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Abstract

The digitization of the construction industry has created a multitude of new optimization op-

portunities. Despite careful planning, construction progress can be delayed due to unforesee-

able influences such as delivery difficulties, planning errors, or weather conditions. Besides,

building owners demand that deadlines are met, whereby it must be checked that subcon-

tractors meet the contractually agreed delivery and completion dates. All this is ensured by

continuous monitoring of construction progress, with quality control, and, in particular, adher-

ence to schedules playing a key role. Nowadays, this process is mostly performed manual

and, therefore, very laborious, time-consuming, and error-prone, which can lead to costly

planning changes.

In this context, the method of Building Information Modeling (BIM) introduces a digital, three-

dimensional design model, which is supposed to contain all information of a building. This

data includes, for example, detailed component information, but also construction process

data. The model is intended to be used over all phases of usage, including design, planning,

construction, and operation, and is already established in many of these areas. However,

there are still unused potentials in the area of design and construction. The automated con-

struction progress control is supposed to overcome these issues and allow decision-makers

to have detailed and on-time insight into the progress of construction progress and make

informed decisions in case of delays or disturbances.

The research approach developed in this dissertation focuses on the use of three-dimensional

point clouds, which represent the as-built state of a building. For this purpose, images ac-

quired by, for example, unmanned aerial vehicles (drones), are used to generate point clouds

using photogrammetric methods. In the developed approach, these point clouds are matched

against the digital building geometry in order to be able to recognize components that have

been finished or are under construction. This purely geometric process is further refined

by the semantic component information to recognize objects shaded during the recording or

which could not be reconstructed.

In order to further increase the accuracy of the detection process, shadowing analyses are

carried out based on the camera positions. Besides, the components are projected into the

captured images, allowing to conduct an image-based analysis. The Computer Vision meth-

ods applied here are used with Machine Learning algorithms to perform automated object

detections on an image basis to gain additional knowledge about the presence of individual

components from the image data. Based on the temporal data, a final statement can be made

about the current construction progress.
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The developed methods were verified and further optimized based on several real-world case

studies. Accuracies of over 90% could be achieved in the detection of individual components.

Besides, the researched method of component projection at image level can be used to gen-

erate data for neural networks. These networks require a large amount of training data, which

would otherwise have to be manually labeled by qualified personnel. With the methods de-

veloped, it has become possible to increase automation in construction progress monitoring

significantly.
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Zusammenfassung

Die Digitalisierung der Baubranche hat eine Vielzahl neuer Optimierungsmöglichkeiten ge-

schaffen. Trotz sorgfältiger Planung kann sich der Baufortschritt durch unvorhersehbare Ein-

flüsse wie Lieferschwierigkeiten, Planungsfehler oder Witterungseinflüsse verzögern. Zu-

dem verlangen Bauherren die Einhaltung von Terminen, wobei zu prüfen ist, ob die Subun-

ternehmer die vertraglich vereinbarten Liefer- und Fertigstellungstermine einhalten. All dies

wird durch eine kontinuierliche Überwachung des Baufortschritts sichergestellt, wobei der

Qualitätskontrolle und insbesondere der Termintreue eine Schlüsselrolle zukommt. Dieser

Prozess wird heutzutage meist manuell durchgeführt und ist daher sehr mühsam, zeitauf-

wendig und fehleranfällig, was zu kostspieligen Planungsänderungen führen kann.

Die Methode des Building Information Modeling (BIM) führt in diesem Zusammenhang ein

digitales, dreidimensionales Entwurfsmodell ein, das alle Informationen eines Gebäudes ent-

halten soll. Dazu gehören z.B. detaillierte Bauteilinformationen, aber auch Daten zum Bau-

prozess. Das Modell soll über alle Phasen der Nutzung, einschließlich Entwurf, Planung,

Bau und Betrieb, verwendet werden und ist in vielen dieser Bereiche bereits etabliert. Aller-

dings gibt es noch ungenutzte Potenziale im Bereich des Entwurfs und der Konstruktion. Die

automatisierte Baufortschrittskontrolle soll diese Probleme überwinden und es den Entschei-

dungsträgern ermöglichen, einen detaillierten und zeitnahen Einblick in den Baufortschritt

zu erhalten und im Falle von Verzögerungen oder Störungen fundierte Entscheidungen zu

treffen.

Der in dieser Dissertation entwickelte Forschungsansatz konzentriert sich auf die Verwen-

dung von dreidimensionalen Punktwolken, die den Ist-Zustand eines Gebäudes darstellen.

Dazu werden Bilder, die z.B. von unbemannten Luftfahrzeugen (Drohnen) aufgenommen

wurden, verwendet, um mit photogrammetrischen Methoden Punktwolken zu erzeugen. In

dem entwickelten Ansatz werden diese Punktwolken mit der digitalen Gebäudegeometrie

abgeglichen, um fertige oder im Bau befindliche Bauteile erkennen zu können. Dieser rein ge-

ometrische Prozess wird durch die semantische Komponenteninformation weiter verfeinert,

um Objekte zu erkennen, die während der Aufnahme verschattet wurden oder die nicht re-

konstruiert werden konnten.

Um die Genauigkeit des Erkennungsprozesses weiter zu erhöhen, werden Verschattungs-

analysen auf Basis der Kamerapositionen durchgeführt. Außerdem werden die Kompo-

nenten in die aufgenommenen Bilder projiziert, so dass eine bildbasierte Analyse durchge-

führt werden kann. Die hier angewandten Computer Vision-Methoden werden mit Algorith-

men des maschinellen Lernens eingesetzt, um automatisierte Objektdetektionen auf Bild-

basis durchzuführen und aus den Bilddaten zusätzliche Erkenntnisse über das Vorhanden-

sein einzelner Komponenten zu gewinnen. Auf Basis der zeitlichen Daten kann eine ab-

schließende Aussage über den aktuellen Baufortschritt getroffen werden.
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Die entwickelten Methoden wurden anhand mehrerer Fallstudien aus der Praxis verifiziert und

weiter optimiert. Es konnten Genauigkeiten von über 90% bei der Detektion der einzelnen

Komponenten erreicht werden. Zudem kann das erforschte Verfahren der Komponenten-

projektion auf Bildebene zur Datengenerierung für neuronale Netze genutzt werden. Diese

Netze erfordern eine große Menge an Trainingsdaten, die sonst von qualifiziertem Personal

manuell beschriftet werden müssten. Mit den entwickelten Methoden ist es möglich gewor-

den, die Automatisierung in der Baufortschrittskontrolle deutlich zu erhöhen.
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1. Introduction

The continuing development of information technologies opens up new opportunities for all

industry sectors, including the construction industry. Business processes can be streamlined

and accelerated and thus made more efficient. The construction industry benefits from these

advantages through the implementation of Building Information Modeling (BIM). This digital,

model-based method is promoted to make planning more accurate, flexible, and transpar-

ent, making construction processes on schedule, faster, and more cost-effective. Errors and

conflicts are easier to detect and hence, can be avoided.

In particular, progress monitoring on construction sites is very complex and currently still pri-

marily carried out manually. On large construction sites, many processes take place in paral-

lel. A precisely defined construction sequence is difficult to determine or predict. Construction

scheduling is an important task that incorporates many dependencies between different tasks

but also relies on the experience of planners that estimate duration based on quantities and

available resources. These issues create imponderables in the field of construction logistics

and the overall planning of a building. External dependencies like delivery times, availability

of workforce, or weather conditions add up to the uncertainties.

These issues make process monitoring an essential part of the organization of a construction

site. It is crucial to know the current state of construction of a project to make informed

decisions on schedule changes if any issues occur. This is especially so for general planners

and main contractors with various subcontractors. General requirements are the creation of

performance records for the client and making recourse claims against the subcontractors in

case of delays.

Although tasks on most construction sites are already quite structured, it is worth taking a

closer look at the construction processes. Currently, progress is usually monitored manually

or via mobile devices (smartphones, tablets) directly on the construction site (Saidi et al.,

2003). In any case, the progress is manually recorded in construction diaries by the site

manager. In addition to the high personnel costs, this also entails various risks concerning

inconsistencies and timeliness. An automated procedure would be recommended here.
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Construction progress monitoring is particularly important on large construction sites, where

storage capacities are rare. Many construction elements and supplementary building materi-

als are delivered "just in time". Besides, prefabrication becomes more prevalent, resulting in

new work routines where elements are installed directly and without storage in order to save

time and costs. If delays occur on a construction site, it is essential to recognize them as

quickly as possible to be able to take countermeasures and, if necessary, postpone deliver-

ies. This problem also applies to small construction sites in inner-city areas with even less

available storage areas.

On the one hand, delays are crucial regarding personnel management and construction ma-

chinery, as these domains are accountable for significant parts of construction costs. On

the other hand, process monitoring is associated with high costs. Due to the complexity of

construction projects in general, and a large number of individual components in particular,

progress monitoring is challenging to implement and ties up many resources. Therefore, this

task benefits from automation in order to be able to react quickly and precisely to changes.

