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Preface

During the work leading to this dissertation, I contributed to several collaborative
projects. To provide a complete context and better understanding of the work, I describe
my contributions including the work of my collaborators in this thesis. In the following
paragraphs, I give an overview of all works and highlight my contributions as well as
acknowledge the important work of my collaborators.

meQTL project [1]
The meQTL project was a large collaborative effort between the Imperial College of

London (ICL), the Research Unit of Molecular Epidemiology (AME) and the Institute
of Computational Biology (ICB) at the HelmholtzZentrum München. This project is
presented in Chapter 4. The corresponding manuscript is currently (July 2020) under
review in Nature Genetics and parts of it including (adapted) figures have been used in
this thesis. Prof. Chambers conceived the initial meQTL study and our collaboration
partners from the ICL and AME provided the LOLIPOP and KORA cohort data and
performed additional experiments to validate the computational results. Basic meQTL
results, including the list of pruned meQTL, were provided by Dr. Lehne from the
ICL and additional computational support provided by Dr. Loh (ICL) and Dr. Wilson
(AME). I contributed to the project by performing functional follow up analyses for
the mechanistic interpretation of the results. This included the integration of gene
expression, Hi-C, chromHMM, and annotations of epigenetic regulators. I was the
leading data analyst during the revisions of the manuscript. I performed computation
and replication of genome-wide meQTL associations in KORA EPIC array data and
additional enrichment analyses to corroborate our initial findings. Here, I also meta-
analyzed and replicated genome-wide significant eQTM together with Katharina Schmid
(ICB), who provided the important associations from the individual cohorts. Dr. Heinig
conceived the random walk framework and I implemented analyses and interpretation
of the network findings, by integrating the functional cohort data and providing follow
up analyses, including trans-eQTM and eQTL calculations and visualization of networks
for the manuscript. I further implemented the QTLdb website which provides easy and
public access to the association results generated in this and other projects. Dr. Heinig
and Prof. Chambers provided me with the opportunity to contribute significantly to
this project which earned me a first authorship for this important work and for which
I am very grateful. I would also like to thank all the collaboration partners whose
extensive efforts went into the manuscript and in this thesis and who provided intensive
discussions from which I learned much.

Network inference project [2]
This project is described in Chapter 5 of the thesis and is currently (July 2020)

published on BioRxiv [2] and under review in Genome Medicine. Parts of the manuscript



have been used in this thesis including (adapted) figures. The study was conceived by
Dr. Heinig and I performed all computational analyses, including the implementation
of a fully reproducible workflow. I am grateful to have had access to the KORA and
LOLIPOP data which was provided by our important collaborators Prof. Chambers
from the ICL (LOLIPOP) and Dr. Gieger and Dr. Waldenberger from the AME (KORA)
and their teams and without which this work would not have been possible. I would
like to thank Prof. Battle and Ashis Saha from the Johns Hopkins University who
assisted with the use of current GTEx v8 data. The valuable discussions with Prof. Battle
significantly advanced this project. Also, I thank Prof. Theis, who, together with Prof.
Battle, contributed to the design of the data analysis strategy.

Network inference review [3]
I wrote a review on network inference in multi-omics data together with my supervisor

Dr. Heinig and Prof. Theis. It has been peer-reviewed and published in Frontiers in
Genetics in 2019 [3]. The review provides a current and detailed view on multi-omics
network inference, which went into this thesis in the introductory Chapter 1 and served
as additional background for the network inference project (Chapter 5).

GR ChIP-seq analysis [4]
In addition, I have contributed to work that is not presented as part of the thesis,

as it focuses on different aspects of gene regulation. This work led to a publication in
Molecular Cell in 2019 [4]. Briefly, the main goal was to investigate circadian rhythmicity
and diet-dependent activity of the glucocorticoid receptor (GR) nuclear transcription
factor by analyzing its global DNA interaction profile in different conditions. To this
end, 48 ChIP-seq experiments were conducted in which GR binding was profiled in
mouse liver tissue. Mice were separated into two groups, group A (N=24) was harvested
5 days and group B (N=24) was harvested 12 weeks after the start of the experiment.
These groups were further separated into mice nurtured with a low-fat diet (N=12)
and with a high-fat diet (N=12). On the day of harvesting two mice were sacrificed
starting at 7 am every 4 hours until 3 am the next day, yielding two biological replicates
for each of the six time points, and liver tissue was extracted and subjected to GR
ChIP-sequencing and RNA-sequencing. The study was designed and the experiments
performed by our collaboration partners from the Institute of Diabetes and Obesity (IDO)
of the HelmholtzZentrum München, including Prof. Uhlenhaut and Dr. Quagliarini who
provided the numerous ChIP-seq samples. I implemented the initial analysis pipeline,
including pre-processing, quality control, differential analysis, and visualization of
results for the generated ChIP-seq data and performed follow up analyses together with
Dr. Mir (IDO). Dr. Mir finalized the ChIP-seq analyses and analysis of RNA-seq data
was performed by Kinga Balazs (IDO). I would like to thank all collaboration partners
who made this work possible and Dr. Heinig for initiating my participation in this
project, allowing me to investigate and learn much about these interesting data.
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Abstract

Genetics studies seek to unravel the molecular mechanisms behind complex traits, which
are influenced by both genetic and environmental factors. A majority of trait-related
genetic variants are not easy to interpret as they lie outside of genes in regulatory
regions. On the molecular level, genetic variants in regulatory elements might cause
differences in gene expression and might ultimately lead to phenotypic differences.

In this thesis, we investigated regulatory networks to improve our understanding of
trait-related variants and of how complex traits arise from genetic and epigenetic factors.
To this end, we leveraged statistical associations between genetic variants and DNA
methylation (meQTL) and gene expression (eQTL) derived from large-scale human
population cohorts.

We identified genome-wide meQTL from data of 6,994 individuals and showed, that
meQTL are enriched in active chromatin regions, in chromatin contact regions (TADs
and Hi-C contacts) and for association with gene expression. Trans-QTL with numerous
trans associated traits (QTL hotspots) are of particular interest as they are enriched
in disease contexts. Integration with functional genomics data and network analyses
allowed us to gain new insights into the mechanisms underlying trans hotspots, some
of which were validated experimentally. We established candidate networks using
a random walk based approach on trans-acting loci and enriched these networks by
integrating multi-omics data. This approach allowed us to propose a novel regulatory
network as the underlying mechanism of the rheumatoid arthritis associated NFKBIE
locus.

Associations derived from multi-omics data aligned well with our random-walk
networks, which prompted us to investigate novel methods for deciphering trans hotspot
networks. To this end, we devised a unified strategy for the integration of trans-QTL
hotspots with human multi-omics data and comprehensive biological prior knowledge.
We analyzed these data and priors using state-of-the-art network inference algorithms in
a large-scale simulation and replication study. We showed that methods utilizing prior
knowledge outperform prior-agnostic methods and are robust to noise in priors. Detailed
investigation of networks constructed from population-scale cohort data highlighted two
novel molecular networks linked to schizophrenia and lean body mass. Both networks
recovered known trait-associated genes and implicated novel genes.

Our studies advanced previous works by providing an extensive functional char-
acterization of genome-wide QTL effects with a focus on trans-acting hotspots. We
demonstrated, that existing biological knowledge can be used with multi-omics data
to improve our understanding of genomic master regulators and to propose novel
candidate genes linking genetic variants to human traits.
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Kurzfassung

Genetische Studien haben zum Ziel, die molekularen Mechanismen hinter komplexen
Merkmalen aufzudecken, welche sowohl von genetischen als auch von Umweltfaktoren
beeinflusst werden. Ein Großteil der mit Merkmalen assoziierten genetischen Varian-
ten ist nicht einfach zu interpretieren, da sie außerhalb von Genen in regulatorischen
DNA Regionen liegen. Auf molekularer Ebene können genetische Varianten in regula-
torischen Elementen Unterschiede in Genexpression verursachen und letztendlich zu
phänotypischen Unterschieden führen.

In dieser Arbeit untersuchten wir regulatorische Netzwerke, um unser Verständnis
von merkmalsbezogenen Varianten und der Entstehung komplexer Merkmale aus ge-
netischen und epigenetischen Faktoren zu verbessern. Zu diesem Zweck nutzten wir
statistische Assoziationen zwischen genetischen Varianten und DNA-Methylierung (me-
QTL) und Genexpression (eQTL), die aus großen menschlichen Bevölkerungskohorten
abgeleitet wurden. Wir identifizierten genomweite meQTL aus Daten von 6.994 Indivi-
duen und zeigten, dass meQTL in aktiven Chromatinregionen, in Chromatinkontaktre-
gionen (TADs und Hi-C-Kontakte) und für Assoziation mit Genexpression angereichert
sind. Trans-QTL mit zahlreichen trans-assoziierten Merkmalen (QTL-Hotspots) sind von
besonderem Interesse, da sie im Krankheitskontext vermehrt auftreten. Die Integration
funktionaler genomischer Daten und zusätzliche Netzwerkanalysen ermöglichten es uns,
neue Einblicke in die QTL-Hotspots zugrunde liegenden Mechanismen zu gewinnen,
von denen einige experimentell validiert wurden. Mithilfe eines Random-Walk-basierten
Ansatzes angewandt auf genomweit wirkende Loci rekonstruierten wir molekulare
Netzwerke, welche wir durch die Integration von Multi-Omics-Daten bekräftigen konn-
ten. Dieser Ansatz ermöglichte es uns ein regulatorisches Netzwerk als den zugrunde
liegenden Mechanismus für den mit rheumatoider Arthritis assoziierten NFKBIE-Lokus
vorzuschlagen.

Aus Multi-Omics-Daten abgeleitete Assoziationen stimmten gut mit unseren Random-
Walk-Netzwerken überein, was uns dazu veranlasste, neuartige Methoden zur Entschlüs-
selung von QTL-Hotspot-Netzwerken zu untersuchen. Zu diesem Zweck entwickelten
wir eine Strategie für die simultane Integration von Trans-QTL-Hotspots mit menschli-
chen Multi-Omics-Daten und umfassendem biologischem Vorwissen. Wir analysierten
diese Daten mithilfe modernster Netzwerkinferenzalgorithmen. In einer groß angeleg-
ten Simulations- und Replikationsstudie konnten wir zeigen, dass Methoden, welche
A-Priori-Informationen verwenden, andere Methoden übertreffen und robust gegen-
über Fehlern in diesen Informationen sind. Eine detaillierte Untersuchung von aus
Kohortendaten abgeleiteten Netzwerken ergab zwei neuartige molekulare Netzwerke,
welche mit Schizophrenie und schlanker Körpermasse assoziiert sind. Beide Netzwerke
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Kurzfassung

identifizierten bekannte und implizierten neue merkmalsassoziierte Gene.
Unsere Studien erweiterten frühere Arbeiten durch eine umfassende funktionelle

Charakterisierung genomweiter QTL-Effekte mit Schwerpunkt auf trans Hotspots. Wir
konnten zeigen, dass vorhandenes biologisches Wissen mit Multi-Omics-Daten integriert
werden kann, um unser Verständnis genomweit wirkender Varianten zu verbessern und
neue Gene vorzuschlagen, welche diese mit menschlichen Merkmalen verbinden.
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1. Introduction

Most common diseases in humans are complex traits, driven by multiple genetic and
environmental factors [5]. Genetics studies seek to identify and quantify the genetic
contribution in causing complex traits. DNA is the carrier of genetic information in living
organisms, and differences in the DNA sequence, i.e. genetic variants, are the drivers
of phenotypic variation between individuals and are central to understanding complex
traits. Each diploid organism inherits two full copies of DNA in the form of individual
chromosomes, one set of chromosomes from each parent. For instance, humans have 46
chromosomes occurring in pairs of two copies. Thus, each gene, i.e. a specific section
on the DNA, is present in two copies, one on each of the parental chromosomes. The
inherited genes can be identical or differ between the parental chromosomes and a
gene is therefore said to be present in the same or different ’alleles’ (types), where
the combination of the two alleles is known as an individual’s genotype for that gene.
During germ cell generation, mixing of genes located on different chromosomes takes
place, and only one randomly chosen allele for each gene is passed on to the new cell,
leading to a mix of genetic information. Alleles on the same chromosome typically stay
together. However, due to recombination events taking place between genetic loci, genes
can be exchanged between the two parental chromosome copies, bringing together the
paternal and maternal alleles on the same recombined chromosome. Genes further apart
on the same chromosome have a relatively high probability of a recombination event
occurring between them, in contrast to genes in close proximity. Such genes or genetic
loci are said to be in linkage disequilibrium (LD), i.e. they are more often inherited
together as one might expect in case of independent inheritance, and LD can make
the interpretation of trait-associated genetic variants identified through genome-wide
association studies (GWAS) difficult.

Nowadays, genetic studies typically investigate genetic markers such as single-
nucleotide polymorphisms (SNPs), i.e. single base pair differences, rather than individual
genes. In GWAS, millions of genetic markers of individuals in large population cohorts
are tested for statistical association with complex traits, such as a specific disease, which
enabled the discovery of many disease-associated (positively tested) genetic loci. But
although GWAS have been very successful in identifying trait-associated loci [6], for
most disease variants a direct causal explanation, i.e. how they specifically affect the
studied trait, is not straight forward [7]. For instance, GWAS rely on genetic markers
flagging numerous individual variants in close LD to each other and determining the
actual disease driving (’causal’) variant is difficult, because causal variants cannot be
distinguished statistically from other correlated variants in LD [8].

1



1. Introduction

Genetic variants could directly impact protein function by changing a protein-coding
DNA sequence, i.e. DNA regions that are translated into proteins by cellular mecha-
nisms to execute specific functional or structural roles [7]. This has been the expected
mechanism of action for trait-associated variants and has been observed before for
rare genetic diseases. However, for most trait-associated variants identified in GWAS
(approx. 93%) this does not hold as they lie outside of protein-coding regions and only
indirectly affect proteins [9]. The two main steps of processing protein-coding genes
are 1) gene transcription from DNA into RNA and 2) translation of RNA into proteins,
which can be summarized as gene expression and which is controlled through regulatory
elements lying in the non-protein-coding part of the genome, sometimes far away from
any protein-coding regions [9]. Disease associated variants are enriched for location in
such regulatory elements [9]. It is, therefore, necessary to determine the genes affected
by these variants, i.e. the genes which expression changes (either enhanced or repressed)
due to changes of the genetic variant, and thereby explain how the variant affects a cell
on a molecular level.

Due to LD and location of GWAS variants in non-coding regions, research focus has
shifted in recent years from the discovery of trait-associated variants to explanation and
mechanism, seeking to dissect the molecular consequences of trait-associated genetic loci
[6, 10] and to pinpoint the causal variants. Recent molecular studies seek to understand,
how and which genetic variants exert control over gene expression, and these studies
have been made possible through technological breakthroughs in profiling genome-wide
molecular data for large numbers of individuals. For instance, it is now possible to
quantify the level of gene expression of all genes in a cell, yielding good readouts of
global gene activity and enabling the identification of genetic variants, e.g. through
associating genotypes with expression levels, which exert a direct impact on genes
(quantitative trait loci, QTL) [11].

Importantly, the expression of genes is also controlled through epigenetic modifications
of the DNA, which do not change the underlying DNA sequence and which are variable
even between cells of the same organism, in contrast to the DNA sequence. These
modifications can be influenced by environmental factors [12–14] and they can, for
instance, alter the accessibility of DNA for specific proteins. Those proteins are in turn
responsible for activating or deactivating gene expression, and genetic and epigenetic
mechanisms together can form complex regulatory interactions to exert their control
on gene expression [11, 15]. It is now also possible to profile epigenetic marks, such
as DNA methylation, genome-wide, allowing additional insights into the regulation of
gene expression [16–18]. For example, causal variants could affect methylation of DNA
at regulatory elements, leading to altered binding of transcriptional regulator proteins,
which are in turn involved in modulating gene expression of a particular target gene
[15, 19].

Current biological datasets can provide measurements of diverse molecular layers
(e.g. genotype, expression or methylation layers) for the same set of individuals and are
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hence often termed multi-omics data1. Recent studies seek to unravel disease mechanisms
by integrating GWAS variants with QTL information from multi-omics data [3, 11], for
example in expression [e.g. 20–22] or epigenetic [e.g. 1, 18, 23, 24] contexts. However,
control of gene expression is more complex than a single variant influencing a single
neighboring gene, similar to many diseases not being caused by a single gene or
variant [10]. For example, studies seek to identify the likely causal variants for a trait
and which regulatory elements they affect, the transcriptional regulators affected by
changes in the regulatory elements as well as the respective regulatory target genes
on the chromosome [23, 25]. In addition, another layer of complexity is added by
regulatory elements being able to influence genes on different chromosomes (i.e. in
trans of the regulatory element) than their own, and studies also aim to pinpoint these
trans effects and how they are established [23, 25]. Importantly, trans-acting variants,
specifically the ones statistically associated with numerous molecular traits, are enriched
for disease associations, and therefore represent central subjects of investigation in
genetics research [22, 23, 26]. Moreover, the ’omnigenic’ model predicts that approx.
70% of heritability originates from trans effects [27] further emphasizing the need
to systematically study the mechanisms underlying these loci. Generally, individual
genes and loci interact in complex regulatory networks [11], involving numerous types
of interacting molecules, e.g. protein-protein and protein-DNA interactions, which
define the genome-wide regulatory processes driving complex traits. Identifying and
understanding these networks thus is essential to comprehend disease mechanisms
[11]. The recent advances in obtaining multi-omics profiles allow to investigate these
relationships in detail and to recover regulatory networks, for instance by testing and
combining statistical associations over multiple molecular layers, thereby detailing the
molecular effects of trans-acting, trait-associated genetic variants [11, 21, 23, 28, 29].
Moreover, nowadays the wealth of biological data available to researchers through
public databases can provide new angles for computational research, for instance by
utilizing established interaction and multi-omics data to alleviate the reconstruction of
genome-wide regulatory relationships [30–33].

What has been missing so far, is to take advantage of emerging population-scale
multi-omics data in humans to investigate and understand the regulatory mechanisms
underlying trans-acting variants, and thus advance our understanding of genetic and
epigenetic gene regulation and complex traits.

1omics refer to the study of omes, the entirety of a certain subject. For instance, genomics provides
information about the genome
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1. Introduction

1.1. Thesis aims and structure

1.1.1. Aims

In this thesis, we seek to understand, how trait-associated genetic variants affect reg-
ulatory mechanisms throughout the genome by uncovering the regulatory networks
underlying trans-acting variants. We provide a systematic assessment of important
trans-QTL hotspots together with novel strategies for computationally reconstructing
their underlying networks in the context of methylation and gene expression in humans.
To this end, we developed and applied computational frameworks for biological high-
throughput datasets, including genotype, gene expression and DNA methylation array
data, to unravel the complex biological mechanisms underlying genetic and epigenetic
gene regulation. These frameworks were applied to functional data in diverse con-
texts to understand the mechanistic consequences of trans-QTL hotspots, i.e. genomic
master regulators. Specifically, we identified regulatory networks and candidate genes
for trans hotspots, which have frequently been associated with diseases, by integrat-
ing curated prior knowledge with population scale multi-omics data and applying
state-of-the-art algorithms for network gene prioritization and network inference.

1.1.2. Structure

In the remainder of this first chapter, we will give a general introduction to the field
of systems biology and lay the foundations for the biological background needed to
follow through with the rest of this work (Sections 1.2 and 1.3). Following this, we will
introduce the concept of molecular interactions and quantitative trait loci (Section 1.4),
and how investigating these can help shed light on results from genome-wide association
studies. Following this, we give an overview on the computational procedures which
can be employed to establish molecular interaction networks in diverse cellular contexts
(Sections 1.4.3 and 1.4.4). We conclude the introductory chapter in Section 1.5, by
briefly discussing the subject of reproducible research in computational biology and
highlighting its importance in all modern research projects.

To give the reader the necessary overview on the type of data used throughout this
thesis, Chapter 2 describes general experimental techniques to extract molecular level
information from tissue samples such as genotypes (DNA sequence), gene expression
and DNA methylation measurements. Here, we also introduce the large population
cohorts from which such data were gathered and which we utilized in the described
projects. In addition, we give a brief description of the public data repositories from
which we obtained genome annotation, molecular interaction and high-throughput data
for our analyses.

In Chapter 3, we will discuss the most important statistical aspects and methods form-
ing the background for the computational approaches employed in the later chapters,
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1.1. Thesis aims and structure

such as linear models and statistical enrichment tests. We further describe the general
processing steps for the used cohort data and describe data processing for the data
used for experimental validation of our results of the trans-meQTL project described
in Chapter 4). In Section 3.4, we will take a closer look at reproducible research in
computational biology and the specific tools we applied to achieve reproducibility in
our studies.

After the methods background, we will describe the two most important projects
which led up to the creation of this thesis, entailing the ’meQTL project’ (Chapter 4)
and the ’prior based network inference project’ (Chapter 5). At the beginning of each
project chapter, we show a brief glossary summarizing the most important acronyms
and expressions used throughout the respective chapter.

In the first project (Chapter 4), we investigated global patterns of DNA methylation in
the light of genetic variation, generating novel insights in genetic and epigenetic gene
regulation and which we utilized for the interpretation of disease loci. After briefly re-
visiting the fundamentals of gene regulation through DNA methylation (Section 4.1), we
detail the methods used to derive and functionally characterize meQTL identified across
ethnicities (’cosmopolitan’ meQTL) from two large population cohorts (Section 4.2.1).
We then proceed to describing the results of our large-scale meQTL analysis, includ-
ing replication in independent data (Section 4.3.2), the functional enrichment analyses
(Section 4.3.3) and the two-step random walk based regulatory network generation for
genetic hotspot variants (Section 4.3.4). In this project, we highlighted candidate genes
and novel regulatory pathways involving DNA methylation systematically for identified
trans-meQTL hotspots. For instance, we highlight a genetic locus around the NFKBIE
gene. Our findings indicated a likely regulatory mechanism linking genetic variation at
that locus with rheumatoid arthritis, an autoimmune disorder, mediated through DNA
methylation regulation at CpG sites located in cis to genes important for the regulation
of IL-6 biosynthesis, a gene central to immune response. For another locus involving the
ZNF333 gene, we highlighted a hitherto undescribed regulatory pattern which we could
validate experimentally.

Moving to Chapter 5, we detail the prior based network inference project which
is in part based on the meQTL results obtained in the previous chapter. Motivated
by our observations in the two-step network analysis in Chapter 4, we formulate
a unified approach for direct multi-omics data integration, involving both discrete
and quantitative a-priori information about molecular interactions. We first motivate
our idea of using data-driven priors in network reconstruction (Section 5.1) and then
describe the methodology employed to compute prior guided networks (Section 5.2.5).
Ultimately, we show how we applied our strategy to recover regulatory networks from
genome-wide trans-quantitative trait loci, including the meQTL from the previous
chapter (Section 5.3). We highlighted novel, complex trait associated loci for which we
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1. Introduction

generated new regulatory hypotheses. For example, we generated a network around
a schizophrenia susceptibility locus, involving known genes related to neurological
disorders and schizophrenia (e.g. PBX2, RNF5) and implicating new, potentially disease
relevant genes (e.g. TCF12, CD6). Similarly, we applied our framework to a hotspot
identified in Skeletal Muscle tissue, and provided new insights for the lean body mass
associated locus.

Finally, in the last chapter of this thesis we discuss our results from the two projects
and put our findings into perspective with the current literature. We further provide an
outlook in interesting topics for future studies in this area.

1.2. Genome-wide association studies

DNA provides the molecular blueprint of living organisms and individual genotypes,
such as single nucleotide polymorphisms (SNPs, single changes in the DNA sequence),
are the molecular determinants of inter-individual phenotypic variation [34]. Genetic
variants such as SNPs can impact cellular mechanisms and structures in numerous ways,
for instance by directly altering protein-coding regions of the genome. In recent years,
tremendous efforts have been put into identifying the genetic drivers (e.g. SNPs) behind
complex human traits such as diseases. Genome-wide association studies (GWAS) are a
popular way of investigating associations between genotypes and complex traits, and
thousands of GWAS investigating thousands of traits have been conducted in the last
decade [6, 8]. A GWAS boils down to association testing of individual genotypes with
the trait under investigation (BMI or a disease, for instance) under consideration of
potential confounding variables such as population structure, age, or sex. Typically,
in a single GWAS, millions of genotypes for a population are independently tested
for association with the trait of interest using for example linear or logistic regression
models. GWAS hits lying in protein-coding regions of the genome (see Section 1.3) can
highlight specific genes as e.g. potential drug targets. However, a significant proportion
(approx. 93%) of disease-associated SNPs is found in non-coding parts of the genome
and far away from any protein-coding regions [9]. For instance, such non-coding
genetic variants could have an impact on the binding of proteins to the DNA which are
required to initiate gene transcription [19]. Generally, interpretation for these genetic loci
concerning their functional impact is not straight forward. In addition, GWAS determine
trait-associations for SNPs in linkage-disequilibrium (LD) blocks, containing numerous
highly correlated SNPs rather than pinpointing individual ’causal’ SNPs with a direct
effect on the disease, hindering further insights in disease pathophysiology. Therefore,
in recent years the focus in genomic research has shifted from identifying disease loci to
obtaining mechanistic explanations, seeking to understand the molecular and cellular
consequences of disease-related DNA variants. These efforts, which we also pursued in
this thesis, have been made possible through advances in measuring genomics data, and
a specific focus is now on understanding gene regulation, for which we will provide the
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1.3. The central dogma of molecular biology and gene regulation

necessary background in the next section.

1.3. The central dogma of molecular biology and gene
regulation

1.3.1. The central dogma

In the heart of modern molecular biology lies its decade-old central dogma, first pro-
posed by Francis Crick [35] and in a different formulation by James Watson [36] in the
1950s. While Watson describes a relatively simple two-step processing model, where
the carrier of genetic information in all living cells, i.e. DNA (desoxyribonucleic acid),
is transcribed into RNA (ribonucleic acid) and RNA is further translated into proteins,
Crick’s model makes a statement about how information flows from DNA to RNA and
protein, but never from protein to DNA or RNA, although information flow from RNA
to DNA is stated as a possibility (see Figure 1.1). Information, in this context, is defined
as the ’precise determination of sequence, either of bases in the nucleic acid or of amino
acid residues in the protein’ [35]. For instance, the DNA sequence, composed of the
four nucleotides adenine (A), cytosine (C), thymine (T), and guanine (G), determines
the RNA sequence (made of the same nucleotides, except thymines are replaced with
uracils, U). The latter model by Crick still holds today and mechanisms that reverse
transcribe RNA to DNA have been identified [37], however, more insights have been
generated in how the expression of genes (i.e. their transcription to RNA) is controlled.
Genes are defined sections on the DNA that can encode specific transcripts (RNAs)
and if the gene is ’protein-coding’, these RNAs form templates for proteins. The genes
in the human genome (though this holds true for other organisms as well) are not all
actively transcribed all the time, but rather are carefully orchestrated by the cell to be
expressed (transcribed) only when needed [38]. For example, different genes might be
active depending on the cell cycle stage or, in case of cell differentiation, different genes
are active and inactive in more differentiated cells as compared to their progenitors (see
e.g. Y.-H. Zhang, Y. Hu, Y. Zhang, et al. [39] for an example in blood cell differentiation).
These differences are driven by epigenetic control, meaning that no changes in the DNA
sequence are involved, but rather the way the sequence is interpreted is adjusted for the
distinct contexts [15, 38].

Figure 1.1.: The first draft of the ’Central
Dogma of Biology’ as outlined by Francis
Crick [35]. As Crick stated, information
flow between nucleic acids and from nu-
cleic acids to protein is possible, however,
it is never possible from protein to nucleic
acids.

DNA RNA Protein
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1.3.2. Mechanisms of gene regulation

In the projects described in this thesis, we aim to improve our understanding of the
complex molecular mechanisms underlying gene regulation. At a specific point in time
(e.g. cell-cycle stage) for specific cells (e.g. pancreatic cells, muscle cells, etc.) only
the required subset of genes is actively transcribed and, if protein-coding, translated
[38]. Genes not required on the other hand are turned off. The control of which
genes are active to which degree is mostly referred to as gene regulation and is often
viewed on the transcriptional level, i.e. whether and which kind of RNA is transcribed.
However, this is a somewhat simplified view, as there are mechanisms of gene regulation
beyond the transcriptional regulation. For example, even if a gene is transcribed, other
RNAs can lead to degradation or inhibit translation of the freshly formed RNA by
interacting with it, a mechanism known as RNA interference [40, 41]. Another example
of gene regulation is alternative splicing. A gene is composed of exons (coding) and
introns (non-coding) parts, and, typically, intronic regions of the gene are spliced out
prior to it being translated into a protein. Hence, alternative splicing is an additional
processing mechanism for transcripts, which allows a single gene to be processed
into multiple, potentially protein-coding, transcripts [42] (so-called ’isoforms’), e.g. by
selectively including or excluding specific exons or by forming alternative transcription
start sites. Moreover, finished gene products (proteins) can also be modified through
post-translational modifications, achieving more protein diversity as well as control of
protein activity [43].

While the above are important mechanisms in gene regulation, in this thesis, we will
focus on the epigenetic control of genes at the level of DNA transcription. Here, two
types of epigenetic marks come into play: histone modifications and DNA methylation
(see Figure 1.2). Mechanistically, both marks are tightly linked in regulating gene ex-
pression. Histone modifications are post-translational modifications of histone proteins
at nucleosomes. Nucleosomes are structural components of chromosomes and each
nucleosome consists of DNA that is wrapped around a complex of eight histone proteins
or histones [44]. The complex consists of two copies each of four distinct proteins, H2A,
H2B, H3, and H4. Different post-translational modifications of histone tails, i.e. the
N-terminal part of the histone proteins, can lead to more or less accessible DNA to
the transcriptional machinery (e.g. the RNA polymerase or other proteins needed for
transcription, such as transcription factors). For example, acetylation of the 27th lysine
residue (one letter code ’K’) of H3, abbreviated as ’H3K27ac’, is a mark generally as-
sociated with active regulatory regions and found e.g. in the promoter region (i.e. a
specific area upstream and downstream of a genes transcription start site), of actively
transcribed genes [44, 45]. On the other hand, high levels of H3K27me3 (tri-methylation
of the 27th lysine residue of H3) have been associated with silent promoters and hence
are seen as a sign of repressed gene transcription (compare Figure 1.2) [44, 46]. Moreover,
histone modifications act in a combinatorial manner, such that different combinations of
histone modifications at nucleosomes can implicate distinct consequences (forming the
’histone code’) [47]. Large-scale projects measuring histone modifications in numerous
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Figure 1.2.: Schematic showing the two main marks of epigenetic gene regulation, including DNA modifi-
cations via methylation of cytosines at CpG sites (purple marks) and post-translational modifications of
histone tails (green and blue marks).

cell types (e.g. Roadmap Epigenomics [48]) set out to decipher this histone code, and
tools such as chromHMM [49] have been successfully applied to data measuring histone
modifications (e.g. ChIP-seq, see also Section 1.4.1) to define regulatory chromatin
states (e.g. active TSS, enhancer, quiescent; compare Table 1.1). We make heavy use of
established knowledge around histone modifications in both projects discussed in this
thesis. In Chapter 4, we use information derived from histone modifications to assess
the functional relevance of associations between genetic variants and DNA methylation,
and in Chapter 5, we utilize established knowledge about the functional implications
of histone modifications to generate informative priors for the inference of regulatory
networks for explaining disease-associated variants.

Another level of epigenetic regulation, which plays the most important role in this the-
sis, is the methylation of cytosines, mostly at CG dinucleotides on the DNA (also termed
’CpG sites’), and referred to, simply, as DNA methylation. The methylation of DNA
has been described as a crucial cellular mechanism, driving functional and structural
properties of the genome, and is involved in the regulation of cellular differentiation
and gene expression [12, 38]. Moreover, aberrations of DNA methylation patterns have
been implicated to play a role in several complex diseases, such as neuropsychiatric
disorders, atherosclerosis, cancer and type 2 diabetes [50–54] and DNA methylation
patterns have been found to differ drastically between groups of individuals, for instance
between smokers and non-smokers [14, 55]. These studies showed that environmental
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state number abbreviation/mnemonic description
1 TssA Active TSS*
2 TssAFlnk Flanking Active TSS*
3 TxFlnk Transcr. at gene 5’ and 3’
4 Tx Strong transcription
5 TxWk Weak transcription
6 EnhG Genic enhancers+

7 Enh Enhancers+

8 ZNF/Rpts ZNF genes & repeats
9 Het Heterochromatin

10 TssBiv Bivalent/Poised TSS
11 BivFlnk Flanking Bivalent TSS/Enh
12 EnhBiv Bivalent Enhancer+

13 ReprPC Repressed PolyComb
14 ReprPCWk Weak Repressed PolyComb
15 Quies Quiescent/Low

Table 1.1.: ChromHMM states obtained from ChromHMM using the 15 state model model. States repre-
senting ’active regulatory states’ and those used latter in this thesis are indicated in bold. The asterisks (*)
indicate promoter related states and the pluses (+) enhancer related states.

and genetic factors can influence DNA methylation and hence that it could provide a
mechanistic explanation of how these exposures impact gene regulation and molecular
phenotypes [13, 56–58]. Moreover, DNA methylation has previously been associated
with genetic variation in multiple studies [18, 23, 50, 59], further hinting at a complex
interplay of genetic (DNA variants) and environmental (e.g. smoking) factors in the
regulation of gene expression and complex traits.

Biologically, depending on the relative position of the methylation site to a gene,
changes in methylation can either enhance or repress transcription [60]. For example,
methylation at gene promoters has widely been associated with gene silencing [61]. A
possibility of how the effect might be established is by DNA methylation preventing
transcriptional proteins to bind to the promoter and hence also preventing the respective
gene to be transcribed. On the other hand, it has been shown that highly active genes
often exhibit high levels of methylation within the gene body [62]. The mechanisms of
how methylation of gene bodies might favor transcription are not yet well understood,
but a reason for gene body methylation could be an effect on splicing of the gene
transcript [63] or to avoid spurious transcription of the gene body [61].

In Chapter 4 of this thesis, we aim to understand the effects of genetic variants on
DNA methylation, including the effects of disease-associated variants. We identify the
regulatory mechanisms involved in mediating genetic effects on DNA methylation,
including the effects of methylation on gene expression, to further our understanding of
complex traits.
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1.4. Systems biology and biological interactions

Systems biology seeks to model complex biological systems by generating a holistic
view of all underlying cellular processes [64], including regulatory processes. By
including genetic variants in the system, it is possible to observe their effects on a
studied phenotype, i.e. how a change in sequence propagates through the cell via
interaction networks to produce a specific trait [11]. Thereby, systems biology can help
in providing a mechanistic explanation of the effect of disease-associated variants, an
approach we adopt in this thesis for disease variants with genome-wide regulatory
effects.

At the center of systems biology lies the central dogma of biology, i.e. the information
encoded in the DNA is processed to RNAs, which are ultimately translated into proteins,
and this process is tightly regulated (e.g. through epigenetic mechanisms such as DNA
methylation or histone modifications) [35]. By looking at the entire DNA sequence
(genome), the complete set of RNAs (transcriptome) and proteins (proteome), the entirety
of DNA methylation (methylome) and combinations of those ’omic’ layers, systems
biology aims to understand how exactly information processing in cells is achieved.
Specifically, systems biology postulates that by understanding the regulatory networks
formed by molecular interactions within and between omic layers, for instance, which
transcription factor proteins affect which genes, it is also possible to understand the
molecular basis of diseases and other system-level phenotypes [64]. Generally, molecular
interactions can be classified as either physical/direct or functional/indirect associations.
Physical interactions involve two molecules directly interacting with each other, such
as proteins in a protein complex. For functional interactions, on the other hand, the
molecules involved are associated for example by exhibiting a common function or
being involved in the same molecular pathway.

We will make extensive use of established molecular interactions later in this thesis
for dissecting the effects of genetic hotspots and to construct regulatory networks from
high-throughput molecular data. In this section, we will give a general overview of
experimental techniques and computational strategies to recover physical and functional
(direct and indirect) molecular interactions. In Section 1.4.1, we will highlight some
experimental protocols to establish physical and functional interactions. Starting from
Section 1.4.2, we discuss computational approaches to investigate high-throughput
functional data for molecular interactions. For the computational part, we will focus
specifically on the integration of multi-omics data, i.e. measurements of different omics
on the same set of samples, and interaction profiling within these data, as this represents
the main idea behind the projects discussed later in this thesis.

1.4.1. Experimental detection of interacting molecules

We utilize published molecular interactions later in this thesis to help understand
genetic loci underlying complex traits, both in the form of established interaction
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networks and as prior information for network inference on functional omics data.
Detection of interacting bio-molecules has gotten much attention in molecular biology
and numerous experiments have been designed to achieve this [65–70]. A large-scale
map of physical interactions can for example be constructed by systematically assessing
direct interactions between molecules. For instance, in the case of protein complexes,
protein-protein interactions (PPIs) can be screened by employing high-throughput
yeast2-hybrid (Y2H) experiments or, as an alternative, affinity purification followed by
mass-spectrometry (AP-MS) [66]. In another example, chromatin immunoprecipitation
followed by sequencing (ChIP-seq) [67] has often been applied to construct global
interaction maps of a protein (e.g. a specific transcription factor) with DNA sites (protein-
DNA interactions). ChIP-seq has been applied in numerous contexts to study the activity
of transcription factors or histone modifications [48, 60]. In our case, we make heavy use
of the ReMap database of ChIP-seq derived transcription factor binding sites (TFBS) [71]
and chromatin activity states derived from histone ChIP-seq data (chromHMM states)
[48, 49]. An experiment similar to ChIP-seq, called cross-linking immunoprecipitation
(CLIP-seq), can further be used to identify protein-RNA interactions [65, 68]. In addition,
to probe direct interactions between DNA or RNA sites (DNA-DNA or RNA-RNA
interactions, respectively), high-throughput Chromosome Conformation Capture (Hi-C)
[69, 72, 73] or RAP-RNA sequencing [70] can be employed. We utilize published Hi-C
data [74, 75] and derived associations between distinct DNA sites in this thesis to
corroborate results from a large-scale functional association analysis of genetic variants
with DNA methylation (Chapter 4). Finally, functional (indirect) interactions between
molecules can be derived using experiments such as synthetic genetic array screens to
obtain genetic interactions [76]. Another option is to apply computational approaches
such as co-regulation (e.g. based on ChIP-seq) or co-evolution [77, 78].

One shortcoming of most of the experimental protocols, is, that they do not scale well
to a broad range of biological contexts since they for example have to be performed in
non-physiological conditions (Y2H) or are limited to a one-to-many interaction map
(ChIP-seq, CLIP-seq, AP-MS). In contrast to these experiments, protocols to measure
the global omics profiles in arbitrary biological contexts have been established, such as
microarrays or high-throughput sequencing protocols (see also Section 2.1). As these
can be applied to a large number of samples in arbitrary physiological conditions with
relative ease and low cost, they enable the use of statistical methods to obtain molecular
associations between individual molecules. Moreover, it is possible to combine readouts
of different omic layers (e.g. the genome, methylome or transcriptome) if these are
available for the same set of samples (’multi-omics’ data). These data enable inference of
interactions across omic boundaries, thereby generating a near to complete view on the
studied system. This can be extended to inferring comprehensive regulatory networks
from functional data as we will describe in the next sections.

12



1.4. Systems biology and biological interactions

Figure 1.3.: Intuition behind ex-
pression/methylation QTL. Panel A:
The genotype of a SNP (x-axis) de-
termines the values on the y-axis
such as the expression of a gene
(eQTL) or methylation at CpG sites
(meQTL) in a set of individuals.
Panel B: The SNP genotype does
not have a clear effect on the quan-
titative trait. Each dot represents
a single simulated individual, box-
plots show medians and lower/up-
per quartiles (horizontal lines) and
1.5 * inter-quartile range (vertical ex-
tensions).

1.4.2. Quantitative trait locus studies

By using intermediate molecular phenotypes, systems genetics studies seek to explain
disease-associated, genetic variants in non-coding regions of the genome [11]. Through-
out this thesis, we adopt this view and make extensive use of quantitative trait loci
(QTL), which enable additional functional insights into the effects of GWAS variants.
To this end, genetic variants are associated in a pairwise interaction approach with an
intermediate molecular phenotype such as the expression level of genes (expression
quantitative trait loci, eQTL) or the DNA methylation at CpG sites (methylation quan-
titative trait loci, meQTL) which are viewed as quantitative traits [compare e.g. 22, 23,
50, 79–82, as examples for meQTL and eQTL studies], rather than, or in addition to,
being associated with a population level phenotype. Similarly to a GWAS, in a QTL
study genotypes are assessed and molecular profiles generated for a large number of
individuals and associations are determined by applying e.g. linear modeling, regressing
the quantitative traits (dependent variables) against genotypes under consideration of
available covariates (independent variables) (see Section 3.1.2).

Figure 1.3 shows the intuition behind QTL studies: The population is stratified by
their respective genotype (for a single locus) and the resulting pattern of the quantitative
trait (e.g. expression of gene X) is analyzed. If the extent of the trait is significantly
different between the groups implied by the genotype (panel A), the latter is a QTL for
the specific trait and it is not, otherwise (panel B).

While this approach necessitates the measurement of quantitative molecular data (see
Section 2.1.3 and 2.1.2), it offers the opportunity to set trait-associated genetic variants
into a functional context and, thereby, advance our understanding of how genetic effects
propagate through the cell to form complex traits. Moreover, due to the drop in costs for
measuring functional genomics data during the last decade, the additional integration
of these data with GWAS results has become relatively easy to perform.

An important finding of QTL studies are trans-QTL hotspots, genetic variants on a
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specific chromosome that influence multiple molecular phenotypes on other chromo-
somes [83]. A trans-QTL hotspot represents a coordinated genome-wide effect of a
single genetic locus on numerous traits, such as transcript or protein levels, and are
therefore of particular scientific interest as they represent genomic master regulators.
To understand the changes the hotspot variant exerts in a cell, we need to investigate
the underlying regulatory mechanisms by which the observed trans associations are
implemented on a molecular level.

