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1. Introduction

Organic materials and devices have been at the forefront of 
the research community in recent years due to their flexible 
properties, as well as the large scale roll-to-roll cheaper fab-
rication procedures. Eventhough, inorganic semiconductors 
have been (and still are to a large extent) the go-to materials 
for today’s electronic industry, research have come a long way 
in improving performance measures of organic based devices 
since their first introduction. Such devices include organic- 
solar cells (OSCs) [1–3], and light emitting diodes (OLEDs) 
[4–7]. The latter one especially made a breakthrough on the 
commercial scale for display applications (i.e. mobile phones 

and the recently introduced OLED TVs). Organic field-effect 
transistors (OFETs) (the main focus of this work) have also 
been (and still are) investigated heavily [8–11]. In a recent 
review published by Paterson and co-workers [12], the authors 
provide a graphic showing the progress acheived in OFET 
mobilities over the past 30 years. According to this graphic, 
both p- and n-type mobilities have reached up to 20 cm2 V−1 s−1  
and 10 cm2 V−1 s−1, respectively. This definitely spells sig-
nificant improvements, but they go on to say that these values 
do not paint the entire picture and in reality there is what 
they refer to as a ‘mobility hype’. This hype points towards 
that there has been an overestimation in OFET mobilities, as 
a consequence of extracting mobilities from characteristics 
(i.e. transfer and output) that show non-ideal behaviour. This 
non-ideality is depicted as a ‘double slope’, leading to over-
estimated mobilities from the steeper portion of the transfer 
characteristics. Contact resistance is identified as the main 
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cause for the resulting non-idealities [13–16]. Nevertheless, 
even with the presence of this mobility hype, there is no 
denying the fact that improvements in OFET mobilities have 
been made [12]. Advancements in OFETs is also aided with 
the different types of materials available to choose from [17], 
for both hole and electron conduction. This also, theoretically, 
allows organic semiconductors the possibility to enter the dig-
ital market (i.e. complementary technologies) [18–20]. More 
recently, research has gone into investigating blend based 
OFETs, incorporating both small molecules and polymers. 
This is particularly interesting as we can take advantage of 
what both types of materials have to offer, the high mobility 
of small molecules and the easier processability of polymers. 
Mobilities ranging up to 13 cm2 V−1 s−1 have been reported 
[21–24]. There is not alot available on blends in the literature 
to date, but with the the early promise blends have shown, 
more interest will certainly focus on that front.

The working principle of a FET is always the same, 
regardless of the active material used for the channel region. 
However, the underlying physics governing charge transport 
is different between organic and inorganic materials. For the 
latter, charge transport occurs via coherent Bloch waves. In 
contrast, for the former, it is through hopping from one site to 
another within a varying energetic landscape, owing to indi-
vidual molecules being bound together through weak Van der 
Waals interactions. Therefore, charge transport occurs through 
hopping between localized states. This hopping mechanism 
is appropriately described by the Gaussian disorder model 
(GDM) [25]. These energetic sites follow a random distribu-
tion which is described by a Gaussian function in the vicinity 
of an energy level of interest (i.e. highest or lowest occupied 
molecular orbitals (HOMO or LUMO) respectively). The 
width of this function is referred to as the energetic disorder. 
Such disorder is found in both small molecules and poly-
mers, and is more pronounced in the latter. Multiple theor-
etical models have been proposed to describe the hopping of 
charges, namely: (1) nearest neighbour hopping (NNH), (2) 
variable range hopping (VRH), (3) the transport energy model 
(TE), and (4) multiple trap and release model (MTR). Motion 
of charges described by any of these models does not only 
depend on the electric field but also the temperature. A more 
detailed overview can be found here [26].

This hopping mechanism is one of several forms of trans-
port used to explain the movement of charges in organic mat-
erials. These also include band and polaron transport. Two 
important requirements need to be achieved for band trans-
port to occur, which are the growth of high quality crystals, 
and the observation of a negative temperature dependence of 
the mobility. This dependence has been previously observed 
in Rubrene FETs by Podzorov et al [27, 28]. The review by 
Hasegawa and Takeya [29] further highlights the signifi-
cance of fabricating high quality single crystals to achieve 
high charge mobilities. On the other hand, polaron transport 
accounts for polarizations, which is a common occurence in 
organic materials. If a charge is present on a site for a long 
enough time, it starts to polarize the surrounding environ-
ment. The initial charge and the resulting polarization then 

propagate (together) within the material known as a polaron. 
As Horowitz thoroughly explains in [30], there can be dif-
ferent types of polarizations (i.e. electronic, molecular, and 
lattice) depending on the residence time of a charge on a spe-
cific site. A comparison between the different charge transport 
theories have been addressed, for example see Stallinga [31] 
and Troisi [32].