1.1. Building Information Modeling

Automation of construction processes requires a structured and high quality, digital represen-

tation of the design model. Building Information Model (BIM) is a methodology based on the

use of digital building models over the entire life cycle. Progress monitoring is one of the

many use cases and is part of the "execution" phase (Borrmann et al., 2018). A BIM model

is intended to describe a building over its entire life cycle (see Figure 1).

This includes planning, design, construction, operation, maintenance, and, where appropri-

ate, decommissioning, or conversion (Eastman, 1999). The model is intended to hold all

relevant information for all project participants. In addition to the 3D geometry itself, material

information (e.g., steel or concrete) as well as quantities, costs, and process information are

also stored. The model, in combination with its corresponding schedule, is usually referred to

as 3D and time (4D) model, while the fourth dimension is the time.

Construction companies benefit from these model-based processes since the detailed plan-

ning upfront helps to identify planning errors in advance and solve clashes or inconsistencies.

Facility Management (FM) also benefits from an exact BIM model during operation, as all data

on technical equipment in a building is available for any maintenance requirement.

Recent developments in Germany require all public infrastructure projects to use BIM, starting

in 2020 (Borrmann et al., 2018). It is expected that these requirements will subsequently

be adopted for any other type of construction. In addition to the apparent advantages in

the design phase, this will help ensure that digital models are available for all construction

projects in the (nearer) future.
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Figure 1 BIM cycle: Sections, relevant for process monitoring are marked bold.

As already mentioned, construction progress monitoring is currently still carried out manually.

The phases relevant to progress monitoring are especially the construction phase, including

logistics. These are shown in Fig. 1 in the bold printed sections.

Automated progress monitoring is intended to provide decision-makers with information to

detect deviations earlier and form better decisions. This process includes the acquisition of

the current construction status (as-built), the comparison with the as-planned status, and the

detection of deviations in the process schedule (and possibly in the geometry). A BIM model

provides the required basis for this since the as-planned state in terms of the 4D model, and

geometric representation can be queried here, providing the necessary data to be able to

react to any temporal or geometric deviations as resource-saving as possible.

1.2. As-Built acquisition

One significant task in progress monitoring is the actual acquisition of the current status on

site. On large construction sites with many elements and parallel running tasks, the site

manager can quickly lose track of the current status. Hence, it requires trained personnel

with a complete overview of all ongoing construction tasks. In order to automate this process,

methods are needed to gather information on each construction element’s status and make
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it available for a computer-aided management process.

Currently, many different approaches are tested in this regard and are presented in

Chapter 3. An often-used approach is the usage of point clouds. A point cloud consists of a

set of points in three-dimensional space. Each point consists of at least the three coordinates

in x-, y- and z-direction, describing its position. Besides, color values for each point and

information about the position of the recording source (normal vector) are usually stored. A

sample that has been acquired during one of the case studies is depicted in Fig. 2.

Figure 2 As-built acquisition: sample of a reconstructed point cloud.

State-of-the-art methods to acquire these point clouds are either by laser scanners or pho-

togrammetric methods. Detailed information on these methods is presented in Chapter 3.

The described point cloud represents the "as-built" state of the building.

1.3. Research question and challenges

The overall research topic is the automation of construction progress monitoring. The un-

derlying project was funded by the German Research Foundation (DFG) and has been con-

ducted in close collaboration with the Chair of Remote Sensing and Photogrammetry (RSP)

under the lead of Prof. Uwe Stilla. The research at RSP has been carried out by Sebastian

Tuttas and focused on the photogrammetric acquisition as well as point cloud processing. The

results of this part of the project have been presented in Tuttas’ PhD thesis (Tuttas, 2017).
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1.3.1. Research question
Based on the introduced concept, the following research questions arise:

• How to match BIM model and point clouds?

• How to deal with inaccuracies?

• What are the possibilities to infer information about not directly recognized components?

• How can image information be used to recognize components or component states?

The focus of this thesis lies in the development of a methodology for the matching of pho-

togrammetric point clouds and the BIM models to enable a Scan-vs-BIM comparison of the

construction process. In detail, the collected data has to be evaluated, processed, and finally

matched efficiently and reliably against an as-designed model. The comparison includes a

geometric part and semantic checks that require further information such as color, structural

logic, and knowledge on construction methods. Subsequently, the data gathered in images

can be analyzed to gain further information on the current construction status.

Finally, the knowledge gained is used to update the schedule and, if necessary, to incorporate

new knowledge about the duration of individual sub-processes, thus updating the schedule.

This approach is also depicted in Fig. 3.

Figure 3 Overview of the proposed approach.

1.3.2. Challenges
The methods of photogrammetry pose particular challenges in recording the current state

of construction. After the acquisition with cameras, only the respective field of view can be

analyzed. Due to the shading of components or due to other components or construction

aids, the relevant elements might be occluded. This problem can partly be solved by taking

pictures from different perspectives. However, components inside the building cannot be

captured from the outside.
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A further challenge when recording the current construction state is the inaccuracy of the

point cloud. This is due, for example, to the great distance between the camera and the

object to be acquired. After the point clouds have been generated from several composite im-

ages, additional inaccuracies can result from too small local distances between the recording

points.

In addition to the possible inaccuracies in the point cloud, the alignment with the geometry of

the as-designed model is also a reason to introduce further errors. Optimized algorithms and

approaches are necessary, especially concerning the calculation time for the alignment of a

point cloud with several million points and geometry with several thousand components.

1.4. Structure of the thesis

This cumulative thesis divides into several parts. The following chapter is starting with a gen-

eral introduction to the developed concept to tackle the identified challenges, followed by the

current state of the art in all related research areas. In the following, four journal publications

are presented that further detail the individual steps. They are sorted chronologically in terms

of the introduced tasks that are required on construction sites.

A general introduction to the proposed approach is presented in Chapter 4. It also focuses

on all related problems that occur during monitoring as well as the as-planned vs. as-built

comparison.

Chapter 5 details acquisition methods suitable for such mutable environments such as con-

struction sites and presents an in-depth analysis of their advantages and challenges.

In the following Chapter 6, all methods are introduced that help to enhance as-built vs. as-

planned comparisons with the help of semantic data from digital construction models and

Computer Vision methods is available from the acquisition process itself.

In this scope, a new method is presented in Chapter 7 that uses the gained knowledge from

the Computer Vision (CV) process for the labeling of construction elements on images. The

gained data set can be used for training a Convolutional Neural Network (CNN) in the scope

of Machine Learning (ML).

All introduced topics are evaluated in Chapter 8 that ends with an outlook in Chapter 9 on

future research questions in the field of construction progress monitoring.
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2. Overall concept for automated
contruction progress monitoring

The concept for automating construction progress monitoring developed in the course of this

thesis is based on matching a photogrammetric point cloud captured from the site in regular

intervals against the as-designed 4D BIM that includes the as-planned construction schedule.

With this approach, deviations between the as-planned and the as-performed schedule can

be detected automatically.

2.1. Overview

Based on the findings from the research community (presented in Chapter 3) and the new

findings introduced in the subsequent chapters, the following process is deemed feasible

(Figure 4). It is detailed in Chapter 4 and briefly introduced here.

Figure 4 Classification of construction elements based on the as-planned vs. as-built comparison results.
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On the one hand, the BIM model is provided as Industry Foundation Classes (IFC), including

4D process data. The acquisition of the as-built state, on the other hand, is achieved with

cameras, incorporating Structure from Motion (SfM) methods for the point cloud reconstruc-

tion. Chapter 5 investigates different ways of monitoring, including Unmanned Aerial Vehicle

(UAV)-based methods. The comparison is based on geometric distance and density checks,

as introduced in Section 2.2.1 and refined by additional methods, like CV. Details on these

methods are extensively discussed in Chapter 6.

Subsequently, the resulting sets of detected elements can then be compared to the expected

elements per schedule.

2.1.1. Data sets
The conducted research relies on available data sets to test and validate the proposed meth-

ods. However, there are no data sets publicly available, as many construction companies fear

the inadvertent publication of confidential company information. During this research, seven

construction sites were monitored with different observation methods to gather research data

and validate the introduced concepts (see Fig. 5). The construction sites are all located in

Germany and cover a variety of structural engineering buildings as well as infrastructure (one

bridge, one wastewater treatment plant). Details on any of these construction sites cannot be

made available, as Non-disclosure agreements (NDAs) were signed for all of them.

The gathered data has been used to verify all newly introduced methods and concepts pre-

sented in the following chapters. Additionally, a software framework has been developed,

that is depicted in Figure 6. To visualize the comparison results and the detected elements,

and to verify the algorithms used, all gathered data is stored in a comprehensive database

accessible via this software. The tool displays all geometric and semantic building element in-

formation as well as scheduling data that has been parsed from IFC data models (see Section

3.1.1). The detected elements are highlighted for easy identification.