Promising first steps have been taken in this direction. For instance, the study by
Bonder et al. investigated the effect of disease-associated genetic variants on gene
expression and DNA methylation in whole blood [23]. After generating genome-wide
eQTL and meQTL, the authors associated DNA methylation with gene expression to
obtain targeted expression quantitative trait methylation (eQTM) results for their meQTL.
Moreover, they integrated trans-meQTL with eQTM and additional TFBS from ChIP-seq
data, thus establishing regulatory relationships spanning DNA, gene expression, protein
expression, and DNA methylation. They found that disease-associated genetic loci lead
to alterations in DNA binding of TFs (protein-DNA interactions) and DNA methylation
changes, which subsequently mediate changes in gene expression networks. Bonder et
al. generated novel disease-related hypotheses in the form of a gene regulatory network
for a locus associated with ulcerative colitis. They highlighted a regulatory cascade,
by which the genetic variant located in the first intron of NFKB1 influences the gene’s
expression, in turn leading to altered methylation at distal DNA methylation sites which
ultimately leads to change of expression of genes located in the vicinity of the CpG sites.
Thus, the study established regulatory interaction maps for specific loci, such as the
NFKB1 locus, and generated new hypotheses of the underlying molecular mechanisms
driving diseases and other phenotypes.

A more holistic approach is taken in a study by Suhre et al. [29]. Here, the authors
first generated trans-pQTL (protein expression QTL) for a set of disease-associated
genetic variants and then linked trans traits to the SNP by subsequently constructing
a protein-protein interaction (PPI) network based on a targeted protein expression
assay [29]. They integrated their pQTL for GWAS SNPs with the PPI network by
including DNA-protein edges for all pQTL, thus establishing a disease context for their
obtained networks. Using this technique, the authors generated novel disease insights
for Alzheimer’s Disease (AD). They inferred a thus far unknown relationship between
a major AD risk variant (rs4420638) and splicing related proteins, hence elucidating
molecular mechanisms underlying AD.

In another study by Võsa et al. [22], the authors established trans-eQTL for a total
of 3,853 unique SNPs and 6,298 unique genes and used their findings, to investigate
the functional consequences of GWAS SNPs on the expression patterns of genes. For
their analysis, they integrated genotype and gene expression data to pinpoint local
effects of variants on cis genes and subsequently analyzed TF-DNA binding sites at
trans-eQTL genes using available ChIP-seq data. To corroborate the functional relevance
of eQTL, they integrated their results with putative enhancer-promoter interactions
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derived from Hi-C [75] to determine direct DNA-DNA contacts for distally related
entities (SNPs and gene distance > 100kb). The authors estimate, that for approximately
17.4% of the identified trans-eQTL, the genetic effect could be explained by a direct
interaction between a transcription factor (TF) encoded at the genetic locus and the
respective trans gene. Importantly, their results indicate, that for the vast majority of loci
a mechanistic explanation is still lacking.

In this thesis, we extend upon approaches such as the ones by Bonder et al., Suhre et
al. and Võsa et al., which mostly looked at short paths through regulatory networks
(e.g. direct explanation of trans effects through a TF encoded in cis of the variant) and
tackle the issue of missing mechanistic explanations of trans-acting genetic loci. We
address these issues by systematically reconstructing functional interaction networks
for trans-QTL hotspots, specifically looking at regulatory cascades with paths longer
than one, to further our understanding of complex traits. Moreover, we propose a fully
integrated, genome-scale inference approach for multi-omics data, in contrast to the
step-wise integration performed e.g. by Suhre and colleagues.

1.4.3. Biological network inference in systems biology

Systems biology seeks to generate holistic views on cellular systems [64], however,
complex network models to explain, for instance, important trans-QTL hotspots are still
lacking. In this section, we will describe general approaches to inferring interaction
networks from biological high-throughput data, which we will tailor in the later parts of
this thesis to fit an application on trans hotspots. Generally, such networks represent
interactions between specific molecules of distinct cellular omic layers and are made of
nodes (or vertices), which represent the individual bio-molecules, and links (or edges)
between these nodes, which can reflect either direct physical or functional relationships.

In the previous section, we introduced approaches that perform step-wise integration
of omics data in order to establish molecular interactions across multiple omics levels.
While these approaches have been applied to great success [22, 23, 29] and are relatively
straight forward to execute, simultaneous integration of multiple omics layers to con-
struct heterogeneous (i.e. containing molecules from different omics layers) networks
could exploit omics data to their full potential, e.g. by taking into account information
from all available variables and omics data at the same time [32]. Hence, simultaneous
integration approaches represent promising tools to further our understanding of how
information is processed in a cell and, therefore, to explain trait-associated variants.
A popular way to approach this idea is by employing so-called graphical models (see
Section 5.2.5) and specifically Gaussian graphical models (GGMs). Gaussian graph-
ical models are often preferred to pairwise integration approaches [29, 84, 85], and
their extensions for applications to multi-omics data and integration of biological prior
information to utilize established biological knowledge (e.g. PPI networks or public
functional association data) are particularly promising [3].

For instance, Krumsiek et al. [84] applied GGMs to infer a metabolite reaction network
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using a large-scale metabolite dataset. Although their analysis was based on a single
omics layer (metabolome), they were nevertheless able to highlight the advantage of
simultaneous network inference approaches over pairwise approaches by comparing
their network to established metabolic reactions from the Kyoto Encyclopedia of Genes
and Genomes database (KEGG, see Table 1.2). Their approach allowed the authors to
propose additional direct associations between lipid metabolites, which, up until then,
were only indirectly associated in the KEGG database.

For the inference of heterogeneous networks, methods that have previously been
designed for single omic layers, such as the graphical LASSO [86, 87] or GENIE3 [88] for
gene expression data, could be applied, but first need to be evaluated and benchmarked
in multi-omics settings. Yet, GENIE3 is the best performing method in two past DREAM
network inference challenges (DREAM4/5, [89, 90]), and GENIE3, as well as other tree-
based methods, hence are promising approaches for multi-omics network inference2.

In a recent study by Saha et al. [85], the authors provide an example of heterogeneous
network inference based on a graphical LASSO based algorithm [92], using GTEx (see
Table 1.2 and Section 2.3) [82, 93] gene expression data to reconstruct transcriptome-wide
(TWNs) and tissue-specific (TSN) networks. Although their work is based on a single
omics level measure (i.e. gene expression), the authors quantify total expression (TE)
and transcript isoform ratios (IR) for all genes based on the GTEx RNA-seq data and
infer networks containing both TE and IR nodes effectively producing heterogeneous
networks. Their approach allowed them to investigate splicing control mechanisms,
for instance by analyzing TE-IR interactions which indicate likely splicing regulators.
Furthermore, an interesting detail of their analysis is the construction of different LASSO
penalties (see Methods 3.1.3) for distinct types of edges (TE-TE, TE-IR or IR-IR), by
which they encode prior assumptions for observing these edges (see also Section 1.4.4
for an introduction to prior based inference). Application of their strategy allowed the
authors to pinpoint specific splicing regulators across GTEx tissues, entailing known
ones such as RBM14 or PP1R10 in addition to novel ones such as TMEM160. Further,
they identified tissue specific regulators (e.g. TTC36 in breast-mammary tissue), which
might be crucial to understand disease-related regulatory pathways. This is further
exemplified by their finding of MAGHO and MAB21L1 as important hub genes, i.e. genes
with a large number of edges, in brain-caudate and artery-aorta TSNs, as both genes
have previously been found to be important for tissue-specific transcriptional regulation
and to be essential in tissue development.

The idea of simultaneously integrating multi-omics data to infer regulatory networks
is relatively novel, and hence specialized approaches such as mixed graphical models
(MGMs, variations of GGMs allowing for other than Gaussian variable distributions)
are often presented in the form of proof of concept studies on simulated data [94, 95].

2Also for application to large single-cell datasets, e.g. GRNBoost in the SCENIC workflow [91]
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Although results on simulated data suggest that MGMs perform well, additional studies
on real-world data are crucial to make use of their potential. Some works set out to
make use of mixed models to infer regulatory networks, and particularly interesting in
this context is the inclusion of phenotypes during network inference.

For example, Fellinghauer et al. [96] proposed a tree-based inference method they
termed ’graphical random forests’ (GRaFo), which was used by Zierer et al. [97] in a
large multi-omics study to assess age-related disease comorbidities in the context of
glycomics, metabolomics, epigenomics, and transcriptomics data. Here, the authors
established a heterogeneous network and identified for example urate as a key factor
linking metabolic syndrome phenotypes to renal function and body composition.

The integration of disease phenotypes together with genetic predisposition and other
clinical data has also been investigated by Mohammadi, Abegaz, Heuvel, and Wit [98]
using a Bayesian approach for graphical modeling. They focused on Dupuytren disease,
a disease which affects finger contractures, and applied their Bayesian approach BDgraph
to pinpoint disease indicators and assessments of disease severity in conjunction with
13 distinct possible risk factors. In their study, the authors did not have (multi-)omics
data available, however, they nevertheless showcased the advantage of heterogeneous
network inference in a clinical context to shed light on disease pathogenesis. Based
on the family history of study participants, they corroborated a likely genetic risk to
develop the disease and identified several key indicators with a direct effect on disease
severity, including for instance alcohol consumption and age. Moreover, they were able
to propose an improved therapy for individuals affected by this disease. Based on their
finding that disease severity for individual fingers is correlated, they suggest executing
surgical procedures simultaneously for affected fingers as compared to individual
treatment as has been done before.

Genome-wide interaction networks, ideally heterogeneous ones spanning multiple
omic layers, are crucial analysis tools for systems biology [11]. However, the inference of
such networks is still challenging, especially in a large-scale context, and new methods
are needed in order to do this successfully [99, 100]. In this thesis, we tailor established
inference methods to the context of trans-QTL hotspots to alleviate network inference
for complex trait associated genetic loci (Chapters 4 and 5).

1.4.4. Leveraging biological prior knowledge for network reconstruction

In Chapter 5, we aim to alleviate network inference from multi-omics data by using
comprehensive prior knowledge about interactions. In the past, numerous large-scale
studies generated functional data and annotation databases for human and other organ-
isms (see Table 1.2 for a non-exhaustive overview), which can serve as prior information.
These databases contain annotations of curated pathway (or network) information for
diverse biological systems (e.g. KEGG, STRING, or BioGrid) on the one hand and rich
functional omics data collected over a large number of samples (e.g. GTEx, Roadmap
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Epigenomics, ENCODE) on the other hand. Pathway information are often deposited in
a context-independent manner, i.e. they are often not tissue or cell type specific, whereas
functional data inherently exhibit these properties. In general, these data, which are
often publicly available, can be used to facilitate genomics analyses and already have
been put to great use in genomics studies [33, 85, 101, 102].

resource data type organisms reference
STRING P-P1 > 2000 [103, 104]
BioGrid P-P > 60 [105]
inBio map P-P HS [106]
GWAS catalog D-PH HS [107]
GWAS atlas D-PH HS [108]
PhenoScanner D-PH HS [109]
KEGG multiple > 5000 [110]
APID P-P > 400 [111]
doRINA P-R, miR-R HS, MM, DM, CE [112]
REMAP P-D HS [71]
IntAct P-P2 multiple [113]
Pathway Commons multiple multiple [114]
AGRIS P-D AT [115]
ENCODE G, T, E HS [60]
modENCODE G, T, E DM, CE [116]
GTEx G, T HS [82, 93, 101]
ROADMAP E, T HS [48]
GEO G, T, E multiple [117, 118]
ARCHS4 T HS, MM [119]
The Human Protein Atlas T, P HS [120]
MetaboLights M multiple [121]
TCGA G, T, E HS [122]

Table 1.2.: Overview on selected resources for molecular interactions and omics datasets. Data type column
depicts either the type of interactions (e.g. protein-protein interaction, P-P) or the type of omics data
available in the data collection. Interactions: M=metabolite, P=protein, D=DNA, R=RNA, PH=phenotype;
Organisms: HS=H. sapiens, AT=A. thaliana, MM=M. musculus, DM=D. melanogaster, CE=C. elegans;
Omics: G=genomic, E=epigenomic, T=transcriptomic; Table adapted from Hawe, F. J. Theis, and Heinig [3].
1 includes functional interactions
2 focus on P-P, but arbitrary interactions possible

For instance, Saha et al. [85] used GTEx RNA-seq data to derive tissue context specific
gene regulatory patterns (see Section 1.4.3). These data can also be used to pinpoint
causal non-coding DNA variants derived from GWAS, e.g. by integrating GWAS results
with interaction data to derive the causal mechanisms underlying certain phenotypes [29,
123]. In addition, tissue specific data collected in resources such as GTEx or ARCHS4
can also serve to unravel tissue specific effects of genetic variants [19, 93].
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An interesting use of such data is through the derivation of biological prior information
to alleviate the inference of regulatory networks from omics data and several methods
have been proposed to achieve this. These include methods based on the graphical
LASSO (e.g. dwgLASSO [31]), tree-based methods (e.g. iRafNet, piMGM [32, 33]) and
Bayesian methods (e.g. BDgraph [98, 124]). By using and adapting these methods,
as we set out to do in this thesis, large-scale datasets containing massive amounts
of interactions or multi-omics data become important assets to infer disease-relevant
regulatory interaction networks.

Given the large amount of interaction databases available, several studies set out to
include some of these data to improve network reconstruction. For example, networks
have been inferred by weighting in interactions derived from a given multi-omics dataset
based on whether or not the interaction has previously been identified [31, 125].

In the study by [33], the authors proposed piMGM (prior incorporation Mixed Graph-
ical Models), which they developed as an extension to CausalMGM [125, 126]. Briefly,
the method independently applies CausalMGM for a predefined range of regularization
parameters (see Section 5.2.5) on random subsets of the available samples and subse-
quently aggregates all generated models to construct a final ’stabilized’ graph. Similar
to LASSO based prior approaches (e.g. [30, 31]), piMGM incorporates priors derived
from pathway knowledge to guide network inference. To evaluate their approach, they
applied it to TCGA RNA-seq and cancer sub-type information to predict sub-types,
utilizing priors curated from KEGG. piMGM successfully reconstructed known pathways
(e.g. the Notch signaling pathway) and highlighted the most crucial pathway structures
for breast cancer subtyping.

In another study, Zhu et al. [28] tackled the inference problem from a slightly different
angle, employing a Bayesian Network approach based on Markov-Chain-Monte-Carlo
sampling [127] to recover directed regulatory networks in yeast. Though applied only
in a model system, the authors derived a stable causal network from a total of 1,000
sampled networks (edges present in ≥ 30% of the networks) and what is even more, they
determined the direction of edges by including prior information based on curated PPI,
TFBS, and eQTL. In order to demonstrate the validity of their network, they used gene
knockout data to predict the downstream effects of controlled changes to the biological
system. With their results, they supplemented existing yeast PPI resources with novel
gene interactions and highlighted novel causal regulators of eQTL hotspots (see also
Section 1.4.2).

Overall, although several studies investigated how to incorporate priors during
network inference [e.g. 28, 30–32, 102, 124, 128, 129], most studies focus on synthetic
datasets to show the general advantage of priors [31, 129, 130] or use model systems [28,
32, 129, 131]. Relatively fewer works describe the application of prior based network
inference to functional omics data in humans [102, 124, 132, 133]. If human data are
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considered, however, the inference is either limited to a specific pathway [133], only cell
line data are used [132], or it is a case study in which no informative priors are applied
[124]. One notable exception is the study by Zuo, Y. Cui, Yu, et al. [102], where priors
derived from the STRING PPI database were used in conjunction with an inference
model [31] to human cancer gene expression data, with a focus on analyzing differential
gene expression.

Thus, existing methods need to be improved and ideas extended and brought to new
biological contexts, in order to make full use of the potential of established biological
knowledge in human contexts. In this thesis, we approach the challenge of curating
comprehensive sets of biological priors from the massive amounts of available data
to make them available to computational models for network inference. This entails
adding complex information from functional databases, such as chromatin conformation
data, gene expression or DNA accessibility data, to e.g. established PPI networks to
formulate reliable prior beliefs. Here we would also like to note, that in recent years
experimental techniques to e.g. directly determine protein-metabolite interactions [134]
or to generate global protein-RNA interactions [68] have been introduced. These can
be useful to increase the quality of existing interaction datasets, which, in turn, could
alleviate prior-based network reconstruction efforts.

1.5. Reproducible research

A full discussion of all the aspects of reproducible research is beyond the scope of this
thesis, however, all software used in its context has been implemented under the light of
reproducibility, with the aim to create robust and reproducible computational workflows.
In this section, we give a brief overview of what reproducibility in computational biology
entails3.

Reproducible research (RR) is a topic that has been discussed frequently throughout
the scientific community [135–140]. For instance, missing reproducibility of research
has been shown to be a severe issue in cancer research: In a study by Begley and Ellis
[141], the authors found that only the results of about 11% of cancer hallmark papers
can be reproduced independently. This is an alarmingly low number, especially since
thousands of papers are published in the cancer context each year [142]. In another study
conducted by the Open Science Collaboration [143], the authors set out to reproduce
results from 100 studies conducted in the field of psychology, spanning three distinct
journals. The authors focused on reproducing statistically significant results using the
original data where available. In their analyses, they achieved successful reproduction
of the original results in only 39% of the tested cases. Finally, in a study by Prinz,
Schlange, and Asadullah [144], the authors surveyed 67 published studies across the
fields of oncology, cardiovascular disease, and women’s health using in-house data.
Here, they identified inconsistencies for 65% of the studies and found that in-house data
are completely in line with published results in only about 21%.

3Note, that for full reproducibility other areas such as e.g. wet-lab biology need to be addressed, too.
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One has to clarify, though, that non-reproducible studies do not necessarily imply that
the original findings are false, but merely that they cannot be reproduced, implicating
potentially unreliable conclusions. Therefore, reproducible results build up trust and
confidence in published findings and can be built upon in future studies [140, 145].

The findings highlighted above show the importance of teaching and implementing
reproducible research. Therefore, large collaborative and open-source efforts are cur-
rently in progress, which seek to educate about the importance and implementation of
reproducible research (e.g. The Turing Way4). These efforts can help avoiding (or miti-
gating) a reproducibility crisis [146] and we aimed to add to these efforts by providing
fully reproducible workflows.

1.5.1. Reproducibility in computational biology

Reproducible research in computational biology entails that a set of results published in
an original publication can be fully reproduced, given only the original data as well as
the description of computational steps executed to arrive at those results. While this
definition might be somewhat simplified (compare e.g. The Turing Way for a detailed
discussion about definitions of nomenclature related to RR), it brings with it two absolute
requirements, namely

1. the availability of the original data and

2. minute documentation of all computational steps

Already, item (1) can be a major bottleneck for reproducible research, especially in
case the data are gathered from human subjects and therefore are highly sensible and
subject to strict data protection laws. In that case, researchers might not be allowed to
deposit the collected data in an online, publicly accessible repository. Initial solutions
to this problem, such as de-identifying the data, are to be regarded critically when
it concerns sequencing data from which the genetic makeup of an individual can be
derived, as these data typically contain enough information to allow identification of the
donor even if the data are de-identified [147]. Moreover, this issue is especially critical
since these data also give further insights on direct relatives of the original donor [148].

In contrast to the data, documentation of the computational steps performed to
arrive at the published results, as stated in item (2), is always possible and should,
ideally, automatically arise directly from a well written and organized workflow. This
documentation or workflow specification should include a full compilation of the
software environment under which computations have been run, including operating
system, software (e.g. R or python), and package versions.

While this might seem trivial at first, often such documentation is either not written
from the point of view of an outsider (e.g. someone who wants to follow up the project)
or does not contain all the needed information. For instance, certain information like

4https://the-turing-way.netlify.app/introduction/introduction.html
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package versions, used parameters, or a specific data filtering step might not explicitly be
written down, as it is self-evident to the developer, and hence is missing to fully retrace
the analysis. Moreover, package versions might change during project development, for
example when updating packages to their newest versions.

While, in principle, reproducibility can be achieved manually by keeping a clear and
tidy documentation of the project at all times, it also poses the risk of an inconsistent
documentation to workflow relationship, e.g. that a subtle change in the workflow is not
reflected in the documentation. To solve this issue, in recent years systems have been
developed which, amongst other things, seek to unite the documentation process with
the specific implementation of a workflow.

A strong focus of the work leading to this thesis was on implementing reproducible
workflows in all projects, specifically by using a workflow management system called
Snakemake [149] in conjunction with containerization solutions such as conda5 and
Charliecloud [150] (see Section 3.4).

1.5.2. Dedicated workflow systems

Several dedicated systems are available which aim to simplify the process of creating
reproducible data analysis workflows. Some of the more popular systems include Galaxy
[151], KNIME [152], Nextflow [153], and Snakemake [149], all of which can be used to
construct and publish reproducible pipelines. While KNIME focuses on providing a
graphical user interface to facilitate its usage by less technical educated users, Nextflow
and Snakemake are mostly code-based, i.e. the workflow is formulated similar to Makefiles
in Unix6. In brief, all these systems define rules, which specify how inputs are processed
and output files produced using a set of commands and parameters recorded in the rule
definition. These rules can then be chained together by the respective input and output
definitions such that complex workflows can be constructed, starting at the raw data as
input for the first rule and ending with the last rule producing the desired results (e.g. a
summary table or plot), with as many rules as needed in between. Using this concept,
arbitrary workflows can be defined and run, which automatically document each step
taken to arrive at a specific set of outputs given the respective input data.

1.5.3. Distributing workflows and software environments

An important aspect of reproducibility is the documentation of software and package
versions. To facilitate this, and to enable straight forward distribution of workflows, most
workflow systems can use well defined (static) software environments (software ’con-
tainers’ or ’images’) with the purpose of making the complete workflow self-contained
(i.e. independent of software installed globally on the system the workflow is run on).

5https://docs.conda.io/en/latest/index.html
6Some graphical user interfaces have been developed by the community, e.g. https://github.com/
UMMS-Biocore/dolphinnext for Nextflow
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Several containerization solutions have been proposed, such as Docker 7, Singularity
[154], or Charliecloud [150]. Containerization enables the user to build an environment
from scratch, defining e.g. an operating system and specific software and package
versions, which can then be used by workflow systems to execute code. Software and
scripts can hence be executed within a closed environment, which facilitates repeating or
moving the analysis to a different physical computer. For instance, Snakemake supports
the specification of a Docker or Singularity software container for a workflow, which
is initialized for each processing step to perform calculations. This also means that
the complete workflow can be packaged and transferred to a different system, yet the
software and package versions are the same as on the original system. This is a huge
step towards reproducible research which can be implemented without much effort.

7https://www.docker.com/
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2. Materials

In this chapter, we give a general introduction to the experimental data types and
molecular data used throughout the thesis, with the structure as follows: In Section 2.1,
we’ll describe the microarray technology, a well established technology which has been
used in diverse settings and organisms to generate molecular high-throughput data.
We will explain the specialized microarray technologies employed in the context of
this thesis to obtain different levels of molecular data in humans, i.e. genotype, DNA
methylation, and gene expression data. Next, in Section 2.2 we provide a description
of the human population cohorts we utilized, the microarray data of which were used
to obtain molecular multi-omics profiles from thousands of individuals. Finally, we
will detail the public data repositories we used, including databases for both functional
multi-omics data and bio-molecular interactions (Section 2.3).

2.1. Microarrays: a cost effective way of obtaining multi-level
functional data from large population cohorts

Generally, to generate molecular data a bio-sample from the individual of interest needs
to be collected. For the cohort data used in this thesis, for instance, molecular data was
generated from whole-blood samples as blood is easy to access and therefore makes
population-scale studies feasible. Its relevance to immune system-related traits makes
blood an interesting target tissue in epidemiological studies, not least by providing a link
between the environment and diseases such as allergies triggered by an environmental
factor. To determine the genetic makeup of an individual, i.e. the DNA sequence,
it suffices to take a sample from any tissue of the body as the information encoded
in the DNA is the same throughout the body. Depending on the type of analysis,
however, certain studies might necessitate samples from a specific tissue. For instance,
DNA methylation and gene expression can vary drastically between different tissues
and cell types and in fact between cells from the same tissue at different cell stages
(see Introduction). Therefore, ideally one obtains samples from a tissue related to the
investigated trait, such as a heart sample in case of e.g. cardiomyopathy or other heart-
related traits. Naturally, this poses an obstacle in human studies as specific tissues (such
as heart) might not be easily accessible. In our studies, we rely on data generated from
whole-blood samples collected in large population cohorts using microarray technologies.
Microarrays are a cost-effective and reliable way to generate molecular readouts from
diverse molecular layers (e.g. expression of genes or DNA methylation) for a large
number of individuals [155, 156].
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2.1.1. Determining the genetic make up of individuals through genotyping
arrays

There are two dominant strategies for assessing the genetic variants in DNA samples
from individuals: genotyping microarrays, typically used to detect common variants,
and whole-genome sequencing, which also enables the discovery of rare variants. While
whole-genome sequencing (WGS) offers the possibility to determine the complete
genome sequence with high accuracy (depending on the sequencing coverage), it is
also relatively expensive and hence can be infeasible to be applied in large population
cohorts1. Genotyping arrays, on the other hand, assess only a relatively small fraction
of genotypes of an individual’s genome (typically below 1% [157]). For instance, the
Affy Axiom 6.0 array assesses about 900,000 variants covering most of the genetic
variants with a minor allele frequency of above 0.1 [158], and the Illumina Infinium
Omni5Exome array covers approximately 4.3 million variants2 (0.1% of the human
genome). This shortcoming, however, can be amended by exploiting LD structure and
known haplotypes (see Introduction), typically by employing genotype imputation from
reference panels with WGS information available, making genotyping arrays a cheaper
and comparable alternative to WGS. Indeed, modern microarrays have been designed
to yield good imputation quality and utilizing imputation can increase the power of
genetic association studies by up to 10% [157]. In the next two sections, we will cover
the fundamentals of genotyping arrays and outline the basics of genotype imputation.

Genotyping arrays

Genotyping arrays are a form of DNA microarrays (DNA ChIPs) which are used to de-
termine the genetic makeup of a particular biological DNA specimen. An array contains
hundreds of thousands of probes (microscopic short stretches of DNA oligonucleotides,
oligos), designed such that they cover, for instance, SNPs with known disease or trait
associations, known exonic variants, or high-frequency polymorphisms [158]. The oli-
gos represent a section of DNA complementary to the DNA sequence in the studied
organism. There are different ways of how microarrays can be designed. Here we
will consider two general approaches: hybridization based (e.g. Affymetrix arrays) and
single-base pair extension technologies (used e.g. by Illumina). For hybridization-based
arrays, multiple oligos of the same stretch of DNA are gathered at a single spot on the
array. These spots partly contain the reference allele and partly the alternative alleles
expected to be discovered in the organism. In the experiment, DNA is extracted from a
specific biosample and broken up (digested) into small oligonucleotides, which are then
hybridized under near-optimal hybridization conditions to the probes on the microarray
(complementary base pairing of sample oligos to probes) [159]. Using e.g. fluorescent
marks, it is then possible to determine the fraction of oligos matching different alleles,
enabling the determination of the genotype of the sample of interest. For instance, if an

1Although costs have dropped significantly during the last decade [157]
2https://www.illumina.com/products/by-type/microarray-kits.html, last accessed 1/24/2020
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approximate 50:50 ratio of the signals for reference and alternative alleles is observed, the
specific locus is deemed heterozygous for this allele. Microarrays using single-base pair
extension work similarly, i.e. providing multiple oligos per assayed genotype, but oligos
are designed to stop one base-pair before the variant of interest. After the hybridization
of fragmented sample DNA to the primer oligos, single-base pair extension of the primer
is performed using e.g. fluorescently labeled nucleotides and a DNA polymerase. The
fluorescent signal emitted by the included nucleotides can then be detected and used to
determine the base at the position of interest. In our studies, we utilized genotype data
from diverse microarray platforms, including e.g. the Affymetrix Affy Axiom 6.0 and
the Illumina OmniExonExpress, and further employed imputation (see below) to obtain
a more complete coverage of the genome.

Imputation of unassessed genotypes

Arrays, while relatively cheap, usually yield genotype readouts for only a fraction of
the SNPs present in the genome and hence additional methods such as imputation of
the remaining variants need to be applied to increase the power of genotyping studies
[157]. These methods can also be employed to infer genotypes at positions for which the
array could not determine a clear signal. Imputation makes use of general properties
of genomes such as linkage disequilibrium, haplotype structure, and knowledge about
recombination hotspots. The basic idea is that, generally, two individuals will share
short stretches of DNA (haplotypes) originally derived from a common ancestor even if
the two individuals seem not to be related on a first glance. Therefore, (sparse) genotype
profiles obtained from an array experiment can be matched against a set of sequenced
(non-sparse) reference genomes typically of the same ethnicity (e.g. using European
reference samples for European study samples). By obtaining matched segments of
individual DNA stretches from the reference population genotypes can be inferred for
the study sample using probabilistic modeling. The latter is necessary since a single
study haplotype could be represented by a multitude of reference haplotype segments.
To this end, most imputation methods employ a Hidden Markov Model (HMM) to
obtain allele probabilities for study samples based on a specific reference panel such as
the 1000 genomes project [160], TopMED [161] or HapMap [162]. Popular imputation
methods include e.g. Beagle [163] and IMPUTE2 [164, 165], and most contemporary
methods follow an HMM based imputation approach and are implemented to optimize
computational efficiency. For instance, methods typically make use of pre-phasing,
i.e. separate determination of haplotypes without direct imputation. Pre-phasing greatly
facilitates computations and allows step-wise integration of more genotyping data,
thereby enabling larger reference panels to be used to improve imputation accuracy
[166]. Moreover, imputation servers have been made available, which can be used by
researchers to perform imputations for study samples in a standardized and secure way
[157].
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2.1.2. Quantitative DNA methylation analysis using microarrays

Similar to genotyping approaches, protocols for DNA methylation assessment can
both involve microarrays and next-generation sequencing. Here, we focus on DNA
methylation profiling using microarrays as such data is utilized throughout this thesis.
DNA methylation, however, cannot be assessed directly, i.e. it is not possible to exploit
complementary base pairing in a direct manner, and hence DNA samples need to be pre-
processed. Whole-genome bisulfite conversion of extracted DNA converts unprotected,
i.e. unmethylated, cytosines into uracil (’U’ nucleotide), and subsequent amplification
of converted DNA yields thymidine (’T’) bases in place of the original cytosine (’C’)
bases. This process can be exploited to determine at which positions in the genome
methylation occurred by comparing the converted DNA to a reference. Similar to the
genotyping arrays, DNA methylation microarrays such as the Infinium HumanMethyla-
tion450 BeadChip from Illumina contain thousands to hundred thousands of beads with
attached oligonucleotides, designed to cover relevant regions of the genome such as gene
promoters, exons or intergenic regions [167, 168]. To assess methylation at a particular
locus, these oligos represent both unmethylated (i.e. ’T’ nucleotides) and methylated
loci (i.e. ’C’ nucleotides) with respect to the bisulfite converted DNA. After bisulfite
conversion, sample DNA is hybridized to the array and signals for methylated (M)
versus unmethylated (U) CpG sites recorded. These signal values can be summarized in
the form of β-values for each CpG site C , which are defined as follows [169]:

βC =
max(MC , 0)

max(MC , 0) + max(UC , 0) + 100
(2.1)

Therefore, the β-value for each CpG reflects either no methylation (β = 0) or complete
methylation (β = 1) for a specific CpG site C . The distribution of β-values typically
shows two peaks, one around 0 and one around 1 indicating the unmethylated and
methylated sites, respectively. Figure 2.1 shows the distribution of β-values in the KORA
methylation data (see below) for 50 randomly picked individuals as an example.

Figure 2.1.: Example distri-
bution of β values obtained
from the unmethylated and
methylated probe signals of
a methylation array. Data
were obtained for all 485,512
available CpGs for a set of 50
individuals (individual lines)
in the KORA cohort.
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2.1. Microarrays: a cost effective way of obtaining multi-level functional data from large population cohorts

In addition to regular probes, which represent a specifically designed set of methy-
lation loci of interest, control probes are included on arrays. These control probes can
be used 1) to determine significant signals for individual probes (’probe calling’) by
estimating a background intensity distribution [e.g. 170] and 2) to perform background
correction for CpG intensities [e.g. 171]. For instance, this can be achieved by regress-
ing out principal components obtained from the intensities of negative control probes,
e.g. probes designed not to match the human genome, from the CpG β-values [171],
a strategy we also employed for the methylation data in the projects described in this
thesis (see Section 3.2.2).

In this work, we mostly analyzed data obtained from peripheral whole-blood samples,
which, though easily accessible, contain a mixture of diverse blood cell types where
the ratio of cell types can differ between samples. The cell subset composition of
each sample can confound statistical analyses as different cell types exhibit different
methylation profiles [172]. The white cell subset composition of whole-blood samples
can be estimated through methylation arrays, specifically through the application of
the ’Houseman method’ [172]. The Houseman method seeks to estimate the white
blood cell proportions, entailing granulocytes, monocytes, NK cells, B-cells, and T-cells,
utilizing a linear model based approach and assuming, that observed DNA methylation
patterns are strongly correlated with the distribution of white blood cell types. We utilize
Houseman white blood cell estimates obtained from our methylation data to correct for
differences in cell-type composition between individuals in most of our analyses.

2.1.3. Using microarrays to quantify gene expression

DNA microarrays can also be used to assess transcriptional levels of expressed genes.
Here, the individual probes on the arrays are designed to match only exonic regions of
genes such that processed transcripts can hybridize to the probe. Experimentally, RNA
is extracted from the sample of interest (in contrast to the DNA extracted for use with
genotyping and methylation arrays) and reverse transcribed into complementary DNA
(cDNA) which can then be hybridized to the probes on the array. Importantly, cDNA
only contains information about the final transcription products after splicing. Prior to
hybridization, cDNA is amplified and fluorescence labeled such that the amount of RNA
in the sample can be estimated by detecting the fluorescent signal at individual probes of
the array [173]. Similar to genotype or methylation arrays, gene expression arrays, such
as the Illumina Human HT12 BeadChIPs used for the projects in this thesis, can measure
the expression of thousands of genes simultaneously for a single sample. A shortcoming
of microarrays is, that only RNAs that have been considered during their design can be
detected. Next-generation sequencing based RNA assessment through e.g. RNA-seq
would allow quantifying all sample RNA regardless of previous assumptions, similar
to whole-genome sequencing, but is not yet used as the standard for large population
cohorts. However, reduced costs, increased sensitivity, and other benefits make RNA-seq
a sensible alternative to microarrays, which will potentially be replaced by this newer

29



2. Materials

technology [119].

The extraction of RNA from a biosample is a more intricate procedure compared to
extracting DNA. For instance, RNA is less stable than DNA and degenerates relatively
fast. Degeneration can happen partially during cell lysation, which introduces a bias
when quantifying distinct transcripts [174]. Therefore, it is crucial to establish the
quality concerning RNA degradation of the obtained RNA sample. The RNA integrity
number (RIN) has specifically been designed for this [175]. It is based on an automatic
assessment of features of an electropherogram contributing to RNA integrity such as
the ratio of specific areas under the electropherogram curves against the total areas
under the curve [175]. In our data, we used RINs to remove samples of low quality and
as covariates for the association of gene expression with DNA methylation values (see
Chapter 4).

2.2. Population cohort data used in this thesis

This section presents an overview of all cohorts, which data were used in light of this
thesis. These data were collected independently of this thesis and made available to us
by our collaboration partners at the Imperial College of London (Prof. J. Chambers) and
the Research Unit of Molecular Epidemiology at the HelmholtzZentrum München (Dr.
C. Gieger). A summary showing background for each cohort is given in Table 2.1.

For reference, we will cover the most important information concerning data collection
which was provided by our collaboration partners and will refer to the respective original
publications for specific details concerning e.g. experimental procedures for brevity.
As indicated above, these cohorts are not targeted to a specific disease or trait and
hence easily accessible whole-blood bio-samples were collected from the participating
individuals. These samples were subsequently analyzed using microarrays to measure
DNA methylation and gene expression and to determine genetic variants.

EUR discovery EUR replication SA discovery SA replication
Phenotypes KORA F4 KORA F3 NFBC1966 NFBC1986 SYS LOLIPOP disc. LOLIPOP rep.
N 1,731 485 732 514 337 1,841 1,354
Sample WBL WBL WBL WBL WBL WBL WBL
Country Germany Germany Finland Finland Canada UK UK
Ethnicity EUR EUR EUR EUR EUR SA SA
Design Pop. based Pop. based Pop. based Pop. based Family Pop. based Pop. based
Age (yrs) 61 (8.9) 52.9 (9.65) 31 (0.3) 16.1 (0.4) 31.7 (32.5) 51.7 (10.1) 51.1 (10.1)
Sex (M) 49% 52% 44% 47% 48% 74.6% 45.7%

Table 2.1.: Overview over the cohorts used in the meQTL study. EUR = European; SA = South Asian;
WBL = Whole Blood.
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2.2. Population cohort data used in this thesis

2.2.1. The Cooperative Health Research in the Region of Augsburg

The Cooperative Health Research in the Region of Augsburg (KORA) is conducted in the
region of Augsburg in southern Germany and collects independent population-based
health surveys together with subsequent follow-up examinations of subjects of German
nationality. Surveys are cross-sectional and were assessed across all individuals in the
population between 25 and 74 years of age. Specifically, four cross-sectional health
surveys S1-S4 were performed at five year intervals, with individuals randomly sampled
from the region of Augsburg in a two-stage approach [176]. All surveys assessed baseline
information regarding socio-demographic variables, risk factors (such as smoking and
alcohol consumption) as well as medical and family history of chronic diseases and use
of medications, in addition to a standardized medical examination [176]. For the S3
(conducted in 1994/1995) and S4 (conducted between 1999-2001) surveys, consisting of
4,856 and 4,261 participants, respectively, follow-up examinations yielded the F3 and
F4 KORA survey data entailing 2,974 and 3,080 participants. An additional follow-up
study of the KORA S4 (’FF4’) entailed a total of 2,279 participants. At all examinations,
i.e. at the initial assessment and the follow ups, anthropometric and clinical variables
were assessed. Both surveys are independent of each other and do not overlap with
respect to individuals and no population stratification could be detected in previous
publications [177, 178].

The work presented in this thesis is based on a sub-sample of 1,731 participants of
KORA F4 and 485 participants of KORA F3 with methylation and genotyping data
available. For genotyping individuals the Affymetrix Axiom platform and software
were used. The Illumina Infinium HumanMethylation450K BeadChip was used to
generate DNA methylation profiles in KORA F3 and F4. For KORA FF4 methylation
data were measured using the Illumina EPIC array (N=1,848 individuals). In addition,
gene expression data were measured using the IlluminaHT-12 v3 BeadChip in the
F4 cohort and made available for a total of 1,091 individuals. For 681 individuals in
KORA F4 all three data modalities were available. Specifics concerning the experimental
procedures, including sample preparation, have been described elsewhere [81, 179, 180].
The ethics committee of the Bavarian Medical Association approved the studies and all
study participants gave written informed consent.

2.2.2. The London Life Sciences Prospective Population Study

The London Life Sciences Prospective Population Study (LOLIPOP) is a prospective
study comprising a cohort of 28k Indian Asian and European men and women who
were recruited between 2003 and 2008 based on the registry of 58 General Practitioners
in West London, UK [50]. All participants were examined with respect to cardiovascular
and metabolic health at recruitment (including anthropometry) and blood samples
collected to assess fasting glucose, lipid and insulin profiles as well as complete blood
count and white cell counts. A total of 13,347 of all participants attended clinical follow-
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up visits at which additional blood samples were taken and samples from both the
initial assessment and the follow-up visits were stored for subsequent molecular assays
(including genotyping and/or DNA methylation profiling) at −80 ◦C.

In this thesis, we obtained DNA methylation profiles using the Illumina HumanMethy-
lation450 array for a subset of these data of unrelated individuals comprising 1,841 South
Asians with blood sample collected at enrolment and 1,354 South Asians with blood
samples gathered at follow-up (SA discovery and SA replication cohorts, see Table 2.1).
Individuals were further genotyped using a combination of genotyping arrays including
the Illumina HumanHap300, Human-Hap610, OmniExpress and OmniExomeExpress
arrays. In addition, gene expression data were generated using the Illumina HT-12 v4
BeadChIP (using the manufacturer’s protocol) for a total of 975 participants including
816 South Asians and 159 Europeans. All participants gave written informed consent to
be part of LOLIPOP and the study is approved by the National Research Ethics Service
(07/H0712/150).

2.2.3. Northern Finland Birth Cohorts

We included both the Northern Finland Birth Cohort 1966 (NFBC66) and the Northern
Finland Birth Cohort 1986 (NFBC86) in the meQTL project (see Chapter 4). The NFBC66
is a prospective follow-up study of children born in 1966 within the two northernmost
provinces of Finland [181]. A total of N=8,463 individuals, who live in northern Finland
or in the Helsinki area were invited for clinical examination. Of these, 6,007 individuals
followed the invitation and attended the clinical examination at an age of 31 years.
Blood samples were obtained and DNA extracted for a subset of 5,753 participants
which are representative of the original cohort with respect to major environmental
and social factors [182]. From the whole-blood samples DNA methylation was assessed
using the Illumina HumanMethylation450 array and genotypes obtained using Illumina
HumanCNV370DUO Analysis BeadChip for 807 participants who finished the study
assessments.

