@ Fakultat fir Informatik m
Technische Universitat Miinchen

Verification of Discrete-Time Markov Decision Processes

Tobias Meggendorfer

Vollstdandiger Abdruck der von der Fakultét fiir Informatik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Matthias Althoff

Priifende der Dissertation:
1. Prof. Dr. Jan Kfetinsky

2. Prof. Dr. Christel Baier

Die Dissertation wurde am 17.09.2020 bei der Technischen Universitdt Miinchen eingereicht und
durch die Fakultéat fir Informatik am 17.02.2021 angenommen.

Acknowledgements

First, I thank all co-authors of the papers appended to this
thesis, in particular my advisor Jan Kretinsky, who endured
countless discussions and taught me a great deal about math,
science, academia, writing, language, life, and many other
topics. I thank my parents and friends, who have heard way
too much about all the hardships of working with students and
probably know all variants of the grid world model by now.
Finally, I also thank all the people from Lehrstuhl VII for
the relaxed-yet-focused atmosphere, with discussions moving
from cookie recipes over applications of verification to kitchen
appliances to a concrete research idea in the span of minutes.

Abstract

This thesis deals with the verification of probabilistic systems in the setting of discrete
time, in particular Markov decision processes (MDP). We present both theoretical as
well as practical contributions.

First, we solve a long-open problem related to mean payoff queries and present
two novel algorithms to efficiently compute such queries. The first algorithm is based
on value iteration and additionally is augmented with partial-exploration techniques,
focussing computational effort on important parts of the system. The second algorithm
is an efficient implementation of strategy iteration, improved by several topological
optimizations as well as approximation techniques, yet maintaining precise answers.

Then, we provide efficient practical implementations of LTL-to-automata translation
algorithms. These play a central role in probabilistic LTL model checking.

Moreover, we introduce the novel notion of cores in an MDP, which provide a
framework to speed up many approximation-based tasks by automatically identifying
and removing ‘irrelevant’ states. Additionally, cores provide us with a well-founded
notion of importance, aiding in the understandability of systems.

Finally, we present a significant step towards risk-aware analysis of probabilistic
systems. In particular, we introduce the notion of conditional value-at-risk (CVaR) to
MDP and show that risk-aware verification lies in the same complexity class as pure
expectation maximization in our particular application.

Attached to this thesis are papers published at conferences CAV 2017, ATVA 2017,
LICS 2018, CAV 2018, ATVA 2018, and CONCUR 2019.

Zusammenfassung

Diese Arbeit beschéftigt sich mit der Verifikation von probabilistischen Systemen in
diskreter Zeit, insbesondere Markov Entscheidungsprozessen (MDP). Wir présentieren
sowohl theoretische als auch praktische Fortschritte.

Zuerst 16sen wir eine lange offene Frage beziiglich mean payoff Problemen. Wir
definieren zwei neue Algorithmen, die solche Probleme effizient 16sen. Der erste Algo-
rithmus basiert auf der Methodologie der Werte-Iteration und kann durch zusétzliche
Teil-Erkundungs-Ansétze den Rechenaufwand auf wichtige Teile des Systems konzentrie-
ren. Der zweite Algorithmus ist eine effiziente Implementierung des Strategie-Iteration
Ansatzes. Dieser wird durch mehrere topologische Optimierungen und ein approximati-
ves Verfahren weiter verbessert. Trotz Verwendung approximativer Methoden liefert
letzterer Algorithmus prézise Ergebnisse.

Dann priisentieren wir eine effiziente Implementierung von LTL-zu-Automaten Uber-
setzungsalgorithmen. Diese spielen insbesondere im Kontext der probabilistischen Verifi-
kation von LTL Formeln eine zentrale Rolle.

Danach beschreiben wir das neue Konzept des Kerns eines MDP. Diese Kerne bieten
eine flexible Grundlage um approximative Berechnungen auf MDP zu beschleunigen,
indem ,unwichtige* Zustdnde automatisch entfernt werden. Zusétzlich liefern Kerne
eine mathematische Definition fiir ,,Wichtigkeit“ von verschiedenen Zusténden. Dies
bietet eine systematische Basis fiir Erklérbarkeit von solchen Systemen.

Zuletzt prisentieren wir einen wichtigen Schritt in Richtung risikobewusster Analyse
von probabilistischen Systemen. Wir definieren das Konzept der conditional value-at-risk
(CVaR) auf MDP und zeigen, dass eine Analyse unter der Beriicksichtigung von Risiko
in der selben Komplexitatsklasse wie pure Erwartungswert-Maximierung liegt.

Die in dieser Dissertation eingebunden Papiere wurden in den Konferenzen CAV 2017,
ATVA 2017, LICS 2018, CAV 2018, ATVA 2018 und CONCUR 2019 verdoffentlicht.

vii

Contents

Acknowledgements

Abstract

Zusammenfassung

List of Figures

1

Introduction

1.1 Summary of Contributionso oL
1.2 Summary of Publications 0.
1.3 Outline

Preliminaries

2.1 Markov Systems
2.2 Objectives
2.3 Solution Techniques L

Efficient Analysis of Mean Payoff

3.1 Background Lo
3.2 A Partial Exploration Approach
3.3 Precise Solutions with Strategy Iteration
3.4 Conclusion

Probabilistic LTL Model Checking

4.1 The Classical Solution Approach: Automata
4.2 Practical Improvements for LTL-to-automata Translations
4.3 Conclusion e

The Notion of Cores

5.1 Definition of Coreso
5.2 Finding Coreson MDPo Lo
5.3 Extensions e e e e
5.4 Conclusion e

Taming Risk in Probabilistic Systems

6.1 A Measureof Risk
6.2 Model Checking CVaRin MDP
6.3 Conclusion

43
43
44
45
46

47
47
49
51

ix

Contents

Bibliography 53
Appendices 61
I Appended Papers 63

A Value Iteration for Long-Run Average Reward in Markov Decision Pro-
cesses. CAV 2017 64

B Efficient Strategy Iteration for Mean Payoff in Markov Decision Processes.
ATVA 2017 o e e 86

C Rabinizer 4: From LTL to Your Favourite Deterministic Automaton.
CAV 2018 e 107
D Owl: A Library for w-Words, Automata, and LTL. ATVA 2018 119

E Of Cores: A Partial-Exploration Framework for Markov Decision Pro-
cesses. CONCUR 2019 o e 128

F Conditional Value-at-Risk for Reachability and Mean Payoff in Markov
Decision Processes. LICS 2018 146
Il Note on Copyright 157

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1

3.2

3.3
3.4

3.5

4.1
4.2
4.3

5.1

6.1
6.2

Asmall grid world. 1
Example MDP.o 8
Markov chain induced by the example MDP and given strategy. 9
Example MDP where no optimal strategy exists. 10
Ilustration of maximal end components. 11
IMustration of the MEC quotient. 13
Linear program to compute reachability. 18
Example MDP to illustrate the strategy improvement algorithm and the

concepts of gain and bias of mean payoff. 25
Example MDP disproving the general applicability of the stopping cri-
terion for mean payoff given in [Put94]. 27

Example execution of the local value iteration algorithm for mean payoff. 28
Example MDP to illustrate several optimization possibilities of local
value iteration. L oL 29

Snapshot of on-demand value iteration applied to the MDP from Figure 3.4. 30
Example automaton. oL Lo 37
Example product MDP. o oo 38
Illustration of the LTL model checking steps on the product MDP of

Figure 4.2. Lo 39
Example MDP to motivate the notion of cores. 43
Illustration of VaR and CVaR for two random variables. 48
Example MDP used to demonstrate CVaR optimization of weighted

reachability. 50

Xi

1 Introduction

The analysis of probabilistic systems arises in numerous application contexts, e.g.,
randomized communication and security protocols, stochastic distributed systems,
biological processes, artificial intelligence, speech recognition, and robot planning, to
name a few. Such systems comprise both stochastic and non-deterministic elements.
The former captures probabilistic influences of the environment, i.e. events where the
outcome is beyond our control, but also is not consciously antagonistic to our goals, e.g.
a coin toss. The latter represents deliberate decision making, where agents interacting
with the environment, e.g., humans or robots, are presented with a set of options and
are able to choose among them. An elegant mathematical framework for the analysis of
probabilistic systems are Markov decision processes (MDP) [How60; FV96; Put94]; see
[Whi85; Whi88; Whi93] for an extensive list of applications. MDP are built from three
ingredients, namely states, actions, and (probabilistic) transitions. Intuitively, a state
fully describes a ‘snapshot’ of the current configuration of the system. At each state,
the agent can choose from a set of actions, corresponding to the non-determinism of
the system. After choosing an action, the system then transitions into a successor state
according to the probability distribution associated with that action.

For an intuitive example, we introduce the classical grid world. The grid world is,
as the name suggests, a grid of, say, 4x4 cells. The inhabitants of our grid world are
a remote controllable robot, some hazards, and a charging station. See Figure 1.1 for
a pictorial representation. The state of the corresponding MDP is then given by the
position of the robot. At any regular position, the robot can decide to move in any of
the four cardinal direction; the hazards damage the robot and no actions are available
there. Once the robot decides to move, say, in the northern direction, it transitions to

0.1.98 0.1

A

lﬁl

Figure 1.1: A small grid world. A remote controlled robot is in the lower left corner, a charging
station in the upper right, and two hazards are located in between. The possible
effects of going ‘north’ at position (2,2) are sketched in grey.

1 Introduction

the cell above it with 80 % probability and with 10 % to the top-left or top-right cell,
respectively, since there is a chance of a navigation failure (adapting appropriately at
the grid boundary). Now, our goal may be to control the robot such that the probability
of reaching the charging station is maximized and hazards are avoided. However, the
battery of the robot might be running low, so we instead may be interested in getting to
the charging station as fast as possible. Considering the differences between these two
goals and their solutions in the example may provide the reader with valuable insights
in the dynamics of MDP.

In general, the process of verification (or model checking) aims at analysing MDP
with respect to a given formal description of such a goal, called objective or specification,
and output a provably correct result. This kind of analysis is particularly appealing for
safety-critical areas such as medicine or aerospace, where even small errors may have
grave consequences. Here, rigorous methods give confidence in the correctness of an
implementation or, in case a safety requirement is violated, may aid in identifying the
root cause. This contrasts best-effort methods such as machine learning approaches,
which excel at identifying ‘good’ solutions but (usually) are not able to certify their
quality. As such, studying the formal verification of probabilistic systems is an important
research direction with far reaching applications.

Clearly, a central aspect of verification is the formalism used to describe the objective.
The first example (reaching the charging station) corresponds to a simple reachability
query, where we are interested in reaching a particular state of the MDP. The second
example (reaching the station as fast as possible) could be modelled as step-bounded
reachability or, more generally, cost-bounded reachability. Apart from reachability, a
wide variety of different objectives have been introduced and studied in the literature,
each coming with its own challenges and widely varying computational complexity,
ranging from linear time to undecidability. For example, we could be interested in guiding
the robot such that it visits several points of interest or collects some resources while
keeping energy consumption below a threshold. Consequently, we want to investigate
the decidability and complexity of different objective formalisms in order to identify
tractable problem classes.

It often turns out that solution approaches which are theoretically appealing due to
their low computational complexity are vastly outperformed in practice by algorithms
which are much worse in terms of worst-case. As such, a practical study of verification
provides also provides us with many highly relevant questions.

In this thesis, we address several questions of both kinds.

1.1 Summary of Contributions
We present advances in four different directions, briefly summarized in this section.

Mean payoff intuitively describes ‘What is the average reward obtained per step in
the limit?’. For example, it can be used to describe the average throughput of a
flow control protocol or the output of a power plant. Despite existing thorough
analysis of its theoretical properties (see, e.g., [Put94, Chapter 8, 9]), there still

1.2 Summary of Publications

are open questions. In Chapter 3, we disprove a long standing conjecture, provide
an alternative solution, and introduce two different efficient algorithms. We
furthermore augment one approach with partial-exploration techniques, achieving
further improvements in practice.

Linear Temporal Logic allows to express more complex requirements on paths than
pure reachability. For example, we can require safety (avoid a certain area), liveness
(visit an area repeatedly), and combinations thereof. The associated verification
problem on MDP has been thoroughly studied, with precise complexity bounds
being known for the general problem as well as various sub-classes. Recent
improvements of the automaton theoretic approach promise a vast increase in
practical performance. However, these theoretical improvements lacked a proper
implementation. We provide practical algorithms on top of a powerful framework
for dealing with linear temporal logic in Chapter 4.

Cores provide a new perspective on probabilistic systems. Inspired by partial exploration
approaches which identify a set of states that are relevant to answer a particular
query, we consider the set states necessary to answer any query up to a given
precision. This provides us with several benefits. Firstly, we can transparently
combine the idea of cores with existing verification approaches to obtain practical
speed-ups. Essentially, cores extend the idea of pruning non-reachable states by
also pruning hardly reachable states. Moreover, cores provide a well-founded
notion of ‘importance’—states which are never relevant for any query naturally
can be considered less important. We discuss cores, their application, and further
interpretations in Chapter 5. In particular, cores help with the previous two areas.

Risk is an ubiquitous concept in reality and is highly influential for human decision
making. Yet, verification hardly dealt explicitly with a quantitative notion of
risk. We provide an extensive theoretical treatment of conditional value-at-risk
applied to MDP in Chapter 6. In particular, we show that single-dimensional
risk-aware model checking is possible in polynomial time, paving the way for
efficient practical algorithms.

1.2 Summary of Publications
This is a publication-based thesis. We present the following papers in Appendix I.

A Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kietinsky and Tobias
Meggendorfer. ‘Value Iteration for Long-Run Average Reward in Markov Decision
Processes’. In: Computer Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. ed. by
Rupak Majumdar and Viktor Kuncak. Vol. 10426. Lecture Notes in Computer
Science. Springer, 2017, pp. 201-221. DOI: 10.1007/978-3-319-63387-9_10.
URL: https://doi.org/10.1007/978-3-319-63387-9%5C_10

https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10

1 Introduction

B Jan Kietinsky and Tobias Meggendorfer. ‘Efficient Strategy Iteration for Mean Payoff
in Markov Decision Processes’. In: Automated Technology for Verification and
Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-6,
2017, Proceedings. Ed. by Deepak D’Souza and K. Narayan Kumar. Vol. 10482.
Lecture Notes in Computer Science. Springer, 2017, pp. 380-399. pO1: 10.1007/
978-3-319-68167-2_25. URL: https://doi.org/10.1007/978-3-319-68167~
2%5C_25

C Jan Kiretinsky, Tobias Meggendorfer, Salomon Sickert and Christopher Ziegler. ‘Ra-
binizer 4: From LTL to Your Favourite Deterministic Automaton’. In: Computer
Aided Verification - 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I. ed. by Hana Chockler and Georg Weissenbacher. Vol. 10981. Lecture Notes
in Computer Science. Springer, 2018, pp. 567-577. DOI: 10.1007/978-3-319-
96145-3_30. URL: https://doi.org/10.1007/978-3-319-96145-3%5C_30

D Jan Kretinsky, Tobias Meggendorfer and Salomon Sickert. ‘Owl: A Library for
w-Words, Automata, and LTL’. in: Automated Technology for Verification and
Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA,
October 7-10, 2018, Proceedings. Ed. by Shuvendu K. Lahiri and Chao Wang.
Vol. 11138. Lecture Notes in Computer Science. Springer, 2018, pp. 543-550. DOI:
10.1007/978-3-030-01090-4_34. URL: https://doi.org/10.1007/978-3-
030-01090-4%5C_34

E Jan Kretinsky and Tobias Meggendorfer. ‘Of Cores: A Partial-Exploration Framework
for Markov Decision Processes’. In: 30th International Conference on Concurrency
Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands. Ed. by
Wan Fokkink and Rob van Glabbeek. Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2019, 5:1-5:17. DOI: 10.4230/LIPIcs.CONCUR.2019.5.
URL: https://doi.org/10.4230/LIPIcs.CONCUR.2019.5

F Jan Kfetinsky and Tobias Meggendorfer. ‘Conditional Value-at-Risk for Reachability
and Mean Payoff in Markov Decision Processes’. In: Proceedings of the 33rd Annual
ACM/IEEFE Symposium on Logic in Computer Science, LICS 2018, Ozford, UK,
July 09-12, 2018. Ed. by Anuj Dawar and Erich Gradel. ACM, 2018, pp. 609-618.
DOI: 10.1145/3209108.3209176. URL: https://doi.org/10.1145/3209108.
3209176

All papers have been published in peer-reviewed conference proceedings and are self-
contained. Each paper is prefaced with a brief summary and a list of the thesis author’s
contributions.

1.3 OQutline

Chapter 2 introduces mathematical notation together with the model and objectives of
interest. We begin with a definition of Markov decision processes and related concepts

https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-319-68167-2%5C_25
https://doi.org/10.1007/978-3-319-68167-2%5C_25
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-319-96145-3%5C_30
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4%5C_34
https://doi.org/10.1007/978-3-030-01090-4%5C_34
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.1145/3209108.3209176
https://doi.org/10.1145/3209108.3209176
https://doi.org/10.1145/3209108.3209176

1.3 Outline

in Section 2.1. We proceed with an extensive list of objectives in Section 2.2. Finally, we
conclude with classical solution approaches in Section 2.3. Then, Chapters 3 to 6 provide
an overview of our contributions towards mean payoff analysis, probabilistic LTL model
checking, the notion of cores, and risk-aware verification, in that order. Each chapter
introduces the problem at hand, defines concepts specific to the respective problem
and explains the state of the art (where applicable), summarizes our contributions, and
finally concludes with brief remarks on future work. We only give a semi-formal overview
of each paper; for technical treatment we refer the interested reader to the respective
papers provided in the subsequent Appendix I. Finally, we provide the permissions to
use and publish the papers as attached in Appendix II.

2 Preliminaries

The central object of this thesis are Markov decision processes, a classical model for
systems which exhibit both stochastic and non-deterministic behaviour. In this chapter,
we introduce these Markov processes as well as systematic approaches common to
several of the following chapters. Concepts specific to a single topic are introduced in
the respective chapters.

As usual, N and R refer to the (positive) natural numbers and real numbers, re-
spectively. We write [n] := {1,...,n} to denote all natural numbers from 1 to n, with
[oo] := N. For two real numbers a,b € R with a < b, the interval [a,b] C R denotes the
set of all real numbers between a and b inclusively. We write v[i] € R to denote the i-th
component of a vector v € R™.

For a set S, S denotes its complement, while S* and S“ refers to the set of finite and
infinite sequences comprising elements of S, respectively. We use xg(s) =1if s € S
and 0 otherwise to refer to the characteristic function of S.

We assume familiarity with basic notions of probability theory, e.g., probability spaces,
probability measures, and measurability; see e.g. [Bil08] for a general introduction.
In particular, we omit precise treatment of sigma-fields and proofs of measurability
for the sake of readability. We mention in-depth treatment of these issues in the
literature at appropriate places. A probability distribution over a countable set X
is a mapping d : X — [0,1], such that >,y d(z) = 1. Its support is denoted by
supp(d) = {z € X | d(z) > 0}. D(X) denotes the set of all probability distributions
on X. Some event happens almost surely (a.s.) if it happens with probability 1. For
readability, we omit the discussions arising for uncountable domains X.

We direct the interested reader to, e.g., [Put94; BK08; For+11] for further information
on the concepts introduced in this section. We primarily refer to these three works
throughout the preliminaries in order to minimize notational discrepancies.

2.1 Markov Systems

First, we introduce Markov chains (MCs), which are purely stochastic and can be seen
as a special case of MDP.

Definition 1. A (discrete-time time-homogeneous) Markov chain (MC) is a tuple
M = (S,6), where

e S is a countable set of states, and

e §:5 — D(9) is a transition function that for each state s yields a probability
distribution over successor states.

2 Preliminaries

(=l
w

V2)
ot

bl . 83
N /
a as 0.5 as
1

s1
1
2 9 >'\ 4+/ /<
0.
59

a
0:9 1\05 07 03
e N e AN

Figure 2.1: Example MDP, used to illustrate various concepts. Each action available in a
state is represented by an outgoing edge, labelled by the action and several arrows
connecting to the successor states, each labelled with the transition probability.
For actions with only one successor, i.e. an action a with A(s,a)(s’) =1 for some
s,8' € S, we omit the transition probability of 1 in the figure.

Markov chains can also be viewed as a sequence of random variables X;, where X;41
only depends on X; [Put94, Appendix A.1]. Note that we do not require the set of
states of a Markov chain to be finite. This is mainly due to technical reasons, which
become apparent later. Now, we define MDP, which essentially extend Markov chains
with non-determinism through actions.

Definition 2. A (finite discrete-time time-homogeneous countable-state) Markov de-
cision process (MDP) is a tuple M = (5, Act, Av, A), where

e S is a finite set of states,
e Act is a finite set of actions,
o Av:S — 24\ {(} assigns a set of available actions to each state, and

o A: S x Act — D(S) is a transition function that for each state s and (available)
action a € Av(s) yields a probability distribution over successor states.

Note that we require the set of available actions to be non-empty. This means that a
run can never get ‘stuck’ in a degenerate state without successors. See Figure 2.1 for an
example MDP, used throughout this chapter to illustrate several concepts.

For ease of notation, we overload functions mapping to distributions f : Y — D(X)
by f:Y x X — [0,1], where f(y,z) = f(y)(z). For example, instead of §(s)(s’)
and A(s,a)(s") we write (s,s’) and A(s,a,s’), respectively. Furthermore, given a
distribution d € D(X) and a function f: X — R mapping elements of a set X to real
numbers, we write d(f) = >, cx d(x)f(x) to denote the weighted sum of f with respect
to d. For example, 6(s)(f) and A(s,a)(f) denote the weighted sum of f: S — R over
the successors of s in an MC and s with action a in an MDP, respectively.

Finally, we always assume an arbitrary but fixed numbering of the states and identify
a state with its respective number. For example, given a vector v € R!S! and a state
s € S, we may write v[s] to denote the value associated with s by v. In this way, a
function v : S — R is equivalent to a vector v € RIS, In examples, we often number
states by s1, so, etc. There, we implicitly identify states s; with their respective index 3.

2.1 Markov Systems

Figure 2.2: Markov chain induced by the example MDP of Figure 2.1 and the strategy =, given
by 7(s1) = {a1 — 0.5,b1 — 0.5}, 7(s3) = {a3z — 1} (omitting states with only one
action). We again omit the probability label for edges with probability 1.

2.1.1 Paths & Strategies

An infinite path p in a Markov chain is an infinite sequence p = s152--- € S, such that
for every ¢ € N we have that 0(s;, si+1) > 0. A finite path (or history) o = s152...5, € S*
is a non-empty, finite prefix of an infinite path of length |o| = n, ending in some state s,
denoted by last(p). Additionally, we define |p| = oo for infinite paths p. We use p(7) and
0(i) to refer to the i-th state s; in a given (in)finite path. A state s occurs in an (in)finite
path p, denoted by s € p, if there exists an i € [|p|] such that s = p(i). We denote the
set of all finite (infinite) paths of an Markov chain M by FPathsy (Pathsy). Observe
that in general FPathsy, and Pathsy are proper subsets of S* and S“, respectively, as
we imposed additional constraints. Moreover, note that FPathsy, is countable in general,
whereas Pathsy is uncountable.

Similarly, an infinite path in an MDP is an infinite sequence p = sjaissag--- €
(S x Av)¥ such that for every i € N we have a; € Av(s;) and A(s;, a;, si+1) > 0, setting
the length |p| = co. Finite paths ¢ and last(p) are defined analogously as elements of
(S x Av)* x S and the respective last state. Again, p(7) and (i) refer to the i-th state
in an (in)finite path with an analogous definition of a state occurring, |g| denotes the
length of a finite path, and we refer to the set of (in)finite paths of an MDP M by
FPathsy((Pathspq). As above, FPaths, is countable and Paths(uncountable.

A Markov chain together with a state s € S naturally induces a unique probability
measure Pry s over infinite paths [BKO08, Section 10.1]. For MDP, we first need to
eliminate the non-determinism in order to obtain such a probability measure. This is
achieved by strategies (also called policy, controller, adversary, or scheduler).

Definition 3. A strategy on an MDP M = (S, Act, Av, A) is a function 7 : FPathsy —
D(Act), such that supp(m (o)) C Av(last(p)) for all p € FPaths .

Intuitively, a strategy is a ‘recipe’ describing which step to take in the current state,
given the evolution of the system so far. Note that the strategy may yield a distribution
on the actions to be taken next.

A strategy 7 is called memoryless (or stationary) if it only depends on last(p) for all
finite paths ¢ and we identify it with 7 : S — D(Act). Similarly, it is called deterministic,
if it always yields a Dirac distribution, i.e. picks a single action, and we identify it with

2 Preliminaries

“ b1 “

Figure 2.3: Example MDP where no optimal strategy exists.

7 : FPathsyy — Act. Together, memoryless deterministic strategies can be treated as
functions 7 : S — Act mapping each state to an action. We write I to denote the
set, of all strategies of an MDP M, H'/\\/I/l for the memoryless strategies, and HD\"/[D for all
memoryless deterministic strategies. Observe that there are only finitely many such
memoryless deterministic strategies, i.e. |IINP| < co.

Fixing any strategy 7 induces a Markov chain M™ = (FPathsq, 6™), where for some
state o = sja; ... s, € FPathsyy, appropriate action a,4+1 € Av(s,) and successor state
Sn+1 € supp(A(sp, ant1)) the successor distribution is defined as 0™ (o, 0an+15n+1) =
(0, ant1) - A(S, @pt1, Snt1) (see [BKO8, Definition 10.92]). In particular, for any MDP
M, strategy 7 € IIny, and state s, we obtain a measure over paths® Pr = s, which
we refer to as PrTers. Observe that all these measures operate on the same probability
space, namely the set of all infinite paths Pathsa. For a memoryless strategy = € HD\/'/[,
we can identify M™ with a Markov chain over the states of M; see Figure 2.2 for an
example. We direct the interested reader to [Put94, Section 2.1.6] for further details.

Since we obtain a measure on paths for any strategy m, we can define the maximal
probability of a measurable event A C Paths starting from state § by

PrivslAl = suprem,, Pri s[4 (2.1)
Similarly, given a measurable function f : Pathsy; — R, we can define the expectation
of f under strategy 7 starting from state § by

BLalfl= [1) dPrso)

and consequently define the maximal expectation by

sup

Eslf] = supren o B s (/] (2.2)

sup sup

This generalizes the probability measure from Equation (2.1), as Pryy/[A] = E}’:[xal.

We mention that the supremum indeed is necessary in general—for some functions
f, no optimal witness strategy exists. For example, consider the MDP in Figure 2.3
and suppose that f rewards staying in state s, but this reward is only collected if the
system eventually moves to so. Formally, define f(p) =1 —1/(|{¢ | p(i) = s1}|) if there
exists an 7o such that p(ip) = s and 0 otherwise. Then, the supremum in Equation (2.2)
equals 1, since we can wait arbitrarily long in s;. However, any strategy eventually has
to move to sy after a finite number of steps, and any non-zero probability of stopping
early gives an overall expectation of strictly less than 1. Note that if f were defined as

O Technically, this measure operates on infinite sequences of finite paths, as each state of M™ is a finite
path. But, this measure can easily be projected directly on finite paths.

10

2.1 Markov Systems

bl bg 4’
\ A %
asz 0.5 as

1
o w oa ¢ L
09 0.1 0.5 0.7 0.3
i N A N
%

Figure 2.4: Illustration of maximal end components on the MDP from Figure 2.1. Each
MEC is shaded. Formally, the set of MECs is given by ({s1,s2}, {b1,c1,a2}),
({s3, 84}, {as,as}), and ({s¢},{as}). Note that ({s1},{b1}) is an end component,
however it is not inclusion maximal. Moreover, s; does not belong to any end
component. Intuitively, from sg we cannot get back to s5 and there always is a
non-zero chance of moving to sg whenever we get to ss.

a

f(p) = {i] p(i) = s1}| there exists an optimal strategy which, for example, remains in
state s; for 4™ steps with probability 27", achieving infinite expected reward.

2.1.2 Strongly Connected Components and End Components

A non-empty set of states C' C S in a Markov chain is strongly connected if for every
pair s, s’ € C there is a non-empty finite path from s to s’. Such a set C' is a strongly
connected component (SCC) if it is inclusion maximal, i.e. there exists no strongly
connected C’ with C' C C’. Clearly, SCCs are disjoint and each state belongs to at most
one SCC. An SCC is called bottom strongly connected component (BSCC) if additionally
no path leads out of it, i.e. for all s € C,s’ € S\ C we have 6(s,s’) = 0. The set of
SCCs and BSCCs in an MC M is denoted by SCC(M) and BSCC(M), respectively.

The concept of SCCs is generalized to MDPs by so called (mazimal) end components
[De 97]. Intuitively, an end component is a set of states where the system can remain
indefinitely, using an appropriate strategy.

Definition 4. Let M = (S, Act, Av, A) be an MDP. A pair (R, B), where) # R C S
and () # B C U, Av(s), is an end component of an MDP M if

1. for all s € R,a € BN Av(s) we have supp(A(s,a)) C R, and

2. for all s,s" € R there is a finite path o = sag...a,s’ € FPathsy; N (R X B)* X R,
i.e. the path stays inside R and only uses actions in B.

An end component (R, B) is a mazimal end component (MEC) if there is no other end
component (R', B') such that R C R’ and B C B'.

By abuse of notation, we identify an end component with the respective set of states,
e.g.,, s € F = (R,B) means s € R. Observe that given two ECs (R, B1) and (R2, B2)
with R; N Ry # 0, their union (R; U Ry, B; U Bsg) also is an EC. Consequently, each
state belongs to at most one MEC. Again, a MEC is bottom if there are no outgoing

11

2 Preliminaries

transitions. The set of ECs of an MDP M is denoted by EC(M), the set of MECs by
MEC(M). See Figure 2.4 for an illustration of MECs.

Remark 1. For a Markov chain M, the computation of SCC(M), BSCC(M), and a
topological ordering of the SCCs can be achieved in linear time w.r.t. the number
of states and transitions by, e.g., Tarjan’s algorithm [Tar72]. Similarly, the MEC
decomposition of an MDP can be computed in polynomial time [CY95]. For improved
algorithms on general MDP and various special cases see [CH11; CH12; CH14].

These components fully capture the limit behaviour of any Markov chain and decision
process, respectively. Intuitively, both of the following statements show that with
probability one a run of such systems eventually forever remains inside one single BSCC
or MEC, respectively.®

Lemma 1. For any MC M and state s, we have that
Prvs[{p | 3R; € BSCC(M).3ng € N.Vn > ng.p(n) € R;}] = 1.
Proof. Follows from [BK08, Theorem 10.27]. O
Lemma 2. For any MDP M, state s, and strategy w, we have that
Privisl{p | 3(Ri, Bi) € MEC(M).3ng € N.Vn > ng.p(n) € R;}] = 1.
Proof. Follows from [De 97, Theorem 3.2]. O

Moreover, in a BSCC or MEC we (can) visit each state thereof with probability one.

Lemma 3. For any MC M, BSCC R € BSCC(M) and states s,s' € R, we have that
Prusl{p| s € p}] = 1.

Proof. Follows from [BK08, Corollary 10.34]. O

Lemma 4. For any MDP M and MEC (R,B) € MEC(M) there exists a strategy
7 € 1Y such that for all states s,s' € R, we have Pri, [{p|s' € p}] =1.

Proof. Follows from [BK08, Lemma 10.119]. O

So, when we consider ‘reaching’ a particular target, states in the same component
are equivalent: Intuitively, if a state s has a particular way of reaching a target, any
other state in the same component can first move to s by virtue of Lemma 4 and then
follow its strategy. With this insight, we can view components as equivalence classes
and apply a quotient operation. Defined in [De 97, Algorithm 6.1], the MEC quotient
intuitively replaces each MEC by a single representative state, eliminating all internal
behaviour. Since the formal definition is rather technical, we instead show the MEC
quotient of our running example in Figure 2.5.

@The measurability of the sets in the following lemmas is well known, proofs can be found in, e.g.,
[BKO08, Chapter 10].

12

2.2 Objectives

0.9 S
E{l@» al 0.1+ {34} [—o0.7 H<

0.3
s
stay; o stays 4
stayg
stay; o stays 4
a{1,2} a{3,4} {6}

Figure 2.5: Illustration of the MEC quotient of the MDP from Figure 2.1. The internal
behaviour of the MECs is removed and a special stay state and action is added,
representing that the system remains inside the now collapsed MEC.

2.2 Objectives

We have defined Markov chains and decision processes together with their dynamics.
As hinted at in the introduction, we are still missing a way to formalize questions such
as ‘Is the given system safe?’ or, in the case of MDP, ‘Can the system be controlled in
a safe manner?’. Hence, we need to define a formalism to describe what ‘safe’ means,
which is called objective. There are many ways to introduce such objectives. We follow a
quite general view, where objectives are essentially defined by three components, namely
(i) path performance, (ii) performance aggregation, and (iii) optimization. Intuitively, (i)
assigns a performance metric to each path, for example a real number or a vector of reals.
For a fixed strategy, this essentially gives us a distribution over the respective value
space. Then, (ii) aggregates this distribution into a single value, e.g., by computing an
expectation. Finally, (iii) decides which performance values are ‘better’. For example,
we may be interested in the maximum or minimum possible performance, a particular
trade-off, or a sweet-spot. We explain these concepts with several commonly used
objectives in the following.

This framework does not cover all possible objectives. In particular, the performance
of a single path is considered to be independent of other potential paths of the system.
This is not the case with, for example, Hyperproperties, where among others information
flow or non-interference are considered [Miil20].

We first explain several objectives relevant to this work and then present common
solution techniques later in Section 2.3, since the classical approaches to many objectives
share the same fundamental ideas. We use the following notational templates:

e Vierf(p): The path performance of a given path p.
« VT (s): The aggregated performance when starting in state s and following

perf,aggr

13

2 Preliminaries

strategy m. For example, with a real-valued performance Vperf and aggr = E, we
define Vi ¢ g(s) = E} s[Vperf] as the expected performance under 7.
. ngtf’aggr(s): The optimal aggregated performance when starting in state s. As
an example, for a real-valued aggregation function we define Vi ..o (s) =
SUDrer1, Vperf,ager () @8 the supremum over all strategies.

2.2.1 Reachability

One of the simplest, yet surprisingly expressive objectives is given by reachability.
Essentially, the goal is to reach a given set of states, and typically we are interested in
maximizing this probability; minimization corresponds to avoiding the given region and
is often called safety instead.

Formally, fix an MDP M = (S, Act, Av, A) and a set of target states T C S. Then,
(unbounded) reachability QT = {p € Pathspq | Fi € N. p(i) € T} are all infinite paths
which eventually reach the target set T'. The sets of paths produced by ¢ are measurable
for any MDP and target set [BK08, Section 10.1.1].(3) Sometimes, bounded reachability
OSFT is considered, where the goal is to reach T within a given step bound of k steps.
However, we mainly focus on unbounded properties in this work and omit precise
treatment of the bounded variants.

Note that for a target set 7', both ¢T and (T are well-defined, however they refer to
two different concepts. The former denotes the set of all paths reaching a state not in
T, whereas the latter is the set of all paths which never reach T

To fit reachability into our framework, we define the path performance by Vor () =
Xor(0), i.e. a path is assigned a value of 1 if any of its states is contained in the target set
T and 0 otherwise. Since (7" is measurable, V7 is measurable, too, and the expectation
of Vo1 is well defined for any given strategy m. Then

orE(s) = Bl s[Vor] = Prig [OT].

This constitutes the performance aggregation—we are interested in expected reachability.
In this case, not too many other aggregation schemes make sense, since reachability is
binary—a path either reaches the goal or it does not—and thus the expectation fully
describes the performance of a strategy. More intricate schemes appear later on.

To now obtain the overall objective, namely the maximal probability of reaching a
target set T starting in a given initial state §, we write

Vore(8) = supren,, Vorg(8)-

2.2.2 Linear Temporal Logic

Instead of asking to maximize the probability of reaching a single target set, we may be
interested in adding additional constraints, e.g., avoiding a ‘bad’ region on the way, or
add several goal regions. An elegant formalization of such questions is given by Linear

®Recall that we defined MDP to have finite state and action sets.

14

2.2 Objectives

Temporal Logic (LTL) [Pnu77]. LTL provides a richer framework to assign ‘good’ or
‘bad’ labels to a given run. As such, it only differs from reachability by providing a
more complex path performance function, which however still only yields 1 or 0.

We briefly define LTL and direct the interested reader to related work, e.g., [BK08,
Chapter 5] or [For+11, Section 7.2]. Let AP be a finite, non-empty set of atomic
propositions. Such propositions could, for example, describe ‘variable x is larger than 5’
or ‘the robot is damaged’. An LTL formula then is given by the following syntax

pu=a|l-9[oNd|XP[o U

where a € AP. We define | = aA—a for some a € AP, T = =L, and ¢ Vi) = =(=pA—0).
An LTL formula is evaluated over (infinite) sequences of words, i.e. elements of P(AP)%.
Thus, each ‘letter’ of the word is a set of atomic propositions. Intuitively, each such
letter describes the set of propositions which hold at the respective time step. The
logical connectives of LTL impose restrictions on the ‘current’ step, i.e. which atomic
propositions hold and which do not. The X ¢ operator requires that ¢ holds in the next
step, while ¢ U ¢ demands that the formula ¢ holds at every step until eventually
holds. Two common derivations are F ¢ = T U ¢, requiring that ¢ eventually holds in
the future, and G ¢ := = F —¢ requires that ¢ holds globally at every position.

As an example, send A (X G error V Frecv) requires that we send in the first step
and either enter an error state in the next step and remain there forever or eventually
receive an answer. The word w = {send} ()) {recv} () --- satisfies this formula, while
w' = {send} {error} {error} (¥ does not. For an LTL formula ¢ and word w over
the appropriate set of atomic propositions, we write w = ¢ if w satisfies the given
formula. See for example [BKO08, Section 5.1.2] for a formal definition of =. We write
L(p) ={w € P(AP)* | w |= ¢} for the language of ¢.

In order to connect LTL to MDP, we further need a labelling function L : S — P(AP),
assigning to each state of the system a set of atomic propositions which hold in this
state.® For example, we could assign the atomic proposition danger to all states which
are close to a hazard in the grid world of Figure 1.1. This mapping can directly be lifted
to paths, i.e. given a path p we derive the respective word L(p) := L(p(1))L(p(2))---.
Then, we can pose quantitative LTL queries, e.g. ‘what is the maximal probability of
satisfying the given formula?’. For example, we could require that we never are in
danger for more than one consecutive step by G(—danger V X —danger) in the grid
world example. Formally, we write Vy(p) = 1 if L(p) = ¢, carrying over analogous
definitions from reachability. See [BK08, Remark 10.57] for a proof of measurability.

We usually are interested in maximizing the probability of satisfying a given formula
¢ starting from a particular state 8, i.e. V3'g*(8). This computation can be reduced to
pre-computations followed by a regular reachability analysis on a modified MDP. We

explain this process in more detail in Chapter 4.

®The labelling can equivalently be assigned to the actions of the MDP without changing the underlying
problem significantly. We opt for the state-based approach for simplicity and consistency with
subsequent definitions.

15

2 Preliminaries

2.2.3 Weighted Reachability

Both of the previous objectives are binary, i.e. a single path is either good or bad, without
any level in between. However, the notion of performance often is more fine-grained. For
example, the grid world could offer various treasures, each of a different value. Treasures
of higher values might be more difficult to reach, so it may not be immediately clear
which way to follow. To this end, we introduce more complex reward-based objectives,
where the performance is determined using a reward function.

An immediate extension is given by weighted reachability. As with reachability, we
are given an MDP M = (S, Act, Av, A) and a set of target states T C S. Additionally,
we are given a reward function rew : T' — R. The performance of a path then is defined
as the reward assigned to the first visited state of T', i.e.

ViewoT (p) = rew(p(min{i | p(i) € T'}))

or 0 if no such state exists, i.e. {7 | p(i) € T} = (). Again, we now usually are interested
in the maximal expected values, i.e. Vieior g However, we could, for example, also
be interested in the worst-case behaviour, i.e. the smallest reward obtained under the
strategy m, denoted V::aon,wc@)- We present a novel aggregation scheme interpolating
between worst-case and expectation in Chapter 6.

Interestingly, weighted reachability can be reduced to regular reachability by straight-
forward preprocessing steps, as we explain in Chapter 3. We introduce this particular
objective since it is quite useful for the dealing with the more complex mean payoff
objective defined in Section 2.2.5.

2.2.4 Total Reward

Another approach to consider rewards is the k-step total reward (or cumulative reward).
Instead of obtaining the first reward we encounter, a path obtains all rewards of the first
k steps. Formally, for an MDP M = (S, Act, Av, A), a reward function rew : S — R,
and a step bound k, the k-step total reward of a path p is defined as

View-k (p) = Zle rew(p(z’)).

In this thesis, we do not treat the total reward objective directly. Instead, we use it
as an auxiliary tool when dealing with the mean payoff objective, defined in the next
section. Thus, we omit further details here and direct to, e.g., [For+11, Section 5.2].

2.2.5 Mean Payoff

Weighted reachability only offers a ‘one shot’ reward, and requires us to define a specific
goal. As such it is mainly suitable for finite tasks, in the sense that once the goal
is achieved the systems’ actions are irrelevant. Similarly, total reward only considers
a fixed, finite number of steps. However, in long running applications such as task
scheduling, flow control, etc., we are instead interested in the long-run behaviour. For

16

2.3 Solution Techniques

example, in a traffic shaping protocol we usually may ask for the average throughput.
Here, there is no single goal state to be reached and the system does not stop after
a finite number of steps. Instead, we want to investigate the average behaviour ‘at
infinity’. Mean payoff provides a powerful mechanism to tackle this problem.

We again are provided with an MDP M = (S, Act, Av, A) and a reward function
rew : S — R. The mean payoff (also known as long-run average reward, limit-average
reward or gain) of a run is defined as the limit of the k-step average rewards, i.e.

1k 1
Vriew- = liminf — 1)) = liminf — View.r(p)-
rew-mp () it izlreW(P(l)) ML 2 Vrew k(p)
The lim inf is necessary, since the limit itself may not be defined for some runs due to
oscillations. As before, we usually are interested in maximizing the expected value, i.e.
we want to determine Viga™, o -

Surprisingly, this problem can again be solved by pre-computations and a reduction to
weighted reachability, which in turn can be solved by reachability. We elaborate further
on this reduction in Chapter 3. See [Put94, Chapter 8, 9] for an extensive treatment of
mean payoff on MDP. Note that we defined the reward function on the set of states for
consistency reasons. As with LTL, it is straightforward to extend the problem and its

solution approaches to rewards assigned to actions.

2.2.6 Multi-dimensional Objectives

So far, we only considered single-valued objectives, where the performance values can
be compared directly. Thus, optimizing the achieved value w.r.t. maximization or
minimization is straightforward. However, in reality more complex tasks like ‘Maximize
the power output subject to given safety constraints’ appear. A natural way to formalize
such requirements is to combine the presented objectives into multi-dimensional queries.
For example, to formalize the above task, we can define the path performance as a
two-dimensional vector: The first component describes the power output via mean
payoff and the second component is given by the LTL formula formalizing the safety
constraints. We aggregate both dimensions by expectation and define the optimization
as maximizing the first component subject to the second component being at least, for
example, 95%. Multi-dimensional problems often lead to an explosion in complexity,
both in terms of computation and structure of optimal strategies, see, e.g., [CKK17]. As
such, we keep treatment thereof to a minimum and focus on single-dimensional queries.
We briefly discuss multi-dimensional questions in Chapter 6.

2.3 Solution Techniques

In this section, we briefly discuss classical solution techniques associated with MDP.
We explain each of these techniques by the example of reachability and compare their
advantages and disadvantages.

As an overarching distinction, we differentiate between precise and approximate

17

2 Preliminaries

minimize E Ts Wwhere
SES

xs >0 for se S
Te =1 forseT
Tg > A(s,a,s') -2l for s ¢ T and a € Av(s)

s'eS

Figure 2.6: Linear program to compute the reachability of a target set T. The probability of
reaching T from a state s is given by the respective variable .

solutions. Precise approaches provide, as the name suggests, exact answers (assuming
an appropriate implementation). On the other hand, approximations yield an answer
which is correct up to a given precision € > 0. Formally, we say that a value v is
e-optimal if |v — V| < €, where V is the value of interest.® Whenever we consider
approximate approaches, we implicitly assume that a precision € > 0 is fixed. Typically,
this precision is chosen somewhere between 1072 and 10~?. Note that such approaches
are required to provably bound the approximation error. In particular, ‘convergence in
the limit’ without further guarantees, e.g., a rate of convergence, does not qualify as an
approximative solution.

There are several reasons to consider approximative approaches. For example, com-
puting a precise answer may be intractable or even undecidable. Moreover, some
appealing approaches may intrinsically only yield approximative answers, for example
our algorithm in Section 3.2. Finally, relaxing the problem in this way allows for
fundamental optimizations, as we explain in Chapter 5.

2.3.1 Linear Programming

Linear Programming (LP) is an established problem solving technique with a wide
spectrum of applications. LP has strong fundamental connections to MDP; most
objectives considered in the literature allow for a natural LP formulation. A linear
program essentially is characterized by a linear objective function f: R™ — R and a set
of linear inequality constraints on the n variables, i.e. a matrix A € R"™*"™ and vector
b € R™. The task is to find the maximal value of f(x), subject to the imposed linear
constraints. Formally, we want to compute max,crn az<p f(2). See [Sch99] for details
on linear programming in general. LP is very appealing from a theoretical point of view,
since it allows for direct mathematical characterizations and can be solved in polynomial
time without any imprecision [Kha79; Kar84]. As such, it is a popular tool to prove
polynomial complexity of many problems. We show a standard LP for reachability in
Figure 2.6. See [BK08, Theorem 10.105] and [For+11, Section 4.2] for further details.

®The expression |v — V| is also called absolute error. For V # 0, one can also require the relative error
to be small, i.e. |[v — V|/|V| < . Then, the allowed deviation from the true value is dependent on its
magnitude. We omit treatment of relative error for simplicity.

18

2.3 Solution Techniques

In practice, LP-based solutions appear to be surprisingly inefficient [HM14; Bra+15;
Ash+17]. For example, the LP of Figure 2.6 tends to be feasible up to tens of thousands
of states with a timeout of one hour. Even comparably abstract real-world models
have millions or even billions of states; an analysis by LP seems far out of reach. The
approaches presented in the following may still succeed within reasonable time.

Several alternative approaches have been proposed. We discuss two prominent ideas
in the following, namely value iteration and strategy iteration. While they both usually
have an exponential worst-case runtime, they tend to perform very well on real-world
models. In particular they typically outperform LP approaches by a huge margin.

2.3.2 Value lteration

Value iteration (VI) [Bel66] is a simple yet surprisingly efficient and extendable approach
to solve a broad variety of problems. At its heart, VI relies, as the name suggests,
on iteratively applying an operation to a value vector. This operation often is called
‘Bellman backup’ or ‘Bellman update’. The shape of this update naturally depends
on the domain and objective in question. It usually is derived from a fixed-point
characterization thereof, and thus VI often can be viewed as fixed point iteration.

For reachability, the optimal value Vi is a fixed point of [For+11, Section 4.2]

Fs) = {1 ifseT, (23)

MaXqe Av(s)A(s,a)(f) otherwise.

Note that Vg7 is not the only solution. For example f(s) = 1 for all s € S satis-

fies the equation, too. However, V@7 is the point-wise smallest fixed point [Put94,

Theorem 7.2.3]9. Thus, the VI approach starts from an initial value vector vg[s] = 0,
certainly less than or equal to the true value, and we apply the iteration

o] = 1 itseT, (2.4)
Vel = MaX,e Au(s)A(S,a)(vg) otherwise. '

This iteration is monotone and converges to the true value in the limit from below.
Formally, we have for all states s that (i) limy oo vi[s] = VE7E(s) and (ii) vg[s] <
vgt1[s] < Vork(s) for all iterations k [Put94, Theorem 7.2.12] ©. Note that in this
case, i.e. (unbounded) reachability, VI intrinsically can only yield approximate solutions.
However, this is not always the case for VI. For example, bounded reachability for k
steps can be computed precisely by applying the above iteration exactly k times.

There are MDP where convergence up to a given precision takes exponential time
[HM14, Theorem 17], but in practice VI often is much faster than methods based on
linear programming. Even a naive implementation of VI, requiring a few dozen lines of
code, usually yields a result very close to the optimum much faster than LP.

©Reachability is a special case of expected total reward, obtained by assigning a one-time reward of 1 to
each target state.