Figure 6 depicts the software interface with the example of one of the construction site case

studies used in this research. The building mainly consists of in-situ concrete elements that

were cast using formwork on site. In the figure, one specific observation is selected, and all

detected elements are highlighted. Green coloring represents elements that have been built

and are correctly detected and confirmed through the point cloud. All yellow elements are

built but were not confirmed through the point cloud.

The overall concept incorporates several data sources: The model of the building, including

geometry and component information, is required. Additionally, the point clouds with the

respective timestamp of the acquisition are needed. Another data source is the construction

schedule, which is linked to the respective components.
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Figure 6 Screenshot of the developed tool for Scan-vs-BIM comparison. A specific observation is selected to visualize the
detected construction elements at that time. Details on selected elements are shown in a separate viewer (bottom-right).

2.1.2. Classification
During the as-planned vs. as-built comparison, different detection states occur. As intro-

duced, a classification scheme is required to visualize all possible detection states precisely.

In this case, the temporal factor needs to be addressed. The generated point cloud for the

Scan-vs-BIM comparison represents the actual situation on-site at a specific time of t. How-

ever, this point cloud might not be perfect and have holes or low densities in several spots.

These errors are introduced by occlusions or reconstruction errors, and will be discussed in

Chapter 3.

For this reason, the detection algorithms might not identify all elements present. In order to

correctly handle those elements, each element is considered and categorized independently.

This is done for every observation, resulting in a classification at each observation step t.

As shown in Figure 7, each building element is assigned a boolean value for each of the three

states:

• As-planned: Indicates whether the element should have been built at the considered

point in time, according to the as-planned schedule. The main idea behind as-built vs.

as-planned comparisons is to detect any deviations on the site compared to this state.

• As-built: Indicates whether the element is present or not. This state represents the

ground truth and is only available in test scenarios. It is not available for Scan-vs-BIM

comparison under real conditions. Corresponding data is gathered manually as the basis

for the scientific experiments conducted in this thesis.
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Figure 7 Classification of construction elements based on the Scan-vs-BIM comparison results. Each category represents a
boolean value and every element is classified in exactly one category. The colors are used to mark all elements in the 3D view
accordingly.

• Detected: Indicates whether the detection algorithms have detected the element. This

state should equal the "as-built" state (ground truth).

Derived from these three states with every two options (true/false), the shown 3 x 8 matrix

(23) shows all possible combinations.

2.1.3. Knowledge-based refinements
The introduced Scan-vs-BIM approach is made as described in the following Section 2.2.1.

However, this comparison does not always provide correct results due to inaccuracies and

occlusions in the point cloud.

Accordingly, the concept introduces several new enhancements, like the analysis of the un-

derlying BIM model. In detail, the structure of the model and its technological dependencies

are derived. This requires detailed knowledge of the geometric structure of the BIM model.

Hence, an approach is presented in Chapter 4, that relies on a query language (Daum et al.,

2014) and is also detailed in the state of the art (Section 3.1.3).

Besides, the acquired images provide a high density of additional data that can be analyzed.

In this regard, CV- as well as ML methods proved helpful and provided valuable additional

input. Especially for the detection of shadings but also for object detection, valuable options

are available. In combination with SfM methods, visibility analysis, and object detection,

further enhancements the detection results for construction objects can be achieved. These

are introduced in Section 3.5 and presented in detail in the Chapters 6 and 7.
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2.2. Involved challenges

There are several reasons why some elements may not be detected that have been actually

built. The most prominent reason is the occlusions that occur on-site. During construction,

large amounts of temporary structures like scaffolds, construction tools, and construction

machinery obstruct the view on the element surfaces. Limited acquisition positions further

reduce the visible surfaces and hence, the overall quality of the generated point clouds. Ad-

ditionally, elements inside of the building are also occluded by other building elements for

acquisitions outside of the building.

2.2.1. Geometric comparison
After the acquisition, scaling, and registration, an aligned as-built point cloud of an observa-

tion time t and the as-designed model with interconnected schedule data is available. The

initial step of a Scan-vs-BIM comparison is the plain geometry comparison of the as-built

point cloud vs. the as-designed geometry from the BIM. This approach is also known as

"Scan vs. BIM". During the construction phase, the actual as-built process can deviate from

the original as-designed process.

In the context of this thesis, barycentric coordinates (Coxeter, 1969) are used for this geo-

metric comparison. For each point p in a point cloud, the distance to any triangulated surface

(defined by three points t1,t2,t3) can be computed as follows:

with

q = t1; #»u = t2− t1; #»v = t3− t1; (2.1)

#»n = #»u × #»v (2.2)

# »n0 =
#»n√

#»n · #»n
(2.3)

r = # »n0 × #»q (2.4)

dist =| ( # »n0 · p)− r | (2.5)
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Finally, Equation 2.5 provides the distance of any point to a triangle. This distance is valid for

all equations that fulfill these requirements of barycentric coordinates:

#»w = p− q (2.6)

γ =
#»u × #»w · n
n · n

(2.7)

β =
#»w × #»v · n
n · n

(2.8)

α = 1.0− β − γ; (2.9)

The distance holds true for all α, β and γ within:

0 <= γ <= 1; 0 <= β <= 1; 0 <= α <= 1 (2.10)

Figure 8 Segment of a point cloud in combination with its corresponding as-designed geometry. 3D view on the left, section
cut in the middle and schematic visualization of corresponding thresholds on the right.

Due to reconstruction errors and measurement inaccuracies, point clouds introduce noise.

This is shown as exemplary in Figure 8. The left side of the Figure shows a 3D view of the
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column, while the right side shows a cross-section to visualize the noise of the point cloud

better. Due to these inaccuracies, thresholds need to be introduced to still receive satisfactory

results from the comparison. These project-specific thresholds depend on many factors, such

as acquisition method, image resolution, among others.

In summary, the geometric comparison provides the purely geometric results for the Scan-

vs-BIM approach, while several issues remain. This approach is computationally inefficient

if each point is compared against each triangle of all objects of the as-designed geometries.

Performance optimization can be achieved by geometric filtering to reduce computation times,

as described in Section 3.5.1.

The proposed solution for these challenges is presented in the Chapters 4 and 6.

2.2.2. Occlusions
Another reason for weak detection rates is building elements that are currently under con-

struction. As those elements count towards the overall progress, they must not be missed

and play a crucial role in defining the exact state in the current process. Challenging are,

in general, all construction methods, whose geometry under construction differs largely from

the final element geometry or that needs temporary construction objects. This applies, e.g.,

for reinforced concrete or multi-layered walls.

On the one hand, formwork, which is used for concrete pouring, may obstruct the view of

the element, making it impossible to be detected. On the other hand, the plane surface of

formwork for a slab might be detected as the surface of the slab itself and thus would lead

to a false positive. Due to these challenges, further enhancements to the comparison and

detection algorithms are needed.

Since the digital model contains information on construction methods, the authors propose to

use this knowledge for the overall detection process. By deducing the precedence relation-

ships with a query language, assumptions on occluded elements can be made. Construction

methods and derivation of expected elements lead to new Scan-vs-BIM comparison capabil-

ities like extended thresholds or computer vision methods to detect objects like formwork on

the raw observation images, taken for the point cloud generation.

In previous research projects (Turkan et al., 2013; Golparvar-fard et al., 2009; Bosché and

Haas, 2008b), a direct Scan-vs-BIM comparison of point cloud with 3D geometry has been

proposed. In order to further increase the accuracy, it makes sense to use the additional

information available from the Building Information Model. One aspect is the color of the

original materials to distinguish them from construction site equipment and, e.g., formwork.

The available process information is particularly important. It provides additional information

about objects that should be available at an observation time t. Besides, this information
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shows which components are potentially "under construction". Thus, these components can

be tested with increased tolerance against the point cloud to provide a detailed overview of

the current state of construction.

A further basis is the "Precedence Relationship Graph", which offers additional possibilities to

identify occluded objects despite missing information from the point clouds. In detail, prece-

dence relationships are derived from the structure of the BIM model by a query language, as

introduced in Section 3.1.3. This semantic knowledge provides information on elements that

are occluded but are required to be built based on precedence requirements.

A concept to solve the mentioned issues is presented in the Chapters 4 and 6.

2.2.3. Object detection
Current methods do not provide sufficiently reliable results for object detection based on point

clouds. Due to this reason, a new approach is presented that uses the gained knowledge on

camera positions to achieve better results on an image-level. This approach requires several

methods, starting with CV as well as ML as introduced in the Sections 3.5. In detail, the

known positions of construction elements are combined with the estimated positions of the

cameras. This knowledge allows the projection of element bounding boxes into the images

at the expected positions. Training of ML networks can benefit from this approach and is

presented in detail in Chapter 7.

2.3. Objectives of the thesis

The following accepted and peer-reviewed journal publications propose solutions to the chal-

lenges identified in the Section above. As summarized in the Figure 9, each publication

focuses on a different objective.

While Chapter 4 presents the overall approach in a detailed manner and highlights the pre-

vailing problems, Chapter 5 presents the current status of as-built acquisition. In addition,

methods for Scan-vs-BIM approaches are compared and tested.