In the NFBC86 study, individuals born between July 1st 1985 and June 30th 1986 in
the provinces of Oulu and Lapland in Finland were included (N=9,203) [183]. Indi-
viduals living in the original target area or in the capital at the age of 16 were invited
to a follow-up examination. A total of 7,344 subjects participated in the follow-up in
2001/2002 and of these 5,654 finished the questionnaire, the clinical assessment and
gave a blood sample [184]. All samples were processed and genomic DNA extracted
accordingly. For 566 individuals, DNA methylation profiles were obtained using the Illu-
mina HumanMethylation450K array but 24 technical replicates were excluded from the
resulting data sets. Individuals were genotyped using the Human OmniExomeExpress
8v1.2 BeadChip.
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2.2.4. The Saguenay Youth Study

The Saguenay Youth Study (SYS) consists of a total of 1,991 individuals spanning two
generations. It comprises N=1,029 adolescents and their N=962 parents and its overall
goal is to investigate common cardiometabolic and brain diseases, specifically causal
factors, early stages of development and trans-generational aspects [185]. Recruitment
is based on a genetic founder population located in the Saguenay lac St Jean region in
Quebec, Canada. All participants were extensively phenotyped, including recordings
of blood pressure, serum lipidomic profiling and magnetic resonance imaging of brain
and abdomen as well as detailed assessments of numerous other domains, involving
cognition, mental health, diet, substance use, physical activity, sleep as well as family
environment. For a total of 600 adolescents, genotypes were obtained using the Illumina
Human610-Quad BeadChip, and for the remaining 424 adolescents and the 971 parents
genotypes were generated using the Illumina HumanOmniExpress BeadChip. DNA
methylation patterns were obtained for a subset of adolescents and their parents (N=132
and N=280, respectively) using the Infinium HumanMethylation450 array [186].

2.3. Public data

In this section, we give a brief introduction on the various public data used in this thesis.
These entail large collections of molecular data sets or results derived from large-scale
analysis and curation efforts and are established resources for computational biologists.
Additional details on the data extracted from these databases will be provided in the
individual project chapters where needed.

2.3.1. The Encyclopedia of DNA Elements

The Encyclopedia of DNA Elements is an established resource, which originally aimed
to map all functional elements encoded in the human genome, defined as genomic
regions encoding specific products (e.g. proteins) or exhibit specific biochemical patterns
as for instance protein binding or defined chromatin structures [60]. To this end, the
project initially analyzed 1,640 data sets in 147 cell types in order to annotate functional
parts of all of the human genome, comprising ChIP-seq for diverse transcription factors
and histone modifications, DNAse-seq, RNA-seq, and other experiment types across
different cell-types and tissues and including experiments in model organisms (i.e. fly,
worm and mouse). The current release contains data generated from 16,254 distinct
experiments for all organisms and 10,475 human datasets, which are freely accessible
via the ENCODE data portal3.

3https://www.encodeproject.org/, last accessed 05/20/2020
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2.3.2. The Genotype Tissue Expression consortium

The Genotype Tissue Expression (GTEx) consortium aims to generate a public resource
for studying gene expression regulation in a tissue specific manner [93]. As of now,
GTEx collected post-mortem samples from 54 tissues covering 948 healthy individual
donors amounting to 17,382 sequencing datasets. For a total of 15,253 tissue-donor
combinations, genotype data has been generated and expression quantitative trait
loci (eQTL) in cis and trans have been calculated using a standardized pipeline for 49
distinct tissues 4 [82, 101]. Data from GTEx can be downloaded from their data portal
at https://www.gtexportal.org/ and an overview over the number of samples with
genotype and gene expression data available is given in Figure 2.2. In our projects
we mostly made use of the whole-blood data collected in GTEx, specifically the gene
expression data and the calculated eQTL. We use expression data to filter protein-protein
interactions from the STRING and BioGRID databases (see below and Chapters 4 and 5)
and utilize eQTL to define prior information to guide network inference (Chapter 5). For
the latter, we also use GTEx Skeletal Muscle data to derive mechanistic interpretations
of a trans-acting genetic locus discovered in this tissue.
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Figure 2.2.: Number of samples in GTEx which have genotype and gene expression data available for the
distinct tissues.

2.3.3. The ARCHS4 database

ARCHS4 is a public data repository of uniformly processed RNA sequencing data from
diverse human and mouse tissues [119]. Raw sequencing data were collected in a large

4https://www.gtexportal.org/home/tissueSummaryPage, last accessed 05/20/2020
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curation effort from the Gene Expression Omnibus (GEO) [117] and the Sequence Read
Archive (SRA) [187] and processed using a unified, cloud based workflow facilitating
further use of these data in new experiments. A total of 187,946 samples have been made
accessible in ARCHS4 upon publication (103,083 mouse and 84,863 human samples)
[119]. In addition, the ARCHS4 web service5 allows easy navigation, filtering (e.g. via
collected meta data) and downloading of the available data. In our case, we used Skeletal
Muscle gene expression data retrieved from ARCHS4 to formulate prior knowledge
about gene co-expression in the network inference project (see Chapter 5).

2.3.4. The Roadmap Epigenomics project

The Roadmap Epigenomics project aims to provide a public resource of human epige-
nomics data, primarily focused around sequencing experiments to obtain, for instance,
DNA methylation, histone modification, and chromatin accessibility information mea-
sured in primary human tissue and stem cells [48]. The current version of the resource
comprises 2,804 genomic datasets, entailing a total of 1,821 histone modification, 360
DNAse-seq, 277 DNA methylation, and 166 RNA-Seq datasets from which a total of
150.21 billion sequencing reads have been mapped to the human genome6. Of the 2,804
datasets, 1,936 have been fully released and are divided in a total of 111 ’reference
epigenomes’. For each of those, a core set of five histone marks has been established
on a genome-wide scale, including H3K4me3, H3K4me1, H3K27me3, H3K9me3, and
H3K36me3. A widely used result derived from these histone marks are the cell-type
specific chromHMM chromatin states [49]. ChromHMM states are derived from histone
mark combinations using a Hidden Markov Model and provide a functional segmenta-
tion of the genome (by default in 200 base pair windows). We utilized the chromatin
states obtained from the 15-state chromHMM model, which are available for each of
the reference epigenomes on the Roadmap project’s data portal7. An overview on these
states including a brief description is given in Table 1.1.

2.3.5. STRING and BioGRID

The STRING database was established by the STRING consortium and makes known
and predicted protein-protein interactions (PPI) publicly available [103, 104]. Interactions
in STRING are derived from five main data sources including genomic context predic-
tions, high-throughput experiments, co-expression analysis, automated text-mining and
previous knowledge curated from other databases8. It contains over 2× 109 PPI for
over 5,000 organisms (mostly bacteria, including 477 eucaryotes), covering a total of
24.6× 106 proteins. For the work described in Chapter 4, we curated STRING v9 PPI

5https://amp.pharm.mssm.edu/archs4/
6http://www.roadmapepigenomics.org/data/, last accessed 05/20/2020
7https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
8https://string-db.org/cgi/about.pl
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from human based on experimental and previous database evidence9.

BioGRID [105, 188] is an international effort to establish comprehensive interaction
networks for distinct organisms and follows a slightly different strategy to STRING,
curating PPI only based on high-throughput experiment results and from individual
studies (comprising over 70,000 publications10). At the moment of writing this thesis,
BioGRID (v 3.5.185) contains a total of 1,871,024 genetic and physical protein interactions
which are publicly available. We use PPI from BioGRID (v 3.5.166) to define locus sets
and prior information in the project described in Chapter 4.

2.3.6. The ReMap resource

The (ReMap) database [71] provides transcription factor binding sites (TFBS) from
numerous quality controlled and publicly available ChIP-seq data sets, uniformly
processed to facilitate usage of TFBS across applications. Most data originated from
ENCODE (see above), the gene expression omnibus (GEO) [117] or ArrayExpress [189],
which represent some of the largest repositories for genomic data. Overall, the resource
contains TFBS from 2,829 public ChIP-seq datasets comprising 485 distinct transcription
factors measured over 346 cell types of diverse tissue origin11. The final set of regions
in the genome that exhibit transcription factor occupancy amounts to a total of over 80
million peaks (TFBS) [71]. Of these, a total of 99.5% show a size of below 1.5kb with
a mean size of 286 base pairs, in concordance with previous observations of overall
narrow/sharp TF peaks [190]. For our analyses, we downloaded the set of merged
(i.e. intersected) peaks for each transcription factor from ReMap. As we used this
annotation together with whole-blood derived multi-omics data, we kept only results
derived from experiments in a blood related cell-type/experiment including the terms
listed in Table 2.2 below.

Table 2.2.: List of filters ap-
plied to the ReMap TFBS
data set to obtain only
blood related cell-type exper-
iments.

amlpz12_leukemic blood bcell bjab bl41
aplpz74_leukemia lcl plasma gm hbp
lymphoblastoid kasumi k562 mm1s p493
erythroid sem thp1 u937

9obtained from https://string-db.org/cgi/download.pl
10https://wiki.thebiogrid.org/doku.php/aboutus, last accessed 06/24/2020
11http://pedagogix-tagc.univ-mrs.fr/remap/, last accessed 06/20/2020
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In this chapter we set the methodological basis to discuss the work presented throughout
the rest of the thesis. We will start of with a description of the statistical tools and
concepts used, covering basic linear models and regularization, meta analysis, multiple
testing and enrichment tests. This is followed by the description of the pre-processing of
the available cohort and specific validation data used in our projects. Finally, we give a
brief introduction to how we implemented reproducible and portable workflows using
Snakemake and Charliecloud.

3.1. Statistical background

3.1.1. Conditional independence and correlation of random variables

Here we give a brief introduction to conditional independence and correlation be-
tween random variables as this is the basic concept behind the graphical models (also:
conditional dependence graphs) applied in Chapter 5.

Independence and conditional probability of random variables

Let A and B be continuous random variables with p(A) and p(B) being their respective
density functions. Also, let p(A, B) be the joint probability density of A and B. The two
variables are said to be independent (A |= B), if

p(A, B) = p(A) p(B) , (3.1)

i.e. when their joint density is simply the product of the individual densities, and
therefore, loosely speaking, knowing about one variable does not affect our knowledge
of the other variable [191]. In addition, the conditional probability of A given C, i.e. the
probability of A depending on C, is defined as

p(A|C) = p(A, C)
p(C)

, ∀{C|p(C) > 0} , (3.2)

which can be extended to the conditional probability for the joint distribution of two
variables (A and B) given C:

p(A, B|C) = p(A, B, C)
p(C)

, ∀{C|p(C) > 0} (3.3)
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We can expand the two concepts to form the idea of conditional independence, where
we observe the dependency of two variables (e.g. A and B) given a third variable (C):

A |= B|C ⇔ p(A, B|C) = p(A|C)p(B|C), ∀{C|p(C) > 0} (3.4)

It is straight forward to further extend conditional independence to more than one
conditioning variable, as it is for instance necessary with the graphical models described
in Chapter 5. Here, two variables are conditioned against all other variables present in a
graph structure to estimate their conditional dependence.

Covariance and correlation of random variables

The covariance for two random variables A and B measures the linear relationship
between the variables and is defined as

cov(A, B) = E((A− E(A))(B− E(B))) = E(AB)− E(A)E(B) , (3.5)

where E() is the expected value or mean of the respective variables. The correlation of two
random variables represents a normalized measure of their relationship (normalized by
the product of the variance var() of the variables):

ρ = corr(A, B) =
cov(A, B)√

var(A)var(B)
. (3.6)

The correlation ranges from -1 to 1 which indicate perfect anti-correlation or correla-
tion, respectively. A correlation value of 0 indicates no (linear) relationship between the
variables and the variables are said to be uncorrelated.

Interestingly, if A and B are independent (Equation 3.1) then both covariance and
correlation are 0 and hence they are not correlated. In case A and B follow a multivariate
Gaussian distribution, i.e. (A, B) ∼ N (µ, Σ) with µ = (µA, µB) and Σ =

( σAA σAB
σBA σBB

)
, the

converse is also true: If the variables show a correlation/covariance of 0 (e.g. σAB = 0)
then they are independent [192]. This forms the basis for Gaussian graphical models,
where the covariance structure indicates conditional dependencies between individual
random variables (see Chapter 5). Briefly, in graphical models the inverse of the covari-
ance matrix P = Σ−1, also called the precision matrix, can be used to determine partial
correlations between all variables in the model, i.e. the correlation between variables
conditioned on all other variables [193]. If an entry in the precision matrix is 0 the
corresponding (normally distributed) variables are conditionally independent and vice
versa, leading to absence or presence of edges in the graph structure, respectively. The
concept of graphical models will be discussed in more detail in Chapter 5.

3.1.2. Linear models

In this section and throughout this thesis when we formulate a statistical model we will
denote the number of samples with N and the number of variables going into the model
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with P. We will indicate matrices with capital and column vectors with small letters in
bold script (e.g. X or y) and denote scalar values in normal script, typically indexed if
they originate from a vector (e.g. yi or β1).

Linear models can be used to describe the (linear) effect of one or more predictor
(or independent) variables X = (x1, x2, . . . , xP), with e.g. x1 = (x1, x2, . . . , xN) being a
column vector, on a dependent (or response) variable y = (y1, y2, . . . , yN). To put it
into context, in our case N is the number of cases or samples for which measurements
(e.g. of methylation at CpG sites) are available and P is the number of variables which
have been measured (e.g. number of CpG sites), whereas y contains an outcome yi for
each sample (e.g. expression of a gene potentially influenced by DNA methylation). The
linear model asserts that its output (dependent variables) is a linear function of the input
(independent variables) and takes the form

yi = β0 + β1xi1 + β2xi2 + · · ·+ βPxiP + εi = β0 +
P

∑
j=1

β jxij + εi , (3.7)

where the outcome y is modeled through an intercept term β0 and through linear
combinations of the independent variables in X, and where β = (β0, β1, . . . , βp) is the
variable coefficient vector. It is often assumed that εi is an independent and identically
distributed (iid) Gaussian error term with mean zero and unknown variance σ2, i.e.

εi ∼ N (0, σ2) . (3.8)

The Gaussian error assumption also allows us to rephrase the model in the form

p(y|X, β, σ2) ∼ N (y|Xβ, σ2) . (3.9)

The goal is then to determine the unknown variable coefficients (effect sizes, βs) and
the σ.

Maximum likelihood estimation for linear models

We can estimate the parameters by applying maximum likelihood estimation (MLE) on
the model described in Equation 3.9, also known as least squares regression.

For MLE, we typically formulate the log-likelihood of the model which is given via

ll (β, σ2|y, X) =
N

∑
i=1

log p(yi|xi, β, σ2) . (3.10)

In addition, we usually use and minimize, rather than maximize, the more convenient
negative log-likelihood. Assuming a Gaussian model we now insert the definition of the
Gaussian distribution in the log-likelihood, yielding

ll (β, σ2|y, X) =
N

∑
i=1

log
{
(

1
2πσ2 )

1
2 exp(− 1

2σ2 (yi − βxi)
2)

}
, (3.11)
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which boils down to

ll (β, σ2|y, X) = − 1
2σ2 RSS(β)− N

2
log(2πσ2) (3.12)

and where

RSS(β) =
N

∑
i=1

(yi − βxi)
2 (3.13)

is the residual sum of squares or the sum of squared errors. Therefore, the maximum
likelihood estimate for β is also the one that minimizes the RSS which is why the MLE
method is also known as least squares [191].

We then seek to minimize RSS(β) with respect to β:

argminβ

N

∑
i=1

(yi −
P

∑
j=0

xijβ j)
2 . (3.14)

Hence, we minimize the error obtained when predicting y through the linear combi-
nations involving the predictor variables and their coefficients (assuming a fixed σ in
Equation 3.12). Switching to matrix notation and setting the derivative of RSS() to zero,
we obtain a closed form for an estimate of β (assuming full column rank of X) as

β̂ = (XTX)−1XTy . (3.15)

Based on the estimate β̂, we obtain fitted values for our inputs in X as

ŷ = Xβ̂ . (3.16)

Hypothesis testing

Finally, we seek to perform statistical inference with our model (Equation 3.9). Based
on the assumption of Gaussian iid and zero mean error terms, the model allows for
testing hypotheses about the values of the coefficients. Assume we want to evaluate
a larger (i.e. more parameters) model Ψ against a smaller model ψ (i.e. some βi = 0)
with respect to whether or not the additional parameters in Ψ are necessary and where
the variables in ψ are a subset of the variables in Ψ. Generally, we are interested in
obtaining parsimonious models with low complexity, i.e. a small number of parameters.
Therefore we set ψ to reflect our null hypothesis and Ψ to represent the alternative. How
could we now compare the models? If we can formulate the likelihood of our data, we
can employ the likelihood-ratio testing approach [194]. For instance, if the likelihood
function of a model is L(β, σ|y, X), then we can construct the likelihood ratio statistic as

LR =
maxβ,σ∈ΨL(β, σ|y, X)
maxβ,σ∈ψL(β, σ|y, X)

(3.17)
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Our test should reject the null if the difference (the ratio) is too large. Specifically, we
find that we should reject the null if

σ̂2
ψ

σ̂2
Ψ
> a , (3.18)

where a is a constant and which is equivalent to (b being another constant):

RSSψ − RSSΨ

RSSΨ
> b . (3.19)

We can hence exploit the RSS (Equation 3.12) of the two models to identify whether the
difference in their likelihoods is sufficiently small in order to favor the smaller model (ψ)
(a model with more parameters will always fit the data better, yielding a smaller RSS).
Formally, assume that the number of parameters are q and p for Ψ and ψ, respectively,
then we obtain (if the null is true) the two independent quantities

RSSψ − RSSΨ

q− p
∼ σ2χ2

q−p (3.20)

and

RSSΨ

N − q
∼ σ2χ2

N−q , (3.21)

where the denominators are used for scaling purposes [194]. The ratio of the two
independent χ2 distributed quantities yields the F-statistic which follows a Fisher-
distribution [192]:

F =
(RSSψ − RSSΨ)/(q− p)

RSSΨ/(N − q)
∼ Fq−p,N−q (3.22)

Using this information, we can reject the null hypothesis if the probability of observing
Fq−p,N−q(F) < α for a significance threshold α, telling us that the difference in RSS is
too large for the null model to be the better explanation.

The setup above also allows us to investigate whether a single parameter of the model
can be dropped. Let’s explicitly define the null hypothesis for this case, which would be
given by

H0 : β j = 0 . (3.23)

We could directly obtain the F-statistic to evaluate this hypothesis by specifying Ψ
as the full model and ψ as the smaller model only missing β j. As an alternative and
equivalent test we can directly use the t-statistic

tj =
β̂ j

se(β̂ j)
∼ tN−P−1 , (3.24)
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where se(β̂ j) is the standard error for β̂ j and se(β̂ j) = σ̂
√
(XTX)−1

jj [194, 195], and where
tj follows a t-distribution with N − P− 1 degrees of freedom under H0. We can use it
similarly to the F-statistic to assess the significance for this test.

Relation of linear models and conditional probabilities

Interestingly, we can also form a relationship between linear models and the conditional
probabilities introduced in Section 3.1.1. For instance, imagine we partition a set of
multivariate normal RVs Z in (zA, zB) and µ in (µA, µB), then the conditional distribution
p(zA|zB) is given as (see [196] for details):

p(zA|zB) = N (Z|µA|B, Λ−1
AA) , (3.25)

where Λ = Σ−1 is the precision matrix (see also Section 3.1.1) and where

µA|B = µA −Λ−1
AAΛAB(zB − µB) . (3.26)

Now assume, that our X from the linear model also follows a normal distribution, i.e.

p(X) ∼ N (X|µX, σ2
X) (3.27)

and combining this with the linear model formulation (Equation 3.9) we have

p(y|X) ∼ N (y|CX + d, σ2) , (3.28)

where C and d are parameters determining the mean [196]. This then directly
corresponds to the conditional distribution for a multivariate normal.

Linear model residuals

The residuals for our linear model can be calculated using

ε̂i = yi − ŷi = yi − xi β̂ (3.29)

and reflect the deviation of our observed yi around the fitted values. If the model
assumptions hold then ε̂i ∼ N (0, σ2) (this can also be used for diagnosing linear models,
for instance by plotting residuals against the estimated/fitted ŷi [197]). An interesting
application of residuals is that they can be used to remove the effect of confounding
variables or batch effects (e.g. sex or age) from measurement variables (e.g. DNA
methylation or gene expression) which we employ throughout this thesis. The estimated
β js are the effect sizes for the individual variables xj and ŷ effectively summarizes the
effect of all variables given their estimated effect sizes. Therefore, by removing this
summarized estimated effect from the observed effect, i.e. by obtaining the residuals ε̂,
only the effects not explained by the given variables remain.
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3.1.3. Regularization in linear models

In the context of genomic data the N << P problem is of great importance, where
N represents the sample size (e.g. number of individuals) and P reflects the number
of variables being analyzed. In typical genomics settings N will amount to several
hundreds1 whereas P is around tens of thousands (e.g. genes) or hundreds of thousands
(e.g. CpG sites). In the case of N << P, linear regression systems are under determined
and an exact solution cannot be obtained [3]. To amend this, different forms of regular-
ization (or penalization) of the parameters (betas) of linear models have been proposed
including for instance L1 (LASSO) or L2 (ridge) regression. Both L1 and L2 penalization
yield relatively more non-zero β estimates as compared the standard linear regression
[195].

Lasso regularization

Here, we focus on L1 regression (LASSO, Least Absolute Shrinkage and Selection
Operator), which has also been applied in the context of graphical models (see Chapter 5)
and tends to yield sparser models compared to ridge regression [195]. For this, the
regression equation for obtaining the parameter estimates is extended by an additional
L1 penalization term (L1 norm, hence the name) which penalizes models including
many non-zero variables [195, 198]:

β̂
lasso

= argminβ

N

∑
i=1

(yi − β0 −
P

∑
j=1

xijβ j)
2 , (3.30)

subject to

P

∑
j=1
|β j| ≤ t . (3.31)

We solve the system by using the Lagrangian form of the above equation, i.e.

β̂
lasso

= argminβ

{
1
2

N

∑
i=1

(yi − β0 −
P

∑
j=1

xijβ j)
2 + λ

P

∑
j=1
|β j|
}

, (3.32)

where λ is a constant and ∑P
j=1 |β j| is the L1 regularization term. While their is no

closed form solution to this problem, efficient procedures to solve it such as path-wise
coordinate optimization have been proposed [195, 199].

An important remaining task is to select the optimal shrinkage parameter λ. To this
end, cross validation can be applied where, for example, the estimated prediction error
of the model is minimized over a range of different λs [195]. We apply this approach for
graphical model selection via the LASSO in Chapter 5.

1Recent single-cell assays can easily provide thousands of samples (cells) but are not used in this thesis
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A Bayesian view on regularization

Interestingly, we can also adopt a Bayesian view on regularization. By assuming a prior
distribution for the model parameters (βs), L1 and L2 regularization are equivalent to
setting a Laplace or a Gaussian prior on the parameters, respectively [197].

Briefly, we consider a prior for the βs for the linear model formulation, i.e.

p(β|X, y) ∝ p(y|X, β)p(β|X) = p(y|X, β)p(β) . (3.33)

So the posterior distribution for the linear model parameters is proportional to the
likelihood times the prior and the equality in Equation 3.33 follows from the assumption
that X is fixed [197]. Assume the linear model as in Equation 3.7 and independent,
normally distributed errors. We can further assume that p(β) = ∏P

j=1 g(β) for some
density function g(). Applying lasso (L1) regularization, for instance, directly yields the
posterior mode for β if g() is set as a Laplace distribution with mean zero and an to
λ (see Equation 3.32) proportional scale parameter [197]. In this thesis (Chapter 5) we
make use of this Bayesian view in the graphical lasso [87] to apply prior knowledge on
molecular interactions during network inference.

3.1.4. Meta analysis

Meta analysis is a tool to combine results from multiple (potentially low sample size)
studies to increase detection power of associations by effectively also increasing the
analyzed sample size for instance in genome- and epigenome-wide association studies
[200]. Generally, one can distinguish between 1) fixed and 2) random effect meta
analysis. In 1), the assumption is that the underlying true effect observed in the different
data sets is the same and differences arise only due to sampling errors, whereas for
2), the assumption is that the effect size can differ between data sets in addition to
random sampling errors being present [201]. In this work, we focus on fixed effect meta
analysis, specifically inverse-variance weighted fixed effect meta analysis which we used
in our studies around the LOLIPOP and KORA cohorts to establish (epi-)genome wide
associations. In contrast to other fixed effect meta analyses, such as the Fisher method
for combining p-values [202], the inverse-variance method takes into account sample
sizes for individual studies by weighting regression estimates by the inverse of their
variance [201]. For example, let βS be the estimated regression coefficient for a study S
and let

var(βS) = se(βS)
2 = (XTX)−

1
σ2 (3.34)

be its variance and where the residual standard error σ is known and can be estimated
from the data as RSE =

√
RSS
N−2 [197]. Then, weights are derived as wβS = 1

var(βS)
and
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new (combined) regression estimates can be derived using

βŜ =
∑|S|S=1 βSwβS

∑|S|S=1 wβS

(3.35)

and

se(βŜ) =
1

∑|S|S=1 wβS

, (3.36)

yielding a Z-score ZŜ =
βŜ

se(βŜ)
which follows a standard normal distribution under

the null hypotheses of no effect [201]. We can hence compare ZŜ to the quantiles of a
standard normal to obtain significance estimates for our test, having more power to
detect associations due to increased (combined) sample size [200].

3.1.5. Enrichment testing

Advances in high-throughput experiments and in annotating the human genome and
its gene products with functionally relevant information, for example based on open or
closed chromatin, DNA contacts or information about the regulatory function of genes,
enable studies to assess new results in a functional context. For instance, in Chapter 4
we make use of these annotations to evaluate identified relationships between genotypes
and DNA methylation with respect to their functional relevance.

Generally, enrichment tests can be performed for two distinct sets (or classes) of
entities. One set (set S) is derived from the experiment and entities can either be within
that set (S = 1) or not (S = 0). Typically, one seeks to match the second set of entities
considered for the analysis to the entities in S (according to some properties) to form
a background representing a ’null’ distribution. For instance, in Chapter 4 we define
S as all CpGs associated with a genotype and the background is sampled from all
non-associated CpGs, one for each associated CpG and matching mean and standard
deviation of population methylation values.

In addition, we can obtain the functional annotation A of interest and compare,
whether our entities in set S are more often annotated with A (S = 1 and A = 1) than
the ones in the background set (S = 0 and A = 1). Here, A could for example be a
functionally relevant region of the genome such as an ’enhancer’ region.

Based on the above information we have four distinct scenarios based on the possible
values for S = 0, 1 and A = 0, 1, and we can generate a representative contingency table:

annotated with A not annotated with A row totals
entity in S n11 n12 r1 = n11 + n12

entity not in S n21 n22 r2 = n21 + n22

column totals c1 = n11 + n21 c2 = n21 + n22 RC = c1 + c2 + r1 + r2
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Here, each entry is the number of times we observe combinations of our classes,
e.g. n11 is the number of times A = 1 and S = 1, n12 is the number of times A = 0 and
S = 1, etc..

Now it is of interest to assess whether the observed set derived from our experiment
is significantly more (or less) often annotated with a functional annotation as compared
to the matched background. For instance, we could compare the fraction of observed
entities annotated with the annotation ( n11

r1
) with the fraction of background entities

annotated with the annotation ( n21
r2

) and determine which of the fractions is larger. To
formalize this comparison, we can employ for instance Fisher’s exact test or Pearson’s
χ2-test. Here, we’d like to assess whether the annotation definition A is independent of
the set classification S , so we investigate

H0 : P(S = i, A = j) = P(S = i)P(A = j) , (3.37)

where i, j ∈ {1, 2} is the row or column index, respectively [192].
Fisher derived an exact way using a hypergeometric test to obtain the probability of

getting the observed values assuming both classes are independent of each other:

P (n11) =
( r1

n11
)( r2

n21
)

(RC
c1
)

(3.38)

As an alternative to Fisher’s exact test, which should be applied to small sample cases
only, one can use Pearson’s χ2 test for large samples sizes [192].

For a 2× 2 contingency table as written above, with m = 2 columns and n = 2 rows,
the test statistic for the χ2 test is defined as

χ2 =
n

∑
i=1

m

∑
j=1

(nij − ricj/n)2

ricj/n
. (3.39)

The test statistic follows a χ2 distribution with two degrees of freedom for the
above example, from which we can then obtain the P-value under our H0. More
generally, the degrees of freedom are given by the number of categories for both classes,
i.e. d f = (n− 1)(m− 1).

These tests provide us with a framework for determining for instance the functional
relevance of our genetic variant-methylation association results in Chapter 4.

3.1.6. Multiple testing

In our analyses, we often perform large numbers of hypothesis tests, for instance to
identify significant associations between genetic variants and CpG sites (several million
tests). This results in a large multiple testing burden or family-wise error rate (FWER):
The probability of obtaining at least one false positive test (type 1 error) at a specific
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significance threshold α increases with each additional test [192]. Specifically, the
probability increases to

α∗ = 1− (1− α)n , (3.40)

where n is the number of performed and independent tests.
There are several ways to cope with this multiple testing problem by adjusting the

significance level α, such that the probability of obtaining a false positive is kept low.
For instance, the stringent Bonferroni correction controls the FWER (a family of tests is
the set of all performed tests on the data) by setting a new significance threshold α̂ = α

n
to control for type 1 errors (the probability of obtaining a false positive result) [192].
Intuitively, Bonferroni adjustment makes use of the observation that the probability of
at least one type 1 error occurring cannot be greater than the sum of the individual
probabilities of all tests being false positives.

An alternative (and less conservative) way to the Bonferroni correction is the Benjamini-
Hochberg false discovery rate (FDR) procedure [203]. While Bonferroni correction
controls the probability of obtaining a single false positive, the FDR controls the fraction
of false positive findings over the total number of positive test results [203]. Here, for a
set of hypotheses H0, H1, . . . , Hm and their respective P-values P0, P1, . . . , Pm, sorted such
that P0 ≤ P1 · · · ≤ Pm, the FDR is controlled at a level q∗ by determining the largest i for
which

Pi ≤
i
m

q∗ . (3.41)

One could either determine the index i at which to draw the line between FDR
significant and non significant results or one could compute the FDR q value from the
P-values of all tests. Then, one can determine the significant set of tests at FDR < q∗

for all tests where q < q∗. This has the advantage that one can adjust the threshold q∗

arbitrarily without having to re-identify the index i. To calculate q values it is important
to order the set of P-values for all tests decreasingly and then calculate the adjusted
P-value for each i ∈ [1, 2, . . . , m] as

piadj = qi = min(pi
m
i

, pi−1adj) . (3.42)

We applied this method to estimate q-values for the associations between genes
and CpGs in Chapter 4 as it was not possible to fit all approx. 5.2× 109 calculated
associations into memory.

3.1.7. Additional background

We refrain from giving a detailed discussion on some of the concepts related to methods
applied in this thesis as this would go beyond the scope of this thesis. Here we briefly
introduce some of these concepts, just highlighting the most important aspects and refer
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the interested reader to some of the excellent and extensive literature for details [191,
195, 197].

Cross validation. Cross validation is a concept often applied in machine learning
tasks to optimize model parameters and to avoid over fitting of a model to the given
data. Generally, one chooses a subset of the available data for training a model and
uses the rest of the data (not used for training) to validate the model. One instance
of cross validation is k-fold cross validation where the data is split into k subsets
and one iteratively gathers k− 1 subsets for training and evaluates the model on the
remaining kth subset. Performance can then be evaluated over all folds for each of the k
validation sets. We apply this procedure in Chapter 5 to estimate the best graphical lasso
model over a range of different λ values for our network inference using the Bayesian
Information Criterion as a model selection criterion (see below).

Bayesian Information Criterion (BIC). The BIC can be used for model selection based
on the likelihood of the model and the number of parameters and samples [191]. It is
defined as

BIC = log p(D, θ)− d
2

log(N) , (3.43)

where log p(D, θ) is the log-likelihood for some data D and a set of estimated parameters
θ, N is the number of samples and d is the number of free parameters in the model.
For instance, in the graphical lasso [87] the number of free parameters is defined via
the number of non-zero off-diagonal entries in the precision matrix, i.e. the number of
non-zero model coefficients (βs) [204].

Markov Chain Monte Carlo (MCMC). In Chapter 5, we utilize the BDgraph method
[124] for regulatory network inference, which is based on a specifically designed MCMC
algorithm employing the exchange algorithm [205]. Generally, MCMC is a way to obtain
samples from high-dimensional distributions [191] such as the posterior distribution
for the graphical model as defined for BDgraph, and numerous algorithms have been
proposed to do this both effectively (time-wise) and accurately. The algorithm ’walks’
through a set of sequential states, e.g. the possible graph configurations in BDgraph
through sequential addition and removal of edges, such that the fraction of ’time’ it
spends in each state is proportional to the target density and each new state depends
only on the previous state information. The chain ultimately converges to the target
density for a large enough number of iterations (’steps’) of the algorithm. We will give
some additional information on the methodology behind BDgraph in Chapter 5.
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3.2. Processing of cohort data

3.2.1. Genotyping data.

Genotyping and calling were performed using the Affymetrix Axiom platform and
software for KORA F4/FF4 and Illumina Genome Studio for KORA F3 and LOLIPOP.
To remove low quality samples and SNP, these were subjected to a 97% and 98% call
rate threshold, respectively. SNPs with an minor allele frequency (MAF) of below 1%
or with Hardy-Weinberg Equilibrium P > 5× 10−6 were removed and imputation was
performed using the IMPUTE v2.3.0 software package [164, 165] with the 1000 Genomes
Project cosmopolitan reference panel integrated haplotypes produced using SHAPEIT2
[206]. For the SYS cohort the protocol proposed by the ENIGMA Working Group was
employed and the IMPUTE software [164] used for genotype imputations as for KORA
F4/3. SNPs were restricted to a subset of 13 million SNPs which have at least been
observed twice in European populations and are polymorphic in Caucasians. In the
NFBC cohorts the GenCall algorithm was used for genotype calling and IMPUTEv2
used as for the other cohorts. Finally, polymorphic SNPs with IMPUTE info value of
> 0.45 were filtered from these data. For our analysis and specifically for association
testing we derived allele dosages from genotype data, i.e. numbers of observed and
alternative alleles. In diploid organisms, this approach gives rise to three numeric values,
reflecting homozygous reference (’0’), heterozygous (’1’) and homozygous alternative
(’2’) alleles.

3.2.2. Methylation data.

Pre-processing of DNA methylation data was performed as previously described for
KORA [207] and LOLIPOP [50]. All methylation data were processed using the CPACOR
pipeline described in Lehne, A. W. Drong, Loh, et al. [171] with specific details described
in [52]. Briefly, separate analyses for autosomes and sex chromosomes are performed
and samples with low call rates for probes removed by applying a detection P-value
threshold of P < 10−16. Probe signal intensities were then quantile normalised and
beta-values obtained which were adjusted for control probe principal components, white
cell subset estimates [172] and additional study specific covariates such as age and sex.
Quantile normalization was performed using the wateRmelon R package. Beta values
for KORA FF4 EPIC array data were processed as described above. For NFBC66, 67
samples were removed from downstream analysis due to low marker call rate (<95%),
a total of 7 samples were removed due to gender inconsistency and one sample due
to global outliers in methylation values (1st PC score of the DNA methylation values
outside mean ±4SD). In the NFBC86 study 18 samples were removed based on call rate
(<95%) and additional 7 samples due to gender inconsistency.

For association analysis, methylation residuals were obtained using linear regression
of beta values as outcome and the collected technical and clinical covariates as predictor
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in the following (simplified) model:

CpGresid = resid(CpGbeta ∼ age + sex + Houseman + PC1 + PC2 + ... + PC20) (3.44)

These residuals were then used as targets for the genome-wide meQTL analysis.
Residual calculation varied slightly for the different cohorts, a full list of models for the
individual cohorts is given in Supplementary Table C.2.

Whenever methylation data were combined with expression data, e.g. in expression
quantitative trait methylation analysis or during the integrated network inference,
methylation data were residualized without adjustment for age and sex but leaving all
other covariates in the model specification in order to not adjust for these two covariates
twice (i.e. in the methylation and the expression data).

3.2.3. Gene expression data.

Probe level expression data were background corrected, quantile normalized and log2
transformed using the lumi R package (v2.8.0 from bioconductor). Probes were excluded
from analysis if a known SNP (population MAF>1%) resided under the probe sequence
or in case no RefSeq gene annotation could be determined for the respective probe.
We further limited analyses to probes present both on HT12-v3 (KORA) and HT12-v4
(LOLIPOP) microarrays to enable meta-analysis of both cohorts.

For expression quantitative trait locus analysis, we obtained residuals for transcript
expression values similarly as we did for the methylation betas. We used linear re-
gression to derive residuals from a model specifying the log2 transformed expression
values as outcome and SNP dosages as predictors, including age, sex, RNA integrity
number (RIN), RNA amplification plate (KORA) / RNA conversion batch (LOLIPOP)
and sample storage time (KORA) / RNA extraction batch (LOLIPOP) as covariates.
Equation 3.45 shows the model specification in detail.

exprresid = resid(expression ∼ age + sex + RIN + batch1 + batch2) (3.45)

3.3. Processing of replication and validation data

3.3.1. Data used for meQTL replication

In the meQTL study ([1] and Chapter 4) we used three independent datasets to replicate
our cross-ethnic meQTL findings. These data were generated and provided by our
collaboration partners at the AME and subsequent replication analyses performed by
our partners from the ICL. Descriptions on the experimental procedures applied were
provided by our collaboration partners and can be found in the appendix (Section A)
for reference. Here, we give a short general description of the data and the performed
pre-processing as provided by our collaboration partners.
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Isolated white blood cell studies

White cell subset samples were collected from 60 individuals comprising 30 obese and 30
normal weight people (Body-Mass-Index BMI > 35 kg

m2 and BMI < 25 kg
m2 , respectively).

All participants gave written informed consent as to their inclusion in this study (refer-
ence for research ethics committees: 07/H0712/150, 13/LO/0477 and 09/H0715/65).
All obese and normal weight individuals were matched for age (±5 years), ethnicity
and sex. Alleles were assessed (Illumina OmniExpress) and DNA methylation quanti-
fied (Illumina MethylEpic array) in line with the manufacturer’s proposed protocols.
The raw methylation data were pre-processed using R v.2.15 and intensities for beads
retrieved using the minfi R package. Prior to analysis, marker intensities were quantile
normalized. Respective quality control criteria for the genotype and methylation data
were as described above for the cohort discovery analysis and no samples were excluded
after quality control. Finally, genotypes not assessed using the array were imputed using
the 1000 Genomes project Phase 3 as a reference with the IMPUTEv2 software package.

Isolated adipocyte studies

We performed additional replication of our findings across tissues in adipocyte samples.
For this, we obtained samples from subcutaneous and visceral adipose tissue from 24
healthy controls (BMI < 30 kg

m2 ) and from 24 morbidly obese individuals (BMI > 40 kg
m2 ).

All individuals were unrelated from a multi-ethnic background, aged between 18-60
years and were not diagnosed with type 2 diabetes. Individuals of the control group were
matched according to age, sex and ethnicity to the cases. Written informed consent was
given by all participants (Ethics committee reference 13/LO/0477). Genomic data were
generated for a total of 47 of the 48 samples. Genotyping, methylation quantification
and data pre-processing including quality control was performed as described above for
the white blood cell subset analysis.

DNA methylation in adipose tissue

We collected 603 adipose tissue samples from the MuTHER study for further replication.
MuTHER contains 856 samples from female individuals of European descent recruited
from the TwinsUK Adult Twin Registry. All procedures were performed according to
the ethical standards of the St. Thomas’ Research Ethics Committee (REC reference
07/H0802/84) at St. Thomas’ Hospital in London. Written informed consent was given
by all individuals participating in the study. DNA methylation was profiled using the Il-
lumina Infinium HumanMethylation450 BeadChIP as described previously [208]. Arrays
were subsequently scanned with IlluminaHiScan SQ and raw methylation data exported
to GenomeStudio v.2010.3 (including methylation module 1.8.2 for image intensity ex-
traction). A combination of Illumina arrays (HumanHap300, Human-Hap610Q, 1M-Duo,
and 1.2MDuo 1M) was used for genotype assessment and genotypes called using the
Illuminus algorithm. Imputation was performed using the IMPUTEv2 software and the
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1000 Genomes phase 3 reference panel, and only SNPs with an IMPUTE info value of
> 0.4 permitted for analysis.

3.3.2. IP-MS data used for experimental validation of the ZNF333 locus

We set out to identify protein binding partners of the ZNF333 protein for the meQTL
project to corroborate our findings. For this, our collaboration partners generated
immunoprecipitation mass-spectrometry (IP-MS) data to identify proteins binding to
ZNF333 (see Appendix B.2 for details). In the computational enrichment analyses
(see Section 4.2.10) we used two lists of proteins derived from these data: First, the
complete list of proteins which were identified and quantified comprising at least two
unique peptides (set termed PZNF333_long and second, the ’shortlist’ of quantified proteins
exhibiting an IP over control enrichment of >= 2 for both immunoprecipitation runs
(anti-FLAG mAb and anti-ZNF333, termed set PZNF333).

3.4. Reproducible cloud enabled workflows

A focus of the work done in context of this thesis was on implementing reproducible
workflows. As introduced in Chapter 1, the two core aspects of reproducibility are 1)
availability of the original data and 2) a thorough documentation of all (computational)
steps performed to achieve the reported results. Here, we focus on the second aspect
and briefly describe how we utilized reproducible workflow systems to obtain fully
documented and easily reproducible and executable workflows.

3.4.1. The Snakemake workflow system

Important factors in achieving reproducible research are well defined workflows espe-
cially in large-scale computational projects. In our projects, we used Snakemake [149]
to implement fully reproducible workflows. Specifically, we used Snakemake version
5.7.4, which allowed us to integrate shell, python and R scripts in a single workflow
using a workflow definition language based on python. Snakemake is built in python2

and follows a file based scheme in two regards: First, it needs a single text file which
describes the rules of the workflow and second, each rule relies upon input files, which
are transformed to the respective output files by the commands supplied within the rule
definition. For example, a relatively simple rule to annotate which genes of a specific
gene annotation exhibit transcription factor binding sites (TFBS) at their TSS could take
two annotation files as input and specify a script performing the annotation, yielding an
output file containing the annotated TSS as results (see Figure 3.1).