19

2 Preliminaries

We are still missing an important ingredient for a practical implementation of VI.
So far, we only know that eventually the value vector vy is close to the optimum,
but we do not have a concrete (practical) bound. In other words, we need to know
when the current values actually are close to the true value and we can stop the
iteration. In some applications, a sensible bound on the number of iterations is known
a-priori, e.g., bounded reachability. For (unbounded) reachability, this a-priori bound
however is exponential. In general, we are interested in finding a so called stopping
criterion, i.e. a way to determine or estimate how close we are to the true value based
on the computation so far. Surprisingly, even for reachability such a stopping criterion
was not known until recently; popular model checking implementations resorted to a
best-effort solution without any guarantees [HM14, Section 3.1], [Bai+17]. In [Bra+14;
HM14], a stopping criterion for reachability was independently discovered by additionally
computing converging upper bounds. The difference between upper and lower bounds
then gives a straightforward stopping criterion—once the difference between upper and
lower bound in the initial state is smaller than €, we can stop the iteration.

A big advantage of VI is its simplicity and extendability. For example, the iteration can
be applied asynchronously. Here, we do not update the values of all states simultaneously.
Instead, we apply the operator of Equation (2.4) to a subset of states. We can thus
focus the computational effort on important areas of the system instead of applying the
iteration globally while maintaining convergence guarantees. This is a key ingredient
of the partial exploration approaches discussed in Chapters 3 and 5. In the context of
fixed-point iteration, this is also called chaotic iteration [Cou78].

2.3.3 Strategy lteration

Another elegant approach is described by strategy iteration (SI) (or policy iteration,
strategy improvement). Instead of iterating values as in VI, each iteration evaluates and
improves a strategy. Abstractly, we (i) fix a strategy, (ii) evaluate it, and (iii) improve
the strategy greedily based on the evaluation, repeating until no improvement is possible.
An in-depth theoretical discussion of strategy iteration for MDP can be found in, e.g.,
[Put94]. Here, we provide a brief overview by discussing SI for reachability.

An important observation is that memoryless deterministic strategies are optimal
for reachability, i.e. there always exists a strategy 7 € IINP such that Vore(s) =
Vg*TJE [Put94, Theorem 7.1.9] ©. In other words, when searching an optimal strategy,
it is sufficient to restrict the search to HD\AAD, which is finite. This property is not
strictly necessary for SI to be applicable, however it significantly eases correctness and
convergence arguments as well as complexity analysis.

When applying SI to reachability, we evaluate the performance of the strategy
me HD{',ID by directly computing its performance Vi g. This value also satisfies a fixed
point equation very similar to Equation (2.3). In particular, for a strategy = € HD\/'/ID we
have that [BK08, Theorem 10.19]

" (s) = 1 ifseT,
OTEL) = A(s,m(s))(Virg) otherwise.

20

2.3 Solution Techniques

Since the non-determinism of the MDP is eliminated by the strategy, we obtain a simple
linear equation system. This equation system does not have a unique solution in general,
see [BK08, Remark 10.18]. However, this problem is remedied by only considering
states which have a non-zero probability of reaching the target set. These states can be
identified by a simple graph analysis. Together, we can compute Vi, using standard
approaches. This provides Step (ii) of the strategy iteration template. Now, we need
to improve the strategy based on the achieved value Vi, . This often is the crux of
applying SI to a particular problem—both correctness and termination of the process
clearly depend on the improvement step.

In the case of reachability, it turns out that the improvement step is elegantly simple.
Let m € H%tD be a strategy. For each state, we simply choose an action which maximizes
the value Vi, over its successors, i.e.

m'(s) € argmax e ay(5) A(s,) (Virg),

choosing 7'(s) = m(s) where possible. If #’ = 7 then clearly 7’ satisfies the optimality
condition Equation (2.3) and thus is optimal.

In contrast to VI, strategy iteration yields exact values while still providing good
performance in practice compared to LP. Another interesting by-product of SI is that
in each iteration step it trivially yields a witness strategy exactly achieving the current
computed value. As we argue in Section 3.3, this can also be considered a weakness—we
do not always need precise values in order to improve the current strategy.

21

3 Efficient Analysis of Mean Payoff

In this chapter, we discuss analysis of mean payoff objectives on Markov decision
processes. Informally, we are given an MDP, equipped with a reward function, together
with an initial state. Based on this input, the task is to compute (or approximate) the
maximal achievable mean payoff.

— Problem Statement

Let M = (S, Act, Av,A) be an MDP, § € S an initial state, and
rew : S — R a reward function. Compute the maximal achievable
mean payoff

ig\?v)—(mp,E(é) = SUPrel V:;W—mp,E(g)'

We first outline the problem together with classical solution approaches and their
limitations in Section 3.1. Then, Section 3.2 presents our value iteration based approach,
which we furthermore combine with the partial exploration ideas of [Bra+14]. This
allows our VI method to focus on ‘important’ areas of the system as well as discarding
parts which cannot be part of an optimal solution, saving computational resources. In
Section 3.3, we show a different approach, based on strategy iteration. In contrast to
V1, this offers precise results, however at the expense of additional computational effort.
We devise several techniques to speed up the computation, even making it competitive
with our VI approach on some models. We conclude with a summary and directions for
future work in Section 3.4.

3.1 Background

Mean payoff has already been extensively studied from a theoretical point of view. We
direct the interested reader to [Put94, Chapter 9] for further background and provide
an overview of the results here.

An important difference of mean payoff to other objectives discussed in this thesis
is its ‘prefix-independence’—the rewards obtained on any finite prefix of a run are
irrelevant for its performance. In other words, mean payoff exclusively depends on the
behaviour ‘at infinity’, completely neglecting the transient behaviour. This is in direct
contrast to reachability, where the target is always either reached on a finite prefix or not
at all. Nevertheless, memoryless deterministic strategies are optimal for mean payoff,

23

3 Efficient Analysis of Mean Payoff

i.e. there always exists a strategy 7* € IINP such that ViewmpE(8) = era:,v_mpﬁ(s) for

all states s € S [Put94, Theorem 9.1.8]. To identify such strategies, we first need to
introduce some additional ideas.

3.1.1 Gain & Bias

An important notion for the analysis of mean payoff is the concept of gain and bias.
Intuitively, the gain of a state refers to the optimal mean payoff obtained when starting
in this state. The bias denotes the total expected deviation from the gain until the
systems’ behaviour ‘stabilizes’ from transient to infinite. For example, suppose we would
obtain the rewards 11 75555 ---. Then, the gain is 5 and the bias equals 8, as we
obtain 6 and 2 more than the gain before stabilizing. This intuition gives rise to the
optimality equations for the gain g and bias b for all states s € S [Put94, Section 9.1.1]

9(s) = max,e av(s)A(s, a)(g)

(3.1)
b(s) = maxae 4y, (s)A(s, @) (b) + rew(s) — g(s),

where
Avy(s) = arg maxaeAv(s)A(s, a){g)

are the actions of s which maximize the gain, i.e. the witnesses for g(s) in the first
line of Equation (3.1). We provide further intuition of gain and bias in the following
discussion of strategy iteration for mean payoff. The above equation system has no
unique solution in general, however (i) the gain component of any two solutions is equal,
(ii) there always exists a solution, and (iii) the gain of this solution corresponds to the
optimal mean payoff [Put94, Section 9.1.2, 9.1.3]. Thus, our task now is to solve this
equation system. With some effort, we can reformulate this sytem as a linear program
for mean payoff [Put94, Section 9.3]. However, we do not discuss this LP in detail here,
since it turns out to be impractical for real-world models [Ash+17]. Instead, we focus
on dynamic programming approaches.

3.1.2 Strategy lteration

As with reachability, we can immediately derive an equation system for a fixed strategy
by replacing the maximization in Equation (3.1) by the strategy’s concrete choices
as follows. Let 7 € HD\/'AD be a memoryless deterministic strategy. The mean payoff
obtained by 7 can be computed by solving

A(s, () (gr)
bx(s) = A(s, m(s)) {br) + rew(s) — g(s),

Q
3
—
»
~
I

(3.2)

for all states s € S. The strategy = is optimal if a solution (g, b;) to the above equation
satisfies Equation (3.1). Otherwise, we can improve the strategy by optimizing according
to the optimality equation as follows. Suppose (gr,bs) is a solution to Equation (3.2)
which does not satisfy the Equation (3.1). Then, in each state s where 7(s) ¢ Av,,_(s),

24

3.1 Background

c3
e
el .

ay as

Figure 3.1: Example MDP to illustrate the strategy improvement algorithm and the concepts
of gain and bias of mean payoff. The reward assigned to each state by the reward
function rew is written next to each state.

i.e. there is an action in state s which provides strictly better gain, we update 7(s) to
any gain-optimal action from Avg_(s). If no gain improvement is possible in any state,
but we still do not satisfy the optimality condition, we instead need to improve the bias.
As expected, we improve the strategy by changing it to any bias-optimal action, i.e.
any action in argmax,e 4, _(s) A(s, 7(s))(bx) + rew(s).!) This yields a correct strategy
improvement algorithm [Put94, Section 9.2], which we illustrate in the following and
augment further in Section 3.3.

Consider the example MDP in Figure 3.1. We explain a sample execution of SI on this
MDP. This simultaneously provides some insight in the notion of gain and bias. In the
example, the only state which allows for a choice is s3. We use m,, m, and 7, to denote
the memoryless deterministic strategy with choice as, b3, and c3 in s3, respectively.
The optimal strategy is 7., achieving a mean payoff of 1 for states s; and so, and a
mean payoff of 2 in s3 and s4, while m, and 7, only achieve 0 and 1 in sg4, respectively.
Suppose the algorithm starts with m,. Solving Equation (3.2) gives us g, = (1,1,0,0)
and we can directly improve the strategy based on gain by switching to 7. Now, we
obtain g, = (1,1,1,1), satisfying the gain optimality condition. However, 7, is not
optimal, and indeed we can improve it based on the bias. We get b, = (0,4, 3,6). While
both actions b3 and c3 offer the same gain, c3 yields a higher bias, namely 6 instead of
4. By switching from bs to c3, we are not decreasing our gain (since both actions are
gain-optimal) and obtain a higher reward at least once, which, intuitively, cannot hurt.
And indeed, 7. even obtains a higher gain, namely g, = (1, 1,2, 2).

Observe that b;, = (0,4,—2,2). In particular, we have by, (s2) > br.(s4), however
59 is not gain optimal, i.e. so ¢ Av,, (s2). Hence, the second part of the optimality
equation is satisfied and the SI algorithm does not switch back to .

3.1.3 Value lteration

While the derivation of a linear program and a strategy iteration approach is rather
standard based on the optimality equations, Equation (3.1) does not immediately
provide us with a value iteration approach. A different perspective allows for a first step
towards a VI solution. Recall that by definition View-mp(p) = liminfy_, o % View-k(p),

D Note that the bias-optimal action is selected only among the gain-optimal actions Avg, (s). The SI
algorithm in [Put94, Section 9.2.1] incorrectly chooses among all available actions in Step 3b., as we
report in [KM17]. The corresponding proof of correctness in [Put94] uses the correct formulation.

25

3 Efficient Analysis of Mean Payoff

i.e. the mean payoff of a single path is the limit of the averaged total reward. Moreover,
[Put94, Theorem 9.4.1] shows that the average total reward converges to the mean
payoff, i.e.

max : 1 max
re\?v—mp,]E(s) = klggo % Vre\;av—k:,IE(s)'
We can use VI to compute the k-step total reward by setting vg[s] = 0 for all states
s € S and iterating
Vgt1[s] = rew(s) + max A(s,a)(vg).
a€Av(s)

We have vg[s] = Viea's g (s) [For+11, Section 5.2] and immediately get Vigat,, g(s) =
limy,_,o0 30k[s] [Put94, Section 9.4.1]. However, this does not yet provide us with a
practical algorithm. As mentioned in Section 2.3.2, another important part of the VI
puzzle is the stopping criterion. This criterion proves to be much more involved than
for reachability. In [Put94, Corollary 9.4.6], a stopping criterion is shown for the special
case where all states have the same optimal mean payoff. A potential candidate for
the general case is conjectured in [Put94, Section 9.4.2], which however turns out to
be wrong, as we show in [Ash+17]. Instead, a topological argument actually allows us
to extend the former stopping criterion, yielding the first VI solution for mean payoff
applicable to general MDP, which we present in the next section. For coherence, the

discussion of the stopping criteria of [Put94] is moved to the next section, too.

3.2 A Partial Exploration Approach

In this section, we present our novel approach to solving the mean payoff optimization
problem via approximation, presented in [Ash+17] (see Paper A). The main contributions
are threefold, namely

1. We disprove a previously conjectured stopping criterion.

2. We derive local value iteration, the first VI approach to solve mean payoff on
general MDP.

3. We combine our approach with the partial exploration approach of [Bra+14] to
obtain on-demand value iteration, focussing the computational effort on ‘important’
areas of the system.

We first explain the stopping criteria of [Put94] and disprove the one conjectured for
the general case on a simple counterexample. Based on the gained insights, we derive a
correct VI algorithm. Finally, we outline our novel partial exploration approach.

3.2.1 The Stopping Criterion

As explained in Section 3.1.3, we can directly compute the k-step total reward using VI.

Throughout this section, we use v[s] = Vigi'y g(s) to denote this k-step total reward.

By averaging the k-step total reward with %, we get a value converging to the mean

26

3.2 A Partial Exploration Approach

Figure 3.2: Example MDP disproving the general applicability of the stopping criterion for
mean payoff given in [Put94].

payoff for k — oo. The only missing piece is a stopping criterion, estimating how close
the current average is to the true mean payoff.

To this end, we again take a different perspective. Intuitively, for k — oo, the reward
obtained in the k-th step, i.e. the difference between vy[s] and vy 1]s], should correspond
to the mean payoff. Indeed, w.l.o.g. we can prove that Vigi . (s) = limg 0 vk11[s] —
vg[s] [Put94, Theorem 9.4.5]@. Intuitively, once this difference ‘stabilizes’ for all states,
it should give us the mean payoff. In order to exploit this intuition for a stopping

criterion, we define the span semi-norm of a vector v € R™ by

span(v) := maxv[i] — min v[7].
i€[n] i€[n]
Essentially, the span semi-norm describes how much the entries of a vector differ from
each other. For example, span((1,2,3)) = 2 and span((2,2,2)) = 0. In particular,
span(v) = 0 iff all entries of v have the same value. Now, define t; := vi1 — vy the
reward obtained in the k-th step. The span semi-norm of ¢; is small if all of its entries
have similar values, i.e. in step k all states obtain a similar reward.

Rather surprisingly, this directly yields a stopping criterion. In particular, [Put94,
Theorem 8.5.6] shows that if span(ty,) < e then [tx[s] — VieaSn, g(s)] < € for all states
s € S. Note that if span(t;) = 0 then ¢; also satisfies the gain equations of (3.1).
Interestingly, we do not need the notion of bias at all; it is implicitly taken care of by

the underlying total reward computation.

Under the assumption that all states have the same optimal mean payoff [Put94,
Corollary 9.4.6] also shows that limy_,~ span(t;) = 0, directly yielding a VI algorithm
for this special case. Unfortunately, this convergence fundamentally relies on that
assumption, as we show on an example. Consider the MDP in Figure 3.2. Here, we
have that vy = (k,0) and thus t; = (1,0). Consequently, span(t;) = 1 for all k£ and the
stopping criterion is never satisfied, even though t; equals the correct mean payoff.

As an extension to the general case, [Put94, Section 9.4.2] conjectures span(tx—1) —
span(ty) < €. This would be applicable to the example of Figure 3.2, however it is
wrong in general, as we show in [Ash+17]. As [Put94, Section 9.4.2] already points out,
the issue of the original stopping criterion in the general case is that different states
may have different optimal mean payoff, as is the case in Figure 3.2. We extend on this
observation in our general VI approach, presented in the next section.

@ The proof assumes that the MDP is ‘aperiodic’, which can easily be obtained in general by adding a
self-loop under every action with a small probability and scaling the mean payoff accordingly, see
[Put94, Section 8.5.4] or [Ash+17].

27

3 Efficient Analysis of Mean Payoff

s1,5 Fand 54,5 [as T
b T\OF)

bs

s

(a) The input MDP. (b) The weighted MEC quotient.

Figure 3.3: Example execution of the local value iteration algorithm for mean payoff. The
left figure shows the input MDP with its MECs shaded. The right figure then
shows the computed weighted MEC quotient. The added states are shaded and
self loops on them are omitted. Computing the optimal weighted reachability on
the weighted MEC quotient equals the optimal mean payoff of the original MDP.

3.2.2 Local Value lteration

In order to obtain a VI approach applicable to general MDP, we provide two central
observations in [Ash+17].

Firstly, states in the same MEC always have the same optimal mean payoff. For an
intuitive proof sketch, pick any two states s and s’ of the same MEC. By Lemma 4, we
can follow a strategy to go from s to s’ with probability one. Once at s’, we can follow
the optimal strategy for s’ to obtain the same mean payoff. Thus, when restricting the
computation to a single MEC, we can use the already established stopping criterion to
approximate the optimal value of this MEC, i.e. the best mean payoff we can achieve
assuming that we remain inside this MEC.

Secondly, once we computed the optimal value of each MEC, we can reduce the
problem to weighted reachability, as follows. Intuitively, when we currently are in some
MEC, we can decide to either stay in the MEC and obtain the optimal value or try to
move to a different MEC and obtain the rewards there. In [Ash+17], we thus replace
each MEC with a single representative state and add a ‘stay’ action, leading to a special
reward state which yields the MEC’s optimal value.

Together, our local value iteration works as follows:

1. Compute the set of MECs MEC(M).

£

2. For each MEC, approximate the optimal value up to precision 5.

28

3.2 A Partial Exploration Approach

0 99 large MEC

10— 10
347 837 817 bl

82, 5 az

Figure 3.4: Example MDP to illustrate several optimization possibilities of local value iteration.

3. Construct the weighted MEC quotient® with these optimal values.

4. Approximate the optimal weighted reachability value up to precision 5.

This yields an e-optimal value, as we show in [Ash+417, Theorem 3]. We omit a formal
discussion here and instead provide an illustrative example in Figure 3.3. The optimal
mean payoff in this MDP is 6 for all states except s4, obtained by moving towards
s¢. We highlight the MEC ({s2, s3}, {a2, as,bs}) and its representative state {sa, s3}.
Inside this MEC, we could obtain a mean payoff of, for example, 0 or 5. However, for
our purposes, only the optimal mean payoff of this MEC is relevant—once we decide to
stay in a MEC there is no point in not achieving the optimum. In the MEC quotient,
all ‘internal’ details of the MEC are eliminated, and we are only left with the decision
whether to stay or transition to a different MEC. By staying, we obtain the optimal
mean payoff of this MEC, namely 5.

This decomposition allows us to further augment our approach with the partial
exploration techniques first presented in [Bra+14], as we explain in the following section.

3.2.3 On-Demand Value lteration

In the local value iteration approach, we approximate the value of each MEC up to
the maximal required precision of §. However, this may be unnecessary due to several
reasons. In particular, our previous approach did not consider the initial state § of the
query until the final result was computed. Consider the MDP in Figure 3.4, where we
fix the initial state § = s1. Firstly, we observe that the left MEC comprising s3 and s4
obtains a mean payoff of 3. Once we know that this mean payoff is less than 5, we can
stop further computation, as we can obtain a mean payoff of 5 by choosing action ¢; in
the initial state. Secondly, observe that the value obtained in the ‘large MEC’ is largely
irrelevant for approximation—even if we could obtain a mean payoff of 100 there, it
only changes the optimal value of s; by 1078. Thus, assuming that we have sufficiently
tight upper and lower bounds of this value, we can avoid any computation in ‘large
MEC". In particular, we may be able to avoid constructing this MEC altogether.

By combining the ideas of [Bra+14] together with our observations of the previous
section, we obtain our on-demand value iteration algorithm, capable of dynamically

®See Section 2.1.2 for a brief outline of classical MEC quotients and [Ash+17, Definition 4] for a
formal definition of the weighted variant. Note that their definition already includes the reduction
of weighted reachability to regular reachability.

29

3 Efficient Analysis of Mean Payoff

—10

10
sgzap, [1.1,4.9) ‘Halﬁ 51, [5,5 4+ 1078] [-by —o

1—10"1
| S

stays 4

|

‘ stays 4, [1.1,4.9] ‘

Figure 3.5: Snapshot of on-demand value iteration applied to the MDP from Figure 3.4. We
assume a lower bound of 0 and upper bound of 100 on the reward function.

identifying both of these optimization possibilities. In essence, the algorithm keeps
upper and lower bounds on the optimal mean payoff in each state. These bounds are
initialized to sane values and dynamically updated until the bounds of the initial state
have converged close enough.

We explain the principle ideas in several steps. First, fix some end component (R, B)
of the MDP. Assuming that we remain inside this EC, all states can achieve the same
optimal mean payoff, denoted vg. As explained before, we can compute the k-step
total rewards vy restricted to the EC and the differences ¢, eventually converge to the
optimum vg. By the stopping criterion of [Put94], we have that span(¢;) < ¢ implies
|ti[s] — vr| < e. In other words, we have that |tx[s] — vgr| < span(tx). Inserting the
definition of the span semi-norm gives us that minsep tx[s] < vp < maxgep tx[s]. Thus,
the vector tj directly gives us bounds on vg. In particular, we can refine bounds on the
optimal value in any EC on demand by continuing the iteration.

Now, assume that we construct the complete input MDP and compute all MECs.
Then, we again construct the weighted MEC quotient. However, instead of a single
value, the stay states are assigned upper and lower bounds on the value obtained in
this MEC. Using the above intuition, we can refine the bounds of any stay state. All
other states of the quotient can be updated by simply propagating the upper and lower
bounds according to the computation of weighted reachability.

If we apply all these updates synchronously, we effectively obtain our previous local
value iteration approach. However, by dynamically identifying which states to update,
we can focus our computation on important areas of the system. For example, if the
expected upper bound of one action is strictly less than the lower bound of another
action, we can safely omit the former action. In [Ash+17], we explain a guided sampling-
based approach for selecting which states to update. Furthermore, we augment this
approach with lazy construction and on-the-fly detection of end components, allowing
us to dynamically build the weighted MEC quotient of the relevant parts of the MDP.

See Figure 3.5 for a sample execution of on-demand value iteration on the MDP from
Figure 3.4. The algorithm can approximate the mean payoff of s; without investing too
much computational effort in the MEC {s3, s4} or constructing the ‘large MEC’ at all.

30

3.3 Precise Solutions with Strategy Iteration

3.3 Precise Solutions with Strategy lteration

While the previous value iteration algorithms inherently only provide approximation
solutions in general, we sometimes require precise values. Recall that linear programming
yields such precise results, however it does not scale to practical applications. Instead,
we investigated the classical strategy iteration approach. Similar to LP, a standard SI
algorithm already exists for mean payoff problems, see Section 3.1.2 for an overview.
Alas, this algorithm also quickly reaches its limits in practice. In [KM17] (see Paper B),
we identified the two following issues:

1. The equation system of Equation (3.2) has size O(|S|?) and typically ~ 2k - | S|
non-zero entries, where k is the average number of successors under an action. This
quickly becomes intractably large already for moderately sized models (|.S| ~ 10°).
Moreover, the equation system is under-determined, ruling out efficient approaches.
Uniqueness can be obtained by adding additional rows. However, then the system is
not square any more, again ruling out standard approaches. Finally, the condition
number of this equation system often is rather large (we observed & > 10 already
on moderately sized models), quickly resulting in numerical instabilities.

2. In order to determine the gain of a strategy using the equation system (3.2), the
bias also has to be determined. However, often only the gain is needed for an
improvement step. Similarly, the equation system is solved precisely in each step,
while a quick approximation could already yield a possible improvement.

To address these problems, we propose two classes of optimizations to SI, which drastic-
ally increase its performance on real-world problems. Firstly, we consider topological
optimizations, allowing for a divide-and-conquer approach, addressing the first problem.
Secondly, we make use of our observations in Section 3.2. We propose a mechanism
alternating between value iteration and strategy iteration in a non-trivial way. This ap-
proach uses value iteration to approximate the performance in each state and refines the
approximated values in potentially optimal states, tackling the second issue. Moreover,
we present a combination of the two approaches, yielding further improvements.

3.3.1 Topological Optimizations

In this section, we briefly outline several topological observations of [KM17]. Recall
that for an MDP M = (S, Act, Av, A) and memoryless deterministic strategy = € II}IP,
we obtain a Markov chain M™ = (S, ™) where 07 (s, s’) = A(s,7(s), s’). Moreover, the
gain obtained by solving Equation (3.2) exactly describes the mean payoff obtained in
the Markov chain M™.

MEC decomposition Using the ideas presented in Section 3.2, we can compute the
overall mean payoff by first computing the optimal value of each MEC separately
and then solve the associated weighted reachability problem, again using SI.

BSCC compression Given a strategy m € HD\"/P, all states which are in the same BSCC
of M™ have the same gain. As such, we can ‘compress’ the equation system

31

3 Efficient Analysis of Mean Payoff

by replacing all gain variables corresponding to states in the same BSCC by a
single variable, representing the gain of the respective BSCC. Such an analysis
is common to linear equation solving in general. However, this compression
approach interestingly always yields a square equation system with a unique
solution, allowing us to use more efficient solution approaches.

SCC decomposition By extending the above idea, we can decompose the large equation
system into several smaller problems. Observe that the analysis of a BSCC is
completely independent of all other parts of the system. Thus, we can solve
Equation (3.2) for each BSCC separately. Then, we observe that a state which is
not in a BSCC does not ‘earn’ any gain on its own. Instead, its gain only depends
on the probability of reaching particular BSCCs. This observation allows us to
further decompose the problem into several smaller equations, all with square
matrices and unique solutions.

3.3.2 Strategy lteration by Approximations

In this section we demonstrate how we can use approximation approaches in the context
of strategy iteration. Intuitively, as long as we are working with a ‘bad’ strategy, we are
not interested in knowing how bad it is exactly, we just want to know how to improve it.
In [KM17], we assume that we are given an approzimation oracle, yielding upper and
lower bounds on the gain, i.e. values L™(s),U"(s) with Vi, ,, m(s) € [L7(s), U™(s)].
These approximations can be obtained by, for example, using the value iteration ideas
discussed in the previous Section 3.2. Then, we try to improve the strategy based on these
approximations. In particular, if for any state s there exists an action a € Av(s) such
that U™ (s) < A(s,a)(L™) we can safely switch to action a. When no such improvement
is possible, we employ one round of strategy iteration. If this round does not yield any
improvements, we already are converged, otherwise we continue the process.

We deliberately do not improve the strategy based on bias approximations, due to
reasons outlined in [KM17]. Firstly, it proves to be rather difficult to approximate the
bias. Secondly, recall that an improvement w.r.t. bias is only allowed among actions
yielding the exact same gain, which we cannot determine using approximations.

3.3.3 Combining both Approaches

In order to combine our two approaches (topological optimization and approximation
improvements), we use the following observation. Recall that each state in a MEC has
the same optimal mean payoff. In particular, the optimal gain of a MEC certainly is at
least as large as the lower bound on the gain of any strategy achieved in any state of the
MEC. Thus, let (R, B) € MEC(M) be a MEC, 7 € IIN!D the current strategy, and L™ (s)
the lower bound approximation. Then, let L™(R) = maxsecr L™(s) the maximal lower
bound of all states in this MEC. In particular, the states may belong to different BSCCs
in the induced Markov chain M™. Now, any state in (R, B) with an upper bound
smaller than L™(R) clearly performs suboptimally and we can easily adapt the strategy
such that all those states ‘point towards’ the better region by virtue of Lemma 4.

32

3.4 Conclusion

3.4 Conclusion

We presented two different approaches to solve mean payoff queries in practice. Our
value iteration approach is able to approximate the result up to an arbitrary precision
and focusses computational effort on relevant parts of the system. Strategy iteration on
the other hand provides us with precise solutions at the expense computational effort.

As an interesting extension, we seek for several ways to combine the two approaches.
In particular, strategy iteration is good at solving MDP where VI tends to be slow. So,
we could augment the approach of Section 3.2 with an interleaved strategy iteration
to speed up convergence. Dually, the SI method of Section 3.1.2 currently solves the
equation system on the whole MDP. By building on the ideas of Section 3.3.3, we might
be able to identify regions of interest and restrict computation to those.

For the practical part, we only provided a prototype implementation of our approaches
in [Ash+17; KM17]. A unified, efficient implementation in popular model checkers such
as PRISM [KNP11] or Storm [Deh+17] may provide us with further insights which
structural properties of a system favour one approach over the other.

33

4 Probabilistic LTL Model Checking

In this chapter, we discuss the analysis of objectives given in linear temporal logic (LTL)
as introduced in Section 2.2.2. Similar to Chapter 3, we are given an MDP and an
initial state. However, instead of a reward function, we are provided with a labelling of
the MDP’s states and an LTL formula to be satisfied. Now, the task is to compute the
maximal probability of satisfying the given formula.

—— Problem Statement

Let M = (S, Act, Av, A) be an MDP, § € S an initial state, AP a finite
set of atomic propositions, L : S — 2AP a labelling function, and ¢ an
LTL formula over AP. Compute the maximal probability of satisfying
the formula ¢

max

V¢,1E (8) = SUPrell V?,Z,E(ﬁ)-

Again, we first outline the classical solution approaches in Section 4.1. Then, we explain
our contributions in Section 4.2, combining [Kfe+18] (see Paper C) and [KMS18§]
(see Paper D). Both provide several practical optimizations of the LTL-to-automaton
translation explained in Section 4.1, thus speeding up the subsequent model checking
task in practice. Brief concluding remarks are given in Section 4.3.

4.1 The Classical Solution Approach: Automata

Before we explain our improvements towards this problem, we first outline the classical
solution approach. Further information can be found in [For+11, Section 7] and [BKO0S,
Section 10.3, 10.6.4]. The so called automata-theoretic approach [VW86] applied to
MDP roughly proceeds as follows.

1. Translate the LTL formula into a (deterministic) w-automaton (introduced in the
next section).

2. Compute the product of the MDP with the obtained automaton.
3. Identify winning MECs in the product.

4. Compute the maximal probability of reaching the winning MECs.

35

4 Probabilistic LTL Model Checking

Steps 3 and 4 are executed on the product MDP, obtained in Step 2. Naturally, the
size of the product strongly correlates with the size of the automaton from Step 1.
Our improvements presented in Section 4.2 are focussed on minimizing the size of this
automaton, simplifying the subsequent steps. In Section 5.3, we briefly discuss an
approach aiming to similarly improve the performance by reducing the size of the MDP.

4.1.1 Automata

We briefly introduce the concept of w-automata.

Definition 5 (Deterministic w-Automata). A deterministic w-automaton A over the
set of atomic propositions AP is a tuple (@, AP, d, §, o) where

e (Q is a finite set of states,
o 0:Q x P(AP) — Q is a transition function®
e § € Q is the initial state, and

o « is an acceptance condition (described later).

A word w € P(AP)“ naturally induces an infinite run p € (Q x P(AP))¥ on the
automaton starting in the initial state and following the letters of w. We write A(w)
to denote the unique run of A on w. A transition ¢ € Q x P(AP) occurs in a run p if
there is some i with p; = t. We use Inf(p) to denote the set of all transitions occurring
infinitely often in p.

A wide variety of acceptance conditions have been studied in the literature. In essence,
such an acceptance condition decides whether a given word w is accepted or rejected by
the automaton based on Inf(A(w)), i.e. the set of transitions which are visited infinitely
often. In other words, a maps a set of transitions to either ‘accept’ or ‘reject’. The
language of A, denoted by L(A), is the set of words accepted by A. An automaton
recognizes a language L if L(A) = L.

For simplicity, we introduce only two relevant acceptance conditions, namely Rabin
acceptance [Rab69] and its generalized variant. An instance of Rabin acceptance is
given by a set of Rabin pairs. Each Rabin pair is of the form (Fj, I;) where both
F;, I; C Q x P(AP) are sets of transitions. These F; and I; are called the prohibited set
(or Finite set) and the required set (or Infinite set), respectively. A word w is accepted
if there exists a Rabin pair (Fj, I;) such that some transition of I; is visited infinitely
often and every transition of F; is visited only finitely often. See Figure 4.1 for an
example automaton using Rabin acceptance. Recently, generalized Rabin acceptance,
has been proposed [CGK13]. Here, each Rabin pair comprises a set of required sets, i.e.
(F;, {1 };“:1) Now, a word is accepted by a generalized Rabin pair with index i if for
each j € [k;] some transition of Iij is visited infinitely often and again every transition
of F; is visited only finitely often. This generalizes the Rabin condition, where each
k; = 1. Every generalized Rabin automaton can be de-generalized into an equivalent
Rabin automaton, which however may incur an exponential blow-up [KE12].

W For simplicity, we assume that ¢§ is a total function, i.e. there is a transition for every input.

36

4.1 The Classical Solution Approach: Automata

Figure 4.1: Example automaton over the atomic propositions AP = {a,b}. The initial state ¢
is marked with an arrow, in this case ¢;. When drawing transitions or denoting
the acceptance condition, we write logical formulae over the atomic propositions
instead of listing each transition separately. For example (g2,b) denotes both
the transition (g2, {b}) and (g2, {b,a}). The Rabin acceptance is given by F} =
{(g2,a A'D), (g3, ~a)} and I = {(q1,0)}.

Remark 2. Traditionally, acceptance for w-automata is defined state based, i.e. the
acceptance condition is formulated in terms of infinitely or finitely often visited states
instead of transitions. However, in line with recent works, e.g., [CGK13; Dur+16;
Kre+18], we instead use transition based acceptance, which is both theoretically and
practically more concise.

We are interested in automata, since they can be used to represent the words satisfying
any given LTL formula, corresponding to Step 1. Formally, we have that for any LTL
formula ¢, there exists a Rabin automaton Ag such that £(¢) = £(A,) [EKS16].9
There are many different ways to obtain such an automaton. We discuss some of them
in Section 4.2. While the worst-case blow-up is known to be doubly exponential in
the size of the formula (see, e.g., [AT04]), the automata obtained in practice are often
reasonably sized. We first explain how we can use automata for model checking, i.e. the
central ideas behind Steps 2 and 3.

4.1.2 Probabilistic LTL Model Checking

In this section, we outline how we use w-automata to determine the maximal probability
of satisfying a given LTL formula in a (labelled) MDP. We first define the notion of
product MDP. Intuitively, this product tracks both the evolution of the MDP together
with the automaton. The automaton progresses according to the labelling of the MDP.

Definition 6. Fix a set of atomic propositions AP, an MDP M = (S, Act, Av, A) with
labelling function L : S — P(AP), and an automaton A = (Q, AP, d,q,). We define
the product MDP M x A = (S x Q, Act x Q, Av*, A, where

o AvA((5,0)) = {(a,q) | a € Av(s)}, and

o AA((s,q),(a,q),(s',q")) = A(s,a,s) if ¢ = 5(q,L(s)) and 0 otherwise.

@We note that the inverse statement does not hold, i.e. there are automata for which no corresponding
LTL formula exists, see, e.g., [DGO8].

37

4 Probabilistic LTL Model Checking

a2
il”
0 SJ “

a
o) o]
~ N
a1 ba
—-aAb -a by >-\ as a9
| 05 0.5 by
rd N v
o) o]
\CL1
a2
—b by >
0.5 0.5
res N b2
@) afoyelan
as
0.5
-

Figure 4.2: Example product MDP of the automaton from Figure 4.1 (left) and an MDP (top).
The labels assigned to the MDP’s states by the labelling function L are written
next to the states. For readability, we write the product MDP actions as elements
of Act instead of Act x Q.

The paths of the product MDP directly correspond to the paths of the original MDP.
However, we additionally know which transition in the automaton the current path is
taking based on the current state. This allows for graph-based analysis.

Recall that acceptance of a path in the MDP M is based on which transitions of the
automaton A are taken infinitely often. Furthermore, Lemma 2 (in Section 2.1) shows
that almost all runs eventually remain in a single MEC. Together, we observe that the
set of infinitely often seen transitions under almost all runs belong to a single MEC of
the product MDP. Consequently, we can analyse each such MEC separately.

It turns out that product MECs are either ‘winning’ or ‘losing’, i.e. there either exists
a strategy such that almost all runs in this MEC satisfy the LTL formula or for all
strategies the probability of satisfying the formula in the MEC is zero. In other words,
the value of each product MEC either is 0 or 1. We can determine this value as follows.

Given a MEC in the product MDP, our goal is to check whether there exists a Rabin
pair such that F; is visited finitely often and I; infinitely often. We thus can check each
Rabin pair separately; let (Fj, I;) be a Rabin pair. We remove all product states which
belong to a transition in Fj, i.e. all states (s,q) where (¢, L(s)) € F;. Then, we check
whether in the remains of this MEC we can find an end component which contains an
edge of I;. In that case, we can obtain a winning strategy by first moving towards this

38

4.1 The Classical Solution Approach: Automata

az
o—fa]
b2 \b2
\(13 /b2
)

—— Remove rejecting states matching F', find accepting states matching I ——
a
> 52, 1 as 53, q1
T T /
D2

Figure 4.3: Tllustration of the LTL model checking steps on the product MDP of Figure 4.2.
Recall that the labelling is given by L = {s; — 0, so — {b}, s3 — {a,b}} and the
Rabin acceptance by F; = {(¢g2,a A b), (g3, ~a)} and I} = {(¢1,b)}.

sub-region of the product MEC and then cycling inside it. By construction, the end
component does not contain any prohibited edge F; and visits some transition of I;
infinitely often (see Lemma 4). Moreover, the converse holds, too: If we cannot find such
an end component, there is no strategy which satisfies this Rabin pair in the considered
MEC with non-zero probability. After identifying the set of winning MECs, we obtain
the overall probability of satisfying the given LTL query by a simple reachability query,
maximizing the probability of reaching such a winning MEC starting from the initial
state (8,4). See, e.g., [For+11, Section 7.3] for further details.

Based on the MDP of Figure 4.2, we illustrate this process in Figure 4.3. For each
MEC, we remove all product states which match F; and then identify states accepted
by I; (underlined). For the leftmost MEC, all states match F} and thus it is removed
completely. In the middle MEC, only (s2,¢3) remains, which does not satisfy I; and
thus is losing, too. Finally, the result of the rightmost MEC contains an EC with
winning states and thus the whole MEC is winning. In particular, observe that (ss, g2)
is winning, too, since it can move to a winning state (s2,q2) via ag. All in all, we obtain
that only the top-right MEC of Figure 4.2 is winning, and thus the maximal probability
of a run starting in s; being accepted by the automaton is 0.5.

The procedure of identifying winning MECs for generalized Rabin automata shares
the same essential ideas. Generalized Rabin automata are appealing because they often
are significantly smaller than corresponding Rabin automata, while computation of
winning MECs is not much more complicated [CGK13].

39

4 Probabilistic LTL Model Checking

4.2 Practical Improvements for LTL-to-automata Translations

As we explained at the beginning of this chapter, our contribution towards LTL model
checking is focussed on providing smaller automata in Step 1 of the overall approach.
We provided several practical improvements in [Kie+18] (see Paper C) and [KMS18]
(see Paper D). Most of the contributions are purely focussed on the implementation,
thus we omit an in-depth treatment and only report major points.

Owl, presented in [KMS18], is a library providing an efficient framework for LTL and
w-automata related constructions. Among others, Owl provides the following features:

o A versatile yet efficient representation of LTL and automata, with tight integration
of BDDs used to represent transitions.

o Efficient implementation of numerous general purpose algorithms for LTL and
w-automata, such as rewriting, SCC decomposition, acceptance optimization, etc.

o Flexible ‘pipeline-style’ interface, allowing for rapid prototyping and comparison
of different approaches.

e Fully automated testing framework for quickly detecting bugs in newly developed
constructions, using the excellent tool 1tlcross of Spot [Dur+16].

As of now, Owl serves as basis for several constructions, namely our implementation of
Rabinizer 4 [Kie+18] and IAR [Kfe+17] as well as Delag [MS17], Strix [MSL18], and
many more. Moreover, Owl is actively used in several student projects.

In [Kfe+18], we present Rabinizer 4, a complete rewrite of Rabinizer 3.1 [KK14],
including several fundamental extensions. At its heart, Rabinizer is a collection of
constructions centred around translations from LTL to (generalized) Rabin automata.
The constructions of Rabinizer 4 are implemented in Owl and are part of its standard
distribution. In particular, this includes a complete reimplementation of Rabinizer 3.1,
called 1tl12dgra, with following additional features:

o Support for the full syntax of LTL, e.g. the (weak) release operator,
e BDD-based rewriting and successor computation,

e suspension analysis and detection of several special cases, and

e several generic optimizations such as SCC decomposition approaches.

Furthermore, 1t12dgra heavily profits from the general purpose optimizations provided
by Owl. Together, this yields much smaller automata in practice. A practical comparison
of these effects can be found in [Kie+18, Section 3.

Owl still is under active development and the practical performance of its tools
continues to increase. By providing even smaller automata to the LTL model checking
framework, the size of the product MDP decreases and analysis is much faster.

40

4.3 Conclusion

4.3 Conclusion

We provided practical improvements to the translation of LTL formulae to automata, in
particular (generalized) Rabin automata, which are well-suited for probabilistic model
checking. One important remaining step is a tighter integration with model checkers
such as PRISM [KNP11]. As of now, the ‘exchange’ of the constructed automaton
from Owl to PRISM happens via serialization to a textual representation in the Hanoi
Omega-Automaton Format (HOAF) [Bab+15]. As such, constructing the automaton on
demand or directly combining the BDD representation of the automaton’s transition
structure with PRISM’s BDD representation of the MDP is impossible.

The translations offered by Rabinizer yield a ‘semantic’ labelling of the automaton
states, i.e. each state is equipped with meta-information describing the language obtained
when starting from that state. In [KMM19], we exploit this labelling to solve parity
games, however the underlying idea should be equally applicable to probabilistic model
checking, too. In particular, the sampling-based methods of [Bréd+14] can be guided by
a sophisticated heuristic. When applied to the product MDP, such a guidance could be
derived from the state labels of the MDP.

41

5 The Notion of Cores

large MEC
10710
e
1—10710

~

Figure 5.1: Example MDP to motivate the notion of cores.

In this chapter, we discuss the novel notion of cores, introduced in [KM19] (see Paper E).
As a motivating example, we again consider the MDP of Figure 3.4. It is depicted
again in a simplified manner in Figure 5.1. While discussing this MDP in Section 3.2,
we note that we do not need to consider the ‘large MEC’ in order to approximate the
optimal mean payoff of state s;. The key insight motivating this section is that, more
generally, we do not need to consider this part of the system for an approximation of
any target set when starting in s;. While [Bra+14; Ash+17] use this observation to
specifically adapt solution methods of reachability and mean payoff, respectively, we
instead aim to derive a generic approach. We want to identify irrelevant states, such as
the ‘large MEC’. Then, we can run existing solution methods on the restricted model,
excluding these irrelevant states. Since we reduce the number of states, we speed up
the subsequent computations. Abstractly, this extends the straightforward idea of only
considering reachable states by instead considering sufficiently reachable states. See
[KM19, Section 3] for further motivation.

As the notion of cores is fundamentally new, there is no formal problem statement,
instead we are interested in discovering the implications of this idea. To this end, we first
present the definition and basic properties of cores in Section 5.1, outline our approach
to identifying cores in Section 5.2, and discuss some applications and extensions in
Section 5.3. Finally, we conclude in Section 5.4.

5.1 Definition of Cores

In this section, we discuss the notion of cores and prove some fundamental properties.
First, we define the notion of e-core. Intuitively, an e-core is a set of states which can
only be exited with probability less than €. More formally, given an MDP M, initial

43

5 The Notion of Cores

state §, and precision € > 0, a set of states S. is an e-core if

P [0S0 < e,

i.e. the probability of ever exiting the core S; under any strategy is smaller than e.
Note that the core property also depends on the initial state 5. However, for notational
convenience, we omit explicitly denoting this dependency. When ¢ is clear from the
context, we refer to an e-core by ‘core’.

With this simple definition, we already can prove the key statement motivating our
interest in cores, namely that they are both sufficient and, in a sense, required to
approximate reachability queries up to precision e. In particular, a set S; is an e-core
of M iff for every reachability query 7' C S we have that

0 < VI (5) — sup Prig[0(T'NS) N (S x Act)] < e,
Tellpm

In other words, for any target set T', we can determine Vgl%’fg(é) up to precision € by
determining the reachability of T' on the sub-model induced by an e-core, i.e. by only
considering runs which remain inside S.. Conversely, if we consider a set of states
not satisfying the core property we may not be able to answer a given reachability
property e-precisely. Note that this statement is weaker than [KM19, Theorem 7]. In
an upcoming journal version thereof [KM], we show that the original statement is too
strong and prove the above variant.

Nevertheless, this statement motivates us to find cores. We highlight that many
typical objectives can be decomposed into pre-processing steps (usually restricted to
MECs) and a subsequent reachability analysis. In particular, all ‘infinite horizon’
objectives introduced in Section 2.2, namely (weighted) reachability, mean payoff, and
LTL, allow for such a decomposition. Hence, we can extend the above statement to
those objectives and our initial motivation to use cores for practical speed-ups also is
applicable for these other objectives.

The whole set of (reachable) states trivially gives an e-core for any £. More generally,
this set intuitively is a ‘O-core’. However, this does not yield any computational advantage.
In a sense, this is what traditional explicit methods are doing; all reachable states
are considered in the computation. We naturally are interested in finding small cores
to speed up computation as much as possible. However, it turns out that finding
inclusion-minimal cores is NP-complete [KM19, Theorem 6]. Thus, we resort to a
best-effort approach, presented in the next section.

5.2 Finding Cores on MDP

While finding minimal cores is infeasible, identifying any sufficiently small core already
leads to significant speed-ups. We present a sampling-based approach able to identify
reasonably small cores in practice. It is inspired by the partial exploration ideas of
[Bra+14] and [Ash+17] (discussed in Section 3.1.3). However, instead of trying to

44

5.3 Extensions

answer a given reachability or mean payoff query, we aim to identify a property of the
given system, independent of any query.

Intuitively, the approach works as follows. We separate all states into two categories,
explored and unexplored. First, only the initial state § is considered explored. For each
state, we furthermore keep an upper bound on the probability of reaching an unexplored
state. Initially, this upper bound clearly is 1 for every state. We repeatedly explore
states and conservatively update these upper bounds until the upper bound of the initial
state is smaller than €. The set of explored states then clearly is a core.

This leaves us with two questions, namely ‘Which states should be explored?’ and
‘How are the upper bounds updated?’. To answer the first question, we employ guided
sampling. Intuitively, when we are in some state s, we want to prioritize exploring
(i) unexplored states which are (ii) ‘easy’ to reach, since these contribute the most to
the upper bound of s. For example, recalling the example from Figure 5.1, in § we
want to prioritize exploring so over any state of ‘large MEC’, since the latter is hardly
reachable. To this end, we essentially sample a successor proportional to their upper
bounds (addressing (i)) times the transition probability (addressing (ii)). Whenever we
sample an unexplored state, we add it to the set of explored states. This approach is
inspired by heuristics identified in [Bra+14; Ash+17], but, as we show in [KM19], other
choices are possible, too.

For the second question, recall that we are essentially dealing with bounds on a
reachability query, namely ‘the probability of reaching an unexplored state’. However,
the query dynamically changes during the analysis, since the set of unexplored states is
repeatedly modified. Nevertheless, it turns out that we can use the classical Bellman
equations for reachability presented in Equation (2.4). By further augmenting these
ideas with an on-the-fly detection of end components, this approach allows us to identify
small cores on several models very efficiently, significantly increasing performance of
subsequent analyses.

5.3 Extensions

In [KM19] we also discuss several extensions and applications of cores.

Firstly, cores provide a step towards understandability of probabilistic systems. Since
cores essentially comprise all ‘important’ states, we can focus on such states when trying
to understand or debug such a system. In particular, during the design phase of a
system, we can quickly generate an imprecise core to get a rough overview of the general
system structure, potentially identifying design faults at an early stage.

We also discuss the notion of k-step cores, i.e. the bounded equivalent to cores.
Intuitively, a k-step e-core is a set of states which can be left with probability at most e
within k steps. As such, they can be directly applied to improve the performance of
approximating k-step queries. However, as we argue in [KM19, Section 4.4], we can use
this variant for several other applications. For example, we can use them to quickly
approximate the systems long-term behaviour, i.e. the K-step behaviour for K > k.
While there are no formal guarantees for the precision of this approximation, we found

45

5 The Notion of Cores

that on realistic models this tends to be surprisingly precise and, due to the smaller size
of k-step cores, much faster than direct analysis. Moreover, we use this insight to derive
the idea of stability. In essence, we look at how the precision of this approximation
changes with increasing K. As such, we get an idea how ‘stable’ the k-step core is.
Now, for example, a sudden change of precision after 100 steps may indicate that a
significant event happens around these 100 steps. This provides another perspective on
the understandability of systems.