The following Chapter 6 presents new approaches to solve many of the stated problems

and provides a detailed overview of the key innovations of this thesis. Finally, Chapter 7

presents a new approach to facilitate glsML methods by automating labeling, which would

not be possible without the previous work presented in these chapters.
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Figure 9 Scope of the publications presented in the following chapters.
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3. State of the art

Automated construction monitoring has gained increased research interest during the last

decade. Besides the urgent need for accurate monitoring of growing construction sites with

faster and faster construction methodologies, recent advancements in technology only make

it possible to implement these new methods.

There have been many significant developments in the field of digital construction methods

that form the basis for this thesis:

• the introduction and implementation of digital, three-, and four-dimensional planning

• more accurate acquisition techniques and even faster processing times

• introduction of UAV and increasing camera quality combined with more affordable prices

• increasing computational power for methods like Computer Vision or Machine Learning

This chapter will introduce these technologies and discuss the current state of the art in the

context of progress monitoring. A detailed review of the respective state of the art is also

conducted within the presented papers in the Chapters 4 to 7.

During this research, a lot of different data sources are used in combination with information

to gain additional knowledge on construction processes. The Data, Information, Knowledge,

Wisdom (DIKW) pyramid has been introduced by Rowley (2007) to define these terms and

their relation. Based on this definition, data is defined as sensor data without any context. In

the context of this research, point clouds can thus be defined as data. Information is defined

as data, enriched with meaning, in this use case, for example, the definition of a specific

object’s material. Finally, knowledge can be the result of the interpretation of given data and

information. Hence, the knowledge of the current status of the progress state is the declared

goal of this thesis.
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3.1. Building Information Modeling and Open Standards

Digital planning has been part of the construction industry since the introduction of Com-

puter Aided Design (CAD). While being limited to two dimensional (2D) sections and views

in the beginning, visualization of three dimensional (3D) geometries in combination with pro-

cess data (4D) helped to identify planning errors at early design stages (McKinney et al.,

1998). More advanced analyses such as clash detection or quantity take-off are available

in combination with semantic data such as construction materials. Physical properties of

the construction elements enable more accurate calculations and simulations like Life Cycle

Analysis (LCA) (Forth et al., 2019).

This purely digital, model-based planning method is referred to as Building Information Model-

ing (BIM). In this thesis, the expected state of a construction site according to the construction

schedule is referred to as the "as-designed" state, while any representation of the actual state

is referred to as the "as-built" state. The BIM model represents the "as-designed" status of a

construction project at all times, whereas the "as-built" status needs to be acquired by meth-

ods, as introduced in the following section 3.2. It always represents the construction state at

one particular time of observation.

3.1.1. Industry Foundation Classes
The manufacturer-neutral IFC format was developed so that high-quality geometric-semantic

data can be exchanged between different applications. The IFC are developed and main-

tained by the international non-profit organization buildingSMART and focus on interoperabil-

ity between BIM software applications by different software vendors (BuildingSmart, 2014).

The data exchange format is standardized in ISO 16739. Since this data format is open

source and defined by an open schema (EXPRESS, as defined in ISO 10303), the model

data can be read without proprietary software. In this schema, each item is represented by

an entity that is set into relation to another entity. The schema is based on objectified re-

lationships. An individual object defines each entity and relation. This allows to derive all

properties for any component.

3.1.2. Geometry
The geometric representation of all construction elements forms the basis of this research.

A geometric definition is required for all as-designed elements that shall be included in an

as-designed vs. as-built comparison.

For a valuable and precise comparison, the model itself needs to fulfill requirements regarding

the detailing of all construction elements. In the scope of digital element representation, a

schema has been developed to classify the detailing of construction elements: the Level of

Detail (LOD). According to this schema, a BIM necessitates at least LOD 300 for accurate

construction site monitoring. As stated by The American Institute of Architects (2013), "The

Model Element is graphically represented within the model as a specific system, object or
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assembly in terms of quantity, size, shape, location, and orientation. Non-graphic information

may also be attached to the Model Element.".

Since the exact position, shape, and measurements are required, this LOD is sufficiently ac-

curate for the desired purpose. Furthermore, buildingSMART defined so-called Model View

Definitions (MVDs) that describe the content of a BIM regarding the included elements and

exchange requirements in the Architecture, Engineering and Construction (AEC) industry

(BuildingSmart, 2016). To cover different use cases and scopes of usage, predefined views

are established. The most common views are the "Coordination View" (CV) or as per the

newly defined IFC4 "Reference View" (RV). The mentioned views include all modeled ele-

ments with details and constructive parts like reinforcement; however, reduce the available

geometric representations for unified interpretability across different software vendors. On

the downside, geometric modifications to (parametric) objects are not possible anymore since

these representations are not supported. In the context of this thesis, this factor can be ne-

glected in favor of precise geometric representations.

Another important aspect regarding model quality is measurement rules for element bound-

aries. According to German standards, general construction requires accuracy of around 1cm

for 1 meter of element length and up to 3cm for 30 meters of element length (DIN, 2013).

Geometry can be described by explicit and implicit representations (Gheorghiu, 1978; Bor-

rmann et al., 2018). Explicit representation schemes describe volumes indirectly via the sur-

faces of the objects, while implicit methods use combinations of defined volumetric bodies.

The essential geometric elements (primitives) are points, edges, and surfaces (VEF = vertex

edge face). Higher-level explicit geometry models also introduce shells and other elements.

Explicit representations usually require more storage capacity. However, they allow access

to the surface description without further computation. In the context of geometric compar-

isons, explicit representations like tessellated surfaces are computationally cheaper. Figure

10 illustrates the triangulated geometry of an abutment during bridge construction.

The IFC schema provides different geometry representations, including Constructive Solid

Geometry, Swept Area Representations, and boundary representations. In this particular

use case, tessellated formats like IfcTriangulatedFaceSet are most suitable. The provision of

this type of geometry representation can be enforced by a dedicated Model View Definition

(MVD).
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Figure 10 Visualization of a triangulated abutment geometry, overlayed with a corresponding as-built point cloud.

3.1.3. Semantic information
Due to the objectified relationships by the IFC data schema, every property of a construction

element is directly linked to it. Thus, semantic information such as material properties is

always connected to the entity that represents the corresponding element. In the scope of

this research, the following properties were identified as essential to the study:

• type of element (i.e., slab, wall, column)

• material (i.e., concrete, wood)

• layers (for multi-layered elements)

• construction method (i.e., in-situ, prefabricated)

• load-bearing (boolean - yes / no)

• 4D scheduling data (corresponding task, duration, ...)

The listed properties define the general structure of a building as well as the planned sched-

ule. In combination with additional information, the colors of elements can be derived. This

information is especially valuable when image-based monitoring is used, where no additional

semantic data is available. In this case, information can be derived based on color.

3.1.4. Process planning and dependencies
The enrichment of building models with their corresponding construction schedule is one of

the critical requirements for this research. In current construction projects, scheduling is done

based on the estimated element volumes, but usually independently from the actual model,

based on the scheduler’s experiences. Thus, the model and the process schedule are not
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interconnected.

This issue can be overcome with the IfcTask extension to map processes, introduced with

the IFC 4 schema (BuildingSmart, 2014). It enriches the BIM with element-based process

information that can be assigned and grouped as required with property sets. In this context,

the IfcProcess entity represents all individual events. Another possibility is the use of standard

tools like MS Project and an additional reference table that holds all IFC Globaly Unique ID

(GUID)s and maps them to the defined process.

Figure 11 visualizes a model, that is linked to its progress schedule, connected via its GUID.

Furthermore, dependencies can be made visible. Processes that run independently of each

other can be executed simultaneously, i.e., in parallel.

Figure 11 Connected model with corresponding schedule, visualized as Gantt diagram.

However, there are already some approaches to enable automation of scheduling in this area.

This task involves many factors that need to be taken into account. The quantities of all el-

ements, as well as personnel effort and resource requirements, add up to the length of an

individual task. Additionally, dependencies in relation to other tasks or external influences

need to be considered (Hardin and McCool, 2015). By linking process information and the

underlying building data model, additional information is available that can be used in con-

nection with progress monitoring. Tauscher (2011) describes a procedure that allows the

automation of the generation of construction process planning at least partially. He chooses

an object-oriented approach in which each component is categorized according to its prop-

erties. Accordingly, each component is assigned to a construction process. Subsequently,

characteristic properties of the components are compared with a process database to group

them and assign them to comparable processes. Suitable properties for the recognition of

similarities are, for example, the component thickness or the building materials used.
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With this method, a semi-automated system is developed to support the process planning. In

Huhnt (2005), a mathematical formalism based on set theory is used to determine the techni-

cal dependencies for automated construction progress planning introduced. In Enge (2010),

a Branch-and-Bound algorithm is introduced to allow an optimal decomposition of processes

into planning information and process information to determine. Dori (2016) presents an ap-

proach in which a methodology for generating the schedule from information about the scope

of the tasks, the available resources, and the performance values is described. This approach

has not yet been adopted by the industry in broad.