Charge transport in organic semiconductors is a much 
more complex process, therefore careful considerations need 
to be taken into account for the description of the sub-models 
used and their parameterizations in any drift-diffusion (DD) 
simulation. That includes a correct description of the density 
of states (DOS), the mobiltiy model, and the effect of charge 
trapping. More importantly, a connection between these 
models and what actually occurs within organic materials 
needs to be established, to justify their usability. This allows 
for the appropriate characterization of organic based devices 
and subsequent comparison and validation with experimental 
measurements. The paper is outlined as follows: in section 2, 
we present theory behind the DD simulation and go through 
the sub-models used for our investigations. Section 3 will pre-
sent the results, extracting all important performance meas-
ures (i.e. mobilites, threshold voltages) and drawing out a 
comparison with experimental measurements. Finally, in sec-
tion 4, we end with our concluding remarks.

2. The drift-diffusion model

The drift-diffusion model involves solving a set of equations, 
within the finite element method using the the commercial 
software TiberCad. This DD model has been previously used 
investigating both inorganic and organic based devices for dif-
ferent applications [33–40]. Furthermore, it has also been used 
for the investigation of charge carrier mobility unbalance in 
organic solar cells [41], as well as alongside circuit level mod-
elling for identifying low conductive regions in organic thin 
films as a result of charge carrier trapping [42]. In this study 
we start by creating a structure, then a corresponding mesh 
is generated consisting of many elements, for which the DD 
equations are applied to and solved. We will be considering 
a 2-dimensional (2D) bottom gate-bottom contact (BG-BC) 
structure. Both the 2D device and the meshed representation 
are shown in figure 1.

The main equations of the DD model are the Poisson and 
continuity equations given by:

∇ · (ε∇ϕ) = e( p − n + ND − NA + pt − nt) = ρ (1)

∇ · jn = ∇ · (µnn∇ϕn) = −R + G (2)

∇ · jp = ∇ · (µpp∇ϕp) = R − G, (3)

where ε is the permittivity, e the electronic charge, ϕ the elec-
tric potential, n and p  the electron and hole mobile charge 
densities, ND and NA the donor and acceptor concentra-
tions respectively. The terms p t, nt represent trap densities, 
and finally ρ  is the charge density. In (2) and (3), µn and 
µp are the charge mobilites, G and R are the generation and 
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recombination terms. In our transistor analysis both genera-
tion and recombination will not be considered. The presented 
work focuses on unipolar devices, hence the reasoning behind 
not considering the latter. We start by sweeping on the gate 
voltage, followed by a sweep on the drain voltage at each 
gate. During this process the DD equations  are solved self 
consistently and the drain current calculated. In the following 
subsections, we will go through (in more detail) the different 
physical models used for our transitor analysis.

2.1. Gaussian density of states (GDOS)

As it was stated before, charge transport in organic semicon-
ductors relies on a a hopping mechanism through a random 
distribution of localized states. In order to have an appropriate 
description for this charge hopping, the DOS is best described 
by a Gaussian function. This function is expressed as

g(E) =
N0

σ
√

2π
exp

(
− E2

2σ2

)
, (4)

where N0 is the site density, E the energy, and σ the energetic 
disorder respectively. Energetic disorder in organic semicon-
ductors typically lies in the range between 30 meV and 100 
meV [43, 44], and it relies on the morphology of the material. 
That is why polymers suffer from higher disorder compared 
to small molecules. Going from low to high disorder leads to 
an increase in the random distribution of sites further away 
from the transport level, as a consequence some of these sites 
might act as trap states affecting overall charge transport. 
Moreover, it has been shown that charge mobilites depend 
on the applied field, carrier density, and temperature (more 
on this will be discussed in sub-section (C)). The dependence 
of the mobility on the latter two is affected by the DOS. 
Therefore, it is crucial to have a correct description of the 
DOS and the appropriate amount of disorder depending on 
the material chosen.