We can also transfer the notion of cores as well as the discussed extensions to different
models, such as stochastic games, or richer formalisms, such as mean payoff or LTL. Both
extensions to other models as well as richer formalisms turn out to be straightforward.
In particular, most objectives can be decomposed into pre-computations and reachability
analysis. For example, consider probabilistic model checking of LTL as discussed in
Chapter 4. It is straightforward to show that the product MDP obtained by multiplying
a core with the respective automaton still allows for e-approximations.

Finally, a promising general extension are cost-bounded cores. These denote a set
of state where we remain with high probability given that we do not exceed a cost
bound. This generalizes both infinite cores (0 cost everywhere) and finite cores (1 cost
everywhere). Thorough analysis may provide a unified algorithm to solve both cases
and shed further insight on the underlying idea. However, this remains future work.

5.4 Conclusion

We presented the novel notion of cores, a framework for approximate verification of MDP
via partial exploration. Our sampling-based approach identifies small cores efficiently
for both Markov chains and Markov decision processes. The principle idea of cores,
identifying relevant parts of the system’s state space, can be applied to numerous
other formalisms, such as stochastic games or probabilistic programs. Such extensions
could provide us with valuable understanding of the respective models. In particular,
extending finite cores to continuous time systems poses a non-trivial challenge.

46

6 Taming Risk in Probabilistic Systems

Decisions in real life are often shaped by analysis of the associated risk. Thus, many
fields such as psychology or finance invested great effort in both understanding the
human notion of risk and finding ways of formally quantifying it. Yet, despite risk
being an essential notion in decision making—especially when it comes to safety critical
decisions—the verification community hardly dealt with this problem at all. In this
chapter, we motivate the treatment of risk in verification and present a first step towards
risk-aware analysis of probabilistic systems, as presented in [Kie+18] (see Paper F).
In particular, we show that the computational complexity of synthesizing risk aware
strategies for our particular application is equivalent to that of regular approaches
only aiming for expectation maximization. This motivates further research into the
understanding of risk and practical algorithms.

We first present our notion of risk in Section 6.1, analyse the associated model
checking problem in Section 6.2, and conclude in Section 6.3.

6.1 A Measure of Risk

In the context of probabilistic systems, random outcomes are typically aggregated using
expectation, which is completely oblivious to risk. As a small example, consider an
abstract model of a power plant. Naturally, we want to control this plant in a way
such that the average power-output is maximized. When operating normally, the plant
produces 100 MW. Now, assume that we can overcharge this plant to produce 110
MW. However, overcharging puts the plant into an unstable state, resulting in a 5%
chance of damage to the plant, leading to a maintenance period and 0 MW output.
Nevertheless, overcharging the plant in this manner is preferred by a purely expectation
maximizing agent, while this behaviour might not be desirable in reality. We emphasize
that this highly depends on the context and modelling. For example, if we operate
several thousand plants in parallel, we might be much more inclined to accept this risk
compared to a situation where only a few are operating.

One might think that this problem can be tackled by adding penalties to such incidents.
However, there are several problems associated with such penalties. Firstly, we lose
interpretability of the obtained result. When we, for example, associate -100 MW’ with
a plant failure, this has no clear real-world equivalent and an optimal value of ‘50 MW’
might mean ‘100 MW’ output in 75% of the cases and failure in 25%. Secondly, it is
unclear how much such a failure should be penalized, especially if there are several
kinds thereof. If penalties are too large, it might be the case that the optimal strategy
is not to act at all. In our example, this means that the optimal value is 0 MW and we
do not even begin to produce power, since just starting up the plant incurs a small risk

47

6 Taming Risk in Probabilistic Systems

Q value 1 2

Figure 6.1: Illustration of VaR and CVaR for two random variables, taken from [KM18].

of failure. Yet, in reality, decisions are made despite the slim chance of catastrophic
outcomes. As such, we are interested in approaches which are aware of risk and act to
control it, not eliminate it completely, since this might be overly costly.

To tackle this problem, we employ the following idea. Instead of maximizing expect-
ation over all possible strategies, we first prune ‘risky’ strategies (according to some
notion of risk). Then, we search for the expectation-optimal strategy among those with
a controlled level of risk. Now, the question is how to quantify the risk associated with
a particular strategy. Recall that an MDP together with a strategy yields a distribution
over paths, and a performance function V,es as defined in Section 2.2 is a random
variable over paths. For now, let us assume that the performance is measured as a
real number. Together, we obtain a distribution over real values for every strategy.
For example, if we consider the above ‘overcharging’ strategy, we obtain a distribution
where {0 — 5%, 110 — 95%}. In order to quantify risk, we define risk based on such a
distribution, and then restrict the set of allowed strategies to those with acceptable risk.

To this end, we use the notion of conditional value-at-risk (CVaR). CVaR is a well-
studied and established measure of risk in the area of finance and operations research,
many desirable properties have been proven for it [Art+99; RU00; RU02]. Despite a
rather simple intuition, the precise definition of CVaR for general random variables
is surprisingly involved. We thus only provide a brief overview and direct to [KM18,
Section 3] for an in-depth discussion.

Before we define CVaR, we need to introduce the value-at-risk (VaR). Both VaR and
CVaR are parametrized by a threshold probability p € [0, 1]. Given such a p, the VaR
of a random variable X equals a value v such that a fraction of p outcomes yield a
value smaller than v under X, i.e. it is the worst p-quantile of X. See Figure 6.1 for
a graphical illustration of VaR and CVaR, taken from [KM18]. With p chosen to be
0.2, the VaR is the value such that the shaded area left of it equals 0.2. This value
v supposedly describes ‘What is a typical bad case?’. More formally, given a random
variable X, VaR,(X) is a value v such that P[X < v] = p.l) However, as suggested
by the figure, VaR ignores the magnitude of outliers and potentially is very sensitive
to small changes in X or p. As such, it has been called ‘seductive, but dangerous’
and ‘not sufficient to control risk’ [Bed95]. To smooth out these issues of VaR, CVaR
denotes the expectation of all outcomes which are worse than this ‘bad case’. Intuitively,
this answers the question ‘What to expect from a typical bad case?’. Formally, we set

OWe intentionally omit several arising corner cases for the sake of readability.

48

6.2 Model Checking CVaR in MDP

CVaR,(X) = E[X | X < VaR,(X)]. As such, CVaR incorporates all possible ‘bad’
outcomes without being overly pessimistic. Considering the ‘overcharging’ example from
before, we obtain a CVaR of 0 MW for p = 0.05 and a CVaR of 60 MW for p = 0.1. As
an interesting observation, note that CVaR smoothly interpolates between worst-case
analysis (p = 0) and expectation (p = 1).

In order to fit CVaR in our framework of Section 2.2, observe that CVaR essentially
offers a way of aggregating the value distribution obtained under a particular strategy.
For example, given a weighted reachability objective specified by the target set T" and
reward function rew together with a threshold p € [0,1], we might be interested in
ViewoT,cvar, instead of Vi, o, i.e. the CVaR of the values reached under 7 with
threshold p instead of the expectation. Note that the expectation fully describes
the distribution for qualitative functions such as reachability of LTL. Thus, we only
consider CVaR in combination with quantitative performance measures, e.g., weighted
reachability or mean payoff.

6.2 Model Checking CVaR in MDP

In this section, we outline our results regarding CVaR-aware model checking of weighted
reachability and mean payoff. In summary, our contributions are threefold:

o We show that the single-dimensional case is solvable in polynomial time.

e We prove NP-hardness of the multi-dimensional case. However, the problem is
polynomial for any fixed dimension.

e We exactly characterize the structure of optimal strategies.

Let us first describe our problem statement in more detail. Since we are interested

in computational complexity, we consider the decision variant of our problem instead

of optimization. For example, we may consider the question ‘Is Vgl r cvar, (8) = 7’

instead of asking for the precise value. However, our solution approach is based on a

linear program and can directly be converted into an optimization procedure.
Formally, we are interested in the following problem.

— Problem Statement

Let M = (S, Act, Av, A) be an MDP, perf € {rew(QT, rew-mp} either
a weighted reachability or mean payoff objective, e the expectation
threshold, p the CVaR probability, and ¢ the CVaR threshold. Decide
whether there exists a strategy m € Il satisfying the constraints

Vgerf,IE(g) >e and Vgerf,CVaRp(g) > C.

49

6 Taming Risk in Probabilistic Systems

p=r
v

0.9
N

Figure 6.2: Example MDP used to demonstrate CVaR optimization of weighted reachability.

s4, 0 ay

We also consider the multi-dimensional variant of this problem, mainly for the sake of
complexity analysis. In this scenario, rew yields a d-dimensional reward and we replace
the thresholds e and ¢ and the threshold probability p with d-dimensional vectors each.
The resulting query then asks whether there exists a strategy such that the above
equation is satisfied in every dimension.

For an example of the single-dimensional case, consider the MDP of Figure 6.2. The
left action a; yields an expectation of 5. Since there is no randomness associated with
this outcome, the CVaR equals 5 for each p, too. The right action b; yields a much
higher expectation of 9, however, for example, a CVaR of 0 for p = 0.1 and 5 for
p = 0.2. If we consider e = 6, ¢ = 2, and p = 0.05, the answer to our risk-aware
query is ‘yes’: The strategy 7(s1) = {a; — %, by — %} achieves a value distribution of
{0+— ﬁ, 5 %, 10 — %}. The expected reward is 6 > e and the CVaR with p = 0.05
is 2.5 > c. Observe that this already shows that randomizing strategies are necessary
for such joint queries, since neither purely choosing aq nor b; satisfies the constraints.

We show that deterministic memoryless strategies are sufficient if we only have an
expectation or CVaR constraint. Moreover, we show that randomization and one bit
of memory is enough for queries with both expectation and CVaR constraints for
both weighted reachability and mean payoff. In particular, memoryless strategies are
sufficient for weighted reachability under mild assumptions which can be lifted by some
pre-computation steps, adding one bit of memory to the strategy. Memoryless strategies
allow for an intuitive characterization by an LP, i.e. every feasible solution of this LP
corresponds to a memoryless strategy and vice versa (see, e.g., [CKK17]). This LP
characterizes strategies by the ‘flow’ they achieve, i.e. how the probability mass of all
runs distributes over the states.

To discuss our solution approach, first assume that we know the value-at-risk. Then,
we can add constraints to the flow LP such that the flow is split according to the VaR.
In particular, we require that a flow with mass p ends up in states achieving a value less
than or equal to the given VaR. Dually, we require that the remaining 1 — p fraction
ends up in states with reward at least as good as the VaR. The expectation and CVaR
constraint can then easily be encoded into this LP. We show that there exists a strategy
achieving the given VaR and satisfying the expectation and CVaR constraints iff the
LP has a solution. See [KM18, Figure 4] for the full LP. As final piece of the puzzle,
observe that the number of different values we can obtain under weighted reachability
is bounded by the number of states: The reward function rew assigns one value to each
state. By definition, VaR can only take one of these values. Thus, we can simply test

50

6.3 Conclusion

for each possible VaR value whether we can find a strategy satisfying our constraints.
Since there are only linearly many values to test and deciding an LP takes polynomial
time, we obtain an overall polynomial complexity.

For mean payoff, we again use the reduction explained in Section 3.2.2. Intuitively,
once we decide to ‘stay’ in a MEC, there is no harm in obtaining the best possible
value, even in the presence of CVaR constraints. We formally prove this intuition in
[KM18, Section 3] by showing that, similar to expectation, CVaR is monotone w.r.t.
stochastic dominance, i.e. when we improve performance then the obtained CVaR does
not decrease. With this, we again compute the mean payoff of each MEC separately by,
e.g., linear programming, build the weighted MEC quotient, and solve the associated
weighted reachability problem thereof. Together, we obtain polynomial time complexity.

This idea immediately yields an EXPTIME algorithm and proof of NP containment
for weighted reachability when considering the multi-dimensional problem. By guessing
the VaR of each dimension, we can verify a solution in polynomial time, and there are
only exponentially many guesses. Note that for a fixed number of dimensions, we again
only have polynomially many guesses. Interestingly, even when we only consider a CVaR
constraint, the decision problem is NP-hard. Recall the MDP from Figure 6.1. If we take
c =5 and p = 0.2, only purely choosing either a1 or by satisfies the query. Any strategy
randomizing over aq; and by obtains a CVaR strictly less than 5. Essentially, this allows
us to force a deterministic choice at a given state with a CVaR constraint. Through
some further modelling we obtain a reduction from 3-SAT [KM18, Theorem 6.2] by
encoding the deterministic value assignment for each variable in a simple gadget.

Unfortunately, multi-dimensional mean payoff proves to be a challenge. In particular,
proving NP-completeness for mean payoff with CVaR constraints remains an open
question, since it is unclear whether the optimal VaR values in each dimension are of
polynomial size. We prove PSPACE containment through the existential theory of the
reals, quantifying the VaR for each dimension. However, we strongly conjecture that
mean payoff also is NP-complete.

6.3 Conclusion

We have demonstrated that risk-aware control of probabilistic systems is possible without
an increase in computational complexity. Even multi-dimensional queries can be tackled.
Hence, there seems to be no fundamental reason to neglect risk analysis. A first obvious
goal for future work is an actual implementation and evaluation of risk-aware strategies.
Moreover, as we argued in Chapter 3, LP based solutions often are underwhelming in
terms of performance. A dynamic programming based implementation may be useful.

Since this quantified view of risk is novel, even the most basic questions remain open.
For example, we do not know how ‘costly’ risk-aware control is in practice or how
sensible the resulting strategies really are. In particular, it might turn out that CVaR
optimal strategies are not very aligned with the human understanding of risk when
considering probabilistic systems. Moreover, we might also be interested in completely
different models of risk. For example, recalling the power plant model, our approach

o1

6 Taming Risk in Probabilistic Systems

does not allow us to analyse the deviation of a single run from its mean payoff. Here,
it might be more desirable to have a constant power output of 49 MW compared to a
random alternation between 0 MW and 100 MW.

52

Bibliography

[Art+99]

[Ash+17]

[ATO04]

[Bab+15]

[Bai+17]

[Bed95]
[Bel66]

[Bil08]

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber and David Heath. ‘Co-
herent measures of risk’. In: Mathematical finance 9.3 (1999), pp. 203-228.

Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kietinsky
and Tobias Meggendorfer. ‘Value Iteration for Long-Run Average Reward
in Markov Decision Processes’. In: Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I. Ed. by Rupak Majumdar and Viktor Kuncak.
Vol. 10426. Lecture Notes in Computer Science. Springer, 2017, pp. 201-221.
DOIL: 10.1007/978-3-319-63387-9_10. URL: https://doi.org/10.
1007/978-3-319-63387-9%5C_10.

Rajeev Alur and Salvatore La Torre. ‘Deterministic generators and games for
Ltl fragments’ In: ACM Trans. Comput. Log. 5.1 (2004), pp. 1-25. DOI: 10.
1145/963927.963928. URL: https://doi.org/10.1145/963927.963928.

Tomés Babiak, Frantisek Blahoudek, Alexandre Duret-Lutz, Joachim Klein,
Jan Kfetinsky, David Miiller, David Parker and Jan Strejcek. ‘The Hanoi
Omega-Automata Format’ In: Computer Aided Verification - 27th Inter-
national Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I. Ed. by Daniel Kroening and Corina S. Pas-
areanu. Vol. 9206. Lecture Notes in Computer Science. Springer, 2015,
pp. 479-486. DOI: 10 .1007 /978-3-319-21690-4\ _31. URL: https:
//doi.org/10.1007/978-3-319-21690-4%5C_31.

Christel Baier, Joachim Klein, Linda Leuschner, David Parker and Sascha
Wunderlich. ‘Ensuring the Reliability of Your Model Checker: Interval
Iteration for Markov Decision Processes’ In: Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part 1. Ed. by Rupak Majumdar and Viktor Kuncak.
Vol. 10426. Lecture Notes in Computer Science. Springer, 2017, pp. 160-180.
DOI: 10.1007/978-3-319-63387-9_8. URL: https://doi.org/10.1007/
978-3-319-63387-97,5C_8.

Tanya Styblo Beder. ‘VAR: Seductive but dangerous’. In: Financial Analysts
Journal 51.5 (1995), pp. 12-24.

Richard Bellman. ‘Dynamic programming’. In: Science 153.3731 (1966),
pp. 34-37.

Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.

53

https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10
https://doi.org/10.1145/963927.963928
https://doi.org/10.1145/963927.963928
https://doi.org/10.1145/963927.963928
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-21690-4%5C_31
https://doi.org/10.1007/978-3-319-21690-4%5C_31
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9%5C_8
https://doi.org/10.1007/978-3-319-63387-9%5C_8

Bibliography

[BKOS]

[Bra+14]

[Bra-+15]

[CGK13]

[CH11]

[CH12]

o4

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008. 1sBN: 978-0-262-02649-9.

Tomas Brazdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt,
Jan Kfietinsky, Marta Z. Kwiatkowska, David Parker and Mateusz Ujma.
‘Verification of Markov Decision Processes Using Learning Algorithms’. In:
Automated Technology for Verification and Analysis - 12th International
Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014,
Proceedings. Ed. by Franck Cassez and Jean-Francois Raskin. Vol. 8837.
Lecture Notes in Computer Science. Springer, 2014, pp. 98-114. DOI: 10.
1007/978-3-319-11936-6_8. URL: https://doi.org/10.1007/978-3-
319-11936-6%5C_8.

Tomas Brazdil, Krishnendu Chatterjee, Vojtech Forejt and Antonin Kucera.
‘MultiGain: A Controller Synthesis Tool for MDPs with Multiple Mean-
Payoff Objectives’ In: Tools and Algorithms for the Construction and
Analysis of Systems - 21st International Conference, TACAS 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. Ed. by Christel
Baier and Cesare Tinelli. Vol. 9035. Lecture Notes in Computer Science.
Springer, 2015, pp. 181-187. DOI: 10.1007/978-3-662-46681-0_12. URL:
https://doi.org/10.1007/978-3-662-46681-0%5C_12.

Krishnendu Chatterjee, Andreas Gaiser and Jan Kretinsky. ‘Automata
with Generalized Rabin Pairs for Probabilistic Model Checking and LTL
Synthesis’. In: Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. Ed. by
Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer
Science. Springer, 2013, pp. 559-575. DOI: 10.1007/978-3-642-39799-
8_37. URL: https://doi.org/10.1007/978-3-642-39799-8%,5C_37.

Krishnendu Chatterjee and Monika Henzinger. ‘Faster and Dynamic Al-
gorithms for Maximal End-Component Decomposition and Related Graph
Problems in Probabilistic Verification’. In: Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011. Ed. by Dana Randall.
SIAM, 2011, pp. 1318-1336. DOI: 10.1137/1.9781611973082.101. URL:
https://doi.org/10.1137/1.9781611973082.101.

Krishnendu Chatterjee and Monika Henzinger. ‘An O(n2) time algorithm
for alternating Biichi games’. In: Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012. Ed. by Yuval Rabani. STAM, 2012, pp. 1386-1399.
DOI: 10.1137/1.9781611973099.109. URL: https://doi.org/10.1137/1.
9781611973099.1009.

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6%5C_8
https://doi.org/10.1007/978-3-319-11936-6%5C_8
https://doi.org/10.1007/978-3-662-46681-0_12
https://doi.org/10.1007/978-3-662-46681-0%5C_12
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-642-39799-8%5C_37
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1137/1.9781611973099.109

[CH14]

[CKK17]

[CouT8]

[CY95]

[De 97]

[Deh+17]

[DGOS]

[Dur+16]

[EKS16]

Bibliography

Krishnendu Chatterjee and Monika Henzinger. ‘Efficient and Dynamic
Algorithms for Alternating Biichi Games and Maximal End-Component
Decomposition”. In: J. ACM 61.3 (2014), 15:1-15:40. DOI: 10.1145/2597631.
URL: https://doi.org/10.1145/2597631.

Krishnendu Chatterjee, Zuzana Kretinskd and Jan Kretinsky. ‘Unifying Two
Views on Multiple Mean-Payoff Objectives in Markov Decision Processes’.
In: Logical Methods in Computer Science 13.2 (2017). pDOI: 10.23638/LMCS-
13(2:15)2017. URL: https://doi.org/10.23638/LMCS-13(2:15)2017.

Patrick Cousot. Méthodes itératives de construction et d’approximation
de points fizes d’opérateurs monotones sur un treillis, analyse sémantique
des programmes. 1978. URL: https://tel.archives-ouvertes.fr/tel-
00288657.

Costas Courcoubetis and Mihalis Yannakakis. ‘The Complexity of Probab-
ilistic Verification’ In: J. ACM 42.4 (1995), pp. 857-907. poI: 10.1145/
210332.210339. URL: https://doi.org/10.1145/210332.210339

Luca De Alfaro. Formal verification of probabilistic systems. 1601. Citeseer,
1997.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen and Matthias
Volk. ‘A Storm is Coming: A Modern Probabilistic Model Checker’. In:
Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II. Ed. by Rupak
Majumdar and Viktor Kuncak. Vol. 10427. Lecture Notes in Computer
Science. Springer, 2017, pp. 592-600. pOI: 10.1007/978-3-319-63390-
9_31. URL: https://doi.org/10.1007/978-3-319-63390-9%5C_31.

Volker Diekert and Paul Gastin. ‘First-order definable languages’. In: Logic
and Automata: History and Perspectives [in Honor of Wolfgang Thomas].
Ed. by Jorg Flum, Erich Gréadel and Thomas Wilke. Vol. 2. Texts in Logic
and Games. Amsterdam University Press, 2008, pp. 261-306.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault and Laurent Xu. ‘Spot 2.0 - A Framework for
LTL and \omega -Automata Manipulation’. In: Automated Technology for
Verification and Analysis - 14th International Symposium, ATVA 2016,
Chiba, Japan, October 17-20, 2016, Proceedings. Ed. by Cyrille Artho, Axel
Legay and Doron Peled. Vol. 9938. Lecture Notes in Computer Science.
2016, pp. 122-129. pot1: 10.1007/978-3-319-46520-3_8. URL: https:
//doi.org/10.1007/978-3-319-46520-3%,5C_8.

Javier Esparza, Jan Kretinsky and Salomon Sickert. ‘From LTL to determ-
inistic automata - A safraless compositional approach’. In: Formal Methods
Syst. Des. 49.3 (2016), pp. 219-271. DOL: 10.1007/s10703-016-0259-2.
URL: https://doi.org/10.1007/s10703-016-0259-2.

95

https://doi.org/10.1145/2597631
https://doi.org/10.1145/2597631
https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.23638/LMCS-13(2:15)2017
https://tel.archives-ouvertes.fr/tel-00288657
https://tel.archives-ouvertes.fr/tel-00288657
https://doi.org/10.1145/210332.210339
https://doi.org/10.1145/210332.210339
https://doi.org/10.1145/210332.210339
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9%5C_31
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3%5C_8
https://doi.org/10.1007/978-3-319-46520-3%5C_8
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1007/s10703-016-0259-2

Bibliography

[For+11]

[FV96]

[HM14]

[How60]
[Jac+19]

[Kars4]

[KE12]

[Kha79]

[KK14]

56

Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman and David Parker.
‘Automated Verification Techniques for Probabilistic Systems’. In: Formal
Methods for Eternal Networked Software Systems - 11th International
School on Formal Methods for the Design of Computer, Communication and
Software Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced
Lectures. Ed. by Marco Bernardo and Valérie Issarny. Vol. 6659. Lecture
Notes in Computer Science. Springer, 2011, pp. 563-113. DoI: 10.1007/978-
3-642-21455-4_3. URL: https://doi.org/10.1007/978-3-642-21455~
4%5C_3.

Jerzy Filar and Koos Vrieze. ‘Competitive Markov decision processes’. In:
(1996).

Serge Haddad and Benjamin Monmege. ‘Reachability in MDPs: Refining
Convergence of Value Iteration’. In: Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings. Ed.
by Joél Ouaknine, Igor Potapov and James Worrell. Vol. 8762. Lecture
Notes in Computer Science. Springer, 2014, pp. 125-137. por: 10.1007/978-
3-319-11439-2_10. URL: https://doi.org/10.1007/978-3-319-11439-
2%5C_10.

Ronald A Howard. ‘Dynamic programming and markov processes.” In: (1960).

Swen Jacobs, Roderick Bloem, Maximilien Colange, Peter Faymonville,
Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Michael Luttenberger,
Philipp J. Meyer, Thibaud Michaud, Mouhammad Sakr, Salomon Sickert,
Leander Tentrup and Adam Walker. ‘The 5th Reactive Synthesis Competi-
tion (SYNTCOMP 2018): Benchmarks, Participants & Results’ In: CoRR
abs/1904.07736 (2019). arXiv: 1904.07736. URL: http://arxiv.org/abs/
1904.07736.

Narendra Karmarkar. ‘A new polynomial-time algorithm for linear program-
ming’. In: Combinatorica 4.4 (1984), pp. 373-396. DOI: 10.1007/BF02579150.
URL: https://doi.org/10.1007/BF02579150.

Jan Kretinsky and Javier Esparza. ‘Deterministic Automata for the (F,
G)-Fragment of LTL". In: Computer Aided Verification - 24th International
Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings.
2012, pp. 7-22. DOI: 10.1007/978-3-642-31424-7_7. URL: http://dx.
doi.org/10.1007/978-3-642-31424-7_7.

Leonid G Khachiyan. ‘A polynomial algorithm in linear programming’. In:
Doklady Academii Nauk SSSR. Vol. 244. 1979, pp. 1093-1096.

Zuzana Komarkova and Jan Kretinsky. ‘Rabinizer 3: Safraless Translation
of LTL to Small Deterministic Automata’ In: Automated Technology for
Verification and Analysis - 12th International Symposium, ATVA 2014,
Sydney, NSW, Australia, November 3-7, 2014, Proceedings. Ed. by Franck
Cassez and Jean-Francois Raskin. Vol. 8837. Lecture Notes in Computer

https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4%5C_3
https://doi.org/10.1007/978-3-642-21455-4%5C_3
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2%5C_10
https://doi.org/10.1007/978-3-319-11439-2%5C_10
https://arxiv.org/abs/1904.07736
http://arxiv.org/abs/1904.07736
http://arxiv.org/abs/1904.07736
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/978-3-642-31424-7_7
http://dx.doi.org/10.1007/978-3-642-31424-7_7
http://dx.doi.org/10.1007/978-3-642-31424-7_7

[KM17]

[KM18]

[KM19]

[KMM19]

[KMS18]

Bibliography

Science. Springer, 2014, pp. 235-241. poI: 10.1007/978-3-319-11936-
6_17. URL: https://doi.org/10.1007/978-3-319-11936-6%5C_17.

Jan Kretinsky and Tobias Meggendorfer. ‘Of Cores: A Partial-Exploration
Framework for Markov Decision Processes’. In: Logical Methods in Computer
Science Selected Papers of the 30th International Conference on Concurrency
Theory (CONCUR 2019) (). To appear.

Jan Kretinsky and Tobias Meggendorfer. ‘Efficient Strategy Iteration for
Mean Payoff in Markov Decision Processes’. In: Automated Technology for
Verification and Analysis - 15th International Symposium, ATVA 2017,
Pune, India, October 3-6, 2017, Proceedings. Ed. by Deepak D’Souza and
K. Narayan Kumar. Vol. 10482. Lecture Notes in Computer Science. Springer,
2017, pp. 380-399. DOT: 10.1007/978-3-319-68167-2_25. URL: https:
//doi.org/10.1007/978-3-319-68167-2%5C_25.

Jan Kretinsky and Tobias Meggendorfer. ‘Conditional Value-at-Risk for
Reachability and Mean Payoff in Markov Decision Processes’. In: Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Ozford, UK, July 09-12, 2018. Ed. by Anuj Dawar and Erich
Griidel. ACM, 2018, pp. 609-618. DOT: 10.1145/3209108.3209176. URL:
https://doi.org/10.1145/3209108.3209176.

Jan Kfretinsky and Tobias Meggendorfer. ‘Of Cores: A Partial-Exploration
Framework for Markov Decision Processes’. In: 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam,
the Netherlands. Ed. by Wan Fokkink and Rob van Glabbeek. Vol. 140.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2019, 5:1-5:17.
DOI: 10.4230/LIPIcs.CONCUR.2019.5. URL: https://doi.org/10.4230/
LIPIcs.CONCUR.2019.5.

Jan Kretinsky, Alexander Manta and Tobias Meggendorfer. ‘Semantic La-
belling and Learning for Parity Game Solving in LTL Synthesis’. In: Auto-
mated Technology for Verification and Analysis - 17th International Sym-
posium, ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceedings.
Ed. by Yu-Fang Chen, Chih-Hong Cheng and Javier Esparza. Vol. 11781.
Lecture Notes in Computer Science. Springer, 2019, pp. 404-422. DOTI:
10.1007/978-3-030-31784-3_24. URL: https://doi.org/10.1007/978-
3-030-31784-3%5C_24.

Jan Kiretinsky, Tobias Meggendorfer and Salomon Sickert. ‘Owl: A Library
for w-Words, Automata, and LTL’. In: Automated Technology for Verification
and Analysis - 16th International Symposium, ATVA 2018, Los Angeles,
CA, USA, October 7-10, 2018, Proceedings. Ed. by Shuvendu K. Lahiri
and Chao Wang. Vol. 11138. Lecture Notes in Computer Science. Springer,
2018, pp. 543-550. DOL: 10.1007/978-3-030-01090-4_34. URL: https:
//doi.org/10.1007/978-3-030-01090-4%5C_34.

o7

https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-319-11936-6%5C_17
https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-319-68167-2%5C_25
https://doi.org/10.1007/978-3-319-68167-2%5C_25
https://doi.org/10.1145/3209108.3209176
https://doi.org/10.1145/3209108.3209176
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.1007/978-3-030-31784-3_24
https://doi.org/10.1007/978-3-030-31784-3%5C_24
https://doi.org/10.1007/978-3-030-31784-3%5C_24
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4%5C_34
https://doi.org/10.1007/978-3-030-01090-4%5C_34

Bibliography

[KNP11]

[Kie+17)

[Kie+18]

[Meg17]

[MS17]

[MSL18]

[Miil20]

58

Marta Z. Kwiatkowska, Gethin Norman and David Parker. ‘PRISM 4.0:
Verification of Probabilistic Real-Time Systems’. In: Computer Aided Veri-
fication - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz
Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer, 2011,
pp- 585-591. DOI: 10.1007 /978-3-642-22110-1\ _47. URL: https:
//doi.org/10.1007/978-3-642-22110-1%5C_47.

Jan Kietinsky, Tobias Meggendorfer, Clara Waldmann and Maximilian
Weininger. ‘Index Appearance Record for Transforming Rabin Automata
into Parity Automata’ In: Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held as
Part of the FEuropean Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part 1. Ed.
by Axel Legay and Tiziana Margaria. Vol. 10205. Lecture Notes in Computer
Science. 2017, pp. 443-460. DOI: 10.1007/978-3-662-54577-5_26. URL:
https://doi.org/10.1007/978-3-662-54577-5%5C_26.

Jan Kretinsky, Tobias Meggendorfer, Salomon Sickert and Christopher
Ziegler. ‘Rabinizer 4: From LTL to Your Favourite Deterministic Automaton’.
In: Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part I. Ed. by Hana Chockler and Georg
Weissenbacher. Vol. 10981. Lecture Notes in Computer Science. Springer,
2018, pp. 567-577. DOI: 10.1007/978-3-319-96145-3_30. URL: https:
//doi.org/10.1007/978-3-319-96145-3%5C_30.

Tobias Meggendorfer. JBDD: A Java BDD Library. https://github.com/
incaseoftrouble/jbdd. 2017.

David Miiller and Salomon Sickert. ‘LTL to Deterministic Emerson-Lei
Automata’ In: Proceedings FEighth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2017, Roma, Italy, 20-
22 September 2017. Ed. by Patricia Bouyer, Andrea Orlandini and Pierluigi
San Pietro. Vol. 256. EPTCS. 2017, pp. 180-194. DOI: 10.4204/EPTCS.256.
13. URL: https://doi.org/10.4204/EPTCS.256.13.

Philipp J. Meyer, Salomon Sickert and Michael Luttenberger. ‘Strix: Explicit
Reactive Synthesis Strikes Back!” In: Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Ozford, UK, July 14-17, 2018, Proceedings, Part I.
Ed. by Hana Chockler and Georg Weissenbacher. Vol. 10981. Lecture Notes
in Computer Science. Springer, 2018, pp. 578-586. DOI: 10.1007/978-3-
319-96145-3_31. URL: https://doi.org/10.1007/978-3-319-96145-
3%5C_31.

Alexander Christian Miiller. ‘Proving Noninterference in Multi-Agent Sys-
tems’. Dissertation. Miinchen: Technische Universitdt Miinchen, 2020.

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1%5C_47
https://doi.org/10.1007/978-3-642-22110-1%5C_47
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/978-3-662-54577-5%5C_26
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-319-96145-3%5C_30
https://doi.org/10.1007/978-3-319-96145-3%5C_30
https://github.com/incaseoftrouble/jbdd
https://github.com/incaseoftrouble/jbdd
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3%5C_31
https://doi.org/10.1007/978-3-319-96145-3%5C_31

[Pnu77]

[Put94]

[Rab69]

[RU0O]

[RUO2]

[Sch99]

[Tar72]

[VWS6]

[Whi85)]
[Whi88]

[Whi93]

Bibliography

Amir Pnueli. ‘The Temporal Logic of Programs’. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977. 1977, pp. 46-57. boI: 10.1109/SFCS.1977.32.
URL: http://dx.doi.org/10.1109/SFCS.1977.32.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics. Wiley,
1994. 1SBN: 978-0-47161977-2. DOI: 10.1002/9780470316887. URL: https:
//doi.org/10.1002/9780470316887.

Michael O Rabin. ‘Decidability of second-order theories and automata on
infinite trees’. In: Transactions of the american Mathematical Society 141
(1969), pp. 1-35.

R Tyrrell Rockafellar and Stanislav Uryasev. ‘Optimization of conditional
value-at-risk’. In: Journal of risk 2 (2000), pp. 21-42.

R Tyrrell Rockafellar and Stanislav Uryasev. ‘Conditional value-at-risk for
general loss distributions’. In: Journal of banking & finance 26.7 (2002),
pp. 1443-1471.

Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 1999.
ISBN: 978-0-471-98232-6.

Robert Endre Tarjan. ‘Depth-First Search and Linear Graph Algorithms’.
In: SIAM J. Comput. 1.2 (1972), pp. 146-160. DOI: 10.1137/0201010. URL:
https://doi.org/10.1137/0201010.

Moshe Y. Vardi and Pierre Wolper. ‘An Automata-Theoretic Approach
to Automatic Program Verification (Preliminary Report)’. In: Proceedings
of the Symposium on Logic in Computer Science (LICS ’86), Cambridge,
Massachusetts, USA, June 16-18, 1986. IEEE Computer Society, 1986,
pp- 332-344.

Douglas J White. ‘Real applications of Markov decision processes’. In:
Interfaces 15.6 (1985), pp. 73-83.

Douglas J White. ‘Further real applications of Markov decision processes’.
In: Interfaces 18.5 (1988), pp. 55-61.

Douglas J White. ‘A survey of applications of Markov decision processes’.
In: Journal of the operational research society 44.11 (1993), pp. 1073-1096.

99

https://doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010

Appendices

61

| Appended Papers

63

A Value lteration for Long-Run Average Reward in Markov
Decision Processes. CAV 2017

This section has been published as peer-reviewed conference paper.

Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretinsky
and Tobias Meggendorfer. ‘Value Iteration for Long-Run Average Reward
in Markov Decision Processes’. In: Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I. ed. by Rupak Majumdar and Viktor Kuncak.
Vol. 10426. Lecture Notes in Computer Science. Springer, 2017, pp. 201-221.
DOI: 10.1007/978-3-319-63387-9_10. URL: https://doi.org/10.
1007/978-3-319-63387-9%5C_10

Synopsis We consider the problem of optimizing mean payoff (also known as long
run average reward) objectives on Markov decision processes. Value iteration (VI) is
one of the simplest yet most efficient algorithms for the analysis of a wide range of
objectives on MDP. Unfortunately, naively extending VI to mean payoff does not yield
a stopping criterion, rendering this approach useless. In this work, we (i) refute a long
standing conjecture about such a stopping criterion, (ii) present an alternative stopping
criterion, based on topological pre-processing, and (iii) combine our new approach with
the partial-exploration pattern introduced by [Bra+14], arriving at a sophisticated
on-the-fly algorithm. This algorithm automatically identifies promising areas of the
systems’ state-space and focusses its computational effort on these regions.

Contributions of the thesis author Composition of Sections 3, 4, and 5. Discussion
and revision of the entire manuscript. Discussion of all results and proofs presented in
the paper. Development of proofs in Section 3.1 and 3.2. Leading role in the design and
implementation of the presented tool. Creation of the software artefact for conference
submission.

64

https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10

Value Iteration for Long-Run Average Reward
in Markov Decision Processes

Pranav Ashok!, Krishnendu Chatterjee?, Przemyslaw Daca?,
Jan Kietinsky' (™), and Tobias Meggendorfer

! Technical University of Munich, Munich, Germany
jan.kretinsky@gmail.com
2 IST Austria, Klosterneuburg, Austria

Abstract. Markov decision processes (MDPs) are standard models for
probabilistic systems with non-deterministic behaviours. Long-run aver-
age rewards provide a mathematically elegant formalism for expressing
long term performance. Value iteration (VI) is one of the simplest and
most efficient algorithmic approaches to MDPs with other properties,
such as reachability objectives. Unfortunately, a naive extension of VI
does not work for MDPs with long-run average rewards, as there is no
known stopping criterion. In this work our contributions are threefold.
(1) We refute a conjecture related to stopping criteria for MDPs with
long-run average rewards. (2) We present two practical algorithms for
MDPs with long-run average rewards based on VI. First, we show that
a combination of applying VI locally for each maximal end-component
(MEC) and VI for reachability objectives can provide approximation
guarantees. Second, extending the above approach with a simulation-
guided on-demand variant of VI, we present an anytime algorithm that
is able to deal with very large models. (3) Finally, we present experi-
mental results showing that our methods significantly outperform the
standard approaches on several benchmarks.

1 Introduction

The analysis of probabilistic systems arises in diverse application contexts of
computer science, e.g. analysis of randomized communication and security pro-
tocols, stochastic distributed systems, biological systems, and robot planning,
to name a few. The standard model for the analysis of probabilistic systems
that exhibit both probabilistic and non-deterministic behaviour are Markov deci-
sion processes (MDPs) [How60,FV97, Put94]. An MDP consists of a finite set
of states, a finite set of actions, representing the non-deterministic choices, and

This work is partially supported by the Vienna Science and Technology Fund
(WWTF) ICT15-003, the Austrian Science Fund (FWF) NFN grant No. S11407-
N23 (RiSE/SHINE), the ERC Starting grant (279307: Graph Games), the German
Research Foundation (DFG) project “Verified Model Checkers”, the TUM Interna-
tional Graduate School of Science and Engineering (IGSSE) project PARSEC, and
the Czech Science Foundation grant No. 15-17564S.

(© Springer International Publishing AG 2017

R. Majumdar and V. Kunc¢ak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 201-221, 2017.
DOI: 10.1007/978-3-319-63387-9_10

202 P. Ashok et al.

a transition function that given a state and an action gives the probability dis-
tribution over the successor states. In verification, MDPs are used as models
for e.g. concurrent probabilistic systems [CY95] or probabilistic systems operat-
ing in open environments [Seg95], and are applied in a wide range of applica-
tions [BKO08, KNP11].

Long-Run Average Reward. A payoff function in an MDP maps every infinite
path (infinite sequence of state-action pairs) to a real value. One of the most
well-studied and mathematically elegant payoff functions is the long-run average
reward (also known as mean-payoff or limit-average reward, steady-state reward
or simply average reward), where every state-action pair is assigned a real-valued
reward, and the payoff of an infinite path is the long-run average of the rewards
on the path [FV97,Put94]. Beyond the elegance, the long-run average reward is
standard to model performance properties, such as the average delay between
requests and corresponding grants, average rate of a particular event, etc. There-
fore, determining the maximal or minimal expected long-run average reward of
an MDP is a basic and fundamental problem in the quantitative analysis of
probabilistic systems.

Classical Algorithms. A strategy (also known as policy or scheduler) in an MDP
specifies how the non-deterministic choices of actions are resolved in every state.
The wvalue at a state is the maximal expected payoff that can be guaranteed
among all strategies. The values of states in MDPs with payoff defined as the
long-run average reward can be computed in polynomial-time using linear pro-
gramming [FV97,Put94]. The corresponding linear program is quite involved
though. The number of variables is proportional to the number of state-action
pairs and the overall size of the program is linear in the number of transitions
(hence potentially quadratic in the number of actions). While the linear program-
ming approach gives a polynomial-time solution, it is quite slow in practice and
does not scale to larger MDPs. Besides linear programming, other techniques are
considered for MDPs, such as dynamic-programming through strategy iteration
or value iteration [Put94, Chap.9].

Value Iteration. A generic approach that works very well in practice for MDPs
with other payoff functions is value iteration (VI). Intuitively, a particular one-
step operator is applied iteratively and the crux is to show that this iterative
computation converges to the correct solution (i.e. the value). The key advan-
tages of VI are the following:

1. Simplicity. VI provides a very simple and intuitive dynamic-programming
algorithm which is easy to adapt and extend.

2. Efficiency. For several other payoff functions, such as finite-horizon rewards
(instantaneous or cumulative reward) or reachability objectives, applying the
concept of VI yields a very efficient solution method. In fact, in most well-
known tools such as PRISM [KNP11], value iteration performs much better
than linear programming methods for reachability objectives.

Value Iteration for Long-Run Average Reward 203

3. Scalability. The simplicity and flexibility of VI allows for several improve-
ments and adaptations of the idea, further increasing its performance and
enabling quick processing of very large MDPs. For example, when considering
reachability objectives, [PGT03] present point-based value-iteration (PBVI),
applying the iteration operator only to a part of the state space, and [MLGO5]
introduce bounded real-time dynamic programming (BRTDP), where again
only a fraction of the state space is explored based on partial strategies.
Both of these approaches are simulation-guided, where simulations are used
to decide how to explore the state space. The difference is that the former
follows an offline computation, while the latter is online. Both scale well to
large MDPs and use VI as the basic idea to build upon.

Value Iteration for Long-Run Average Reward. While VI is standard for reach-
ability objectives or finite-horizon rewards, it does not work for general MDPs
with long-run average reward. The two key problems pointed out in [Put94,
Sects. 8.5, 9.4] are as follows: (a) if the MDP has some periodicity property,
then VI does not converge; and (b) for general MDPs there are neither bounds
on the speed of convergence nor stopping criteria to determine when the itera-
tion can be stopped to guarantee approximation of the value. The first problem
can be handled by adding self-loop transitions [Put94, Sect. 8.5.4]. However, the
second problem is conceptually more challenging, and a solution is conjectured
in [Put94, Sect.9.4.2].

Our Contribution. In this work, our contributions are related to value iteration
for MDPs with long-run average reward, they range from conceptual clarification
to practical algorithms and experimental results. The details of our contributions
are as follows.

— Conceptual clarification. We first present an example to refute the conjecture
of [Put94, Sect.9.4.2], showing that the approach proposed there does not
suffice for VI on MDPs with long-run average reward.

— Practical approaches. We develop, in two steps, practical algorithms instan-
tiating VI for approximating values in MDPs with long-run average reward.
Our algorithms take advantage of the notion of maximal end-components
(MECs) in MDPs. Intuitively, MECs for MDPs are conceptually similar to
strongly connected components (SCCs) for graphs and recurrent classes for
Markov chains. We exploit these MECs to arrive at our two methods:

1. The first variant applies VI locally to each MEC in order to obtain an
approximation of the values within the MEC. After the approximation in
every MEC, we apply VI to solve a reachability problem in a modified
MDP with collapsed MECs. We show that this simple combination of VI
approaches ensures guarantees on the approximation of the value.

2. We then build on the approach above to present a simulation-guided
variant of VI. In this case, the approximation of values for each MEC
and the reachability objectives are done at the same time using VI. For
the reachability objective a BRDTP-style VI (similar to [BCC+14]) is

204 P. Ashok et al.

applied, and within MECs VI is applied on-demand (i.e. only when there
is a requirement for more precise value bounds). The resulting algorithm
furthermore is an anytime algorithm, i.e. it can be stopped at any time
and give an upper and lower bounds on the result.

— Experimental results. We compare our new algorithms to the state-of-the-
art tool MultiGain [BCFK15] on various models. The experiments show that
MultiGain is vastly outperformed by our methods on nearly every model.
Furthermore, we compare several variants of our methods and investigate the
different domains of applicability.

In summary, we present the first instantiation of VI for general MDPs with long-
run average reward. Moreover, we extend it with a simulation-based approach to
obtain an efficient algorithm for large MDPs. Finally, we present experimental
results demonstrating that these methods provide significant improvements over
existing ones.

Further Related Work. There is a number of techniques to compute or approxi-
mate the long-run average reward in MDPs [Put94, How60, Vei66], ranging from
linear programming to value iteration to strategy iteration. Symbolic and explicit
techniques based on strategy iteration are combined in [WBB+10]. Further, the
more general problem of MDPs with multiple long-run average rewards was first
considered in [Cha07], a complete picture was presented in [BBC+14,CKK15]
and partially implemented in [BCFK15]. The extension of our approach to
multiple long-run average rewards, or combination of expectation and vari-
ance [BCFK13], are interesting directions for future work. Finally, VI for MDPs
with guarantees for reachability objectives was considered in [BCC+14,HM14].
Proofs and supplementary material can be found in [ACD+17].

2 Preliminaries

2.1 Markov Decision Processes

A probability distribution on a finite set X is a mapping p : X +— [0, 1], such that
> wex p(x) = 1. We denote by D(X) the set of all probability distributions on
X. Further, the support of a probability distribution p is denoted by supp(p) =
{z € X | p(z) > 0}.

Definition 1 (MDP). A Markov decision processes (MDP) is a tuple of the
form M = (S, Sinit, Act,Av, A 1), where S is a finite set of states, iy € S is
the initial state, Act is a finite set of actions, Av : S — 24¢ assigns to every
state a set of available actions, A : S x Act — D(S) is a transition function
that given a state s and an action a € Av(s) yields a probability distribution over
successor states, and 1 : S x Act — RZY9 is a reward function, assigning rewards
to state-action pairs.

Value Iteration for Long-Run Average Reward 205

For ease of notation, we write A(s,a,s’) instead of A(s,a)(s’).

An infinite path p in an MDP is an infinite word p = spapsia;--- € (S x
Act)¥, such that for every i € N, a; € Av(s;) and A(s;,a;,8;41) > 0. A finite
path w = spagsiay ... s, € (S x Act)* x S is a finite prefix of an infinite path.

A strategy on an MDP is a function 7 : (S x Act)* x S — D(Act),
which given a finite path w = sgagsia; ... s, yields a probability distribution
m(w) € D(Av(sy)) on the actions to be taken next. We call a strategy memoryless
randomized (or stationary) if it is of the form 7 : S — D(Act), and memoryless
deterministic (or positional) if it is of the form 7 : S — Act. We denote the set
of all strategies of an MDP by II, and the set of all memoryless deterministic
strategies by ITMP. Fixing a strategy 7 and an initial state s on an MDP M
gives a unique probability measure P73, . over infinite paths [Put94, Sect. 2.1.6].
The expected value of a random variable F is defined as B}, [F] = [F dP}, ..
When the MDP is clear from the context, we drop the corresponding subscript
and write P{ and EY instead of P}, ; and E}, ., respectively.

End Components. A pair (T, A), where) # T C S and 0 # A C [, Av(s),
is an end component of an MDP M if (i) for all s € T,a € AN Av(s) we
have supp(A(s,a)) C T, and (ii) for all s,s" € T there is a finite path w =
sag...ans’ € (T x A)* x T, i.e. w starts in s, ends in §', stays inside T and
only uses actions in A.! Intuitively, an end component describes a set of states
for which a particular strategy exists such that all possible paths remain inside
these states and all of those states are visited infinitely often almost surely. An
end component (T, A) is a mazimal end component (MEC) if there is no other
end component (T’; A’) such that T C 7" and A C A’. Given an MDP M, the
set of its MECs is denoted by MEC(M). With these definitions, every state of
an MDP belongs to at most one MEC and each MDP has at least one MEC.

Using the concept of MECs, we recall the standard notion of a MEC quo-
tient [dA97]. To obtain this quotient, all MECs are merged into a single repre-
sentative state, while transitions between MECs are preserved. Intuitively, this
abstracts the MDP to its essential infinite time behaviour.