Another vital aspect of Scan-vs-BIM comparisons is the dependencies between the individual

construction processes. For example, technological process dependencies prescribe the

order in which individual objects are dependent on each other. An object cannot be built

before another object on which it is dependent. For example, a slab cannot be built before

the load-bearing columns and walls are finished. These dependencies can be represented

in so-called precedence relationships (Wu et al., 2010). An established method to represent

these dependencies is to use graphs (Szczesny et al., 2012). These approaches for modeling

form an excellent basis for automated construction monitoring, which has not yet been applied

in this scope.

Daum and Borrmann (2014) introduced a query language for digital models that allows us

to identify geometric orders and topologically query a BIM. With these queries, load-bearing

construction elements can be aligned in their vertical order. Thus, the query language en-

ables the automatic generation of these dependency graphs. With these graphs, assumptions

on elements are possible, that were not detected, despite being expected to be built. More

details are presented in Chapters 4 and 6.

3.2. Manual and contact-based acquisition methods

The acquisition of construction progress on construction sites introduces many challenges.

To receive a precise and correct representation of the current construction status, the quickly

changing environment needs to be taken into account. Moving parts on-site, like excavators,

as well as temporary construction equipment like formwork, hinder to gain an unobstructed

view on all construction elements.

In recent studies, Omar and Nehdi (2016), as well as Moselhi et al. (2020), analyzed vari-

ous acquisition methods and summarized the individual advantages and disadvantages for

activity and material tracking on construction sites. Their comprehensive studies categorized

these tracking methods in the following sections.
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3.2.1. Digital construction site diary
Digital construction site diaries are a first step in digitizing the logging of construction pro-

cesses. There are several companies on the market that provide services in this area. Usu-

ally, a cloud-based service is offered in combination with on-site tablet computers to track the

construction process. Despite still being a manual process, the results are stored on the web

and are immediately available to all project participants.

The monitoring itself is mostly focused on construction issue tracking. In this regard, recent

approaches combine error reports with location-aware tracing on 2D drawings. In conclusion,

these methods do not provide automated progress monitoring.

3.2.2. Contact-based methods
These methods use technologies from the field of barcoding, radio frequency identification

(RFID), or ultra-wide band (UWB) (Omar and Nehdi, 2016). The main idea of this approach

is to tag any delivered item to the construction site and scan it at specific points of interest, for

example, the entry of the site or storage places. Using barcodes or QR codes as established

standards is a very low-cost option (Shehab and Moselhi, 2005). An effort is required for

marking all badges and elements need to be scanned manually.

This approach can also be extended to RFID (i.e., NFC) or also Bluetooth Low Energy (LE).

The advantage of these technologies is that there is no direct visual contact with the placed

markers needed. They can be scanned in batches upon delivery or while being loaded onto

the crane for placement. Thus, this method does not allow continuous tracking and is not

suitable for any detailed checks for the exact positioning of the construction elements.

3.3. Point cloud-based acquisition methods

Modern automated acquisition methods of 3D objects are in most cases resulting in 3D point

clouds. Commonly used methods to acquire the as-built state of an object are relying this type

of representation (Golparvar-fard et al., 2009; Turkan et al., 2011; Bosché and Haas, 2008b;

Pučko et al., 2018). Two acquisition methods can be used to generate point clouds. Lasers

shoot single light waves at objects, which reflect the light and shoot them back to the receiver

at the scanner. This results in the distance information for one point. SfM methods rely on

capturing images from different perspectives. They also result in point representations.

3.3.1. Laser scanning
Laser scanners are used in a multitude of applications. A laser scanner emits laser light

at high wavelengths that are usually within the range of infrared light (Cracknell and Hayes,

2007). The distance to an object is measured by a sensor that detects the reflected beams

of light and records the time taken. Finally, the speed of light is used to calculate the distance

between the scanner and the reflecting object. Current models of laser scanners provide

options to control the density of the produced point cloud. The higher the density, the longer
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the scanning time. The accuracy of current scanner models is documented at around 2mm

per 10m distance. These values always depend on scanning times and can be reduced by

multiple scanning of every point.

Laser scanners were introduced to construction quality control (Akinci et al., 2006) and mon-

itoring (Bosché and Haas, 2008b) several years ago. While initial steps focused on dimen-

sional controls, these were soon extended to progress estimation (Turkan et al., 2012).

One of the main problems of laser scanners is the high costs involved. Besides, scanning

takes long, especially if high-quality point clouds are required. Each measurement requires

a new setup of the scanner and later registration of the sub-point clouds to each other. This

results in a high effort for post-processing in this approach.

3.3.2. Photo- and Videogrammetry
Photogrammetry describes the process of gaining information on 3D objects based on 2D

data such as photographs or videos. The goal is to receive an estimated 3D representation

of the object of interest that matches the original’s dimensions as closely as possible. Pho-

togrammetry, in particular, has gained more attention with the broader availability of UAV,

making this method more flexible in terms of camera positions (Lin et al., 2015).

The main idea is not to use laser scanners but conventional camera equipment on construc-

tion sites to capture the current construction state ("as-built"). Since the acquisition from

different perspectives is significantly faster than laser scanners, the building can be captured

comprehensively with comparatively low effort. A slightly manual effort remains, but different

points of observation are acquired very fast (Golparvar-fard et al., 2009).

Reconstruction
The first step in such an SfM process is the detection of image features and the calculation

of their descriptors. Usually, Scale-invariant feature transform (SIFT) operators are used for

this task (Lowe, 2004). It consists of a detector and a descriptor. The detector is used to

identify features that are recognizable in as many scales and from as many directions as

possible. The descriptor describes these features as invariant as possible to their properties,

i.e., location, scale, and orientation, in the respective image. In Visual-SfM (Wu, 2013b) an

implementation of these algorithms on the graphics card (GPU) is used.

Figure 12 illustrates the SfM process, where feature points are identified on images from

varying positions during monitoring. The features recognized in the SIFT algorithm are deter-

mined using the Random Sample Consensus (RANSAC) algorithm. This estimation algorithm

is used to extract incorrect measured values and to identify only those values that are most

likely to correspond to the desired solution. Estimation algorithms can also lead to incorrect

results, especially if the surveyed building consists of several repetitive and similar geometric

objects.
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Figure 12 Schema of the SfM method. Feature points are identified on images from varying positions.

Surveying methods
Surveying construction sites poses different challenges on camera positions than, e.g., digital

surface models for terrain modeling. Geometries are more complex, and greater detail is

required. There are currently several methods available for the acquisition of construction

sites. Next to regular manual monitoring with cameras, webcams mounted on cranes or

other exposed positions are considered suitable. Another option are UAVs that monitor the

construction progress from above. A sample for construction monitoring by UAV is shown in

Fig. 13.

Position and distance can be adjusted according to the current progress on-site. For optimal

results, each feature must be identified on at least two images (Rothermel et al., 2012). Best

results are achieved by flying on a spherical routed flight for optimal coverage (Cesetti et al.,

2011). Since the reconstructed points are derived from pixels, a higher image resolution

leads to higher densities in the cloud.

During reconstruction, the camera positions are estimated in order to create the 3D point

cloud. Figure 14 shows this estimation for a construction site, monitored by two crane cam-

eras. In this figure, the positions of the cameras are visible, but also the camera cone that is

visualizing the view direction. Also visible are the SIFT features that are identified on at least

three images (Wu, 2013b) and finally result in the point cloud.
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Figure 13 Image taken from an UAV during acquisition.

Figure 14 Reconstruction process using VisualSFM with visualized camera positions including their viewing directions
(camera cone).
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Automation of image acquisition has been investigated. An overview of possible solutions is

depicted in Figure 15. These methods were tested and compared in Chapter 5.

The manual approach, shown in the bottom right, allows for high flexibility in viewing angles,

positions, and the number of pictures taken. However, positions are limited to areas that are

accessible by humans, and the approach is highly manual. In summary, besides thorough

monitoring of the as-built status, this method introduces a similar effort compared to entirely

manual work. In comparison, crane cameras, as shown in Fig. 15, left, represent a highly

automated solution. As validated in Chapter 5, this methodology lacks accuracy in z-direction

due to missing information around a physical object.

Another suitable method is the usage of UAVs, as proposed by (Han and Golparvar-Fard,

2015; Lin et al., 2015). They offer great flexibility for varying camera positions outside of the

building while also reaching positions inaccessible to humans. Currently, almost all countries

regulate the use of UAVs to prevent illegal usage (EASA, 2020). In the context of construction

site observations, mostly safety concerns need to be addressed.

Figure 15 Proposed methods for image acquisition that were investigated during this research. Left: crane cameras, top right:
UAVs, bottom right: manual acquisition.

