derivative of the gradients of si(ξi = 0) these terms
are multiplied with zero and have no effect anyway. In order to solve (48), we have to further compute
the corresponding right-hand sides which are given by

(
∂CBi
∂Cλu

)
=


6

hi−1
for u = i− 1 ,

− 6
hi
− 6

hi−1
for u = i ,

6
hi

for u = i + 1 ,

0 else

,
(

∂CBi
∂Crw

)
=



6
hi−1

for i = 1∧ w = 1 ,

−hi−1 for i = 1∧ w = 2 ,
6
hi

for i = n− 1∧ w = 3 ,

−hi for i = n− 1∧ w = 4 ,

0 else
(A16)

for i = 1, . . . , n− 1, where we used (23), (24), and the definition of Cλ and Cr.



Robotics 2020, 9, 48 29 of 33

Appendix B.2. Quintic Spline Gradients

From (10), (11), and (12) we obtain for each variable Qρ ∈ {Qλ, Qη, Qr} and each segment Qsi
with i = 0, . . . , n− 1

(
∂Qsi(ξi)

∂Qρ

)
=

(
∂Qai

∂Qρ

)
ξ5

i +

(
∂Qbi

∂Qρ

)
ξ4

i +

(
∂Qci

∂Qρ

)
ξ3

i +

(
∂Qdi

∂Qρ

)
ξ2

i +

(
∂Qei

∂Qρ

)
ξi +

(
∂Q fi

∂Qρ

)
, (A17)

(
∂Q ṡi(ξi)

∂Qρ

)
=

5
hi

(
∂Qai

∂Qρ

)
ξ4

i +
4
hi

(
∂Qbi

∂Qρ

)
ξ3

i +
3
hi

(
∂Qci

∂Qρ

)
ξ2

i +
2
hi

(
∂Qdi

∂Qρ

)
ξi +

1
hi

(
∂Qei

∂Qρ

)
,

(A18)(
∂Q s̈i(ξi)

∂Qρ

)
=

20
h2

i

(
∂Qai

∂Qρ

)
ξ3

i +
12
h2

i

(
∂Qbi

∂Qρ

)
ξ2

i +
6
h2

i

(
∂Qci

∂Qρ

)
ξi +

2
h2

i

(
∂Qdi

∂Qρ

)
. (A19)

Moreover, by using the indices u = 1, . . . , n− 1, v = 1, . . . , 2(n− 1), and w = 1, . . . , 4 to specify
the elements of

Qλ = [Qλ1, . . . , Qλu, . . . , Qλn−1]
T = [y1, . . . , yu, . . . , yn−1]

T

Qη = [Qη1, . . . , Qηv, . . . , Qη2(n−1)]
T = [ẏ1, ÿ1, . . . , ẏ(v+1)/2, ÿv/2, . . . , ẏn−1, ÿn−1]

T

Qr = [Qr1, . . . , Qrw, . . . , Qr6]
T = [y0, ẏ0, ÿ0, yn, ẏn, ÿn]

T

(A20)

we obtain

(
∂Qai

∂Qλu

)
=


−6 for u = i ,

6 for u = i + 1 ,

0 else

,
(

∂Qdi

∂Qλ

)
= 0 , (A21)

(
∂Qbi

∂Qλu

)
=


15 for u = i ,

−15 for u = i + 1 ,

0 else

,
(

∂Qei

∂Qλ

)
= 0 , (A22)

(
∂Qci

∂Qλu

)
=


−10 for u = i ,

10 for u = i + 1 ,

0 else

,
(

∂Q fi

∂Qλu

)
=

{
1 for u = i ,

0 else
, (A23)

(
∂Qai

∂Qηv

)
=



−3 hi for v = 2 i− 1 ,

− h2
i

2 for v = 2 i ,

−3 hi for v = 2 i + 1 ,
h2

i
2 for v = 2 i + 2 ,

0 else

,
(

∂Qdi

∂Qηv

)
=

{
h2

i
2 for v = 2 i ,

0 else
, (A24)

(
∂Qbi

∂Qηv

)
=



8 hi for v = 2 i− 1 ,
3 h2

i
2 for v = 2 i ,

7 hi for v = 2 i + 1 ,

−h2
i for v = 2 i + 2 ,

0 else

,
(

∂Qei

∂Qηv

)
=

{
hi for v = 2 i− 1 ,

0 else
, (A25)
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(
∂Qci

∂Qηv

)
=



−6 hi for v = 2 i− 1 ,

− 3 h2
i

2 for v = 2 i ,

−4 hi for v = 2 i + 1 ,
h2

i
2 for v = 2 i + 2 ,

0 else

,
(

∂Q fi

∂Qη

)
= 0 , (A26)

(
∂Qai

∂Qrw

)
=



−6 for i = 0∧ w = 1 ,

−3 hi for i = 0∧ w = 2 ,

− h2
i

2 for i = 0∧ w = 3 ,

6 for i = n− 1∧ w = 4 ,

−3 hi for i = n− 1∧ w = 5 ,
h2

i
2 for i = n− 1∧ w = 6 ,

0 else

,
(

∂Qdi

∂Qrw

)
=

{
h2

i
2 for i = 0∧ w = 3 ,

0 else
, (A27)