Definition 2 (MEC quotient [dA97]). Let M = (S, sinit, Act, Av, A7) be an
MDP with MECs MEC(M) = {(T}, A1), ..., (Th, An)}. Further, define MECg =
Uir_, Ti as the set of all states contained in some MEC. The MEC quotient of

M is defined as the MDP M= (§, Sinits ZE,,&;,A\, 7), where:

- §=5\MECsU{%1,...,5.},
— if for some T; we have sini € Ti, then Sinit = 85, otherwise Sinit = Sinit,
— Act ={(s,a) | s € S,a € Av(s)},

! This standard definition assumes that actions are unique for each state, i.e. Av(s) N
Av(s') = 0 for s # s’. The usual procedure of achieving this in general is to replace
Act by S x Act and adapting Av, A, and r appropriately.

206 P. Ashok et al.

~ the available actions Av are defined as

Vs € S\ MECs. Av(s) = {(s,a) | a € Av(s)}
VI<i<n AVE) ={(s,a) | s€TiAaeAv(s)\ A},

— the transition function A is defined as follows. Let 5 € S be some state in the
quotient and (s,a) € Av(8) an action available in's. Then

Yver, Als,a,8') ifs' =5;,
A(s,a,9) otherwise,i.e. 8 € S\ MECg.

A, (s,a),5) = {

For the sake of readability, we omit the added self-loop transitions of the form
A(8;,(s,a),8;) with s € T; and a € A; from all figures.
— Finally, for s€ S, (s,a) € Av(3), we define 7(s, (s,a)) = r(s,a).

Furthermore, we refer to 81,...,5, as collapsed states and identify them with
the corresponding MECs.

Ezample 1. Figure la shows an MDP with three MECs, A = ({s2}, {a}),§ =
({s3,84},{a}),C = ({s5,86},{a})). Its MEC quotient is shown in Fig.1b. A

Remark 1. In general, the MEC quotient does not induce a DAG-structure, since
there might be probabilistic transitions between MECs. Consider for example the
MDP obtained by setting A(s2, b, s4) = {s1 — %, 52 — £} in the MDP of Fig. 1a.
Its MEC quotient then has A(A, (s2,b)) = {s1 — 1, B+ 1}.

Remark 2. The MEC decomposition of an MDP M, i.e. the computation of
MEC(M), can be achieved in polynomial time [CY95]. For improved algorithms
on general MDPs and various special cases see [CH11,CH12,CH14, CL13].

(s1,a),0
O
(s1,0) 0.990 0.001
0.5
OGN ©
(SQ,b),5
0.5
B c
(a) An MDP with three MECs. (b) The MEC quotient.

Fig. 1. An example of how the MEC quotient is constructed. By a,r we denote that
the action a yields a reward of r.

Value Iteration for Long-Run Average Reward 207

Definition 3 (MEC restricted MDP). Let M be an MDP and (T, A) €
MEC(M) a MEC of M. By picking some initial state s, ., € T, we obtain the
restricted MDP M’ = (T, s,.,, A, AV', A", r') where

- AV (s)=Av(s)NA forseT,

- Al(sya,8") = A(s,a,8") for s,s' €T, a€ A, and

- r'(s,a) =7(s,a) forseT, a € A.

Classification of MDPs. If for some MDP M, (S, Act) is a MEC, we call the
MDP strongly connected. If it contains a single MEC plus potentially some tran-
sient states, it is called (weakly) communicating. Otherwise, it is called multi-
chain [Put94, Sect. 8.3].

For a Markov chain, let A™(s,s’) denote the probability of going from the
state s to state s’ in m steps. The period p of a pair s, s’ is the greatest common
divisor of all n’s with A™(s,s’) > 0. The pair s,s" is called periodic if p > 1
and aperiodic otherwise. A Markov chain is called aperiodic if all pairs s, s’ are
aperiodic, otherwise the chain is called periodic. Similarly, an MDP is called
aperiodic if every memoryless randomized strategy induces an aperiodic Markov
chain, otherwise the MDP is called periodic.

Long-Run Average Reward. In this work, we consider the (maximum) long-run
average reward (or mean-payoff) of an MDP, which intuitively describes the
(maximum) average reward per step we expect to see when simulating the MDP
for time going to infinity. Formally, let R; be a random variable, which for an
infinite path p = spapsia; ... returns R;(p) = r(s;, a;), i.e. the reward observed
at step 7 > 0. Given a strategy m, the n-step average reward then is

1 n—1
e = (15 x),
=0
and the long-run average reward of the strategy = is

v™(s) := liminf v].
n—oo
The liminf is used in the definition, since the limit may not exist in general for
an arbitrary strategy. Nevertheless, for finite MDPs the optimal limit-inferior
(also called the wvalue) is attained by some memoryless deterministic strategy
7* € IIMP and is in fact the limit [Put94, Theorem 8.1.2].

Tell M0 rell e [TMD n—oo

n—1
1 .
= sup iminfET =3 R, | = T(s) = T(s) = lim o" .
v(s) := sup liminf E7 (n 2) sup v"(s) = max v"(s) im v}

An alternative well-known characterization we use in this paper is

u(s) = max MEZMECM [0OM] - w(M), 1)

where OLOM denotes the set of paths that eventually remain forever within M
and v(M) is the unique value achievable in the MDP restricted to the MEC M.
Note that v(M) does not depend on the initial state chosen for the restriction.

208 P. Ashok et al.

Algorithm 1. VALUEITERATION
Input: MDP M = (S, sinit, Act, Av, A, 1), precision € > 0
Output: w, s.t. |w — v(siit)| < €

1: to(-) < 0, n < 0.

2: while stopping criterion not met do

3: n«—mn-+1

4 for s € S do

5: tn(s) = maxgeau(s) ((s,a) + D, cg Als,a, 8)tn—1(s"))
6: return %tn(sinit)

3 Value Iteration Solutions

3.1 Naive Value Iteration

Value iteration is a dynamic-programming technique applicable in many con-
texts. It is based on the idea of repetitively updating an approximation of the
value for each state using the previous approximates until the outcome is precise
enough. The standard value iteration for average reward [Put94, Sect.8.5.1] is
shown in Algorithm 1.

First, the algorithm sets to(s) = 0 for every s € S. Then, in the inner
loop, the value t¢,, is computed from the value of ¢,_; by choosing the action
which maximizes the expected reward plus successor values. This way, t,, in fact
describes the optimal expected n-step total reward

me[IMD € [TMD

n—1
tn(s) = max ET (Z R,;) =n- max v} (s).
=0

Moreover, t,, approximates the n-multiple of the long-run average reward.

Theorem 1 [Put94, Theorem 9.4.1]. For any MDP M and any s € S we have
lim,, o0 %tn(s) = v(s) fort, obtained by Algorithm 1.

Stopping Criteria. The convergence property of Theorem 1 is not enough to
make the algorithm practical, since it is not known when to stop the approx-
imation process in general. For this reason, we discuss stopping criteria which
describe when it is safe to do so. More precisely, for a chosen € > 0 the stopping
criterion guarantees that when it is met, we can provide a value w that is e-close
to the average reward v(Sinit)-

We recall a stopping criterion for communicating MDPs defined and proven
correct in [Put94, Sect. 9.5.3]. Note that in a communicating MDP, all states have
the same average reward, which we simply denote by v. For ease of notation,
we enumerate the states of the MDP S = {s1,...,s,} and treat the function
t, as a vector of values t, = (t,(81),...,tn(Sn)). Further, we define the relative
difference of the value iteration iterates as A,, := t,, — t,,_1 and introduce the

Value Iteration for Long-Run Average Reward 209

span semi-norm, which is defined as the difference between the maximum and
minimum element of a vector w

sp(w) = I;ﬂeagw(s) — Is)nelgw(s)

The stopping criterion then is given by the condition
sp(An) <e. (SC1)
When the criterion (SC1) is satisfied we have that
|AL(s) —v| <e Vs e S. (2)

Moreover, we know that for communicating aperiodic MDPs the criterion (SC1)
is satisfied after finitely many steps of Algorithm 1 [Put94, Theorem 8.5.2]. Fur-
thermore, periodic MDPs can be transformed into aperiodic without affecting
the average reward. The transformation works by introducing a self-loop on each
state and adapting the rewards accordingly [Put94, Sect.8.5.4]. Although this
transformation may slow down VI, convergence can now be guaranteed and we
can obtain e-optimal values for any communicating MDP.

The intuition behind this stopping criterion can be explained as follows.
When the computed span norm is small, A, contains nearly the same value in
each component. This means that the difference between the expected (n — 1)-
step and n-step total reward is roughly the same in each state. Since in each state
the n-step total reward is greedily optimized, there is no possibility of getting
more than this difference per step.

Unfortunately, this stopping criterion cannot be applied on general MDPs,
as it relies on the fact that all states have the same value, which is not true in
general. Consider for example the MDP of Fig. 1a. There, we have that v(s5) =
v(sg) = 10 but v(s3) = v(s4) = 5.

In [Put94, Sect.9.4.2], it is conjectured that the following criterion may be
applicable to general MDPs:

sp(An—1) —sp(4Q,) < e. (SC2)

This stopping criterion requires that the difference of spans becomes small
enough. While investigating the problem, we also conjectured a slight variation:

[|A, — An_illeo <, (SC3)

where ||w]||oc = maxses w(s). Intuitively, both of these criteria try to extend
the intuition of the communicating criterion to general MDPs, i.e. to require
that in each state the reward gained per step stabilizes. Example2 however
demonstrates that neither (SC2) nor (SC3) is a valid stopping criterion.

Ezample 2. Consider the (aperiodic communicating) MDP in Fig. 2 with a para-
metrized reward value a > 0. The optimal average reward is v = a. But the
first three vectors computed by value iteration are tg = (0,0),¢; = (0.9 - o,),

210 P. Ashok et al.

0.9 a,0 0.1
b,0.9~aC Daa
_/
b,0

Fig. 2. A communicating MDP parametrized by the value «.

ty = (1.8 - @, 2 -). Thus, the values of A; = Ay = (0.9 - a, @) coincide, which
means that for every choice of ¢ both stopping criteria (SC2) and (SC3) are
satisfied by the third iteration. However, by increasing the value of @ we can
make the difference between the average reward v and Ay arbitrary large, so no
guarantee like in Eq. (2) is possible. A

3.2 Local Value Iteration

In order to remedy the lack of stopping criteria, we provide a modification of VI
using MEC decomposition which is able to provide us with an e-optimal result,
utilizing the principle of Eq. (1). The idea is that for each MEC we compute an
g-optimal value, then consider these values fixed and propagate them through
the MDP quotient.

Apart from providing a stopping criterion, this has another practical advan-
tage. Observe that the naive algorithm updates all states of the model even if
the approximation in a single MEC has not e-converged. The same happens
even when all MECs are already e-converged and the values only need to propa-
gate along the transient states. These additional updates of already e-converged
states may come at a high computational cost. Instead, our method adapts to
the potentially very different speeds of convergence in each MEC.

The propagation of the MEC values can be done efficiently by transforming
the whole problem to a reachability instance on a modified version of the MEC
quotient, which can be solved by, for instance, VI. We call this variant the
weighted MEC' quotient. To obtain this weighted quotient, we assume that we
have already computed approximate values w(M) of each MEC M. We then
collapse the MECs as in the MEC quotient but furthermore introduce new states
s+ and s_, which can be reached from each collapsed state by a special action
stay with probabilities corresponding to the approximate value of the MEC.
Intuitively, by taking this action the strategy decides to “stay” in this MEC and
obtain the average reward of the MEC.

Formally, we define the function f as the normalized approximated value,
i.e. for some MEC M; we set f(5;) = ——w(M;), so that it takes values in
[0,1]. Then, the probability of reaching s, upon taking the stay action in §; is
defined as f(3;) and dually the transition to s_ is assigned 1— f(§;) probability.
If for example some MEC M had a value v(M) = %rmax, we would have that
A(3,stay,sy) = % This way, we can interpret reaching s, as obtaining the
maximal possible reward, and reaching s_ to obtaining no reward. With this

Value Iteration for Long-Run Average Reward 211

intuition, we show in Theorem 2 that the problem of computing the average
reward is reduced to computing the value of each MEC and determining the
maximum probability of reaching the state s; in the weighted MEC quotient.

Definition 4 (Weighted MEC quotient). Let M = (S, 3,4, Act, Av, A, 7)
be the MEC quotient of an MDP M and let MECg = {31,...,3,} be the set of
collapsed states. Further, let f : MECg — [0,1] be a function assigning a value
to every collapsed state We define the Welghted MEC quotient of M and f as
the MDP M! = (57 sf . Act U {stay},Av/, AT 1), where

» 2init?
~ 87 =8 U {sy,s_},

- Stntt smzt;

~ AV’ is defined as

Vie 5. AV (5) = { v(8) U {stay} ifsec MECg,

Av(é) otherwise,

— Af s defined as
Ve S ae Act\ {stay}. A(s,a) = A3, a)
V4 € MECg. AY(3;,stay) = {s; — f(8i,5- — 1— f(3:)},

~ and the reward function v/ (3,a) is chosen arbitrarily (e.g. 0 everywhere),
since we only consider a reachability problem on M.

Ezample 3. Consider the MDP in Fig. 1a. The average rewards of the MECs are
v = {A —4,B—5,C — 10}. With f defined as in Theorem 2, Fig. 3 shows the
weighted MEC quotient M. A

Theorem 2. Given an MDP M with MECs MEC(M) = {M;, ..., M,}, define
f(3;) = —L—v(M;) the function mapping each MEC M; to its value. Moreover,

Tmax

let M7 be the weighted MEC quotient of M and f. Then

U(Sim't) = Tmax * Sup]PMf f (<>8+)'

»Sinit

Gy @

Fig.3 The weighted quotient of the MDP in Fig.la and function f =
{A— ﬁ, B 1070 — } Rewards and stay action labels omitted for readability.

212 P. Ashok et al.

Algorithm 2. LocaALVI
Input: MDP M = (S, sinit, Act, Av, A, 1), precision € > 0
Output: w, s.t. |w — v(siit)| < €

1. f=0
2: for M; = (T3, A;) € MEC(M) do > Determine values for MECs
3: Compute the average reward w(M;) on M, such that |w(M;) — v(M;)| < e,
e f(8) — oo w(M)
5:
6:
7

M’ — the weighted MEC quotient of M and f
(<>s+)| < z——¢ b Determine reachability

27"max

Compute p s.t. |[p— sup,reHIP’Mf .

: return rmax - p

The corresponding algorithm is shown in Algorithm 2. It takes an MDP and the
required precision € as input and returns a value w, which is e-close to the average
reward v(Sinit). In the first part, for each MEC M the algorithm computes an
approximate average reward w(M) and assigns it to the function f (normalized
by Tmax). Every MEC is a communicating MDP, therefore the value w(M) can
be computed using the naive VI with (SC1) as the stopping criterion. In the
second part, the weighted MEC quotient of M and f is constructed and the
maximum probability p of reaching s, in M/ is approximated.

Theorem 3. For every MDP M and ¢ > 0, Algorithm 2 terminates and is
correct, i.e. returns a value w, s.t. |w — v(sim-t)| <e.

For the correctness, we require that p is T -close to the real maximum proba-
bility of reaching s . This can be achieved by using the VI algorithms for reacha-
bility from [BCC+14] or [HM14], which guarantee error bounds on the computed
probability. Note that p can also be computed by other methods, such as linear
programming. In Sect. 4 we empirically compare these approaches.

3.3 On-Demand Value Iteration

Observe that in Algorithm 2, the approximations for all MECs are equally pre-
cise, irrespective of the effect a MEC’s value has on the overall value of the MDP.
Moreover, the whole model is stored in memory and all the MECs are computed
beforehand, which can be expensive for large MDPs. Often this is unnecessary,
as we illustrate in the following example.

Ezample 4. There are three MECs j, E, C in the MDP of Fig. 1a. Furthermore,
we have that P7 (¢C) < 0.001. By using the intuition of Eq. (1), we see that
no matter where in the interval [0, rmax = 20] its value lies, it contributes to the
overall value v(8ipit) at most by 0.001 - rpax = 0.02. If the required precision
were € = 0.1, the effort invested in computing the value of C would not pay off
at all and one can completely omit constructing C.

Further, suppose that A was a more complicated MEC, but after a few iter-
ations the criterion (SC1) already shows that the value of A is at most 4.4.
Similarly, after several iterations in B we might see that the value of B is

Value Iteration for Long-Run Average Reward 213

greater than 4.5. In this situation, there is no point in further approximating
the value of A since the action b leading to it will not be optimal anyway, and
its precise value will not be reflected in the result. A

To eliminate these inefficient updates, we employ the methodology of bounded
real-time dynamic programming (BRTDP) [MLGO05] adapted to the undis-
counted setting in [BCC+14]. The word bounded refers to keeping and updat-
ing both a lower and an upper bound on the final result. It has been shown
in [Put94,CI14] that bounds for the value of a MEC can be derived from the
current maximum and minimum of the approximations of VI. The idea of the
BRTDP approach is to perform updates not repetitively for all states in a fixed
order, but more often on the more important states. Technically, finite runs of
the system are sampled, and updates to the bounds are propagated only along
the states of the current run. Since successors are sampled according to the tran-
sition probabilities, the frequently visited (and thus updated) states are those
with high probability of being reached, and therefore also having more impact on
the result. In order to guarantee convergence, the non-determinism is resolved
by taking the most promising action, i.e. the one with the current highest upper
bound. Intuitively, when after subsequent updates such an action turns out to
be worse than hoped for, its upper bound decreases and a more promising action
is chosen next time.

Since BRTDP of [BCC+14] is developed only for MDP with the reacha-
bility (and LTL) objective, we decompose our problem into a reachability and
MEC analysis part. In order to avoid pre-computation of all MECs with the
same precision, we instead compute the values for each MEC only when they
could influence the long-run average reward starting from the initial state. Intu-
itively, the more a particular MEC is encountered while sampling, the more it
is “reached” and the more precise information we require about its value.

To achieve this, we store upper and lower bounds on its value in the functions
u and [and refine them on demand by applying VI. We modify the definition
of the weighted MEC quotient to incorporate these lower and upper bounds
by introducing the state s7 (in addition to si,s_). We call this construction
the bounded MEC quotient. Intuitively, the probability of reaching s; from a
collapsed state now represents the lower bound on its value, while the probability
of reaching s; describes the gap between the upper and lower bound.

Definition 5 (Bounded MEC quotient). Let M = (§,§imt,71-c\t,m,AA, 7)
be the MEC quotient of an MDP M with collapsed states MECg = {31,...,5,}
and let Lu : {81,...,8,} — [0,1] be functions that assign a lower and upper

bound, respectively, to every collapsed state in M. The bounded MEC quotient
ML of M and 1, u is defined as in Definition 4 with the following changes.

~ Sl = §U {87},
— AV (s7) = 0,
- V5 € MECg. Ah¥(3,stay) = {sy — I(8), s— — 1 —u(8), s2 — u(8) — 1(3)}.

The unshortened definition can be found in [ACD+17, Appendiz D).

214 P. Ashok et al.

Algorithm 3. ONDEMANDVI
Input: MDP M = (S, sinit, Act, Av, A, r), precision € > 0, threshold k& > 2
Output: w, s.t. |w — v(smit)| < €

1: Set u(e,-) «— 1, u(s—,-) < 0; I(-,-) < 0, I(s4,-) «— 1 > Initialize
2: Let A(s) := argmax,cayt.u(s) u(s,a)
3: Let u(s) := maxqeca(s) u(s,a) and I(s) := max,ca(s) I(s, a)
4: repeat
5: s st we—s > Generate path
6: repeat
7 a < sampled uniformly from A(s)
8: s « sampled according to A"*(s, a)
9: W — W, a, s
10: until s € {s;,s_, s} or Appear(s,w) =k > Terminate path
11: if pop(w) = s? then > Refine MEC in which stay was taken
12: pop(w)
13: q — top(w)
14: Run VI on g, updating u and [, until v — [is halved
15: Update A““(g, stay) according to Definition 5
16: else if Appear(s,w) = k then > Update EC-collapsing
17: ONTHEFLYEC
18: repeat > Back-propagate values
19: a «— pop(w), s < pop(w)
20: u(s,a) — Y o5 As,a,8") - u(s)
21: I(s,a) — > cqAls,a,8") - U(s
22: until w =0
23: until u(Sinit) — {(Sinit) < 2= > Terminate

Tmax

24: return Tmax - %(u(sinit) + 1(Sinit))

The probability of reaching s and the probability of reaching {s, s»} give the
lower and upper bound on the value v(sinit), respectively.

Corollary 1. Let M be an MDP and l,u functions mapping each MEC M,;
of M to (normalized) lower and upper bounds on the value, respectively, i.e.
1(8;) < ﬁv(MJ < u(8;). Then

Tmax * TSrIGII% PﬂMlu’sfﬂ”z(OSJr) S U(Sinit) S Tmax ° :lelg Ple“¢S£;”;(0{8+, S?}),

where M5 is the bounded MEC quotient of M and I, u.

Algorithm 3 shows the on-demand VI. The implementation maintains a par-
tial model of the MDP and M"*, which contains only the states explored by the
runs. It interleaves two concepts: (i) naive VI is used to provide upper and lower
bounds on the value of discovered end components, (ii) the method of [BCC+14]
is used to compute the reachability on the collapsed MDP.

In lines 6-10 a random run is sampled following the “most promising” actions,
i.e. the ones with maximal upper bound. The run terminates once it reaches
S4,5_ or s7, which only happens if stay was one of the most promising actions.

Value Iteration for Long-Run Average Reward 215

Procedure 4. ONTHEFLYEC

1: for (Ti, A;) € MEC(M"*) do

2 Collapse (T3, A;) to §; in Mbe
3 for s € T;,a € Av(s) \ A; do
4: u(8i, (s,a)) — u(s,a)
5
6

l(§i7 (Sa a)) — l(S, a)
Add the stay action according to Definition 5.

A likely arrival to s, reflects a high difference between the upper and lower
bound and, if the run ends up in s-, this indicates that the upper and lower
bounds of the MEC probably have to be refined. Therefore, in lines 11-15 the
algorithm resumes VI on the corresponding MEC to get a more precise result.
This decreases the gap between the upper and lower bound for the corresponding
collapsed state, thus decreasing the probability of reaching s, again.

The algorithm uses the function Appear(s,w) = |{i € N | s = w[i]}| to count
the number of occurrences of the state s on the path w. Whenever we encounter
the same state k times (where k is given as a parameter), this indicates that
the run may have got stuck in an end component. In such a case, the algorithm
calls ONTHEFLYEC [BCC+14], presented in Procedure 4, to detect and collapse
end components of the partial model. By calling ONTHEFLYEC we compute the
bounded quotient of the MDP on the fly. Without collapsing the end components,
our reachability method could remain forever in an end component, and thus
never reach s;, s_ or s7. Finally, in lines 18-22 we back-propagate the upper
and lower bounds along the states of the simulation run.

Theorem 4. For every MDP M, ¢ > 0 and k > 2, Algorithm 3 terminates
almost surely and is correct, i.e. returns a value w, s.t. |[w — v(8mit)| < €.

4 Implementation and Experimental Results

In this section, we compare the runtime of our presented approaches to estab-
lished tools. All benchmarks have been run on a 4.4.3-gentoo x64 virtual machine
with 3.0 GHz per core, a time limit of one hour and memory limit of 8GB. The
precision requirement for all approximative methods is ¢ = 107%. We imple-
mented our constructions as a package in the PRISM Model Checker [KNP11].
We used the 64-bit Oracle JDK version 1.8.0.102-b14 as Java runtime for all
executions. All measurements are given in seconds, measuring the total user
CPU time of the PRISM process using the UNIX tool time.

4.1 Models

First, we briefly explain the examples used for evaluation. virus [KNPV09] mod-
els a virus spreading through a network. We reward each attack carried out
by an infected machine. Note that in this model, no machine can “purge” the

216 P. Ashok et al.

virus, hence eventually all machines will be infected. cs_nfail [KPC12] mod-
els a client-server mutual exclusion protocol with probabilistic failures of the
clients. A reward is given for each successfully handled connection. investor
[MMO07,MMO02] models an investor operating in a stock market. The investor
can decide to sell his stocks and keep their value as a reward or hold them
and wait to see how the market evolves. The rewards correspond to the value
of the stocks when the investor decides to sell them, so maximizing the aver-
age reward corresponds to maximizing the expected selling value of the stocks.
phil_nofair [DFP04] represents the (randomised) dining philosophers without
fairness assumptions. We use two reward structures, one where a reward is
granted each time a philosopher “thinks” or “eats”, respectively. rabin [Rab82]
is a well-known mutual exclusion protocol, where multiple processes repeatedly
try to access a shared critical section. Each time a process successfully enters
the critical section, a reward is given. zeroconf [KNPS06] is a network protocol
designed to assign IP addresses to clients without the need of a central server
while still avoiding address conflicts. We explain the reward assignment in the
corresponding result section. sensor [KPC12] models a network of sensors send-
ing values to a central processor over a lossy connection. A reward is granted for
every work transition.

4.2 Tools

We will compare several different variants of our implementations, which are
described in the following.

— Naive value iteration (NVI) runs the value iteration on the whole MDP as
in Algorithm 1 of Sect. 3.1 together with the stopping criterion (SC2) conjec-
tured by [Put94, Sect.9.4.2]. As the stopping criterion is incorrect, we will
not only include the runtime until the stopping criterion is fulfilled, but also
until the computed value is e-close to the known solution.

— Our MEC decomposition approach presented in Algorithm 2 of Sect. 3.2 is
denoted by MEC-reach, where reach identifies one of the following reachabil-
ity solver used on the quotient MDP.

e PRISM’s value iteration (VI), which iterates until none of the values
change by more than 108, While this method is theoretically imprecise,
we did not observe this behaviour in our examples.?

e An exact reachability solver based on linear programming (LP) [Girl4].

e The BRTDP solver with guaranteed precision of [BCC+14] (BRTDP). This
solver is highly configurable. Among others, one can specify the heuristic
which is used to resolve probabilistic transitions in the simulation. This
can happen according to transition probability (PR), round-robin (RR) or
maximal difference (MD). Due to space constraints, we only compare to
the MD exploration heuristic here. Results on the other heuristics can be
found in [ACD+17, Appendix E]

2 PRISM contains several other methods to solve reachability, which all are imprecise
and behaved comparably in our tests.

Value Iteration for Long-Run Average Reward 217

— 0DV is the implementation of the on-demand value iteration as in Algorithm 3
of Sect.3.3. Analogously to the above, we only provide results on the MD
heuristic here. The results on 0DV together with the other heuristics can also
be found in [ACD+17, Appendix E].

Furthermore, we will compare our methods to the state-of-the-art tool Multi-
Gain, version 1.0.2 [BCFK15] abbreviated by MG. MultiGain uses linear pro-
gramming to exactly solve mean payoff objectives among others. We use the
commercial LP solver Gurobi 7.0.1 as backend®. We also instantiated reach by
an implementation of the interval iteration algorithm presented in [HM14]. This
variant performed comparable to MEC-VI and therefore we omitted it.

Table 1. Runtime comparison of our approaches to MultiGain on various, reasonably
sized models. Timeouts (1h) are denoted by TO. Strongly connected models are denoted
by “scon” in the MEC column. The best result in each row is marked in bold, excluding
NVI due to its imprecisions. For NVI, we list both the time until the stopping criterion
is satisfied and until the values actually converged.

Model States | MECs | MG NVI MEC-VI | MEC-LP | MEC-BRTDP | ODV

virus 809 |1 3.76 | 3.50/3.71|4.09 4.41 4.40 TO

cs_nfail4 960 | 176 4.86 |10.2/TO |4.38 TO 9.39 16.0

investor 6688 | 837 16.75|4.23/TO |8.83 TO 64.5 18.7

phil-nofair5 | 93068 |scon |TO |23.5/30.3|70 70 70 TO

rabin4 668836 |scon | TO |87.8/164 | 820 820 820 TO
4.3 Results

The experiments outlined in Table 1 show that our methods outperform Multi-
Gain significantly on most of the tested models. Furthermore, we want to high-
light the investor model to demonstrate the advantage of MEC-VI over MEC-LP.
With higher number of MECs in the initial MDP, which is linked to the size of
the reachability LP, the runtime of MEC-LP tends to increase drastically, while
MEC-VI performs quite well. Additionally, we see that NVI fails to obtain correct
results on any of these examples.

0DV does not perform too well in these tests, which is primarily due to the
significant overhead incurred by building the partial model dynamically. This is
especially noticeable for strongly connected models like phil-nofair and rabin.
For these models, every state has to be explored and ODV does a lot of super-
fluous computations until the model has been explored fully. On virus, the bad
performance is due to the special topology of the model, which obstructs the
back-propagation of values.

3 MultiGain also supports usage of the LP solver 1p_solve 5.5 bundled with PRISM,
which consistently performed worse than the Gurobi backend.

218 P. Ashok et al.

Moreover, on the two strongly connected models all MEC decomposition
based methods perform worse than naive value iteration as they have to obtain
the MEC decomposition first. Furthermore, all three of those methods need the
same amount of for these models, as the weighted MEC quotient only has a
single state (and the two special states), thus the reachability query is trivial.

In Table 2 we present results of some of our methods on zeroconf and sen-
sors, which both have a structure better suited towards ODV. The zeroconf
model consists of a big transient part and a lot of “final” states, i.e. states which
only have a single self-loop. sensors contains a lot of small, often unlikely-to-
be-reached MECs.

Table 2. Runtime comparison of our on-demand VI method with the previous
approaches. All of those behaved comparable to MEC-VI or worse, and due to space
constraints we omit them. MO denotes a memory-out. Aside from runtime, we further-
more list the number of explored states and MECs of 0DV

Model States |MEC-VI | ODV | ODV States | 0DV MECs
zeroconf(40,10) |3001911| MO |5.05 481 3
avoid 582 3
zeroconf(300,15) | 4730203 | MO |16.6 873 3
avoid 5434 3
sensors(2) 7860 | 18.9 |20.1 3281 917
sensors(3) 77766 | 2293 | 37.2| 10941 2301

On the zeroconf model, we evaluate the average reward problem with two
reward structures. In the default case, we assign a reward of 1 to every final state
and zero elsewhere. This effectively is solving the reachability question and thus
it is not surprising that our method gives similarly good results as the BRTDP
solver of [BCC+14]. The avoid evaluation has the reward values flipped, i.e. all
states except the final ones yield a payoff of 1. With this reward assignment, the
algorithm performed slightly slower, but still extremely fast given the size of the
model. We also tried assigning pseudo-random rewards to every non-final state,
which did not influence the speed of convergence noticeably. We want to highlight
that the mem-out of MEC-VI already occurred during the MEC-decomposition
phase. Hence, no variant of our decomposition approach can solve this problem.

Interestingly, the naive value iteration actually converges on zeroconf (40,10)
in roughly 20 min. Unfortunately, as in the previous experiments, the used incor-
rect stopping criterion was met a long time before that.

Further, when comparing sensors(2) to sensors(3), the runtime of 0DV only
doubled, while the number of states in the model increased by an order of mag-
nitude and the runtime of MEC-VI even increased by two orders of magnitude.

These results show that for some models, ODV is able to obtain an e-optimal
estimate of the mean payoff while only exploring a tiny fraction of the state

Value Iteration for Long-Run Average Reward 219

space. This allows us to solve many problems which previously were intractable
simply due to an enormous state space.

5 Conclusion

We have discussed the use of value iteration for computing long-run average
rewards in general MDPs. We have shown that the conjectured stopping criterion
from literature is not valid, designed two modified versions of the algorithm and
have shown guarantees on their results. The first one relies on decomposition
into VI for long-run average on separate MECs and VI for reachability on the
resulting quotient, achieving global error bounds from the two local stopping
criteria. The second one additionally is simulation-guided in the BRTDP style,
and is an anytime algorithm with a stopping criterion. The benchmarks show
that depending on the topology, one or the other may be more efficient, and
both outperform the existing linear programming on all larger models. For future
work, we pose the question of how to automatically fine-tune the parameters of
the algorithms to get the best performance. For instance, the precision increase
in each further call of VI on a MEC could be driven by the current values of VI
on the quotient, instead of just halving them. This may reduce the number of
unnecessary updates while still achieving an increase in precision useful for the
global result.

References

[ACD+17] Ashok, P., Chatterjee, K., Daca, P., Ktetinsky, J., Meggendorfer, T.: Value
iteration for long-run average reward in Markov decision processes. Tech-
nical report arXiv:1705.02326, arXiv.org (2017)

[BBC+14] Brézdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Markov
decision processes with multiple long-run average objectives. LMCS 10(1),
1-29 (2014). doi:10.2168/LMCS-10(1:13)2014

[BCC+14] Brézdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretinsky, J.,
Kwiatkowska, M., Parker, D., Ujma, M.: Verification of Markov decision
processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 98-114. Springer, Cham (2014). doi:10.
1007/978-3-319-11936-6_8

[BCFK13] Brazdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Trading performance
for stability in Markov decision processes. In: LICS, pp. 331-340 (2013)

[BCFK15] Brazdil, T., Chatterjee, K., Forejt, V., Kucera, A.: MULTIGAIN: a controller
synthesis tool for MDPs with multiple mean-payoff objectives. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 181-187. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0-12

[BKO08] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cam-
bridge (2008)
[CH11] Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal

end-component decomposition and related graph problems in probabilistic
verification. In: SODA, pp. 1318-1336. STAM (2011)

220 P. Ashok et al.

[CH12]

[CH14]

[Cha07]

[CT14]

[CKK15]

[CL13]

[CY95]

[dA97)

[DFP04]

[FV97]

[Girl4]

[HM14]

[How60]

[KNP11]

[KNPS06]

[KNPV09)

[KPC12]

Chatterjee, K., Henzinger, M.: An O(n?) time algorithm for alternating
biichi games. In: SODA, pp. 1386-1399. STAM (2012)

Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alter-
nating biichi games and maximal end-component decomposition. J. ACM
61(3), 15:1-15:40 (2014)

Chatterjee, K.: Markov decision processes with multiple long-run aver-
age objectives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007.
LNCS, vol. 4855, pp. 473-484. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77050-3_39

Chatterjee, K., Ibsen-Jensen, R.: The complexity of ergodic mean-payoff
games. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8573, pp. 122-133. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-43951-7_11

Chatterjee, K., Koméarkova, Z., Kietinsky, J.: Unifying two views on mul-
tiple mean-payoff objectives in Markov decision processes. In: LICS, pp.
244-256 (2015)

Chatterjee, K., Lacki, J.: Faster algorithms for Markov decision processes
with low treewidth. In: Sharygina, N., Veith, H. (eds.) CAV 2013.
LNCS, vol. 8044, pp. 543-558. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8_36

Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verifi-
cation. J. ACM 42(4), 857-907 (1995)

de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis,
Stanford University (1997)

Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers
without fairness assumption. Distrib. Comput. 17(1), 65-76 (2004)

Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer,
New York (1997). doi:10.1007/978-1-4612-4054-9

Giro, S.: Optimal schedulers vs optimal bases: an approach for efficient
exact solving of Markov decision processes. Theor. Comput. Sci. 538, 70—
83 (2014)

Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence
of value iteration. In: Ouaknine, J., Potapov, 1., Worrell, J. (eds.) RP
2014. LNCS, vol. 8762, pp. 125-137. Springer, Cham (2014). doi:10.1007/
978-3-319-11439-2_10

Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press,
New York, London, Cambridge (1960)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585-591. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22110-1_47

Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance
analysis of probabilistic timed automata using digital clocks. Formal Meth-
ods Syst. Des. 29, 33-78 (2006)

Kwiatkowska, M., Norman, G., Parker, D., Vigliotti, M.G.: Probabilistic
mobile ambients. Theoret. Comput. Sci. 410(12-13), 1272-1303 (2009)
Komuravelli, A., Pasareanu, C.S., Clarke, E.M.: Assume-guarantee
abstraction refinement for probabilistic systems. In: Madhusudan, P.
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 310-326. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31424-7_25

[MLGO5]

[MMO02]

[MMO7]
[PGT03]
[Put94]
[Rabg2]
[Seg95]
[Vei66]

[WBB+10]

Value Iteration for Long-Run Average Reward 221

McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guar-
antees. In: ICML, pp. 569-576 (2005)

Mclver, A.K., Morgan, C.C.: Games, probability, and the quantita-
tive p-calculus ¢Mu. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002.
LNCS, vol. 2514, pp. 292-310. Springer, Heidelberg (2002). doi:10.1007/
3-540-36078-6_20

Mclver, A., Morgan, C.: Results on the quantitative y-calculus gMu. ACM
Trans. Comput. Logic 8(1), 3 (2007)

Pineau, J., Gordon, G.J., Thrun, S.: Point-based value iteration: an any-
time algorithm for POMDPs. In: IJCAI, pp. 1025-1032 (2003)
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, Hoboken (1994)

Michael, O.: N-Process mutual exclusion with bounded waiting by 4
Log2N-valued shared variable. J. Comput. Syst. Sci. 25(1), 66-75 (1982)
Segala, R.: Modelling and verification of randomized distributed real time
systems. Ph.D. thesis, Massachusetts Institute of Technology (1995)
Veinott, A.F.: On finding optimal policies in discrete dynamic program-
ming with no discounting. Ann. Math. Statist. 37(5), 1284-1294 (1966)
Wimmer, R., Braitling, B., Becker, B., Hahn, E.M., Crouzen, P., Her-
manns, H., Dhama, A., Theel, O.E.: Symblicit calculation of long-run aver-
ages for concurrent probabilistic systems. In: QEST, pp. 27-36 (2010)

B Efficient Strategy Iteration for Mean Payoff in Markov
Decision Processes. ATVA 2017

This section has been published as peer-reviewed conference paper.

Jan Kietinsky and Tobias Meggendorfer. ‘Efficient Strategy Iteration for
Mean Payoff in Markov Decision Processes’. In: Automated Technology
for Verification and Analysis - 15th International Symposium, ATVA 2017,
Pune, India, October 3-6, 2017, Proceedings. Ed. by Deepak D’Souza and
K. Narayan Kumar. Vol. 10482. Lecture Notes in Computer Science.
Springer, 2017, pp. 380-399. DOI: 10.1007/978-3-319-68167-2_25. URL:
https://doi.org/10.1007/978-3-319-68167-27,5C_25

Synopsis We present several practical optimizations of the strategy iteration (SI) ap-
proach to optimize mean payoff objectives in Markov decision processes. Typically, there
are three main approaches towards solving mean payoff. Firstly, linear programming is
theoretically appealing since it yields precise solutions in polynomial time. However, in
practice, LP barely scales beyond systems with a few thousand states. Usually, dynamic
programming programming approaches are considered. In [Ash+17] (see Paper A),
we present a scalable value iteration (VI) approach for mean payoff. While VI scales
extremely well, it only offers precise solutions in the limit and thus is only usable for
approximative solutions. In contrast, SI offers precise solutions, practical scalability,
and conceptual simplicity. By applying topological arguments and approximation heur-
istics, combining VI and SI, we obtain a fast yet precise solver for mean payoff, with
performance comparable to state-of-the-art tools.

Contributions of the thesis author Composition, discussion and revision of the entire
manuscript. Sole contribution of all results and proofs presented in the paper. Sole
design and implementation of the presented tool. Creation of the software artefact for
conference submission.

86

https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-319-68167-2%5C_25

Efficient Strategy Iteration for Mean Payoff
in Markov Decision Processes

Jan Kietinsky and Tobias Meggendorfer®)

Technical University of Munich, Munich, Germany
tobias.meggendorfer@in.tum.de

Abstract. Markov decision processes (MDPs) are standard models for
probabilistic systems with non-deterministic behaviours. Mean payoff (or
long-run average reward) provides a mathematically elegant formalism
to express performance related properties. Strategy iteration is one of
the solution techniques applicable in this context. While in many other
contexts it is the technique of choice due to advantages over e.g. value
iteration, such as precision or possibility of domain-knowledge-aware ini-
tialization, it is rarely used for MDPs, since there it scales worse than
value iteration. We provide several techniques that speed up strategy
iteration by orders of magnitude for many MDPs, eliminating the per-
formance disadvantage while preserving all its advantages.

1 Introduction

Markov decision processes (MDPs) [19,28,34] are a standard model for analysis
of systems featuring both probabilistic and non-deterministic behaviour. They
have found rich applications, ranging from communication protocols to biological
systems and robotics. A classical objective to be optimized in MDPs is mean
payoff (or long-run average reward). It captures the reward we can achieve on
average per step when simulating the MDP. Technically, one considers partial
averages (average over the first n steps) and let the time n go to infinity. This
objective can be used to describe performance properties of systems, for example,
average throughput, frequency of errors, average energy consumption, etc.

Strategy (or policy) iteration (or improvement) (SI) is a dynamic-programming
technique applicable in many settings, including optimization of mean payoff in
MDPs [28,34], but also mean payoff games [6,9], parity games [17,33, 35, 38], sim-
ple stochastic games [11], concurrent reachability games [25], or stochastic parity
games [24]. The main principle of the technique is to start with an arbitrary strat-
egy (or policy or controller of the system) and iteratively improve it locally in a
greedy fashion until no more improvements can be done. The resulting strategy is
guaranteed to be optimal.

SI has several advantages compared to other techniques used in these con-
texts. Most interestingly, domain knowledge or heuristics can be used to initialize

This work is partially supported by the German Research Foundation (DFG) project
“Verified Model Checkers” and the Czech Science Foundation grant No. 15-17564S.
© Springer International Publishing AG 2017

D. D’Souza and K. Narayan Kumar (Eds.): ATVA 2017, LNCS 10482, pp. 380-399, 2017.
DOI: 10.1007/978-3-319-68167-2_25

Efficient Strategy Iteration for Mean Payoff in MDPs 381

with a reasonable strategy, thus speeding up the computation to a fraction of
the usual analysis time. Further, SI is conceptually simple as it boils down to
a search through a finite space of memoryless deterministic strategies, yielding
arguments for correctness and termination of the algorithm.

More specifically, in the context of MDPs, it has advantages over the other
two standard techniques. Firstly, compared to linear programming (LP), SI scales
much better. LP provides a rich framework, which is able to encode many opti-
mization problems on MDPs and in particular mean payoff. However, although
the linear programs are typically of polynomial size and can be also solved in
polynomial time, such procedures are not very useful in practice. For larger
systems the solvers often time out or run out of memory already during the
construction of the linear program. Furthermore, SI ensures that the current
lower bounds on the mean payoff is monotonically improving. Consequently, the
iteration can be stopped at any point, yielding a strategy at least as good as all
previous iterations.

Secondly, compared to value iteration (VI), SI provides a precise solution,
whereas VI is only optimal in the limit and the number of iterations before the
numbers can be rounded in order to obtain a precise solution is very high [10].
Furthermore, stopping criteria for VI are limited to special cases or are very
inefficient. Consequently, VI is practically used to produce results that may be
erroneous even for simple, realistic examples in verification, see e.g. [23].

On the other hand, the main disadvantage of SI, in particular for mean payoff,
is its scalability. Although SI scales better than LP, it is only rarely the case that
SI is faster than VI. Firstly, in the worst case, we have to examine exponentially
many strategies [15], in contrast to the discounted case, which is polynomial (for
a fixed discount factor) [39] even for games [26]. However, note that even for
parity games it was for long not known [21] whether all ST algorithms exhibit
this property since the number of improvements is only rarely high in practice.
Secondly, and more importantly, the evaluation of each strategy necessary for the
greedy improvement takes enormous time since large systems of linear equations
have to be solved. Consequently, VI typically is much faster than SI to obtain a
similar precision, although it may also need an exponential number of updates.

This scalability limitation is even more pronounced by the following contrast.
On the one hand, mean payoff games, parity games, and simple stochastic games
are not known to be solvable in polynomial time, hence the exponential-time SI
is an acceptable technique for these models. On the other hand, for problems on
MDPs that are solvable in polynomial time, such as mean payoff, the exponential-
time SI becomes less appealing. In summary, we can only afford to utilize the
mentioned advantages of SI for MDPs if we make SI perform well in practice.

This paper suggest several heuristics and opens new directions to increase
performance of SI for MDPs, in particular in the setting of mean payoff. Our
contribution is the following:

— We present several techniques to significantly speed up SI in many cases,
most importantly the evaluation of the current strategy. The first set of tech-
niques (in Sect. 4) is based on maximal end component decomposition of the

382 J. Kfretinsky and T. Meggendorfer

MDP and strongly connected component decomposition of the Markov chain
induced by the MDP and the currently considered strategy. The second class
(in Sect.5) is based on approximative techniques to compute mean payoff
in these Markov chains. Both variants reduce the time taken by the strat-
egy evaluation. Finally, we combine the two approaches in a non-trivial way
in Sect. 5.1, giving rise to synergic optimizations and opening the door for
approximation techniques.

— We provide experimental evaluation of the proposed techniques and com-
pare to the approaches from literature. We show experimental evidence that
our techniques are speeding up SI by orders of magnitude and make its per-
formance (i) on par with VI, the prevalent technique which, however, only
provides approximate solutions, and (ii) incomparably more scalable than the
precise technique of LP.

Further related work. Strategy iteration for MDPs has been extensively stud-
ied [16,28,34]. Performance of ST for MDPs has been mainly improved in the dis-
counted total reward case by, e.g., approximate evaluation of the strategy using
iterative methods of linear algebra [36], model reduction by adaptive state-space
aggregation [1] or close-to-optimal initialization [20]; for an overview see [5]. The
treatment of the undiscounted case has focused on unichain MDPs [27,34]. Apart
from solving the MDPs modelling probabilistic systems, the technique has found
its applications in other domains, too, for example program analysis [22].

2 Preliminaries

In this section, we introduce some central notions. Furthermore, relevant tech-
nical notions from linear algebra can be found in [30, Appendix A].

A probability distribution on a finite set X is a mapping p : X — [0, 1], such
that) .y p(x) = 1. Its support is denoted by supp(p) = {r € X | p(x) > 0}.
D(X) denotes the set of all probability distributions on X.

Definition 1. A Markov chain (MC) is a tuple M = (S, sinit, A, 1), where S is
a finite set of states, Sini € S is the initial state, A : S — D(S) is a transition
function that for each state s yields a probability distribution over successor states
and r : S — R0 4s a reward function, assigning rewards to states.

Definition 2. A Markov decision process (MDP) is a tuple of the form M =
(S, Sinit, Act, Av, A, 1), where S is a finite set of states, Siuix € S is the initial
state, Act is a finite set of actions, Av : S — 24¢ assigns to every state a set of
available actions, A : Sx Act — D(S) is a transition function that for each state
s and action a € Av(s) yields a probability distribution over successor states and
r:8x Act — R20 is a reward function, assigning rewards to state-action pairs.

Furthermore, we assume w.l.o0.g. that actions are unique for each state, i.e.

Av(s)NAv(s') =0 for s # s}

! The usual procedure of achieving this in general is to replace Act by S x Act and
adapting Av, A, and r appropriately.

Efficient Strategy Iteration for Mean Payoff in MDPs 383

For ease of notation, we overload functions mapping to distributions f :
Y - DX)by f: Y xX — [0,1], where f(y,z) := f(y)(x). For example,
instead of A(s)(s’) and A(s,a)(s’) we write A(s,s’) and A(s,a,s’), respec-
tively. Further, given some MC M, a function f : S — R and set of states
C C S, we define EG(f,s) := Y . cc A(s,8')f(s'), ie. the weighted sum of
f over all the successors of s in C. Analogously, for some MDP M, we set
EQ(f,s,a) == Y cc A(s,a,8') f(s'). Further, we define Eo(f,s) := E5(f,s)
and EA(f, s, a) == EX(f,s,a).

An infinite path p in a Markov chain is an infinite sequence p = sgs1--- €
S“, such that for every i € N we have that A(s;,s;41) > 0. A finite path
w = $9S1...5, € S is a finite prefix of an infinite path. Similarly, an infinite
path in an MDP is some infinite sequence p = spagsia; --- € (S x Act)®, such
that for every i € N, a; € Av(s;) and A(s;, a;,8;41) > 0. Finite paths are defined
analogously as elements of (S x Act)* x S.

A Markov chain together with a state s induces a unique probability dis-
tribution P; over measurable sets of infinite paths [3, Chapter 10]. For some
C C S, we write OC to denote the set of all paths which eventually reach C| i.e.
OC = {p=sps1---|Ji € N. s; € C}, which is measurable [3, Sect. 10.1.1].

A strategy on an MDP is a function 7 : (S x Act)* x S — D(Act),
which given a finite path w = sgagsia; -..s, yields a probability distribution
m(w) € D(Av(sy)) on the actions to be taken next. We call a strategy mem-
oryless randomized (or stationary) if it is of the form 7 : S — D(Act), and
memoryless deterministic (or positional) if it is of the form 7 : S — Act. We
denote the set of all strategies of an MDP by II, and the set of all memory-
less deterministic strategies as IIMP. Note that ITMP is finite, since at each state
there exist only finitely many actions to choose from. Fixing any positional strat-
egy m induces a Markov chain where A(s, s") = > a5 T(s,a) - A(s,a, s") and
7(s) = Y senv(s) T(s,a) - (s, a).