2.2. The trap model

Charge carrier trapping in organic semiconductors is one of 
the major factors affecting device performance. Depending on 
the energy associated with a trap state (i.e. how far it is inside 
the band gap), this can have different effects on device opera-
tions such as degrading mobilites [27, 45, 46], causing hys-
teresis [47], and leading to threshold voltage shifts [48, 49]. 
Stability over extended periods of time is also a major issue 
in organic devices, more specifically the ones incorporating 
n-type materials as the active region. This is one of the reasons 
why complementary logic based on organics has been proven 
difficult to achieve. It is imperative to include traps in any DD 
simulation, and their effects could be seen from the transfer 
characteristics of an OFET. Traps in our DD simulations are 
modelled as follows:

 (i)  A neutral trap that becomes negatively charged when an 
electron is trapped

nt =
Nt

1 + exp
(

(Ec−Etn )−EF,n

kbT

) . (5)

 (ii)  A neutral trap that becomes positively charged when an 
hole is trapped

pt =
Nt

1 + exp
(
− (Ev+Etp )−EF,p

kbT

) . (6)

 (iii)  Fixed charges where the density is simply defined. They 
can be either positive or negative.

In (5) and (6), Nt denotes the density of traps, Etn and Etp the 
electron or hole trap energy level, EF,n and EF,p  are the quasi-
fermi energies, kb the Boltzmann constant, and T the temper-
ature respectively. The trap level can be taken with reference 
to the conduction or valence bands (i.e. Ec or Ev).

The above mentioned models (and their subsequent effect 
on charge transport) have been used extensively for the 

Figure 1. A 2D illustration of a bottom gate-bottom contact, in both (a) device and the corresponding (b) meshed representations. 
Dimension labels are illustrated and further explained in detail in section 3.4. (a) Bottom gate-bottom contact (BG-BC). (b) Mesh 
representation (BG-BC)).
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investigation of inorganic materials and devices. In order to 
justify their usage towards investigating charge transport in 
organics, they must be able to represent the physical meaning 
of certain phenomena (or events) that occur within organic 
materials and devices. One of these events is the presence of 
dipoles, more specially interface dipoles. Dipoles exist as a 
result of inhomogeneous distribution of charges at a surface 
[50]. Such dipoles can occur at organic–organic [51, 52], 
organic-metal interfaces [53–55], and even with dielectric 
interfaces [56]. Infact, self-assembled monolayers (SAMs) 
have been previously used to intentionally induce interface 
dipoles between the organic and dielectric materials, to influ-
ence the electrical characteristics of OFETs. As a result, 
controlling of charge densities leading improved field effect 
mobilities, as well as threshold voltage shifts have been 
observed [57–59]. A presence of a dipole causes a shift in the 
potential between two different interfaces (or surfaces). This 
shift is expressed as

∆d =
qmdcosθ

Adε
, (7)

where q is the electronic charge, md is the electric dipole 
moment (given in units of debye and depends on the distance 
between the positive and negative charges), θ is the angle of 
the dipole with respect to the surface, Ad is the area of the 
surface charges, and lastly ε is the dipole layer’s dielectric 
constant. Similarly, fixed charges represent a surface area of 
charges present at an interface and through coulomb attrac-
tion, charges of the opposite sign are situated on the other 
side. Hence, this would be expressed as

∆d =
q

Adε
. (8)

Both (7) and (8) are almost identical with the exception of the 
angle θ, allowing us to use a model of fixed charges to repre-
sent the effect of dipoles in our simulations. This assumption 
is valid if the distance between the separate charges is within 
a fraction of a nanometer. In the following section, we show 
how the fixed charges does indeed affect the threshold voltage 
and subsequently the field-effect mobility, therefore allowing 
us to account for interface dipole effects.

A similar connection can be achieved in regards to the 
modelling of trap states in our DD simulations. It is already 
quite obvious that the mentioned trap models can be used to 
describe defects withing organic materials. Such defects can 
be structural, energetic, or a combination both. However, 
these trap models can also be used to account for redox states. 
Organic materials have been shown to go through redox reac-
tions [60]. These reaction involves transfer of electrons from 
(i.e. oxidation) or to (i.e. reduction) the host material. Organic 
electrochemical transistors (OECTs) that rely on transitioning 
between redox states, have been under investigation for bio-
logical applications [61]. According to a recent review on 
OECTs by Zeglio and Inganäs [62], changes in redox states 
of organic materials are associated with energy levels formed 
inside the band gap. These intermediate levels act as doping 
or de-doping centers when the device is operated under an 
external potential. This process can also be interpreted as 

charge carrier trapping and de-trapping, and our DD trap 
models can be used to account for these effects as well.