In the rule in Figure 3.1, annotate_tss_with_tf.R is an R-script which would take the
specified input and output file paths and execute a set of instructions to generate the
output (genes annotated with TFBS) from the input (TFBS and gene annotation). The

2https://www.python.org/
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rule annotate_tss_with_tf:
input:

tfbs_remap = "<path/to/remap_tfbs">,
gene_annot = "<path/to/gene_annotation>"

output:
tfbs_annot = "<path/to/annotation_output>"

script:
"annotate_tss_with_tf.R"

Figure 3.1.: Example of a Snakemake rule to annotate gene TSSs with transcription factor binding site
information.

created output can then be used as an input to another rule. Once all rules are defined,
the user can call Snakemake by specifying either a single output file or a target rule, which
will nudge Snakemake to evaluate what has to be done to generate the desired output: It
checks which inputs are needed to create the output, and, if those are not yet available,
gathers the rules which can generate the required input files. For each encountered
rule, it will recursively check the inputs, whether they are present or have to be created,
gather the respective rules, check again the inputs, and so on. This process effectively
leads to the construction of a directed acyclic graph (DAG), containing all rules and
their dependencies which have to be executed in order to create the desired output.

Publishing the workflow in principle allows any user who has Snakemake installed
and the respective raw data available to run the complete analysis pipeline using a single
Snakemake command (’target’). In addition, Snakemake allows easy visualization of the
implemented tasks to get an overview and potentially debug the workflow. For instance,
Figure 3.2 shows the rulegraph from the simulation study of the network inference project
(Chapter 5), displaying all rules which need to be considered when executing the study,
created using the snakemake –rulegraph option.

3.4.2. Reproducible software environments

Workflow systems such as Snakemake define the individual steps which have to be exe-
cuted to reproduce results. However, one needs to also define the software environment
in which the computations should be executed to achieve full reproducibility, including
operating system, script (e.g. R, python) versions and package versions, as different soft-
ware versions can yield different results. Typically, workflow systems allow to define or
use such environments, either by including so call conda environments or by specifying
software containers. In our case, we made use of software container solutions popular
representatives of which are Docker, singularity and Charliecloud (see also Chapter 1).
Briefly, one can define in details the desired properties of the software environment,
for instance in a single Dockerfile, instructing the system on which the container is built
to ’install’ a particular OS in a specific version, including software and packages of a

53



3. Methods

Figure 3.2.: Example ’rule
graph’ for the Snakemake
pipeline when executing the
network inference simula-
tion study. Graph was cre-
ated using the snakemake –
rulegraph command. Indi-
vidual nodes are rules and
edges reflect dependencies
between the rules. When the
target rule (bold) is called,
Snakemake identifies all de-
pendencies and builds an in-
stance of the workflow.
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defined version. This container can be exported and used on arbitrary systems, always
providing the OS and software specifications as intended by the developer and needed
by the workflow.

For instance, we utilized a Charliecloud [150] system to construct and export an
image3 specifically built for our network inference project (see Chapter 5). We deposited
our image on Dockerhub4 which allows easy sharing of such containers and enabled
us to use our container both at the ICB compute cluster and the Maryland Advanced
Research Computing Center (MARCC)5, thereby having the same operating system,
software and package versions available on both compute systems without large efforts.
Thus, workflow systems including software containers enable researchers to implement
fully reproducible computational workflows, which can easily be transferred between
compute clusters and facilitate reproducible research.

3can be found at https://hub.docker.com/repository/docker/jhawe/r3.5.2_custom
4https://hub.docker.com
5https://www.marcc.jhu.edu/

54

https://hub.docker.com/repository/docker/jhawe/r3.5.2_custom
https://hub.docker.com
https://www.marcc.jhu.edu/


4. Exploring the genetic architecture of
DNA methylation

Chapter Glossary

SNP Single Nucleotide Polymorphism - A single nucleotide change
in a DNA sequence

MAF Minor Allele Frequency - The frequency of the less prominent
genetic variant at a genetic locus in a population.

CpG/CpG
site

A cytosine-guanine (’CG’) dinucleotide found in the DNA. DNA
methylation typically occurs at the cytosines of CpG sites.

meQTL methylation Quantitative Trait Locus - A SNP linked to a CpG
through genotype and DNA methylation association.

cis, longrange,
trans

Categorization of QTL pairs (e.g. SNP-CpG pairs for meQTL).
cis: same chromosome within 1Mbp; longrange: same chromo-
some, distance > 1Mbp; trans: different chromosomes

QTL hotspot A genetic locus (SNP) statistically associated with numerous
distinct quantitative traits (such as genes or CpG sites)

PPI Protein-Protein Interaction
TFBS Transcription Factor Binding Site
ChIP-seq Chromatin-immunoprecipitation followed by sequencing - An

experimental procedure to determine protein-DNA interactions
such as transcription factor (TF) binding sites.

(C)RE (Cis) Regulatory Element - A stretch on the DNA linked with
regulation of gene expression (in cis of the gene)

TAD Topologically Associating Domain - Chromosome region iden-
tified via chromatin conformation capture (e.g. Hi-C) to exhibit
a high number of intra-chromosomal interactions.

Locus graph Concept used to functionally explain QTL hotspots. Consists of
a set of nodes (SNP, genes and CpGs) and edges connecting the
nodes (e.g. TF-DNA binding or PPI)

DNA methylation is a crucial cellular mechanism and a main factor in the regulation
of gene expression, for instance through altering transcription factor binding, which
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drives functional and structural properties of the genome and cellular and organism
level phenotypes [12, 38]. Understanding the impact genetic variation has on DNA
methylation is therefore essential to further our knowledge about cellular systems
and, ultimately, disease [209]. Aberrations of DNA methylation patterns have been
implicated in several complex diseases such as atherosclerosis and type 2 diabetes
[50–54]. Environmental and genetic factors can influence DNA methylation and it could
hence provide a mechanistic explanation of how these exposures impact gene regulation
and molecular phenotypes [13, 56–58]. Genome-wide methylation quantitative trait
locus (meQTL) studies [23, 208, 210–213] further confirmed the influence of genetic
variants on DNA methylation, both in cis and in trans, and showed that trans-acting
meQTL could ease the identification of genomic master regulators.

This chapter is focused on the analyses performed in the context of a large collaborative
project between the Department of Epidemiology and Biostatistics at the Imperial College
of London (ICL) as well as the Research Unit of Molecular Epidemiology (AME) and
the Institute of Computational Biology (ICB) at the HelmholtzZentrum München and
describes parts of the manuscript submitted for publication in Nature Genetics [1]. Our
goal was to unravel the complex processes underlying genomic master regulators and
human traits. To this end, we investigated the effect genetic variants exhibit genome-
wide on DNA methylation in a meta-analysis of several large population cohorts and
analyzed the functional implications of the observed associations through curated
molecular interactions. In this chapter, we will detail our analysis strategy to obtain
ethnicity independent (’cosmopolitan’) meQTL and describe the extensive functional
evaluation and network analyses performed to 1) establish their functional relevance
and 2) derive information about master regulators.

4.1. Epigenetic gene regulation through DNA methylation

In our work, we focused on dissecting the regulatory implications of three distinct types
of methylation quantitative trait loci (meQTL) based on the genomic locations of the
associated SNPs and CpGs, namely:

1. cis-meQTL: (SNP, CpG) on the same chromosome, at most 106 bp (1Mbp) apart

2. longrange-meQTL: (SNP, CpG) on the same chromosome, more than 1Mbp apart

3. trans-meQTL: (SNP, CpG) on different chromosomes

Using this classification scheme, it is possible to address diverse biological questions
and multiple mechanisms of action can be thought of to explain the distinct types of
associations (see Figure 4.1).

cis-meQTL. These meQTL represent genotypes that are close to the affected CpG.
Specifically, the SNP and the CpG 1) reside on the same chromosome, and 2) are within
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Figure 4.1.: Schematic of how SNPs
could influence CpG methylation in
cis , longrange and trans and how
their combined effect can alter gene
expression. 1) cis-meQTL: SNP lies
in same regulatory element (RE) as
the CpG. It changes the RE sequence
leading to altered TF binding and
CpG methylation which in turn af-
fects the expression of a nearby
gene. 2) longrange-meQTL: SNP
and CpG reside in different REs but
are brought together through local
chromatin structures (e.g. chromatin
loops). 3) trans-meQTL: Similar to
2), but the contact of the two REs
is established across chromosome
boundaries. 4) SNP affects the activ-
ity of a TF in cis ultimately leading
to changes in DNA methylation of
downstream targets of the TF.

1Mbp (Mega base pair) from each other. A possible explanation for this specific type
of association is that the SNP and the CpG reside in the same regulatory element
(RE) and that the SNP directly changes the sequence of the element. This would alter
e.g. a potential TF binding site and lead to a direct change in the observed methylation
pattern, ultimately affecting the expression of genes linked to the regulatory element
(Figure 4.1, step 1). We investigated whether or not the observed cis-meQTL indeed
reside in the same regulatory element by performing an enrichment analysis in histone
modification based chromatin states (chromHMM states [48, 49]). This analysis is detailed
in Section 4.3.3.

longrange cis-meQTL. SNP-CpG pairs in this category reside on the same chromosome
but have a relatively large distance (>1Mbp) to each other, bringing up the question
of how these entities might realize their functional association. A possible explanation
involves 3D chromatin structures, specifically chromatin loops as indicated in Figure 4.1,
step 2. Physical interactions of the genome bring together potential regulatory elements
such as the ones the CpGs and SNPs reside in, which can then form regulatory relation-
ships [75]. 3D chromatin structure can be assessed using next-generation sequencing
techniques such as high-throughput chromatin conformation capture (Hi-C) [72] and
promoter capture Hi-C (PCHi-C) [73]. To elucidate the potential role of DNA secondary
structure in forming regulatory relationships we gathered public Hi-C and PCHi-C
data [75] and evaluated possible enrichment of longrange-meQTLs in DNA contacts
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(Section 4.3.3)

trans-meQTL. The final group of meQTL consists of SNP-CpG pairs that reside on
different chromosomes. The mapping of trans-(me)QTL is generally a difficult problem
and limited in its application by a low number of individuals in genomics studies
(low power) and a large multiple testing burden (millions of SNPs are tested against
hundreds of thousands of methylation sites). In this study, however, the meta-analysis
of the large population cohorts enabled extensive analyses of trans associated meQTL
pairs (see Section 3.1.4). Multiple distinct mechanisms could be thought of when
considering trans associations, of which we consider two: First, 3D chromatin structures
might connect the two entities similar to longrange-meQTL, but connecting different
chromosomes rather than forming loops within a single chromosome (Figure 4.1 step
3). Second, the observed trans effect could be mediated by a sequence of regulatory
steps including transcription factors as indicated in step 4 of Figure 4.1. In this case,
a possible sequence of actions might involve the meQTL SNP directly affecting the
expression or function of a nearby cis gene, leading to a change in regulatory patterns
involving associated proteins which alters transcription factor binding at the CpG sites
and ultimately leads to a change in methylation in trans. For the first possibility (step
3 in Figure 4.1), we utilized Hi-C data to determine whether trans-meQTL are found
to be more often located within the same inter-chromosomal chromatin contacts as we
would expect by chance (Section 4.3.3). For the latter (step 4 in Figure 4.1) we devised an
elaborate network analysis procedure based on established protein-protein interaction
(PPI) networks and public chromatin immunoprecipitation sequencing (ChIP-seq) data
to 1) pinpoint the most likely cis candidate genes mediating QTL effects, 2) generate
hypotheses on how the genetic information flows through the protein-TF network and
3) identify the regulatory role of DNA methylation for individual loci. Using this
approach we were able to dissect regulatory processes underlying important trans-QTL
hotspots, including trait-associated genetic loci. The results of this analysis are detailed
in Section 4.3.4.

4.2. Methods for meQTL investigation

4.2.1. Identification and pruning of global meQTL

To investigate the genetic influences on DNA methylation and to obtain new insights
into the molecular pathways connecting genetic variants to phenotypes, we performed
a global association analysis between imputed genotypes and DNA methylation at
CpG dinucleotides (CpG sites), thereby establishing methylation quantitative trait loci
(meQTL). Methylation quantitative trait loci are pairs of SNPs and CpGs which show
a significant statistical association in their genotypes and DNA methylation pattern,
respectively, and form the basis for all our analyses in this chapter. We set out to identify
ethnicity independent (’cosmopolitan’) meQTL pairs by first obtaining robust meQTL
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within both ethnic groups and subsequently meta-analyzing them across ethnicities (see
Figure 4.2). The computations to generate the full and pruned lists of cosmopolitan
meQTL were performed by our collaboration partners at the ICL (Dr. Lehne).

Model description and probe filtering. Determining the statistical association be-
tween a SNP and a CpG boils down to performing a linear regression (see Section 3.1.2)
between the measured genotypes (SNP allele dosages, see Section 3.2) and the obtained
methylation beta values (for the CpG) for all available individuals, i.e.

CpG ∼ β0 + β1SNP.

Note, that typically batch effects and other covariates are added to the independent
variables to account for confounding effects, however, in this study we removed potential
confounders by residualizing the methylation data prior to association analysis (see
Section 3.2 for details). While the association analysis is a relatively straight forward
concept some issues need to be addressed before carrying out the regressions. First, the
probes on the methylation array are prone to cover genomic regions containing genetic
variants. This potential genetic influence of SNPs on the hybridization of the probes
can lead to misinterpretation of the methylation at the respective CpG site and hence
all probes containing SNPs with a minor allele frequency (MAF) of 1% (n=121,932 in
Europeans; n=84,295 in South Asians) are removed. Secondly, CpG probe sequences
can cross-hybridize, meaning that they show high sequence similarity to more than
one region of the genome. These probes, too, can lead to erroneous methylation beta
estimates and hence are excluded from the analysis (n=43,233). Another more technical
issue is the sheer size of the data and the number of models that need to be calculated.
For both populations, roughly 9 million SNPs had to be tested for genetic effects on
approximately 350,000 CpG methylation sites (after filtering), amounting to a total of
about 3.15× 1012 individual association tests per population. We used QUICKTEST [214–
216] to perform efficient meQTL calculation and to run this analysis in a feasible amount
of time and further chunked the input methylation data to enable high-performance
computing parallelization (i.e. distribution of calculations across different computing
hosts). For the calculation of meQTL in KORA FF4 using the EPIC methylation data, we
utilized matrixEQTL [217].

Meta-analysis of study populations. To generate cosmopolitan meQTL, we first
performed separate discovery and replication analyses for both Europeans and South
Asians based on the independent population-level data. For the discovery stage, we
obtained meQTL results separately from KORA F4 (N=1,731, European ethnicity) and
1,841 LOLIPOP individuals (South Asian ethnicity), yielding 7.2 million and 11.4 million
SNP-CpG pairs for Europeans and South Asians at P < 10−14, corresponding to P < 0.05
after Bonferroni correction, respectively. The associations significant in the discovery
phase were subsequently replicated in KORA F3/SYS/NFBC (N=2,068) and LOLIPOP
(N=1,354) to obtain high confidence SNP-CpG associations for Europeans and South
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Figure 4.2.: The analysis plan followed in the meQTL project. After individual discovery and replication
of meQTL in European and South Asian cohorts we kept only SNP-CpG pairs replicating across both
populations. Cosmopolitan meQTL were subsequently pruned and independent meQTL loci identified.
The final set of meQTL was then investigated for replication in independent data and diverse functional
enrichments performed. Trans-meQTL hotspots were further subjected to detailed network analysis and
followed up by experimental validation.
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Asians, respectively. Combined replication P-values were calculated based on the effect
sizes and standard errors from the individual association tests using fixed-effect meta-
analysis (see Section 3.1.4) in the METAL software [218]. To pass the first replication
stage and to be admitted to the cross-ethnic replication stage meQTL needed to 1) show
a consistent direction of effect between discovery and replication, 2) have a replication
P < 0.05 and 3) have a combined P < 10−14. Finally, replicated meQTL derived
for Europeans and South Asians entered the cross-ethnic replication stage in which
we tested European associations against South Asian derived associations and vice
versa. Associations replicating between the two ethnicities (same criteria as before,
i.e. replication P < 0.05, combined P < 10−14, same direction of effect) then formed the
set of cosmopolitan meQTL (N=11,165,559 SNP-CpG pairs) which we focused on in all
subsequent analyses. This strategy is also illustrated in the upper part of Figure 4.2.

Identifying independent meQTL and LD pruning. Due to local correlations between
SNPs (linkage disequilibrium, see Section 2.1.1) and between neighboring CpG sites, the
meQTL analysis led to redundant SNP-CpG pairs that effectively represent the same
genetic and epigenetic loci. We employed a two-step approach to identify independent
SNP and CpG loci over all cosmopolitan pairs which we termed ’sentinel pairs’, or, with
respect to the individual entities, sentinel SNPs and sentinel CpGs.

First, we performed an iterative conditional analysis using the same data as for the
initial association analysis. For each CpG C, we selected the most strongly associated
SNP SL (i.e. the one with the lowest P) and repeated association tests for all other SNPs
that were initially associated with C, while including SL as an independent variable in
the regression model. This effectively removes the genetic effect of SL on the C and helps
to determine independent genetic effects. We repeated this procedure for all remaining
SNPs which still showed significant association to C (P < 10−14) after accounting for the
respective strongest SNP until no more SNPs remained. The resulting, independently
associated SNPs were then linked to their respective CpG.

While the conditional analysis reduces the redundancy caused by linkage disequilib-
rium between SNPs, still a possibility remains, that the same genetic locus is represented
by different SNPs. This can result from the fact that the top associated SNP for each
genetic locus can be different for different CpGs. Therefore, in order to get rid of these
indirect effects of local correlations, we reduced highly correlated SNPs and CpGs to
independent SNP loci and methylation sites, respectively. To this end, we picked again
the top associated entity (i.e. SNP or CpG with lowest P) as ’sentinel’ SNPs and CpGs,
and assigned all entities with R2 > 0.2 and distance < 1Mbp to the corresponding loci.
This procedure was then repeated for the remaining markers until no more remained.

4.2.2. Replication of meQTL in independent data

We replicated cosmopolitan meQTL findings in three independent datasets: isolated
leukocytes, isolated adipocytes and in adipose tissue from the MuTHER study (see also
Section 3.3.1). Data were generated and provided by our collaboration partners together
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with the initial results for this analysis, derived as described below.

We re-calculated associations for all 11,165,559 discovered cosmopolitan SNP-CpG
pairs (see Chapter 4) individually in these three datasets. In the isolated adipocyte
dataset, a total of 9,408,762 of the 11,165,559 cosmopolitan pairs were tested due to some
SNPs and CpGs missing in the data as a result of the applied QC criteria or due to the
different genotyping platforms. Associations between SNPs and CpGs were established
using linear regression for which we used age, gender, ethnicity, and obesity case-control
status as covariates to be in line with the initial association analysis. The MuTHER
study contains samples from related individuals which needs to be considered during
the association analysis in order to avoid confounding by sample kinship. Therefore,
the GEMMA software was used to determine associations in these data [219]. GEMMA
(Genome-wide Efficient Mixed Model Association) implements an efficient procedure
to apply standard linear mixed models for genome-wide association study analyses. In
essence, a univariate linear mixed model is fit to perform association tests for markers
with a single phenotype, which allows GEMMA to account for population stratification
and sample structure as well as to determine ’chip heritability’, i.e. the proportion
of variance in phenotypes explained by respective genotypes. In the final model for
association testing we used as covariates the kinship matrix reported by GEMMA as
well as age, gender, first 20 control probe, and first 5 genotype principal components.

For the replication across platforms, we utilized the MeDIP-seq based associations
reported by Bell, F. Gao, Yuan, et al. [220]. The authors reported a total of 7,184
associations between genetic risk SNPs subdivided into LD blocks and “haplotype-
specific DNA methylation (HSM) peaks”, reflecting genomic regions of a minimum
length of 500 base pairs (bp). Of the 7,184 associations, 328 involve at least one specific
SNP and one CpG in a HSM peak, for each of which we collected the respective SNP-
CpG pair from our cosmopolitan results. Next, we determined how many LD block-HSM
peak associations can be replicated at various significance thresholds. In addition, to
establish whether these numbers were more than expected by chance, we performed
background sampling to generate a null distribution. To this end, we randomly selected
100 background pairs for each observed SNP-CpG pair with SNPs matched for MAF (±
0.1%), and CpGs for standard deviation (±0.1%) as well as genomic distance (± 10kbp).
We further defined more relaxed criteria to obtain a background for non matched SNP-
CpG pairs where we matched pairs for MAF (±0.1%), CpG standard deviation (±1%),
and a genomic distance threshold of 50kbp.

For each of the 100 matched background sets we observed the total number of
replicated LD block-HSM peak associations and for each association with more than
one meQTL pair, we recorded the smallest P-value. Finally, we obtained an empirical
P-value for the true number of replicated LD block-HSM peak associations according to
our background distribution. In Bell, F. Gao, Yuan, et al. [220] the authors calculated a
representative P-value from the mean P-value over all SNP-HSM peak pairs reflecting
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the same HSM-LD block associations. We hence use the same procedure to calculate the
results for all KORA pairs in this analysis and to determine the percent of replicated
associations.

4.2.3. Enrichment of cis-meQTL in functional chromatin states

For cis-meQTL, where the involved SNPs and CpGs reside relatively close (< 1Mbp) to
each other on the same chromosome, a possible explanation for a functional connection
is that the observed polymorphisms change the sequence in a regulatory element
(Figure 4.1). To investigate this, we assessed whether cis-meQTL are enriched in the
same regulatory states, specifically in enhancer (potential distal regulatory element) or
promoter (potential cis regulatory element) chromHMM states [48].

The chromHMM states were derived from five distinct histone marks using a multi-
variate hidden Markov model [49]. Combinations of certain histone modifications (see
Section 1.3.2) indicate distinct chromatin states, for instance, whether a DNA stretch can
be actively transcribed or is closed to the transcriptional machinery. A full overview of
all defined states and the ones utilized in this analysis is given in Table 1.1.

We asserted the functional relationship of cis-meQTL pairs by analyzing, whether or
not entity pairs reside more often within the same regulatory class than expected by
chance, focusing on active regulatory marks relating to enhancer states (’enhancer’ class)
or promoter states (’promoter’ class). To this end, for each cis-meQTL CpG in a promoter
or enhancer class state we assessed whether it maps to the same regulatory class as at
least one of its associated meQTL SNPs (’match’) or in a different class (’ambiguous’).
We then evaluated whether observed cis-meQTL loci are enriched to be in the same class
by sampling a random but matched set of background pairs. For each CpG with N
associated meQTL SNPs we obtained a random background CpG locus (i.e. including
background SNPs) from all CpGs matching mean and standard deviation (± 5%) and
with at least N SNPs in similar proximity (± 1kbp) and with matched minor allele
frequency (MAF, ± 5%) as the SNPs from the meQTL CpG, making sure that we only
obtain markers not part of the cosmopolitan meQTL pairs.

Finally, we annotated the sampled background loci with the same state information
as we did for the observed meQTL. This procedure is repeated 100 times and for each
iteration 1,000 cis-meQTL loci are sampled and 1,000 background pairs determined
according to our criteria. To assess whether the distribution of the fraction of pairs
in the same state for the observed pairs is significantly shifted above the background
distribution we applied Wilcoxon’s signed rank test.

4.2.4. Enrichment of longrange- and trans-meQTL within chromatin contacts

We used both PCHi-C contacts and Hi-C derived topologically associating domains
(TADs) to investigate longrange associations and utilized inter-chromosomal chromatin
contacts derived from Hi-C data published in Javierre, Sewitz, Cairns, et al. [75] to
investigate trans-meQTL. TADs are derived from Hi-C data and reflect local regions
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same contact/TAD not in same contact/TAD
observed pairs A B
background pairs C D

Table 4.1.: Example for a contingency table derived during the TAD/HiC analysis. Odds ratios indicating
enrichment of observed pairs in contacts as compared to the background pairs can be computed as
OR = A/B

C/D .

with a high number of intra-chromosomal DNA contacts (e.g. DNA loops) representing
important regulatory features of eukaryotic cells [221]. While the underlying data for the
longrange and trans analyses are slightly different, the general approach for both is simi-
lar: We seek to establish that observed meQTL pairs are more often located at chromatin
contacts (longrange and trans pairs) or located within the same TAD (longrange pairs) as
compared to a background set of meQTL SNP-CpG pairs, thereby providing additional
evidence for functional associations through chromatin contacts. For the TAD and Hi-C
enrichment we employ the same sampling procedure of background pairs as for the
cis-meQTL chromHMM enrichment. However, for the PCHi-C enrichment we further
constrained the sampling such that at least one of the entities resides in the promoter of
a gene (2,000bp upstream and 1,000bp downstream of the transcription start site), which
effectively mimics the inherent properties of promoter-capture Hi-C. Here, specifically
designed oligonucleotides matching all known promoter regions are used to capture
chromatin, thereby always capturing fragments for gene promoters together with their
distally linked (i.e. , in contact) DNA fragments.

For each of the three analyses (longrange TAD/PCHi-C, trans Hi-C), we performed 150
iterations of sampling background pairs for all pruned meQTL in the respective category.
By counting the number of overlaps of observed and background meQTL pairs with
(PC)Hi-C contacts and the number of times a longrange SNP-CpG pair resides within
the same TAD region, we assessed whether observed meQTL show functional evidence
in the HiC data through enrichment in the derived contact regions. To investigate this
formally, we generated contingency tables based on the counted overlaps which show
the total number of observed and background pairs residing or not residing in the same
TAD/chromatin contact. An example of such a table is given in table 4.1.

From these tables we obtained odds ratios (ORs), i.e. the fraction of the overlap
fractions for the observed pairs vs the background pairs (OR = A/B

C/D ). By setting
H0 : OR ≤ 1, we obtained an empirical P-value using

P(D|H0) =
∑d ∈D I(d ≤ 1) + 1

N + 1
,

where N is the total number of iterations performed, D is the data (all ORs) and I(.) is
the indicator function, returning 1 if its argument evaluates as TRUE and 0 otherwise.
The empirical P-value reflects the probability of obtaining the same or a more extreme
OR as we observed for the ’real’ meQTL pairs given the null distribution based on the
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matched background.

4.2.5. Enrichment of meQTL pairs for association with gene expression

To corroborate meQTL pairs we examined whether or not meQTL SNPs and CpGs are
enriched for associations with gene expression. To this end, we calculated expression
quantitative trait loci (eQTL) and expression quantitative trait methylation (eQTM) for
all independent sentinel SNPs and CpGs, respectively. For eQTL, we first prepared the
gene expression data, removing potential confounding effects as described in Section 3.2
(including Houseman estimates), and used sentinel SNPs as independent variables in
a linear model to assess their effect on gene expression. For eQTM, we used the same
expression data but adjusted CpG methylation data (beta values) only for the Houseman
white blood cell proportions and the Illumina control probe principal components 1-20
(see Section 3.2), since we already adjusted for age and sex in the expression data. To
determine eQTM we again regressed gene expression as the dependent variable against
CpG methylation as the independent variable using a linear model. In addition, we
removed the effect of cis regulatory SNPs which could potentially confound the eQTM
signal by regressing out cis-eQTL and meQTL genotype information from the tested
CpGs and genes. We employed a meta-analysis approach to increase the power of
eQTL and eQTM detection by analyzing associations separately for KORA, LOLIPOP
Indian Asians, and LOLIPOP Europeans and then combining individual results by
inverse-variance meta-analysis (Section 3.1.4). Statistical significance was then inferred
at P < 4.04× 10−13 for eQTL and 8.7× 10−12 for eQTM, each corresponding to P < 0.05
after Bonferroni correction.

We sampled a corresponding background for each of the sentinel SNPs and CpGs
to quantify expectations under the null hypothesis, i.e. that observed meQTL are not
enriched for gene expression associations. Background SNPs are sampled randomly
from all available SNPs, constraint such that 1) they are not part of a significantly
associated SNP-CpG pair, 2) SNPs are matched for minor allele frequency (MAF ± 5%)
with the meQTL SNP and 3) they have a similar distance to their respective nearest
gene (± 10 kbp). We then assessed whether sentinel SNPs are over-represented for
association with gene expression by building a contingency table reflecting 1) the two
groups of SNPs, i.e. meQTL or background and 2) whether or not the SNP has at
least one significant association with a gene, i.e. is an eQTL for at least one gene. We
assessed statistical significance of expression enrichment by applying Fisher’s exact test
on the constructed tables and setting a P-value cutoff of P < 0.05. The same analysis
was performed independently for meQTL SNPs and CpGs. For CpGs, we matched
background CpGs using the same criteria, but instead of MAF we matched mean and
variance of methylation betas (±5%) between meQTL and background CpGs. Finally,
SNPs and CpGs where stratified according to their meQTL category (cis, longrange, trans
and according to their observed effect sizes in the meQTL associations (low, medium,
and high effect size groups). To obtain equal effect group sizes, we cut the distribution
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of effect sizes at the 33% and 66% percentiles.

4.2.6. Selection of candidate genes for SNPs affecting CpGs in trans

For each locus we aimed to determine the most likely cis regulator mediating the
observed effects by selecting 1) the nearest gene as a potential candidate and 2) the
genes, for which the SNP is an eQTL in GTEx whole-blood gene expression data [82,
93] and in our study. Selecting by eQTL yielded a total of 507 SNP-gene pairs, 381 of
which did not involve the gene nearest to the sentinel. Overall we selected 1,712 unique
candidate genes over all sentinels. For the trans-acting sentinels where the random walk
based approach (see below) could not be applied to determine the underlying regulatory
network, e.g. due to cis genes not being present in STRING, we used genes selected as
described above for downstream analyses (e.g. for the ZNF333 locus).

4.2.7. Enrichment of regulatory genes at meQTL loci

We investigated the type of genes encoded in the regions around the identified sentinel
SNPs to evaluate whether these are enriched for regulatory genes such as epigenetic
modifiers and transcription factors. To this end, we curated three gene lists presented
in Lemire, Zaidi, Ban, et al. [211] and which comprise 1) the curated list of epigenetic
regulator genes in Supplementary Table 4 of [211], 2) the list of TFs curated from [222]
(classes ‘a’ and ‘b’) and 3) the zinc-finger gene (ZNF) subset of these transcription factors
(simple match of ‘ZNF’ in gene name).

We assessed enrichment of genes in these lists in the 1,847 identified trans SNP
regions by sampling background SNPs for each sentinel with matched MAF (± 5%)
and then detecting the genes in a region around the matched SNP with the same size
as the sentinel region. We then counted how often genes in the respective lists 1) are
detected in the sentinel region and 2) are detected in the matched background region
and calculated the fraction of detected genes versus the not detected genes. SNPs present
in the table of cosmopolitan meQTL pairs were excluded from the list of background
SNPs and the SNP sampling repeated 1,000 times. Significance of enrichment was then
established by evaluating the fraction of odds ratios (observed over background, similar
to Table 4.1) in the overlap tables less than or equal to 1 (using H0 : oddsratio ≤ 1 as in
the HiC enrichment analyses) to obtain an empirical P-value, indicating the probability
of obtaining the same or a more extreme OR under the null hypothesis.

4.2.8. TFBS enrichment at trans associated CpG sites

In order to show that trans associated CpGs are indeed functionally related to the
identified trans-acting SNP loci, we sought to assess whether trans CpG regions are
enriched for binding sites of DNA binding proteins/transcription factors. To achieve this,
in a first step we collected all chromatin immunoprecipitation followed by sequencing
(ChIP-seq) based transcription factor binding sites (TFBS) from the ENCODE [60] and the
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ReMap resource ([71], see also Sections 2.3.1 and 2.3.6). After filtering for experiments
performed in blood-related cell-lines (see Section 2.3.6), the final set of DNA binding
proteins contained a total of 145 TFs from 246 distinct ChIP-seq experiments.

In the next step, we overlapped the curated TFBS for all transcription factors with
the trans CpG regions for each sentinel and generated a list of TFs of interest for each
genetic locus. An overlap between TFBS and CpG site was counted if the binding site
overlaps the 100bp window around the CpG (i.e. 50bp upstream and downstream of the
CpG).

Power analysis

Prior to over- and under-representation analysis of TFBS we first analyzed how many
trans CpGs are needed at minimum to be able to detect such enrichments.

We seek to establish the enrichment using a Fisher test on the contingency table
created from the observed TFBS overlaps and the overlap of a set of background TFs.
Therefore the number of needed trans CpGs is dependent on whether the smallest
achievable P-value in this Fisher test is below an adjusted significance threshold padj.
In turn, the adjusted significance threshold directly depends on the number of tested
loci nloci(minsize), where minsize is the minimal size threshold for the number of
trans CpGs per locus. We hence performed the power calculation where we used
the Bonferroni method to compute adjusted significance thresholds as padj(minsize) =
0.05/(nTF ∗ nloci(minsize)), where nTF = 246 is the total number of ChIP-seq experiments.
Using this method we then proceeded to systematically construct contingency tables for
different numbers of minsize assignments n1 (i.e. minimal number of trans CpGs for the
same sentinel) in the range n1 = 1..20 and for the overall number of genetic loci with
trans associated CpGs overlapping TFBS n2 = {0..n1}.

In order to define the background counts for the contingency tables we need to
obtain the approximate binding frequency of TFs at CpG sites not associated with any
sentinel SNP and the total number of CpGs in the background set. We estimated this
background binding frequency of TFs by observing the mean binding frequency of all
available TFs across all CpGs from the data yielding pbg ≈ 0.05. To get the number
of CpGs in the background set we further assumed that for each enrichment test the
background set of CpGs entails all CpGs available on the 450k array excluding the
CpGs which are associated with the largest trans cluster (maxsize ≈ 250 CpGs, hence
nbg ≈ 486, 923). Using these estimates we thus set the counts for the background in the
contingency table to pbg × nbg and (1− pbg)xnbg for overlapping and not overlapping
sites, respectively, and determined for each cluster size n1 the smallest Fisher test P-value
over all n2 values. Based on padj(minsize) we ultimately obtained the minimal cluster
size n1min where an n2 exists which yields a P-value P < padj(minsize). In this analysis
we found n1min = 5, yielding the smallest P-value P = 3.6× 10−7, which falls below
padj(minsize) = 1.8× 10−6 for minsize = 5.

67



4. Exploring the genetic architecture of DNA methylation

TFBS enrichment analysis on trans CpG signatures

We proceeded to systematically test the trans signatures for each of the 115 sentinel
SNPs with ≥ 5 trans-CpGs for over-/under-representation of binding sites using the all
246 ChIP-seq TFBS datasets.

We retrieved conservative enrichment estimates by performing Fisher’s exact test on
the generated contingency tables for two different definitions of the CpG background
and recording the highest P-value only. First, we defined the background as all CpGs
available on the Illumina 450K methylation array. Second, we set the background based
on randomly sampling sets of CpGs from the array which match in population mean and
standard deviation of methylation betas to the associated trans CpGs for each genetic
locus. Next, we obtained empirical P-values indicating the significance of the overlap
between the observed trans sites and the TFBS by re-sampling 10,000 sets of matched
CpGs of equal size for each sentinel. In order to adjust for multiple testing we applied
the Benjamini-Hochberg method on the results for both backgrounds. Finally, we used
a conservative criterion to define enriched or depleted transcription factor signatures
requiring FDR less than 5% for both tests.

We observed y = 45 loci which showed significant enrichment of TFBS in the trans CpG
signatures (see Supplementary Figure C.2). In order to check if our results represent
enrichment beyond the null hypothesis, we estimated the number of genetic loci with
trans CpGs overlapping TFBS for a random scenario. We can compute the probability of
obtaining at least one random association, i.e. one false positive, per SNP using 1) the
total number nloci = 115 of loci, 2) the total number of nTF = 246 ChIP-seq data sets and
the fact that 3) we control the false discovery rate at 0.05, corresponding to a P-value
threshold of pTh = 1× 10−3. The latter is the probability of getting a false positive in a
given test and we can hence compute the probability of getting a false positive per SNP
as P(x > 0) = 1− P(x = 0) = 1− (1− pTh)

nTF = 0.22. Therefore, we can estimate the
expected number of SNPs having at minimum one association as nloci ∗ P(x > 1) = 25.0.
We observed y = 45 loci with enrichment of TFBS at trans CpG sites, hence the P-value
to obtain this results is P(y > 45) Binom(p = P(x > 0), nloci) = 7.4× 10−6.

Finally, we performed a sensitivity analysis to determine the influence of our selected
CpG window size of 100bp to detect significant TF signatures. The results of this
analysis are shown in Supplementary Figure C.3 for varying window sizes of 2, 100, 500,
1,000, 5,000 and 10,000bp. With larger window sizes we observe an increased amount
of discoveries which potentially mirror regional correlations between CpG methylation
betas. However, in order to be conservative and therefore underestimate the true number
of trans TF signatures we chose a window size of 100bp.

4.2.9. Random walk analysis on locus graphs

For each meQTL hotspot (≥ 5transCpGs) we sought to identify the most likely candidate
SNP gene from the full set of SNP genes (i.e. all genes located in a 1Mbp window around
the sentinel) which mediates the observed trans effects. To this end, we linked all SNP

68



4.2. Methods for meQTL investigation

genes to the sentinel associated CpGs via a cascade of protein-protein interactions (PPI)
and protein-DNA interactions.

Definition of a context specific protein-protein interaction network including
protein-DNA interactions

For connecting the cis and trans loci we obtained PPI which showed either experimental
or database curated evidence as available in the STRING database (see Section 2.3.5).
This STRING subset comprised a total of 12,769 individual proteins and 186,674 protein
interactions. We further aimed to generate a context specific protein interaction network
and hence restricted the initial network to 8,880 proteins that showed expression in
whole-blood data from the GTEx v6p data set [82]. A gene was defined as expressed if
it exhibits a median reads per kilobase per million sequenced (RPKM) value of > 0.1. In
addition, we chose only the largest connected component of the network to get a fully
connected network on which to perform the analysis which entailed 8,668 proteins and
99,143 protein interactions.

Specifically, the obtained PPI network can be formulated as a network (or graph)
P = (VP, EP), in which the set VP contains the nodes/vertices representing individual
proteins and the set EP with each element EPi ∈ VPxVP are undirected edges in the
network which connect the individual nodes (i.e. representing the actual protein-protein
interactions). Protein-DNA interactions can be formulated similarly as a graph D =

(VD, ED), where VD again represents the nodes consisting of all 145 distinct TFs available
in the ChIP-seq data as well as all CpG sites which are bound by any of the DNA
binding proteins (i.e. within 50bp of the binding sites).

Locus graph definition

Our goal is to prioritize SNP genes and generate candidate pathways for each hotspot
locus. We hence defined ’locus graphs’ which are created from the PPI network P
augmented by locus specific CpG sites and their transcription factor bindings. For
each locus, we collected the set of CpG sites S associated with the sentinel SNP in
trans in the full set of all cosmopolitan meQTL hits. We further extended the set S by all
trans associated CpGs of meQTL SNPs which 1) are associated with a trans CpG of the
sentinel and 2) reside in cis of the sentinel SNP (i.e. within 1Mbp). Finally, we included
all CpGs in S together with their respective protein-DNA interactions ED(S) in the large
PPI network P to establish the locus graph G = (VP + S, EP + ED(S)). For each locus,
we identified the set of candidate genes C as all genes encoded at the SNP locus that are
part of the PPI network. Locus regions were defined based on the results of the pruning
analysis that identified sentinel SNPs.
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Ranking of candidate genes through random walks

The last remaining step is to rank/prioritize the set of candidate genes C using the
random walk on the topology of the locus graph for each analyzed locus. Candidate
genes are defined as all genes which are part of the PPI network P and are encoded
in cis (i.e. within 1Mbp) of the sentinel SNP’s location. The prioritization of candidate
genes based on random walks is similar to applications in previous studies [223, 224].
To implement the analysis, we utilize the adjacency matrix representation of graphs,
i.e. an undirected graph G = (V, E) with E ∈ (VxV) can be represented as a symmetric
matrix A with nodes in the columns and rows and where each entry aij = aji = 1, if
edge (i, j) ∈ E and aij = aji = 0, if (i, j) /∈ E.

In a first step, we set up the symmetric transition matrix T of the same dimensions
as A and with entries (tij), where tij = aij/sqrt(d(i)× d(j)) and where d(i) gives the
degree (i.e. the number of adjacent edges) of a node i. T specifies for each node i the
probability to move to node j in a single step of the random walk [225]. Further, the
transition probability for paths of length t to ’walk’ from node i to j can be computed by
taking the t-th power, i.e. computing Tt. We are interested in random walks between
the CpG sites S and the candidate genes C and consequently computed t-step transition
probabilities Tt

sc for each CpG site s ∈ S and each candidate gene c ∈ C.
However, the lengths of the paths t are not known beforehand. Therefore, we set out

to compute the sum of transition probabilities over all possible path lengths ti ∈ {0, ,̇∞}.
The random walk includes a stationary state reflecting the degree distribution of the
nodes which we removed as this state is of no interest to our application. The stationary
state corresponds to the first eigenvector Ψ0 of T with the eigenvalue λ0 = 1 [226]. We
subtract Ψ0’s contribution from T and compute the aggregated (i.e. containing the sum
over all path lengths) transition probability matrix M = ∑∞

t=0(T − ΨT
0 Ψ0)t. Although

this formula has a closed form solution [225] the computation of M consumes a large
amount of memory since it is not sparse. However, M can also be approximated by
using spectral decomposition of the transition matrix T as was shown in Haghverdi,
Büttner, Wolf, et al. [225]:

M =
n−1

∑
i=1

(
λi

1− λi
−ΨT

i Ψi)
t (4.1)

To obtain an approximation of M without running into memory issues we used
the first n=500 eigenvectors and ultimately retained only the part of M containing
the transitions from the CpG sites S to all candidate genes c ∈ C, thereby obtaining
rankings for all candidate genes. Finally, we obtained a single ranking Rc for each
candidate gene in C by averaging the aggregated transition probabilities over all CpG
sites, i.e. Rc = 1/|S|∑s∈S Msc, for each c ∈ C.