Fixing a strategy m and an initial state s on an MDP M also gives a unique
measure PT over infinite paths [34, Sect. 2.1.6]. The expected value of a random
variable F' then is defined as ET[F| = [F dPT.

Strongly Connected Components and End Components. A non-empty
set of states C C S in a Markov chain is strongly connected if for every pair
s,s’ € C there is a path from s to s’, possibly of length zero. Such a set C is a
strongly connected component (SCC) if it is inclusion maximal, i.e. there exists
no strongly connected C’ with C' C C’. Note that each state of an MC belongs
to exactly one SCC?. An SCC is called bottom strongly connected component
(BSCCQ) if additionally no path leads out of it, i.e. for s € C,s’ € S\ C we
have A(s,s’) = 0. The set of (B)SCCs in an MC M is denoted by SCC(M) and
BSCC(M), respectively.

The concept of SCCs is generalized to MDPs by so called (mazimal) end
components. A pair (T, A), where) # T C S and) # A C U, Av(s), is an end

2 Some authors deliberately exclude so called “trivial” or “transient” SCCs, which are
single states without a self-loop.

384 J. Kfretinsky and T. Meggendorfer

component of an MDP M if (i) for all s € T,a € A N Av(s) we have
supp(A(s,a)) C T, and (ii) for all s, € T there is a finite path w =
sag...aps" € (T x A)* x T, i.e. the path stays inside T" and only uses actions in
A. Note that we assumed actions to be unique for each state.

Intuitively, an end component describes a set of states for which a particular
strategy exists such that all possible paths remain inside these states. An end
component (T, A) is a maximal end component (MEC) if there is no other end
component (7", A’) such that T C T" and A C A’. Given an MDP M, the set of
its MECs is denoted by MEC(M).

Finally, given an MDP M let (T, A) € MEC(M) some MEC in it. By picking
some initial state s{ ;, € T, defining the straightforward restrictions of Av and A
by AV : T — 24 AV/(s) := Av(s)NA and A" : Tx A — D(T), A'(s,a) := A(s, a)
one obtains the restricted MDP M’ = (T, s! .., A, AV, A").

init?

Remark 1. For a Markov chain M, the computation of SCC(M), BSCC(M) and
a topological ordering of the SCCs can be achieved in linear time w.r.t. the
number of states and transitions by, e.g., Tarjan’s algorithm [37]. Similarly, the
MEC decomposition of an MDP can be computed in polynomial time [12].

Long-Run Average Reward. (also called mean payoff) of a strategy = intu-
itively describes the optimal reward we can expect on average per step when
simulating the MDP according to m. In the following, we will only consider the
case of maximizing the average reward, but the presented methods easily can be
transferred to the minimization case.

Formally, let R; be a random variable which given an infinite path returns
the reward obtained at step @ > 0, i.e. for p = spapsiar ... we have R;(p) =
r(si, a;). Given a strategy m, the n-step (maximal) average reward then is defined
as gr(s) = ET(Z?;Ol R;). The long-run average reward (in this context also
traditionally called gain [34]) of the strategy 7 is ¢™(s) = liminf, .., g7 (s).?
Consequently, the long-run average reward (or gain) of a state s is defined as

n—1

1

g"(s) :=sup g"(s) = sup iminf E7 | — E R |.
well nell M ni3

For finite MDPs g*(s) in fact is attained by a memoryless deterministic strategy
7% € ITMP and it further is the limit of the n-step average reward [34]. Formally,

* — s — 1' 77* .
g"(s) = max g"(s) = lim gy (s)
With this in mind, we now only consider memoryless deterministic strategies.

3 Strategy Iteration

One way of computing the optimal gain of an MDP (i.e. determining the opti-
mal gain of each state) is strategy iteration (or policy iteration or strategy

3 The liminf is used since the limit may not exist in general for an arbitrary strategy.

Efficient Strategy Iteration for Mean Payoff in MDPs 385

improvement). The general approach of strategy iteration is to (i) fix a strat-
egy, (ii) evaluate it and (iii) improve each choice greedily, repeating the process
until no improvement is possible any more. For an in depth theoretical exposé
of strategy iteration for MDPs, we refer to e.g. [34, Sect. 9.2]. We briefly recall
the necessary definitions.

Gain and Bias. As mentioned, the second step of strategy iteration requires to
evaluate a given strategy. By investigating the Markov chain M = (S, Sinit, 4, 7)
induced by the MDP M together with a strategy = € ITMP, one can employ the
following system of linear equations characterizing the gain g [34]:

g(s) = Z A(s,s') - g(s') =Ea(g,s) VseS,
s’esS

b(s) = Z A(s,8") - b(s") +r(s) —g(s) =FEa(b,s) +r(s) —g(s) VseS.

s'eS

A solution (g,b) to these gain/bias equations yields the gain g and the so called
bias b of the induced Markov chain, which we also refer to as gain g, and bias b
of the corresponding strategy m. Intuitively, the bias relates to the total expected
deviation from the gain until the obtained rewards “stabilize” to the gain. Note
that the equations uniquely determine the gain but not the bias. We refer the
reader to [34, Sects. 9.1.1 and 9.2.1] for more detail but highlight the following
result. A unique solution can be obtained by adding the constraints b(s;) = 0 for
one arbitrary but fixed state s; in each BSCC [34, Condition 9.2.3]. Note this
condition requires to fix the bias of the “first” state in the BSCC to zero. But,
as the states can be numbered arbitrarily, any state of the BSCC is eligible. This
is also briefly touched upon in the corresponding chapter of [34]. Unfortunately,
this results in a non-square system matrix.

With these results, the strategy iteration for the average reward objective on
MDPs is defined in Algorithm 1%. Reasoning of [34, Sect. 9.2.4] yields correctness.

Theorem 1. The strategy iteration presented in Algorithm 1 terminates with a
correct result for any input MDP.

It might seem unintuitive why the bias improvement in Line 6 is necessary, since
we are only interested in the gain after all. Intuitively, when optimizing the bias
the algorithm seeks to improve the expected “bonus” until eventually stabilizing
without reducing the obtained gain. This may lead to actually improving the
overall gain, as illustrated in [30, Appendix C].

* Note that the procedure found in [34, Sect. 9.2.1] differs from our Algorithm in
Line 6. There, the bias is improved over all available actions instead of the gain-
optimal ones, which is erroneous. The proofs provided in the corresponding chapter
actually prove the correctness of the algorithm as presented here.

386 J. Kfretinsky and T. Meggendorfer

Algorithm 1. SI
Input: MDP M = (S, sinit, Act, Av, A, 1).
Output: (¢*,7"), s.t. g* is the optimal gain of the MDP and is obtained by 7*.

1: Set n = 0 and pick an arbitrary strategy mo € ITVP.

2: Obtain g, and b, which satisfy the gain/bias equations.

3: Let > Gain improvement

Avgn (S) = argmax[Ea (gn7 S a)7
a€Av(s)

all actions maximizing the successor gains.
4: Pick o1 € ITMP s.t. mui1(s) € Avg, (), setting mn41(s) = mna(s) if possible.
: if w41 # 7, then increment n by 1 and go to Line 2.

ot

6: Pick w41 € ITMP which satisfies > Bias improvement

Tn+1(s) € argmax r(s,a) + Ea(bn, s,a),
a€Avg, (s)
again setting m,4+1(s) = m,(s) if possible.
7: if mp41 # ™, then increment n by 1 and go to Line 2.

8: return (gn4+1, Tnt1)-

Advantages and Drawbacks of Strategy Iteration. Compared to other
methods for solving the average reward objective, e.g. value iteration [2,10],
strategy iteration offers some advantages:

(i) A precise solution can be obtained, compared to value iteration which is
only optimal in the limit.

(ii) The gain of the strategy is monotonically improving, the iteration can be
stopped at any point, yielding a strategy at least as good as the initial one.

(iii) Tt therefore is easy to introduce knowledge about the model or results of
some pre-computation by initializing the algorithm with a sensible strategy.

(iv) On some models, strategy iteration performs significantly faster than value
iteration, as outlined in [30, Appendix B].

(v) The algorithm searches through the finite space of memoryless deterministic
strategies, simplifying termination and correctness proofs.

But on the other hand, the naive implementation of strategy iteration as pre-
sented in Algorithm 1 has several drawbacks:

(i) In order to determine the precise gain by solving the gain/bias equations,
one necessarily has to determine the bias, too. Therefore, the algorithm has
to determine both gain and bias in each step, while often only the gain is
actually used for the improvement.

(ii) For reasonably sized models the equation system becomes intractably large.
In the worst case, it contains 2n? 4 n non-zero entries and even for standard
models there often are significantly more than n non-zero entries.

Efficient Strategy Iteration for Mean Payoff in MDPs 387

(iii) Furthermore, the gain/bias equation system is under-determined, ruling out
a lot of fast solution methods for linear equation systems. Uniqueness can be
introduced by adding several rows, which results in the matrix being non-
square, again ruling out a lot of solution methods. Experimental results
suggest that this equation system furthermore has rather large condition
numbers (see [30, Appendix A]) even for small, realistic models, leading to
numerical instabilities®.

(iv) Lastly, the equation system is solved precisely for every improvement step,
which often is unnecessary. To arrive at a precise solution, we often only
need to identify states in which the strategy is not optimal, compared to
having a precise measure of how non-optimal they are.

In the following two sections, we present approaches and ideas tackling each of
the mentioned problems, arriving at procedures which perform orders of magni-
tude faster than the original approach.

4 Topological Optimizations

Our first set of optimizations is based on various topological arguments about
both MDPs and MCs. They are used to eliminate unnecessary redundancies in
the equation systems and identify sub-problems which can be solved separately,
eventually leading to small, full-rank equation systems. Reduction in size and
removal of redundancies naturally lead to significantly better condition numbers,
which we also observed in our experiments.

Proofs of our claims can be found in [30, Appendix EJ.

4.1 MEC Decomposition

We presented a variant of this method in our previous work [2] in the context
of value iteration. Due to space constraints we only give a short overview of the
idea.

The central idea is that all states in a MEC of some MDP have the same
optimal gain [34, Sect. 9.5]°. Intuitively this is the case since any state in a
particular MEC can reach every other state of the MEC almost surely. For some
MEC M we define g*(M) to be this particular optimal value and call it the gain
of the MEC. The optimal gain of the whole MDP then can be characterized by

g'(s) = max > PIOOM]-g*(M)
MEeMEC(M)

where QLJM denotes the measurable set of paths that eventually remain within
M. This leads to a divide-and-conquer procedure for determining the gain of an

5 On crafted models with less than 10 states we observed numerical errors leading to
non-convergence and condition numbers of up to 10°.
5 Restricting a general MDP to a MEC results in a “communicating” MDP.

388 J. Kfretinsky and T. Meggendorfer

Algorithm 2. MEC-SI
Input: MDP M = (S, sinit, Act, Av, A, 1).
Output: The optimal gain g* of the MDP.
1: [0, rmax < MaXses,acav(s) 7(S, a).
: for Ml = (TZ,Al) € MEC(M) do
Compute g*(M;) of the MEC by applying Algorithm 1 on the restricted MDP.
Set f(M;) «— g*(M;)/rmax-
: Compute the weighted MEC quotient M.
: Compute p «— PUF(O{s+}).
return rmax - p

MDP. Conceptually, the algorithm first computes the MEC decomposition [12],
then for each MEC M determines its gain g* (M) by strategy iteration and finally
solves a reachability query on the weighted MEC quotient M7 by, e.g., strategy
iteration or (interval) value iteration [7,23].

The weighted MEC quotient M/ is a modification of the standard MEC
quotient of [13], which for each MEC M introduces an action leading from the
collapsed MEC M to a designated target sink s; with probability f(M) (which
is proportional to g*(M)) and a non-target sink s_ with the remaining proba-
bility. With this construction, we can relate the maximal probability of reach-
ing s to the maximal gain in the original MDP. For a formal definition, see
[30, Appendix D].

Using this idea, we define the first optimization of strategy iteration in Algo-
rithm 2. Its correctness follows from [2, Theorem 2]. Since we are only concerned
with the average reward and each state in the restriction can reach any other
(under some strategy), the initial state we pick for the restriction in Line 3 is
irrelevant. Note that while the restricted MDP consists of a single MEC, an
induced Markov chain may still contain an arbitrary number of (B)SCCs.

This algorithm already performs significantly better on a lot of models, as
shown by our experimental evaluation in Sect.6. But, as to be expected, on
models with large MECs this algorithm still is rather slow compared to, e.g., VI
and may even add additional overhead when the whole model is a single MEC.
To this end, we will improve strategy iteration in general. To combine these
optimized variants with the ideas of Algorithm 2, one can simply apply them in
Line 3.

4.2 Using Strongly Connected Components

The underlying ideas of the previous approach are independent of the procedure
used to determine ¢g*(M). Naturally, this optimization does not exploit any spe-
cific properties of strategy iteration to achieve the improvement. In this section,
we will therefore focus on improving the core principle of strategy iteration,
namely the evaluation of a particular strategy m on some MDP M. As explained
in Sect. 3, this problem is equivalent to determining the gain and bias of some

Efficient Strategy Iteration for Mean Payoff in MDPs 389

Markov chain M. Hence we fix such a Markov chain M throughout this section
and present optimized methods for determining the required values precisely.

BSCC Compression. In this approach, we try to eliminate superfluous redun-
dancies in the equation system. The basic idea is that all states in some BSCC
have the same optimal gain. Moreover, the same gain is achieved in the attractor
of B, i.e. all states from which almost all runs eventually end up in B.

Definition 3 (Attractor). Let M be some Markov chain and C C S some set
of states in M. The attractor of C' is defined as

probl(C) :={s € S| Ps[0C] = 1},
i.e. the set of states which almost surely eventually reach C.

Lemma 1. Let M be a Markov chain and B a BSCC. Then g(s) = g(s') for all
s,s' € probl(B).

Proof. When interpreting the MC as a degenerate MDP with |Av(s)| = 1 for all
s, the gain of the MC coincides with the optimal gain of this MDP and each
BSCC in the original MC is a MEC in the MDP. Using the reasoning from
Sect. 4.1 and [34, Sect. 9.5], we obtain that all states in probl(B) have the same
gain. O

Therefore, instead of adding one gain variable per state to the equation sys-
tem, we “compress” the gain of all states in the same BSCC (and its attractor)
into one variable. Formally, the reduced equation system is formulated as follows.

Let {Bi,...,B,} = BSCC(M) be the BSCC decomposition of the Markov
chain. Further, define A; := prob1(B;) the attractors of each BSCC and T :=
U, A; the set of all states which don’t belong to any attractor. The BSCC
compressed gain/bias equations then are defined as

Applying the reasoning of Lemma 1 immediately gives us correctness.

Corollary 1. The values g1, ..., gn, g(s) and b(s) are a solution to the equation
system (1) if and only if

g(s) otherwise.

and b(s) are a solution to the gain/bias equations.

390 J. Kfretinsky and T. Meggendorfer

Algorithm 3. SCC-SI
Input: MC M = (S, Sinit, 4, 7).
Output: (g,b), s.t. g and b are solutions to the gain/bias equations.
1: Obtain BSCC(M) = {Bi,...,B,} and SCC(M) \ BSCC(M) = {51, ..., Sm} with S;
in reverse topological order.
2: for B; € BSCC(M) do > Obtain gain and bias of BSCCs
3: Obtain g; and b(s) for all s € B; by solving the equations

b(s) =Ei (b, s) +7(s) —gi Vs € By,
b(si) =0 for one arbitrary but fixed s; € B;.

Set g(s) <« g; for all s € B;.

: for i from 1 to m do > Obtain gain and bias of non-BSCC states
Let S< := U;;ll S; U U?:l B;

Compute succ(g) «— {s' € S< |Is € S;. A(s,s') >0Ag(s') =g}

Set succg = {g | succ(g) # 0}.
For each g € succg, obtain pg by solving the equations

pg(s):Eii(pg,s)+ Z A(Sasl) Vs € Si.

s’ Esuccg

10: Set g(8) < D gcouceg Pe(s) - g for all s € ;.
11: Obtain b(s) for all s € S; by solving the equations

b(s) = ESi (b, s) + ES (b, s) +r(s) — g(s) Vs € S

12: return (g,b).

This equation system is significantly smaller for Markov chains which contain
large BSCC-attractors. Furthermore, observe that the resulting system matrix
also is square. We have |[BSCC(M)| + |T'| gain and |S| bias variables but also |T|
gain and |S| + |BSCC(M)| bias equations. Additionally, by virtue of Corollary 1
and [34, Condition 9.2.3], the system has a unique solution. Together, this allows
the use of more efficient solvers. Especially when combined with the previous
MEC decomposition approach, significant speed-ups can be observed.

SCC Decomposition. The second approach extends the BSCC compression
idea by further decomposing the problem into numerous sub-problems. A formal
definition of the improved evaluation algorithm is given in Algorithm 3.

As with the compression approach, we exploit the fact that all states in some
BSCC have the same gain. But instead of encoding this information into one big
linear equation system, we use it to obtain multiple sub-problems.

First, we obtain gain and bias for each BSCC separately in Line 3. Note that
there are only |B;| + 1 variables and equations, since there only is a single gain
variable. The last equation, setting bias to zero for some state of the BSCC,
again induces a unique solution.

Efficient Strategy Iteration for Mean Payoff in MDPs 391

Now, these values are back-propagated through the MC. As mentioned, we
can obtain a topological ordering of the SCCs, where a state s in a “later” SCC
cannot reach any state s’ in some earlier SCC. By processing the SCCs in reverse
topological order, we can successively compute values of all states as follows.

Since the gain actually is only earned in BSCCs, the gain of some non-BSCC
state naturally only depends on the probability of ending up in some BSCC.
More generally, by a simple inductive argument, the gain of such a non-BSCC
state only depends on the gains of the states it ends up in after moving to a later
SCC. In other words, the gain only depends on the reachability of the successor
gains. So, instead of constructing a linear equation system involving both gain
and bias for each SCC, we determine the different “gain outcomes” in Line 8 and
then compute the probability of these outcomes in Line 9, i.e. the probability of
reaching a state obtaining some particular successor gain. Finally, we simply set
the gain of some state as the expected outcome in Line 10. Only then the bias is
computed in Line 11 by solving the bias equation with the computed gain values
inserted as constants.

At first glance, this might seem rather expensive, as there are |succg|+1 linear
equation systems instead of one. But the corresponding matrices of the systems
in Lines 9 and 11 actually are (i) square with a unique solution, allowing the use
of LU decomposition; and (ii) are the same for a particular SCC, enabling reuse
of the obtained decomposition.

Note how this in fact generalizes the idea of computing attractors in the
BSCC-compression approach. Suppose a non-BSCC state s € S; is in the attrac-
tor of a particular BSCC B;. Since moving to B; is the only possible outcome,
succg as computed in Line 8 actually is a singleton set containing only the gain
g; of the BSCC. Then pg, (s) = 1 for all states in S; and we can immediately set

9(s) = gi-

5 Approximation-Guided Solutions

This section introduces another idea to increase efficiency of the strategy itera-
tion. Section 5.1 then combines this method with optimizations of the previous
section in a non-trivial way, yielding a super-additive optimization effect. Our
new approach relies on the following observation. In order to improve a strat-
egy, it is not always necessary to know the exact gain in each state; sufficiently
tight bounds are enough to decide that the current action is sub-optimal. To this
end, we assume that we are given an approximative oracle for the gain of any
state under some strategy’. Formally, we require a function ¢~ : ITMP x § —
RZ% x RZ% and call it consistent if for ¢~(m,s) = (g1(7,s), gu(m,s)) we have
that ¢™(s) € [gL(m,s), gu (7, s)]. For readability, we write g (7) and gy () for
the functions s — gr(m,s) and s — gy (7, s), respectively.

In Algorithm 4, we define a variant of strategy iteration, which incorporates
this approximation for gain improvement. Let us focus on this improvement in

" We will go into detail why we do not deal with bias later on.

392 J. Kfretinsky and T. Meggendorfer

Algorithm 4. ApPROX-SI
Input: MDP M = (S, Sinit, Act, Av, A, 7) and consistent gain approximation g~.
Output: (¢*,7"), s.t. g* is the optimal gain of the MDP and is obtained by 7*.
: Set n « 0, and pick an arbitrary strategy mo € IT™P.
1 Set Tpy1 = mn
: for s € S do > Approximate gain improvement
if gu(mn,s) < max,eav(s) Ea(gr(mn), s) then
Pick mn11 € argmax,cays) Eal(gr(mn), s, a).

if w411 # 7, then increment n by 1, go to Line 2.

Obtain gn+42 and 7,42 by one step of precise SI. > Precise improvement
if mp42 # Th+1 then increment n by 2, go to Line 2.

© XD Tewy

return (gn42, Tni2)

Line 5. There are three cases to distinguish. (1) If the test on Line 4 holds, i.e.
the upper bound on the gain in the current state is smaller than the lower bound
under some other action a, then a definitely gives us a better gain. Therefore, we
switch the strategy to this action. If the test does not hold, there are two other
cases to distinguish: (2) If in contrast, the lower bound on the gain in the current
state is bigger than the upper bound under any other action, the current gain
definitely is better than the gain achievable under any other action. Hence the
current action is optimal and the strategy should not be changed. (3) Otherwise,
the approximation does not offer us enough information to conclude anything.
The current action is neither a clear winner nor a clear loser compared to the
other actions. In this case we also refrain from changing the strategy. Intuitively,
if there are any changes to be done in Case (3), we postpone them until no
further improvements can be done based solely on the approximations. They
will be dealt with in Line 7, where we determine the gain precisely.

Theorem 2. Algorithm 4 terminates for any MDP and consistent gain approz-
imation function. Furthermore, the gain and corresponding strategy returned by
the algorithm is optimal.

Implementing Gain Approximations. In order to make Algorithm 4 prac-
tical, we provide a prototype for such a gain approximation. To this end, we can
again interpret the MC M as a degenerate MDP M and apply variants of the
value iteration methods of [2, Algorithm 2]. We want to emphasize that there
are no restrictions on the oracle except consistency, hence there may be other,
faster methods applicable here. This also opens the door for more fine-tuning
and optimizations. For instance, instead of “giving up” on the estimation and
solving the equations precisely, the gain approximation could be asked to refine
the estimate for all states where there is uncertainty and Case (3) occurs.

Difficulties in Using Bias Estimations. One may wonder why we did not
include a bias estimation function in the previous algorithm. There are two

Efficient Strategy Iteration for Mean Payoff in MDPs 393

Procedure 5. MEC-APPROX
T: Set g™ (1) — maxsens 92.(7n, 5), S— — {5 | 90 (1>) < g™ (a)}, S = M\ 5—.
2: if S_ = () then Continue with precise improvement.

3: else

4: while S_ # () do

5 Obtain s € S_ and a € Av(s) such that ZS,€S+ A(s,a,s") > 0.
6: Set mp41(s) «—a, S — Sy U{s}, S— — S_\ {s}.
7

Increment n by 1, go to Line 1.

main reasons for this, namely (i) by naively using the bias approximation, the
algorithm may not converge any more (even with e-precise approximations) and
(ii) it seems rather difficult to efficiently obtain a reasonable bias estimate. We
provide more detail and intuition in [30, Appendix F].

5.1 Synergy of the Approaches

In order to further improve the approximation-guided approach, we combine
it with the idea of MEC decomposition, which in turn allows for even more
optimizations. As already mentioned, each state in a MEC has the same optimal
gain. In combination with the idea of the algorithm in [34, Sect. 9.5.1], this allows
us to further enhance the gain improvement step as follows.

The gain g*(M) of some MEC M certainly is higher than the lower bound
achieved through some strategy in any state of the MEC, which is ¢**(m,,) :=
maxgen gL (T, s). Hence, any state of the MEC which has an upper bound less
than ¢g4"**(mr,,) is suboptimal, as we can adapt the strategy such that it achieves at
least this value in every state of the MEC. With this, the gain improvement step
can be changed to (i) determine the maximal lower bound ¢P**(7,,), (ii) identify
all states Sy which have an upper bound greater than this lower bound and
(iii) update the strategy in all other states S_ to move to this “optimal” region.
Algorithm 5 then is obtained by replacing the approximate gain improvement
in Lines 3 to 2 of Algorithm 4 by Procedure 5.

Theorem 3. Algorithm 5 terminates for any MDP and consistent gain approx-
imation function. Furthermore, the gain and corresponding strateqy returned by
the algorithm indeed is optimal.

6 Experimental Evaluation

In this section, we compare the presented approaches to established tools.

Implementation Details. We implemented our constructions® in the PRISM
Model Checker [31]. We also added several general purpose optimizations to

8 Accessible at https://www7.in.tum.de/~meggendo/artifacts/2017/atva_si.txt.

394 J. Kfretinsky and T. Meggendorfer

PRISM, improving the used data structures. This may influence the compara-
bility of these results to other works implemented in PRISM.

In order to solve the arising systems of linear equations, we used the ojAlgo
Java library”. Whenever possible, we employed LU decomposition to solve the
equation systems and SVD otherwise. We use double precision for all computa-
tions, which implies that results are only precise modulo numerical issues. The
implementation can easily be extended to arbitrary precision, at the cost of per-
formance. Further, our implementation only uses the parallelization of ojAlgo.
Since the vast majority of computation time is consumed by solving equation
systems, we did not implement further parallelization.

Experimental Setup. All benchmarks have been run on a 4.4.3-gentoo x64
virtual machine with 16 cores of 3.0 GHz each, a time limit of 10 min and memory
limit of 32 GB, using the 64-bit Oracle JDK version 1.8.0-102-b14. All time
measurements are given in seconds and are averaged over 10 executions. Instead
of measuring the time which is spent in a particular algorithm, we decide to mea-
sure the overall user CPU time of the PRISM process using the UNIX tool time.
This metric has several advantages. It allows for an easy and fair comparison
between, e.g., multithreaded executions, symbolic methods or implementations
which do not construct the whole model. Further, it reduces variance in mea-
surements caused by the operating system through, e.g., the scheduler. Note
that this also allows for measurements larger than the specified timeout, as the
process may spend this timeout on each of the 16 cores.

6.1 Models

We briefly explain the examples used for evaluation. virus [32] models a virus
spreading through a network. We reward each attack carried out by an infected
machine. cs_nfail [29] models a client-server mutual exclusion protocol with
probabilistic failures of the clients. A reward is given for each successfully han-
dled connection. phil_nofair [14] represents the (randomised) dining philoso-
phers without fairness assumptions. We use two reward structures, rewarding
“thinking” and “eating”, respectively. sensor [29] models a network of sensors
sending values to a central processor over a lossy connection. Processing received
data is rewarded. mer [18] captures the behaviour of a resource arbiter on a Mars
exploration rover. We reward each time some user is granted access to a resource
by the arbiter.

6.2 Tools

Since we are unaware of other implementations, we implemented standard SI as
in Algorithm 1 by ourselves. We compare the following variants of SI.

9 http://ojalgo.org/.

Efficient Strategy Iteration for Mean Payoff in MDPs 395

— SI: Standard SI as presented in Algorithm 1.

— BSCC: ST with BSCC compression gain/bias equations.

— SCC: The SCC decomposition approach of Algorithm 3.

SCC4: The SCC decomposition approach combined with the approximation
methods from Sect. 5.

Further, a “M” superscript denotes use of the MEC decomposition approach as
in Algorithm 2. In the case of SCCY/, we use the improved method of Sect.5.1.
More details and evaluation of some further variants can be found in [30, Appen-
dix GJ. During our experiments, we observed that the algorithm used to solve
the resulting reachability problem did not influence the results significantly, since
the weighted quotients are considerably simpler than the original models.

We compare our methods to the value iteration approach we presented in [2,
Algorithm 2] with a required precision of 1078 (VI). This comparison has to be
evaluated with care, since (i) value iteration inherently is only e-precise and (ii) it
needs a MEC decomposition for soundness. Note that topological optimizations
for value iteration as suggested by, e.g., [4] are partially incorporated by VI,
since each MEC is iterated separately.

We also provide a comparison to the LP-based MultiGain [8] in [30, Appendix
GJ. In summary, the LP approach is soundly beaten by our optimized approaches.
A more detailed comparison can be found in [2].

We are unaware of other implementations capable of solving the mean payoff
objective for MDPs. Neither did we find a mean payoff solver for stochastic
games which we could easily set up to process the PRISM models.

6.3 Results

We will highlight various conclusions to be drawn from Table 1. Comparing the
naive SI with our enhanced versions BSCC and SCC, the number of strategy
improvements does not differ, but the evaluation of each strategy is significantly
faster, yielding the differences displayed in the table.

On the smaller models (cs_nfail and virus) nearly all of the optimized meth-
ods perform comparable, a majority of the runtime actually is consumed by the
start-up of PRISM. Especially on virus, all the MEC-decomposition approaches
have practically the same execution time due to the model only having a single
MEC with a single state, which the problem trivial for these approaches.

The results immediately show how intractable naive strategy iteration is.
On models with only a few hundred states, the computation already times out.
The BSCC compression approach BSCC suffers from the same issues, but already
performs significantly better than SI. In particular, when combined with MEC
decomposition, it is able to solve more models within the given time.

Further, we see immense benefits of using the SCC approach, regularly beat-
ing even the quite performant (and imprecise) value iteration approach. Inter-
estingly, the variants using approximation often perform worse than the “pure”
SCC method. We conjecture that this is due the gain approximation function
we used. It computes the gain up to some adaptively chosen precision instead of

396 J. Kfretinsky and T. Meggendorfer

Table 1. Comparison of various variants on the presented models. Timeouts and memo-
uts are denoted by a hyphen. The best results in each row are marked in bold, excluding
VI. The number of states and MECs are written next to the model.

Model s |s1™ |Bscc|Bscc™ |scc | scca|scch | vI
cs_nfail3 (184, 38) 17 |4 |4 4 4 |4 4
cs_nfaild (960, 176) 1129 |6 16 |5 5 |5 6 5
virus (809, 1) - |4 |10 |4 5 |5 4
phil_nofair3 (856, 1) - |- J112 112 |6 |10 |7
phil_nofair4 (9440, 1) | — | — |— |- 15 310 |107 |18
sensorsl (462, 132) - |13 |23 |4 4 |6 4 5
sensors2 (7860, 4001) | — 89 | — 14 13 168 |11 15
sensors3 (77766, 46621) | — — — 78 40 | — 46 72
mer3 (15622, 9451) - |21 |- |26 16 | 244 |22 15
mer4 (119305, 71952) | — 58 | — 281 42 | — 84 |64
mer5 (841300, 498175) |— |- | — | — 474 — — -

computing up to a certain number of iterations. Changing this precision bound
gave mixed results, on some models performance increased, on some it decreased.
Comparing the two approximation-based approaches SCC4 and SCC% , we high-
light the improvements of Algorithm 5, speeding up convergence even though a
MEC decomposition is computed.

Finally, we want to emphasize the mer results. Here, our SCC approach man-
ages to obtain a solution within the time- and memory-bound, while all other
approaches, including VI, fail due to a time-out.

7 Conclusion

We have proposed and evaluated several techniques to speed up strategy itera-
tion. The combined speed ups are in orders of magnitude. This makes strategy
iteration competitive even with the most used and generally imprecise value
iteration and shows the potential of strategy iteration in the context of MDPs.

In future work, we will further develop this potential. Firstly, building upon
the SCC decomposition, we can see opportunities to interleave the SCC compu-
tation and the improvements of the current strategy. Secondly, the gain approz-
imation technique used is quite naive. Here we could further adapt our recent
results on VI [2], in order to improve the performance of the approximation.
Besides, we suggest to use simulations to evaluate the strategies. Nevertheless,
the incomplete confidence arising form stochastic simulation has to be taken into
account here. Thirdly, techniques for efficient bias approximation and algorithms
to utilize it would be desirable. Finally, a fully configurable tool would be helpful
to find the sweet-spot combinations of these techniques and useful as the first
scalable tool for mean payoff optimization in MDPs.

Efficient Strategy Iteration for Mean Payoff in MDPs 397

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments and valuable suggestions. In particular, a considerable improvement to the BSCC
compression approach of Sect. 4.2 has been proposed.

References

w

10.

11.

12.

13.
14.

15.

16.

17.

. Abate, A., Ceska, M., Kwiatkowska, M.: Approximate policy iteration for Markov

Decision Processes via quantitative adaptive aggregations. In: Artho, C., Legay, A.,
Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 13-31. Springer, Cham (2016).
doi:10.1007/978-3-319-46520-3_2

. Ashok, P.; Chatterjee, K., Daca, P., Kfetinsky, J., Meggendorfer, T.: Value iter-

ation for long-run average reward in Markov Decision Processes. In: CAV (2017).
To appear

Baier, C., Katoen, J.-P.: Principles of Model Checking (2008)

Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the relia-
bility of your model checker: Interval iteration for Markov Decision Processes. In:
CAV (2017). To appear

Bertsekas, D.P.: Approximate policy iteration: a survey and some new methods. J.
Control Theor. Appl. 9(3), 310-335 (2011)

Bjorklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. DAM 155(2), 210-229 (2007)
Bréazdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kietinsky, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of Markov Decision Processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98-114. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6_8

Brézdil, T., Chatterjee, K., Forejt, V., Kucera, A.: MULTIGAIN: a controller syn-
thesis tool for MDPs with multiple mean-payoff objectives. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 181-187. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46681-0-12

Brim, L., Chaloupka, J.: Using strategy improvement to stay alive. IJCSIS 23(3),
585-608 (2012)

Chatterjee, K., Henzinger, T.: Value iteration. 25 Years of Model Checking, pp.
107-138 (2008)

Condon, A.: On algorithms for simple stochastic games. In: Advances in Compu-
tational Complexity Theory, pp. 51-72 (1990)

Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857-907 (1995)

de Alfaro, L.: Formal verification of probabilistic systems. Ph.D thesis (1997)
Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers without
fairness assumption. Distrib. Comput. 17(1), 65-76 (2004)

Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 551-562. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14162-1_46

Fearnley, J.: Strategy iteration algorithms for games and Markov Decision
Processes. Ph.D thesis, University of Warwick (2010)

Fearnley, J.: Efficient parallel strategy improvement for parity games. In: CAV
(2017). To appear

398 J. Kfretinsky and T. Meggendorfer

18. Feng, L., Kwiatkowska, M., Parker, D.: Automated learning of probabilistic
assumptions for compositional reasoning. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 2-17. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19811-3_2

19. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York
(1997)

20. Frausto-Solis, J., Santiago, E., Mora-Vargas, J.: Cosine policy iteration for solv-
ing infinite-horizon Markov Decision Processes. In: Aguirre, A.H., Borja, R.M.,
Garcid, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 75-86. Springer, Heidel-
berg (2009). doi:10.1007/978-3-642-05258-3_7

21. Friedmann, O.: An exponential lower bound for the parity game strategy improve-
ment algorithm as we know it. In: LICS, pp. 145-156 (2009)

22. Gawlitza, T.M., Schwarz, M.D., Seidl, H.: Parametric strategy iteration. arXiv
preprint arXiv:1406.5457 (2014)

23. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: QOuaknine, J., Potapov, 1., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125-137. Springer, Cham (2014). doi:10.1007/978-3-319-11439-2_10

24. Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: Synthesising strategy improvement
and recursive algorithms for solving 2.5 player parity games. In: Bouajjani, A.,
Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 266-287. Springer, Cham
(2017). doi:10.1007/978-3-319-52234-0_15

25. Hansen, K.A., Ibsen-Jensen, R., Miltersen, P.B.: The complexity of solving reach-
ability games using value and strategy iteration. Theor. Comput. Syst. 55(2),
380-403 (2014)

26. Hansen, T.D., Miltersen, P.B., Zwick, U.: Strategy iteration is strongly polynomial
for 2-player turn-based stochastic games with a constant discount factor. J. ACM
60(1), 1:1-1:16 (2013)

27. Hordijk, A., Puterman, M.L.: On the convergence of policy iteration in finite state
undiscounted Markov Decision Processes: the unichain case. MMOR 12(1), 163—
176 (1987)

28. Howard, R.A.: Dynamic Programming and Markov Processes (1960)

29. Komuravelli, A., Pasareanu, C.S., Clarke, E.M.: Assume-guarantee abstraction
refinement for probabilistic systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 310-326. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31424-7_25

30. Kretinsky, J., Meggendorfer, T.: Efficient strategy iteration for mean payoff in
Markov Decision Processes. Technical report abs/1707.01859. arXiv.org (2017)

31. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585-591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1.47

32. Kwiatkowska, M., Norman, G., Parker, D., Vigliotti, M.G.: Probabilistic mobile
ambients. Theoret. Comput. Sci. 410(12-13), 1272-1303 (2009)

33. Luttenberger, M.: Strategy iteration using non-deterministic strategies for solving
parity games. CoRR, abs/0806.2923 (2008)

34. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley (2014)

35. Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369-384. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87531-4_27

36. Shlakhter, O., Lee, C.-G.: Accelerated modified policy iteration algorithms for
Markov Decision Processes. MMOR 78(1), 61-76 (2013)

Efficient Strategy Iteration for Mean Payoff in MDPs 399

37. Tarjan, R.: Depth-first search and linear graph algorithms. SICOMP 1(2), 146-160
(1972)

38. Voge, J., Jurdziriski, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202-215. Springer, Heidelberg (2000). doi:10.1007/10722167_18

39. Ye, Y.: The simplex and policy-iteration methods are strongly polynomial for the
Markov decision problem with a fixed discount rate. MMOR 36(4), 593-603 (2011)

C Rabinizer 4: From LTL to Your Favourite Deterministic
Automaton. CAV 2018

This section has been published as peer-reviewed conference paper.

Jan Kfetinsky, Tobias Meggendorfer, Salomon Sickert and Christopher
Ziegler. ‘Rabinizer 4: From LTL to Your Favourite Deterministic Automaton’.
In: Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Ozford, UK,
July 14-17, 2018, Proceedings, Part I. ed. by Hana Chockler and Georg
Weissenbacher. Vol. 10981. Lecture Notes in Computer Science. Springer,
2018, pp. 567-577. DOI: 10.1007/978-3-319-96145-3\ _30. URL:
https://doi.org/10.1007/978-3-319-96145-3%5C_30

Synopsis We present Rabinizer 4, a tool set for translating linear temporal logic (LTL)
to various kinds of automata. It is a complete rewrite of the previous version Rabinizer 3.1
[EKS16] with many under-the-hood improvements and significant extensions to general
applicability as well as usability. Key contributions include:

e Several new types of translations, e.g., LTL to LDBA, and DRA to DPA.
e The first translation of frequency LTL to generalized Rabin mean payoff automata.

e Significant performance improvements to all constructions due to both specific
and general optimizations.

e Support of a wider range of input and output formats, such as the complete syntax
of LTL, the PGsolver game format, etc.

Contributions of the thesis author Discussion and revision of the entire manuscript.
Significant contributions towards the overall design of the tool. Sole design and (re-)im-
plementation of the 1tl2dgra sub-tool, loosely based on Rabinizer 3.1, as well as
dra2dpa, based on [Kie+17].

107

https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-319-96145-3%5C_30

o

Check for
updates

Rabinizer 4: From LTL to Your Favourite
Deterministic Automaton

Jan Kietinsky®™), Tobias Meggendorfer®,
Salomon Sickert@®, and Christopher Ziegler

Technical University of Munich, Munich, Germany
jan.kretinsky@gmail.com, {meggendo,sickert}@in.tum.de

Abstract. We present Rabinizer 4, a tool set for translating formulae of
linear temporal logic to different types of deterministic w-automata. The
tool set implements and optimizes several recent constructions, includ-
ing the first implementation translating the frequency extension of LTL.
Further, we provide a distribution of PRISM that links Rabinizer and
offers model checking procedures for probabilistic systems that are not
in the official PRISM distribution. Finally, we evaluate the performance
and in cases with any previous implementations we show enhancements
both in terms of the size of the automata and the computational time,
due to algorithmic as well as implementation improvements.

1 Introduction

Automata-theoretic approach [VW86] is a key technique for verification and
synthesis of systems with linear-time specifications, such as formulae of linear
temporal logic (LTL) [Pnu77]. It proceeds in two steps: first, the formula is
translated into a corresponding automaton; second, the product of the system
and the automaton is further analyzed. The size of the automaton is important
as it directly affects the size of the product and thus largely also the analysis
time, particularly for deterministic automata and probabilistic model checking
in a very direct proportion. For verification of non-deterministic systems, mostly
non-deterministic Biichi automata (NBA) are used [EH00,SB00,GO01,GL02,
BKRSIZ,DLLF—HG] since they are typically very small and easy to produce.

Probabilistic LTL model checking cannot profit directly from NBA. Even
the qualitative question, whether a formula holds with probability 0 or 1, requires
automata with at least a restricted form of determinism. The prime example are
the limit-deterministic (also called semi-deterministic) Biichi automata (LDBA)
[CY88] and the generalized LDBA (LDGBA). However, for the general quanti-
tative questions, where the probability of satisfaction is computed, general limit-
determinism is not sufficient. Instead, deterministic Rabin automata (DRA) have

This work has been partially supported by the Czech Science Foundation grant No.
P202/12/G061 and the German Research Foundation (DFG) project KR 4890/1-1
“Verified Model Checkers” (317422601). A part of the frequency extension has been
implemented within Google Summer of Code 2016.

© The Author(s) 2018

H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 567-577, 2018.
https://doi.org/10.1007/978-3-319-96145-3_30

568 J. Kfetinsky et al.

[KE12)
DGRA ——— DRA
EK14
[] (Safss] [KMWW17]
[VWS6] etc. [Pit06,Sch09]
LTL » NBA » DPA
o [ovss)
e [EKRS17]

[SEJK16]

A
LDGBA LDBA

Fig. 1. LTL translations to different types of automata. Translations implemented in
Rabinizer 4 are indicated with a solid line. The traditional approaches are depicted as
dotted arrows. The determinization of NBA to DRA is implemented in 1t12dstar [Kle],
to LDBA in Seminator [BDK+17] and to (mostly) DPA in spot [DLLF+16].

been mostly used [KNP11] and recently also deterministic generalized Rabin
automata (DGRA) [CGK13]. In principle, all standard types of deterministic
automata are applicable here except for deterministic Biichi automata (DBA),
which are not as expressive as LTL. However, other types of automata, such
as deterministic Muller and deterministic parity automata (DPA) are typically
larger than DGRA in terms of acceptance condition or the state space, respec-
tively.! Recently, several approaches with specific LDBA were proved applica-
ble to the quantitative setting [HLS+15,SEJK16] and competitive with DGRA.
Besides, model checking MDP against LTL properties involving frequency oper-
ators [BDL12] also allows for an automata-theoretic approach, via deterministic
generalized Rabin mean-payoff automata (DGRMA) [FKK15].

LTL synthesis can also be solved using the automata-theoretic approach.
Although DRA and DGRA transformed into games can be used here, the
algorithms for the resulting Rabin games [PP06] are not very efficient in
practice. In contrast, DPA may be larger, but in this setting they are the
automata of choice due to the good practical performance of parity-game solvers
[FL09,ML16,JBB+17].

Types of Translations. The translations of LTL to NBA, e.g., [VWS86], are
typically “semantic” in the sense that each state is given by a set of logical formu-
lae and the language of the state can be captured in terms of semantics of these
formulae. In contrast, the determinization of Safra [Saf88] or its improvements
[Pit06,Sch09,TD14,FL15] are not “semantic” in the sense that they ignore the
structure and produce trees as the new states that, however, lack the logical inter-
pretation. As a result, if we apply Safra’s determinization on semantically created
NBA, we obtain DRA that lack the structure and, moreover, are unnecessarily
large since the construction cannot utilize the original structure. In contrast, the

! Note that every DGRA can be written as a Muller automaton on the same state
space with an exponentially-sized acceptance condition, and DPA are a special case
of DRA and thus DGRA.

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 569

recent works [KE12, KLG13,EK14,KV15,SEJK16,EKRS17,MS17,KV17] pro-
vide “semantic” constructions, often producing smaller automata. Further-
more, various transformations such as degeneralization [KE12], index appearance
record [KMWW17] or determinization of limit-deterministic automata [EKRS17]
preserve the semantic description, allowing for further optimizations of the
resulting automata.

Our Contribution. While all previous versions of Rabinizer [GKE12, KLG13,
KK14] featured only the translation LTL—DGRA—DRA, Rabinizer 4 now
implements all the translations depicted by the solid arrows in Fig. 1. It improves
all these translations, both algorithmically and implementation-wise, and more-
over, features the first implementation of the translation of a frequency extension
of LTL [FKK15].

Further, in order to utilize the resulting automata for verification, we provide
our own distribution? of the PRISM model checker [KNP11], which allows for
model checking MDP against LTL using not only DRA and DGRA, but also
using LDBA and against frequency LTL using DGRMA. Finally, the tool can
turn the produced DPA into parity games between the players with input and
output variables. Therefore, when linked to parity-game solvers, Rabinizer 4 can
be also used for LTL synthesis.

Rabinizer 4 is freely available at http://rabinizer.model.in.tum.de together
with an on-line demo, visualization, usage instructions and examples.

2 Functionality

We recall that the previous version Rabinizer 3 has the following functionality:

— It translates LTL formulae into equivalent DGRA or DRA.
— It is linked to PRISM, allowing for probabilistic verification using DGRA
(previously PRISM could only use DRA).

2.1 Translations

Rabinizer 4 inputs formulae of LTL and outputs automata in the standard HOA
format [BBD+15], which is used, e.g., as the input format in PRISM. Automata
in the HOA format can be directly visualized, displaying the “semantic” descrip-
tion of the states. Rabinizer 4 features the following command-line tools for the
respective translations depicted as the solid arrows in Fig. 1:

It12dgra and 1tl2dra correspond to the original functionality of Rabinizer 3,
i.e., they translate LTL (now with the extended syntax, including all common
temporal operators) to DGRA and DRA [EK14], respectively.

2 Merging these features into the public release of PRISM as well as linking the new
version of Rabinizer is subject to current collaboration with the authors of PRISM.

570 J. Kfetinsky et al.

It12ldgba and Itl2ldba translate LTL to LDGBA using the construction of
[SEJK16] and to LDBA, respectively. The latter is our modification of the
former, which produces smaller automata than chaining the former with the
standard degeneralization.

It12dpa translates LTL to DPA using two modes:

— The default mode uses the translation to LDBA, followed by a LDBA-
to-DPA determinization [EKRS17] specially tailored to LDBA with the
“semantic” labelling of states, avoiding additional exponential blow-up of
the resulting automaton.

— The alternative mode uses the translation to DRA, followed by our
improvement of the index appearance record of [KMWW17].

fit12dgrma translates the frequency extension of LTL\gu, i.e. LTL\gu [KLG13]
with G™” operator®, to DGRMA using the construction of [FKK15].

2.2 Verification and Synthesis

The resulting automata can be used for model checking probabilistic systems
and for LTL synthesis. To this end, we provide our own distribution of the prob-
abilistic model checker PRISM as well as a procedure transforming automata
into games to be solved.

Model checking: PRISM distribution. For model checking Markov chains
and Markov decision processes, PRISM [KNP11] uses DRA and recently
also more efficient DGRA [CGK13,KK14]. Our distribution, which links
Rabinizer, additionally features model checking using the LDBA [SEJK16,
SK16] that are created by our 1t12ldba.

Further, the distribution provides an implementation of frequency LTL\gu
model checking, using DGRMA. To the best of our knowledge, there are no
other implemented procedures for logics with frequency. Here, techniques of
linear programming for multi-dimensional mean-payoff satisfaction [CKK15]
and the model-checking procedure of [FKK15] are implemented and applied.

Synthesis: Games. The automata-theoretic approach to LTL synthesis requires
to transform the LTL formula into a game of the input and output players.
We provide this transformer and thus an end-to-end LTL synthesis solution,
provided a respective game solver is linked. Since current solutions to Rabin
games are not very efficient we implemented a transformation of DPA into
parity games and a serialization to the format of PG Solver [FL09]. Due to
the explicit serialization, we foresee the main use in quick prototyping.

3 The frequential globally construct [BDL12,BMMI14] G~¢ with ~ €
{>,>,<,<},p € [0,1] intuitively means that the fraction of positions satisfy-
ing ¢ satisfies ~p. Formally, the fraction on an infinite run is defined using the
long-run average [BMM14].