(
∂Qbi

∂Qrw

)
=



15 for i = 0∧ w = 1 ,

8 hi for i = 0∧ w = 2 ,
3 h2

i
2 for i = 0∧ w = 3 ,

−15 for i = n− 1∧ w = 4 ,

7 hi for i = n− 1∧ w = 5 ,

−h2
i for i = n− 1∧ w = 6 ,

0 else

,
(

∂Qei

∂Qrw

)
=

{
hi for i = 0∧ w = 2 ,

0 else
, (A28)

(
∂Qci

∂Qrw

)
=



−10 for i = 0∧ w = 1 ,

−6 hi for i = 0∧ w = 2 ,

− 3 h2
i

2 for i = 0∧ w = 3 ,

10 for i = n− 1∧ w = 4 ,

−4 hi for i = n− 1∧ w = 5 ,
h2

i
2 for i = n− 1∧ w = 6 ,

0 else

,
(

∂Q fi

∂Qrw

)
=

{
1 for i = 0∧ w = 1 ,

0 else
, (A29)

which can easily be derived from (30) and the definition of Qλ, Qη, and Qr. Note that for ξi = 0 the
computation of(

∂Qai
∂Qλ

)
,
(

∂Qai
∂Qη

)
,
(

∂Qai
∂Qr

)
,
(

∂Qbi
∂Qλ

)
,
(

∂Qbi
∂Qη

)
,
(

∂Qbi
∂Qr

)
,
(

∂Qci
∂Qλ

)
,
(

∂Qci
∂Qη

)
,
(

∂Qci
∂Qr

)
, (A30)

can be skipped entirely since up to the second time derivative of the gradients of si(ξi = 0) these terms
are multiplied with zero and have no effect anyway. In order to solve (48), we further have to compute
the corresponding right-hand sides, which are given by

(
∂QBi

∂Qλu

)
=



[
120 g4

i−1

20 κ g3
i−1 gi

]
for u = i− 1 ,

[
−120 g4

i

20 κ g4
i

]
for u = i + 1 ,

[
120

(
g4

i − g4
i−1
)

−20 κ gi
(

g3
i + g3

i−1
)] for u = i , 0 else

, (A31)
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(
∂QBi

∂Qrw

)
=



[
120 g4

i−1

20 κ g3
i−1 gi

]
for i = 1∧ w = 1 ,

[
−120 g4

i

20 κ g4
i

]
for i = n− 1∧ w = 4 ,

[
56 g3

i−1

8 κ g2
i−1 gi

]
for i = 1∧ w = 2 ,

[
56 g3

i

−8 κ g3
i

]
for i = n− 1∧ w = 5 ,

[
8 g2

i−1

κ gi−1 gi

]
for i = 1∧ w = 3 ,

[
−8 g2

i

κ g2
i

]
for i = n− 1∧ w = 6 ,

0 else

(A32)

for i = 1, . . . , n− 1, where we used (37), (38), and the definition of Qλ and Qr.

Appendix C. Software Design in BROCCOLI

The basic structure of the source code related to the classes CubicSplineCollocator and
QuinticSplineCollocator is illustrated in Figure A1 (left). Both classes are derived from the
abstract base class SplineCollocatorBase, which declares the interface for data in-/output and
the main processing operators. In order to trigger Algorithm 2 for a given input dataset, a simple
call of process() is sufficient. For a more fine-grained control, process() is split up into publicly
available subroutines (names starting with “substep_”). Note that providing public access to
the subroutines not only allows detailed runtime measurements by the user, but also enables an
efficient parallel solution for decoupled, multi-dimensional BVPs, see Figure A1 right. For this,
we exploit that large parts of Algorithm 2 only depend on the spline segmentation, i.e., the collocation
sites, (green box). In contrast, the remaining subroutines require explicit information about the
investigated BVP (blue box). If all dimensions of the BVP, e.g., the x- and y-component of
LOLA’s CoM motion, share the same spline segmentation, subroutines covered by the green box
in Figure A1 have to be called only once. Subsequently, the used instance of CubicSplineCollocator
or QuinticSplineCollocator (holding intermediate results) is copied such that the remaining
subroutines, covered by the blue box in Figure A1, can be run in parallel. Note that this includes
solving A−1

coll Bcoll (substep_solveCollocationLSE()), which is the bottleneck for large-scale systems.
We plan to use this feature in our target application to efficiently generate the CoM motion of LOLA

(the x- and y-component represent a decoupled, two-dimensional BVP).

Figure A1. Design of the classes CubicSplineCollocator and QuinticSplineCollocator in
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BROCCOLI. Left: class inheritance and segmentation of process() into subroutines. Right: proposed
strategy for efficient parallelization in the case of a decoupled, multi-dimensional BVP. Note that the
first and last subroutine (grayed out) are optional and perform a validity check of the given input
parameters and convert the final result into a corresponding broccoli::curve::Trajectory data
structure for convenient evaluation of the generated polynomial spline, respectively.
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