Especially the overflight prohibition of areas where people are working and the requirement to

always be able to control the UAV pose impact on autonomous usage. On the downside, they

are usually not able to fly inside a building due to lacking Global Positioning System (GPS)

connectivity. Some recent approaches try to overcome this issue by using different sensor

types like distance measurements (Dowling et al., 2018). As a result, they are only suitable

for usage outside of a building, monitoring the outer hull.
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As described in detail in Chapter 5, UAVs have the highest flexibility for monitoring the outer

hull of a building, while crane cameras have the lowest effort for continuous monitoring (see

Table 1). Monitoring the inside of a building requires different technologies, i.e., Augmented

reality (AR)-based systems, as presented in Section 3.3.3.

Acquisition Advantages Limitations

Manual fast, cheap, focus on points of in-
terest, easy maintenance

completely manual approach

UAV flexible view on outer hull manual, due to regulations

Crane camera no manual effort, high automation no maintenance possible, limited
views from sides, higher errors in
z-direction

Table 1 Photogrammetric methods suitable for construction monitoring.

Challenges
In conclusion, photogrammetry enables a quick and cheap solution for as-built acquisition.

Besides the manual work needed for the image capturing itself, several issues arise. Recon-

struction of low textured or translucent surfaces leads to errors and holes in the point clouds

(Hirschmuller, 2005). Reflections also introduce reconstruction errors since the reflected fea-

tures lead to misaligned points.

3.3.3. Distance sensors and AR
Special devices, such as Microsoft Kinect, combine multiple sensors and can be used for

progress monitoring (Pučko et al., 2018). The most recent advancements in the scope of

mobile distance measurements combine Time-of-Flight sensors with AR displays.

The primary sensor is a Time of Flight camera with similar functionality in comparison to

the laser scanner but works on the whole picture. Therefore it is faster but only provides a

low resolution (Hübner et al., 2020). Besides, it covers a limited range of up to 40m, which

restricts its application on large scale construction sites.

Kopsida and Brilakis (2020) used this device on construction sites for indoor monitoring.

Orientation and registration to a BIM need to be adjusted up front, but the device keeps its

orientation during movement.

Table 2 summarizes all evaluated methods with their respective advantages and limitations.
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Technology Advantages Limitations

Contact based fast, low error rate manual, no continuous tracking

Laser scanning highest accuracy long acquisition times, large files,
registration

Photogrammetry fast acquisition, image data avail-
able

long postprocessing, registration

AR / ToF fast, low processing power, semi-
automated registration

very limited range, low resolution

Table 2 Currently available acquisition methods suitable for construction monitoring.

3.4. Scaling and Registration

As-built point clouds - especially from photogrammetry - do not necessarily possess the cor-

rect scale and orientation. They require translation as well as transformation to be positioned

and oriented at the correct position but also be scaled correctly. Laser-scanned point clouds

are scaled directly during monitoring. Images, however, do not possess the possibility to scale

correctly. Suitable methods are either the use of GPS positioning data from EXIF information,

added by the camera (as done, i.e., by Pix4D).

Another suitable method is the placement of geodetic markers on-site (see Figure 16). These

markers are geodetically measured, allowing the point cloud to be transformed into the actual

geodetic position. While doing the same for the as-designed BIM model, the registration at

the actual position leads to the most accurate results (Tuttas et al., 2017).

If neither geodetic markers nor GPS data is available, the as-built point cloud and the as-

designed model need to be aligned by other means.

Registration can be done manually, by point-to-point picking. With this method, corresponding

points from two geometric data sets that shall be aligned are selected. Accordingly, the

target point cloud can be aligned to the reference point cloud by transformation as well as

translation.

Besides this manual approach, the Iterative Closest Point Algorithm (ICP) algorithm provides

an automated procedure (Bosché and Haas, 2008b). The ICP algorithm can align multiple

point clouds with each other. This is done by minimizing the overall distance between all

points. It is an optimization algorithm that searches for the minimum distance and can be

used to align an as-built point cloud to an as-designed geometry. This geometry has to be

transformed into a point cloud in the first step by randomly placing points on its geometry

surfaces.
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Figure 16 Registration of SfM-based point clouds using geodetic markers.

However, this approach requires both point clouds to have high similarity. If the as-built point

cloud contains many surrounding elements, like scaffolding or formwork, that are not present

in the as-designed model, the ICP algorithm will fail to produce an exact solution (Tuttas et al.,

2017). This can be partially overcome by using the algorithm in combination with AR methods

(Kopsida and Brilakis, 2016).

3.5. Computer Vision and Machine learning

Computer Vision is a research area that focuses on analyzing image and video data with

the help of computers (Barlow, 1983). The goal is to identify objects as humans do and

semantically enrich the visual data with object information. Advances in this field of research

contributed significantly to advances in autonomous driving. Since the basis for this research

are images and videos, high computational loads occur in terms of storage as well as data

processing. Especially Graphics Processing Unit (GPU) power has risen significantly within

the last decade and is one of the critical factors for more advanced CV approaches (NVIDIA,

2018).

3.5.1. Ray-casting
Ray-casting describes a method for determining visible surfaces or points (Bungartz et al.,

2002). A virtual beam is shot from a starting point or observation point onto the observed

object. On a projected image plane, those elements are then displayed, which have the

smallest distance on a virtual line between the observer and the target point. It is a concept

within the method of ray-tracing, however, reflections are neglected as the ray is not followed
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recursively. This method makes it possible to create a three-dimensional map containing

only the visible areas of a room. Thus, weak points can be sorted out from the outset, and

unnecessary calculations can be avoided. Octrees allow spatial filtering of objects (Meagher,

1982). With Octomap, a software library was developed which deals with this problem and,

based on point clouds and the corresponding camera positions creates individual voxels for

defined edge sizes and calculates a probability with which these voxels are visible (Hornung

et al., 2013).

SfM methods provide all necessary data for the implementation of a ray-casting supported

visibility analysis. This analysis is run on the as-designed model at the time of observation

to gain knowledge on the visible elements at this exact time. It is required to gain a precise

overview of the as-planned elements and the expected visibility based on the presence of

said elements. The point of view, as well as the vector for the viewing direction, is available,

allowing to render the view on the model. Detailed explanation on this method is given in

Chapter 7, implementing the Painter’s algorithm for depth analysis (de Berg, 1993).

3.5.2. Machine learning
Humans perceive their surroundings with a combination of vision, feelings, and acoustics

and grasp the context by experience (Gandarias et al., 2019). Computers are currently not

capable of imitating this action comprehensively. Artificial Intelligence (AI) aims to overcome

this issue by providing functions to computers such as learning or problem solving (Poole

et al., 1998). A subset of AI are Artificial neural networks that use neurons that individually

decide, whether or not a specific criteria is fulfilled. These criteria are weighted and need to

be adjusted during learning, which is a crucial part of these networks. Deep learning (LeCun

et al., 2015) and primarily CNNs provide solutions for training computers to learn patterns

and apply them to previously unseen data.

They are applicable to any structured input data like text, images, but also point cloud data.

Based on seen training sets, a ML network can derive assumptions to unknown data. A

particular requirement is a diversified training set. Otherwise, the network can fail to learn on

unknown data (also known as overfitting).

Machine learning algorithms have been increasingly used for effective and efficient image

analysis and object recognition during the last decades. However, image analysis in the

construction sector is a rather new topic.

CNN
A CNN is a particular sub-domain of ML. In Jahr et al. (2018), an overview of the current state

of the art is presented. The underlying methods are also referred to as "Deep Learning".

CNNs are structured in locally interconnected layers with shared weights (LeCun et al., 2015).

Each layer contains multiple neurons. The neurons of the first input layer represent the pixels

of the analyzed image; the output layer comprises the predictable object classes. In between
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the input and output layer, any number of hidden layers can be arranged. These layers use

convolutions as linear operations to reduce the input data for computational effort.

This is particularly important for the training of said networks. During this task, weights are

adjusted, and unnecessary information is filtered to focus on the most interesting parts of a

data-set. As a result, a trained network can be used on previously unseen data.

In 2012, the CNN "AlexNet" (Krizhevsky et al., 2017) achieved a top-5 error of 15.3% in the

ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015). These re-

sults were surprisingly accurate at the time, proving the advantages of using CNN. On this

account, the software industry shifted towards using CNN for all machine learning-based im-

age processing tasks (LeCun et al., 2015). There are different tasks to be solved by image

processing algorithms. Well known problems include classification, where single-object im-

ages are analyzed, object detection, where several objects in one image may be classified

and localized within the image, and image segmentation, where each pixel of an image is

classified (Buduma and Locascio, 2017).

While AlexNet containes 8 hidden layers, GoogLeNet (Szegedy et al., 2015), and Microsoft

ResNet (He et al., 2016) use more than 100 hidden layers. The layers are usually con-

volution layers (sharpening features), pooling layers (discarding unnecessary information),

or fully connected layers (enabling classification) (Buduma and Locascio, 2017; Albelwi and

Mahmood, 2017). Many currently used CNNs rely on the COCO Dataset as it provides a vast

set of labeled images (Andriluka et al., 2014). Facebook’s Mask R-CNN (He et al., 2017) has

provided promising results for machine learning in previous applications. To adapt to different

problems, such as recognizing formwork elements on images, CNNs must be trained. During

training, the connections between specific neurons are increased, while the connections be-

tween other neurons are reduced–the weights connection consecutive layers are weighted.