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 571

3 Optimizations, Implementation, and Evaluation

Compared to the theoretical constructions and previous implementations, there
are numerous improvements, heuristics, and engineering enhancements. We eval-
uate the improvements both in terms of the size of the resulting automaton as
well as the running time. When comparing with respect to the original Rabinizer
functionality, we compare our implementation 1t12dgra to the previous version
Rabinizer 3.1, which is already a significantly faster [EKS16] re-implementation
of the official release Rabinizer 3 [KK14]. All of the benchmarks have been exe-
cuted on a host with i7-4700MQ CPU (4x2.4 GHz), running Linux 4.9.0-5-amd64
and the Oracle JRE 9.0.44+11 JVM. Due to the start-up time of JVM, all times
below 2s are denoted by <2 and not specified more precisely. All experiments
were given a time-out of 900 s and mem-out of 4GB, denoted by —.

Algorithmic improvements and heuristics for each of the translations:

1t12dgra and 1t12dra. These translations create a master automaton monitoring
the satisfaction of the given formula and a dedicated slave automaton for
each subformula of the form G [EK14]. We (i) simplify several classes of
slaves and (ii) “suspend” (in the spirit of [BBDL+13]) some so that they
appear in the final product only in some states. The effect on the size of
the state space is illustrated in Tablel on a nested formula. Further, (iii)
the acceptance condition is considered separately for each strongly connected
component (SCC) and then combined. On a concrete example of Table2,
the automaton for ¢ = 8 has 31 atomic propositions, whereas the number of
atomic propositions relevant in each component of the master automaton is
constant, which we utilize and thus improve performance on this family both
in terms of size and time.

1t12ldba. This translation is based on breakpoints for subformulae of the form
G1. We provide a heuristic that avoids breakpoints when 1 is a safety or
co-safety subformula, see Table 3.
Besides, we add an option to generate a non-deterministic initial component
for the LDBA instead of a deterministic one. Although the LDBA is then
no more suitable for quantitative probabilistic model checking, it still is for
qualitative model checking. At the same time, it can be much smaller, see
Table 4 which shows a significant improvement on the particular formula.

1t12dpa. Both modes inherit the improvements of the respective 1t121dba and
It12dgra translations. Further, since complementing DPA is trivial, we can
run in parallel both the translation of the input formula and of its negation,
returning the smaller of the two results. Finally, we introduce several heuris-
tics to optimize the treatment of safety subformulae of the input formula.

dra2dpa. The index appearance record of [KMWW17] keeps track of a permu-
tation (ordering) of Rabin pairs. To do so, all ties between pairs have to be
resolved. In our implementation, we keep a pre-order instead, where irrelevant

572 J. Kfetinsky et al.

ties are not resolved. Consequently, it cannot happen that an irrelevant tie
is resolved in two different ways like in [KMWW17], thus effectively merging
such states.

Table 1. Effect of simplifications and suspension for 1t12dgra on the formulae ¥; =
G¢; where ¢1 = a1,¢(i) = (a;U(X¢i—1)), and ¢; = G¢| where ¢} = a1, ¢} =
(¢i_1U(X"a;), displaying execution time in seconds/#states.

Y2 |3 s s e
Rabinizer 3.1 [EKS16] | <2/4 | <2/16 | <2/73 | 3/332 60/1463
1t12dgra <2/3|<2/7 | <2/35|3/199 13/1155
vy P Y4 Vs Vs
Rabinizer 3.1 [EKS16] | <2/4| <2/16 | 2/104 | 128/670 | —
1t12dgra <2/3 | <2/10 <2/38 |7/175 | 239/1330

Table 2. Effect of computing acceptance sets per SCC on formulae ¢¥1 = z1 A ¢1,
¢2 = (J}l /\¢1) \/(—|$1 /\¢2)7 P3 = (J)l N T2 /\¢1) Vv (—|$1 N T2 /\¢2)\/ (1’1 N Zo /\¢3), e,
where ¢, = XG((a;Ub;) V (¢;Ud,)), displaying execution time in seconds/#acceptance
sets.

1 (Y2 (s Ya Y5 || s
Rabinizer 3.1 [EKS16] | <2/2|<2/7|<2/19 | — — -
It12dgra <2/11<2/1/<2/1 |<2/1|<2/1 <2/1

Table 3. Effect of break-point elimination for 1t12ldba on safety formulae s(n,m) =
N, G(ai V X™b;) and for 1t12ldgba on liveness formulae I(n,m) = A, GF(a; A
X™b;), displaying #states (#Biichi conditions)

s(1,3)1s(2,3) [s(3,3) |s(4,3) s(1,4)|s(2,4) |s(3,4) s(4,4)
[SEJK16] 20 (1) 400 (2) 8- 10%(3) 16 - 10*(4) 48 (1) 2304 (2)|110592 (3)|—
1t121dba |8 (1) |64 (1) 512 (1) [4096 (1) |16 (1)|256 (1) 4096 (1) | 65536 (1)

I(1,1) [1(2,1) 1(3,1) |1(4,1) 1(1,4) [1(2,4) |1(3,4) 1(4,4)
[SEJK16][3 (1) |9 (2) 27 (3) |81 (4) 10 (1) 100 (2) |10 (3) |10* (4)
1t121dgba 3 (1) |5 (2) |9 (3) 17 (4) 3(1) 52 193 17 (4)

Table 4. Effect of non-determinism of the initial component for 1t12ldba on formulae
f(@) = F(a A X"Gb), displaying #states (#Biichi conditions)

f) [f2) [fB) [f@4) [f(5) | f(6)
[SEJK16] |4 (1) |6 (1) | 10 (1) 18 (1) 34 (1) 66 (1)
1ti2ldba |2 (1) 3 (1) 4 (1) 5(1)] 6 (1) 7(1)

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 573

Table 5. Comparison of the average performance with the previous version of
Rabinizer. The statistics are taken over a set of 200 standard formulae [KMS18] used,
e.g., in [BKS13,EKS16], run in a batch mode for both tools to eliminate the effect of
the JVM start-up overhead.

Tool Avg # states | Avg # acc. sets | Avg runtime
Rabinizer 3.1 [EKS16] | 6.3 6.7 0.23
It12dgra 6.2 4.4 0.12

Implementation. The main performance bottleneck of the older implementa-
tions is that explicit data structures for the transition system are not efficient
for larger alphabets. To this end, Rabinizer 3.1 provided symbolic (BDD) rep-
resentation of states and edge labels. On the top, Rabinizer 4 represents the
transition function symbolically, too.

Besides, there are further engineering improvements on issues such as storing
the acceptance condition only as a local edge labelling, caching, data-structure
overheads, SCC-based divide-and-conquer constructions, or the introduction of
parallelization for batch inputs.

Average Performance Evaluation. We have already illustrated the improve-
ments on several hand-crafted families of formulae. In Tables1 and 2 we have
even seen the respective running-time speed-ups. As the basis for the overall eval-
uation of the improvements, we use some established datasets from literature, see
[KMS18], altogether two hundred formulae. The results in Table 5 indicate that
the performance improved also on average among the more realistic formulae.

4 Conclusion

We have presented Rabinizer 4, a tool set to translate LTL to various determin-
istic automata and to use them in probabilistic model checking and in synthesis.
The tool set extends the previous functionality of Rabinizer, improves on previ-
ous translations, and also gives the very first implementations of frequency LTL
translation as well as model checking. Finally, the tool set is also more user-
friendly due to richer input syntax, its connection to PRISM and PG Solver,
and the on-line version with direct visualization, which can be found at http://
rabinizer.model.in.tum.de.

References

[BBD+15] Babiak, T., et al.: The hanoi omega-automata format. In: Kroening, D.,
Pisareanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479-486. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_31

574 J. Kfetinsky et al.

[BBDL+13]

[BDK+17]

[BDL12]

[BKRS12]

[BKS13]

[BMM14]

[CGK13]

[CKK15]

[CYSS]

[DLLF+16]

[EHO00]

[EK14]

[EKRS17]

Babiak, T., Badie, T., Duret-Lutz, A., Kfetinsky, M., Strejéek, J.: Com-
positional approach to suspension and other improvements to LTL trans-
lation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol.
7976, pp. 81-98. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39176-7_6

Blahoudek, F., Duret-Lutz, A., Klokocka, M., Kfetinsky, M., Strejcek, J.:
Seminator: a tool for semi-determinization of omega-automata. In: LPAR,
pp. 356-367 (2017)

Bollig, B., Decker, N., Leucker, M.: Frequency linear-time temporal logic.
In: TASE, pp. 85-92 (2012)

Babiak, T., Kfetinsky, M., Rehdk, V., Strejéek, J.: LTL to Biichi
automata translation: fast and more deterministic. In: Flanagan, C.,
Konig, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95-109. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_8
Blahoudek, F., Kietinsky, M., Strejcek, J.: Comparison of LTL to deter-
ministic rabin automata translators. In: McMillan, K., Middeldorp, A.,
Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 164-172. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_12
Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Bal-
dan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 266—280.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-
6-19

Chatterjee, K., Gaiser, A., Kfetinsky, J.: Automata with generalized
rabin pairs for probabilistic model checking and LTL synthesis. In: Shary-
gina, N.; Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559-575.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8.37

Chatterjee, K., Komarkova, Z., Kfetinsky, J.: Unifying two views on mul-
tiple mean-payoff objectives in Markov decision processes. In: LICS, pp.
244-256 (2015)

Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-
state probabilistic programs. In: FOCS, pp. 338-345 (1988)

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E.,
Xu, L.: Spot 2.0 — a framework for LTL and w-automata manipulation.
In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938,
pp. 122-129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3_8

FEtessami, K., Holzmann, G.J.: Optimizing Biichi automata. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153-168.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_13
Esparza, J., Kfetinsky, J.: From LTL to deterministic automata: a safra-
less compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 192-208. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9_13

Esparza, J., Kretinsky, J., Raskin, J.-F.; Sickert, S.: From LTL and
limit-deterministic Biichi automata to deterministic parity automata.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205,
pp. 426-442. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54577-5_25

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 575

[EKS16]

[FKK15]

[FLO09]

[FL15]

[GKE12]

[GLO2]

[GOO1]

[HLS+15]

[JBB+17]

[KE12]

[KK14]

[Kle]

[KLG13]

[KMS18]

[KMWW17]

Esparza, J., Kretinsky, J., Sickert, S.: From LTL to deterministic
automata - a safraless compositional approach. Formal Methods Syst.
Des. 49(3), 219-271 (2016)

Forejt, V., Krédl, J., Kietinsky, J.: Controller synthesis for MDPs and
frequency LTL\GU. In: LPAR, pp. 162-177 (2015)

Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z.,
Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182-196. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04761-9_15
Fisman, D., Lustig, Y.: A modular approach for biichi determinization.
In: CONCUR, pp. 368-382 (2015)

Gaiser, A., Kftetinsky, J., Esparza, J.: Rabinizer: small deterministic
automata for LTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 72-76. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33386-6_7

Giannakopoulou, D., Lerda, F.: From states to transitions: improving
translation of LTL formulae to Biichi automata. In: Peled, D.A., Vardi,
M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 308-326. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-36135-9_20

Gastin, P., Oddoux, D.: Fast LTL to Biichi automata translation. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 53-65. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44585-4_6. http://www.lsv.ens-cachan.fr/ gastin/1t12ba/

Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic
model checking without determinisation. In: CONCUR. LIPIcs, vol. 42,
pp. 354-367 (2015)

Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Fay-
monville, P., Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T., Pérez,
G.A., Raskin, J.-F., Sankur, O., Tentrup, L.: The 4th reactive synthesis
competition (SYNTCOMP 2017): benchmarks, participants & results.
CoRR, abs/1711.11439 (2017)

Krietinsky, J., Esparza, J.: Deterministic automata for the (F,G)-fragment
of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 7-22. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31424-7_7

Komiérkové, Z., Kietinsky, J.: Rabinizer 3: safraless translation of LTL to
small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 235-241. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11936-6_17

Klein, J.: Itl2dstar - LTL to deterministic Streett and Rabin automata.
http://www.lt12dstar.de/

Kietinsky, J., Garza, R.L.: Rabinizer 2: Small Deterministic Automata
for LTL\GU. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS,
vol. 8172, pp. 446-450. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-02444-8_32

Kfetinsky, J., Meggendorfer, T., Sickert, S.: LTL store: repository of LTL
formulae from literature and case studies. CoRR, abs/1807.03296 (2018)
Kietinsky, J., Meggendorfer, T., Waldmann, C., Weininger, M.: Index
appearance record for transforming rabin automata into parity automata.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205,
pp. 443-460. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54577-5_26

576 J. Kfetinsky et al.

[KNP11]

[KV15]

[KV17]

[ML16]

[MS17]
[Pit06]

[Pnu77]
[PPO6]

[Saf88]

[SBOO]

[Sch09]

[SEJK16]

[SK16]

[TD14]

[VWS6]

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of
probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 585-591. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1_47

Kini, D., Viswanathan, M.: Limit deterministic and probabilistic
automata for LTL\GU. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 628-642. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46681-0_57

Kini, D., Viswanathan, M.: Optimal translation of LTL to limit determin-
istic automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 113-129. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54580-5_7

Meyer, P.J., Luttenberger, M.: Solving mean-payoff games on the GPU.
In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938,
pp. 262-267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3_17

Miiller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In:
GandALF, pp. 180-194 (2017)

Piterman, N.: From nondeterministic Biichi and Streett automata to
deterministic parity automata. In: LICS, pp. 255-264 (2006)

Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46-57 (1977)
Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games.
In: LICS, pp. 275-284 (2006)

Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319-327
(1988)

Somenzi, F., Bloem, R.: Efficient Biichi automata from LTL formulae. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248-
263. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_21
Schewe, S.: Tighter bounds for the determinisation of Biichi automata. In:
de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167—181. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1_13
Sickert, S., Esparza, J., Jaax, S., Kietinsky, J.: Limit-deterministic
Biichi automata for linear temporal logic. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 312-332. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6_17

Sickert, S., Kietinsky, J.: MoChiBA: probabilistic LTL model checking
using limit-deterministic Biichi automata. In: Artho, C., Legay, A., Peled,
D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 130-137. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46520-3_9

Tian, C., Duan, Z.: Buchi determinization made tighter. Technical report
abs/1404.1436, arXiv.org (2014)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic
program verification (preliminary report). In: LICS, pp. 332-344 (1986)

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 577

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

D Owl: A Library for w-Words, Automata, and LTL. ATVA
2018

This section has been published as peer-reviewed conference paper.

Jan Kretinsky, Tobias Meggendorfer and Salomon Sickert. ‘Owl: A Library
for w-Words, Automata, and LTL’. in: Automated Technology for Verification
and Analysis - 16th International Symposium, ATVA 2018, Los Angeles,
CA, USA, October 7-10, 2018, Proceedings. Ed. by Shuvendu K. Lahiri and
Chao Wang. Vol. 11138. Lecture Notes in Computer Science. Springer,
2018, pp. 543-550. DOI: 10.1007/978-3-030-01090-4\ _34. URL:
https://doi.org/10.1007/978-3-030-01090-4%5C_34

Synopsis We present the library Owl (Omega-Words, automata, and LTL). It forms a
feature-rich framework for constructions involving w-automata and LTL. Among others,
it hosts the complete Rabinizer 4 tool suite [Kfe+18| (see Paper C). Moreover, many
user-friendly features and utility methods are provided to ease development of further
translations and use in, for example, student projects and teaching. Implementing a new
construction in Owl is possible with a few hundred lines of code, including integration
with the command line interface and the provided automatic test suite. Nevertheless,
the library is heavily optimized and implementations based on Owl are competitive with
existing tools in this area. For example, Rabinizer 4 constructions’ are competitive with
Spot [Dur+16], the other de-factor standard tool for LTL-to-automaton translations.
Strix [MSL18|, a reactive synthesis tool partly based on Owl, repeatedly won the
synthesis competition SYNTCOMP [Jac+19].

Contributions of the thesis author Discussion and revision of the entire manuscript.
Significant contributions to the design and implementation of Owl, including a full
implementation of BDDs in Java, JBDD [Megl7]. At the time of writing, the author still
is actively contributing to Owl.

119

https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4%5C_34

o

Check for
updates

Owl: A Library for w-Words, Automata,
and LTL

Jan Kietisky®™)®, Tobias Meggendorfer®, and Salomon Sickert

Technical University of Munich, Munich, Germany
{jan.kretinsky,tobias.meggendorfer,sickert}@in.tum.de

Abstract. We present the library Owl (Omega-Words, automata, and
LTL) for w-automata and linear temporal logic. It forms a backbone of
several translations from LTL to automata and related tools by different
authors. We describe the functionality of the library and the recent expe-
rience, which has already shown the library is apt for easy prototyping
of new tools in this area.

1 An Owl is Born: Introduction

w-automata are finite automata over infinite words. As opposed to finite
automata over finite words, there is not a single acceptance condition, but a
wide variety of possibilities, each being more appropriate for certain applica-
tions. To give a few examples, non-deterministic Bilichi automata are the most
used kind, useful in many contexts, including the modelling and analysis of
reactive systems, where both the system and the property of interest, say in
linear temporal logic (LTL) [33], are transformed into these automata. In con-
trast, the classical approach for synthesis of reactive systems [34] prefers deter-
ministic parity automata. Further, while the textbook approach to probabilis-
tic LTL model checking suggests to translate LTL formulas to deterministic
Rabin automata [4], recent approaches show that deterministic generalized Rabin
automata or limit-deterministic automata are more preferable [6,37,38]. Conse-
quently, a zoo of automata arises, both due to theoretical limitations of certain
kinds as well as practical efficiency. While the theoretical complexity of the trans-
formations between the automata and of translations from LTL to automata
is long settled, the research on practically more efficient approaches is flourish-
ing, both for non-deterministic [3,7-9,15-17,39] and more recently deterministic
[2,11-14,19,20,23,37] automata. Notably, while these constructions are based on
diverse ideas, their implementation requires almost the same infrastructure.

Tools in this area have very different purposes, ranging from tools for one specific
task, e.g. translating LTL into a particular type of automaton, e.g. [3,16,20-22],

This research was supported in part by the Czech Science Foundation grant
No. P202/12/G061 and the the German Research Foundation (DFG) projects
“Statistical Unbounded Verification” (383882557) and “Verified Model Checkers”
(317422601).

© Springer Nature Switzerland AG 2018

S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 543-550, 2018.
https://doi.org/10.1007/978-3-030-01090-4_34

544 J. Kfetinsky et al.

to educational GUI tools demonstrating the constructions, e.g. JFLAP [35], to
tools implementing a comprehensive collection of algorithms from literature,
e.g. GOAL [41] and Spot [9]. We contribute to this spectrum the library Owl,
which enables easy and fast development of transformation/translation tools,
yet yielding efficient implementations.

Owl is a full-fledged library for manipulating w-automata and LTL. One of the
main characteristics is that it links the functionality for automata and logic in a
very tight and explicit way, providing additional support for “semantic” trans-
lations of LTL to automata. These are translations where states are described
using structures over logical formulas, as we know it from the classical, e.g.
the tableaux-based, tradition. This tradition was disrupted for deterministic
automata due to Safra’s construction [36], where the meaning of a state (the
language it recognizes) cannot be easily described in terms of the meaning of
the corresponding formulas. The “semantic” tradition has been restored recently
in the works on deterministic automata cited above and Owl provides specialised
operations (see below) on LTL that are the building blocks for obtaining such a
translation.

Apart from this characteristics, our library has several other user-friendly
traits and distinguishing features. For instance, it is built according to the on-
the-fly philosophy, it is written in Java (with no memory management issues
left for the user, being more accessible to students), extensive CLI support for
quick and easy prototyping, and a testing framework checking correctness of
translations written with the library.

In this tool paper, we briefly describe the functionality of the library and then
provide a series of actual use cases (not only by the authors), demonstrating the
usability and particular advantages of this library.

2 The Anatomy of the Owl: Functionality

0wl (Omega-Words, automata, and LTL) arose from the needs when imple-
menting Rabinizer 3.1 [13,22] and 1t121dba [37]. When developing such trans-
lations a lot of infrastructure is necessary, e.g., LTL parsing and representation,
while the actual construction is only a small fraction of the written code. Thus,
we implemented commonly needed functionality in a reusable Java library for
LTL and w-automata and extended it with numerous features to provide a flex-
ible infrastructure for rapid and seamless development of algorithms in these
domains.

2.1 Data Structures and Algorithms
The majority of data structures and algorithms concerns LTL and automata.

LTL. The library provides an LTL parser, a simplifier with state-of-the-art
rewrite rules, classification into syntactic fragments and transformation into nor-
mal forms. Additionally, a parser for the synthesis specification format TLSF [18]
is available and includes a conversion to LTL.

Owl: A Library for w-Words, Automata, and LTL 545

Further, the LTL support comes with efficient rewriting according to the LTL
expansion laws, e.g. [4]. This enables the decomposition of temporal formulas into
directly checkable assertions on the current position and on the immediate tem-
poral successor, e.g. aUb = bV (aAX(aUb)). As such, they are a core component
of both classic, e.g. tableaux-based, as well as recent semantic translations.

Automata. The library provides support for deterministic and non-
deterministic w-automata with both classic acceptance conditions, e.g., Biichi,
coBiichi, Rabin and parity, as well as, e.g., like generalized Rabin [28] or
Emerson-Lei acceptance [10]. Internally, acceptance is represented as transition-
based acceptance and a conversion to and from state-based acceptance for inter-
facing with external tools is present.

Automata can either be stored and modified explicitly, meaning the whole
state-space and transitions are kept in memory, or defined implicitly by specify-
ing initial states and a method for successor computation. The latter approach
has two main advantages: First, new constructions can be implemented with
little effort, transferring the definition of the successor relation into code. For
example, see [24] for a ca. 60 lines Java implementation of Safra’s determinization
procedure. Second, automata can be conveniently traversed on the fly without
storing the transition system, allowing operations on huge or potentially even
infinite transition structures.

For automata, classic algorithms such as decomposition into strongly con-
nected components (SCC) and lasso-based emptiness checks are included. Fur-
thermore, constructions such as union, intersection and degeneralization are
present. In addition, modifications of the transition structure and the accep-
tance conditions are supported, e.g., removal of non-accepting or unreachable
parts of the state space, completing the transition relation, and simplifications
of the acceptance condition. Acceptance sets are stored as edge labels for efficient
rewriting, supporting arbitrarily sized acceptances, compared to, e.g., Spot [9],
which at the time of writing supports only an at compile-time determined
bounded number of sets.

2.2 Interfacing

There are two ways to interact with Owl: On the one hand, there is a command-
line interface with text-based formats, e.g., (Spot-compatible) LTL, TLSF [18],
and the Hanoi w-automaton format (HOA) [1]. This approach is completely
agnostic of the implementation, but always requires a complete construction,
which is prohibitively expensive for huge outputs where only a small fraction
might be needed. On the other hand, there is a Java and a (specialized) C++
API offered by Owl, which allows fine-grained access and exposes the on-the-fly
nature to external code.

Command-line Interface. Major functionality of the library is avail-
able via a pipe-style CLI, which makes it easy to specify the sequence
of procedures (input parsing, translations, conversions, statistics and seri-
alization) to be performed. For example, owl 1tl --- simplify-1tl ---

546 J. Kfetinsky et al.

1tl2dpa --- hoa reads LTL formulas from stdin line-by-line, simpli-
fies them wusing the default simplifier, translates them to DPAs and
writes them to stdout in the HOA format. This can be extended
to advanced pipelines, e.g., owl -I "in.1ltl" --- 1tl --- 1ltl2dgra ---
aut-stat "DGRA:%s" --- dgra2dra --- aut-stat "DRA:%s" --- null.

This pipeline reads LTL formulas from the file in.1t1, translates them to
DGRAs and DRAs, while outputting the respective sizes of the automata, and
finally discards the actual output, saving the time needed for serialization.

Moreover, we support several sources and sinks for data. While one can sim-
ply process data from files and the command line, we also added a server mode
to reduce the JVM start-up cost, where I/0O is bound to a socket. Further details
on the CLI together with an in-depth example can be found on [24].

Java and C++ API. Java and Java-like (e.g., Scala) applications can import
Owl and have fine-grained control. For C++ tools, there exists a specialized
interface to access core functionality of the library. Among other things, this
enables C++ code to iteratively explore automata state by state instead of
forcing a complete construction. This iterative exploration is a core component
of the state-of-the-art synthesis tool Strix [31] and is crucial for its performance.

2.3 Development Infrastructure and Scalable Architecture

Testing. Small changes to a translation can easily introduce bugs. Thus a test
suite is included, which provides several input sets and cross-checks each transla-
tion, developed with Owl, on hundreds of formulas [25] using 1tlcross [9]. Apart
from detecting bugs, the test suite offers further conveniences, e.g., it automati-
cally generates an image of an erroneous automaton together with an erroneous
run. Moreover, various statistics of the generated automata are displayed, usable
for performance testing. Lastly, integration of a newly developed translation can
be achieved by a few lines of JSON, see [24] for an example.

BDDs. Both the LTL part and the automata part of the library use binary deci-
sion diagrams (BDD) for some aspects of their functionality, e.g., for a compact
representation edge sets and (propositional) equivalence checks of formulas. We
implemented our own pure Java BDD library JBDD [30], to (i) achieve portability,
not requiring users to compile, e.g., CUDD, and (ii) provide an efficient and tuned
implementation for all used BDD operations, e.g. substitution of variables, called
compose. Particularly, compose is fundamental for a symbolic implementation
of the semantic constructions and greatly improves their runtime compared to
the explicit variants.

3 The Owl in the Wild: Use Cases

Owl has been successfully used for several published tools and student projects,
demonstrating versatility and usability even for less experienced users. To name a
few, the following published tools (in alphabetical order) using Owl are available:

Owl: A Library for w-Words, Automata, and LTL 547

Delag [32] translates LTL into deterministic Emerson-Lei automata.Reusing
other translations based on Owl, see Rabinizer [26], it adds specialized con-
structions for fragments of LTL, exploiting a succinct encoding coupled to the
Emerson-Lei acceptance condition. The current distribution of Owl includes
the latest version of it.

MoChiBa [38] is an extension of PRISM [29] and uses limit-deterministic automata
for quantitative model checking of Markov decision processes [37]. Due to a
tight integration with Owl, additional information on the automata can be
accessed, optimizing the construction.

Rabinizer [26] is a collection of tools translating LTL to various types of deter-
ministic automata. It uses a fully BDD-based successor computation of 0Owl,
improving performance over the previous versions. The current distribution
of 0wl includes the latest version of Rabinizer (4.0).

Strix [31] synthesises controllers (either Mealy machines or AIGER circuits)
from LTL specifications via parity games. Constructing the underlying
automata and solving the parity games take an incremental approach and
make use of the on-the-fly implementations.

The list of student projects includes’

— a re-implementation of Seminator [5],

— a specialized translation of the (F, G, X)-fragment of LTL to deterministic
parity automata, and

— reactive synthesis exploiting the Owl-supported semantic labelling of the
automata produced by Rabinizer through learning approaches.

Furthermore, rLTL (robust LTL) [40] can be easily transformed into LTL using
Owl2. Finally, to illustrate the ease with which new translations can be written,
we implemented the notoriously complicated and hard-to-implement [27] Safra’s
determinization procedure [36], which can be found on [24]. A detailed analysis
of the lines of code needed to implement the mentioned translations and the
percentage of library that is used can be found on [24].

4 This is Not the End: Conclusion

We have presented the library Owl, which provides infrastructure for easy devel-
opment of efficient prototypes in the area of LTL and automata. It has already
demonstrated its re-usability in several projects, also without the presence of the
library authors. For instance, our experience with Master students has demon-
strated that a tool for a complex translation, such as [5], can be easily imple-
mented using roughly 400 lines of code, achieving performance comparable to
the original dedicated tool. One simply defines the mathematical type of the
state space, the initial state, the successor function with the acceptance mark-
ing, whereas the rest is taken care of by the library. The library can be found at
https://owl.model.in.tum.de, including code, documentation, references and an
online demo. We greatly appreciate comments and suggestions.

1 Authored by Florian Barta, Matthias Franze, and Sebastian Fiss, respectively.
2 Originally implemented by Daniel Neider.

548 J. Kfetinsky et al.

References

1. Babiak, T., et al.: The Hanoi Omega-automata format. In: Kroening, D.,
Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479-486. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_31

2. Babiak, T., Blahoudek, F., Kietinsky, M., Strejcek, J.: Effective translation of LTL
to deterministic Rabin automata: beyond the (F,G)-fragment. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24-39. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-02444-8_4

3. Babiak, T., Kfetinsky, M., Rehdk, V., Strejcek, J.: LTL to Biichi automata trans-
lation: fast and more deterministic. In: Flanagan, C., Konig, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95-109. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5_8

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

5. Blahoudek, F., Duret-Lutz, A., Klokocka, M., Kfetinsky, M., Strejcek, J.: Semina-
tor: a tool for semi-determinization of omega-automata. In: LPAR (2017)

6. Chatterjee, K., Gaiser, A., Kfetinsky, J.: Automata with generalized rabin pairs for
probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 559-575. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8_37

7. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M.,
Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253-271. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2_16

8. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear
temporal logic. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
249-260. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_23

9. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 — a framework for LTL and w-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122-129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

10. Emerson, E.A.| Lei, C.: Modalities for model checking: branching time strikes back.
In: POPL (1985)

11. Esparza, J., Kietinsky, J.: From LTL to deterministic automata: a safraless compo-
sitional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
192-208. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_13

12. Esparza, J., Kretinsky, J., Raskin, J.-F.; Sickert, S.: From LTL and limit-
deterministic Biichi automata to deterministic parity automata. In: Legay, A.,
Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 426—442. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-54577-5_25

13. Esparza, J., Kietinsky, J., Sickert, S.: From LTL to deterministic automata - a
safraless compositional approach. Form. Methods Syst. Des. (2016)

14. Esparza, J., Kfetinsky, J., Sickert, S.: One theorem to rule them all: a unified
translation of LTL into w-automata. In: LICS (2018)

15. Etessami, K., Holzmann, G.J.: Optimizing Biichi automata. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153-168. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4_13

16. Gastin, P., Oddoux, D.: Fast LTL to Biichi automata translation. In: CAV (2001).
Tool accessible at http://www.lsv.ens-cachan.fr/~gastin/1t12ba/

17. Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation
of LTL formulae to Biichi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.
35.

Owl: A Library for w-Words, Automata, and LTL 549

2002. LNCS, vol. 2529, pp. 308-326. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-36135-9_20

Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Fifth Workshop on Synthesis (SYNTQCAV) (2016)

Kini, D., Viswanathan, M.: Limit deterministic and probabilistic automata for LTL
\ GU. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 628—-642.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_57

Kini, D., Viswanathan, M.: Optimal translation of LTL to limit deterministic
automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
113-129. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-
5.7

Klein, J.: ltl2dstar - LTL to deterministic Streett and Rabin automata. http://
www.lt12dstar.de/

Komaérkova, Z., Kretinsky, J.: Rabinizer 3: safraless translation of LTL to small
deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 235-241. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6_17

Kretinsky, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7-22.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_7
Kietinsky, J., Meggendorfer, T., Sickert, S.: Owl: a library for w-words, automata,
and LTL. https://owl.model.in.tum.de. Accessed July 2018

Kietinsky, J., Meggendorfer, T., Sickert, S.: LTL store: repository of LTL formulae
from literature and case studies. CoRR, abs/1807.03296 (2018)

Kietinsky, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to
your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 567-577. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96145-3_30

Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bielikova,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turdn, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 88-98. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27660-6_8

Kfietinsky, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7-22.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_7
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

Meggendorfer, T.: JBDD: a java BDD library. https://github.com/incaseoftrouble/
jbdd. Accessed July 2018

Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back!. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578-586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_31
Miiller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Gandalf
(2017)

Pnueli, A.: The temporal logic of programs. In: FOCS (1977)

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL (1989)
Rodger, S.H., Qin, H., Su, J.: Changes to JFLAP to increase its use in courses. In:
SIGCSE (2011)

550 J. Kfetinsky et al.

36. Safra, S.: On the complexity of omega-automata. In: FOCS (1988)

37. Sickert, S., Esparza, J., Jaax, S., Kfetinsky, J.: Limit-deterministic Biichi automata
for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 312-332. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6_17

38. Sickert, S., Kietinsky, J.: MoChiBA: probabilistic LTL model checking using limit-
deterministic Biichi automata. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 130-137. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3_9

39. Somenzi, F., Bloem, R.: Efficient Biichi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248-263. Springer,
Heidelberg (2000). https://doi.org/10.1007/10722167_21

40. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92-106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

41. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883-889.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_62

E Of Cores: A Partial-Exploration Framework for Markov
Decision Processes. CONCUR 2019

This section has been published as peer-reviewed conference paper.

Jan Kfretinsky and Tobias Meggendorfer. ‘Of Cores: A Partial-Exploration
Framework for Markov Decision Processes’. In: 30th International Con-
ference on Concurrency Theory, CONCUR 2019, August 27-30, 2019,
Amsterdam, the Netherlands. Ed. by Wan Fokkink and Rob van Glab-
beek. Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2019, 5:1-5:17. DOI: 10.4230/LIPIcs.CONCUR.2019.5. URL: https:
//doi.org/10.4230/LIPIcs.CONCUR.2019.5

Synopsis Inspired by previous approaches [Bra+14; Ash+17] (see Paper A), we intro-
duce a new framework for partial exploration, investigating fundamental limitations
and possible extensions of this approach. Previous works explore the system relative
to a given objective, i.e. gather enough information such that this objective can be
answered up to a given precision. Instead, we identify the essential part of the system,
called core, sufficient to answer any such query up to the given precision. Asides from
immediate advantages such as re-usability, this property-agnostic analysis allows for
further understanding of systems themselves. In particular, we introduced the concept
of step-bounded cores and stability, which are particularly useful for understanding
systems and early detection of design faults.

At the time of writing, a significantly extended journal version of this paper is under
submission.

Contributions of the thesis author Composition of the manuscript except abstract
and introduction. Discussion and revision of the entire manuscript. Sole contribution of
all results and proofs presented in the paper, with the exception of the proof idea for
Theorem 6. Sole design and implementation of the presented tool.

128

https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5

Of Cores: A Partial-Exploration Framework for
Markov Decision Processes
Jan Kretinsky

Technical University of Munich, Germany
jan.kretinsky@in.tum.de

Tobias Meggendorfer
Technical University of Munich, Germany
tobias.meggendorfer@in.tum.de

—— Abstract

We introduce a framework for approximate analysis of Markov decision processes (MDP) with
bounded-, unbounded-, and infinite-horizon properties. The main idea is to identify a “core” of an
MDP, i.e., a subsystem where we provably remain with high probability, and to avoid computation on
the less relevant rest of the state space. Although we identify the core using simulations and statistical
techniques, it allows for rigorous error bounds in the analysis. Consequently, we obtain efficient
analysis algorithms based on partial exploration for various settings, including the challenging case
of strongly connected systems.

2012 ACM Subject Classification Theory of computation — Verification by model checking; Theory
of computation — Random walks and Markov chains

Keywords and phrases Markov Decision Processes, Reachability, Approximation
Digital Object ldentifier 10.4230/LIPIcs. CONCUR.2019.5
Related Version A full version of the paper is available at https://arxiv.org/abs/1906.06931.

Funding This work has been partially supported by the Czech Science Foundation grant No. 18-
11193S and the German Research Foundation (DFG) project KR 4890/2 “Statistical Unbounded
Verification”.

1 Introduction

Markov decision processes (MDP) are a well established formalism for modelling, analysis and
optimization of probabilistic systems with non-determinism, with a large range of application
domains [18]. Classical objectives such as reachability of a given state or the long-run average
reward (mean payoff) can be solved by a variety of approaches. In theory, the most suitable
approach is linear programming as it provides exact answers (rational numbers with no
representation imprecision) in polynomial time. However, in practice for systems with more
than a few thousand states, linear programming is not very usable, see, e.g., [2]. As an
alternative, one can apply dynamic programming, typically value iteration (VI) [4], the
default method in the probabilistic model checkers PRISM [13] and Storm [9)].

Despite better practical scalability of VI, systems with more than a few million states still
remain out of reach of the analysis not only because of time-outs, but now also memory-outs,
see, e.g., [6]. There are various heuristics designed to deal with so large state spaces, including
abstractions, e.g., [8, 11], or a dual approach based on restricting the analysis to a part of the
state space. Examples of the latter approach are asynchronous VI in probabilistic planning,
e.g., [17], or projections in approximate dynamic programming, e.g., [5]. In both, only a
certain subset of states is considered for analysis, leading to speed ups in orders of magnitude.
These are best-effort solutions, which can only guarantee convergence to the true result in
the limit, with no error bounds at any finite time. Surprisingly, this was the case with the
l@? Jan Kretinsky and.Tobias Meggenfiorfer;

T2 icensed under Creative Commons License CC-BY
30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 5; pp. 5:1-5:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

5:2

Of Cores: A Partial-Exploration Framework for Markov Decision Processes

standard VI as well until recently, when an error bound (and thus a stopping criterion) was
given independently in (10, 6]. The error bound follows from the under- and (newly obtained)
over-approximations converging to the true value. This resulted not only in error bounds
on VI, but opened the door to error bounds for other techniques, including those where
even convergence is not guaranteed. For instance, while VI iteratively approximates the
value of all states, the above-mentioned asynchronous VI evaluates states at different paces.
Thus convergence is often unclear and even the rate of convergence is unknown and very
hard to analyze. However, it is not too hard to extend the error bound technique for VI to
asynchronous VI. A prime example is the modification of BRTDP [17] to reachability [6]
with error bounds. These ideas are further developed for, e.g., settings with long-run average
reward [2] or continuous time [1].

While these solutions are efficient, they are ad-hoc, sharing the idea of simulation /
learning-based partial exploration of the system, but not the correctness proof. In this paper,
we build the foundations for designing such frameworks and provide a new perspective on
these approaches, leading to algorithms for settings where previous ideas cannot apply.

The previous algorithms use (i) simulations to explore the state space and (ii) planning
heuristics and machine learning to analyze the experience and to bias further simulations to
areas that seem more relevant for the analysis of the given property (e.g., reaching a state
S42), where (iii) the exact VI computation takes place and yields results with a guaranteed
error bound. In contrast, this paper identifies a general concept of a “core” of the MDP,
independently of the particular objective (which states to reach) and, to a certain extent, even
of the type of property (reachability, mean payoff, linear temporal logic formulae, etc.). This
core intuitively consists of states that are important for the analysis of the MDP, whereas the
remaining parts of the state space affect the result only negligibly. To this end, the defining
property of a core is that the system stays within the core with high probability.

There are several advantages of cores, compared to the tailored techniques. Since the
core is agnostic of any particular property, it can be re-used for multiple queries. Thus, the
repetitive effort spent by the simulations and heuristics to explore the relevant parts of the
state space by the previous algorithms can be saved. Furthermore, identifying the core can
serve to better understand the typical behaviour of the system. Indeed, the core is typically
a lot smaller than the system (and thus more amenable to understand) and only contains the
more likely behaviours, even for real-world models as shown in the experimental evaluation.
Finally, the general concept of core provides a unified argument for the correctness of the
previous algorithms since — implicitly — they gradually construct a core. This abstract
view thus allows for easier development of further partial-exploration techniques within
this framework.

More importantly, making the notion of core explicit naturally leads us to identify a
new standpoint and approach for the more complicated case of strongly connected systems,
where the previous algorithms as well as cores cannot help. In technical terms, minimal cores
are closed under end components. Consequently, the minimal core for a strongly connected
system is the whole system. And indeed, it is impossible to give guarantees on infinite-horizon
behaviour whenever a single state is ignored. In order to provide some feasible analysis
for this case, we introduce the n-step core. It is defined by the system staying there with
high probability for some time. However, instead of n-step analysis, we suggest to observe
the “stability” of the core, i.e. the tendency of the probability to leave this core if longer
and longer runs are considered. We shall argue that this yields (i) rigorous bounds for
N-step analysis for N > n more efficiently than a direct N-step analysis, and (ii) finer
information on the “long run” behaviour (for different lengths) than the summary for the

J. Kretinsky and T. Meggendorfer

infinite run, which, n.b., never occurs in reality. This opens the door towards a rigorous
analysis of “typical” behaviour of the system, with many possible applications in the design
and interpretation of complex systems.
Our contribution can be summarized as follows:
We introduce the notion of core, study its basic properties, in its light re-interpret previous
results in a unified way, and discuss its advantages.
We stipulate a new view on long-run properties as rather corresponding to long runs
than an infinite one. Then a modified version of cores allows for an efficient analysis of
strongly connected systems, where other partial-exploration techniques necessarily fail.
We show how these modified cores can aid in design and interpretation of systems.
We provide efficient algorithms for computing both types of cores and evaluate them on
several examples.

2 Preliminaries

In this section, we recall basics of probabilistic systems and set up the notation. We assume
familiarity with the central ideas of measure theory. As usual, N and R refers to the (positive)
natural numbers and real numbers, respectively. For any set S, we use S to denote its
complement. A probability distribution on a finite set X is a mapping p : X — [0, 1], such
that Y- . p(z) = 1. Tts support is denoted by supp(p) = {z € X | p(x) > 0}. D(X) denotes
the set of all probability distributions on X. An event happens almost surely (a.s.) if it
happens with probability 1.

» Definition 1. A Markov chain (MC) is a tuple M = (S, s0,6), where S is a countable set
of states, so € S is the initial state, and 6 : S — D(S) is a transition function that for each
state s yields a probability distribution over successor states.

» Definition 2. A Markov decision process (MDP) is a tuple of the form M = (S, so, A, Av, A),
where S is a finite set of states, so € S is the initial state, A is a finite set of actions,
Av: S — 24 \ {0} assigns to every state a non-empty set of available actions, and A :
S x A — D(S) is a transition function that for each state s and (available) action a € Av(s)
yields a probability distribution over successor states. Furthermore, we assume w.l.o.g. that
actions are unique for each state, i.e. Av(s) NAv(s") =0 for s # s' (which can be achieved by
replacing A with S x A and adapting Av and A appropriately).

For ease of notation, we overload functions mapping to distributions f : Y — D(X) by
f:Y xX —0,1], where f(y,x) := f(y)(z). For example, instead of d(s)(s") and A(s, a)(s")
we write d(s, s’) and A(s,a, s’), respectively.

An infinite path p in a Markov chain is an infinite sequence p = sgps1 ... € S*, such that
for every i € N we have that 0(s;, s;11) > 0. A finite path (or history) 0 = sps1...5, € S*isa
finite prefix of an infinite path. Similarly, an infinite path in an MDP is some infinite sequence
p = Spapsiai ... € (S x A)¥, such that for every i € N, a; € Av(s;) and A(s;,a;,8;+1) > 0.
Finite paths o are defined analogously as elements of (S x A)* x .S. We use p; and g; to refer
to the i-th state in the given (in)finite path.

A strategy on an MDP is a function 7 : (S x A)* x S — D(A), which given a finite
path ¢ = spapsiay ... s, yields a probability distribution 7(¢) € D(Av(s,)) on the actions
to be taken next. We denote the set of all strategies of an MDP by II. Fixing any
strategy m induces a Markov chain M™ = (S7,s7,0™), where the states are given by
ST = (8 x A)* x S and, for some state ¢ = spag...s, € ST, the successor distribution is
defined as 6™ (0, 0an+15n+1) = T(0, Gnt1) - A(Sn, nt1, Snt1)-

5:3

CONCUR 2019

5:4

Of Cores: A Partial-Exploration Framework for Markov Decision Processes

Any Markov chain M induces a unique measure PM over infinite paths [3, p. 758]. Assuming
we fixed some MDP M, we use PT to refer to the probability measure induced by the Markov
chain M™ with initial state s. Whenever 7 or s are clear from the context, we may omit
them, in particular, P™ refers to P . See [18, Sec. 2.1.6] for further details. For a given
MDP M and measurable event E, we use the shorthand P™**[E] := sup,c; P [E] and
P2*[E] := sup, <y P7 [E] to refer to the maximal probability of E over all strategies (starting
in s). Analogously, P™»[E] and P™"[E] refer to the respective minimal probabilities.

A pair (T, B), where) # T C S and @ # B C J,cp Av(s), is an end component of
an MDP M if (i) for all s € T,a € B N Av(s) we have supp(A(s,a)) C T, and (ii) for all
s,8" € T there is a finite path ¢ = sag...a,s € (T x B)* x T, i.e. the path stays inside
T and only uses actions in B. Intuitively, an end component describes a set of states for
which a particular strategy exists such that all possible paths remain inside these states.
By abuse of notation, we identify an end component with the respective set of states, e.g.,
s € E=(T,B) means s € T. An end component (T, B) is a mazimal end component (MEC)
if there is no other end component (7", B’) such that 7'C T” and B C B’. The set of MECs
of an MDP M is denoted by MEC(M) and can be obtained in polynomial time [7].

In the following, we will primarily deal with unbounded and bounded variants of reach-
ability queries. Essentially, for a given MDP and set of states, the task is to determine
the maximal probability of reaching them, potentially within a certain number of steps.
Technically, we are interested in determining P™*¥[OT] and P™**[O<"T, where T is the set
of target states and ¢T (O="T) refers to the measurable set of runs that visit 7 at least
once (in the first n steps). The dual operators T and O<"T refer to the set of runs which
remain inside T forever or for the first n steps, respectively. See [3, Sec. 10.1.1] for further
details. Our techniques are easily extendable to other related objectives like long run average
reward (mean payoff) (18], LTL formulae or w-regular objectives [3]. We briefly comment on
this in Section 3.3.

We are interested in finding approximate solutions efficiently, i.e. trading precision for
speed of computation. In our case, “approximate” means e-optimal for some given precision
€ > 0, i.e. the value we determine has an absolute error of less than e. For example, given
a reachability query P™@*[(T] and precision €, we are interested in finding a value v with
[PmaX[OT] — o] < e.

3 The Core ldea

In this section, we present the novel concept of cores, inspired by the approach of [6], where
a specific reachability query was answered approximately through heuristic based methods.
Omitted proofs can be found in [12, App. A.1]. We first establish a running example to
motivate our work and explain the difference to previous approaches.

Consider a flight of an air plane. The controller, e.g. the pilot and the flight computer,
can take many decisions to control the plane. The system as a whole can be in many different
states. One may be interested in the maximal probability of arriving safely. This intuitively
describes how likely it is to arrive, assuming that the pilot acts optimally and the computer is
bug-free. Of course, this probability may be less than 100%, since some components may fail
even under optimal conditions. See Figure 1 for a simplified MDP modelling this example.

The key observation in [6] is that some extreme situations may be very unlikely and we
can simply assume the worst case for them without losing too much precision. This allows us
to completely ignore these situations. For example, consider the unlikely event of hazardous
bit flips during the flight due to cosmic radiation. This event might eventually lead to a

J. Kretinsky and T. Meggendorfer

e -t
{ starting { bits flipped -- >
start Cre I e
ash D Iane ‘)\2\.

origin

Figure 1 A simplified model of a flight, where 7 = 107'° is the probability of potentially hazardous
bit flips occurring during the flight. The “recovery” node represents a complex recovery procedure,
comprising many states.

crash or it might have no influence on the evolution of the system at all. Since this event is
so unlikely to occur, we can simply assume that it always leads to a crash and still get a
very precise result. Consequently, we do not need to explore the corresponding part of the
state space (the “recovery” part), saving resources. As shown in the experimental evaluation
in Section 5, many real-world models indeed exhibit a similar structure.

In [6], the state space was explored relative to a particular reachability objective, storing
upper and lower bounds on each state for the objective in consideration. We make use
of the same principle idea, but approach it from a different perspective, agnostic of any
objective. We are interested in finding all relevant states of the system, i.e. all states which
are reasonably likely to be reached. Such a set of states is an intrinsic property of the
system, and we show that this set is both sufficient and necessary to answer any non-trivial
reachability query e-precisely. In particular, once computed, this set can be reused for
multiple queries.

3.1

First, we define the notion of an e-core. Intuitively, an e-core is a set of states which can
only be exited with probability less than e.

Infinite-Horizon Cores

» Definition 3 (Core). Let M be an MDP and ¢ > 0. A set S C S is an e-core if

PmaX[0S,] < ¢, i.e. the probability of ever exiting Se is smaller than .
When ¢ is clear from the context, we may refer to an e-core by “core”. Observe that the core
condition is equivalent to P™"[0S.] > 1 —e.

The set of all states S trivially is a core for any . Naturally, we are interested in finding
a core which is as small as possible, which we call a minimal core.

» Definition 4 (Minimal Core). Let M be an MDP and e > 0. S C S is a minimal e-core
if it is inclusion minimal, i.e. S? is an e-core and there exists no e-core S. C S¥.

When ¢ is clear from the context, we may refer to a minimal e-core by “minimal core”. In the
running example, a minimal core for € = 1076 would contain all states except the “bit flipped”
state and the “recovery” subsystem, since they are reached only with probability 7 < e.

» Remark 5. We note that this idea may seem similar to the one of [19], but is subtly
different. In that work, the authors consider a classical reachability problem using value
iteration. They approximate the exit probability of a fized set S» to bound the error on the
computed reachability.