Therefore, if simulated traps are intended to represent 
defects, then (5) and (6) stand. On the other hand, if they 
were to represent redox reactions, in this case both Etn and Etp 
in (5) and (6) are simply replaced with Eredox. Furthermore, 
Nt would then represent the molecules (i.e. they are either 
reduced or oxidized). This effectively means that Nt has to 
be equal to N0 from (4). Nevertheless, it might be possible 
that Nt be somewhat higher or lower. Equations (5) and (6) 
represent a classical description of the density. Conversely, 
in organics the description of the density is of a quantum 
mechanical nature. This is linked to the delocalization of 
the wavefunction, where molecules can be charged by a 
fractional charge (i.e. only a fraction of the quantum state 
is localized on a specific molecule). As a result, the density 
Nt can have values which are both larger or smaller than the 
value of the molecular density N0. In our simulation process, 
we will start by defining single trap levels, but if needed it is 
also possible to define a distribution of trap states with the 
Gaussian function from (4).

2.3. The mobility model

Describing how charges move within a transistor channel is 
an integral part of any DD simulation, and there are multiple 
models available in the TiberCad tool to choose from. Specific 
to organic semiconductors there are two models that are usu-
ally used for such investigations. We will present an overview 
on both models, and how the decision is taken on which one 
to use moving forward with the simulations.

2.3.1. The Pasveer mobility. This mobility model which was 
developed by Pasveer et  al [63, 64], is obtained as a para-
metrical fit of numerical solutions of a system of master equa-
tions implementing the Miller–Abrahams [65] hopping model 
between localized states with a Gaussian energy distribution. 
The model takes into account the dependence of the mobility 
on the temperature, charge density, and electric field:

µ(T , ρ, F) = µ(T , ρ) f (T , F). (9)

The Pasveer mobility has been used to fit experimental 
results for different semiconducting polymers [37, 38, 66]. 
Nevertheless, the authors also state that the above parameter-
ization starts to breakdown at high electric field, hence a cut-
off has been defined where beyond it the breakdown occurs 
[38], and is given by

F >
2σ
ea

. (10)

2.3.2. The Poole–Frenkel mobility. According to Pasveer, at 
high electric field and beyond the cut-off mentioned above, 
the mobility starts to follow the Poole–Frenkel law (PF) [67]. 
The PF mobility model is a widely known and used one in 
the literature for investigating charge transport in organic 
semiconductors [26, 68–70]. According to PF, the mobility is 
expressed as:

J. Phys. D: Appl. Phys. 53 (2020) 105102
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µ = µ0 exp

(
− ∆− γ

√
F

kT

)
, (11)

where µ0 is the zero-field mobility, ∆ the zero-field activation 
energy, γ  the Poole–Frenkel constant [71], and F the electric 
field respectively. This relation specifies that charges can gain 
the required energy from the applied electric field to overcome 
potential barriers, as they hop from one site to another, equal 
to a certain activation energy that is otherwise not provided (or 
insufficient) thermally. Furthermore, as the mobility depends 
on both the temperature and applied field, the dependence on 
the temperature vanishes at the point of F = (∆/γ)2. At this 
point, the applied field is equal to the activation energy so that 
at different temperatures the mobility will always reach the 
same value [68].

Deciding on which mobility model to use for our DD 
simulations, depends on several aspects. The PF model better 
suits small molecules, while the hopping mobility is used for 
polymers. The numerical solution presented by Pasveer was 
mainly based on investigating polymers. Furthermore, if the 
DD model is used to investigate polymer based OFETs, we 
must first find out where we lie with respect to the cut-off 
defined by (10). If the electric field is lower then the hopping 
mobility is chosen, otherwise the PF is then the one used.