In addition, we investigated the significance of the obtained scores Rc by comparing
them to scores obtained from a randomized background setting. To this end, we
executed the random walk analysis on B > 100 randomized graphs and calculated
B scores Rb

c for all candidate genes. From these B scores, we then can calculated an
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empirical P-value for each candidate gene c for a locus p given the maximum score
maxc∈C pb

c of all candidate genes at that locus as P(pc) = 1/B ∑b∈B I(pc > maxc∈C pb
c).

Using the empirical P-value we then defined the set of significant candidate genes for
each analyzed locus as C∗ = {c|P(pc) < 0.05}. To generate the randomized graphs
we randomly sampled an equal number of |S| CpGs Sb where we matched CpGs for
methylation levels (mean and standard deviation, see also Section 4.2.8). We then
extended the PPI graph P by adding all sampled CpGs sb from Sb to construct the
background locus graph Gb = (VP + Sb, EP + ED(Sb)). By constructing random graphs
we can empirically assess the probability of getting scores as extreme as the ones we
observed. For this, we executed a random walk from a randomly sampled set of CpG
sites to each of the candidate genes through the same PPI and ChIP-seq network as we
used for the original analysis.

Candidate pathway extraction

Next, we sought to visualize our results from the network analysis in the context of the
created locus graphs by extracting the part of the network best supported by the scores
from the random walk. Therefore, for each locus graph G and for each node i, we defined
weights wi which aggregate the random walk score to arrive at node i starting from any
of the CpG sites in S and of the scores for moving from node i to the candidate genes
in C∗. We then normalized and inverted the wi, i.e. set w∗i = maxi(wi)− wi, to assign
the highest-scoring nodes with the lowest weights and vice versa. This preparation was
necessary to be able to apply a minimal node weights shortest path detection algorithm
starting at the CpG sites S to the candidate genes in C∗ based on all w∗, thus being
able to extract optimal paths representing high random walk scores. We recorded all
nodes on these minimal weights (maximum score) paths in the set Q, and subsequently
defined a candidate pathway GC for each locus as the sub-graph of G induced using
only the nodes in the union of C∗, Q and S.

Using functional data to corroborate random walk networks

For the random walk analysis we only used annotated PPI and TFBS data. However,
having functional genomics data for Europeans (KORA) and South Asians (LOLIPOP)
available we sought to further corroborate and extend our results by including these
data in the network analysis. This allowed us to set our results which were originally
obtained from QTL hotspots calculated in whole blood data into a functional context.

To this end, we again processed each of the 115 meQTL hotspots separately. We
added CpG genes downstream of the trans CpGs for each locus to the generated locus
graph (see Section 4.2.9) to be able to investigate which genes are ultimately affected by
the trans-acting locus. For this, we included all genes overlapping or in direct vicinity
(upstream and downstream) of a CpG, thereby retrieving at most 3 ’CpG genes’ per
trans CpG. We then collected all functional data from both cohorts for each particular
hotspot, i.e. genotypes for the genetic locus, gene expression for all collected genes and
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methylation data for all trans CpGs, and calculated correlations between 1) the SNP and
the SNP genes, 2) all genes in the network and 3) trans CpGs and CpG genes. All data
were pre-processed as described in Section 3.2.

In this analysis it is possible for genetic variation in cis of the included genes and CpGs
to influence the observed expression and methylation values, respectively, and hence to
confound the association tests. In order to get rid of these confounding effects we used
linear regression to adjust expression and methylation data for cis-meQTL (identified in
this study) as well well as previously reported cis-eQTL [81] by regressing out the SNP
effect. Genes and CpGs for which no cis acting SNPs were identified were used ’as-is’
in the analysis. Next, we tested all associations between genotypes, expression and
methylation in both cohorts separately. Correlation results from the distinct cohort data
were subsequently meta-analyzed using inverse-effect meta-analysis (see Section 3.1.4).
P-values obtained from the meta-analysis were then adjusted for multiple testing using
the Benjamini-Hochberg procedure [203] to control the false discovery rate (p.adjust()
method in R with parameter method=’BH’, see also Section 3.1.6).

Finally, we constructed a network from the obtained associations which contains the
SNP, genes, and CpGs as nodes and where edges between the nodes indicate significant
correlations (FDR < 0.05). All edges between CpGs and CpG-genes present in this
network were then added to the respective locus’ candidate pathway identified in the
random walk analysis (Section 4.2.9) and already existing edges were annotated with
whether or not they showed correlation in the functional data. This procedure enabled
us to use evidence from functional data to 1) reinforce edges already in the random
walk networks and to 2) add additional edges connecting so far absent CpG genes to
the CpGs of the network, thereby adding one additional layer of information.

4.2.10. Experimental validation of novel regulators

As a proof of concept and in order to experimentally validate the candidate gene
ZNF333 identified at the rs6511961 locus, we performed a ChIP-seq experiment to
investigate the binding of the ZNF333 protein at trans associated CpGs of the locus. The
experiments (ChIP-seq and IP-MS) and analysis of the ChIP-seq data were executed by
our collaboration partners from the AME, whereas we performed the statistical over-
representation analysis of the ZNF333 interactome derived from the IP-MS experiment.

ChIP-seq analysis of ZNF333 binding sites

Raw sequencing data from the ChIP-seq experiments (see Appendix B.1) were mapped
to the human reference genome (hg19) using the burrows-wheeler aligner (BWA, H. Li
and Durbin [227]) and possible polymerase chain-reaction (PCR) duplicates removed
from the aligned sequences. At the binding sites of the immunoprecipitated protein
on the DNA an accumulation of mapped reads can be observed and the identification
of so called ’peaks’, i.e. regions of a statistically enriched number of sequence reads
indicating protein binding, is a crucial analysis step for ChIP-seq data. In this case, we
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used the peak-calling implemented in the Dfilter tool [228] to identify significant peaks
across the genome setting parameter values ks = 60, bs = 100 and lpval = 6. Finally, we
investigated the overlap between the trans associated CpGs of the ZNF333 locus and the
called ZNF333 ChIP-seq peaks obtained from taking the union of the Myc and FLAG
based experiments (see Appendix B.1 for details). Overlaps were defined for ChIP-seq
peaks which overlapped the region 250bp upstream or downstream of the respective
trans CpG. We further determined statistical significance of the overlap based on random
background modeling to generate a null distribution and then applying Fisher’s exact
test on the derived contingency table. Lastly, we performed a sensitivity analysis with
respect to the chosen window size around the peak, evaluating windows starting from
100bp up to 1,000bp with 100bp steps in between. We found that enrichment is robust
with respect to the interval size around the ZNF333 peaks (3.0 fold enrichment for 100bp,
3.4 fold enrichment for 1,000bp).

Over-representation analysis in ZNF333 interactome

If ZNF333 protein is indeed binding directly at the trans associated CpGs and associating
with other proteins to form local chromatin complexes, we would expect to observe
physical interactions between the ZNF333 protein and the TFs identified in the network
analysis or one of their direct interaction partners from the PPI network. To investigate
this, we set out to evaluate whether transcription factors binding at the trans CpGs
collected in the network analysis (set PChIP), show enrichment for the proteins pulled-
down together with ZNF333 in the IP-MS experiment (set PZNF333, interactor shortlist,
see Section 3.3.2 and Appendix B.2 for details). In addition to these proteins, we included
proteins indirectly associated to one of the ChIP-seq TFs via one intermediate step by
utilizing the STRING PPIs (as defined under Section 4.2.9) to extend the two sets of
proteins, PChIP and PZNF333. We defined two new sets PChIP_ext1 and PZNF333_ext1 by
adding proteins which show a direct PPI to at least one of the proteins in the respective
set.

Finally, we constructed a 2× 2 contingency table of a random background set of
proteins with the two protein lists to test for over-representation of the network derived
set (PChIP_ext1) in the IP-MS derived set of proteins (PZNF333_ext1) by use of a Fisher
test. We formed a null (background) set of proteins from all TFs initially included in
the network analysis, extended by their nearest neighbors from the STRING PPIs (set
BGChIP_ext1). To construct the final table we count the overlaps between the PZNF333_ext1

and PChIP_ext1 protein sets with the background set, i.e. we determine the total number
of proteins in both sets overlapping and not overlapping the BGChIP_ext1 set. On the final
table, we then applied a Fisher’s exact test using the fisher.test() function in R (parameter
alternative=’greater’).

In addition, we sought to analyze if proteins in the PChIP_ext1 set show overall stronger
signals (fold changes) in the IP-MS data in comparison to all other pulled-down proteins.
To achieve this we obtained a ranking for all pulled down proteins (not only the shortlist,
set PZNF333_long_ext1) using the fold changes between the ZNF333 antibody and the IgG
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control (see Section B.2) We obtained a P-value indicating whether the PChIP_ext1 proteins
found in the PZNF333_long_ext1 show overall stronger signal (higher fold changes) as the
rest of the proteins in the PZNF333_long_ext1 set (excluding PChIP_ext1) by applying a two-
sample Wilcoxon test (Mann-Whitney test) on the fold changes obtained for both sets
(wilcoxon.test() in R with parameter alternative="greater"). We removed any "zero" fold
changes and performed a log10-transform prior to calculating the Wilcoxon-test.

Lastly, we set out to identify enriched gene ontology terms (GO terms) for the proteins
identified in 1) the IP-MS experiment and 2) the transcription factors matched from
the network analysis. For this, we conducted a gene ontology enrichment analysis for
both of the two sets of proteins, i.e. the set PZNF333 and the subset of proteins PChIP_ext1
which was also identified in the pull-down analysis (same as for the Wilcoxon test).
As a background, we used the long-list of proteins from the IP-MS experiment for set
PZNF333 and the one extended by the respective nearest neighbors in the PPI network (set
PZNF333_long_ext1) for set PChIP_ext1. Enrichment was calculated for the two lists against
all GO terms in the three GO categories (cellular component, molecular function, and
biological process) using a hypergeometric test as implemented in the hyperGTest()
function of the R-package GOstats (v 2.52.0). Significantly enriched GO terms were
determined by setting an FDR threshold for the FDR adjusted P-value of Padj < 0.05.

4.3. Genome-wide analysis of genetic effects on DNA
methylation

For this project, we used the genotype and methylation data from European and
South Asian population cohorts introduced in Section 2.2, i.e. data from the KORA,
LOLIPOP, NFBC, and SYS cohorts amounting to 6,994 individuals in total. We aimed
to derive an ethnicity independent (’cosmopolitan’) set of genome-wide meQTL by
measuring and processing all cohorts separately and then meta-analyze individual
association results, collecting only SNP-CpG pairs showing significant associations in
both ethnicities. Figure 4.2 shows the analysis plan followed in this project and the
details on how computations were performed are given in methods Section 4.2.1. In this
section, we highlight the results obtained by following this analysis plan, summarizing
the cosmopolitan meQTL findings and the results of the subsequently applied two-step
pruning strategy which was employed to obtain independent meQTL loci. Moreover,
we will show that identified meQTL replicate well in independent data sets, both within
the same and across different tissues. Finally, we describe our findings for the functional
enrichment and network analyses we performed to unravel the functional mechanisms
underlying meQTL associations. Specifically, we will also detail two of the main gene
regulatory networks which we identified and used to explain trans regulatory hotspot
signatures.
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4.3. Genome-wide analysis of genetic effects on DNA methylation

Figure 4.3.: Overview of all cosmopolitan
methylation quantitative trait loci and their
distribution across chromosomes. The x-
axis shows SNP locations, the y-axis the
CpG locations. Margin plots show densi-
ties of the number of SNPs (top margin)
and the number of CpGs (right margin)
summarized over all chromosomes. Dots
indicate binned meQTL pairs (250 bins in
both x and y direction).
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4.3.1. Identification of a cosmopolitan set of meQTL

We generated a global cosmopolitan set of methylation quantitative trait loci encom-
passing cis, longrange, and trans-meQTL. Figure 4.3 shows the distribution across the
genome of all cosmopolitan meQTL pairs. The diagonal indicates the large number
of cis-meQTL (n=10,346,172 pairs). The longrange (n=351,472) and trans pairs (467,915)
are overall distributed equally across the genome with an exception on chromosomes
17 and 19, which show a stronger signal of distal meQTL. Interestingly, chromosome
6 shows an overall higher density for SNPs and CpGs which could be caused by the
Human Leukocyte Antigene (HLA) locus on this chromosome. Indeed, of all cis pairs,
1,431,186 pairs (13.3%) have a SNP located within the HLA region (6p21.3-22.1, [229])
although its size amounts to only about 0.3% of the human genome.

Due to local correlations between SNPs (linkage disequilibrium, see Section 2.1.1) and
between neighboring CpG sites the meQTL analysis led to redundant SNP-CpG pairs
that effectively represent the same methylation quantitative trait locus. We employed
a two-step pruning approach to identify independent SNP and CpG loci over all
cosmopolitan pairs which we termed ’sentinel pairs’, or with respect to the individual
entities sentinel SNPs and sentinel CpGs (see Methods). We applied this approach
separately to SNPs and CpGs for each of the defined meQTL categories. This resulted
in a conditional set of 84,456 genetic loci that are associated with at least one CpG site
after the conditional analysis and yielded a final set of 77,953 pruned pairs with

1. 34,001 independent genetic loci associated with 46,664 independent methylation
loci in cis
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Figure 4.4.: Histograms showing the number of associated sentinel CpGs for all sentinel SNPs in the three
meQTL categories cis, longrange and trans.

2. 467 independent genetic loci associated with 499 independent methylation loci in
longrange

3. 1,847 independent genetic loci associated with 3,020 independent methylation loci
in trans

after the LD pruning. For each of the identified loci we defined the SNP/CpG with
the strongest association as representative sentinel SNP and CpG sites for downstream
analysis. Figure 4.4 gives an overview of the sentinel pairs in each category. For each
category, numerous SNPs are associated with more than one sentinel CpG (N: cis=14,043,
longrange = 75, trans=466). The sentinel SNP with the most trans associations is linked
to a total of 261 methylation sites in trans, with the next highest having a total of 46
associations.

4.3.2. Replication in isolated leukocytes, adipocytes and adipose tissue

Since the identification of meQTL was performed in whole-blood data containing diverse
blood cell types we confirmed that the observed associations were not due to unobserved
differences in cell subset composition. For this, we tested all cosmopolitan SNP-CpG
pairs in independent data generated from isolated white blood cell subsets separated by
fluorescence-activated cell sorting (monocytes, neutrophils, CD4+ lymphocytes, CD8+
lymphocytes). The experimental part of this analysis was performed by our collaboration
partners (see Section 3.3.1) and the respective overlap analyses conducted by Rory Wilson
(see Section 4.2.2). With N = 57 samples each, we expect to recover 30% of the meQTL
with an effect size of 2.0% change in methylation per allele copy (at P < 0.05, MAF=20%).
We find that 26%-37% of the 11.2M cosmopolitan SNP-CpG pairs replicate in the white
cell subsets at P < 0.05 (26-37% for cis pairs, 21-28% for longrange cis and 27-37% for
trans ) in line with our expectations. Furthermore, we assessed whether replicated
associations also show a consistent direction of effect which we observed for 80%-87%
of all cosmopolitan pairs. We determined statistical significance at P < 2.2× 10−16 for

76



4.3. Genome-wide analysis of genetic effects on DNA methylation

all cell subsets by applying a binomial test, i.e. testing how likely it is to obtain the same
number of hits or more given a random background. Figure 4.5 shows a comparison
of effect sizes between the cosmopolitan hits and the respective individual white cell
subsets.
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Figure 4.5.: Comparison of effect sizes for meQTL derived in isolated white cell subsets and the ones
derived from whole-blood in our study. x-axis always shows cosmopolitan effect size, y-axis effect size in
isolated cells. Results are stratified in cis , longrange and trans (columns). Plots are divided in 500 bins, fill
color indicates region density (lighter blue indicates higher density and vice versa) and red lines show the
diagonal for each plot.

We further sought to assess whether the identified meQTL SNPs exhibit their effects
also in different contexts such as a tissue different to blood. Therefore, we obtained
DNA methylation measurements from isolated subcutaneous and visceral adipocytes
for N = 47 samples each and adipose tissue from the MuTHER cohort with N = 603
samples (see Section 3.3.1). Similar to the within tissue replication, this analysis showed
a consistent direction of effect for all three datasets (P < 2.2× 10−16 using a binomial
test), amounting to 72%-86% of all cosmopolitan meQTL tested. The comparison of
effect sizes for this analysis is shown in Figure 4.6.

Similar to the isolated blood cell data we replicated 19.2% of meQTL in isolated
visceral and 19.4% in subcutaneous adipocytes (P < 0.05 and same direction of effect).
These proportions are also consistent with the expectations based on the sample size,
where we would expect to recover 25% of SNP-CpG pairs with an effect size of 2.0%
at P < 0.05 for SNPs with a minor allele frequency of 20%. For the adipose tissue, we
replicated 44.2% of all pairs for the same replication criteria.
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Figure 4.6.: Summary of cross tissue replication of cosmopolitan meQTL. x-axis shows cosmopolitan
effect size (from whole-blood tissue) and y-axis effect size obtained from replication in isolated visceral
and subcutaneous adipocytes as well as in subcutaneous adipose tissue. Results are stratified in cis ,
longrange and trans (columns). Plots are divided in 500 bins, fill color indicates region density and red lines
show the diagonal for each plot.

We thus provide strong evidence that the observed genetic effects on DNA methylation
are indeed 1) independent of the variation in cell subset composition and 2) shared
across diverse cell types.

Lastly, in order to show that our associations are independent of the platform used for
quantification of methylation, we performed an additional replication using previously
published MeDIP-seq methylomes obtained from peripheral-blood [220]. Relatively
few of the MeDIP-seq based associations were testable in our results (N = 328, see
Section 4.2.2 for details). We replicated a total of 155 of these pairs (47%, P < 0.05)
which indicates a significant proportion at P < 0.01 according to an empirically derived
null distribution based on matched background SNP-CpG pairs (see Section 4.2.2, the
background failing to identify any significant associations). These results suggest that
our meQTL also generalize well across platforms.

4.3.3. Functional enrichment analyses

Even though meQTL SNP-CpG pairs show statistical associations, this does not nec-
essarily imply a functional relationship. Hence, a main focus of our work was the
functional annotation and understanding of the discovered meQTL pairs for which we
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considered each of the three categories (cis, longrange, trans) separately. In addition to
the functional data collected in this study, we curated additional public datasets for each
of the analyses: To determine functional relevance of cis-meQTL we used the 15 state
chromHMM genome segmentation from the Roadmap Epigenomics project [48, 49].
For longrange- and trans-meQTL we further leveraged Hi-C and promoter-capture Hi-C
data from the BLUEPRINT consortium [75, 230] and to further corroborate trans-meQTL
findings, we utilized a collection of transcription factor binding sites from the ReMap
catalogue [71] and ENCODE [60]. All public data were matched with respect to their
tissue of origin, i.e. we only used data established from blood related cell-lines or from
primary blood cells in order to be able to integrate these with our data.

cis-meQTL pairs show enrichment in functional chromatin states

The genomic closeness of cis-meQTL SNPs and CpGs implies a potential functional
relationship due to them being located in a common regulatory element. A possible
explanation is that the observed polymorphisms change the sequence in the regula-
tory element, leading to altered transcription factor binding and gain or loss of DNA
methylation (see Figure 4.1). To investigate this hypothesis we utilized chromHMM
states, functional chromatin states derived from combinations of histone modifications
indicating e.g. closed or accessible chromatin regions and performed an enrichment
analysis of cis-meQTL in enhancer (potential distal regulatory element) and promoter
(potential cis regulatory element) states. We generated a null distribution of matched
background meQTL pairs and evaluated whether observed meQTL SNPs and CpGs
reside more often in the same state as would be expected by chance (see Section 4.2.3
for details).

The results for this analysis are shown in Figure 4.7 and display a clear shift of
the distribution of overlap fractions for ’observed’ pairs compared to the background.
Overall, meQTL are significantly enriched for being in the same regulatory state in
comparison to the matched background (P < 2.2× 10−16, Wilcoxon signed-rank test),
suggesting that observed cis-meQTL indeed tend to reside within the same regulatory
element. This further hints at a specific mechanism of action, namely that the genetic
variants act in cis via directly changing the DNA sequence of the regulatory element,
affecting gene expression for instance through a change in transcription factor binding
and direct impact on DNA methylation.

Longrange and trans SNP-CpG pairs are enriched in chromosomal contact regions

Especially for longrange- and trans-meQTLs it is difficult to establish a direct functional
relationship due to the relatively large genomic distance between the involved entities.
In this study, we identified independent longrange and trans genetic effects on DNA
methylation for 467 loci and 1,847 loci, respectively. A possible mechanistic explanation
for these distal effects is the 3D structure/folding of chromosomes which can connect
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Figure 4.7.: Histograms showing the
amount of meQTL and sampled
background pairs residing in the
same regulatory class (enhancer or
promoter) for 100 iterations. y-axis
shows total counts per bin, x-axis
the percentage of matching states for
each sampling. Dark grey distribu-
tion indicates the observed meQTL
pairs, light grey the corresponding
background pairs.
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distal DNA regions (compare Figure 4.1). In recent years, 3D chromatin structure has
been the focus of many works in the field of genomics due to the development of NGS
assays, such as HiC, which make it possible to determine intra (within the same chro-
mosome) and inter (between different chromosomes)-chromosomal chromatin contacts
[69, 73–75, 231, 232]. It has been shown previously that, for instance, epigenetically
marked enhancers are linked to active gene promoters and that genetic variants at
chromosomal contacts are associated with the expression of genes they are in contact
with [75]. Here, we used published Hi-C and promoter-capture Hi-C (PCHi-C) con-
tacts as well as published topologically associating domains (TADs) in primary blood
cells [75] to assess the potential functional relationship of longrange- and trans-meQTL
pairs. TADs are derived from intra chromosomal contact information and reflect regions
of high contact frequencies on the same chromosome e.g. established via chromatin
loops [233]. We generated a matched background individually for the longrange- and
trans-meQTL pairs and assessed whether the observed pairs are more often located in
the same TAD/PCHi-C contact (longrange) or Hi-C contact (trans) as compared to the
background based on odds ratios (details in Section 4.2.4). The results of these analyses
are summarized in Figure 4.8.

For all three analyses, the results show a clear enrichment of observed meQTL
pairs compared to the sampled background with an empirical P-value amounting to
P < 6.6× 10−3 in each case (100 samples, see Methods). This enrichment of pairs for
both longrange- and trans-meQTL suggests an involvement of 3D chromatin interactions
to establish the functional relationship between the individual meQTL entities and
underlines the regulatory importance of our findings.

Enrichment of observed meQTL entities for association with gene expression

We set out to establish the functional relevance of our findings by assessing, whether or
not SNPs and CpGs which show at least one significant meQTL association are more
often also associated with gene expression changes as expected by chance, implicating
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Figure 4.8.: Enrichment of longrange- and trans-meQTL pairs in HiC data. X-axes show the fraction of pairs
in the same TAD (panel A) or in chromatin contacts (panel B and C) for 150 sets of sampled background
pairs (grey distribution) and the observed pairs (red arrows). Panels A and B show results for longrange pairs,
panel C for trans pairs.

functional relevance (impact on gene expression) of the identified entities. To this end,
we calculated expression quantitative trait loci (eQTL) and expression quantitative trait
methylation (eQTM, association between gene expression and DNA methylation) for all
independent meQTL SNPs and CpGs. We avoided confounding by genetic effects for
eQTM associations by regressing out previously identified cis -eQTL and -meQTL and
generated a null distribution of background meQTL pairs using random, but matched,
SNPs and CpGs (see Section 4.2.5). We stratified SNPs and CpGs according to their
effect sizes in the meQTL associations to address the question whether enrichments
would vanish for low effect size meQTL.

Figure 4.9 shows the results for this analysis for each of the three meQTL categories
(cis, longrange and trans) and stratified by effect size (low, medium and high), sepa-
rated by SNP (eQTL) and CpG (eQTM) enrichments. All categories show significant
enrichment for SNP expression association. For CpGs, on the other hand, all categories
except longrange (low) indicate depletion for gene expression association. These results
indicate that meQTL SNPs impact gene expression and thereby indeed have a functional
relevance. Also, association with gene expression is likely established through a genetic
(SNP) effect rather than through a direct epigenetic (CpG) effect.

Enrichment of known regulatory genes in trans-meQTL loci

We investigated the type of genes encoded in the respective trans regulatory LD blocks,
i.e. in the regions around the identified sentinel SNPs. Specifically, we sought to test
whether the trans-acting genetic variants are over represented for genes involved in
epigenetic processes, DNA binding, or transcriptional regulation, highlighting their
functional importance. For this analysis, we used the three gene lists presented in
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Figure 4.9.: Enrichment of meQTL for association with gene expression. Rows indicate eQTM (for meQTL
CpGs) and eQTL (for meQTL SNPs) enrichment and columns indicate stratification by category (cis,
longrange, and trans) and by effect size of meQTL association (low, medium, high). Cell contents indicate
the total number of meQTL (N), odds ratio (OR) and Fisher P-value (P) per stratum.

Lemire, Zaidi, Ban, et al. [211], which entail a list of epigenetic regulator genes, a list
of curated TFs and a list of zinc-finger genes as a subset of these transcription factors
(see Section 4.2.7 for details). We compared the number of genes in the trans-meQTL LD
blocks overlapping the respective gene sets to the number of overlapping genes obtained
from random but matched background regions and assessed enrichment in the observed
meQTL based on odds ratios (see Methods). The results of this analysis are shown in
Figure 4.10. For all three gene sets a strong enrichment of the regulator genes in the
sentinel regions defined by our meQTL as compared to the sampled background regions
is evident (empirical P < 5.99× 10−3 for all three gene sets). This further corroborates
the functional relevance of the trans-meQTL identified in our study.

Trans associated CpG sites are enriched for TF bindings sites

For 1,847 genetic loci, we detected an influence of the genetic variation on DNA methyla-
tion in trans, with the total number of associated trans CpG loci ranging from 1 to 298 in
the cosmopolitan set of meQTL. A possible explanation for these observed associations
is that transcription factors (TFs) mediate the observed inter-chromosomal effects. This
is a mechanism of action that has also been proposed by Bonder, Luijk, Zhernakova,
et al. [23] and Lemire, Zaidi, Ban, et al. [211]. To assess the validity of this hypothesis, we
set out to identify the respective TF bindings at the trans associated CpG-sites. For this,
we used publicly available binding site information derived from uniformly processed
ChIP-seq data gathered by ENCODE [60] and in the ReMap database [71] and performed
an enrichment analysis for the obtained binding sites (Supplementary Figure C.2, see
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Figure 4.10.: Histograms showing the functional enrichment of trans regulators. Panels show enrichments
for the three gene lists presented in [211] which represent epigenetic regulators (A), transcription factors (B)
and zinc finger genes (C), respectively. The grey histogram indicate the distribution of the overlap fraction
between the genes making up the gene lists and the genes at sampled background SNPs for the 1,000
iterations. Red arrows highlight the fraction of overlap observed between genes present in the regulatory
sets and the trans regulator associated genes.

also Section 4.2.8). We utilized the TFBS of 246 transcription factor data sets obtained
from blood-related cell lines. The analysis was limited to 115 trans-meQTL hotspots,
i.e. trans genetic loci with a trans effect involving at least 5 associated CpG sites. Of the
115 trans-meQTL hotspots, 45 (39%) show enrichment of binding sites for at least one
TF at their respective trans-CpGs. We then assessed whether these numbers indicate
significant enrichment under the null hypothesis by evaluating the TFBS overlap for
a sampled background set of trans-CpGs (see Section 4.2.8). Our result of n=45 TFBS
enriched loci represents a 1.8 fold enrichment compared to expectation under the null
hypothesis (n=25) generated from the random background (binomial test P = 7.4× 10−6,
see Methods for details).

For a total of 4 of the 45 enriched sentinel loci we further identified nuclear transcrip-
tion factors at trans CpG sites which are encoded in cis of the respective sentinel SNP
(see Figure C.2). These loci and transcription factors include the previously reported
NFKB1 and CTCF [23, 211] as well as the novel REST and NFE2 loci (Fisher’s exact test
P = 1.7× 10−5 to 3.4× 10−89). Therefore, for these four loci, our data indicate that the
transcription factor encoded at the locus directly mediates the observed trans-meQTL
signature.

4.3.4. Trans-meQTL reveal novel regulatory patterns

A total of 41 loci remain for which we could not find a direct explanation of the genome-
wide genetic effects via a cis encoded transcription factor. For these 41 loci an important
next step is to identify the means by which the genetic variant affects DNA methylation
in trans. Based on the initially identified statistical associations, however, it is not
immediately evident which gene is influenced locally (i.e. in cis ) by the regulatory
SNP and hence is the causal gene to mediate the genome-wide methylation changes.
Although in some cases it might be the gene closest to the SNP, in other cases it could
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Figure 4.11.: Schematic illustrating the random walk approach. For each trans-meQTL locus, we connect
genes located in cis to the sentinel SNP with the trans CpGs using transcription factor binding sites curated
from ChIP-seq data (green edges) and a context specific protein-protein-interaction network obtained from
the STRING database (purple edges). A random walk to prioritize SNP genes is then applied starting at the
trans CpGs and accumulated scores for the SNP genes are assessed. Figure adapted from Hawe, Wilson,
Loh, et al. [1]

be a more distant gene (e.g. due to local chromatin structures, see also Section 4.2.4)
and a globally acting regulatory pathway is likely at the root of these hotspots. We
hence set out to identify the most likely candidate gene and corresponding regulatory
pathway for the remaining 41 trans-meQTL hotspots. To this end, we employed a two-
step network analysis approach based on random walks, where we integrated publicly
available protein-protein interaction (PPI) networks and transcription factor binding
sites (TFBS) with the functional association data (SNP-methylation, SNP-expression, and
methylation-expression) established in this study (see Section 4.3.4, Figure 4.11). We
applied this approach individually to all 41 hotspots in order to identify the most likely
causal candidate gene from the sets SNP genes (genes within 1Mbp of the SNP) and to
connect the respective SNP genes to the associated trans CpGs via the PPI network and
TFBS. For this, we created a high confidence PPI network specific to our whole-blood
analysis context (see Methods).

We then prioritized genes in the trans genetic locus by a score that reflects the
probability of reaching each gene through the curated PPI/TFBS network from the
associated CpG sites (see Section 4.2.9). We established statistical significance for the
selected candidate genes being connected to the respective set of associated trans CpG
sites by comparing the observed random walk scores to a null model of scores calculated
for a set of randomly sampled CpGs of the same size for each locus. This strategy
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identified candidate genes with their corresponding regulatory molecular network for
19 independent trans-meQTL loci. To check, whether the identified candidate genes
indeed represent relevant functional entities, we assessed the number of trans-eQTM
(expression quantitative trait methylation) for each locus by associating the trans CpG
methylation with the expression of each of the putative candidate genes. We determined
significant enrichment of trans-eQTM for the analyzed candidate genes in comparison
to all remaining genes encoded at the respective meQTL loci (P = 4.5× 10−6, Wilcoxon
test), further strengthening the results from our network analysis approach.

Finally, in order to illustrate the results of our strategy we choose the genetic locus
identified by the sentinel SNP rs730775 which is associated with 49 trans CpG sites. The
corresponding locus network obtained from the random walk analysis is depicted in
Figure 4.12A. Here, we selected the gene NFKB inhibitor epsilon (NFKBIE) (empirical
P < 0.01) as the most likely trans-acting candidate gene. The SNP is a cis-eQTL for
NFKBIE in whole-blood (eQTLGen P = 1.2× 10−23) and is situated in the first intron
of NFKBIE. NFKBIE is a direct inhibitor of NFKB1 activity and shows significant co-
expression with NFKB1 in our data (P = 2.2× 10−4), which further shows binding sites
at 31 of the 49 trans-associated CpG sites (odds ratio=7.8, P = 9.1× 10−7). In addition,
the methylation levels for 7 of the 49 trans-CpG sites show significant association with
the expression of 5 of the respective neighboring genes, all of which are also significantly
co-expressed with NFKBIE. Moreover, the trans CpG sites of this locus are located close
to other genes of the NFKB pathway, such as TRAF6 and IKBE, and are further enriched
for the gene ontology (GO) term ‘regulation of interleukin-6 (IL-6) biosynthetic process’
(GO:0045408; P = 3.75× 10−05, hypergeometric test). The trans-acting locus at rs730775
has previously been associated with rheumatoid arthritis (RA) [234], which has been
characterized by Emery, Keystone, Tony, et al. [235] with IL-6 mediated autoimmunity
and which can be treated with drugs targeting IL-6 [236]. We corroborated our results
by performing a formal colocalization analysis using fastENLOC [237, 238], a Bayesian
method to test for colocalization of molecular QTL with GWAS signals The analysis
was implemented using each of the 49 trans CpG sites as molecular QTL and assessing
SNP-wise posterior probability of a shared underlying causal variant between CpG sites
and RA. The average posterior colocalization probability was 70%, providing strong
support for a shared causal variant for the majority of CpGs and further strengthening
our initial findings. Therefore, our findings highlight a potential regulatory mechanism
for the association of genetic variation at the NFKBIE hotspot locus with rheumatoid
arthritis, mediated through DNA methylation regulation at CpG sites in cis to genes
important for the regulation of IL-6 biosynthesis.

In addition to describing the novel NFKBIE locus, we also replicated and extended
previous results for the known trans locus around the SENP7 gene for the sentinel
SNP rs9859077 [211]. The random walk approach prioritized SENP7 (Sentrin specific
protease 7, empirical P < 0.01) as the most likely mediator gene for this trans locus. The
identified regulatory network around the rs9859077/SENP7 locus and the associated
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trans CpGs is shown in Figure 4.12. Located in an intronic region of SENP7, the ’C’
allele of rs9859077 is associated with increased mRNA expression of SENP7 in our
data (P = 3.1× 10−11) as well as in GTEx whole-blood data (P = 3.0× 10−11) and
in lymphoblastoid cell lines (LCLs, P = 0.002) [82, 239], which corroborates previous
findings in CD4 and CD8 lymphocytes [211]. Moreover, the methylation of 85% of
the trans CpG sites is correlated to the expression of SENP7, as estimated by Storey’s
π0 method [240] on the trans-eQTM P-values. Furthermore, our integrated network
analysis approach highlighted a potential regulatory molecular network which connects
the SENP7 locus to the respective trans-meQTL CpGs: SENP7 interacts with BCL6
[241], in turn interacting with the transcription factors (TFs) YY1, PML, EBF1, SP1,
SPI1 and ELF1 [241–244]. All these TFs show DNA binding sites which overlap with
the trans-meQTL CpG sites of the SENP7 locus. Finally, similar to the NFKBIE locus
the expression levels of 16 of the genes neighboring CpG sites are associated with
the methylation of 43 of the 57 trans-CpGs of which 13 genes can be independently
replicated in LCLs [239], whole blood [22, 245] or CD4 or CD8 lymphocytes [211]. These
results hence replicate and largely extend previous findings which described the SENP7
locus, by supporting a molecular mechanism which underlies the regulation of DNA
methylation at a cluster of zinc-finger genes on chromosome 19 by SENP7, possibly
related to DNA repair mechanisms [246, 247]. Overall, our analyses showed that using
our computational random walk approach in conjunction with functional data constructs
functionally relevant networks and can be used to generate novel hypotheses about
trans-meQTL mechanisms.

4.3.5. Experimental validation confirms novel regulators

We highlighted several candidate genes at multiple loci which have as of yet not been
associated with genome regulation. For instance, we proposed ZNF333, the putative
candidate gene at the genetic locus identified by the rs6511961 SNP, as a candidate
regulator potentially mediating the observed trans effects. In our data, rs6511961 is an
eQTL of ZNF333 and the expression of ZNF333 co-varies with the expression of genes
known to encode for nuclear transcription factors (e.g. TAL1, CDK9). To validate the
hypothesis that ZNF333 is indeed DNA binding and mediates the observed relationship
between rs6511961 and its trans CpG signature, we performed chromatin immunoprecip-
itation followed by sequencing (ChIP-seq) using FLAG/Myc-tagged ZNF333 constructs.
Details on this analysis and the ChIP-seq data processing are given in Section 4.2.10.
The results of the ChIP-seq analysis confirmed site-specific DNA binding (P = 7× 10−3,
Fisher exact test), including a high overlap of DNA binding regions for ZNF333 between
the FLAG and Myc tags (Supplementary Figure C.4). We further identified a putative
binding motif for ZNF333 based on the ChIP-seq data, TG[AG]*TCA, and the ZNF333
binding sites are strongly enriched for motifs of other, known transcription factors
(P < 2.2× 10−16, including FOSL2, Jun-AP1, FRA1, BATF and ATF3). In addition, we
found that 35% of the rs6511961 associated trans CpGs are within or close to (< 500bp)
ZNF333 DNA binding sites, which represents an approximate 3-fold enrichment as
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A B

Figure 4.12.: Two networks inferred during the random walks analysis for the NFKBIE locus (panel A)
and the SENP7 locus (panel B). Yellow rectangles indicate SNPs, yellow ellipses SNP genes prioritized by
the random walk. Blue edges indicate entities genomically close to one another, purple edges indicate
PPIs, green edges TF binding at CpG sites. Bold edges illustrate observed correlations in functional data.
CpG-genes indicate in bold font are trans associated to the locus SNP, genes marked with an asterisk (*) are
co-expressed with the selected SNP gene. Figure adapted from Hawe, Wilson, Loh, et al. [1].

compared to what is to be expected under the null (P < 0.05, Fisher’s exact test). As an
additional validation step, we performed an immunoprecipitation mass-spectrometry
(IP-MS) experiment to pinpoint potential binding partners of ZNF333 (see Sections 4.2.10
and B.2). We were able to identify interacting proteins of ZNF333 for which we could
further observe gene ontology (GO) enrichment for terms related to ’nucleic acid binding
and processing’ (FDR < 0.05, hypergeometric test) as well as to the MLL1 complex
which is an important epigenetic modifier. Finally, we sought to analyze whether the
transcription factors identified in the computational overlap analysis are enriched for in-
clusion in the direct ZNF333 neighborhood as compared to a random background model
(see Section 4.2.10 for details). Significance of the enrichment for the computationally
determined proteins in the experimentally derived ZNF333 neighborhood was assessed
using both a Wilcoxon test on the IP-MS derived list of fold-changes (P = 5.4× 10−5)
and a Fisher test based on the constructed overlap contingency table (P = 2.87× 10−11).
Thus, the experimental analyses provided additional support of the hypothesis that the
trans CpG signature of rs6511961 is, at least in part, determined by the DNA binding
protein ZNF333.
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4.3.6. Effect of increased resolution and coverage on meQTL results

Finally, we investigated whether increased genome coverage and resolution with respect
to DNA methylation could allow additional discoveries and whether the possible incom-
plete and non-random coverage of the 450k array could generate false-positive findings.
For this, we performed additional meQTL calculations based on DNA methylation as-
sayed using the EPIC array available in the KORA FF4 cohort (N=1,848) using the same
analyses steps as for the original European discovery analysis (see Methods). Overall
the 450k and EPIC array overlap in 406,501 CpG sites and the EPIC array assays an addi-
tional 381,605 CpGs. The EPIC analysis replicated 96% of the original discovery findings
from the 450k array (P < 0.05, same direction of effect), indicating high data quality and
good agreement between studies and platforms. We set out to systematically quantify
to which extend conclusions of our functional analyses would change depending on
the difference in resolution and coverage of both arrays. For instance, the availability
of additional correlated markers on the EPIC array could 1) improve the functional
characterization of sentinel markers and 2) identify previously not evaluated functional
features. In addition, markers on the EPIC array independent of our sentinels could
increase the overall discovery of genomic features. To determine which EPIC-specific
markers correlate with the sentinel markers, we computed pairwise correlations between
the additional EPIC-specific CpGs and our 49,580 sentinel CpGs. We determined the
closest sentinel CpG for all N=381,605 EPIC-specific markers and obtained the respective
R2 from the methylation data. With increasing distance between CpGs we find that
correlations vanish rapidly (Figure 4.13) in line with previous reports [248]. While
7,138 EPIC CpG markers showed R2 > 0.2 with at least one of our sentinel CpGs, 98%
(374,467) of EPIC-specific CpGs do not correlate and are therefore independent of our
sentinels.

Figure 4.13.: Relationship between
distance of sentinel and EPIC ar-
ray specific CpGs (x-axis) and the
correlation of their respective β val-
ues (R2, y-axis). Zoomed in to 0 ≤
X ≤ 106 on the x-axis. Increasing
distance between entities leads to a
drop in correlation. Figure adapted
form Hawe, Wilson, Loh, et al. [1].
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Effect of increased coverage on identification of TFs

We investigated the effect of increased genome coverage of CpG markers on the TFBS
enrichment for trans-acting sentinels. For this we repeated the TFBS enrichment under
inclusion of EPIC trans-meQTL results. Specifically, we defined four distinct sets of
meQTL:

1. 450k: EPIC meQTL also available on 450k array

2. 450k + correlated: 450k set incl. EPIC-specific markers correlated with a 450k
trans meQTL (R2 > 0.2 at distance < 1Mbp)

3. 450k + independent: 450k set incl. EPIC-specific markers independent of 450k
trans meQTL (R2 < 0.2 at distance < 1Mbp)

4. EPIC: All meQTLs discovered using the EPIC array

Definition of those sets allowed us to investigate the effect of improved local resolution
(2) and addition of independent markers (3) and their combined effect (4) on TFBS
enrichment as compared to the baseline (1).

Our results showed that EPIC-specific content improves the number of discovered
transcription factors overlapping trans loci which originates both from correlated and
independent CpGs (Table 4.2) and where independent markers provide the largest
increase in identified TFs. All except one of the TFs found in the initial 450k based
analysis were also identified in the full set of EPIC trans-meQTL associations. In total,
we identified approx. 14% more enrichments from about double the number of CpGs
available as compared to the 450k array.