In the following, we derive basic properties of cores, show how to efficiently construct them,
and relate them to the approaches of [2, 6].

5:5

CONCUR 2019

5:6

Of Cores: A Partial-Exploration Framework for Markov Decision Processes

First, we observe that finding a core of a given size (for a non-trivial ¢) is NP-complete.
» Theorem 6. For 0 <e < 1 {(M, k)| M has an e-core of size k} is NP-complete.

Observe that this result only implies that finding minimal cores is hard. In the following
section, we introduce a learning-based approach which quickly identifies reasonably sized cores.

» Theorem 7. Let M be an MDP and e > 0. A set Sc C S is an e-core of M if and only if
for every subset of states R C S we have that 0 < P™**[QR] — P™*[O(RN S.) NOS.] < e.

This theorem shows that for any reachability objective R, we can determine P™**[OR] up to
€ precision by determining the reachability of R on the sub-model induced by any e-core, i.e.
by only considering runs which remain inside S,. This also shows that, in general, cores are
necessary to determine reachability up to precision e.

We emphasize that this does not imply that identifying a core is necessary for all queries.
For example, we have that P1**[0{so}] = 1 even without constructing any core. Nevertheless,
for any non-trivial property, i.e. a reachability query with value less than 1 —¢e, a computation
restricted to a subset which does not satisfy the core property cannot give e-guarantees on its
results — only lower bounds can be proven. Thus, a set of states satisfying the core property
has to be considered for non-trivial properties. In particular, the approach of [6] implicitly
builds a core for such properties.

Of course, one could simply construct the whole state set S for the computation, which
trivially satisfies the core condition. But, using the methods presented in the following section,
we can efficiently identify a considerably smaller core. In particular, we observe in Section 5
that for some models we are able to identify a very small core orders of magnitude faster
than the construction of the state set .S, speeding up subsequent computations drastically.

3.2 Learning a Core

We introduce a sampling based algorithm which builds a core. In the interest of space, we only
briefly describe the algorithm. Further discussion can be found in [12, App. A.2] and [6]. The
algorithm is structurally very similar to the one presented in [6]. Nevertheless, we present it
explicitly here since (i) it is significantly simpler and (ii) we introduce modifications later on.

We assume that the model is described by an initial state and a successor function,
yielding all possible actions and the resulting distribution over successor states. This allows
us to only construct a small fraction of the state space and achieve sub-linear runtime
for some models.

During the execution of the algorithm, the system is traversed by following the successor
function, starting from the initial state. Each state encountered is stored in a set of explored
states, all other, not yet visited states are unezrplored. Unexplored successors of explored
states are called partially explored. Furthermore, the algorithm stores for each (explored)
state s an upper bound U(s) on the probability of reaching some unexplored state starting
from s. The algorithm gradually grows the set of explored states and simultaneously updates
these upper bounds, until the desired threshold is achieved in the initial state, i.e. U(sg) < €,
and thus the set of explored states provably satisfies the core property. In particular, the
upper bound is updated by sampling a path according to SAMPLEPATH and back-propagating
the values along that path using Bellman backups.

SAMPLEPATH samples paths following some heuristic. In particular, it does not have to
follow the transition probabilities given by the successor function. For example, a successor
might be sampled with probability proportional to its upper bound times the transition

J. Kretinsky and T. Meggendorfer

Algorithm 1 LEARNCORE.

Input: MDP M, precision € > 0, upper bounds U, state set S, with sy € S
Output: S; s.t. S; is an e-core

1: while U(sg) > ¢ do

2: 0 < SAMPLEPATH(sq, U) > Generate path
3: Se+ S:Up > Expand core
4: UpPDATEECS(S:, U)
5 for s in p in reverse order do > Back-propagate values
6 U(s) ¢ maxaea(s) 2ogeg A(s,a,8") - U(s')
7

return S.

probability. The intuition behind this approach is that all states which are unlikely to be
reached are not relevant and hence do not need to be included in the core. By trying to

reach unexplored states the algorithm likely only reaches states which indeed are important.

UpPDATEECS identifies MECs of the currently explored sub-system and “collapses” them
into a single representative state. This is necessary to ensure convergence of the upper
bounds to the correct value — technically this process removes spurious fixed points of U.

For (a.s.) termination, we only require that the sampling heuristic is “(almost surely)
fair”. This means that (i) any partially explored state is reached eventually (a.s.), in order to
explore a sufficient part of the state space, and (ii) any explored state with U(s) > 0 is visited
infinitely often (a.s.), in order to back-propagate values accordingly. Further, we require that
the initial upper bounds are consistent with the given state set, i.e. U(s) > PPa*[0S]. This
is trivially satisfied by U(-) = 1. Note that in contrast to [6], the set whose reachability we
approximate dynamically changes and, further, only upper bounds are computed.

» Theorem 8. Algorithm 1 is correct and terminates (a.s.) if SAMPLEPATH is (a.s.) fair
and the given upper bounds U are consistent with the given set S..

Proof Sketch. Correctness: By assumption U(s) initially is a correct upper bound for the
“escape” probability, i.e. U(s) > P™a*[(S,]. Each update (a Bellman backup) preserves
correctness, independent of the sampled path. Hence, if U(sg) < €, we have PPX[0S.] < e.

Termination: As we assumed that SAMPLEPATH is (a.s.) fair, eventually (a.s.) the whole
model will be explored, and all MECs will be collapsed by UPDATEECS. Then, all states are

visited infinitely often (a.s.), and thus all upper bounds will eventually converge to 0. <

As Algorithm 1 is correct and terminates for any faithful upper bounds and initial state
set, we can restart the algorithm and interleave it with other approaches refining the upper
bounds. For example, one could periodically update the upper bounds using, e.g., strategy
iteration. Further, we can reuse the computed upper bounds and state set to compute a core
for a tighter precision.

3.3 Using Cores for Verification

We explain how a core can be used for verification and how our approach differs from existing
ones. Clearly, we can compute reachability or safety objectives on a given core e-precisely.
In this case, our approach is not too different from the one in [6]. Yet, we argue that our
approach yields a stronger result. Due to cores being an intrinsic object, we are able to reuse
and adapt this idea easily to many other objectives. Observe that a dedicated adaption may
still yield slightly better performance, but requires significantly more work. For example, see
[2] for an adaption to mean payoff.

5:7

CONCUR 2019

5:8

Of Cores: A Partial-Exploration Framework for Markov Decision Processes

To see how we can connect our idea to mean payoff, we briefly explain this objective
and then recall an observation of [2]. First, rational rewards are assigned to each state,
which are obtained on each visit. Then, the mean payoff of a particular run is the limit
average reward obtained from the visited states. The mean payoff under a particular strategy
then is obtained by integrating over the set of all runs. As mentioned by [2], a mean payoff
objective can be decomposed into a separate analysis of each (explored) MEC and a (weighted)
reachability query

. . -
optimal mean payoff = :161[1_)[ZMeMEC(M)mean payoff of in M - P™ [0OOM].
Since we can bound the reachability on unexplored MECs by the core property, we can easily
bound the error on the computed mean payoff (assuming we know an a-priori lower and
upper bound on the reward function). Consequently, we can approximate the optimal mean
payoff by only analysing the corresponding core.

Similarly, LTL queries and parity objectives can be answered by a decomposition into
analysis of MECs and their reachability. Intuitively, given a MEC one can decide whether the
MEC is “winning” or “losing” for these objectives. The overall probability of satisfying the
objective then equals the probability of reaching a winning MEC [3]. Again, we can bound the
reachability of unexplored MECs and thus the error we incur when only analysing the core.

In general, many verification tasks can be decomposed into a reachability query and
analysis of specific parts of the system. Since our framework is agnostic of the verification
task in question, it can be transparently plugged in to obtain significant speed-ups.

We highlight that our approach is directly applicable to models with infinite state space,
since finite cores still may exist for these models.

4 Beyond Infinite Horizon

In the previous section, we have seen that MECs play an essential role for many objectives.
Hence, we study the interplay between cores and MECs.

» Proposition 9. Let M € MEC(M) be a MEC. If there is a state s € M with P™*[({s}] > ¢
then M C S. for every e-core Se.

Proof. Recall that for s,s’ € M, we have PP**[){s'}] = 1, thus P™**[O{s}] = P™*[O{s'}] >
€ and thus s’ € S..

A

This implies that sufficiently reachable MECs always need to be contained in a core entirely.
Many models comprise only a few or even a single MEC, e.g., restarting protocols like
mutual exclusion or biochemical models of reversible reactions. Together with the result of
Theorem 7, i.e. constructing a core is necessary for e-precise answers, this shows that in
general we cannot hope for any reduction in state space, even when only requiring e-optimal
solutions for any of the discussed properties. In particular, the approach of [6] necessarily
has to explore the full model. Yet, real-world models often exhibit a particular structure,
with many states only being visited infrequently. Since we necessarily have to give up on
something to obtain further savings, we propose an extension of our idea, motivated by a
modification of our running example.

Instead of a one-way trip, consider the plane going back and forth between the origin and
the destination, as shown in Figure 2. Clearly, the plane eventually will suffer from a bit flip,
independently of the strategy. Furthermore, assuming that there is a non-zero probability of
not being able to recover from the error, the plane will eventually crash.

J. Kretinsky and T. Meggendorfer

Figure 2 An adaptation of the model from Figure 1, with an added return trip, represented by
the “return” node. State and action labels have been omitted in the interest of space.

‘We make two observations. First, any core needs to contain at least parts of the recovery
sub-system, since it is reached with probability 1. Thus, this (complex) sub-system has to be
constructed. Second, the witness strategy is meaningless, since any strategy is optimal — the
crash cannot be avoided in the long run. In particular, deliberately crashing the plane has
the same long run performance as flying it “optimally”. In practice, we often actually are
interested in the performance of such a model for a long, but not necessarily infinite horizon.

To this end, one could compute the step bounded variants of the objectives, but this
incurs several problems: (i) choosing a sensible step bound n, (ii) computational overhead
(a precise computation has a worst-case complexity of |A| - n even for reachability), and
(i) all states reachable within n steps have to be constructed (which equals the whole state
space for practically all models and reasonable choices of n). In the following, we present a
different approach to this problem, again based on the idea of cores.

4.1 Finite-Horizon Cores

We introduce finite-horizon cores, which are completely analogous to (infinite-horizon) cores,
only with a step bound attached to them.

» Definition 10 (Finite-Horizon Core). Let M be an MDP, & > 0, andn € N. A set S, ,, C S
is an n-step e-core if PAX[OS"S_] < ¢ and it is a minimal n-step e-core if it is additionally
inclusion minimal.

As before, whenever n or € are clear from the context, we may drop the corresponding part
of the name. Again, similar properties hold and we omit the completely analogous proof.

» Theorem 11. Let M be an MDP, ¢ >0, and n € N. Then S, C S is an n-step e-core
if and only if for all R C S we have 0 < PPaX[QSnR] — PMaX[G<n(RN S, ,,) NOS"S.] < e.

These finite-horizon cores are much smaller than their “infinite” counterparts on some models,
even for large n. For instance, in our modified running example of Figure 2, omitting
the “complex” states gives an n-step core even for very large n (depending on 7). On the
other hand, finding such finite cores seems to be harder in practice. Naively, one could
apply the core learning approach of Algorithm 1 to a modified model where the number of
steps is encoded into the state space, i.e. S" =5 x {0,...,n}. Unfortunately, this yields
abysmal performance, since we store and back-propagate |S| - n values instead of only |S].
Nevertheless, we can efficiently approximate them by enhancing our previous approach with
further observations.

4.2 Learning a Finite Core

In Algorithm 2, we present our learning variant for the finite-horizon case. This algorithm
is structurally very similar to the previous Algorithm 1. The fundamental difference is
in Line 6, where the bounds are updated. One key observation is that the probability of

5:9

CONCUR 2019

5:10

Of Cores: A Partial-Exploration Framework for Markov Decision Processes

Algorithm 2 LEARNFINITECORE.

Input: MDP M, precision € > 0, step bound n, upper bounds GETBOUND / UPDATEBOUND,
state set Se, with s € S;
Output: S., s.t. S:, is an n-step e-core

1: while GETBOUND(sg,n) > € do

2 0 < SAMPLEPATH(s¢, n, GETBOUND) > Generate path
3 Sen — SenUo > Update Core
4: forien—1,n-2,...,0] do > Back-propagate values
5: S0, T4 Nn—1

6 UPDATEBOUND (5,7, maxXqe a(s) >ges A(S,a,8') - GETBOUND(s', 7 — 1))

7: return S.,,

1 1 C
0.5 0.5 -
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
(a) True bounds. (b) Simple approx. (c) Adaptive approx.

Figure 3 An example for the different approximation approaches. The graphs depict the
probability of exiting the core on the y axis within a given amount of steps on the x axis by a solid
line and the corresponding approximation returned by GETBOUNDS by a dashed line. From left to
right, we have example bounds, which agree with the dense representation, followed by our sparse
approach, which over-approximates the bounds, but requires less memory, and finally an adaptive
approach, which closely resembles the precise bounds while consuming less memory.

reaching some set R within k steps is at least as high as reaching it within k£ — 1 steps,
ie. PPaX[0SFR] < ¢ is non-decreasing in k for any s and R C S. Therefore, we can use
function over-approximations to store upper bounds sparsely and avoid storing n values for
each state. To allow for multiple implementations, we thus delegate the storage of upper
bounds to an abstract function approximation, namely GETBOUND and UPDATEBOUND.
This approximation scheme is supposed to store and retrieve the upper bound of reaching
unexplored states for each state and number of remaining steps. We only require it to give a
consistent upper bound, i.e. whenever we call UPDATEBOUND(s, r, p), GETBOUND(s, r) will
return at least p for all ' > r. Moreover, we require the trivial result GETBOUND(s,0) = 0
for all states s. In the following Section 4.3, we list several possible instantiations.

» Theorem 12. Algorithm 2 is correct if UPDATEBOUND—-GETBOUND are consistent and
correct w.r.t. the given state set Se . Further, if UPDATEBOUND stores all values precisely
and SAMPLEPATH samples any state reachable within n steps infinitely often (a.s.), the
algorithm terminates (a.s.).

Sketch. Correctness: As before, the upper bound function is only updated through Bellman
backups, which preserve correctness.

Termination: Given that the upper bound function stores all values precisely, the algorithm
is an instance of asynchronous value iteration, which is guaranteed to converge [18]. <

J. Kretinsky and T. Meggendorfer

P bounds
,,,,,,,,,,,,,,,,,,,, 50-step
] " --- 200-step
; 1 steps .
. J(V 200 400 True value

Figure 4 A schematic plot for an average reward extrapolation analysis on step bounded cores.
The solid line represents the true value, while the dotted and dashed lines are the respective upper
and lower bounds computed for a 50 and 200-step core. Note that the second dashed line (lower
bound on the 200 core) coincides with the solid line (true value).

4.3 Implementing the function approximation

Several instances of the UPDATEBOUND—GETBOUND approach are outlined in Figure 3.
The first, trivial implementation is dense storage, i.e. explicitly storing a table mapping
S x{0,...,n—1} — [0,1]. This table representation consumes an unnecessary amount of
memory, since we do not need exact values in order to just guide the exploration. Hence, in
our implementation, we use a simple sparse approach where we only store the value every K
steps, where K manually chosen. This is depicted in Figure 3b for K = 10 — every black
dot represents a stored value, the dashed lines represent the value returned by GETBOUNDS.
The adaptive approach of Figure 3¢ adaptively chooses which values to store and is left for
future work.

4.4 Stability and its applications

In this section, we explain the idea of a core’s stability. Given an n-step core Se ,, we can
easily compute the probability P™a*[G<NS_ 1 of exiting the core within N > n steps using,
e.g., value iteration. The rate of increase of this exit probability intuitively gives us a measure
of quality for a particular core. Should it rapidly approach 1 for increasing N, we know
that the system’s behaviour may change drastically within a few more steps. If instead this
probability remains small even for large N, we can compute properties with a large step
bound on this core with tight guarantees. We define stability as the whole function mapping
the step bound N to the exit probability, since this gives a more holistic view on the system’s
behaviour than a singular value. In the following, we give an overview of how finite cores
and the idea of stability can be used for analysis and interpretation, helping to design and
understand complex systems.

As we have argued above, infinite-horizon properties may be deceiving, since (unrecover-
able) errors often are bound to happen eventually. Consequently, one might be interested
in a “very large”-horizon analysis instead. Unfortunately, such an analysis scales linearly
both with the number of transitions and the horizon. Considering that many systems have
millions of states, an analysis with a horizon of only 10,000 steps is already out of reach for
existing tools. We first show how stable cores can be used for efficient extrapolation to such
large horizons.

For simplicity, we consider reachability and argue how to transfer this idea to other
objectives. We apply the ideas of interval iteration as used in, e.g., [10, 6], as follows.
Intuitively, since we have no knowledge of the partially explored states, we simply assume the
worst / best case for them, i.e. assign a lower bound of 0 and upper bound of 1. Furthermore,
any explored target state is assigned a lower and upper bound of 1. By applying interval
iteration, we can obtain bounds on the N-step and even unbounded reachability. Through

5:11

CONCUR 2019

5:12

Of Cores: A Partial-Exploration Framework for Markov Decision Processes

the core property, the bounds for N < n necessarily are smaller than . But, for larger IV,
there are no formal guarantees given by the core property. It might be the case that the core
is left with probability 1 in n + 1 steps. Nevertheless, in practice this allows us to get good
approximations even for much larger bounds. Often the computation of an n-step core and
subsequent approximation of the desired property is even faster than directly computing the
N-step property, as shown in the evaluation.

For LTL and parity objectives, we can simply preprocess the obtained n-core by identifying
the winning MECs and then applying the reachability idea, to obtain bounds on the
satisfaction probability on the core. In the case of mean-payoff, we again require lower
and upper bounds on the rewards 7y, and rmax of the system in order to properly initialize
the unknown values. Then, with the same approach, we can compute bounds on the n-step
average reward by simply assign the lower and upper bounds 7, and ryax to all unexplored
states instead of 0 and 1. See Figure 4 for a schematic plot of this analysis. Here, the 50-step
core is too coarse for any reasonable analysis, it is unstable and can be exited with high
probability. On the other hand, the 200-step core is very stable and accurately describes
the system’s behaviour for a longer period of time. Noticeably, it also contains a MEC
guaranteeing a lower bound on the average reward, hence the lower bound actually agrees
with the true value. Since the system may be significantly larger than the bounded cores
or even infinitely large, this analysis potentially is much more efficient than analysis of the
whole system, as shown in the experimental evaluation.

Note that we cannot use this method to obtain arbitrarily precise results. Given some
n-step core and some (step bounded) property, there is a maximal precision we can achieve,
depending on the property and the structure of the model. Hence, this method primarily is
useful to quickly obtain an overview of a system’s behaviour instead of verifying a particular
property. As we have argued, one cannot avoid constructing a particular part of the state
space in order to obtain an e-precise result. Nevertheless, this may provide valuable insights
in a system, quickly giving a good overview of its behaviour or potential design flaws.

We highlight that the presented algorithm can incrementally refine cores. For example, if
a 100-step core does not yield a sufficiently precise extrapolation, the algorithm can reuse the
computed core in order to construct a 200-step core. By applying this idea in an interactive
loop, one can extract a condensed representation of the systems behaviour automatically,
with the possibility for further refinements until the desired level of detail has been obtained.

5 Experimental Evaluation

In this section we give practical results for our algorithms on some examples, both the
hand-crafted plane model and hand-picked models from case studies.

5.1 Implementation Details

We implemented our approach in Java, using PRISM [13] as a library for parsing its modelling
language and basic computations. The implementation supports Markov chains, continuous-
time Markov chains (CTMC, via embedding or uniformization [18, Ch. 11.5]) and Markov
decision processes. Further, we implemented our own version of some utility classes, e.g.,
explicit MDP representation and MEC decomposition.

Inspired by the results of [6], we considered the following sampling heuristics. Given
a state s, each heuristic first selects an action a which maximizes the expected upper
bound. If there are multiple such actions, one of them is randomly selected. Then, a
successor is chosen as follows: The RN (Random) heuristics samples a successors according

J. Kretinsky and T. Meggendorfer

Table 1 Summary of our experimental results on several models and configurations for the infinite
horizon core learning. The “PRISM” column shows the total number of states and construction time
when explored with the explicit engine. The following columns show the size and total construction
time of a 10~ %-core for each of the sampling heuristics.

Model Param. PRISM RN GD MX

zeroconf 100;5;0.1 496,291 8.4s 17,805 2.3s 1,072 0.4s 1,450 0.5s
(N; K; loss) 100;10;0.1 3.0-10% 55s 11,900 1.7s 1,006 0.3s 1,730 0.5s
100;15;0.1 4.7-10% 159s 16,997 2.4s 1,067 0.4s 2,002 0.7s

airplane 100; ££ 10,208 0.4s 6 0.1s 6 0.1s 6 0.1s
(size; return) 10000; ££f MEMOUT 6 0.1s 6 0.1s 6 0.1s
brp 20;10 2,933 0.2s 2,352 0.3s 2,568 04s 2,675 0.5s
(N; MAX) 20; 100 26,423 0.6s 7,060 0.6s 3,421 0.4s 3,679 0.5s

20,1000 261,323 0.6s 7,624 0.6s 5,118 0.4s 3,912 0.5s

wlan 345,000 4.5s 344,835 52s 344,996 50s 344,997 52s

to A(s,a). The GD (Guided) approach samples a successor weighted by the respective upper
bound, i.e. randomly select a state with probability proportional to U(s’) - A(s,a,s’) or
GETBOUND(s',7) - A(s, a, s"), respectively. Finally, MX (Max) samples a successor s’ with
probability proportional only to its upper bound U(s’) or GETBOUND(s',), respectively.

Recall that our algorithms can be restarted with faithful upper bounds and thus we
can interleave it with other computations. In our implementation we alternate between the
guided exploration of Algorithm 2 and precise computation on the currently explored set of
states, guaranteeing convergence in the finite setting.

5.2 Models

In our evaluation, we considered the following models. All except the airplane model are
taken from the PRISM case studies [16]. airplane is our running example from Figure 1
and Figure 2, respectively. The parameter return controls whether a return trip is possible,
size quadratically influences the size of the “recovery” region. zerocontf [14] describes the
IPv4 Zeroconf Protocol with N hosts, the number K of probes to send, and a probability of
a message loss. wlan [15] is a model of two WLAN stations in a fixed network topology
sending messages on the shared medium. brp is a DTMC modelling a file transfer of N chunks
with bounded number MAX of retries per chunk. Finally, cyclin is a CTMC modelling the cell
cycle control in eukaryotes with N molecules. We analyse this model using uniformization.

5.3 Results

We evaluated our implementation on an i7-4700MQ 4x2.40 GHz CPU with 16 GB RAM. We
used a default precision of 10~ for all experiments. The results for the infinite and finite
construction are summarized in Table 1 and Table 2, respectively. We briefly discuss them
in the following sections. Note that the results may vary due to the involved randomization.

5.3.1 Infinite Cores

As already explained in [6], the zeroconf model is very well suited for this type of analysis,
since a lot of the state space is hardly reachable. In particular, most states are a result of
collisions and several message losses, which is very unlikely. Consequently, a very small part

5:13

CONCUR 2019

5:14

Of Cores: A Partial-Exploration Framework for Markov Decision Processes

Table 2 Summary of our experimental results on several models and configurations for the
finite-horizon 10~ %-core learning with 100 step bound; using the notation from Table 1.

Model Param. PRISM RN GD MX
airplane 100; tt 20,413 0.6s 11 0.3s 11 0.3s 554 0.6s
(size; return) 10000;tt MEMOUT 11 0.3s 11 0.3s 603 0.6s
wlan — 345,000 4.4s 36,718 15s 37,284 11s 36,825 12s
cyclin 4 431,101 12s 9,122 1,649s 4,380 3.95 99,325 93s
(V) 5 2.3-105 78s 26,925 8,840s 11,419 13s 817,058 1,462s
1
0.05
0.025 0.5
250 500 750 1,000 250 500 750 1,000

Figure 5 Stability analysis of the wlan (left) and cyclin(N = 4) (right) 100-step core built with
the GD heuristic. The graphs show the probability of exiting the respective core within the given
amount of steps. Note that the y axis of the wlan graph is scaled for readability.

of the model already satisfies the core property. In particular, the size of the core remains
practically constant when increasing the parameter K, as only unimportant states are added
to the system. Observe that the order of magnitude of explored states is very similar to
the experiments from [6]. The same holds true for the airplane model, where a significant
number of states is dedicated to recovering from an unlikely error. Hence, a small core
exists independently of the total size of the model. The brp model shows applicability of
the approach to Markov chains. In line with the other results, when scaling up the maximal
number of allowed errors, the size of the core changes sub-linearly, since repeated errors are
increasingly unlikely. In case of the wlan model, we observe that all our methods essentially
construct the full model.

Comparison to [6]. We also executed the tool presented in [6] where applicable (only MDP
are supported). We tested the tool both with a bogus false property, i.e. approximating
the probability of reaching the empty set, which corresponds to constructing a core, and an
actual property. We used the MAX_DIFF heuristic of [6], which is similar to GD. Especially on
the false property, our tool consistently outperformed the previous one in terms of time
and memory by up to several orders of magnitude. We suspect that this is mostly due to a
more efficient implementation. The number of explored states was similar, as to be expected
in light of Theorem 7 and its discussed consequences.

5.3.2 Finite Cores

As expected, the finite core construction yields good results on the airplane model, con-
structing only a small fraction of the state space. Interestingly, the MX heuristic explores
significantly more states, which is due to this heuristic ignoring probabilities when selecting
a successor and thus sampling a few paths in the recovery region. Also on the real-world
models wlan and cyclin, the constructed 100-step core is significantly smaller than the
whole model. For wlan, the construction of the respective cores unfortunately takes longer
than building the whole model. We conjecture that a more fine-tuned implementation can

J. Kretinsky and T. Meggendorfer

Ti
Method e States

model bounds 50-step

50 steps 0.4s 1.0s 2137 005 . : _ 7| 100-step

_ - - - -200-step

100 steps 0.9s 3.5s 6,151 (.025 = —— True val

200 steps 4.0s 15.3s 22,989
Complete 8.7s 242.4s 431,101

250 500 750

Figure 6 Overview of an extrapolation analysis for cyclin(N = 4). We computed several
step-bounded cores with precision 1072, On these, we computed bounds of a reachability query with
increasing step bound. The table on the left lists the time for model construction + computation
of the bounds for 1000 steps and the size of the constructed model. The plot on the right shows
the upper and lower bounds computed for each core together with the true value. Observe that for
growing step-size of the core, the approximation naturally gets more precise.

overcome this issue. In any case, model checking on the explored sub-system supposedly
terminates significantly faster since only a much smaller state space is investigated, and the
core can be re-used for more queries.

Finally, we applied the idea of stability from Section 4.2 on the wlan and cyclin models,
with results outlined in Figure 5. Interestingly, for the wlan model, the escape probability
stabilizes at roughly 0.017 and we obtain the exact same probability for all heuristics, even
for N = 10,000. This suggests that by building the 100-step core we identified a very stable
sub-system of the whole model. Additionally, we observe that at 200-400 steps, the behaviour
of the system significantly changes. For the cyclin model, we instead observe a continuous
rise of the exit probability. Nevertheless, even with 500 additional steps, the core still is only
exited with a probability of roughly 6% and thus closely describes the system’s behaviour.

On the cyclin model, we also applied our idea of extrapolation. The results are
summarized in Figure 6. To show how performant this approach is, we reduced the precision
of the core computation to 1073. Despite this coarse accuracy, we are able to compute
accurate bounds on a 1000-step reachability query over 10 times faster by only building the
200-step core instead of constructing the full model. These results suggest that our idea of
using the cores for extrapolation in order to quickly gain understanding of a model has a
vast potential.

5.3.3 Heuristics

Overall, we see that the unguided, random sampling heuristic RN often is severely outper-
formed by the guided approaches GD and MX, both in terms of runtime and constructed
states. Surprisingly, the differences between GD and MX often are small, considering that MX
is significantly more “greedy” by completely ignoring the actual transition probabilities. We
conjecture that this greediness is the reason for the abysmal performance of MX on the cyclin
model, where GD seems to strike the right balance between exploration and exploitation.
Altogether, the results show that a sophisticated heuristic increases performance by orders of
magnitude and further research towards optimizing these heuristic may prove beneficial.

6 Conclusion

We have presented a new framework for approximate verification of probabilistic systems
via partial exploration and applied it to both Markov chains and Markov decision processes.
Our evaluation shows that, depending on the structure of the model, this approach can yield

5:15

CONCUR 2019

5:16

Of Cores: A Partial-Exploration Framework for Markov Decision Processes

significant state space savings and thus reduction in model checking times. Our central idea
finding relevant sub-parts of the state space — can easily be extended to further models, e.g.,
stochastic games, and objectives, e.g., mean payoff. We have also shown how this idea can
be transferred to the step-bounded setting and derived the notion of stability. This in turn
allows for an efficient analysis of long-run properties and strongly connected systems.

Future work includes implementing a more sophisticated function approximation for the
step-bounded case, e.g., as depicted in Figure 3c. Here, an adaptive method could yield
further insight in the model by deriving points of interest, i.e. an interval of remaining
steps where the exit probability significantly changes. These breakpoints might indicate a
significant change in the systems behaviour, e.g., the probability of some error occurring not
being negligible any more, yielding interesting insights into the structure of a particular model.
For example, in the bounds of Figure 3, the regions around 20 and 40 steps, respectively,
seems to be of significance.

Moreover, a more sophisticated sampling heuristic to be used in SAMPLEPATH could be of
interest. For example, one could apply an advanced machine learning technique here, which
also considers state labels or previous decisions and their outcomes.

In the spirit of [6], our approach also could be extended to a PAC algorithm for black-box
systems. Extensions to stochastic games and continuous time systems are also possible.

Further interesting variations are cores for discounted objectives [20] or cost-bounded
cores, a set of states which is left with probability smaller than ¢ given that at most k cost
is incurred. This generalizes both the infinite (all edges have cost 0) and the step bounded
cores (all edges have cost 1) and allows for a wider range of analysis.

—— References

1 Pranav Ashok, Yuliya Butkova, Holger Hermanns, and Jan Kretinsky. Continuous-Time
Markov Decisions Based on Partial Exploration. In ATVA, pages 317-334. Springer, 2018.

2 Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretinsky, and Tobias Meggen-
dorfer. Value Iteration for Long-Run Average Reward in Markov Decision Processes. In CAV,
pages 201-221, 2017. doi:10.1007/978-3-319-63387-9_10.

3 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.

4 Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,
pages 679-684, 1957.

5 Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II: Approximate
Dynamic Programming. Athena Scientific, 2012.

6 Tomas Bréazdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kietinsky,
Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov Decision
Processes Using Learning Algorithms. In ATVA, pages 98-114. Springer, 2014. doi:10.1007/
978-3-319-11936-6_8.

7 Costas Courcoubetis and Mihalis Yannakakis. The Complexity of Probabilistic Verification. J.
ACM, 42(4):857-907, 1995. doi:10.1145/210332.210339.

8 Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen, and Kim Guldstrand Larsen.
Reduction and Refinement Strategies for Probabilistic Analysis. In PAPM-PROBMIV, pages
57-76. Springer, 2002.

9 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm is
coming: A modern probabilistic model checker. In CAV, pages 592-600. Springer, 2017.

10 Serge Haddad and Benjamin Monmege. Reachability in MDPs: Refining convergence of value
iteration. In International Workshop on Reachability Problems, pages 125-137. Springer, 2014.

11 Ernst Moritz Hahn, Holger Hermanns, Bjorn Wachter, and Lijun Zhang. PASS: abstraction
refinement for infinite probabilistic models. In TACAS, pages 353-357. Springer, 2010.

J. Kretinsky and T. Meggendorfer

12

13

14

15

16

17

18

19

20

Jan Kretinsky and Tobias Meggendorfer. Of Cores: A Partial-Exploration Framework for
Markov Decision Processes. arXiv e-prints, June 2019. arXiv:1906.06931.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker.
In TOOLS, pages 200-204, 2002.

Marta Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston. Performance
analysis of probabilistic timed automata using digital clocks. FMSD, 29(1):33-78, 2006.
Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. Probabilistic model checking of
the IEEE 802.11 wireless local area network protocol. In Process Algebra and Probabilistic
Methods: Performance Modeling and Verification, pages 169-187. Springer, 2002.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. The PRISM Benchmark Suite.
In QEST, pages 203-204. IEEE Computer Society, 2012. The models are accessible at
http://www.prismmodelchecker.org/casestudies/.

H Brendan McMahan, Maxim Likhachev, and Geoffrey J Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In ICML,
pages 569-576. ACM, 2005.

M.L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley and Sons, 1994.

Tim Quatmann and Joost-Pieter Katoen. Sound Value Iteration. In CAV (1), volume 10981
of LNCS, pages 643-661. Springer, 2018.

Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance Reduced Value Iteration and
Faster Algorithms for Solving Markov Decision Processes. In SODA, pages 770-787. STAM,
2018.

5:17

CONCUR 2019

F Conditional Value-at-Risk for Reachability and Mean Payoff
in Markov Decision Processes. LICS 2018

This section has been published as peer-reviewed conference paper.

Jan Kretinsky and Tobias Meggendorfer. ‘Conditional Value-at-Risk for
Reachability and Mean Payoff in Markov Decision Processes’ In: Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar and Erich
Gradel. ACM, 2018, pp. 609-618. DOI: 10.1145/3209108.3209176. URL:
https://doi.org/10.1145/3209108.3209176

Synopsis Humans are, by nature, risk-aware and -averse (to an extent). This is
reflected in science by extensive research into risk and risk-influenced behaviour in areas
like psychology, finance, operations research, and many more. Yet, the verification
community hardly dealt with this issue at all. Typically, probabilistic outcomes are
aggregated and optimized w.r.t. expectation, which is completely oblivious to risk. A
first small step towards risk-analysis was done by considering worst-case analysis, which
however is extremely prohibitive—after all, we want to be able to take controlled risks.
In this work, we provide a significant contribution towards risk quantification. We
introduce the established notion of conditional value-at-risk to the area of verification.
We provide precise bounds on the computational complexity and structure of optimal
strategies. In particular, we show that synthesizing risk-aware behaviour is not more
costly than pure expectation optimization, motivating further research in this direction.

Contributions of the thesis author Composition of the manuscript except abstract
and introduction. Discussion and revision of the entire manuscript. Sole contribution of
all results and proofs presented in the paper, with the exception of the Proof sketches
for Theorems 6.8 and 6.9.

146

https://doi.org/10.1145/3209108.3209176
https://doi.org/10.1145/3209108.3209176

Conditional Value-at-Risk for Reachability and Mean Payoff in
Markov Decision Processes

Jan Kretinsky
Institut fiir Informatik (I7)
Technische Universitit Miinchen
Garching bei Miinchen, Bavaria, Germany
jan.kretinsky@in.tum.de

Abstract

We present the conditional value-at-risk (CVaR) in the context of
Markov chains and Markov decision processes with reachability
and mean-payoff objectives. CVaR quantifies risk by means of the
expectation of the worst p-quantile. As such it can be used to design
risk-averse systems. We consider not only CVaR constraints, but
also introduce their conjunction with expectation constraints and
quantile constraints (value-at-risk, VaR). We derive lower and upper
bounds on the computational complexity of the respective decision
problems and characterize the structure of the strategies in terms
of memory and randomization.

CCS Concepts « Theory of computation — Verification by
model checking;

ACM Reference Format:

Jan Kietinsky and Tobias Meggendorfer. 2018. Conditional Value-at-Risk
for Reachability and Mean Payoff in Markov Decision Processes. In LICS
’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, July
9-12, 2018, Oxford, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3209108.3209176

1 Introduction

Markov decision processes (MDP) are a standard formalism for
modelling stochastic systems featuring non-determinism. The fun-
damental problem is to design a strategy resolving the non-determi-
nistic choices so that the systems’ behaviour is optimized with re-
spect to a given objective function, or, in the case of multi-objective
optimization, to obtain the desired trade-off. The objective function
(in the optimization phrasing) or the query (in the decision-problem
phrasing) consists of two parts. First, a payoff is a measurable func-
tion assigning an outcome to each run of the system. It can be
real-valued, such as the long-run average reward (also called mean
payoff), or a two-valued predicate, such as reachability. Second, the
payofs for single runs are combined into an overall outcome of the
strategy, typically in terms of expectation. The resulting objective
function is then for instance the expected long-run average reward,
or the probability to reach a given target state.

Risk-averse control aims to overcome one of the main disadvan-
tages of the expectation operator, namely its ignorance towards the
incurred risks, intuitively phrased as a question “How bad are the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissi org.

LICS 18, July 9-12, 2018, Oxford, United Kingdom

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07...$15.00
https://doi.org/10.1145/3209108.3209176

Tobias Meggendorfer
Institut fiir Informatik (I7)
Technische Universitit Miinchen
Garching bei Miinchen, Bavaria, Germany
tobias.meggendorfer@in.tum.de

™ o~

Z (NG <

= < =
2015 /\

3 | |
. L : .
2 value 1 2

Figure 1. Illustration of VaR and CVaR for some random variables.

bad cases?” While the standard deviation (or variance) quantifies
the spread of the distribution, it does not focus on the bad cases
and thus fails to capture the risk. There are a number of quantities
used to deal with this issue:

o The worst-case analysis (in the financial context known as dis-
counted maximum loss) looks at the payoff of the worst pos-
sible run. While this makes sense in a fully non-deterministic
environment and lies at the heart of verification, in the proba-
bilistic setting it is typically unreasonably pessimistic, taking
into account events happening with probability 0, e.g., never
tossing head on a fair coin.

The value-at-risk (VaR) denotes the worst p-quantile for
some p € [0, 1]. For instance, the value at the 0.5-quantile is
the median, the 0.05-quantile (the vigintile or ventile) is the
value of the best run among the 5% worst ones. As such it cap-
tures the “reasonably possible” worst-case. See Fig. 1 for an
example of VaR for two given probability density functions.
There has been an extensive effort spent recently on the anal-
ysis of MDP with respect to VaR and the re-formulated no-
tions of quantiles, percentiles, thresholds, satisfaction view
etc., see below. Although VaR is more realistic, it tends to
ignore outliers too much, as seen in Fig. 1 on the right. VaR
has been characterized as “seductive, but dangerous” and “not
sufficient to control risk” [8].

The conditional value-at-risk (average value-at-risk, expected
shortfall, expected tail loss) answers the question “What to
expect in the bad cases?” 1t is defined as the expectation over
all events worse than the value-at-risk, see Fig. 1. As such it
describes the lossy tail, taking outliers into account, weighted
respectively. In the degenerate cases, CVaR for p = 1 is the
expectation and for p = 0 the (probabilistic) worst case. It
is an established risk metric in finance, optimization and
operations research, e.g. [1, 33], and “is considered to be a
more consistent measure of risk” [33]. Recently, it started
permeating to areas closer to verification, e.g. robotics [13].

Our contribution In this paper, we investigate optimization of
MDP with respect to CVaR as well as the respective trade-offs with
expectation and VaR. We study the VaR and CVaR operators for the
first time with the payoff functions of weighted reachability and

LICS *18, July 9-12, 2018, Oxford, United Kingdom

mean payoff, which are fundamental in verification. Moreover, we
cover both the single-dimensional and the multi-dimensional case.

Particularly, we define CVaR for MDP and show the peculiarities
of the concept. Then we study the computational complexity and
the strategy complexity for various settings, proving the following:

o The single dimensional case can be solved in polynomial
time through linear programming, see Section 5.

The multi-dimensional case is NP-hard, even for CVaR-only
constraints. Weighted reachability is NP-complete and we
give PSPACE and EXPSPACE upper bounds for mean payoff
with CVaR and expectation constraints, and with additional
VaR constraints, respectively, see Section 6. (Note that al-
ready for the sole VaR constraints only an exponential algo-
rithm is known; the complexity is an open question and not
even NP-hardness is known [15, 32].)

We characterize the strategy requirements, both in terms of
memory, ranging from memoryless, over constant-size to
infinite memory, and the required degree of randomization,
ranging from fully deterministic strategies to randomizing
strategies with stochastic memory update.

While dealing with the CVaR operator, we encountered surpris-
ing behaviour, preventing us to trivially adapt the solutions to the
expectation and VaR problems:

e Compared to, e.g., expectation and VaR, CVaR does not be-
have linearly w.r.t. stochastic combination of strategies.

o A conjunction of CVaR constraints already is NP-hard, since
it can force a strategy to play deterministically.

1.1 Related work

Worst case Risk-averse approaches optimizing the worst case to-
gether with expectation have been considered in beyond-worst-case
and beyond-almost-sure analysis investigated in both the single-
dimensional [11] and in the multi-dimensional [17] setup.

Quantiles The decision problem related to VaR has been phrased
in probabilistic verification mostly in the form “Is the probability that
the payoff is higher than a given value threshold more than a given
probability threshold?” The total reward gained attention both in the
verification community [6, 24, 35] and recently in the Al commu-
nity [23, 29]. Multi-dimensional percentile queries are considered
for various objectives, such as mean-payoff, limsup, liminf, shortest
path in [32]; for the specifics of two-dimensional case and their in-
terplay, see [3]. Quantile queries for more complex constraints have
also been considered, namely their conjunctions [9, 20], conjunc-
tions with expectations [15] or generally Boolean expressions [25].
Some of these approaches have already been practically applied
and found useful by domain experts [4, 5].

CVaR There is a body of work that optimizes CVaR in MDP. How-
ever, to the best of our knowledge, all the approaches (1) focus on
the single-dimensional case, (2) disregard the expectation, and (3)
treat neither reachability nor mean payoff. They focus on the dis-
counted [7], total [13], or immediate [27] reward, as well as extend
the results to continuous-time models [26, 30]. This work comes
from the area of optimization and operations research, with the
notable exception of [13], which focuses on the total reward. Since
the total reward generalizes weighted reachability, [13] is related
to our work the most. However, it provides only an approximation

Jan Kietinsky and Tobias Meggendorfer

solution for the one-dimensional case, neglecting expectation and
the respective trade-offs.

Further, CVaR is a topic of high interest in finance, e.g., [8, 33].
The central difference is that there variations of portfolios (i.e. the
objective functions) are considered while leaving the underlying
random process (the market) unchanged. This is dual to our prob-
lem, since we fix the objective function and now search for an
optimal random process (or the respective strategy).

Multi-objective expectation In the last decade, MDP have been
extensively studied generally in the setting of multiple objectives,
which provides some of the necessary tools for our trade-off analy-
sis. Multiple objectives have been considered for both qualitative
payoffs, such as reachability and LTL [19], as well as quantitative
payoffs, such as mean payoft [9], discounted sum [14], or total re-
ward [22]. Variance has been introduced to the landscape in [10].

2 Preliminaries

Due to space constraints, some proofs and explanations are short-
ened or omitted when clear and can be found in [28].

2.1 Basic definitions

We mostly follow the definitions of [9, 15]. N, Q,R are used to
denote the sets of positive integers, rational and real numbers,
respectively. For n € N, let [n] = {1,..., n}. Further, k; refers to
k - ej, where e; is the unit vector in dimension j.

We assume familiarity with basic notions of probability theory,
e.g., probability space (Q, ¥, i), random variable F, or expected value
E. The set of all distributions over a countable set C is denoted by
D(C). Further, d € D(C) is Dirac if d(c) = 1 for some ¢ € C. To
ease notation, for functions yielding a distribution over some set C,
we may write f(-, c) instead of f(-)(c) for c € C.

Markov chains A Markov chain (MC) is a tuple M = (S, 8, po),
where S is a countable set of states!, § : S — D(S) is a probabilistic
transition function, and po € D(S) is the initial probability dis-
tribution. The SCCs and BSCCs of a MC are denoted by SCC and
BSCC, respectively [31].

A runin M is an infinite sequence p = sysz - - - of states, we write
pi to refer to the i-th state s;. A path o in M is a finite prefix of a
run p. Each path o in M determines the set Cone(p) consisting of
all runs that start with p. To M, we associate the usual probability
space (Q, F,P), where Q is the set of all runs in M, ¥ is the o-
field generated by all Cone(p), and P is the unique probability
measure such that P(Cone(sy - --sg)) = po(s1) - H{.‘;ll 5(Siy Siv1)-
Furthermore, ¢B (¢OB) denotes the set of runs which eventually
reach (eventually remain in) the set B C S, i.e. all runs where p; € B
for some i (there exists an i such that p; € B for all i > ij).

Markov decision processes A Markov decision process (MDP) is
a tuple M = (S,A,Av, A, sp) where S is a finite set of states, A
is a finite set of actions, Av : S — 2\ {0} assigns to each state
s the set Av(s) of actions enabled in s so that {Av(s) | s € S} is
a partitioning of A%, A : A — D(S) is a probabilistic transition
function that given an action a yields a probability distribution
over the successor states, and sy is the initial state of the system.

We allow the state set to be countable for the formal definition of strategies on MDP.
When dealing with Markov Chains in queries, we only consider finite state sets.
2In other words, each action is associated with exactly one state.

CVaR for Reachability and Mean Payoff in MDP

A run p of M is an infinite alternating sequence of states and
actions p = sjaisgaz - - - such that for all i > 1, we have a; € Av(s;)
and A(a;, si+1) > 0. Again, p; refers to the i-th state visited by
this particular run. A path of length k in M is a finite prefix o =
s1a1 -+ - ag_15 of arun in G.

Strategies and plays. Intuitively, a strategy in an MDP M is a
“recipe” to choose actions based on the observed events. Usually, a
strategy is defined as a function o : (SA)*S — D(A) that given a
finite path o, representing the history of a play, gives a probability
distribution over the actions enabled in the last state. We adopt the
slightly different, though equivalent [9, Sec. 6] definition from [15],
which is more convenient for our setting.

Let M be a countable set of memory elements. A strategy is a triple
0 = (0y,on,a), where o, : AXSXM —» D(M)and oy : SXM —
D(A) are memory update and next move functions, respectively,
and a € D(M) is the initial memory distribution. We require that,
for all (s,m) € S X M, the distribution o, (s, m) assigns positive
values only to actions available at s, i.e. supp o, (s, m) C Av(s).

A play of M determined by a strategy o is a Markov chain M =
(87,87, ug), where the set of states is S” = SXMXA, the initial dis-
tribution g is zero except for ,ug (so, m,a) = a(m)-oy(so, m,a), and
the transition probability from s = (s,m,a) to 5’7 = (s, m’,a’) is
§9(s9,s"%) = A(a,s’) - oy(a,s’,m,m’) - o (s’,m’, a’). Hence, M®
starts in a location chosen randomly according to a and oy,. In state
(s, m, a) the next action to be performed is a, hence the probability
of entering s” is A(a, s”). The probability of updating the memory
to m’ is oy (a,s’,m,m’), and the probability of selecting a’ as the
next action is oy (s’,m’, a’). Since these choices are independent,
and thus we obtain the product above.

Technically, M induces a probability measure P’ on S. Since
we mostly work with the corresponding runs in the original MDP,
we overload P? to also refer to the probability measure obtained by
projecting onto S. Further, “almost surely” etc. refers to happening
with probability 1 according to P?. The expected value of a random
variable X : Q —» Ris E7[X] = fQX dpe.

A convex combinations of two strategies o1 and oy, written as
o) = Ao1 + (1 — A)oy, can be obtained by defining the memory as
M, = {1} X My U {2} X M2, randomly choosing one of the two
strategies via the initial memory distribution) and then following
the chosen strategy. Clearly, we have that P74 = AP + (1 — A)P°2.

Strategy types. A strategy o may use infinite memory M, and both
oy and o, may randomize. The strategy o is
o deterministic-update, if « is Dirac and the memory update
function oy, gives a Dirac distribution for every argument;
o deterministic, if it is deterministic-update and the next move
function o, gives a Dirac distribution for every argument.
A stochastic-update strategy is a strategy that is not necessarily
deterministic-update and randomized strategy is a strategy that
is not necessarily deterministic. We also classify the strategies
according to the size of memory they use. Important subclasses
are memoryless strategies, in which M is a singleton, n-memory
strategies, in which M has exactly n elements, and finite-memory
strategies, in which M is finite.

End components. A tuple (T,B) where) # T C Sand 0 # B C
Utrer Av(2) is an end component of the MDP M if (i) for all actions
a € B, A(a,s’) > 0 implies s’ € T; and (ii) for all states s,t € T
there is a path o = sja; - - ag_;s; € (TB)K™IT withs; = s, s = ¢.

LICS 18, July 9-12, 2018, Oxford, United Kingdom

An end component (T, B) is a maximal end component (MEC) if T
and B are maximal with respect to subset ordering. Given an MDP,
the set of MECs is denoted by MEC. By abuse of notation, s € M
refers to all states of a MEC M, while a € M refers to the actions.