The training is usually carried out using supervised back-propagation, meaning that the net-

work is fed with example input-output pairs (Buduma and Locascio, 2017). The correct solu-

tion for each input is called ground truth. A significant amount of training data is required to

train a CNN towards reliable predictions, which has to be prepared in a preprocessing step.

Weights of previously trained CNNs can be used to accelerate the training processes. The

fully connected layers are replaced with layers representing the new data and trained with the

new data, to adapt pre-trained CNNs. This process is also known as transfer learning and

supports faster learning by adopting information from previously trained networks.

Image datasets
Analyzing images from construction sites, on the other hand, is a rather new topic. Since

one of the critical aspects of machine learning is the collection of large data sets, current

approaches focus on data gathering. In the scope of automated progress monitoring, Han

and Golparvar-Fard (2017a) published an approach for Amazon Turk based labeling. Kropp
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et al. (2018) tried to detect in-door construction elements based on similarities, focusing on

radiators.

Up to now, the main focus has been on defect detection (for example, cracks) in construction

images (Akinci et al., 2006). Crack detection for asphalt roads has also been the subject of

research (Nhat-Duc et al., 2018). Chi and Caldas (2011) used initial versions of neural net-

works to detect construction machinery on images regarding the application of deep learning

for construction progress tracking. Kim et al. (2013) analyzed images by filtering them to

remove noise and uninteresting elements. They used ML-based techniques for construction

progress monitoring to focus the comparison on relevant construction processes. Hamledari

et al. (2017) applied CV approaches to indoor appliances like electrical outlets and insula-

tion.

Visibility analysis, in combination with Scan-vs-BIM, can help to tackle this issue. In Chapter

7, a new approach for automated labeling of images is presented that uses the semantic BIM

data in combination with the acquired images.

3.6. Scan-to-BIM

In comparison to the extensively described Scan-vs-BIM approach in this chapter, Scan-to-

BIM provides a new approach to point-cloud based reconstruction. Scan-to-BIM describes

methods that interpret generated point clouds and derive a valid as-built BIM model from them

(Xu et al., 2016; Bosché et al., 2015). While Scan-vs-BIM approaches can rely on the as-

designed geometry, this information is not present in Scan-to-BIM approaches. This method

gained extensive research interest, as the vast amount of currently existing buildings does

not have an as-built BIM model. Building owners want to profit from the added value an as-

built model provides (Pătrăucean et al., 2015), especially during operation and maintenance.

This approach uses the same acquisition methods as Scan-vs-BIM methods and also uses

partly similar point cloud processing techniques. In detail, some detection methods on point

cloud-level can benefit both progress monitoring as well as reconstruction.

3.6.1. Geometry fitting
Many research groups tried to solve this problem by fitting Constructive Solid Geometry

(CSG) geometries into the point clouds. Xu et al. (2015) present an approach that tries

to reconstruct scaffolding elements from SfM point clouds. Bosché et al. (2015) focus on

cylindrical Mechanical, electrical, and plumbing (MEP) objects, like pipes, and combine this

approach with Scan-vs-BIM methods to achieve better accuracy.

3.6.2. Segmentation and object detection on point clouds
Point clouds do not provide any geometric primitives, which makes it hard to segment a point

cloud into snippets that represent single objects.
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ML methods on point clouds are the logical next step to obtain semantic data from point

clouds. With PointNet, a CNN is presented, that can be trained on point clouds and detect

pre-trained objects in point clouds (Qi et al., 2017). There are currently no available data-

sets available that provide sufficient accuracy to provide consistent detection results for the

construction industry. To overcome this issue, artificial data could be used. However, this

approach usually has only limited applicability to real-world data (Breu, 2019).

Obrock and Gülch (2020) combine point clouds and images for semantic segmentation. With

this combination and a deep-learning approach, they detect edges and surfaces of walls and

label the point cloud segments accordingly. Armeni et al. (2019) created an extensive, labeled

point cloud data set for indoor office buildings. With the introduced building parser, a large

data-set is provided that includes segmented and labeled point cloud data.

3.7. Summary

As presented in this chapter, construction progress monitoring is under substantial research.

By automating this process, inaccuracies can be avoided, and working hours could be re-

duced. However, a multitude of technologies and methods is required for Scan-vs-BIM ap-

proaches and their enhancements.

In particular, the combination of geometry and semantic data provides additional value to the

Scan-vs-BIM approach. Moreover, CV and ML methods support an SfM-based approach to

get more accurate results for progress estimations.

The following Chapters present a more in-depth state of the art review and introduce all

methods in detail. Starting with the proposed concept in Chapter 4, image-acquisition is

detailed in Chapter 5. The usage of semantic information, as well as CV is introduced in

Chapter 6. Finally, a new method for semantic image labeling using SfM is presented in

Chapter 7.
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4. A concept for automated
construction progress monitoring
using BIM-based geometric
constraints and photogrammetric
point clouds

Previously published as: Braun A, Tuttas S, Borrmann A, Stilla U (2015). A concept for au-

tomated construction progress monitoring using BIM-based geometric constraints and pho-

togrammetric point clouds, Journal of Information Technology in Construction (ITcon) Vol. 20,

pg. 68-79, https://www.itcon.org/paper/2015/5

Abstract

On-site progress monitoring is essential for keeping track of the ongoing work on construction

sites. Currently, this task is a manual, time-consuming activity. The research presented

here describes a concept for an automated comparison of the actual state of construction

with the planned state for the early detection of deviations in the construction process. The

actual state of the construction site is detected by photogrammetric surveys. From these

recordings, dense point clouds are generated by the fusion of disparity maps created with

semi-global-matching (SGM). These are matched against the target state provided by a 4D

Building Information Model (BIM). For matching the point cloud and the BIM, the distances

between individual points of the cloud and a component’s surface are aggregated using a

regular cell grid. For each cell, the degree of coverage is determined. Based on this, a

confidence value is computed which serves as basis for the existence decision concerning

the respective component. Additionally, process- and dependency-relations are included to

further enhance the detection process. Experimental results from a real-world case study are

presented and discussed.
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4.1. Introduction

The traditional, manual construction progress assessment with human presence is still dom-

inating. The main reason is the lack of reliable and easy to use software and hardware

for the demanding circumstances on construction sites. Automating construction progress

monitoring promises to increase the efficiency and precision of this process. It includes the

acquisition of the current state of construction, the comparison of the actual with the target

state, and the detection of variations in the schedule and/or deviations in the geometry.

A BIM provides a very suitable basis for automated construction progress monitoring. A BIM

is a comprehensive digital representation of a building comprising not only the 3D geome-

try of all its components but also a semantic description of the component types and their

relationships (Eastman, 1999). The model is intended to hold all relevant information for all

project participants. In addition to the description of the building itself, it also comprises pro-

cess information, element quantities and costs. A Building Information Model is a rich source

of information for performing automated progress monitoring. It describes the as-planned

building shape in terms of 3D geometry and combines it with the as-planned construction

schedule. The resulting 4D model (Webb et al., 2004) combines all relevant information for

the complete construction process.

Accordingly, the planned state at any given point in time can be derived and compared with

the actual construction state. Any process deviation can be detected by identifying missing

or additional building components. For capturing the actual state of the construction project

in an automated manner, different methods can be applied, among them laser scanning and

photogrammetric methods. Both methods generate point clouds that hold the coordinates of

points on the surface of the building parts but also on all objects, which occlude them.

The main steps of the proposed monitoring approach are depicted in Fig. 17. The minimum

information, which has to be provided by the BIM, is a 3D building model and the process

information (construction start and end date) for all building elements. From this, the target

state at a certain time step t is extracted. Subsequently the target state is compared to

the actual state, which is captured by photogrammetric techniques in this study. Finally,

the recognized deviations are used to update the schedule of the remaining construction

process.

The paper is organized as follows: Section 2 gives an overview on related work in the field.

The proposed progress monitoring procedure is explained in detail in Section 3 and first

experimental results are presented in Section 4. The paper concludes with a summary and

discussion of future work.
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Figure 17 construction progress monitoring schema

4.2. Related work

4.2.1. Monitoring and object verification
Mainly as-built point clouds can be acquired by laser scanning or imaged-based / photogram-

metric methods. In Bosché and Haas (2008b) and Bosché et al. (2010) a system for as-built

as-planned comparison based on laser scanning data is presented. The generated point

clouds are co-registered with the model with an adapted ICP. Within this system, the as-

planned model is converted to a point cloud by simulating the points using the known po-

sitions of the laser scanner. For verification, they use the percentage of simulated points,

which can be verified by the real laser scan. Turkan (2012); Turkan et al. (2013, 2014) use

and extend this system for progress tracking using schedule information, for estimating the

progress in terms of earned value and for detection of secondary objects.