Analysis Test set SNP TF
Adding correlated meQTLs 450k + correlated 37 / 0 / 5 108 / 0 / 3
Adding independent meQTLs 450k + independent 36 / 1 / 20 106 / 2 / 12
Adding all EPIC-specific meQTLs EPIC 37 / 0 / 23 107 / 1 / 15

Table 4.2.: Results from individual comparisons in the EPIC based TFBS enrichment analysis. Assessed are
the total number of SNPs and TFs identified through enrichment testing for three different marker sets.
Numbers in columns 3 and 4 indicate: overlap / specific to 450k / specific to Test set.

Effect of increased resolution on functional enrichment of cis-meQTL

Next, we evaluated the effect of the increased resolution of the EPIC array on the
cis regulatory element analysis (based on chromHMM state enrichment) of our cis-
meQTL. Here, we utilized all EPIC cis-meQTL (P < 10−14) which map to any of the
cis-meQTL from the European discovery (R2 > 0.2 and distance < 1Mbp for the CpG) and
analyzed their overlap in chromHMM promoter/enhancer (same as for 450k analysis,
see Section 4.2.3). We generated a EPIC specific set of background pairs (matched for
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cis-meQTL
dataset

Number of CpGs
in an enhancer /
promoter state

Observed CpG
has an associated
SNP in same state

Matched back-
ground pair
in same state
(median)

450k marker set 11,172 9,930 (89%) 65%
EPIC marker set 16,099 14,973 (93%) 82%

Table 4.3.: Table compares the results for the chromHMM enrichment in cis-meQTL CpGs that are in an
enhancer or promoter state for the EPIC and 450k analysis. Percentages indicate the proportion of pairs
sharing the same state with an associated SNP.

CpG methylation mean and SD, compare 450k analysis) and performed 10 iterations
of background sampling. The EPIC enrichment results were then compared to the
results obtained from the 450k and the matched background pairs. The results of this
comparison are displayed in Table 4.3 and show, that the fraction of EPIC pairs residing
in the same state is higher as the fraction of 450k pairs for observed meQTL (93%
vs 89%, respectively) and the sampled and matched background pairs (82% vs 65%,
respectively).

4.4. Project summary

With the work described in this chapter, we reported the first large-scale meta-analysis of
methylation QTL (meQTL) with a focus on providing novel insights into the regulatory
mechanisms underlying genome-wide trans-meQTL effects. To this end, we analyzed
the relationships of 9.1 million single nucleotide polymorphisms (SNPs) and DNA
methylation at CpG dinucleotides ( 360,000 sites) in a genome-wide scan using blood
samples of 6,994 individuals of European (N=1,731 discovery; N=2,068 replication)
and South Asian (N=1,841 discovery; N=1,354 replication) descent. We performed
a comprehensive evaluation of the associations between genetic variants and CpG
methylation and identified 11,156,559 unique SNP-CpG associations in peripheral blood,
including a total of 10,346,172 pairs acting in cis (same chromosome, SNP-CpG distance
< 1Mbp), 351,472 acting in longrange (same chromosome, SNP-CpG distance > 1Mbp)
and 467,915 SNP-CpG associations across genome boundaries (trans-meQTL). Our
associations comprise a total of 2,709,428 SNPs and 70,709 CpGs which replicate in
both ethnic groups (P < 10−14) and which we confirmed in independent data from
isolated leukocytes, isolated adipocytes and adipose tissue. Moreover, we replicated
96% of the European discovery associations in independent EPIC array data from KORA
(N=1,848) indicating good data quality and strong agreement between studies and
platforms. Additional conditional analysis on our cosmopolitan set of meQTL identified
34,001 cis-acting genetic loci, 467 in longrange and 1,847 in trans, as independent drivers
of underlying regulatory mechanisms. The main association results generated in this
project are publicly available at https://qtldb.helmholtz-muenchen.de.
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For this project, we contributed extensive functional and network analyses for the
identified meQTL pairs which shed light on the cellular processes underlying trans reg-
ulation. By performing elaborate enrichment analyses using transcription factor binding
sites (TFBS), chromatin conformation capture, and chromatin state data, we highlighted
the functional relevance of meQTL both in local (cis) and global (longrange, trans) con-
texts. We found that genetic variants associated with DNA methylation are enriched
for being located in active chromatin regions (P = 3× 10−40) and for association with
gene expression (P = 8.1× 10−18 and P = 2.5× 10−66 for cis and trans meQTL, re-
spectively). For the longrange and trans associations we further observed enrichment
in Hi-C derived topologically associating domains (TADs, for longrange ) and intra-
and inter-chromosomal chromatin contacts (empirical P < 6.6× 10−3 for longrange and
trans), indicating the involvement of putative enhancer-promoter interactions to realize
genome-wide SNP-CpG associations.

Moreover, we performed a systematic assessment of the regulatory processes under-
lying the pruned set of 1,847 trans-meQTL loci, including trans hotspots, which are
associated with 3,020 methylation sites and are of particular importance to understand
genome regulation. We combined trans-meQTL with additional TFBS information of 256
ChIP-seq experiments to corroborate the functional importance of trans hotspots includ-
ing potential master regulators through TFBS enrichment. Additional investigations of
EPIC array data, which provide higher resolution and more genome coverage compared
to the 450k methylation data, corroborated and extended our enrichment analyses. Here,
we recovered transcription factors initially enriched in the 450k trans-meQTL associations
and identified novel enrichments. Moreover, by including additional protein-protein
interaction data and integrating diverse functional data we identified transcription
factor pathways and likely candidate genes linking the effect of genetic variants to
trans methylation and expression for 104 identified trans-meQTL hotspots. Candidate
transcription factor networks were established for several regulatory proteins, which
include NFKBIE, RELA, SENP7, CTCF, and NFKB1. The identified candidate genes at
trans hotspots showed enrichment for the encoding of transcription factors and their
interacting proteins. We followed up three of our loci with additional analyses including
the sentinels rs6511961, rs9859077, and rs730775, and their identified candidate genes
(ZNF333, SENP7 and NFKBIE, respectively) and established further insights regarding
their effects on trans methylation and gene expression. Importantly, additional experi-
mental validation via ChIP-seq and IP-MS for the novel ZNF333 locus which encodes
ZNF333 in cis confirmed DNA binding of ZNF333 at regions overlapping the locus’
trans-CpG signature, thereby corroborating our results and extending our insights into
trans-meQTL mechanisms.

In summary, we generated new insights into the regulatory pathways underlying
observed statistical associations between genetic variants and DNA methylation. These
included comprehensive details on the regulation of nuclear function and molecular
phenotypes and therefore advanced our understanding of trans-acting and disease-
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associated genetic variants. Moreover, we provide a rich database of novel relationships
between SNPs and CpG sites, particularly in trans, thus providing a scaffold for novel
hypothesis-driven experimental studies to unravel complex molecular mechanisms.
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Chapter glossary

multi-omics
data

A data set in which for each biological sample at least two
different kinds of molecular information (such as genotype,
gene expression, or DNA methylation information) is available.

trans
association

Association involving traits (e.g. SNP and CpG) on different
chromosomes

QTL hotspot A SNP statistically associated with at least 5 quantitative
trans traits (such as expression of genes)

meQTL methylation Quantitative Trait Locus - A genetic variant associ-
ated with DNA methylation

eQTL expression Quantitative Trait Locus - A genetic variant associ-
ated with gene expression

graph Consists of a set of nodes/vertices and edges connecting the
nodes

GGM Gaussian graphical model - Graph where nodes reflect nor-
mally distributed random variables and edges the conditional
dependence of the variables

(edge-wise)
prior

Encoding of previously derived knowledge (about interactions)
ranging from 0 (not likely, not found previously) to 1 (likely,
found previously with high confidence)

MCC Matthews Correlation Coefficient - Correlation measure for
imbalanced classes such as a relatively small number of edges
compared to a large number of ’non-edges’ in networks

In the previous chapter, we established genome-wide meQTL and looked at the
regulatory networks underlying trans-meQTL hotspots by investigating established
protein-protein interaction (PPI) and protein-DNA interaction networks in a functional
context. Interestingly, we made the observation that interactions derived from available
functional data aligned well with the identified networks. In addition, these data
could be used to complement our network analyses by providing an additional layer of
information by adding eQTL for network genes and eQTM for trans associated CpGs.
Based on these observations we set out to design a unified approach that uses all
available information simultaneously. To this end, we integrate functional multi-omics
data with prior information derived from large-scale biological data sources to dissect
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the regulatory mechanisms underlying expression and methylation trans-QTL hotspots
using de-novo regulatory network inference. Contrary to the previous chapter, we
utilized the PPI, protein-DNA interaction, and other biological knowledge, which is
provided through numerous large databases (see Table 1.2), as prior information to
guide the inference rather than to view these as fixed interactions.

The work presented in this chapter is part of a collaborative effort with Prof. Battle
from the Johns Hopkins University as well as Prof. Chambers (ICL) and Dr. Gieger and
Dr. Waldenberger (AME) and describes and adapts parts of the manuscript submitted
for publication in Genome Medicine [2]. Our goal was to unravel the complex molecu-
lar underpinnings of genomic master regulators by providing a unified approach to
integrate multi-omics data through regulatory network inference. The chapter details
the derivation of comprehensive prior information from public interaction databases
(e.g. BioGRID [188] and ReMap [71]), and large-scale functional data resources (e.g. GTEx
[82, 93], ARCHS4 [119] and the Roadmap Epigenomics Project [48]) and shows how
we integrated these priors with human population-scale multi-omics data to explain
important trait associated trans hotspots.

5.1. Inferring multi-omics networks from functional data

Trans quantitative trait loci (trans-QTL) represent genomic master regulators [83] and
are particularly interesting for genetics studies as they tend to be enriched for disease-
associated variants [22, 23, 26]. However, the mechanisms underlying their genome-wide
effects are difficult to explain [21]. Based on the results from the previous chapter we
reasoned that a fully integrative approach to network inference for trans-QTL hotspots
has the potential to yield novel insights into their underlying regulatory processes. A
limitation of the random walk based network analysis approach of Chapter 4 is that it is
not able to detect unknown edges and purely relies on edges already present in PPI and
protein-DNA interaction databases. Additional information, e.g. in the form of eQTM
edges, has to be added in a separate correlation analysis. An advantage of de-novo
inference of regulatory networks from functional data is that it does not restrict the
search space for edges and hence has the potential to give a more complete description
of regulatory mechanisms. Moreover, it has been shown that simultaneous integration
of omics data can be used to obtain more detailed insights into the investigated systems
as compared to using e.g. pairwise correlation approaches [3, 84, 99].

We used multi-omics data from the KORA and LOLIPOP cohorts (see Section 2.2)
to infer regulatory networks across three distinct genomic layers: the genotype, gene
expression, and DNA methylation layers. The inference of regulatory networks from
molecular high-throughput data has been studied intensively [28, 29, 130, 249, 250]. For
instance, several works set out to infer networks from single omics data [84, 251] or to
individually combine distinct omics layers to infer interactions, such as genotypes and
gene expression levels [21, 245, 252, 253] or chromosomal aberration [254] data. Nowa-

94



5.1. Inferring multi-omics networks from functional data

days, with more and more multi-omics data being generated, it is possible to reconstruct
interaction networks across more than two genomic layers in a fully integrated approach
and hence obtain more detailed insights into regulatory patterns [34].

While several efforts have been carried out to reverse engineer networks from such
data, methods to successfully construct networks from multi-omics data are still lack-
ing [3, 10, 99, 255]. Another novel aspect of network inference emerged due to the
steady growth of genomics data and their availability through large, publicly accessible
databases: the established biological knowledge can serve as a-priori information to
guide the inference process [99, 128, 256]. As an example, several resources have been
made available which provide PPI networks or large-scale eQTL results (interactions
between genotypes and genes) and hence provide prior evidence for specific regulatory
interactions which can be used to alleviate network reconstruction in novel contexts
(see Table 1.2). The inclusion of prior knowledge into network inference has been
investigated previously [28, 30–32, 102, 124, 128, 129, 249] and their benefits confirmed.
However, studies have either been lacking in the curation of prior knowledge or were
not applied to a human context. Inference of molecular interaction networks from
human multi-omics data proves a daunting task, but the curation of comprehensive
prior information can facilitate inference by prioritization of interactions between and
within distinct genomic layers [3, 99].

In this work, we add to previous efforts by devising a novel strategy to infer regulatory
networks seeded around trans-QTL hotspots from cohort-scale multi-omics data and
prior information. The main goal is to systematically derive mechanistic explanations for
these hotspots which exhibit coordinated effects across chromosome boundaries through
regulatory networks. We tackle the N << P problem, i.e. where the number of variables
P (corresponding to nodes in the network) largely outstrips the number of samples N [3]
by 1) stringent creation of locus sets (see Section 5.2.1) to reduce the problem dimension
P, 2) careful curation of continuous prior information for possible network edges
(see Section 5.2.2) and 3) application of suited models employing e.g. regularization
procedures (see Methods). Moreover, we benchmarked several state-of-the-art network
inference methods for their capability of reconstructing networks, including an extensive
simulation study to investigate the effects of sample size and prior noise as well as a
cross-cohort replication analysis. To showcase the benefit of our strategy, we provide
detailed evaluations of networks inferred for two trait-associated genetic hotspots related
to schizophrenia and lean body mass.
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5.2. Methods for regulatory network inference on
trans hotspots

5.2.1. Generation of locus sets

Similar to the network analysis described in Section 4.3.4 the analyses in this chapter
focus on trans-QTL hotspots, i.e. genetic loci associated with ≥ 5 quantitative traits in
trans . We curated hotspots based on both genome-wide methylation and expression
quantitative trait loci (meQTL and eQTL, respectively) and inferred regulatory networks
individually for each curated hotspot thereby reducing the number of variables per
inference task significantly. For each meQTL or eQTL hotspot we carefully selected sets
of genomic entities including genetic variants (SNPs), DNA methylation sites (CpGs)
and genes, and collected their corresponding data which were then supplied to the
inference method.

Hotspot extraction

In a first step, we utilized the list of pruned trans-meQTL identified in the previous
chapter. We removed sentinels with no annotated cis genes or where no expression
probes where available (Supplementary Table C.1), as these are needed for locus set
definition (see below). Remaining independent genetic loci were added to the set of
trans-meQTL hotspots MH if the total number of trans associated CpG sites is ≥ 5
yielding a set of |MH | = 107 hotspots.

Next, we obtained the trans-eQTL as published by the eQTLGen consortium [22] di-
rectly from their website at https://eqtlgen.org/trans-eqtls.html1. As these results
have not been pruned for independent genetic loci we performed manual pruning of
the list of 59,786 trans-eQTL. To this end, we merged all SNPs within a 1Mbp genomic
window and with R2 > 0.2 in our data to independent genetic loci. Representative
sentinel SNPs for each locus were defined by selecting the SNP with 1) the highest minor
allele frequency (MAF) and 2) the largest number of trans associated genes. Finally,
we added all sentinel SNPs with at least 5 trans associations to the set of trans-eQTL
hotspots EH, yielding a total of |EH | = 444 hotspots.

In addition to the whole-blood based analyses based around the two QTL sets MH

and EH we also applied our approach in a different tissue context. We took trans-eQTL
from the current GTEx v8 release (N=163 trans-eQTL over all tissues) to obtain tissue
specific eQTL hotspots. To this end, we merged SNPs into independent genetic loci
similar to what we did for the eQTLGen loci, i.e. combining SNPs with R2 > 0.2 and
distance < 1Mbp, but keeping all individually associated genes as trans genes for the
merged locus. A sentinel SNP was selected again by taking the SNP with the highest
MAF. This procedure yielded a single trans-eQTL hotspot GH in Skeletal Muscle tissue
from GTEx (see Section 5.3.4).

1file 2018-09-04-trans-eQTLsFDR-CohortInfoRemoved-BonferroniAdded.txt.gz)
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5.2. Methods for regulatory network inference on trans hotspots

The set H was finally defined as the union of all collected hotspots, i.e. H = MH ∪
EH ∪ GH.

Locus set definition

We set out to construct locus sets for each of the collected hotspots in H with the goal of
including all entities, which can be used in the network analysis to explain the observed
QTL effects. An important aspect of the locus set definition is, that we need to overcome
the inter-chromosomal gap between cis genetic loci and trans associated traits.

We executed the following steps in order to generate all entities for a particular locus
set SL for a trans -acting locus L ∈ H:

1. Add QTL entities (SNP S and trans genes/CpGs T = {T1, . . . , Tq}, where q is the
number of associated trans entities for L) to SL

2. Add all genes encoded in 1Mbp window of S as SNP-Genes to SL (set GC)

3. For hotspots in MH, add genes in the vicinity of each Ti ∈ T (previous, next and
overlapping genes with respect to the location of Ti) as CpG-Genes to SL (set GT)

4. Add all TFs, where a TFBS overlaps the 50bp region around a CpG or the promoter
region of a gene over all Ti ∈ T to SL (set GTF)

5. Add PPI based shortest path genes GSP (genes which connect GC with GTF) to SL

To achieve this, we used several annotation data including the ChIP-seq derived
transcription factor binding sites (TFBS) provided by ReMap [71]2 and ENCODE [60,
257]3 and the protein-protein interaction (PPI) information gathered in the BioGRID[188]4

(version 3.5.166). These data were subsequently filtered to match our whole-blood
context for sets MH and EH, i.e. we only selected TFBS which were identified in blood
related cell lineages and filtered the BioGRID PPI network for genes expressed in whole-
blood, i.e. achieving a median reads per kilobase and million (RPKM) of > 0.1 in GTEx
v6p whole blood data. For the single Skeletal Muscle hotspot in GH we filtered BioGRID
interactions for genes expressed in Skeletal Muscle. We further used muscle tissue
gene expression data downloaded from the ARCHS4 resources (see Section 2.3.3). We
employed our ARCHS4 data loader5 and obtained Muscle tissue expression data by
setting the filter keyword ’Skeletal_Muscle’, yielding N=194 samples. We normalized
these data using ComBat implemented in the R package sva, where we provided the
dataset series ID as the batch parameter. TFBS were not available for a large number of

2http://tagc.univ-mrs.fr/remap/download/All/filPeaks_public.bed.gz
3http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/
wgEncodeRegTfbsClusteredWithCellsV3.bed.gz

4https://downloads.thebiogrid.org/Download/BioGRID/Release-Archive/BIOGRID-3.5.166/
BIOGRID-ORGANISM-3.5.166.tab2.zip

5https://github.com/jhawe/archs4_loader
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TFs in muscle related cell lines in ReMap and ENCODE. We therefore used FactorNet
[258], a neural network based method for predicting TFBS from genomic sequence
data, to derive TFBS for numerous TFs from DNAse-seq chromatin accessibility data
obtained from muscle cell lines. To this end, we trained FactorNet on K562 cell line based
TFBS available in ReMap which function as the ground truth. As inputs we supplied
DNAse-seq data from ENCODE6 as well as the raw DNA sequence information. All
trained models (N=205) were then used on DNAse-seq data obtained from the LHCN-
M2 muscle cell line7 and with DNA sequence information as input to FactorNet, using
default parameters to obtain TFBS predictions. We extracted high confidence binding
sites by setting a score cutoff of 0.999 and then merged overlapping sites for the same
TF. Only regions with width < WT

0.95, where WT
0.95 is the 95th percent quantile of the

widths of all regions obtained for a specific TF T, were kept to permit only relatively
narrow peaks typical for TF binding. This resulted in a set of size N=179 TFs for which
we had additional binding sites available in muscle derived data, which were then used
for locus set construction.

For the definition of GSP (step 5 above) we extracted genes residing on the shortest
minimal node weight path between all trans traits T and the SNP-Genes GC. In detail,
we first added the CpGs (in case locus L ∈ MH) to the constructed PPI network. We
then added connections for each TF ∈ GTF, if the TF overlaps the 50bp window around
the CpG (L ∈ MH) or the promoter region of another gene (L ∈ EH). Node weights
for each node where then calculated based on network propagation as described in the
previous chapter for the random walks (see Section 4.2.9 for details). Next, to be able
to apply a shortest minimal node weight path algorithm in order to extract nodes with
maximal propagation scores PS, we adjusted the weights of nodes to be proportional
to PS∗i = maxi(PSi)− PSi for each node i. We then obtained the minimal node-weight
paths connecting elements in T and the SNP-Genes GC by applying the sp.between()
function as implemented in the RBGL R library (version 1.56.0, see also [259]) and
collected the genes located on the shortest paths and not yet in SL.

Functional data were subsequently collected for all nodes present in the locus sets
and supplied to the respective network inference algorithm (see below) as inputs.

5.2.2. Sources and formulation of biological priors

In this project, we used several public resources to curate a comprehensive set of
biological prior information across different omic levels for locus set based network
inference. Numerous large-scale data sources have been established, often through the
efforts of large international consortia, which we aim to leverage for prior information
in network inference. A list of resources collecting functional omics data and molecular
interactions is given in Table 1.2. Priors are defined on a per-edge basis and we defined
priors for four distinct types of edges:

6dataset ENCFF971AHO
7ENCODE dataset ENCFF639MPM
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1. SNP-Gene: Edges between S and collected SNP-Genes (set GC)

2. Gene-Gene: Edges between all genes in SL (except TF-target edges)

3. CpG-Gene: Edges between CpG sites T and genes encoded in their vicinity (set
GT)

4. TF-target: Edges between TFs and their (ChIP-seq based) targets

SNP-Gene priors (item 1) are generated from previously published eQTL results,
and Gene-gene priors (item 2) by combining PPI information from BioGRID with
tissue matched gene expression data from GTEx (whole-blood context) and ARCHS4

(Skeletal Muscle context). For the CpG-Gene priors (item 3), we used the 15-state
chromHMM model from Roadmap [48, 49]. For the TF-target priors (item 4), we
set a fixed, large prior value of 0.99 for all possible interactions between TFs and
their respective target gene or CpG. The reasoning behind this is, that ChIP-seq peaks
represent strong evidence of protein-DNA interactions and hence should receive high ’a
priori’ interaction probabilities. We defined targets for a TF as either 1) genes, where the
region 2,000bp upstream and 1,000 downstream of the TSS overlap a TFBS or 2) CpG
sites, which position ±50bp overlaps a TFBS.

In the following, we describe in detail how we constructed priors for the individual
edge types 1)-3) defined above.

Priors between SNPs and SNP-Genes

One important component of our multi-omics network inference is the detection of
links between the genetic variants and cis genes in GC, to identify the gene most likely
mediating the observed trans effects.

We used publicly available whole-blood eQTL results from GTEx v6p8, i.e. SNP-gene
interaction results, to define priors for the SNP and SNP-Gene combinations (between
sets S and GC). After obtaining the complete result table containing the results of all
association tests we calculated for each S-GC pair the local false discovery rate lFDR,
which reflects the Bayesian posterior probability of a true null hypothesis given a test
statistic [260, 261]. For this, we used the fdrtool R library, version 1.2.15. Based on the
lFDR we then defined a prior for a specific S-GC pair A and B as pAB = 1− lFDRGTEx

AB .
For the application of our approach to GTEx Skeletal Muscle tissue we cannot use the

same genotype and gene expression data on which we perform the inference as prior
information. Instead, we obtained independently generated Skeletal Muscle based eQTL
published by Scott, Erdos, Huyghe, et al. [262]9 and used the lFDR method to generate
SNP-Gene priors for this context.

8file Whole_Blood_Analysis.v6p.all_snpgene_pairs.txt.gz from https://www.gtexportal.org/home/
datasets

9obtained from https://theparkerlab.med.umich.edu/data/papers/doi/10.1038/ncomms11764/
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Definition of gene-gene priors

For the intermediate component of the putative regulator networks, i.e. the gene-gene
interactions connecting the genetic locus with the transcription factors and trans entities,
gene to gene edge-priors can help clarify the regulatory sequence mediating the associ-
ations. To define the gene-gene edge-priors we utilized GTEx v6p whole-blood gene
expression data in conjunction with the PPI obtained from BioGRID. Summary gene
expression data were downloaded directly from the GTEx portal10, filtered for samples
with RNA integrity number (RIN) ≥ 6 (high quality samples), log2 transformed, quantile
normalized and subsequently moved to standard normal distribution. We removed
the first 10 principal components from these data in order to correct for confounding
factors [263]. To obtain a high quality set of priors we only set priors for gene-gene
edges which also show up in the PPI network. For each such pair, we then correlated
their respective gene expression and gathered the association P-values. We calculated
lFDR on the set of generated P-values and set the prior for an edge between genes G1

and G2 to pG1G2 = 1− lFDRGTEx
G1G2

, similarly as we did for the SNP-Gene priors.

Priors between CpGs and their gene neighbors

Edges between CpGs (set T ) and the genes encoded in their vicinity (set GT) are specific
to hotspots obtained from the meQTL results (locus sets in MH), To formulate priors
for these CpG-Gene edges we make use of the genome-wide ChromHMM states [49],
specifically the 15 states model, as reported in light of the Roadmap Epigenomics project
[48] (see also Section 2.3). State definitions, segmented into 200bp windows across the
genome were directly obtained from the Roadmap web portal11. The chromHMM states
have been derived from multiple histone ChIP-seq experiments on the same cell types
and represent functional annotations of the genome, classifying segments for instance
in enhancer or promoter related states. We formulated priors for CpG-Gene edges for
which the genomic distance of the involved gene G and the CpG C is no larger than
200bp. For each such pair, we quantified the prior probability of the CpG influencing the
expression of the gene by calculating the fraction of Roadmap blood-related cell-lines
for which the CpG resides in an ’active transcription’ state including ’TssA’, ’TssAFlnk’,
’TssBiv’ and ’BivFlnk’ states (see Table 1.1 for detailed state information). This fraction,
pTx, is finally adjusted for white blood cell proportions by weighting in the available
Houseman white cell subset estimates. For this, we multiplied the chromHMM state
proportions with the population mean for each of the Houseman cell estimates yielding
PTx. A specific CpG-Gene prior for a CpG C and a gene G is then set to pCG = PTx, if the
genomic distance d(C , G) <= 200bp.

Priors can typically not be created for all possible edges between the entities in the
locus sets indicating a certain lack of evidence for the specific edges. For instance,
gene-gene priors might be missing because a PPI between these genes has never been

10https://www.gtexportal.org/home/datasets
11https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
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reported. We hence set a low pseudo-prior for each such edge as ppseudo = 1× 10−7.

5.2.3. Simulation study design and replication analysis

Many methods have been proposed to perform regulatory network inference from
(multi-)omics data. However, depending on the specific context (e.g. P >> N, data
modalities, use of priors) specific methods might be better suited for particular inference
tasks than others. We performed simulation and replication analyses to identify the
method best suited for our context, i.e. network inference from QTL hotspots (relatively
low P) on multi-omics data under the inclusion of prior information. In the simulation
study, methods were tested independently on simulated data and evaluated for 1) their
ability to infer simulated ground truth networks, 2) the impact of low versus high sample
sizes on their performance and 3) their sensibility to noise in the provided priors.

For the replication analysis, we do not have a ground truth network available but
seek to investigate how stable networks inferred from the same method and hotspot are
across different datasets. To this end, we infer networks independently on both datasets
and cross-compare resulting networks, i.e. comparing networks inferred in LOLIPOP
against the ones inferred in KORA and vice versa.

For both the simulation and replication study, we compared the reconstructed net-
works in terms of Matthews Correlation Coefficient which represents a balanced correla-
tion measure suited for our imbalanced class labels (i.e. few edges vs many non-edges)
[124, 264]. Specifically, Matthews Correlation Coefficient only results in a good (high)
score if all four basic criteria including false positives, false negatives, true positives, and
true negatives yield good results [265]. It is defined as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(5.1)

Simulation study

For the simulation study, ground truth graphs and data were simulated 100 times for
each of the meQTL hotspots in set MH. For each locus set LS, we first generated a
prior matrix PS as described above. Then, a possible hotspot graph GT is sampled
considering all entities available in SL by sampling edges uniformly from the prior
matrix PS. Therefore, a specific edge eij is present in GT for a prior entry pij = pji of
PS (symmetric matrix), only if pij > ppseudo and if in addition runi f (0, 1) <= pij, where
runi f (0, 1) samples random values from a uniform distribution between [0,1].

This sampled graph forms the basis for one simulation iteration (out of 100). For
each generated GT we constructed 10 noisy (GN) ground truth graphs G10

N , G20
N . . . G100

N
by rewiring the graph edges such that 10, 20, . . . , 100 percent of the prior information is
still true and the degree distribution of each GN stays the same as in GT. For example,
rewiring 10% of the edges in GT generates G10

N and by making sure the introduced edges
receive no priors according to PS this effectively generates 10% of noise in PS. Lastly, we
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included one additional comparison to evaluate prior knowledge about the density of
the observed graph. To this end, we estimated a single prior probability representing for
all edges based on a binomial model for edge probabilities. We utilized the total number
|EGT | of edges over all graphs in GT within a single simulation run. The number of
possible edges is given by |ET| = (N ∗ (N − 1))/2, where N is the total number vertices.
The binomial prior is then defined as

prbinom = max(
1

NS
∗

∑GT
|EGT |
|ET|

, ppseudo),

where NS represents the number of sampled (randomized) graphs in this simulation
run.

Data were then generated according to the structure of each graph GS ∈ {GT, G i
N ;

i ∈ {10, 20, . . . , 100}. For this, we made use of the bdgraph.sim() method of the BDgraph
R package and supplied the following parameters:

1. p: |SL| (number of nodes)

2. graph: GS (graph structure as adjacency matrix)

3. N: 612 (sample size in LOLIPOP)

4. mean: 0 (mean vector for sampling from the multivariate normal)

The method then generates a data matrix of the specified size, i.e. N × p, sampled
from a multivariate normal distribution and adhering to the covariance structure as
defined by the structure of the supplied graph.

One remaining issue is to simulate the discrete genotypes in these data to assess their
impact on network inference in the simulation study. To achieve this, we created discrete
genotype dosage information (values 0, 1 or 2) based on the normally distributed SNP
variable in the simulated data set, which reflects the observed allele frequencies of
the hotspot genetic variant in the LOLIPOP data. We took the Gaussian data and
transformed them to discrete values based on the individual dosage frequencies which
we took as quantile cut points for the discretization.

Finally, we simulated data and reconstructed networks for each of the hotspots
individually which were then compared to the respective ground truth networks
GT, G10

N , . . . , G100
N .

5.2.4. Estimation of transcription factor activities

Proteins are the final product of many genes encoded on the DNA. While it is possible
to measure protein expression directly (e.g. using Mass Spectrometry (MS) experiments
or protein arrays) measuring gene expression is typically preferred as it is more compre-
hensive and cost-effective than MS. However, transcript expression of genes represents
a mere proxy for the activity of protein-coding genes and methods have been devel-
oped to estimate e.g. the actual activity profile of transcription factors [266, 267]. For
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this study, we investigated both gene expression and estimated transcription factor
activities (TFA) which aim to represent the true activity of TFs in the data. TFA were
calculated for all TFs extracted from the ReMap and ENCODE databases using the
plsgenomics R package’s TFA.estimate() method (version 1.5-2) [266]. This approach
uses the normalized expression data of the TF and its target genes (as defined via the
binding profile obtained from our curated TFBS) to estimate TFA using partial least
squares regression. For each cohort, we supplied as input the full gene expression from
KORA and LOLIPOP, respectively, and the incidence matrix ITFBS containing the binding
profiles for all available TFs across all measured genes. An entry aTFBS

ij = aTFBS
ji ∈ ITFBS

is set to 1, if TF i has a binding site within the promoter (2,000 bp upstream and 1,000
bp downstream) of the respective target gene j and is otherwise set to 0.

5.2.5. Graphical model based network inference

In this section, we recap the basics of network inference and describe the methods
employed to derive hotspot specific networks in our study. We utilized graphical models
to infer the structures of graphs (or networks) to understand regulatory mechanisms in
cellular contexts. Graphs consists of a set of P nodes (or vertices) V = {v1, v2, . . . vP}
and edges E ∈ V × V between these nodes. In a graphical model nodes are random
variables (RV) and edges represent the conditional dependence between these variables.
Alternatively, the absence of edges indicates conditional independence (compare Sec-
tion 3.1.1). For instance, two variables A and B are conditionally independent given
the rest of the variables in the graph (A |= B | rest) if there is no edge between A and
B in the graph, i.e. eAB /∈ E. For inferring network structures, i.e. all individual edges
in a graph, diverse methodologies have been proposed. We first introduce pairwise
correlations and then move on to conditional independence graphs (graphical models)
which are often employed in this context and which we applied in this project. There, we
will discuss the basic graphical lasso (gLASSO), tree-based approaches such as GENIE3
and finally a fully Bayesian treatment of graphical models (BDgraph).

Pairwise associations

A straight forward technique to reconstruct networks from omics data is by application
of pairwise association measures involving for instance the calculation of Pearson’s
Correlation Coefficient (PCC) or Spearman’s Rank Correlation Coefficient between all
measured pairs of RVs in the data individually. Correlations between individual RVs
significant according to certain criteria, e.g. PCC > 0.8 and PCCpvalue < 0.05, then form
the edges in the network. As an example, take two genes A and B and their expression
measured over multiple samples. Calculating PCC between the measurements of these
two genes gives information about co-expression, i.e. the gene A is expressed whenever
gene B is expressed or vice versa. Similarly, gene A could be repressed while gene B
is expressed (anti-correlation). Although alternatives to correlation based approaches
have been proposed, for instance based on mutual information (MI) [268, 269] to detect
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non-linear relationships, improved correlation based methods such as the biweight
midcorrelation [270, 271] outperformed MI for network module identification [272].

Partial correlations

One issue of using straight forward, pairwise correlation approaches on genomic datasets
is that these measures cannot distinguish between direct and indirect effects and edges
manifest in the network in both cases as direct and indirect associations [273, 274].
Typically, this issue yields networks of very high density, i.e. a large number of edges
[84] which makes the network less accessible and interpretable. This issue has been
approached by using partial correlations. The idea is to associate two Gaussian variables
but accounting for the effect of all other variables while doing so thereby alleviating
the problem of indirect associations. Briefly, this can be achieved by regressing out
the effect of all remaining variables prior to testing two variables of interest. For
instance, the indirect dependencies between two RVs B and C which originally arose
from direct dependency on a mutual third variable, CA, will then no longer manifest in
the inferred network as the influence of A has been accounted for and hence only direct
dependencies (partial correlations or conditional dependencies) are retained. Consider
again the expression of the two genes (B and C) but also include another gene A, such
as a transcription factor that regulates both genes. Regulation by the TF A represents
a direct association between the expression of A and the expression of the regulated
genes B and C. This dependence on a mutual source of both target genes can introduce
a pairwise correlation and by using conditional dependencies this spurious correlation
would be removed (if the influence of A is the sole determinant of their association in
this example). Importantly, in this case, the direct relationship between A and B as well
as A and C would be preserved. This concept is illustrated in Figure 5.1.
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Figure 5.1.: Illustration of the concept of partial correlations. A) When performing pairwise associations,
spurious associations between two variables (B and C) can emerge, although in truth this is due to a third
variable (A). B) Spurious correlations vanish when considering influence of other variables in a partial
correlation based approach. Here, correlation between B an C vanishes when the effect of A is considered.
Figure adapted from Hawe, F. J. Theis, and Heinig [3].
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Graphical models

The idea of partial correlations forms the basis for graphical models which are also known
as conditional dependence or partial correlation networks and where edges are only
included in case of a conditional dependence between the involved RVs [86, 87, 275].
For this project, we explored different methods based on Gaussian Graphical Models
(GGMs) which make the assumption of normally distributed RVs and which have
successfully been applied to gene expression data [273], metabolomics data [84] and to
infer links between genetic variation and the metabolome [276]. A GGM can be written
as multivariate normal distribution in the following way:

MG ∼ {NP(µ, Σ)|Σ−1 ∈ PG} (5.2)

In Equation 5.2 MG is the graphical model with respect to a graph G, Np(µ, Σ) is a
P-dimensional multivariate normal distribution with mean µ and covariance matrix Σ,
Σ−1 is the inverse of the covariance matrix also termed the precision matrix, and PG is
the set of all positive semi-definite matrices of size P× P. The conditional independence
structure of a graphical model is given via the precision matrix Σ−1. An entry pij of Σ−1

is 0, if and only if the RVs i and j are conditionally independent given all other nodes,
i.e. i |= j|N \ i, j, and > 0 if they are conditionally dependent. For Gaussian Graphical
Models the entries in the precision matrix directly reflect the partial correlation values.
According to the definition of a graphical model the structure of the network for P
nodes (RVs) is directly given via the off-diagonal entries of the precision matrix, i.e. each
pij of PG with pij > 0 and i 6= j corresponds to an edge in the network between
nodes i and j [87]. Network inference methods based on graphical models typically
either seek to estimate the full Σ−1 [273] or only its non-zero entries [86]. One issue
inference methods face with genomic data, aside from spurious correlations, is the
N << P problem, i.e. the number of samples N is significantly smaller compared to
the number of observed variables P. For instance, a typical experiment could involve
several hundred samples (N) and > 20, 000 genes (P)12. To be specific, if N << P more
variables than data points are present in the data which is statistically challenging: A
model fit will involve many degrees of freedom and the mathematical formulation will
be underdetermined, therefore the system is prone to be overfit to the data [195].

GeneNet and the graphical LASSO

One approach of handling the dimensionality burden is via the application of regulariza-
tion procedures as it is for example implemented in GeneNet [273, 274]. GeneNet uses a
Bayesian shrinkage method to obtain a stable estimate of the full Σ−1 matrix. Here, the
authors obtain the inverse of the correlation matrix using singular value decomposition
and generate stable estimates of Σ−1 using a bootstrap aggregation (bagging) approach
[277], i.e. by repeatedly sampling from the available data and then aggregating the

12An exception are single-cell gene expression experiments measuring thousands of cells and the same
number of genes
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obtained estimates [273]. Moreover, Schäfer and Strimmer [273] derive P-values to
detect significant partial correlations by estimating a mixture distribution with two
components reflecting 1) the partial correlations of truly dependent variables and 2)
partial correlations for independent variables (which should vanish). As there is a
larger number of potential edges (|E| = |N|∗(|N|−1)

2 ), this also poses a multiple testing
problem for which the authors apply false discovery rate (FDR) correction [203] (see
also Section 3.1.6).

In our case, we used the GeneNet R package implemented by Schäfer and Strimmer
[273] to obtain estimates of the precision matrix. Data are filtered for any missing
values and then supplied to the ggm.estimate.pcor() method of the package followed by
application of the network.test.edges() and extract.network() methods. We further set a
FDR cutoff of FDR < 0.2 to obtain regulatory networks from the partial correlation
estimates. Although GeneNet cannot make use of pre-existing prior information it has
been one of the standards in regulatory network inference and we, therefore, use it as a
baseline comparison for prior based methods.

Another approach employing regularization for graphical model inference was pro-
posed by Meinshausen and Bühlmann [86]. The authors proposed a strategy for estimat-
ing the non-zero elements of the precision matrix by applying LASSO (Least Absolute
Shrinkage and Selection Operator) regression for each variable individually, using all
remaining variables as predictors. This method assumes a sparse precision matrix Σ−1

and makes use of L1 regularization (see Section 3.1.3) to restrict the total number of
non-zero estimated parameters β = {β1, β2, . . . βp} (i.e. the variable coefficients of the
regression analyses, see Section 3.1.2). Variable selection is performed implicitly during
the regression by pushing the least important β coefficients to 0 which alleviates the
N << P problem. The method can be used to generate a Σ−1 where an element σij for
a pair of RVs i and j is non-zero in case either βij (i is dependent, j the independent
variable), β ji or both parameters are non-zero. Therefore, weaker and potentially spuri-
ous dependencies are being discarded from the network. This approach approximates
the likelihood of the multivariate normal distribution underlying the graphical model,
which for a fixed mean vector ¯ is given as:

ll(Θ) = log(det(Θ))− trace(SΘ) (5.3)

Here, Θ is the precision matrix to be estimated and S is the sample covariance matrix
[195]. Friedman et al. proposed as an alternative the graphical LASSO (gLASSO), which
directly evaluates the L1 regularized log-likelihood given as

ll(Θ) = log(det(Θ))− trace(SΘ)− λ||Θ||1 (5.4)

employing a block-wise gradient descent algorithm [87, 278]. Here, ||Θ||1 is the L1

norm, the sum of all absolute values of the elements of Θ.

The authors implemented the gLASSO in their R/CRAN package glasso which we
used for inferring networks in our project. Specifically, we execute the glasso method of
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the package and specify as parameter penalize.diagonal = FALSE. For the application of
the gLASSO an important consideration is how to optimally set the L1 regularization
parameter λ and typically a range of λ is screened and resulting models evaluated using
e.g. Bayesian Information Criterion and cross validation [102] (see also Methods). High
values of λ imply strong penalization of edges and result in sparser graphs, whereas
low λ values imply weak penalization and yield denser graphs. The penalization term
can also be provided for each possible edge individually by providing a matrix Λ of
size P× P (with P the number of variables) where each element Λij ∈ Λ specifies the
regularization constant for dependencies between nodes i and j. This directly enables
the use of prior knowledge to guide the inference, specifically as the L1 regularization
can also be viewed as a Laplace prior on the respective beta values and can provide edge-
specific information (see also Section 3.1.3) [195]. Additionally, the ’weight’ the prior
information encoded in Λ receives can be screened, similarly to the original λ screening,
for instance by element-wise multiplication of Λ with a weight λ, i.e. Λ = Λ × λ

(compare also [31].
In our case, we performed two parallel inference tasks, one using and one not

using prior information. For the non-prior case we applied the gLASSO for a range
of penalization parameters λ ∈ {0.01, 0.015, ..., 1}, and selected the best model over
five cross validation runs (80% training data each) with the minimal mean BIC value
obtained from the test data. For the prior case we performed the same procedure but
included the prior matrix P by setting Λ = (1 − P )× λ for each λ ∈ {0.01, 0.015, ..., 1},
which is similar to what has been proposed in Z. Wang, Xu, Lucas, and Y. Liu [30] and
Y. Li and Jackson [31].

name version repository attribute reference
BDgraph 2.61 CRAN Bayesian/ MCMC [98, 124]
gLASSO 1.11 CRAN Graphical lasso [87]
GENIE3 1.2.1 bioconductor Random forests [88]
GeneNet 1.2.13 CRAN Shrinkage/ FDR [273, 274]
iRa f Net * 1.1-2 CRAN Random forests [32]

Table 5.1.: The inference methods and their respective implementation used in this project. Table adapted
from Hawe, Saha, Waldenberger, et al. [2].
* adjusted to make use of parallel processing

Tree-based inference methods

The Gaussianity assumption on all RVs for inferring homogeneous networks might not
hold in settings involving heterogeneous multi-omics data, for instance when integrating
discrete genotypes with continuous gene expression measurements. Tree-based methods
such as GENIE3 [88] or iRafNet [32] form an interesting alternative to the graphical
LASSO and are particularly suited for multi-omics settings as they are free of any
distributional assumptions and can detect non-linear relationships. They hence have
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5. Prior based network inference

the potential to successfully integrate mixed data types (e.g. discrete and Gaussian,
Gaussian and non-Gaussian, etc.) across multiple omics layers.