2.4. Simulation related remarks

In this sub-section we will point out some simulation related 
remarks. As mentioned earlier, a BG-BC transistor archi-
tecture will be considered. Looking back to figure 1(b), the 
device is split up into two major regions, the oxide and the 
organic. The organic region itself is further split up into two, 
where the top part is the bulk, and the bottom part used to to 
model interface effects. In regards to the contacts, they are all 
defined as physical lines (i.e. boundaries) of the device. Bulk 
representation of the contacts are not taken into account, as 
they effectively do not change anything in terms of current–
voltage characteristics. With this exclusion we are able to gain 
improvements on simulations times.

In regards to the dimensions, we construct our 2D meshed 
representation based on the following device dimension labels: 
the oxide thickness (Oxth), the channel length (Orgch_l), the 
channel thickness (Orgch_th), the lateral dimension of the 
organic near the contacts (Orglat), the contact length (Conl), 
and lastly the contact thickness (Conth). Only the Oxth and 
Orgch_l are changed with respect to experimental values, 

while the rest are pre-defined and always fixed. A summary 
of these dimension labels are given in table 1 (also shown in 
figure 1(b)).

Orgch_l was chosen to be 10 nm, as it is well known that 
charge transport usually occurs within the first few monolayers 
just above the oxide-organic interface [72, 73]. Furthermore, 
we did not observe any change in the current–voltage charac-
teristics going beyond this value1. For the sake of being con-
sistent, Orglat was chosen to be the same as Orgch_l. Similarly, 
Conth was also fixed at 100 nm, as increasing the thickness 
simply increased simulation times without any observed 
changes in the characteristics.

The PF mobility model has been chosen for our simula-
tions, as we will be presenting results on Pentacene (i.e. small 
molecule) based OFETs (see section  3). Lastly, both the 
source and drain are modelled as Schottky contacts (typical 
for all organic based devices), unless there has been mention 
of doping near the source/drain. In the latter case the contacts 
would then be modelled as ohmic.

3. Simulation results

Here, we present a comparison between the DD simulation 
and experimental results for a BG-BC Pentacene transistor 
from [74]. Per the fabricated transistor, the channel length is 
12 µm. The oxide thickness was not specified from the experi-
ment, hence a typical thickness of 200 nm was chosen. We 
first start by fitting the transfer characteristics given a set of 
parameters (i.e. for the models defined in the previous sec-
tion). Once a good fit is achieved, the output characteristics 
is simulated using the same model parameters. Before going 
straight into the comparison, it is important to first understand 
the behaviour of the transfer characteristics. This is useful 
especially in the presence of fixed charges and interface (or 

Table 1. The different dimension labels used to define the meshed 
structures and their assigned lengths.

Dimension labels & values

Oxide thickness (Oxth) Defined by experiment
Channel length (Orgch_l) Defined by experiment
Channel thickness (Orgch_th) 10 nm
Organic lateral dimension (Orglat) 10 nm
Contact length (Conl) 50 nm
Contact thickness (Conth) 100 nm

Figure 2. The effect of fixed charges on the transfer characteristics 
of an OFET. The square root of the drain current versus the gate 
voltage (

√
IdSAT  versus Vg) is shown in the inset.

1 These results are not shown here.

J. Phys. D: Appl. Phys. 53 (2020) 105102
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bulk) traps, where each one has an effect on transistor perfor-
mance, and such effects can be seen from the transfer curves.

3.1. Trap-free versus fixed charges and interface/bulk traps

We start by investigating the effect of negative fixed charges 
at the oxide-organic interface (will be referred to from now on 
as ‘FC’. From figure 2, it can be seen that a positive shift in 
the threshold voltage is induced as we move from a ‘pristine’ 
device towards higher concentrations of fixed charges. This 
behaviour follows the relation:

∆Vth = −Qint

Cox
, (12)

where ∆Vth is the threshold voltage shift, Qint the fixed charge 
concentration, and Cox the oxide capacitance respectively. 
This ∆Vth is better depicted in the inset of figure 2 by plotting 
the square root of the drain current (

√
Id), and the threshold 

voltage Vth is simply the intersection at the x-axis when the 
current is zero.