Remark 1. Computing the maximal end component (MEC) decom-
position of an MDP, i.e. the computation of MEC, is in P [18].

Remark 2. For any MDP M and strategy o, a run almost surely
eventually stays in one MEC, i.e. P7 [Upr,emec ©OM;] = 1 [31].

2.2 Random variables on Runs

We introduce two standard random variables, assigning a value to
each run of a Markov Chain or Markov Decision Process.

Weighted reachability. Let T C S be a set of target states and
r: T — Q be a reward function. Define the random variable R" as
R"(p) = r(min;{p; | p; € T}), if such an i exists, and 0 otherwise.
Informally, R" assigns to each run the value of the first visited target
state, or 0 if none. R" is measurable and discrete, as S is finite [31].
Whenever we are dealing with weighted reachability, we assume
w.lo.g. that all target states are absorbing, i.e. for any s € T we
have (s, s) = 1 for MC and A(a,s) = 1 for all a € Av(s) for MDP.

Mean payoff (also known as long-run average reward, and limit
average reward). Again, let r : S — Q be a reward function. The
mean payoff of a run p is the average reward obtained per step, i.e.
R™(p) = liminfp e + 3™, 1(p;). The liminf is necessary, since
lim may not be defined in general. Further, R™ is measurable [31].

Remark 3. There are several distinct definitions of “weighted reach-
ability”. The one chosen here primarily serves as foundation for the
more general mean payoff.

3 Introducing the Conditional Value-at-risk

In order to define our problem, we first introduce the general con-
cept of conditional value-at-risk (CVaR), also known as average
value-at-risk, expected shortfall, and expected tail loss. As already
hinted, the CVaR of some real-valued random variable X and prob-
ability p € [0, 1] intuitively is the expectation below the worst
p-quantile of X.

Let X : Q — R be a random variable over the probability space
(Q, 7, P). The associated cumulative density function (CDF) Fx :
R — [0, 1] of X yields the probability of X being less than or equal
to the given value r, i.e. Fx (r) = P({X(w) < r}). F isnon-decreasing
and right continuous with left limits (cadlag).

The value-at-risk VaR,, is the worst p-quantile, i.e. a value v s.t.
the probability of X attaining a value less than or equal to v is p:3

VaR,(X) :=sup{r e R | Fx(r) < p} (VaR;(X) = o0)

Then, with v = VaR,(X), CVaR can be defined as [33]

1
CVaR,(X) :=E[X | X <v] = —f x dFy,
P J(~c0,0]
with the corner cases CVaR := VaR(and CVaR; = E.
Unfortunately, this definition only works as intended for contin-

uous X, as shown by the following example.

3 An often used, mostly equivalent definition is inf{r € R | Fx(r) > p}. Unfortu-
nately, this would lead to some complications later on. See [28, Sec. A.1] for details.

LICS *18, July 9-12, 2018, Oxford, United Kingdom

S 1 1 P—

>

Tl !

2 2 &2 °

3

=]] . .
value 1 2 value 1 2

Figure 2. Distribution showing peculiarities of CVaR

Example 3.1. Consider a random variable X with a distribution
as outlined in Fig. 2. For p < % we certainly have VaR, = 2p. On
the other hand, for any p € (%, 1), we get VaR,, = 2. Consequently,
the integral remains constant and CVaR;, would actually decrease
for increasing p, not matching the intuition. A

General definition. As seen in Ex. 3.1, the previous definition
breaks down when Fx is not continuous at the p-quantile and
consequently Fx (VaR, (X)) > p. Thus, we handle the values at the
threshold separately, similar to [34].

Definition 3.2. Let X be some random variable and p € [0,1].
With v = VaR,(X), the CVaR of X is defined as

CVaR,(X) := }) (j(;m,v) xdFx + (p —P[X < v]) - v) s

which can be rewritten as
CVaR,(X) = %(]P’[X <] E[X | X <v]+(p—P[X <0])-0).
The corner cases again are CVaRy := VaRg, and CVaR; = E.

Since the degenerate cases of p = 0 and p = 1 reduce to already
known problems, we exclude them in the following.

We demonstrate this definition on the previous example.
Example 3.3. Again, consider the random variable X from Ex. 3.1.
For % < p < 1 we have that P[X < VaR,(X)] = P[X < 2] = %.The
right hand side of the definition (p — P[X < VaR,(X)]) = p — %

captures the remaining discrete probability mass which we have
to handle separately. Together with f(7 xdFx = % we get

00,2)
CVaR,(X) = %(% +(p-3)-2)=2- &. For example, with p = 3,
this yields the expected result CVaR,(X) = 1. A

Remark 4. Recall that P[X < r] can be expressed as the left limit of
Fx, namely P[X < r] = lim,s_,-, Fx (r’). Hence, CVaR,(X) solely
depends on the CDF of X and thus random variables with the same
CDF also have the same CVaR.

We say that Fy stochastically dominates F for two CDF F; and
Fy, if F1(r) < Fa(r) for all r. Intuitively, this means that a sample
drawn from F; is likely to be larger or equal to a sample from Fj.
All three investigated operators (E, CVaR, and VaR) are monotone
w.r.t. stochastic dominance [28, Sec. A.1].

4 CVaR in MC and MDP: Problem statement

Now, we are ready to define our problem framework. First, we
explain the types of building blocks for our queries, namely lower
bounds on expectation, CVaR, and VaR. Formally, we consider the
following types of constraints.

e <E(X) ¢ < CVaRp(X) v < VaRq(X)
X is some real-valued random variable, assigning a payoff to each
run. With these constraints, the classes of queries are denoted by

crit
M DPobj,dim

Jan Kietinsky and Tobias Meggendorfer

e crit C {E, CVaR, VaR} are the types of constraints,
e obj € {r,m} is the type of the objective function, either
weighted reachability r or mean payoff m, and
e dim € {single, multi} is the dimensionality of the query.
We use d to denote the dimensions of the problem, d = 1 iff dim =
single. As usual, we assume that all quantities of the input, e.g.,
probabilities of distributions, are rational.

An instance of these queries is specified by an MDP M, a d-
dimensional reward function r : S — Q¢ and constraints from
crit, given by vectors e,c,v € (QU [J_l)d and p,q € (0, 1)4. This
implies that in each dimension there is at most one constraint per
type. The presented methods can easily be extended to the more
general setting of multiple constraints of a particular type in one
dimension. The decision problem is to determine whether there
exists a strategy o such that all constraints are met.

Technically, this is defined as follows. Let X be the d-dimensional
random variable induced by the objective obj and reward function
1, operating on the probability space of M. The strategy o is a
witness to the query iff for each dimension j € [d] we have that
E[X;] > ej, CVaRyp,(Xj) > cj, and VaRq;(Xj) > v;. Moreover, L
constraints are trivially satisfied.

For completeness sake, we also consider MC"bi.td. queries, i.e.

obj,dim

the corresponding problem on (finite state) Markov chains.

Notation. We introduce the following abbreviations. When dealing
with an MDP M, CVaR{ denotes CVaR,, relative to the probability
space over runs induced by the strategy 0. When additionally the
random variable X (e.g., mean payoff) is clear from the context, we
may write CVaR, and CVaRZ instead of CVaR,(X) and CVaRg (X),
respectively. We also define analogous abbreviations for VaR.

5 Single dimension

We show that all queries in one dimension are in P. Furthermore,
our LP-based decision procedures directly yield a description of a
witness strategy and allow for optimization objectives. We refer
to the input constraints by e for expectation, (p, ¢) for CVaR, and
(g, v) for VaR. Further, we use i for indices related to SCCs / MECs.

5.1 Weighted reachability
First, we show the simple result for Markov Chains, providing some
insight in the techniques used in the MDP case.

MC B CVaRVaR] o 4 p,
r,single

Theorem 5.1.

Proof. Let M be a finite-state Markov chain, r a reward function,
and T = {by,...,by} the target set. Recall that all b; are absorb-
ing, hence single-state BSCCs. We obtain the stationary distribu-
tion p of M’ in polynomial time by, e.g., solving a linear equation
system [31]. With p, we can directly compute the CDF of R" as
Frr(v) = Xp,:x(b;) <o P(bi) and immediately decide the query. O

Let us consider the more complex case of MDP. We show a
lower bound on the type of strategies necessary to realize obj = r
queries with constraints on expectation and one of VaR or CVaR.
We then continue to prove that this class of strategies is optimal.
This characterization is used to derive a polynomial time decision
procedure based on a linear program (LP) which immediately yields
a witness strategy. Finally, when we deal with the mean payoff case
in Sec. 5.2, we make use of the reasoning presented in this section.

CVaR for Reachability and Mean Payoff in MDP

NG
e

Figure 3. MDP used to show various difficulties of CVaR

Randomization is necessary for weighted reachability. In the
following example, we present a simple MDP on which all de-
terministic strategies fail to satisfy specific constraints, while a
straightforward randomizing one succeeds in doing so.

Example 5.2. Consider the MDP outlined in Fig. 3. The only non-
determinism is given by the choice in the initial state so. Hence, any
strategy is characterised by the choice in that particular state. Let
now o, and oy, denote the deterministic strategies playing a and b
in 8o, respectively. Clearly, o, achieves an expectation, CVaRg_ e
and VaR(‘; ‘s of 5. On the other hand, o}, obtains an expectation of
9 with CVaR(% . and VaRy" . equal to 0.

Thus, neither strategy satisfies the constraints q = p = 0.05,
e = 6,and ¢ = 2 (or v = 5). This is the case even when the strategy
has arbitrary (deterministic) memory at its disposal, since in the
first step there is nothing to remember. Yet, o = %U’a + %o’b achieves

E=35+19=6>e CVaR, =2.5>c and VaRq =5 > v. A

Hence strategies satisfying an expectation constraint together
with either a CVaR or VaR constraint may necessarily involve ran-
domization in general. We prove that (i) under mild assumptions
randomization actually is sufficient, i.e. no memory is required, and
(ii) fixed memory may additionally be required in general.

Definition 5.3. Let M be an MDP with target set T and reward
function r. We say that M satisfies the attraction assumption if
A1) the target set T is reached almost surely for any strategy, or
A2) for all target state s € T we have r(s) > 0.

Essentially, this definition implies that an optimal strategy never
remains in a non-target MEC. This allows us to design memoryless
strategies for the weighted reachability problem.

Theorem 5.4. Memoryless randomizing strategies are sufficient for
MDP(E,VaR,CVaR)

: under the attraction assumption.
r,single

Proof. Fix an MDP M and reward function r. We prove that for
any strategy o there exists a memoryless, randomizing strategy o’
achieving at least the expectation, VaR, and CVaR of o.

All target states t; € T form single-state MECs, as we assumed
that all target states are absorbing. Consequently, o naturally in-
duces a distribution over these s;. Now, we apply [19, Theorem 3.2]
to obtain a strategy o’ with P’ [0si] = P9 [¢s;] for all i.

With A1), we have Y’ p; = 1 and thus P9 [ot;] = P? [0t;]. Hence,
o’ obtains the same CDF for the weighted reachability objective.
Under A2), the CDF F’ of strategy o’ stochastically dominates the
CDF F of the original strategy o, concluding the proof. u]

Theorem 5.5. Two-memory stochastic strategies (i.e. with both ran-

domization and stochastic update) are sufficient for MDP E,VaR, CVaR}
r,single

The proof is a simple application of the following Thm. 5.10, as
weighted reachability is a special case of mean payoff. Together with
an example for the lower bound it can be found in [28, Sec. A.2].

LICS 18, July 9-12, 2018, Oxford, United Kingdom

(1) All variables ygq, x5, x are non-negative.
(2) Transient flow for s € S:

Lsy() + ZaeAyaA(a’ 5) = ZasAv(s)yq + X

(3) Switching to recurrent behaviour:

ZSETXS =1
(4) VaR-consistent split:

x. =xs forseTc

N X, < xsforse T

6

N3

Probability-consistent split:

ZSGTSXS =P

(6) CVaR and expectation satisfaction:

ZSETS£S cr(s) >=p-c Zsesz ‘r(s) >e

Figure 4. LP used to decide weighted reachability queries given a
guess t of VaR,. T := {s € T | 1(s) ~ t}, ~€ {<,=,<}.

Inspired by [15, Fig. 3], we use the optimality result from Thm. 5.4
to derive a decision procedure for weighted reachability queries
under the attraction assumptions based on the LP in Fig. 4.

To simplify the LP, we make further assumptions — see [28,
Sec. A.2] for details. First, all MECs, including non-target ones,
consist of a single state. Second, all MECs from which T is not
reachable are considered part of T and have r = 0 (similar to the
“cleaned-up MDP” from [19]). Finally, we assume that the quantile-
probabilities are equal, i.e. p = q. The LP can easily be extended
to account for different values by duplicating the x variables and
adding according constraints.

The central idea is to characterize randomizing strategies by the
“flow” they achieve. To this end, Equality (2) essentially models
Kirchhoff’s law, i.e. inflow and outflow of a state have to be equal.
In particular, y, expresses the transient flow of the strategy as the
expected total number of uses of action a. Similarly, xs models
the recurrent flow, which under our absorption assumption equals
the probability of reaching s. Equality (3) ensures that all transient
behaviour eventually changes into recurrent one.

In order to deal with our query constraints, Constraints (4) and
(5) extract the worst p fraction of the recurrent flow, ensuring that
the VaRy, is at least t. Note that equality is not guaranteed by the LP;
if x; = x; for all s € T<, we have VaR;, > ¢. Finally, Inequality (6)
enforces satisfaction of the constraints.

Theorem 5.6. Let M be an MDP with target states T and reward
function r, satisfying the attraction assumption. Fix the constraint
probability p € (0,1) and thresholds e,c € Q. Then, we have that

1. for any strategy o satisfying the constraints, thereisat € r(S)
such that the LP in Fig. 4 is feasible, and

2. for any threshold t € 1(S), a solution of the LP in Fig. 4 in-
duces a memoryless, randomizing strategy o satisfying the
constraints and VaRJ > t.

Proof. First, we prove for a strategy o satisfying the constraints that
there exists a t € r(S) such that the LP is feasible. By Thm. 5.4, we
may assume that o is a memoryless randomizing strategy. From [19,
Theorem 3.2], we get an assignment to the y,’s and x;’s satisfying
Equalities (1), (2), and (3) such that P? [0s] = x; for all target states

LICS *18, July 9-12, 2018, Oxford, United Kingdom

s € T. Further, let v = VaR{ be the value-at-risk of the strategy. By
definition of VaR, we have that P [X < v] < p.

Assume for now that P?[X < v] = p, i.e. the probability of
obtaining a value strictly smaller than v is exactly p. In this case,
choose t to be the next smaller reward, i.e. t = max{r(s) < v}. We
set x; = x5 for all s € T, satisfying Constraints (4) and (5).

Otherwise, we have P?[X < v] < p. Now, some non-zero frac-
tion of the probability mass at v contributes to the CVaR. Again, we
set the values for x according to Constraint (4). The only degree of
freedom are the values of x; where r(s) = t. There, we assign the
values so that Y se. X, = p — YseT. X, satisfying Equality (5).

It remains to check Inequality (6). For expectation, we have
Sserxs - 1(s) = Y Po[0s] - r(s) = E°[R'] > e. For CVaR,
notice that, due to the already proven Constraints (4) and (5), the
side of Inequality (6) is equal to CVaRg and thus at least c.

Second, we prove that a solution to the LP induces the desired
strategy 0. Again by [19, Theorem 3.2], we get a memoryless ran-
domizing strategy o such that P?[¢s] = xs for all states s € T.
Then E°[R"] = Yser PO[0s] - 1(s) = Yger X5 - r(s) > e. Further,

CVaR() = 2 (3,7 56+ 0= T) 2)

by definition. Now, we make a case distinction on x; = x; for all
s € T=. If this is true, we have v = VaRg =min{r € r(S) | r > t},
but P?[X < v] = p. Consequently, T< = {s € T : r(s) < v}
and ¥ g.r(s)<oXs = p- Otherwise, we have v = t and consequently
T< = {s | r(s) < v}. Inserting in the above equation immediately
gives the result CVaR, (R") = %ZSETS r(s) - x,- o

The linear program requires to know the VaRg beforehand,
which in turn clearly depends on the chosen strategy. Yet, there are
only linearly many values the random variable R" attains. Thus we
can simply try to find a solution for all potential values of VaRg,
ie. {r € r(S)}, yielding a polynomial time solution.

Corollary 5.7. MDpP{EVaRCVaR) 04 p

r,single
Proof. Under the attraction assumption, this follows directly from
Thm. 5.6. In general, the reduction to mean payoff used by Thm. 5.5

and the respective result from Cor. 5.11 show the result. u}

5.2 Mean payoff
In this section, we investigate the case of obj = m. Again, the
construction for MC is considerably simple, yet instructive for the
following MDP case.

M B VaR CVaR} oy p

m,single

Theorem 5.8.

Proof sketch. For each BSCC B;, we obtain its expected mean payoff
ri = E[R™ | B;] through, e.g., a linear equation system [31]. Almost
all runs in B; achieve this mean payoff and thus the corresponding
random variable is discrete. We reduce the problem to weighted
reachability by using the known reformulation

P[R™ =¢] = Z 5y PLOBIL-

We replace each of these BSCCs by a representative b; to obtain
M’. Define the set of target states T = {b;} and the reachability
reward function r’(b;) = r;. By applying the approach of Thm. 5.1,
we obtain the expectation, VaR, and CVaR for reachability in M’
which by construction coincides with the respective values for
mean payoff in M. o

Jan Kietinsky and Tobias Meggendorfer

Figure 5. Memory is necessary for mean payoff queries

For the MDP case, recall that simple expectation maximization
of mean payoff can be reduced to weighted reachability [2] and
deterministic, memoryless strategies are optimal [31]. Yet, solving
a conjunctive query involving either VaR or CVaR needs more pow-
erful strategies than in the weighted reachability case of Thm. 5.4.
Nevertheless, we show how to decide these queries in P.

Randomization and memory is necessary for mean payoff. A
simple modification of the MDP in Fig. 3 yields an MDP where both
randomization and memory is required to satisfy the constraints of
the following example.

Example 5.9. Consider the MDP presented in Fig. 5. There, the
same constraints as before, i.e. q = p = 0.05,e = 6, and ¢ = 2 (or
v = 5), can only be satisfied by strategies with both memory and
randomization. Clearly, a pure strategy can only satisfy either of the
two constraints again. But now a memoryless randomizing strategy
also is insufficient, too, since any non-zero probability on action
b leads to almost all runs ending up on the right side of the MDP,
hence yielding a CVaR;, and VaRq of 0. Instead, a stochastic strategy
with M = {a, b} can simply choose a = {a — %,b - %} and play
the corresponding action indefinitely, satisfying the constraints. A

We prove that this bound actually is tight, i.e. that, given sto-
chastic memory update, two memory elements are sufficient.

Theorem 5.10. Two-memory stochastic strategies (i.e. with both ran-
domization and stochastic update) are sufficient for MDP {E,VaR, CVaR}

m,single

Proof. Let ¢ be a strategy on an MDP M with reward function r.
We construct a two-memory stochastic strategy o’ achieving at
least the expectation, VaR, and CVaR of ¢.

First, we obtain a memoryless deterministic strategy gopt which
obtains the maximal possible mean payoff in each MEC [31]. We
then apply the construction of [9, Proposition 4.2] (see also [15,
Lemma 5.7]), where the £ is our gopt. (Technically, this can be
ensured by choosing the constraints of the LP L according to oopt.)

Intuitively, this constructs a two-memory strategy ¢’ on M
behaving as follows. Initially, ¢” remains in each MEC with the
same probability as o, i.e. P’ [onM;] = P? [onM;] by following a
memoryless “searching” strategy and stochastically switching its
memory state to “remain”. Once in the “remain” state, the behaviour
of the optimal strategy oopt is implemented.

Clearly, (i) both strategies remain in a particular MEC with the
same probability, and (ii) o’ obtains as least as much value in each
MEC as 0. Hence the CDF induced by ¢’ stochastically dominates
the one of o, concluding the proof. u}

This immediately gives us a polynomial time decision procedure.
p {E,VaR,CVaR}

m,single

Corollary 5.11. MD isin P.

Furthermore, we can use results of [15, Lemma 16] to trade the
stochastic update for more memory.

CVaR for Reachability and Mean Payoff in MDP

l b 0%

Figure 6. Exponential memory is necessary for mean payoff when
only deterministic update is allowed.

Corollary 5.12. Stochastic strategies with finite, deterministic mem-

ory are sufficient for MDPE’S\lf;’ecvaR)4

Deterministic strategies may require exponential memory. As
sources of randomness are not always available, one might ask what
can be hoped for when only determinism is allowed. As already
shown in Ex. 5.2, randomization is required in general. But even if
some deterministic strategy is sufficient, it may require memory
exponential in the size of the input, even in an MDP with only 3
states. We show this in the following example.

Example 5.13. Consider the MDP outlined in Fig. 6 together with
the constraints q = p = 0.05, e = 6, and ¢ = 2 (or v = 5). Again,
any optimal strategy needs a significant part of runs to go to the
right side in order to satisfy the expectation constraint. Yet, any
strategy can only “move” a small fraction of the runs there in
each step. In particular, after k steps, the right side is only reached
with probability at most 1 — (1 — £)k. When choosing ¢ = 27",
which needs ©(n) bits to encode, a deterministic strategy requires
k > ¢/log(1—27") € O(2") memory elements to count the number
of steps. The same holds true for any deterministic-update strategy.

On the other hand, a strategy with stochastic memory update can
encode this counting by switching its state with a small probability
after each step. For example, a strategy switching with probability
p = 3¢ from “play b” to “play a” satisfies the constraint. A

5.3 Single constraint queries

In this section, we discuss an important sub-case of the single-
dimensional case, namely queries with only a single constraint, i.e.
|crit| = 1. We show that deterministic memoryless strategies are
sufficient in this case.

One might be tempted to use standard arguments and directly
conclude this from the results of Thm. 5.4 as follows. Recall that this
theorem shows that memoryless, randomizing strategies are suffi-
cient; and that any such strategy can be written as finite convex
combination of memoryless, deterministic strategies. Most con-
straints, for example expectation or reachability, behave linearly
under convex combination of strategies, e.g., E4 (X) = AE?1[X] +
(1 — M)E%2[X]. Consequently, for an optimal memoryless strategy,
there is a deterministic witness, which in turn also is optimal.

Surprisingly, this assumption is not true for CVaR. On the con-
trary, the CVaR of a convex combination of strategies might be
strictly worse than the CVaRs of either strategy, as shown in the
following example. We prove a slightly weaker property of CVaR
which eventually allows us to apply similar reasoning.

Example 5.14. Recall the MDP in Fig. 3 and let p = 0.05. As
previously shown, CVaRZ“ = 5and CVaR;b = 0, but the mixed
strategy o) = %oa + %’fb achieves CVaR;* = 0 instead of the

convex combination %5 + %0 =2.5.

LICS 18, July 9-12, 2018, Oxford, United Kingdom

For p = 0.2, we have CVaRg" = CVaR;” = 5. Yet, any non-trivial
convex combination of the two strategies yields a CVaR,, less than
5. See [28, Sec. A.1] for more details. With according constraints,
this effectively can force an optimal strategy to choose between a
or b. This observation is further exploited in the NP-hardness proof
of the multi-dimensional case in Sec. 6. A

Since CVaR considers the worst events, the CVaR of a combi-
nation intuitively cannot be better than the combination of the
respective CVaRs. We prove this intuition in the general setting,
where instead of a convex combination of strategies we consider a
mixture of two random variables.

Lemma 5.15. CVaR,(X) is convex in X for fixed p € (0, 1), i.e. for
random variables X1,X2 and A € [0,1]

CVaR,(AX; + (1 - A)Xz) < ACVaRp(X;) + (1 — 1) CVaRp(X3).

The proof can be found in [28, Sec. A.1]. This result allows us to
apply the ideas outlined in the beginning of the section.

Theorem 5.16. For any obj € {r,m}, deterministic memoryless
strategies are sufficient for MDPf,iijt,single when |crit| = 1.
Proof. This is known for crit = {E} [31] and crit = {VaR} [21].
For CVaR, observe that the convex combination of deterministic
strategies cannot achieve a better CVaR than the best strategy
involved in the combination (see Lem. 5.15). This immediately yields
the result for obj = r through Thm. 5.4. For obj = m, we exploit
the approach of Thm. 5.10. Recall that there we obtained a two-
memory strategy o’. Both randomization and stochastic update are
used solely to distribute the runs over all MECs accordingly. By
the above reasoning, for each MEC it is sufficient to either almost
surely remain there or leave it. This behaviour can be implemented
by a deterministic memoryless strategy on the original MDP. O

6 Multiple Dimensions

In this section, we deal with multi-dimensional queries. We con-
tinue to use i for indices related to MECs and further use j for
dimension indices. First, we show that the Markov Chain case does
not significantly change.

Theorem 6.1. For any obj € {r,m}, M B-VaR CVaR) 0y p

obj, multi

Proof. Similarly to the single-dimensional case, we decide each
constraint in each dimension separately, using our previous results.

The query is satisfied iff each of the constraints is satisfied. o

6.1 NP-Hardness of reachability and mean payoff

For the MDP on the other hand, multiple dimensions add significant
complexity. In the following, we show that already the weighted
reachability problem with multiple dimensions and only CVaR con-

straints, i.e. MDP (CVaR)
r,multi

, is NP-hard. This result directly transfers

i and

, 1.e. constraints on the expectation and ensuring

to mean payoff, i.e. obj = m. Recall that in contrast MDPEiu[

even MDP = VaRo}
r,multi

that almost all runs achieve a given threshold, are in P [15].

Theorem 6.2. Foranyobj € {r,m}, MDP{EVaR) o NP hard (when

obj, multi
the dimension d is a part of the input).

LICS *18, July 9-12, 2018, Oxford, United Kingdom

Figure 7. Gadget for variable x,,. Uniform transition probabilities
are omitted for readability.

Proof. We prove hardness by reduction from 3-SAT. The core idea
is to utilize observations from Fig. 3 and Ex. 5.14, namely that CVaR
constraints can be used to enforce a deterministic choice.

Let {C,,} be a set of N clauses with M variables x,, and set the di-
mensions d = N+ M. By abuse of notation, n refers to the dimension
of clause Cp, and m to the one of variable x,, respectively.

The gadget for the reduction is outlined in Fig. 7. Observe that,
due to the structure of the MDP, we have that R" = R™.

Overall, the reduction works as follows. Initially, a state ?,,
representing the variable x,,, is chosen uniformly. In this state, the
strategy is asked to give the valuation of x,, through the actions
“xm = tt” or “x;, = ff”. As seen in Ex. 5.14, the structure of
the shaded states can be used to enforces a deterministic choice
between the two actions. Particularly, in dimension m we require
CVaR, > 5forp = % + ﬁ -0.5-0.2. Since all other gadgets yield
0 in dimension m and only half of the runs going through ?,, end
up in the shaded area, this corresponds to Ex. 5.14, where p = 0.2.

Once in either state x,, or Xp,, a state ¢, corresponding to a
clause Cy, satisfied by this assignment is chosen uniformly. In the
example gadget, we would have x,;, € Cy; N Cp,, and X, € C,.
We set the reward of ¢;; to 1,,. Then a clause ¢, is satisfied under
the assignment if the state ¢, is visited with positive probability,
e.g. if CVaR; > ﬁ +0.5- ﬁ Clearly, a satisfying assignment exists
iff a strategy satisfying these constraints exists. u}

6.2 NP-completeness and strategies for reachability

For weighted reachability, we prove that the previously presented
bound is tight, i.e. that the weighted reachability problem with
multiple dimensions and CVaR constraints is NP-complete when d
is part of the input and P otherwise. First, we show that the strategy
bounds of the single dimensional case directly transfer. Intuitively,
this is the case since only the steady state distribution over the
target set T is relevant, independent of the dimensionality.

Theorem 6.3. Two-memory stochastic strategies (i.e. with both ran-
{E,VaR,CVaR }
r,multi

Moreover, iftj(s) > 0 foralls € T and j € [d], then memoryless

randomizing strategies are sufficient.

domization and stochastic update) are sufficient for MDP

Proof. Follows directly from the reasoning used in the proofs of
Thm. 5.10 and Thm. 5.4. o

Jan Kietinsky and Tobias Meggendorfer

(1) All variables yq, x5, xjg are non-negative.
(4) VaR-consistent split for j € [d]:

xf =xsforseT, x) <xsforseTL

(5) Probability-consistent split for j € [d]:

J—p;
x/ =
ZseTé*S Pj

(6) CVaR and expectation satisfaction for j € [d]:

S 020y Dz

Figure 8. LP used to decide multi-dimensional weighted reachabil-
ity queries given a guess t of VaRp,. Equalities (2) and (3) are as in

Fig. 4, T, i= {s € T | rj(s) ~ tj}, ~€ {<, =, <}.

Theorem 6.4. MDP'®VaRCVaR} ¢ iy Np ifd is a part of the input;

r,multi
moreover, it is in P for any fixed d.

Proof sketch. To prove containment, we guess the VaR threshold
vector t out of the set of potential ones, namely {r | Ji € [d],s €
T.ri(s) = r}? and use an LP to verify the solution. We again assume
that each MEC can reach the target set and is single-state, as we
did for Fig. 4. The arguments used to resolve this assumption are
still applicable in the multi-dimensional setting. The LP consists of
the flow Equalities (2) and (3) from the LP in Fig. 4 together with
the modified (In)Equalities (4)-(6) as shown in Fig. 8.

The difference is that we extract the worst fraction of the flow
in each dimension. Consequently, we have d instances of each x
variable, namely x}. The number of possible guesses t is bounded
by IT|¢ and thus the guess is of polynomial length. For a fixed d
the bound itself is polynomial and hence, as previously, we can try
out all vectors. u]

6.3 Upper bounds of mean payoff

In this section, we provide an upper bound on the complexity of
mean-payoff queries. Strategies in this context are known to have
higher complexity.

Proposition 6.5 ([9]). Infinite memory is necessaryfnrMDPf:num.
Note that this directly transfers to MDp!CVaR)., as CVaR; = E.
m, multi

However, closing gaps between lower and u})per bounds for the
mean payoff objective is notoriously more difficult. For instance,
MDP[‘T\:arfljhi is known to be in EXP, but not even known to be NP-
hard, neither is MDP {EVaR] gince we have proven that MDP (CVaR}
m, multi m, multi
is NP-hard, we can expect that obtaining the matching NP upper
bound will be yet more difficult. The fundamental difference of the
multi-dimensional mean-payoff case is that the solutions within
MECs cannot be pre-computed, rather non-trivial trade-offs must
be considered. Moreover, the trade-offs are not “local” and must be
synchronized over all the MECs, see [15] for details.

We now observe that, as opposed to quantile queries, i.e. VaR
constraints, the behaviour inside each MEC can be assumed to be
quite simple. Our results primarily rely on [16] and use a similar
notation. In particular, given a run p, Freq, (p) yields the average
frequency of action a, i.e. Freq, (p) := liminf,—c0 % > La(ar),
where a; refers to the action taken by p in step ¢.

CVaR for Reachability and Mean Payoff in MDP

Definition 6.6. A strategy o is MEC-constant if for all M; € MEC
with P?[o0M;] > 0 and all j € [d] there is a v € R such that
PR = v | oOM;] = 1.

Lemma 6.7. MEC-constant strategies are sufficient for MDP B, CVaR}

Proof. Fix an MDP M with MECs MEC = {Mj, ..., Mp}, reward
function r and a strategy o. Further, define p; = P°[¢OM;]. We
construct a strategy ¢’ so that (i) P% [60M;] = p; for all M;, and
(ii) all behaviours of o on a MEC M; are “mixed” into each run on
M;, making it MEC-constant.
We first define the mixing strategies oy, achieving point (ii). By

[16, Sec. 4.1], there are frequencies (x4)geca Which

o satisfy Ygea Xa - A(a,5) = Laeav(s) ¥a forall s € S,

o for each action a we have E? [Freq,] < x4, and

® YaeAnM; Xa = Pi-
By [16, Cor. 5.5], there is a (Markov) strategy o; on M; where

P [Freqa = xa/p,-] =1.

Consequently, o; is almost surely constant on M; w.r.t. R™. We
apply the reasoning used in the proof of Thm. 5.10 to obtain the
combined strategy o’ which achieves point (i) and switches to o;
upon remaining in M;.

Now, fix any j € [d], M; € MEC, and p,q € (0,1). We have
that E% [Freq, | ¢0OM;] > E°[Freq, | ¢0OM;] by construction.
Consequently, B’ (RT') = E7 (RT").

Since o’ is MEC-constant, we have CVaR;’(R;“ | oOM;) =
E” [R;.n | ¢0OM;]. Further, by E? [Freq,, | ¢0OM;] - p; < E% [Freq,]
for all a, we get E@ [R;?1 | oOM;] < E% [R;.“]A So, CVaRgi (R;.") =
E°i [R;."] > E° [R}“ | oOM;] > CVaRg(R;.“ | ¢OM;), as CVaR < E.

Finally, we apply this inequality together with property (i), ob-
taining CVaR? (RT") < CVaRg' (RT) by [28, Thm. A4] o

We utilize this structural property to design a linear program for
these constraints. However, similarly to the previously considered
LPs, it relies on knowing the VaR for each CVaRp constraint. Due
to the non-linear behaviour of CVaR, the classical techniques do
not allow us to conclude that VaR is polynomially sized and thus
we do not present the “matching” NP upper bound, but a PSPACE
upper bound, which we achieve as follows.

{E,CVaR}
m, multi

Theorem 6.8. MDP is in PSPACE.

Proof sketch. We use the existential theory of the reals, which is NP-
hard and in PSPACE [12], to encode our problem. The VaR vector t
is existentially quantified and the formula is a polynomially sized
program with constraints linear in VaR’s and linear in the remaining
variables. This shows the complexity result.

The details of the procedure are as follows. For each j € [d],
we use the existential theory of reals to guess the achieved VaR
t = VaRyp, . Further, we non-deterministically obtain the following
polynomially-sized information (or deterministically try out all
options in PSPACE). For each j € [d] and for each MEC M;, we
guess if the value achieved in M; is at most (denoted M; € MECj<)
or above (denoted M; € MECj>) the respective t;, and exactly one

MEC Mi, which achieves a value equal to it. Given these guesses,
we check whether the LP in Fig. 9 has a solution.

m,multi *

LICS 18, July 9-12, 2018, Oxford, United Kingdom

(1) All variables yq, ys, x4, Xs are non-negative.
(2) Transient flow for s € S:

Lo (s) + ZaeAy“ “Aa.s) = ZaeAv(s)ya *s
(3) Probability of switching in a MEC is the frequency of using
its actions for M; € MEC:

= X,
ZseM, Ys ZuEM, a

(4) Recurrent flow for s € S:

Xs = ZaeAx” “Aas) = ZaeAv(s)X“

(5) CVaR and expectation satisfaction for j € [d]:

P - T PR . “t; >pi-Ci
PINERTOE B W R R

Zsesxs 1j(s) > ej
(6) Verify MEC classification guess for j € [d]:

Z iXs - Tji(s) < tj forMé EMECQU{M];}

seMé
Z iXs -Tj(s) > t; for Mé € MECj> V] {Mj;]

seM.

(7) Verify VaR guess for j € [d]:

. <pi i >pi
ZseSéxS =P ZSGSJSUAIiXS =P

Figure 9. LP used to decide multi-dimensional mean-payoff queries
given a guess t of VaRp; and MEC classification MECJ_, ML, and
MECL. 8. :={se€S|seMand M € MECL}, ~€ {<,>}.

Equations (1)-(4) describe the transient flow like the previous
LP’s and, additionally, the recurrent flow like in [31, Sec. 9.3] or
[9, 16, 19]. This addition is needed, since now our MECs are not
trivial, i.e. single state. Again, Inequalities (5) verify that the CVaR
and expectation constraints are satisfied. Finally, Inequalities (6)
and (7) verify the previously guessed information, i.e. the VaR vector
and the MEC classification.

Using the very same techniques, it is easy to prove that solutions
to the LP correspond to satisfying strategies and vice versa. In
particular, Inequalities (6) and (7) directly make use of the MEC-
constant property of Lem. 6.7. u]

While MEC-constant strategies are sufficient for E with CVaR,
piVakl 115 Ex.22]. Con-
m, multi
pivaR}
m, multi”
We can combine all the objective functions together as follows:

in contrast, they are not even for just MD

sequently, only an exponentially large LP is known for MD

Theorem 6.9. MDP!™VAbCVaR) 5 iy EXPSPACE.

Proof sketch. We proceed exactly as in the previous case, but now
the flows in Equality (4) are split into exponentially many flows,
depending on the set of dimensions where they achieve the given
VaR threshold, see LP L in [15, Fig. 4]. The resulting size of the
program is polynomial in the size of the system and exponential in
d. Hence the call to the decision procedure of the existential theory
of reals results in the EXPSPACE upper bound. m}

LICS *18, July 9-12, 2018, Oxford, United Kingdom

Jan Kietinsky and Tobias Meggendorfer

Table 1. Schematic summary of known and new results. Strategies are abbreviated by “C/n-M”, where C is either Deterministic or Randomizing,
n is the size of the memory, and M is either Detereministic or Stochastic MEMory.

dim single multi
obj any r m
crit lerit] = 1 |erit| > 2 CVaR € crit {E, VaRg} {VaR} {CVaR}, {CVaR, E} {E, CVaR, VaR}
Complex. P NP-c., P for fixed d P EXP NP-h., PSPACE NP-h., EXPSPACE
Strat. D/1-MEM R/2-SMEM R/2-SMEM R/co-DMEM
7 Conclusion quantitative games. Inf. Comput. 254 (2017), 259-295.
. 12] John F. Canny. 1988. Some Algebraic and Geometric Computations in PSPACE.
We introduced the conditional value-at-risk for Markov decision 2] In STOC. ACI\);L 460-467. € P
processes in the setting of classical verification objectives of reacha- [13] Stefano Carpin, Yinlam Chow, and Marco Pavone. 2016. Risk aversion in finite
bility and mean payoff. We observed that in the single dimensional Il\éﬁ"gﬁggm;;‘;’j ;’;C‘?SS“ using total cost criteria and average value at risk. In
case the additional CVaR constraints do not increase the computa- [14] Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. 2013. Multi-
tional complexity of the prObIemSA As such they provide a useful objective Discounted Reward Verification in Graphs and MDPs. In LPAR (LNCS),
for desieni isk- trategi t dditi 1 £ 1 Vol. 8312. Springer, 228-242.
means 0? N emgn}ng risk-averse strategies, at no additional cost. In [15] Krishnendu Chatterjee, Zuzana Komarkova, and Jan Kfetinsky. 2015. Unifying
the multidimensional case, the problems become NP-hard. Never- Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes.
theless, this may not necessarily hinder the practical usability. Our In LICS. IEEE Computer Society, 244-256. o "
. . [16] Krishnendu Chatterjee, Zuzana Kretinska, and Jan Kfetinsky. 2017. Unifying
results are summarized in Table 1. Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes.
We conjecture that the VaR’s for given CVaR constraints are poly- LMCS 13, 2 (2017).

. . . [17] Lorenzo Clemente and Jean-Francois Raskin. 2015. Multidimensional beyond
nomlally large numbers. In that C(acs\?;lg})le prOVldEd algonthms would Worst-Case and Almost-Sure Problems for Mean-Payoff Objectives. In LICS. IEEE
yield NP-completeness for MDP """ . and EXPTIME-containment Computer Society, 257-268.

{E,VaR,CVaR) ’ X . [18] Costas Courcoubetis and Mihalis Yannakakis. 1995. The Complexity of Proba-
for MDP =" & , where the exponential dependency is only bilistic Verification. J. ACM 42, 4 (1995), 857-907.
s : . [19] Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.
on the dimension, not the size of the system. 2008. Multi-Objective Model Checking of Markov Decision Processes. LMCS 4, 4
(2008).
Acknowledgments [20] J.A. Filar, D. Krass, and KW Ross. 1995. Percentile performance criteria for
. X . limiting average Markov decision processes. [EEE Trans. Automat. Control 40, 1
This research has been partially supported by the Czech Science (Jan 1995), 2-10.
Foundation grant No. 18-11193S and the German Research Founda- [21] JCI:Zy A Flla.r, Dmltry Krass, and Keith W .Ross. 1995. Percentile performance
. R « L. R . w criteria for limiting average Markov decision processes. IEEE Trans. Automat.
tion (DFG) project KR 4890/2 “Statistical Unbounded Verification Control 40 (1995), 2-10.
(383882557). We thank Vojtéch Forejt for bringing up the topic of [22] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and
P P f . <4 . Hongyang Qu. 2011. Quantitative Multi-objective Verification for Probabilistic
CVaR ar?d the {mtlal discussions with Jan Krcal and wish them both Systems. In TACAS (LNCS), Vol. 6605, Springer, 112-127.
happy life in industry. We also thank Michael Luttenberger and [23] Hugo Gilbert, Paul Weng, and Yan Xu. 2017. Optimizing Quantiles in Preference-
the anonymous reviewers for insightful comments and valuable Based Markov Decision Processes. In AAAL AAAI Press, 3569-3575.
ti [24] Christoph Haase and Stefan Kiefer. 2015. The Odds of Staying on Budget. In
suggestions. ICALP (LNCS), Vol. 9135. Springer, 234-246.
[25] Christoph Haase, Stefan Kiefer, and Markus Lohrey. 2017. Computing quantiles
References in Markov chains with multi-dimensional costs. In LICS. IEEE Computer Society,
1-12.

(1] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1999. Co- [26] Yonghui Huang and Xianping Guo. 2016. Minimum Average Value-at-Risk for
herent Measures of Risk. Mathematical Finance 9, 3 (1999), 203-228. Finite Horizon Semi-Markov Decision Processes in Continuous Time. SIAM

[2] Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kietinsky, and Journal on Optimization 26, 1 (2016), 1-28.

Tobias Meggendorfer. 2017. Value Iteration for Long-Run Average Reward in [27] Masayuki Kageyama, Takayuki Fujii, Koji Kanefuji, and Hiroe Tsubaki. 2011.

Mar.kov Decision Processes. In CAV (LNCS), Vol. 10426. Sprmgerf 201-221. Conditional Value-at-Risk for Random Immediate Reward Variables in Markov

[3] Ch_““el Baier, Marcus Daun"x,' Clemen§ Dubslaff, Joachim Klein, and Sz?scha Decision Processes. American J. Computational Mathematics 1,3 (2011), 183-188.
Kliippelholz. 2014. Energy-Utility Quantiles. In NFM (LNCS), Vol. 8430. Springer, [28] Jan Kietinsky and Tobias Meggendorfer. 2018. Conditional Value-at-Risk for
285-299. Reachability and Mean Payoff in Markov Decision Processes. Technical Report

[4] Christel Baier, Clemens Dubslaff, and Sascha Kliippelholz. 2014. Trade-off analysis abs/1805.xxxxx. arXiv.org.
meets probabilistic model checking. In CSL-LICS. ACM, 1:1-1:10. [29] Xiaocheng Li, Huaiyang Zhong, and Margaret L. Brandeau. 2017. Quantile

[5] Christel Baier, Clemens Dubslaff, Sascha Kliippelholz, Marcus Daum, Joachim Markov Decision Process. CoRR abs/1711.05788 (2017).

Klein, Steffen Marcker, and Sf““hf‘ WUnderlich. 2_014- Probabilistic Model Check- [30] Christopher W. Miller and Insoon Yang. 2017. Optimal Control of Conditional

ing and Non-standard Multi-objective Reasoning. In FASE (LNCS), Vol. 8411. Value-at-Risk in Continuous Time. SIAM J. Control and Optimization 55, 2 (2017),

Springer, 1-16. 856-884.

[6] Christel Baier, Joachim Klein, Sascha Kliippelholz, and Sascha Wunderlich. 2017. [31] M. L. Puterman. 1994. Markov Decision Processes. J. Wiley and Sons.
Maximizing the Conditional Expected Reward for Reaching the Goal. In TACAS [32] Mickael Randour, Jean-Francois Raskin, and Ocan Sankur. 2017. Percentile queries
(LNCS), Vol. 10206. 269-285. B) in multi-dimensional Markov decision processes. FMSD 50, 2-3 (2017), 207-248.

[7] Nicole Béuerle and Jonathan Ott. 2011. Markov Decision Processes with Average- [33] R. Tyrrell Rockafellar and Stanislav Uryasev. 2000. Optimization of Conditional
Value-at-Risk criteria. Math. Meth. of OR 74, 3 (2011), 361-379. Value-at-Risk. Journal of Risk 2 (2000), 21-41.

[8] Tanya Styblo Beder. 1995. VAR: Seductive but dangerous. Financial Analysts [34] R Tyrrell Rockafellar and Stanislav Uryasev. 2002. Conditional value-at-risk for
Journal 51, 5 (1995), 12-24.)))) general loss distributions. Journal of banking & finance 26, 7 (2002), 1443-1471.

[9] Tomés Brazdil, Viclav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and An- [35] Michael Ummels and Christel Baier. 2013. Computing Quantiles in Markov

tonin Kucera. 2014. Two Views on Multiple Mean-Payoff Objectives in Markov
Decision Processes. LMCS 10, 1 (2014).

Tomas Brazdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonin Kucera. 2013.
Trading Performance for Stability in Markov Decision Processes. In LICS. IEEE
Computer Society, 331-340.

Véronique Bruyére, Emmanuel Filiot, Mickael Randour, and Jean-Frangois Raskin.
2017. Meet your expectations with guarantees: Beyond worst-case synthesis in

[11

Reward Models. In FoSSaCS (LNCS), Vol. 7794. Springer, 353-368.

Il Note on Copyright

Springer Nature

The author has obtained the licence to include Papers A, B and D in the thesis from
Springer Nature through the Copyright Clearance Center’s RightsLink® service. The
respective licence numbers are 4844770336906, 4844770517249, and 4844770740275.

LNCS Open Access

According to the Open Access policy of the Lecture Notes in Computer Science of the
Springer-Verlag GmbH, the author of the thesis is permitted to include Paper C in the
thesis. The relevant excerpt follows:

This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit
line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

LIPIlcs

According to the rules for publishing in LIPIcs (Leibniz International Proceedings in
Informatics) with Schloss Dagstuhl Leibniz-Zentrum fiir Informatik GmbH, the author
of the thesis is permitted to include Paper E in the thesis. The relevant excerpt follows:

All publication series follow the concept of OpenAccess, i.e., the articles
are freely available online for the reader and the rights are retained by the
author.

For more information, please see http://www.dagstuhl.de/publikationen/.

157

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.dagstuhl.de/publikationen/

ACM

According to the copyright policy of the Association for Computing Machinery (ACM),
the author of the thesis is permitted to include Paper F in the thesis. The relevant
excerpt follows:

Reuse of any portion of the Work, without fee, in any future works written
or edited by the Author, including books, lectures and presentations in any
and all media.

For more information, please see https://www.acm.org/publications/policies/
copyright-policy, in particular Section 2.5.

158

https://www.acm.org/publications/policies/copyright-policy
https://www.acm.org/publications/policies/copyright-policy

	Acknowledgements
	Abstract
	Zusammenfassung
	List of Figures
	1 Introduction
	1.1 Summary of Contributions
	1.2 Summary of Publications
	1.3 Outline

	2 Preliminaries
	2.1 Markov Systems
	2.2 Objectives
	2.3 Solution Techniques

	3 Efficient Analysis of Mean Payoff
	3.1 Background
	3.2 A Partial Exploration Approach
	3.3 Precise Solutions with Strategy Iteration
	3.4 Conclusion

	4 Probabilistic LTL Model Checking
	4.1 The Classical Solution Approach: Automata
	4.2 Practical Improvements for LTL-to-automata Translations
	4.3 Conclusion

	5 The Notion of Cores
	5.1 Definition of Cores
	5.2 Finding Cores on MDP
	5.3 Extensions
	5.4 Conclusion

	6 Taming Risk in Probabilistic Systems
	6.1 A Measure of Risk
	6.2 Model Checking CVaR in MDP
	6.3 Conclusion

	Bibliography
	Appendices
	I Appended Papers
	A Value Iteration for Long-Run Average Reward in Markov Decision Processes. CAV 2017
	B Efficient Strategy Iteration for Mean Payoff in Markov Decision Processes. ATVA 2017
	C Rabinizer 4: From LTL to Your Favourite Deterministic Automaton. CAV 2018
	D Owl: A Library for Omega-Words, Automata, and LTL. ATVA 2018
	E Of Cores: A Partial-Exploration Framework for Markov Decision Processes. CONCUR 2019
	F Conditional Value-at-Risk for Reachability and Mean Payoff in Markov Decision Processes. LICS 2018

	II Note on Copyright