The idea of tree-based methods is similar to the idea underlying gLASSO: For each
variable A in the data, a random forest model [279, 280] including remaining variables
B ∈ P as independent variables is built and interactions between A and all B ∈ P
inferred based on their importance for explaining A (i.e. variables are ranked according
to their influence, similar to e.g. [86]). Link rankings are then merged from the P
distinct models to obtain a single list of rankings of edges between individual entities.
The rankings do not equate to any statistical measure [96] and therefore the optimal
number of edges (ranked by their variable importance) needs to be determined [88, 96]
(similar to the screening for the best regularization parameter λ in the gLASSO). This
can for instance be done by employing Stability Selection as proposed by Meinshausen
and Bühlmann [281] to control false positive findings [96]. Alternatively, the top N
edges can be selected such that the resulting network fits an expected network topology
(e.g. scale-free topology for biological networks).

We make use of both GENIE3 [88] and iRafnet [32] in our project to infer networks.
Although GENIE3 cannot use prior information, we nevertheless included it in our
project as it was one of the top performers of recent network inference challenges
(DREAM4/5, [89, 90], see also Section 1.4.3). When using GENIE3 for the network
inference we first removed missing entries from our data matrix (see also application of
GeneNet above) and variance normalized the input data as suggested in [88]. We then
apply the GENIE3() method of the GENIE3 R/bioconductor package to generate the
basic model and utilized the getLinkList() method to obtain the ranked list of edges. In
both cases, we used default parameters. To define a weight cutoff for the ranked list
of edges we initially divide it into 200 quantiles, i.e. defining 200 possible cutoffs for
the list, in case the total number of obtained distinct weights is larger than 200. For
each such cutoff c ∈ C we then created the corresponding regulatory network Nc for
links L with a weight wL > c and used a scale-free topology as a reference for network
evaluation. Specifically, we followed the approach proposed by B. Zhang and Horvath
[270] to evaluate each Nc. We divide the degree distribution d containing the number
of edges for each node for Nc into 20 distinct bins and then formulate a linear model
log10(dp) log10(d), where d is the mean degree for each bin and dp is the frequency of
degrees in that bin. From this model, we extract the R2 and the fitted coefficient β. We
only consider models for which β < 0 (negative slope), as for a scale-free network the
frequency of nodes with high degree should be lower than the frequency of nodes with
low degree. The generated R2 values indicate how well a network relates to a scale-free
topology (’goodness-of-fit’). The authors suggest keeping only networks with R2 values
above 0.8 to obtain scale-free networks, however, in our case if none of the Nc for all
cutoffs c ∈ C has an R2 > 0.8 we keep the network with the highest R2 over all networks.
In case there are multiple networks with the same R2 we constrain further by the mean
connectivity of the network.

In contrast to GENIE3 the tree-based iRafNet is specifically designed to include prior
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5.2. Methods for regulatory network inference on trans hotspots

information during the inference process [32]. Here, Petralia et al. build upon the
concept employed by GENIE3 but use weights (priors) to prioritize specific entities
when constructing individual decision trees for a selected variable. This increases the
probability of important variables to be chosen early on in constructing the trees [32].
For our study, we utilize the implementation provided by Petralia and colleagues. As
it is not possible to execute iRafNet without prior information we cannot directly com-
pare a prior-based to a non-prior run and hence only infer networks including prior
information. We use the data filtered for missing values with the iRafNet() method
and apply parameters ntress = 1000, mtry = round(sqrt(ncol(data)-1)), and npermut = 5,
followed by the Run_permutation() method supplied with the same parameters. Inter-
nally, iRafNet performs a permutation procedure to generate empirical P-values. We
select the network based on FDR < 0.05 using the iRafNet_network() method and setting
the parameter TH = 0.05. To enable parallel computation, we modified the original
(no longer maintained) version of the iRafNet package and made it available under
https://github.com/jhawe/irafnet_custom.

Bayesian treatment of network inference

Mohammadi and Wit proposed a fully Bayesian approach to GGM estimation [124] and
provided an extension for application on mixed data [98]. Here, non-Gaussian variables
are not modelled explicitly, but are rather transformed to a Gaussian distribution using
the semi-parametric copula modelling approach proposed in Dobra and Lenkoski [282].

In the approach by Mohammadi and Wit the authors perform efficient Markov-Chain-
Monte-Carlo (MCMC) sampling to sample graph structures and propose an efficient
sampling scheme to obtain samples from the distribution of precision matrices PG. This
is a necessary step as the Monte Carlo sampling requires frequent sampling to cover a
large fraction of possible graph structures G which is exponentially large in the number

of nodes, i.e. |G | = 2
P∗P(−1)

2 (with P the number of nodes/variables). They formulate a
posterior probability for a graph G given a specific instance of a precision matrix K and
data D as

P(G, K|D) = P(D|G, K)P(K|G)P(G) (5.5)

Therefore, their MCMC method can make use of prior information, particularly in
the form of edge-wise priors. To explore the graph space they propose a birth-death
approach where in each iteration of the MCMC algorithm an edge is either added (birth)
or removed (death) from the current graph structure, depending on birth/death rates
of the individual edges which themselves follow a Poisson process. For instance, the
probability for the birth of an edge e at a specific state determined by (G, K) where G is
the current graph structure and K is the precision matrix, is given as

P(birth o f e) =
βe(K)

β(K) + δ(K)
, (5.6)
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where βe(K) is the rate for the Poisson process of birthing edge e and β(K) =

∑e∈E βe(K) and δ(K) = ∑e∈E δe(K) are the overall rates for all edges e ∈ E and all
non-edges e ∈ E, respectively, according to the current precision matrix K [124]. The
birth and death rates are designed such that the algorithm converges to the desired
posterior distribution for a large enough number of iterations [124].

The bulk of the computation in this approach arises in computing the individual
βe(K)’s and δe(K)’s and obtaining new samples from the precision matrix K. For exam-
ple, computation of βe(K) and δe(K) involves calculation of the normalizing constants
for the prior distribution of the precision matrix and a new sample of K. For sampling
K Mohammadi and Wit propose a new approach for obtaining direct samples from
a G-Wishart distribution [124, 195]. Nevertheless, the algorithm is computationally
more expensive than any of the other methods with the exception of iRafNet. Finally,
by iteratively adding and removing edges to the network structure according to their
specific birth and death rates, the Markov-Chain is designed to ultimately converge
to the desired posterior distribution [124] and the graph with the highest posterior
probability can be extracted.

When applying BDgraph to our data we inferred networks both under consideration
of prior information and without prior information supplying only a uniform non-
informative prior for the latter case. We utilized the implementation of the BDgraph R
package, specifically the bdgraph() method. We set parameters method = "gcgm", iter =
10000, burnin = 5000, i.e. we perform a relatively large number of iterations to achieve
stable results (good convergence to the desired posterior distribution). The g.prior
parameter was set according to the gathered prior information matrix for each hotspot.
In addition, we specified the g.start parameter which takes an incidence matrix for the
graph structure GS at which to start the sampling. To determine GS we generated an
incidence matrix IGS for which we set each entry kij to 1, if the corresponding value
pij in the prior matrix is > 0.5 and to 0 otherwise. After the model fit we extracted
the graph structure using the package’s select() method with parameter cut = 0.9 which
controls the posterior probability of edges to be included in the graph.

5.2.6. Network prioritization and final network creation

We inferred networks for a total of 107 meQTL and 444 eQTLGen hotspots which yielded
networks with a median number of 67 and 20 edges for gLASSOP and 72 and 27 for
BDgraphP , respectively. In order to select the most interesting networks we filtered and
ranked networks based on the following criteria.

GWAS filtering. For detailed evaluation we only considered genetic loci which have
previously been linked to a complex trait in a GWAS and used the current version of
the GWAS catalog [283] (v1.0.2) to annotate genetic loci accordingly. In addition, we
extracted proxy SNPs in high LD (R2 > 0.8) with our sentinel SNPs using the SNiPA
tool [284] and tested them for GWAS hits. If either the original SNP or one of its proxy
SNPs had a GWAS hit the respective network was included in downstream analysis.
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5.2. Methods for regulatory network inference on trans hotspots

Network ranking. To rank remaining networks for further investigation, we utilized a
simple graph score reflecting desirable biological properties which could be assumed for
trans-QTL derived networks. It is designed such that we 1) rate the adjacency of SNPs
and SNP-genes positively, 2) rate the inclusion of trans entities positively in case they
are not directly linked to the genetic locus and 3) rate high graph densities negatively
(i.e. more parsimonious graphs yield higher scores than dense ones). We defined our
graph score as:

SG = −log10(DG) ∗ [
1
|GC |

(
|GS|

∑
i=1

1−
|GS|

∑
i=1

1) +
1
|T | (

|GT |

∑
i=1

1−
|GT |

∑
i=1

1)]

Here, DG is the density of the graph, GC are all SNP-Genes, T is the set of all
trans entities, GS are all SNP-genes adjacent to the SNP in G or linked directly to a
different SNP-Gene, GS are all SNP-Genes in G not directly linked to the SNP or another
SNP-Gene, GT are the trans entities in G linked via an arbitrary path to any SNP-Gene
which does not include the SNP or another trans gene and GT are all trans genes linked
directly to the genetic locus. Only the cluster containing the SNP, i.e. the SNP itself and
any nodes reachable from the SNP via any path in G, is considered for calculating SG. If
the SNP is not present or no SNP gene has been selected in the final graph the score
is set to 0. We further ranked networks based on straight forward network statistics
such as the total number of edges and nodes in order to prioritize smaller networks for
detailed analysis.

Graph merging. Finally, based on the individual networks obtained from the two
cohorts for a single hotspot we constructed a final graph containing only high confidence
edges. We created the combined graph by including only those edges and nodes which
are present in both cohort networks. Any nodes not connected to the network were
subsequently removed.

5.2.7. Colocalization analysis to corroborate networks

We corroborated our inferred networks by performing a formal colocalization analysis
of GWAS and trans-eQTL signals observed at the schizophrenia locus. For this, we
obtained GWAS summary statistics for schizophrenia found using the GWAS atlas
[285]13. Trans-eQTL signals in whole-blood were downloaded from eQTLGen for all
SNP-Gene pairs14. We then employed fastENLOC15 [237, 238] to calculate SNP-level
colocalization probabilities following the guidelines published in the fastENLOC Github
README and using default options. Probabilistic eQTL annotations were generated

13https://atlas.ctglab.nl/ which we downloaded from http://walters.psycm.cf.ac.uk/clozuk_
pgc2.meta.sumstats.txt.gz

14https://www.eqtlgen.org/trans-eqtls.html, file ’Full trans-eQTL summary statistics’
15https://github.com/xqwen/fastenloc
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5. Prior based network inference

using DAP-G [286, 287]16 and the required PIP files constructed using TORUS [288]17.
Finally, the required LD block definitions were obtained from LDetect [289]18.

16https://github.com/xqwen/dap/
17https://github.com/xqwen/torus
18https://bitbucket.org/nygcresearch/ldetect-data/src/master/
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5.3. Multi-omics integration for trans hotspot regulatory network inference

5.3. Multi-omics integration for trans hotspot regulatory
network inference

Figure 5.2.: The analysis plan followed in this project. We curate trans-QTL hotspots (1) and collect locus
sets, for which we obtain functional data and interaction prior information (2). Subsequent benchmarking
(3) allows us to select the method best suited for application and interpretation of real-world networks (4).
Figure adapted from Hawe, Saha, Waldenberger, et al. [2].

In this study, we set out to explain the global effects of genomic master regulators
for which we developed a new approach for prior based network inference on curated
trans-QTL hotspots (see Figure 5.2). It involves a strategy for generating sets of entities
important for each hotspot locus (’locus sets’, Section 5.3.1) and deriving a compre-
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hensive set of biological prior information from large-scale genomic databases such as
Roadmap, GTEx, and BioGRID (see Section 2.3 and Table 1.2, results in Section 5.3.2).
These priors are then integrated with the multi-omics data collected for the locus set
using state-of-the-art network inference approaches such as the graphical LASSO [87],
GENIE3 [88] and BDgraph [124]. To benchmark available methods and to select the one
best suited for our application we performed an extensive simulation study followed by
a replication analysis in the KORA and LOLIPOP cohorts (same as in Chapter 4, results
in Section 5.3.3, see also Section 2.2 for details on the data). By applying selected meth-
ods on real-world population data we showed, that prior based network inference can
replicate and extend previous findings and generate novel insights into the underlying
mechanisms of disease-related trans hotspots. The strategy followed in this project is
depicted in Figure 5.2 and entails four general steps:

1. curate QTL hotspots (1)

2. define locus sets and obtain functional data and priors (2)

3. select the best method based on simulation study and replication (3)

4. infer and interpret final networks (4)

5.3.1. Leveraging trans-QTL hotspots to reduce complexity

Trans hotspots represent important genetic variants which are enriched for disease-
associated loci [22, 26, 210] and investigation of how they execute their influence on
the associated trans traits can improve our understanding of regulatory patterns and
disease.

For our analysis, we obtained trans hotspots from previously published QTL studies.
We used the methylation QTL (meQTL) discovered in the Hawe et al. study also
described in parts in the previous chapter in this thesis [1]. Further, we curated the
trans expression QTL (eQTL) reported by Võsa et al. in light of the eQTLGen consortium
[22]. In both cases, data were measured from whole-blood samples and the QTL obtained
using a meta-analysis of multiple cohorts to increase detection power. Using these QTL
results we were able to define 107 and 444 trans hotspots with at least 5 trans associations
for the meQTL and eQTL sets, respectively (see Methods). Figure 5.3 shows an overview
of all collected hotspots for meQTL (green) and eQTL (orange) binned according to
chromosomal positions.

The figure shows that hotspots are equally distributed across autosomes 1-22 and
that eQTLGen provides more hotspots with overall more associations than the meQTL
results. This could stem from the larger effective sample size used in eQTLGen (yielding
higher power to detect trans effects). We observe a maximum number of 477 (unbinned)
trans associations for eQTLGen (mean 115) whereas for the meQTL the maximum
number is 261 (mean 62). As we intended to demonstrate that our approach can be
applied in arbitrary contexts we further curated hotspots from recently published GTEx

114



5.3. Multi-omics integration for trans hotspot regulatory network inference

0

100

200

co
un
t

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16
chr17
chr18
chr19
chr20
chr21
chr22

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1
0

ch
r1
1

ch
r1
2

ch
r1
3

ch
r1
4

ch
r1
5

ch
r1
6

ch
r1
7

ch
r1
8

ch
r1
9

ch
r2
0

ch
r2
1

ch
r2
2 0 10 20

0

500

1000

co
un
t

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16
chr17
chr18
chr19
chr20
chr21
chr22

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1
0

ch
r1
1

ch
r1
2

ch
r1
3

ch
r1
4

ch
r1
5

ch
r1
6

ch
r1
7

ch
r1
8

ch
r1
9

ch
r2
0

ch
r2
1

ch
r2
2 0

20
0

40
0

60
0

tr
an

s 
g
en

es

C
p
G

s

SNPs SNPs
count count

Figure 5.3.: Overview of all collected trans hotspots in this study, including 107 meQTL hotspots (green) and
444 eQTL hotspots (orange). x- and y-axes show genome locations of SNPs and genes/CpGs, respectively.
Dots in the plot represent bins across the genome, margin plots indicate cumulative counts for individual
bins.

v8 trans-eQTL [101]. The stringent filtering applied by GTEx to define trans-eQTL
resulted in a single hotspot in Skeletal Muscle tissue for which we inferred regulatory
networks (see Section 5.3.4).

To mitigate the N << P problem we defined ’locus sets’ which are intended to
fully represent individual hotspots on a functional level. To this end, all relevant
genes potentially mediating the observed trans relationships are included and used
to bridge the gap between the involved chromosomes (via the inclusion of PPI and
TFBS information, see Methods). Therefore, for each locus set, we collected the genetic
locus (SNP) and corresponding trans traits (CpGs for meQTL and genes for eQTL) and
additional genes, entailing genes encoded near the SNP (cis genes), genes encoded near
CpGs (trans genes, meQTL only), proteins binding at trans entities (TFs) and genes of a
PPI network, selected only if they are located on the shortest path between trans and
cis entities. We show a summary of the collected entities over all 444 eQTL and 107
meQTL hotspots in Figure 5.4. The median number of entities amounts to 41 and 59 for
meQTL and eQTL loci, respectively.

5.3.2. Collection of prior information

A central aspect investigated in this work is the application of prior knowledge to ease
the reconstruction of regulatory networks. To achieve this, in addition to the functional
data collected for each entity in the generated locus sets we gathered continuous priors
for possible edges between these entities reflecting prior probabilities of observing
the respective associations. We discriminate between four different kinds of edges for
which we curate prior information and all priors are generated from data independent
of the multi-omics cohort data used for inference but are matched for tissue context
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Figure 5.4.: Overview of the collected entities over all hotspots. x-axis indicates the different entity types,
y-axis the total amount of these entities in the hotspots (log10-scale). Data are stratified in meQTL hotspots
(green) and eQTL hotspots (orange). Figure adapted from Hawe, Saha, Waldenberger, et al. [2].

(see Methods). We display the overall number of edges for which we were able to
derive informative priors for all hotspots in Figure 5.5A. Regardless of eQTL or meQTL
hotspots, we can identify at least 2 edges with prior information (minimum 2 for meQTL,
3 for eQTL). Most hotspots overall receive relatively few priors (median 26 for meQTL,
median 94 for eQTL) when compared to the total number of possible edges which
could potentially be inferred. Overall, 8 and 209 hotspots are annotated with ≥ 100
edge-wise priors for meQTL and eQTL, respectively. In Figure 5.5B and 5.5C, we further
see that, as expected, the number of edges annotated with prior information correlates
positively with the number of possible edges, yet the fraction of all edges receiving prior
information decreases with increasing numbers of possible edges.

5.3.3. Method comparison by simulation and replication study

We sought to perform a rigorous benchmark of inference methods (see Table 5.1) to
determine the one best suited for our specific application context. To this end, we
employed two distinct strategies:

1. an extensive simulation study evaluating the effect of sample size and prior
information to reconstruct a simulated ground truth

2. a replication across the available cohort data sets to assess effect of priors on
stability of reconstructed networks

In both cases we used Matthews Correlation Coefficient (MCC) [264] to evaluate the
inferred networks either against the ground truth network structure (1) or against the
network obtained on a different data set for the same locus and method (2), performing
two comparisons selecting one of the inferred networks as the reference).
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Figure 5.5.: Overview of the priors collected in the network inference study. A) shows the number of edges
annotated with prior information (x-axis) over all curated hotpots (counts on y-axis). B) Shows the total
number of edges with priors (y-axis) against the number of possible edges (x-axis, log10-scale) C) Shows
the fraction of edges with priors against the total number of possible edges (x-axis, log10-scale). Lines in B)
and C) represent the line of best fit from a linear regression model including standard error (shaded area).
Figure adapted from Hawe, Saha, Waldenberger, et al. [2].

Simulation study shows benefit of data-driven priors

By executing an extensive simulation study we benchmarked five state-of-the-art net-
work inference methods with respect to their capability of reconstructing simulated
ground truth graphs in different scenarios (see Table 5.1 and Methods details). For this
simulation study, we generated data and ground truth networks such that they reflect
the collected real-world data for the 107 collected meQTL hotspots (see Methods). We
considered 2 distinct scenarios: One, where we analyzed the impact of different sample
sizes on network inference and one, where we investigated the benefit of priors and
effects of varying degrees of noise in the priors. We generated 1,284 simulations for
the prior-based analysis (12 different noise scenarios) and an additional 1,284 simu-
lations for the sample size scenario (12 different sample sizes), for each of which we
performed 100 iterations and generated all network inference models and obtained the
MCC. The simulation strategy resulted in a total of 256,800 simulated data sets. For
both gLASSO and BDgraph we set out to assess the relative difference in performance,
each time training two distinct models once under consideration of prior information
(gLASSOP , BDgraphP ) and once neglecting it (gLASSO , BDgraph ). As iRa f Net can-
not be run without prior information, we did not assess relative differences based on
priors. GeneNet and GENIE3 cannot incorporate priors and hence were trained only
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on the simulated data as a reference. The results for the sample size based analysis are
presented in Figure 5.6 (see also Supplementary Table C.4).
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Figure 5.6.: Results of the simulation study for the sample size based analysis. y-axis shows the MCC,
x-axis show the different sample sizes. 100 iterations are performed for each of the 107 loci and each sample
size. Colors indicate different inference methods. Boxplots show median and upper and lower quartiles.
Figure adapted from Hawe, Saha, Waldenberger, et al. [2].

The results on the sample size simulation show that including prior information can
help to overcome low sample size problems, specifically for BDgraphP and gLASSOP which
show almost steady performance across all sample sizes. For all other methods, an in-
crease in sample size also improves inference as expected, although to different degrees.
Notably, GENIE3 performance only increases marginally with increasing sample size
compared to other methods.

In addition to the sample size based analysis, we evaluated the impact of noise in
the prior information on network inference (Figure 5.7 and Supplementary Table C.3).
The figure shows that the prior based methods BDgraphP and gLASSOP consistently
outperform all other methods as long as prior noise does not exceed 30% or 20%,
respectively, with BDgraphP outperforming gLASSOP. Interestingly, BDgraph is a close
third and outperforms BDgraphP in high noise scenarios and GeneNet achieves relatively
high performance followed by gLASSO. Although iRa f Net uses prior information it
achieves only moderate performance. Finally, GENIE3 shows worse performance than
iRa f Net which might be expected as these are similar approaches (tree-based) with
iRa f Net using prior information and GENIE3 not using priors.

We further evaluated the performance of prior based methods when providing a prior
merely on the sparsity of the true network (column ’rbinom’ in Figure 5.7, see Methods).
Our results show that knowing about the true density of the underlying graph structure
(i.e. the total number of edges) helps to improve inference performance significantly.
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Overall, our results suggest that carefully curated prior information indeed facilitates
network reconstruction in a simulation scenario.
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Figure 5.7.: Results of the simulation study for the prior assessment. y-axis shows the MCC calculated
for inferred networks against ground truth networks, x-axis shows increasing levels of noise in the prior
information from left to right. Column ’rbinom’ indicates prior representing the degree distribution of
the true graph. 100 iterations are performed for each of the 107 loci and each noise level. Colors indicate
different inference methods. Boxplots show median and upper and lower quartiles. Figure adapted from
Hawe, Saha, Waldenberger, et al. [2].

A final aspect of the simulation study is that we can investigate the performance of
our methods in recovering mixed edges, i.e. edges between genotypes (discrete data)
and gene expression of cis genes (continuous Gaussian data). This is of particular
importance as the integration of mixed data modalities is one of the main obstacles in
multi-omics data integration. Therefore, we specifically evaluated how well methods
are able to recover edges between discrete and continuous nodes in the simulated data
(see Methods) by assessing the overall fraction of recovered SNP-Gene edges over all
simulations for each method. Figure 5.8 shows the results for the SNP-Gene recovery
analysis.

One can see that prior based methods achieve best performance in this context, with
the exception of iRa f Net, matching the overall impression gained from the simulation
results. Similar to the prior-noise simulation BDgraph performs better than other
inference methods.

Inferred networks replicate in independent datasets

While the simulation study provides good evidence regarding method performance in a
controlled setting, performance on real-world genomic data is typically harder to gauge
due to a missing ground truth. As we have multi-omics data from two large population
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5. Prior based network inference

Figure 5.8.: Results for the SNP-
Gene recovery analysis. Shown is
the overall fraction of SNP-Gene
links (discrete-continuous mixed
edges) over all simulations (y-axis).
X-axis shows the individual meth-
ods. Figure adapted from Hawe,
Saha, Waldenberger, et al. [2].
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cohorts available (KORA and LOLIPOP, see Section 2.2 and previous Chapter), which
have both been measured in whole-blood data, we set out to perform a replication
study on these data to assess method performance. These data consist of genotype,
gene expression and DNA methylation data (microarray based, see also Section 2.1)
and were measured over 683 and 612 individuals for KORA and LOLIPOP, respectively.
We assessed method performance in terms of faithfulness of inferred networks across
the two cohorts. Specifically, we performed cross cohort replication where we inferred
networks from data of both cohorts separately and then obtained quantitative replication
performance by calculating pairwise MCCs, always using one of the inferred networks
as a reference. To this end, we collected data and priors for all entities over all hotspots
in the respective locus sets. The results for this analysis are displayed in Figure 5.9 (see
also Supplementary Table C.5).

Figure 5.9.: Performance in
the cross cohort replica-
tion analysis for all meth-
ods over all meQTL and
eQTL hotspots. y-axis in-
dicates cross-cohort MCC,
two MCC are calculated
per hotspot (using one of
the networks as reference)
and shown as individual
dots. Y-axis indicates the
different methods. Boxplots
show medians (horizontal
line) and first and third quar-
tiles (lower/upper box bor-
ders). Whiskers show 1.5 ∗
IQR (inter-quartile range).
Figure adapted from Hawe,
Saha, Waldenberger, et al.
[2].
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5.3. Multi-omics integration for trans hotspot regulatory network inference

The results show, that all methods including prior information (gLASSOP , BDgraphP and
iRa f Net ) replicate better across datasets as compared to the non-prior methods, with
gLASSOP performing best. Notably, BDgraphP shows much less variation in pre-
diction performance than both gLASSOP and iRa f Net . For the non-prior methods
GeneNet achieves most robust performance followed by gLASSO and BDgraph . Similar
to the simulation study GENIE3 shows worst performance.

Estimated transcription factor activities improve network replication

Potential binding of transcription factors (TFs) at genomic loci trans associated to our
hotspots is central to our analyses, as they effectively bridge the gap between cis and
trans QTL entities. It has previously been proposed that gene expression measurements
might not reflect the true activity of TFs (which could for instance be driven by a TF’s
phosphorylation state) [267]. We hence investigated the use of transcription factor
activities (TFAs) instead of TF expression for network inference as has been proposed in
[267]. TFAs can be estimated from the TF’s expression together with the expression of its
target genes, which can be defined via ChIP-seq experiments. Therefore, we estimated
TFAs for each of the TFs in our data based on our expression data and collected TF
binding sites [71] (see Methods for details). We then applied the same replication
strategy as above to evaluate the robustness of the inferred networks and compared TFA
based results to expression-based results. The results for this analysis are displayed in
Figure 5.10.
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Figure 5.10.: Results of the TFA replication analysis compared to the original expression based cohort
replication. y-axis shows the MCC across cohorts, x-axis indicates the different methods. Grey scale
indicates the type of data used for TF measurements (TF Activities or Expression). Boxplots show medians
(horizontal line) and first and third quartiles (lower/upper box borders). Whiskers show 1.5 ∗ IQR (inter-
quartile range). Points indicate outliers (beyond whiskers). Stars indicate significant difference between
TFA and expression results for each method (Wilcoxon test, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001).
Figure adapted from Hawe, Saha, Waldenberger, et al. [2].

In this analysis, we found that for all models but gLASSOP and GENIE3 the use
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5. Prior based network inference

of TFAs significantly improves the cross cohort MCC compared to the expression
based analysis (Wilcoxon P < 0.01). Moreover, an increase in MCC is also visible for
gLASSOP and GENIE3 indicating improved performance also for these methods.

Based on the overall method evaluation we decided to prioritize methods inferred
from gLASSOP and BDgraphP for more detailed investigation of regulatory patterns
and substituted TF expression values for TF Activities in all subsequent analyses.

5.3.4. Application to real-world population data

In the previous sections, we established the best method for inferring networks from
trans-QTL hotspots under consideration of prior information, for which we evaluated
summary performance measures for reconstructing ground truth graphs or replicating
networks across datasets. A natural next step is to look in detail at inferred networks
based on the methods deemed best suited for the task of explaining trans hotspots. In
this section, we will first show the replication of our results from the previous chapter
using the selected methods. We will then highlight two novel genetic hotspot loci
identified in the whole-blood data from KORA and LOLIPOP and Skeletal Muscle
data from GTEx [101], for which we inferred networks and generated novel regulatory
hypotheses.

Replication of previous findings by simultaneous data integration

We previously constructed regulatory networks in a semi-integrative approach involving
two separate steps, 1) performing a random walk on established locus graphs and 2)
complementing network interactions with a subsequent local correlation analysis. The
approach in this project is based on a fully integrative inference strategy, simultaneously
integrating all available data and using annotations (e.g. PPI, ChIP-seq) as prior infor-
mation. Generally, this approach enables the inference of additional edges which cannot
be identified by the previous approach (e.g. Gene-Gene edges) or are tested isolated
from the rest of the network (e.g. CpG-Gene edges). In this comparison, we analyzed
three of the highlighted networks derived in the previous study and compared them to
the data-drive networks established in this chapter. The results of this comparison are
summarized in Table 5.2.

locus num. nodes num. edges common edges MCC
rs9859077 99 (89) 447 (287) 141 0.517
rs730775 58 (49) 98 (67) 48 0.689
rs7783715 25 (17) 24 (23) 5 0.65

Table 5.2.: Comparison of inferred networks from this study and the networks generated in the meQTL
random walk analysis described in Chapter 4. Numbers in brackets indicate original network statistics.
Table taken from Hawe, Saha, Waldenberger, et al. [2].

Concordance between the networks is relatively high with MCC values of 0.52, 0.69
and 0.65, respectively. As expected, the simultaneous inference yields overall more
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5.3. Multi-omics integration for trans hotspot regulatory network inference

edges and contains more nodes compared to the previously derived network (56%, 46%,
and 4% more edges and 11%, 19% and 47% more nodes). We hypothesize, that the
two-step approach might have missed these additional edges and nodes as it purely
relies on already known PPI and ChIP-seq interactions. We set out to investigate one of
the comparisons in detail and choose the locus around the rs730775 SNP as an example
due to its relatively small size (Figure 5.11). Here, we annotated the network derived
from our integrative approach with the original network indicating novel (green) and
replicated (orange) edges.

SNP

Transcription factor

SNP gene

trans CpG-Gene

replicated edge

novel edge

rs730775 NFKBIE NFKB1

SLC35B2

LPHN1

PELI1

IKBKE

HSP90AB1

CD58

MPZL1

GPR68

DAPK2 ASF1B FCRL6

CEACAM4ANPEP

TCTE1 HSPA9

CD47

EBF1

CEBPB

CTCF

TBL1XR1 trans CpG

Figure 5.11.: Comparison of the two networks for the rs730775 locus for the random walk approach and
the integrative analysis. Network derived from the omics-data is used as the scaffold to indicate replicated
(orange) and novel (green) edges. White box represents the SNP, pink nodes SNP-genes, blue nodes
transcription factors, brown boxes CpG sites and green nodes CpG-genes. Figure adapted from Hawe,
Saha, Waldenberger, et al. [2].

Our network recovers the main pathway described in the original network which
connects the SNP rs730775 via NFKBIE and NFKB1 to the meQTL associated trans CpGs.
Moreover, we discover several of the TFs reported in the previous network and find
additional interactions between CpG genes and the transcription factors which could not
be picked up with the other approach. These results show that the integrated inference
(under consideration of biological prior information) can both be used to replicate
and extend previous networks, potentially adding novel insights into the genetic and
epigenetic regulation of target genes.

A trans regulatory network for a schizophrenia susceptibility locus

Next, we systematically applied our inference approach to all collected meQTL and
eQTL hotspots to demonstrate how it can be used to derive novel mechanistic insights
for trans-QTL hotspots and complex traits. In order to select interesting networks, we
filtered results for loci which have been associated in a GWA study and devised a graph
score, which reflects desirable biological properties of trans hotspot graphs and which is
employed for additional ranking of our results (see Methods).
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5. Prior based network inference

Following this strategy led us to select a genetic locus around the rs9469210 SNP in the
Human Leukocyte Antigen (HLA) region, which has previously been associated with
schizophrenia (SCZ) [284, 290]19. The resulting network is presented in Figure 5.12A.
rs9469210 is connected to three cis genes in the network (PBX2, RNF5 and HLA-DQA1),
for all three of which it is also a cis-eQTL in eQTLGen [22]. The locus-associated
RNF5 gene was differentially expressed in a study comparing SCZ cases vs controls,
and its expression is also associated with a schizophrenia risk SNP independent of
rs9469210 (rs3132947, R2 = 0.14 in 1000 genomes Europeans20) [291]. PBX2 was linked
to a SCZ related phenotype in a recent pharmacogenetics study (clozapine-induced
agranulocytosis) [292, 293] and is linked in our network to SPI1, also showing ChIP-seq
binding evidence of PBX2 to its promoter. SPI1 (PU.1) is a well known transcription
factor which has previously been implicated in Alzheimer’s Disease by influencing
neuroinflammatory response pathways [294] and interacts with its associated network
neighbor RUNX1 to modulate gene expression [295]. In addition, RUNX1 has been
associated with rheumatoid arthritis (RA). RA is inversely related to schizophrenia and
implication of RUNX1 in RA might therefore indicate a role in SCZ [296]. Moreover, HLA
related genes are connected to both SPI1 and RUNX1. The HLA locus has previously
been implicated with SCZ and other psychiatric diseases [297–300]. The transcription
factor TCF12 has not been implicated in brain related disorders so far, however, its
paralogs TCF4 and TCF3 are well known E-box TFs which are expressed in multiple
brain regions [301]. In addition, TCF4 loss-of-function mutations are causative for Pitt-
Hopkins syndrome [302], which causes, amongst other phenotypes, mental disabilities
and behavioral changes, and SNPs influencing TCF4 activity have also been implicated
in SCZ [303, 304].

The remaining TF in the network, NFKB1, is involved in the regulation and develop-
ment of neural processes and has been implicated in a variety of disease phenotype,
including SCZ [305]. The rest of the network is comprised of 9 out of the 40 initially
discovered trans associated genes of the trans acting locus which are connected via
the intermediate TFs. Several of these trans genes have been linked to neurological
disorders related to SCZ, including PSEN1, B9D2, CXCR5 and DNAJB2 [306–309], and
SH3BGRL3 has directly been implicated in schizophrenia [310]. Additionally, Rodriguez
and colleagues [311] linked the trans gene RNF114 to the NFKB1 pathway mentioned
above. To establish the possibility of a common underlying causal variant between the
selected eQTL genes and schizophrenia, we further executed a formal colocalization
analysis of eQTL and GWAS [312] signals using fastENLOC (Figure 5.13) [237]. Briefly,
fastENLOC provides a quantitative assessment for the enrichment of molecular QTLs
in complex trait-associated regions and the colocalization of both signals (i.e. QTL and
GWAS). Here, we observed a strong colocalization signal between the GWAS and three
of the selected trans genes (PSEN1, DNAJB2 and CD6 with SNP-level colocalization

19rs9274623, which is an alias of the rs9469210 SNP according to SNiPA: https://snipa.
helmholtz-muenchen.de/snipa3/

20https://ldlink.nci.nih.gov/?tab=ldmatrix
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Figure 5.12.: The two highlight networks inferred from functional multi-omics data using prior information
to guide the inference. A) Network around the rs9469210 SCZ susceptibility locus. B) Network inferred in
GTEx Skeletal Muscle data involving the lean body mass associated hotspot around rs9318186 . Figure
adapted from Hawe, Saha, Waldenberger, et al. [2].

probabilities 0.92, 0.87 and 0.42; see Methods for details).

Figure 5.13.: Results for the
colocalization analysis for
the SCZ locus for SCZ GWAS
and eQTL signal obtained
from eQTLGen. Y-axis in-
dicates SNP-level posterior
colocalization probability as
reported by fastENLOC, x-
axis chromosomal position
of SNPs. Colors indicate
different trans-eQTL genes.
Figure adapted from Hawe,
Saha, Waldenberger, et al.
[2].
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Using our inference strategy we were hence able to generate functional hypotheses for
the regulatory pathways underlying a trans-QTL hotspot related to SCZ, highlighting
several already disease related genes and potential novel targets for future investigations.
The strong evidence from our colocalization analysis further indicated a potential
common causal variant between discovered trans genes and schizophrenia.
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5. Prior based network inference

Application to Skeletal Muscle

We established a network inference strategy and applied it to data obtained from whole-
blood samples collected in light of the KORA and LOLIPOP cohorts. Now, we show
that the strategy can be transferred to a different biological context. Specifically, we
set out to investigate trans-eQTL hotspots identified in light of the GTEx project (see
Section 2.3.2) [82, 93]. Based on the latest v8 release of GTEx [101] we could extract a
single trans-eQTL hotspot identified in Skeletal Muscle tissue (see Methods) and defined
its locus set as we did for the other hotspots. A particular obstacle for the application of
our approach on Skeletal Muscle tissue is the lack of a comprehensive set of TFBS for
this tissue. To overcome this we predicted TFBS from muscle-related DNAse-seq data
and used the predicted binding sites to define the locus sets and priors (see Methods).
In the whole-blood analysis, we also utilized GTEx data to generate priors and, as
this is not appropriate when using (the same) GTEx data also during inference, we
collected independent muscle specific gene expression and eQTL data to define priors
(see Methods). Using the GTEx v8 Skeletal Muscle genotype and gene expression data
together with the collected priors we inferred a regulatory network for the trans hotspot
which is shown in Figure 5.12B (based on gLASSOP ).

In this network, the hotspot variant rs9318186 which is also a cis-eQTL of KLF5 in
GTEx v8 Skeletal Muscle (P = 6.1× 10−37) is associated with KLF5, and a SNP in high
LD (R2 = 0.88) has further been linked to the lean body mass phenotype (LBM). In a
transcriptome-wide association study Singh et al. [313] associated KLF5 with LBM by
integrating LBM GWAS results with gene expression. The gene has also been linked
to lipid metabolism via studies performed in KLF5 knockout mice [314]. Other genes
of the network have been implicated in similar phenotypes. For instance, in a study
by Moresi et al. [315] the authors found that HDAC1 and HDAC2 are involved in
controlling skeletal muscle homeostasis in mice. Moreover, both genes are involved in
muscle development and interact with the SIN3 core complex (involving the network
gene SIN3B, to regulate gene expression [316]. TBP (TATA-binding protein) has not yet
been associated with LBM, but is an intensely studied transcription factor central in the
regulation of numerous genes [317]. CREM, the final transcription factor picked up in the
network has not been linked to LBM before. However, a genome-wide association study
of elite sprinter status [318] indicated an association of a CREM related SNP (rs1531550,
P = 1.88× 10−6) in this trait. All three of the trans genes included in the network have
been implicated in LBM related traits. The gene SYNC, for example, interacts with
dystrobrevin to uphold muscle function in mice and has been linked to neuromuscular
disease traits [319, 320]. Additionally, PHETA1/FAM109A expression was linked to
Body-Mass-Index (BMI) in a study by Seim et al. [321]. The final trans gene PHOSPHO1
has been identified in several studies investigating metabolic traits. Oldknow and
colleagues [322] proposed a role of PHOSPHO1 in energy homeostasis and Wahl et al.
linked it to BMI via DNA methylation [323]. In addition, it has been associated with
HDL levels, a trait inversely linked to LBM [324] and Dayeh et al. showed that DNA is
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hypomethylated at the PHOSPHO1 locus when comparing diabetic and non-diabetic
skeletal muscle samples.

Therefore, our network indicates that the regulatory role of KLF5 may be realized
through interaction with the SIN3 core complex, potentially involving both TBP and
CREM, to act on the linked trans genes PHOSPHO1, SYNC and PHETA1/FAM109A.

5.4. Project summary

In the work presented in this chapter, we developed a Bayesian framework to infer
undirected gene regulatory networks from trans-acting genetic hotspots by simultaneous
integration of human multi-omics data with existing biological prior knowledge. To
this end, we generated a comprehensive set of edge-specific prior information from
large-scale genomic databases including functional data and established interaction
resources. We executed an extensive simulation study to evaluate recent network
inference methods and where we investigated the impact of sample size and prior noise
on inference performance. The performance was assessed on 256,800 simulated data
sets, simulated according to parameters observed in real-world data (number of samples
and number of nodes). For these data, we demonstrated that prior-knowledge informed
methods outperform non-prior methods in reconstructing ground truth networks. As
expected, increasing amounts of noise, i.e. percentage of incorrect edge priors, in
the prior information lead to a significant decrease in method performance. Overall,
we found that the Markov-Chain-Monte-Carlo based BDgraph outperforms all other
methods both when including and neglecting prior information (in the latter case only
for high noise scenarios). Both BDgraphP and gLASSOP outperform other methods in
correctly identifying ’mixed’ edges, i.e. edges between nodes of different data types such
as SNPs (discrete genotypes) and genes (continuous gene expression) in our case. The
tree-based methods, which are expected to perform better than regression-based models
in mixed settings as they do not make any distributional assumptions, showed overall
worst performance. Simulation results were confirmed by performing a cross-cohort
replication analysis in the KORA and LOLIPOP data where all prior based methods
replicate more faithfully across datasets than the non-prior methods.