Following the inclusion of fixed interface charges, we 
can now further introduce interface or bulk traps. Traps are 
regarded neutral if empty, then either positively or negatively 
charged if occupied by a hole or an electron (will be referred 
to as ‘ITH’ and ‘ITE’ respectively). A single trap level was 
chosen above the valence band. The effect of both types 
of charged traps, modelled at the oxide-organic interface, 
is depicted in figures  3(a) and (b). On one hand, positively 
charged traps leads to less current drive (i.e. lower drain cur-
rent and a downward shift in the transfer curve). This is true, 
as a higher gate voltage is needed to induce more charges 
in the channel region. Conversely, negatively charged traps 
lead to a decrease in the inverse sub-threshold slope and as a 
result a high sub-threshold current is evaluated, eventhough 
the transistor is operated at high positive gate voltages (i.e. 
in the off state). At high concentrations of electron traps, the 

Figure 3. Transfer characteristics (at Vd  =  −30 V) of a BG-BC OFET under pristine conditions and different concentrations of interface 
and bulk traps. (a) The effect of positively charged (i.e. hole) interface traps. (b) The effect of negatively charged (i.e. electron) interface 
traps. (c) The effect of positively charged (i.e. hole) bulk traps.

J. Phys. D: Appl. Phys. 53 (2020) 105102
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positive applied gate voltage becomes insufficient to deplete 
the channel of holes leading to high currents in the off-state. 
Under negative applied gate voltages no change is observed in 
the drain current. This is self-evident, as in this voltage regime 
the channel is filled up with holes as mobile charges and 
trapped electron concentrations have no effect on the transfer 
characteristics. Furthermore, the negatively charged traps also 
lead to ∆Vth shifts (inset of figure 3(b)) in the absence of fixed 
charges. This is not apparent in the main panel of figure 3(b) 
simply due to the already high presence of fixed charges as a 
starting point before the interface traps were applied.

Finally, we investigated the effect of positively charged 
bulk traps (will be referred to as ‘BTH’) on the transistor 
performance with a single level above the valence band. As 
illustrated in figure 3(c), they also have a similar effect to that 
of the positively charged interface traps. Between bulk and 
interface traps, the former has a more pronounced effect on 
the inverse sub-threshold slope. This is a consequence of the 
bulk traps being located deeper in the band gap. In the sup-
plementary information (stacks.iop.org/JPhysD/53/105102/
mmedia), we provide a charge density map projected on our 
device for the ITH (figure (S1)), ITE (figure (S2)), and BTH 
(figure (S3)) cases at different densities. From this analysis we 
were able to show that fixed or trapped charges have their own 
distinct effects on the transfer characteristics of an organic 
transistor, but another crucial conclusion from this analysis 
is that using either fixed charges alone2 or as a combination 
with either interface or bulk traps might be insufficient to get 
a good description of the transfer curves. Possibly a combina-
tion between all three of them is required to achieve a good fit 
with the experimental results.

3.2. Validating experimental data

In this sub-section we aim to present our simulation results 
and validate them with experimental measurements from 
[74], by fitting both the transfer and output characteristics of 
a 12 µm channel Pentacene BG-BC OFET. We start by first 
achieving the best fit of the transfer characteristics. Once this 
is completed we use the corresponding parameterizations to 
simulate the output characteristics. Following the analysis in 
section 3.1, we are presented with three different scenarios to 
fit the transfer characteristics starting from a pristine condi-
tion, namely:

 (i)  The first scenario includes:

 •  Negative interface fixed charges, to get the correct Vth and 
hence the slope of the transfer curve in the on-state.

 •  Positively charged bulk traps, to control the sub-threshold 
characteristics.

 •  (If required) Negatively charged interface traps, to have a 
more precise control over the sub-threshold slope.

 (ii)  The second scenario includes:

 •  Negative interface fixed charges, to get the correct Vth and 
hence the slope of the transfer curve in the on-state.

 •  Positively charged interface traps, to get the appropriate 
evaluated current across the entire voltage range.

 •  (If required) Positively charged bulk traps, to control the 
sub-threshold characteristics.

 (iii)  The third scenario includes:

 •  Negatively charged interface traps, to get the correct Vth 
keeping in mind its added effect on the sub-threshold.

 •  Positively charged bulk traps to adjust the current drive 
accordingly.

From here onwards we will refer to the three scenarios men-
tioned above in the same order as SC1, SC2, and SC3 respec-
tively. Simulation parameters used to describe the above 
scenarios (i.e. fixed an trap concentrations) will be adjusted 
accordingly to reach the best fit of the transfer characteristics. 
All other parameters are summarized in table 2. From table 2, 
all values referring to the µ0, and interface or bulk trap ener-
gies are taken as input from the analysis carried out in [74]. 
These three parameters will also be carefully adjusted, if it is 
needed to do so, for the fitting process. The site density N0, σ, 
and F are kept fixed.