The BDgraph and graphical LASSO inferred networks from real-world data were
subjected to a detailed investigation based on their benchmark performance. Good
replication and extension of the random walk based networks from the previous chapter
showed that our fully integrative strategy can successfully reconstruct networks from
multi-omics data. In addition, our new approach identified interactions not previously
described, therefore yielding additional insights into the molecular regulatory cascades
around transcription factors and DNA methylation. Systematic application of our
strategy to data from KORA, LOLIPOP, and GTEx showed that it enables the recovery
of known disease genes and the generation of novel molecular hypotheses underlying
trans hotspots. Our analyses highlighted several known schizophrenia genes for a
schizophrenia associated genetic locus, including HLA genes and RNF5 [291, 297],
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together with genes involved in related neurological disorders such as PSEN1 and PBX2
[292, 293, 306]. RUNX1 has previously been hypothesized to be related to SCZ as it has
been implicated in rheumatoid arthritis (RA), which is inversely related to SCZ [296].
We corroborated this hypothesis using our networks and implicate e.g. BRD2, DEF8,
and RNF114 as additional genes potentially playing a role in schizophrenia. These
hypotheses are substantiated in the form of a colocalization analysis of SCZ GWAS
[312] and independent trans-eQTL signals of the trans genes connected to the network
which yielded high SNP-level colocalization probabilities for the involved molecular
and disease traits. We applied our approach to a trans-eQTL hotspot derived from GTEx
Skeletal Muscle tissue to show that it can be applied in diverse contexts. The hotspot has
been associated with lean body mass (LBM) and our approach pinpointed several genes
in the network related to this or a related trait including, for instance, KLF5 (involved
in LBM, lipid metabolism), PHOSPHO1 (associated with BMI), HDAC1 and HDAC2
(control skeletal muscle homeostasis) and SYNC (maintains muscle function) [313–315,
320, 323].

Overall, in this project, we described a novel approach to alleviate gene regulatory
network reconstruction from trans-QTL hotspots by curating a comprehensive set of
priors from large-scale genomic databases and combining these priors with human
population scale multi-omics data. The constructed regulatory networks can be used to
generate mechanistic insights into the genome-wide trans effects of genetic hotspots and
allow the derivation of new hypotheses about the functional consequences of disease-
associated loci. Our extensive benchmark in simulated and real data of current inference
algorithms provides guidance to choose the method best suited for specific inference
tasks (see Discussion). Moreover, it showed that established data sources can be used to
formulate biological priors which largely benefit network reconstruction.
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The downstream effects of disease-associated genetic variants remain largely unknown.
Especially for trans-acting variants, which influence quantitative molecular traits across
chromosome boundaries, it is not straight-forward to understand how their effects
propagate through the cell. For instance, regulatory networks underlie important
trans-acting hotspots, which affect numerous quantitative traits across the genome, and
recovering these networks can help in explaining the effects of these genomic master
regulators. The main contribution of this thesis is to generate new insights into genetic
trans hotspots by devising novel techniques for network analysis and biological data
integration, thereby advancing our understanding of complex traits.

6.1. Systematic assessment of the genetic effects influencing
DNA methylation

Methylation of DNA is an important epigenetic mark and has been associated with
complex diseases such as cancer and type 2 diabetes [52, 54]. In our study, we in-
vestigated methylation quantitative trait loci (meQTL) derived from 6,994 individuals
and replicated our findings in isolated leukocytes, adipocytes and in adipose tissue.
We generated a genome-wide catalog of 2,709,428 genetic variants influencing DNA
methylation at 70,709 CpG sites in cis, longrange and trans. Other studies investigated
associations between genetic variants and CpGs, however, they worked with smaller
sample sizes or lacked replication [56, 59, 211, 325] or did not provide cross tissue
replication [18, 56, 59, 325]. Comparison to previous publications [23, 211] indicated
good agreement of results and highlighted numerous novel findings, showing the benefit
of our large sample size and analysis strategy. Moreover, to our knowledge, we were the
first to provide both a systematic investigation and a detailed characterization of often
disease-associated trans-acting loci by employing novel strategies for network analysis
and data integration. In Bonder, Luijk, Zhernakova, et al. [23], for instance, the authors
provided a deep functional characterization of trans-acting loci but lacked a systematic
analysis, whereas in Huan, Joehanes, C. Song, et al. [18] the authors systematically
established trans hotspots but lacked a deep functional follow up of their identified loci.

We established the functional relevance of meQTL through extensive enrichment
analyses using independent multi-omics data. We provided new evidence, that cis as-
sociations of SNP and CpGs reflect a change in the DNA sequence of cis regulatory
elements, which alters DNA methylation and likely affects transcription factor binding
[326]. Importantly, our study size allowed a systematic investigation of longrange- and
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trans-meQTL effects. We identified novel enrichment of these genome-wide associations
in topologically associating domains (TADs) and in inter-chromosomal chromatin con-
tacts derived from Hi-C data, consistent with putative promoter-enhancer interactions:
A genetic variant in an enhancer could lead to altered transcription factor binding and
subsequently to a change in methylation in a promoter element, and the promoter and
enhancer could form a connection via a chromatin loop [15, 326, 327]. While similar
findings have been made in recent expression-QTL studies [22], we were the first to
report these in an epigenetic context of this scale. In addition, in line with previous
studies [23, 59] our analyses showed enrichment of meQTL for association with gene
expression and enrichment of epigenetic regulators at genetic loci, substantiating their
involvement in genome regulation.

Our meQTL analyses were based on the assessment of DNA methylation from the
450k array, and the non-random array content could introduce a bias in our analyses,
leading to false-positive findings [169]. However, our strategy was designed specifically
to avoid such a bias, particularly through the application of permutation testing for all
enrichment analyses to quantify expectations under the null hypothesis based on array
design. While the 450k array profiles methylation at approx. 450,000 CpG sites, recent
advances in methylation profiling such as whole-genome bisulfite sequencing or the
Illumina EPIC array allow potentially more complete coverage of the human genome.
The incomplete coverage of the 450k array could hinder the identification of trans-acting
methylation signatures and mask potential causal associations. Our additional analyses
of EPIC array data showed that most TF enrichments from the 450k based analysis
are also identified in the EPIC data, and that enrichment of identified TF signatures
is stronger in EPIC compared to 450k derived results. Similarly, over-representation
of meQTL SNPs and CpGs in chromHMM states is observed for both arrays, with the
fraction of pairs in the same state being higher for the EPIC array compared to the
450k array. Therefore, our results from the EPIC analysis corroborated our previous
findings of TF signature enrichment at trans-meQTL hotspots. They further showed little
evidence of false-positive identification of transcription factor enrichment and indicated
slightly more power to discover functional links for the larger and denser EPIC array as
compared to the 450k array, as expected.

Our study was focused on SNP-CpG associations and the influence of methylation
on gene expression was only studied for independent methylation loci. While the
independent methylation loci represent important regulatory actors, a global analysis of
CpG effects on genes could provide additional insights into the regulatory landscape
surrounding DNA methylation. Moreover, novel developments in experimental assays,
such as methyl self-transcribing active regulatory region sequencing (mSTARR-seq)
[17], could be used to corroborate our independent sentinel SNPs and CpGs. For
instance, mSTARR-seq allows determining methylation-dependent and non-methylation-
dependent gene expression regulation on a genome-wide scale and thus could help
delineate causal dependencies between methylation and gene expression [17]. Therefore,
it could be applied to experimentally determine the functional impact of sentinel CpGs
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by evaluating whether changes in their methylation directly affect gene expression.

6.2. Identification of trans-acting regulatory mechanisms
underlying DNA methylation

The substantial sample size and replication strategy allowed the discovery and systematic
analysis of important trans-meQTL hotspots, which highlighted several genetic loci
involved in genome regulation. Recent analyses investigated trans hotspots through
establishing binding sites at associated trans sites of an in cis encoded transcription
factor [23], thereby only permitting a direct link between the genetic locus and the
quantitative traits. Establishing indirect links, e.g. through interaction networks, is still a
major bottleneck in trans-QTL analyses [22] and only a few works set out to investigate
these [29]. We significantly advanced analyses of important trans hotspots and were the
first to design and systematically apply a current network analysis approach to recover
indirect connections through molecular interaction networks in human population data.
By generating networks for 115 trans-meQTL hotspots we improved upon previous
studies, which either lacked sample size to discover genome-wide trans effects [56, 328]
or did not provide a systematic and detailed assessment of their (indirect) underlying
mechanisms [23, 59, 325]. To this end, we implemented a sophisticated network analysis
approach based on random walks on trans-acting hotspots integrated with curated
protein-protein interaction and ChIP-seq networks. Networks obtained through the
random walk approach were subsequently corroborated using functional cohort data in
a local correlation analysis, thereby adding another layer of information and extending
the functional interpretation of the networks. For numerous hotspots, we were able to
pinpoint the candidate genes and cellular pathways mediating genome-wide genetic
effects on DNA methylation and gene expression. We confirmed previous findings,
involving for instance the genetic locus around SENP7 [211], and provided novel
hypotheses, for example for the NFKBIE and ZNF333 trans-acting loci, thus advancing
our understanding of the gene regulatory mechanisms underlying genetic and epigenetic
control. The NFKBIE locus has been associated with rheumatoid arthritis (RA), a disease
which can be medicated using IL-6 targeting drugs. Importantly, we were the first to
provide a detailed molecular hypothesis of how the underlying genetic locus affects
IL-6 regulation and further supported our network findings by performing a formal
colocalization analysis of RA GWAS and trans-meQTL signals, indicating a common
causal variant driving the observed phenotypes. Moreover, as a proof of principle, we
validated the hypothesized mechanisms around the novel ZNF333 locus experimentally,
confirming the validity of our computational analyses.

We set out to extend our network analysis by devising a novel Bayesian framework for
simultaneous multi-omics integration in network inference tasks under consideration of
biological prior knowledge. This allowed an independent confirmation of the multi-step
pathways established using the random walk approach. What is even more, the revised
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strategy allowed us to propose novel molecular interactions for these pathways, yielding
further insights into DNA methylation regulation. These interactions could not be
detected by the previous approach, which focused on established interactions from PPI
networks and ChIP-seq derived binding sites and therefore did not test all possible
edges for associations. In the simultaneous inference approach, all edges regardless
of presence or absence of prior evidence are tested, and therefore interactions will
be discovered if they are strongly supported by either the functional data, the prior
information, or both.

6.3. Biologically informed priors improve network inference

Based on our rigorous benchmark of state-of-the-art network inference algorithms,
several practical considerations arise. We showed, that biologically informed prior
information improves inference performance significantly, even in settings with low
to medium amounts of noise, i.e. wrong prior edges, in the data. This is in line with
previous results, e.g. in a modified graphical LASSO context [30] or a Bayesian regression
context [128]. However, too much noise can severely impact inference performance,
and thus care should be taken when curating prior information from public genomics
resources to allow only high-quality data to enter the prior definition. For instance,
by only considering experimentally validated protein-protein interactions, high-quality
gene expression data, and other, experimentally derived interactions, noise levels can be
kept low while simultaneously providing comprehensive edge-wise priors defined from
e.g. gene co-expression analyses, allowing the use of available prior knowledge to its
full extend. In addition, good replication performance across cohorts for prior-guided
methods indicates that using prior information combined with functional data yields
more faithful and, therefore, higher confidence networks as compared to not using
priors. Overall, our results showed that prior based methods outperform prior-agnostic
methods, an observation also previously made [128, 132, 256], and which highlights the
benefit of using biologically informed priors for inference.

A critical aspect in genomics and specifically in gene regulatory network inference is
the N << P problem, i.e. the number of variables P (e.g. genes) is usually much larger
than the number of available samples N. Specialized approaches have been proposed to
alleviate this issue, for instance the graphical LASSO by applying regularization [3, 87].
Our results showed, that prior information significantly improves performance even
in settings with comparatively low sample sizes. Moreover, applying our specialized
framework yields locus sets with a relatively low number of entities as compared to the
number of samples for which data are available. The benefit of alleviating the N << P
problem using locus sets comes with a small risk of excluding genes that would be
needed to obtain a complete description of the observed trans effects of the hotspots.
For example, we only included genes on the direct (shortest) path between the cis and
trans entities, as we assume that most of the key regulators reside on that path in the
extracted PPI network. Nevertheless, our stringent framework for defining locus sets,
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collecting relevant TFs, PPI derived genes, and genes in the vicinity of the hotspot SNP
and CpG sites, should include almost all of the key regulators in the network inference
and lead to parsimonious, easily interpretable results.

We aimed to integrate multi-omics data and hence included methods able to cope
with mixed data types, for instance, discrete genotypes and continuous gene expression
values. While we would assume that tree-based methods perform well in mixed settings
due to their lack of distributional assumptions on the data [32, 96], the copula model
based BDgraph [98, 124] overall yielded the best performance for the inference of discrete-
continuous interactions. Therefore, in mixed settings, BDgraph should be preferred,
even more so if informative prior information is available. However, although the
MCMC based BDgraph method showed overall stable performance and outperformed
the graphical LASSO, it also exhibits much longer run time which needs to be considered
in practical applications.

Lastly, we started off our analyses by applying our strategy to whole-blood data for
which numerous ChIP-seq experiments have been performed (e.g. in blood-derived
cell-lines) for several transcription factors to obtain transcription factor binding sites
(TFBS). However, only relatively few biological contexts (e.g. tissues) have been profiled
for genome-wide TFBS for a larger amount of transcription factors which could limit our
analysis strategy to much fewer applications. As a proof of concept for the adaptability
of our framework, we showed an example in GTEx Skeletal Muscle tissue. We predicted
TFBS from ENCODE muscle cell-line DNAse-seq data [60, 257] using a deep learning
based model [258], and used the obtained TFBS to reconstruct the underlying network for
a single genetic trans hotspot. These novel developments of deep learning in genomic
contexts, especially for sequence and signal based prediction tasks as in this case,
have the potential to allow scaling of genomic analyses to more contexts, potentially
simplifying interpretation and downstream analyses of results.

6.4. Prior based network inference yields novel insights into
disease loci

We systematically applied our Bayesian inference framework to hundreds of trans ex-
pression and methylation QTL hotspots using human population-scale multi-omics data,
advancing previous studies which applied network inference only for model systems
[28, 32] or did not curate comprehensive priors for systematic network inference [30,
31, 124]. Detailed investigation of selected hotspots generated novel insights into two
trait-associated genetic loci related to schizophrenia (SCZ) and lean body mass (LBM),
for which we also recovered known trait-related genes. Overall, we showed that the
genes identified in the networks are coherent with the phenotypes previously associated
with the genetic loci, indicating the soundness of our strategy. Nevertheless, these
results need to be interpreted carefully. For instance, the schizophrenia-related locus
was derived from whole-blood data and direct interpretation in the SCZ context is there-
fore not straight forward as, for instance, gene expression assayed in whole-blood only
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moderately correlates with gene expression in brain tissue [329]. Ideally, the analyses
can be followed up in brain tissue to corroborate our current findings. Also, one needs
to be cautious when trying to interpret the gene candidates in the schizophrenia HLA
locus based on cis-eQTL alone, due to its difficult haplotype structure. PBX2, however,
is included in the network independently of the cis-eQTL based on its connections to
the trans-eQTL genes. Our integrated network analysis involving cis and trans entities
prioritizes PBX2, which would have been impossible using cis-eQTL information alone,
therefore expanding similar observations made previously in trans-eQTL studies [22].

For the LBM locus, we applied our framework to Skeletal Muscle data which, com-
pared to the SCZ locus, provides a better tissue match for the observed phenotype. Here,
too, we recovered known trait-associated genes, and although the functions and inter-
actions of the identified HDAC1, HDAC2, and SIN3B genes have only been described
in mice [316], our network indicates a similar functional relationship in humans. The
observed interaction of CREM and SYNC in the network further led us to hypothesize a
role of CREM in regulating muscle function and LBM, which has not been described
before. However, in all cases, careful experimental validation of individual pathways
should be executed before moving the purely computational findings to a more applied
(e.g. clinical) context, for instance, by performing knockdowns of identified candidate
genes and observing, whether and to which extend associated trans sites are affected.

6.5. Future perspective of single-cell data in systems biology

An interesting extension of our strategy can be in the context of single-cell data, which
have been revolutionizing genomics research in recent years and open up promising
new avenues for analyzing regulatory pathways in cellular systems. In contrast to the
bulk data used in this thesis, which in essence measure mean levels of molecules over a
population of cells, single-cell experiments identify omics levels from individual cells and
hence achieve more detailed readouts. Importantly, with functional single-cell data, it is
possible to investigate associations between variables under a more favorable statistical
setup, where the number of samples N (cells) is the same or even more as the number
of variables P (e.g. genes) of interest. Recent studies seek to make use of these favorable
statistical properties. One example is the study by Aibar et al. [91], who proposed
a framework (SCENIC) for single-cell based clustering and network inference, where
the authors used common sub-networks to pinpoint stable cell states for individual
cells. The authors implemented an extension to GENIE3 [88], GRNBoost, specifically for
application on single-cell data and which hence scales well for large datasets. Pliner
et al. [330] used single-cell ATAC-seq data (an assay to probe DNA accessibility) with
a graphical LASSO based approach (CICERO), for the identification of co-accessible
genomic regions. Biologically, these regions reflect interacting regulatory elements distal
to and at the promoter of target genes. They compared their co-accessible regions to
physical DNA interactions derived from promoter-capture Hi-C [231], which showed
strong concordance of the observed interactions. In addition, single-cell resolution
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enables inference about the dynamic properties of cells based on a single data point. In
their study, Ocone et al. [331] utilized this idea and were able to delineate regulatory
networks for differentiated cells observed in their data.

Recent approaches allow assaying of multiple omic layers within the same cell,
including scNMT-seq (single-cell nucleosome, methylation and transcription sequencing)
[332], sciCAR [333], or scCAT-seq [334]. Using the scCAT-seq protocol, which can probe
both gene expression and DNA accessibility in individual cells, Liu et al. [334], for
example, inferred regulatory interactions between accessible chromatin regions and
gene expression measured simultaneously in single cells.

In general, these new developments can improve our understanding of cell regulatory
mechanisms by providing more detailed molecular insights and first studies show
promising results [91, 330, 334, 335]. However, using data obtained from single cells
poses its own challenges. For instance, these data typically have a low coverage per
cell and therefore are prone to dropout events and exhibit differing noise properties
compared to bulk data [336]. These challenges have to be overcome to make full use
of single-cell technology in systems genetics, which necessitates further adaptation of
methodological concepts (often designed for bulk data) to single-cell contexts.

6.6. Conclusions

This thesis provides new insights into the genome-wide regulation of epigenetic DNA
methylation marks and gene expression through genetic variants.

We comprehensively characterized a novel set of genome-wide meQTL, derived from
almost 7,000 individuals, providing new evidence for the functional relevance of cis-,
longrange- and trans-acting variants influencing DNA methylation. By demonstrating
enrichment of longrange and trans associated SNP-CpG pairs in topologically associating
domains and inter-chromosomal contact regions, we provided evidence for a link
between genome-wide promoter-enhancer interactions and meQTL in humans, for
example via chromatin loops.

Our detailed network analyses of often trait-associated trans hotspots revealed the
molecular actors underlying genome regulation and suggested potential mediators
of disease mechanisms. So far, mostly direct links between trans associated entities
have been investigated and a systematic evaluation of indirect connections to explain
hotspots through regulatory pathways has been missing. We systematically established
candidate genes and their regulatory interactions for numerous hotspots using a random
walk based approach, thus providing new mechanistic insights into the genetic and
epigenetic control of gene regulation and complex traits. For instance, we generated
novel molecular hypotheses underlying the rheumatoid arthritis associated NFKBIE
locus. Rheumatoid arthritis can be treated with IL-6 targeting drugs and we were the
first to propose a molecular mechanism of how the genetic locus affects IL-6 regulation.
Notably, formal colocalization of GWAS and QTL signals as well as partial wet-lab
validation of our results indicate their reliability and generate confidence for follow up
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studies.
We devised a fully integrative approach for de-novo network inference, involving QTL

hotspots, multi-omics data, and biologically informed prior information, and were thus
able to significantly expand our random walk based strategy, enabling the inference
of new regulatory relationships which might have been missed before. The extensive
benchmarking study of several state-of-the-art inference methods accentuated the benefit
of using prior information for network inference and allowed us to formulate recom-
mendations for network reconstruction at trans-acting loci. Application of our inference
frameworks to diverse contexts yielded insights into gene regulatory mechanisms in-
volving multiple regulatory steps. We highlighted two trait-associated hotspots related
to schizophrenia and lean body mass, for which we could recover known trait-associated
genes and generate new regulatory hypotheses. For instance, we generated a novel
hypothesis about the involvement of PBX2 in mediating the genome-wide effects of
the schizophrenia-associated locus. The genetic locus is a cis-eQTL for PBX2, which
further shows binding to SPI1 and both genes have previously been associated with
other neurological disorders, making PBX2 an interesting candidate gene for this locus.

Our comprehensive meQTL resource is published as an easily accessible web interface.
Together with our proposed strategy for explaining trans hotspots through regulatory
networks, we expect that it will enable future genetic and epigenetic studies to leverage
information about and facilitate the analysis of important globally acting genetic variants.
Finally, by facilitating the detection of novel regulator genes involved in mediating the
genome-wide effects of disease-related trans hotspots, we hope that this work will
ultimately translate to clinical research and improve patient diagnostics and treatment
for complex diseases.
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A. Data used for meQTL replication

The text in this section was adapted from Hawe, Wilson, Loh, et al. [1] and was provided
by our collaboration partners from the meQTL project (Chapter 4). Here, we describe the
experimental details for the replication of meQTL in isolated cells and adipose tissue.

A.1. Isolated white blood cell studies

White cell subset samples were collected from 60 individuals comprising 30 obese and 30
normal weight people (Body-Mass-Index BMI > 35 kg

m2 and BMI < 25 kg
m2 , respectively)

12ml whole blood (EDTA) were collected for each subject and samples processed
immediately to isolate white blood cell subsets, including monocytes, neutrophils,
CD4 and CD8 lymphocytes, via red blood cell lysis in line with the manufacturer’s
instructions (BioLegend). Staining was performed accordingly (>20min in 50µl; Ca2+-
free PBS with 5mM EDTA and 1% human albumin; containing 1µl anti-CD14 PE-Cy7
(Clone-M5E2, BD), anti-CD16 BV510 (Clone-3G8, BioLegend), anti-CD45 BV605 (Clone-
HI30, BioLegend), anti-CD8 APC (Clone-SK1, BioLegend); 2µl anti-CD3 PE (Clone-Leu-4,
BD), anti-CD4 FITC (Clone-RPA-T4, BioLegend)).

After initial staining, clumped cells (30µm mesh, Miltenyi Biotec) were removed and
additional staining added for dead cells (µl Sytox Blue, Life Technologies) [337, 338].
Stained and lysed samples were then sorted using a FACSAria II SORP cell sorter and a
flow rate of 6,000–9,000 events/second. Raw data were retrieved with FACSDiva 8 and
analysed using FlowJo v10. Controls without the primary labelled antibody of interest
(i.e. fluorescence minus one negative controls) were utilized to estimate positive and
negative boundaries for each gate. To ensure alignment and parametrization of the cell
sorter, we ran Daily Cytometer Set-up and Tracking quality control beads (Anti-Mouse
IgK and Negative Control, BSA; Compensation Plus Particles, BD). Live cells were
defined based on Sytox Blue (450/50V nm) negative events and FCS-A and SSC-A
then employed to separate granulocytes from monocyte and lymphocyte cells. CD14-
and CD16+ neutrophils were then separated from other granulocytes. We separated
monocytes from lymphocytes in a two-step process as CD14+, CD45+ and CD16- cells.
Lastly, CD4+ and CD8+ cells were separated from other lymphocytes based on staining
where we defined CD4+ cells: CD3+, CD4+, CD8-, CD14- and CD45+; and CD8+
cells: CD3+, CD4-, CD8+, CD14- and CD45+. The sorted cell subsets were assessed
for purity, pelleted and snap-frozen for storage at −80 ◦C and subsequently average
purities assessed, yielding values for neutrophils 98.3% (±1.2% (s.d.)); monocytes 99.2%
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(±0.7%); CD4+ lymphocytes 99.6% (±0.4%); CD8+ lymphocytes 97.9% (±2.0%). Data to
be used in the genome-wide association analysis were then generated for 57 out of the
60 collected samples. For this, genomic DNA was first isolated (Qiagen QIAshredder;
Allprep DNA/RNA Micro) and then quantified using the Qubit double-stranded DNA
broad range assay.

A.2. Isolated adipocyte studies

We obtained samples from subcutaneous and visceral adipose tissue intraoperatively
in 24 healthy controls (BMI < 30 kg

m2 ) undergoing non-bariatric laparoscopic abdominal

surgery and in 24 morbidly obese individuals (BMI > 40 kg
m2 ) undergoing laparoscopic

bariatric surgery.

Primary human adipocyte cell populations were immediately isolated from adipose
samples using previously described protocols [339]. To minimize adipocyte cell lysis,
polypropylene plastic ware was utilized and tissue samples minced into 1-2mm3 pieces,
washed in Hank’s buffered salt solution (HBSS) and then digested in a 37 ◦C water bath
shaking at 100 rpm for about 45min using type 1 collagenase (1mgml−1, Worthington).
Samples were subsequently filtered to remove debris through a 300 µm nylon mesh
and centrifuged at 500g and 4 ◦C for 5 minutes, leaving four distinct layers: oil, mature
adipocytes, supernatant and stromovascular pellet. The oil layer was removed and the
mature adipocyte layer gathered by pipette, then washed in HBSS (5x volume) and
again centrifuged. The adipocyte cell suspension was collected after three washes for
snap-freezing and storage (−80 ◦C). Genomic DNA and RNA were extracted from
isolated adipocytes using Qiagen’s AllPrep DNA/RNA/miRNA Universal Kit in line
with the manufacturer’s protocol proposed for lipid-rich samples.

A.3. DNA methylation in adipose tissue

We collected 603 adipose tissue samples from the MuTHER study for further replication.
MuTHER contains 856 samples from female individuals of European descent recruited
from the TwinsUK Adult Twin Registry. From a relatively photo-protected area inferior
and adjacent to the umbilicus, punch biopsies (8mm) were taken and from each biopsy,
subcutaneous adipose tissue dissected, weighed and split into multiple pieces. Samples
were stored immediately in liquid nitrogen. Genomic DNA was extracted from the
collected adipose tissue and DNA methylation profiled using the Illumina Infinium
HumanMethylation450 BeadChIP as described previously [208]. Bisulfite conversion
using the EZ-96 DNA Methylation Kit (Zymo Research) was performed with 700ng
DNA, in line with the manufacturer’s protocol.
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B. Experimental validation of the ZNF333 trans locus

To validate our hypotheses for the ZNF333 related trans-meQTL locus our collaboration
partners experimentally identified 1) DNA binding sites of the ZNF333 protein and
2) protein binding partners of ZNF333. To this end, chromatin immunoprecipitation
followed by sequencing (ChIP-seq) and immunoprecipitation mass spectrometry (IP-MS)
was performed separately for cells in which ZNF333 expression was induced. The below
sections describe the experimental steps undertaken by our experimental partners to
generate these data including initial data processing and was adapted from [1].

B.1. ChIP-seq experiment to determine ZNF333 binding sites

We used chromatin immunoprecipitation followed by sequencing (ChIP-seq) to inves-
tigate binding of ZNF333 to the respective DNA methylation sites of the trans-acting
locus. We purchased plasmids overexpressing dual-tagged (Myc and FLAG) human
ZNF333 transcript (RC216457) from OriGene Technologies. Plasmids (ZNF333 and
control GFP) were transfected into HCT116 cells using JetPrime transfection reagen
(Polyplus) corresponding to the manufacturer’s instructions in 15-cm tissue culture
dishes. After 24 hours culture media was refreshed and cells cultured for another 24
hours. After 48 hours, cell lysates were used to perform chromatin immunoprecipitation.
Western blot for Myc and FLAG antibodies was used to confirm ZNF333 expression. For
each of the two tags (Mcy, FLAG) we performed two replicates in the ChIP experiment
and additional IP control experiments, executed for GFP transfected samples incubated
with the separate tags. In addition to these controls, we performed two input control
experiments for ZNF333 and GFP transfected cells. Transfected HCT116 cells were
prepared for ChIP-seq by cross-linking using 1% formaldehyde at room temperature
for 10 minutes and subsequent quenching with 0.125 M glycine for another 5 minutes.
Next, cells were washed (ice-cold PBS), scraped and pelleted down at 800g at 4 ◦C for 5
minutes. To facilitate the cell lysis process, the pellet was then resuspended in FA lysis
buffer. We pelleted cell nuclei using centrifugation at 3,000 rpm at 4 ◦C for another 5
minutes and then lysed them in a 1% SDS lysis buffer (1% SDS, 1% Triton X-100, 2 mM
EDTA, 50 mM HEPES-KOH (pH 7.5), 0.1% sodium dodecyl sulfate, Roche 1X Complete
protease inhibitor). We next isolated the chromatin by applying ultracentrifugation at
20,000 rpm for 30 minutes in 4 ◦C. After resuspension (300 µl 0.1% SDS lysis buffer),
chromatin was fragmented to a mean fragment size of 200-500 base pairs using son-
ication (Bioruptor Next gen, Diagenode). Immunoprecipitation for anti-Flag (Sigma,
#F3165) and anti-Myc (Abcam, #ab9106) antibodies was done overnight for solubilized
chromatin. We pulled down the respective antibody-chromatin complexes using Protein
G Dynabeads (Invitrogen) and eluted the complexes after washing using a 1% SDS, 10
mM EDTA, 50 mM Tris-HCl (pH 8) elution buffer. The cross-linking was reversed and
extract treated with Proteinase K. Using phenol-chloroform, we extracted precipitated
DNA, applied ethanol precipitation and treated it with RNAse. Finally, obtained DNA
was quantified using Qubit fluorometric quantification (Thermo Fisher Scientific) and

145



C. Supplementary Information

prepared for sequencing using New England Biolabs Ultra II Kit in accordance with the
manufacturer’s protocols. The Illumina NextSeq High platform was used to sequence
the prepared library with 76bp single end reads.

B.2. Pull-down assay to identify ZNF333 binding partners

In addition to the ChIP-seq experiment described above, we employed IP-MS to identify
binding partners of the ZNF333 protein. To this end, we cultured HCT-116 cells using
RPMI + 10% FBS medium at 37 ◦C and 5% CO2. We transfected a plasmid containing
the Open Reading Frame (ORF) of ZNF333 locus (OHu29285, GenScript) into HCT-116
cells using Lipfectamine 2000 in T75 flasks as per manufacturer’s recommendations.
Nuclear and cytoplasmic extracts were subsequently gathered after 24-48 hours from
transfected and untransfected cells (NE-PER extraction KIT from Thermo Scientific,
in line with the manufacturer’s protocols). Similar as for the ChIP-seq experiment
above, we confirmed the over-expression of the ORF using Western blotting of the
proteomic extracts and an anti-FLAG antibody (anti-DYKDDDDK tag, GenScript).
Immunoprecipitation was performed for the nuclear protein fractions from transfected
and untransfected cells using anti-FLAG mAb (A00187, GenScript) and anti-ZNF333
(HPA054680, Atlas Antibodies) antibodies, in addition to IgG2b mAb as an isotypic
control (Monoclonal Antibody Core Facility, HMGU). After purification of protein
complexes, these were subjected to label-free quantitative mass spectrometry (LC-
MS/MS, data-dependent) using a QExactive HF mass spectrometer (Thermo Scientific)
online coupled to an Ultimate 3000 nano-RSLC (Dionex, part of Thermo Scientific).
We performed label-free proteome quantification in Progenesis QI for proteomics as
previously suggested [340]. We used the Mascot search engine (Matrix Science) to
query the generated MSMS spectra against the Swissprot human database (20235
sequences, Release 2017_02), setting an identification false discovery rate cut-off of
1%. The individual matches were then imported to the Progenesis QI Software and
subsequently matched to the previous peptide quantifications. We used normalized
protein abundances from the individual samples to calculate IP enrichment values as
compared to the performed IgG control.

C. A public browser for quantitative trait loci

For the cosmopolitan meQTL associations identified in the meQTL project we published
all results in an easily accessible and user-friendly web interface at https://qtldb.
helmholtz-muenchen.de (tab ’Hawe et al. 2020 - whole blood’). The interface can be
used to browse all meQTL, eQTL and eQTM associations replicated across cohorts. By
applying filters, displayed association results can be restricted to specific entities (SNPs,
genes or CpGs) and either the full list of significant associations or only the filtered
subsets can be downloaded. Supplementary Figure C.1 provides a screenshot for the
current version of the interface.
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D. Workflow and code availability

D. Workflow and code availability

The code for all projects was made available via GitHub. All scripts were written in R or
standard Unix shell.

Code used to perform the random walk based network analysis can be found at
https://github.com/matthiasheinig/QTLnetwork.

All analysis code for the network inference project was deposited under https:
//github.com/jhawe/bggm. This repository contains a dockerfile1, which can be used
to recreate the full software environment used in the project for full transparency
and reproducibility. A pre-built Docker container for this dockerfile can be found at
https://hub.docker.com/repository/docker/jhawe/r3.5.2_custom.

1https://github.com/jhawe/bggm/blob/master/Dockerfile
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E. Supplementary Tables

sentinel chr cis_gene gene_start gene_end gene_strand gene_biotype
1 rs10870226 chr10 TTC40 134621896 134756327 - protein_coding
2 rs10870226 chr10 RP13-137A17.4 134757471 134778793 - lincRNA
3 rs10870226 chr10 RP13-137A17.5 134774844 134775741 - lincRNA
4 rs10870226 chr10 RP13-137A17.6 134779038 134789858 + lincRNA
5 rs17420384 chr2 AC105393.1 388412 416885 + lincRNA
6 rs17420384 chr2 AC105393.2 421057 422303 + lincRNA
7 rs17420384 chr2 AC093326.1 490944 492655 - lincRNA
8 rs17420384 chr2 AC093326.2 545805 546667 + lincRNA
9 rs17420384 chr2 AC093326.3 558204 578145 + lincRNA

10 rs2295981 chr13 LINC00354 112554299 112555490 + lincRNA
11 rs2295981 chr13 AL136302.1 112563079 112563148 - miRNA
12 rs2685252 chr2 AC105393.1 388412 416885 + lincRNA
13 rs2685252 chr2 AC105393.2 421057 422303 + lincRNA
14 rs2685252 chr2 AC093326.1 490944 492655 - lincRNA
15 rs2685252 chr2 AC093326.2 545805 546667 + lincRNA
16 rs2685252 chr2 AC093326.3 558204 578145 + lincRNA
17 rs57743634 chr5 SDHAP3 1568637 1594735 - pseudogene
18 rs57743634 chr5 CTD-2012J19.3 1594741 1611582 + lincRNA
19 rs57743634 chr5 CTD-2012J19.2 1598242 1598362 + pseudogene
20 rs57743634 chr5 RP11-43F13.1 1599035 1634120 - pseudogene
21 rs57743634 chr5 CTD-2012J19.1 1614951 1616449 + pseudogene
22 rs57743634 chr5 MIR4277 1708900 1708983 - miRNA
23 rs57743634 chr5 CTD-2587M23.1 1725264 1728287 + lincRNA

Supplementary Table C.1.: Sentinels and their annotated cis genes removed from analysis due to the genes
not being measured on the microarrays. Sentinels rs1570038 and rs7924137 did not have any cis genes
annotated. Table taken from [2].
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KORA F4
(discovery)

KORA F4
(European
replication)

KORA F4
(cross-ethnic
replication)

KORA F3 NFBC66 NFBC86 SYS LOLIPOP
discovery

LOLIPOP
replication

age, sex,
BMI, white
blood cell
count;

age, sex,
BMI, white
blood cell
count,
House-
man im-
puted WBC
subsets,
methylation
plate;

age, sex,
white blood
cell count,
Houseman
imputed
WBC sub-
sets, first
10 principal
components
of the con-
trol probes

Houseman
imputed
WBC sub-
sets, first
10 principal
components
of the con-
trol probes

sex, CD8T,
CD4T, NK,
Bcell, Mono,
Gran, first
30 control
probe PCs,
PC1-3 of
genetic data

sex, CD8T,
CD4T, NK,
Bcell, Mono,
Gran, first
30 control
probe PCs,
PC1-3 of
genetic data

batch effect
and blood
cell type
proportions.

age, sex,
Houseman
imputed
WBC sub-
sets, first
20 control
probe PCs

age, sex,
Houseman
imputed
WBC sub-
sets, first
20 control
probe PCs

Supplementary Table C.2.: Individual covariates (technical and biological) used in models for testing associations between SNPs and CpGs.
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method R=0 R=0.1 R=0.2 R=0.3 R=0.4 R=0.5 R=0.6 R=0.7 R=0.8 R=0.9 R=1 R=rbinom
bdgraph (priors) 0.93 0.91 0.87 0.83 0.80 0.77 0.72 0.69 0.64 0.60 0.55 0.83
glasso (priors) 0.87 0.81 0.74 0.66 0.60 0.53 0.46 0.41 0.34 0.27 0.21 0.42
bdgraph (empty) 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0.85 0.85 0.85 0.83
bdgraph (full) 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0.84 0.84 0.85 0.83
genenet 0.65 0.66 0.65 0.65 0.65 0.66 0.66 0.67 0.67 0.67 0.67 0.65
irafnet 0.45 0.43 0.42 0.39 0.37 0.36 0.34 0.31 0.28 0.24 0.20 0.42
glasso 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.45 0.46 0.42
genie3 0.38 0.37 0.37 0.37 0.37 0.38 0.38 0.39 0.39 0.38 0.40 0.35

Supplementary Table C.3.: Table giving an overview on the performance (mean MCC) in the simulation study for each inference method for all prior
noise scenarios, sorted by first column. Highest mean MCC for each scenario is indicated in bold. Table taken from Hawe, Saha, Waldenberger, et al. [2].

method N= 50 100 150 200 250 300 350 400 450 500 550 600
bdgraph (priors) 0.86 0.86 0.87 0.89 0.90 0.91 0.92 0.92 0.92 0.93 0.93 0.93
glasso (priors) 0.83 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.88
bdgraph (empty) 0.43 0.57 0.64 0.69 0.74 0.76 0.78 0.80 0.81 0.82 0.83 0.84
bdgraph (full) 0.42 0.56 0.64 0.69 0.74 0.76 0.78 0.80 0.81 0.82 0.83 0.84
irafnet 0.32 0.38 0.41 0.42 0.43 0.44 0.44 0.44 0.45 0.45 0.45 0.45
genenet 0.29 0.43 0.50 0.54 0.57 0.60 0.61 0.63 0.63 0.65 0.65 0.66
genie3 0.26 0.30 0.32 0.33 0.34 0.34 0.35 0.35 0.36 0.36 0.36 0.36
glasso 0.20 0.27 0.31 0.34 0.37 0.38 0.39 0.40 0.41 0.42 0.42 0.43

Supplementary Table C.4.: Table giving an overview on the performance (mean MCC) in the simulation study for each inference method for different sub
samplings of simulated data (increasing from left to right), sorted by first column. Highest mean MCC for each scenario is indicated in bold. Table taken
from Hawe, Saha, Waldenberger, et al. [2].
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method Expression TF activities
1 glasso (priors) 0.74 (0.18) 0.75 (0.18)
2 bdgraph (priors) 0.46 (0.1) 0.49 (0.1)
3 irafnet 0.36 (0.23) 0.43 (0.21)
4 genenet 0.31 (0.12) 0.33 (0.12)
5 bdgraph (empty) 0.29 (0.11) 0.3 (0.12)
6 glasso 0.25 (0.21) 0.28 (0.22)
7 genie3 0.2 (0.23) 0.2 (0.19)

Supplementary Table C.5.: Table indicates the mean cross cohort replication MCC for analyses based on
expression and TF activity over all methods. Numbers in parentheses indicate standard deviations. Bold
numbers indicate the higher mean MCC per method (TF activities versus expression). Table taken from
Hawe, Saha, Waldenberger, et al. [2].
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F. Supplementary Figures

Supplementary Figure C.1.: Screenshot of the QTLdb application (http://qtldb.helmholtz-muenchen.
de/) we built to provide the results from the meQTL project (currently selected) and other QTL projects.
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Supplementary Figure C.2.: Candidate genes identified for sentinel SNPs in the meQTL study for which trans associated CpGs overlap with TFBS. Upper
panel indicates observed TF enrichment for TFs encoded in cis with trans associated CpG sites, genes selected by the random walk analysis (’PPI’) and
genes that are cis-eQTL for individual sentinels. The lower panel shows a heatmap of enrichment or depletion of binding of TFs (y-axis) at the associated
CpG sites of each sentinel (x-axis). Colors indicate Odds Ratios (ORs) comparing the overlap frequency at associated CpGs with background CpGs. ORs
above 1 indicate enrichment, ORs below 1 indicate depletion. For improved readability, ORs greater than 10 or less than 0.1 have been set to 10 or 0.1,
respectively. Figure adapted from Hawe, Wilson, Loh, et al. [1] by courtesy of Dr. Matthias Heinig.
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F. Supplementary Figures

Supplementary Figure C.3.: Sensitivity analysis for the transcription factor binding site (TFBS) enrichment
analysis. X-axis shows interval sizes around the respective CpGs. For each interval, we test the 255
transcription factors for overlap with the trans CpG signatures of the 115 sentinel SNPs associated with
≥ 5 CpGs in trans, and present the total number of significant associations between a sentinel SNP and a
TF (y-axis), where the TFBS overlaps the location of the trans associated CpGs more often than expected
by chance. Significance of overlap between TFs and CpG signatures was determined using Fisher’s exact
test with all CpG sites on the array as background (blue), by re-sampling of CpG sites matched for mean
and standard deviation of methylation levels (green), or both approaches at the same time (red). Figure
adapted from Hawe, Wilson, Loh, et al. [1] by courtesy of Dr. Matthias Heinig.
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Supplementary Figure C.4.: Proportions (observed and expected) of CpG sites that overlap ZNF333 DNA
binding regions. Expected proportion is estimated through permutation testing (see Methods), significance
of enrichment is assessed using Fisher’s exact test. Figure adapted from Hawe, Wilson, Loh, et al. [1] and
provided by courtesy of Tan Lek Wen Wilson.
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