All three scenarios were considered carefully. And within 
each one different concentrations for the fixed charges, inter-
face and bulk traps (as well as their energy level) were inves-
tigated. It would be difficult to present all these results as we 
went through numerous parameter sets to achieve the best fit. 
Out of the three scenarios, we could not reproduce the transfer 
characteristics with SC3. Using SC1 or SC2, we managed 
to reproduce an almost perfect fit but only within a specific 
gate voltage range (between the off-state and up to  −20 V of 
the applied gate voltage). The SC1 and SC2 fits are shown in 
figure  4, both on the linear and logarithmic scales. Beyond 
the  −20 V mark both SC1 and SC2 drift away from the exper-
imental measurement. By re-adjusting any (or all) of the three 
parameters within either SC1 or SC2, we were only able to 
fit the lower part of the transfer curve. This included different 
trap concentrations as well as their energy level within the 
band gap. Moreover, applying a GDOS in describing the trap 
energy as opposed to a single level definition did not bring 
us closer to a better fit. The only way we were able to fit the 
upper part of the transfer curve was actually using a fourth 
and different scenario which involved only the presence of FC 

Table 2. A summarized list of the different parameters used for the 
DD simulation of a Pentacene BG-BC OFET.

Simulation parameters

Site density (N0) 4×1019 cm−3

Energetic disorder (σ) 30 meV
µ0 (PF) 3×10−4 cm2 V−1 s−1

F (PF) 3×105 V cm−1

nt/p t (Interface) energy 0.15 eV
p t (Bulk) energy 0.3 eV

2 For the shown charge concentrations.

J. Phys. D: Appl. Phys. 53 (2020) 105102
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without the need for any of ITH, ITE, or BTH. The fit corre-
sponding to only using FC is also shown in figure 4.

This approach brought us to the conclusion that the applied 
gate voltage range is split into two distinct regimes, where the 
lower regime is described by considering all of FC, ITE (from 
SC1) or ITH (from SC2), and BTH. While the upper regime is 
appropriately described using only FC. This conclusion can be 
further consolidated by looking back at the analysis illustrated 

in figure 3. Each of ITE, ITH, BTH only affect the transfer 
curves substantially in the sub-threshold regime and at low 
gate voltage in the on-state of our transistor. Possibly, ITH can 
somehow to a slightly larger extent affect the transfer curves at 
higher gate voltages compared to the other two, but even if we 
further increase ITH either in concentration or energy level, 
we lose any fitting in the lower regime of the gate voltage. At 
high gate voltages the effect of all three is greatly diminished, 

Figure 4. Comparison between DD simulated results and experimental measurements (at Vd  =  −30 V) using the fitting scenarios.  
(a), (b) The fitting of the transfer characteristics both in the linear and logarithmic scales (i.e. for SC1, SC2, and FC). (c) The fitting of the 
output characteristics using scenarios SC2 and FC.

Table 3. The final set of parameters used under each scenario to fit the experimental transfer characteristics in [74]. All other involved 
parameters remain unchanged.

Final simulation parameters

Scenario FC ITH (Energy) ITE (Energy) BTH (Energy) µ0

SC1 1 × 1019 cm−3 — 5 × 1018 cm−3 (0.2 eV) 8 × 1017 cm−3 (0.4 eV) 4.62 × 10−4 cm2 V−1 s−1

SC2 4 × 1019 cm−3 6 × 1019 cm−3 (0.5 eV) — 7 × 1018 cm−3 (0.3 eV) 4.69 × 10−4 cm2 V−1 s−1

F C 3 × 1019 cm−3 — — — 1.65 × 10−4 cm2 V−1 s−1

J. Phys. D: Appl. Phys. 53 (2020) 105102
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as all trapped interface and/or bulk charges are freed and join 
the mobile charges in the channel leading to higher evalu-
ated drain currents. The final simulation parameters used to 
achieve these fits are summarized in table 3. It is important to 
note that our starting values for both the trap energies and the 
µ0 had to be re-calibrated accordingly to reach our final fits.

After achieving a fit for the transfer curve, we then move 
on to simulating the output characteristics and once more 

draw out a comparison between our simulated results and the 
experimental measurements. As two scenarios were used for 
the fitting process (i.e. SC1/SC2 and FC), the same approach 
is taken for the output characteristics. Between SC1 and 
SC2, we decided to go forward with the latter to simulate the 
lower regime of the gate voltage. FC was used to simulate 
the upper regime respectively. Nevertheless, the reader will 
find the complete (i.e. covering the entire range) simulated 
output characteristics for each scenario provided in the sup-
plementary information (see figure (S4)). Final output charac-
teristics using SC2 and FC are depicted in figure 4(c). Quite 
clearly, with SC2 we successfully reproduced a perfect match 
for gate voltages of  −10 V and  −20 V. Using FC to simulate 
gate voltages of  −30 V and  −40 V did not yield a perfect fit 
but we were still able to reproduce the correct behaviour in 
both the linear and saturation regimes as well as the highest 
evaluated current respectively. Potential profiles across the 
channel region for the fitted output characteristics are given in 
figure (S5) of the supplementary information.

3.3. Extracting performance parameters

A crucial part of our investigation, once an agreement is 
achieved between the simulation and experimental results, we 
can then extract all important performance parameters of our 
transistor. These parameters include the Vth, and the effective 
µ of our device. Naturally, based on the results presented in 
the previous sub-section extracting one value for each is not 
possible. This is due to the fact that we have two gate voltage 
regimes described by two different fitting parameterizations. 
Hence, when coming to extract both Vth and µ, this depends on 
the operating conditions of our device. If it is to be operated at 
low gate voltages then parameterization SC2 is used, and vise 
versa FC if the device is operated at high gate voltages. We 
begin with extracting Vth. Figure 5 shows the 

√
Id versus Vg 

relation. At the lower regime (i.e. using SC2), Vth  =  −2.8 V, 
conversely at the higher regime (i.e. using FC) Vth  =  +2.35 V. 
The latter coincides with the experimental value. But this dif-
ference in Vth between high and low operating regimes is a 
consequence of the fixed charges and/or interface (bulk) traps. 
In the low regime Vth highly depends on the interface and bulk 
traps, therefore a larger negative voltage is required to switch 
on the device. In the high regime, it is rather is solely con-
trolled by the fixed charges present and it is shifted towards a 
more positive value.

A similar approach is taken in extracting the effective µ 
of our device, and this could easily be done by finding the 
slope of the linear fits from figure 5. Nevertheless, µ is a rather 
complex performance parameter that depends on several fac-
tors including the temperature, charge density, and the applied 
voltage (or electric field). We wanted to find it’s dependence on 
the latter, hence we extracted the mobility dependence on the 
drain voltage (µ versus Vd @ Vg). These dependencies are illus-
trated in figure 6, and as it can be seen the mobility decreases 
(rather slightly) as we transition from the linear to the satur-
ation regime of our device. Using SC2, the mobility is between  
1.14 × 10−2 cm2 V−1 s−1–1.26 × 10−2 cm2 V−1 s−1, and using 

Figure 5. Extracting the threshold voltage Vth from the linear fits of 
the 

√
Id versus Vg relation using parameterizations SC2 and FC.

Figure 6. Mobility dependence on the drain voltage Vd  at different 
gate voltages Vg, using (a) SC2 and (b) FC.

J. Phys. D: Appl. Phys. 53 (2020) 105102
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FC it is between 7 × 10−4 cm2 V−1 s−1–1.2 × 10−3 cm2 V−1 s−1.  
Once again with FC we estimated a mobility closer to the 
experimental value of 4 × 10−3 cm2 V−1 s−1.

4. Conclusion

We presented a DD model for the investigation and charac-
terization of OFETs. This model included the GDOS taking 
into consideration the site density and energetic disorder com-
monly associated with organic materials, as well as the PF 
mobility for small molecules (the hopping mobility for poly-
mers). The effects of fixed charges, interface traps and bulk 
traps (i.e. on the transfer characteristics) were investigated 
individually. Extending this analysis for the comparison with 
experimental measurements, we concluded that more than one 
scenario is required to achieve a good fit depending on the 
device operating conditions. Eventhough fixed charges are 
present, the effect of both interface and bulk traps were found 
to be significant at low gate voltages. Conversely, the current–
voltage characteristics are well described with the influence of 
fixed charges alone at high gate voltages. This was followed 
by the extraction of transistor performance parameters.
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