Kim et al. (2013b) detect specific component types using a supervised classification based

on Lalonde features derived from the as-built point cloud. An object is regarded as detected

if the type fits to the type in the model. As above, the model also has to be sampled into

a point representation here. Zhang and Arditi (2013) introduce a measure for deciding four

cases (object not in place, point cloud represents a full object or a partially completed object

or a different object) based on the relationship of points within the boundaries of the object

and the boundaries of shrunk object. The authors test their approach in a very simplified test

environment, which does not include any problems, which occur on data acquired on a real

construction site. The usage of cameras as acquisition device comes with the disadvantage

of a lower geometric accuracy compared to the laser scanning point clouds.

However, cameras have the advantage that they can be used more flexible and their costs

are much lower. This leads to the need for other processing strategies if image data is used.

Rankohi and Waugh (2015) give an overview and comparison of image-based approaches for
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the monitoring of construction progress. Ibrahim et al. (2009) use a single camera approach

and compare images taken over a certain period and rasterize them. The change between

two time frames is detected through a spatial-temporal derivative filter. This approach is not

directly bound to the geometry of a BIM and therefore cannot identify additional construction

elements on site. Kim et al. (2013a) use a fixed camera and image processing techniques

for the detection of new construction elements and the update of the construction schedule.

Since many fixed cameras would be necessary to cover a whole construction site, more

approaches rely on images from hand-held cameras covering the whole construction site as

in our and the approaches in the following.

For the scale of the point cloud, stereo-camera systems can be used, as done in Son and Kim

(2010); Brilakis et al. (2011); Fathi and Brilakis (2011). Rashidi et al. (2015) propose to use a

coloured cube with known size as target, which can be automatically measured to determine

the scale. In Golparvar-Fard et al. (2011) image-based approaches are compared with laser-

scanning results. The artificial test data is strongly simplified and the real data experiments

are limited to a very small part of a construction site. Only relative accuracy measures are

given since no scale was introduced to the photogrammetry measurements.

Golparvar-Fard et al. (2011, 2015) use unstructured images of a construction site to create a

point cloud. The orientation of the images is performed using a SfM process. Subsequently,

dense point clouds are calculated. For the comparison of as planned and as built, the scene

is discretized into a voxel grid. The construction progress is determined in a probabilistic

approach, in which the parameters for threshold for detection are determined by supervised

learning. In this framework, occlusions are taken into account. This approach relies on the

discretization of the space by the voxel grid, having a size of a few centimeter.

In contrast to this, we calculate in the approach presented in this paper the deviation of

point cloud and building model directly and introduce a scoring function for the verification

process. In contrast to most of the discussed publications, we present a test site which

presents extra challenges for progress monitoring due to the existence of a large number of

disturbing objects, such as scaffolding.

4.2.2. Process information and dependencies
Process planning is often executed independently from conceptual and structural design

phases. Current research follows the concept of automation in the area of construction

scheduling.

Tauscher (2011) describes a method that allows automating the generation of the scheduling

process at least partly. He chooses an object-oriented approach to categorize each com-

ponent according to its properties. Accordingly, each component is assigned to a process.

Subsequently, important properties of components are compared with a process database to

group them accordingly and assign the corresponding tasks to each object. Suitable prop-
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erties for the detection of similarities are for example the element thickness or the construc-

tion material. With this method, a "semi - intelligent" support for process planning is imple-

mented.

Huhnt (2005) introduced a mathematical formalism that is based on the quantity theory for the

determination of technological dependencies as a basis for automated construction progress

scheduling. Enge (2010) introduced a branch and bound algorithm to determine optimal

decomposition of planning and construction processes into design information and process

information. These innovative approaches to process modelling form a very good basis for

the automated construction monitoring, but have so far not been applied in this context.

4.3. Concept

The developed methodology comprises the following phases:

During the design and planning phase, the building model and the process schedule is mod-

elled and combined in a 4D model. During construction, the site is continuously monitored by

capturing images of the as built state. These are processed to create point clouds (Section

4.3.1), which are compared to the as-planned building model (as-built – as-planned compar-

ison), that is described in Section 4.3.3. Process and spatial information can help to further

improve the detection algorithms (Section 4.3.2).

4.3.1. Generation of as-built data
The generation of the point cloud consists of four steps: Data acquisition, orientation of the

images, image matching and co-registration. Image acquisition: Photogrammetric imaging

with a single off-the-shelf camera is chosen as data acquisition since it is inexpensive, easy

to use and flexible. When using a camera, some acquisition positions such as on top of a

crane can be reached more easily than when using a laser scanner. In addition, a major re-

quirement is that the image acquisition process shall be conducted without any disturbance of

the construction process. For performing a suitable acquisition, the construction site should

be covered as complete as possible. Orientation: The orientation process is performed using

the structure-from-motion system VisualSfM Wu (2013b) for an automatic generation of tie

points. By means of the algorithm, also the relative orientations of the cameras are deter-

mined.

For the following reasons we also introduce (manually) located control points:

• Having two control points, a distance is introduced and the missing scale is known then.

• With the help of control points, we can combine image groups that could not be orientated

relatively to each other by the usage of only the automated measured correspondences.

• Control points are preferably in the same coordinates system as the one that is used for
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the construction work itself. If this is ensured, the point cloud is already co-registered to

the model (assuming it is having also the same coordinate system).

The joint usage of control points and tie points is depicted in Fig. 18. The red circles are

control points on stable points outside the construction site. The yellow lines represent the

tie points based on automatically detected features which connect overlapping images of one

time step. Depending on the scene content the number of tie points connecting two images

is much higher (tens to hundreds) than it is indicated by the four yellow lines in the figure.

Figure 18 Image orientation process using control points and tie points

Finally, a bundle block adjustment is accomplished to determine the exterior orientation of all

images and the corresponding standard deviations. Image matching: Using either calibrated

parameters or parameters from self-calibration (i.e. determined simultaneously with the ori-

entation parameter), distortion free images are calculated. In this study, a calibration device

has been used to calibrate the camera in advance.

As next step, stereo pairs (image pairs which are appropriate for image matching, i.e. they

shall be overlapping and shall have approximately an equal viewing direction) have to be

determined. This is done based on conditions on the baseline length and the angles between

baseline and the camera axes. Every image of each stereo pair is rectified. That means that

artificial camera orientations are calculated so that the camera axes of the pair are orientated

normal to the base and parallel to each other. The rectified images are resampled from the

original images. These images can then be used for dense-matching.

For every pixel, a corresponding pixel in the other image is searched and the disparity is de-

termined. The disparity is the distance of two pixels along an image row. To determine this,

semi-global-matching (SGM) has been established in the last years (Hirschmuller, 2005). Dif-

ferent implementations are available, e.g. SGBM in the openCV-library or LibTSGM (Rother-

mel et al., 2012), which is used here. By means of the disparity (what corresponds to the

depth of the point) and the exterior orientation of both images, the 3D point can be triangu-

lated.

To get a more robust estimation of the points, to reduce clutter and to estimate the accuracy of

the depth, not simply all 3D-points of all stereo-pairs are combined but overlapping disparity

maps are merged and only 3D-points are triangulated which are seen in at least three images.

The following procedure follows the approach of Rothermel et al. (2012).
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First, an image has to be selected to become a master image. For every pixel of the undis-

torted master image, the disparities are interpolated from all k disparity maps the master

image is involved in. Now for every pixel, n disparity values are available. An interval for the

distance D from the camera centre to the 3D-point is determined by adding/subtracting an un-

certainty value s from the disparity value. For every pixel, the depth values are clustered into

one group if the intervals are overlapping. For calculating the final depth, the cluster having

the most entries is chosen. The final value and its accuracy are determined by a least-square

adjustment as described by Rothermel et al. (2012). The final 3D-point coordinates (X, Y, Z)

are then calculated by


X

Y

Z


= Rt ∗ (n ∗D) +


X0

Y0

Z0


(4.1)

with rotation matrix R (from object to camera coordinate system), unit vector n from perspec-

tive centre to pixel and camera position X0, Y0, Z0. By applying the law of error propagation,

the accuracy of the co-ordinates are calculated, using the standard deviations estimated in

the bundle block adjustment (for R and X0, Y0, Z0) and the determination of the depth (D),

respectively. As last step, the point clouds of all master images are fused. For every point,

the coordinate, the RGB-colour, the accuracy in depth, the accuracy for the co-ordinates and

the ID of the reference image are stored. With the latter information, the ray from the camera

to the point can be retrieved. This is a valuable information to apply visibility constraints for

comparing the as-planned and as-built state.

Co-registration: If the model coordinates as well as the control point coordinates are in a com-

mon construction site reference frame, a co-registration is not necessary. Otherwise, corre-

sponding features that can be determined unambiguously in the model and the images have

to be measured to calculate the transformation parameters. Of course, only building parts

that have been proofed to be built correctly can be used for that. This has to be per-formed

only once in an early time step, since the parameters are constant during the construction

process.

4.3.2. Process information and technological dependencies
In principle, a building information model can contain, besides geometry and material infor-

mation, all corresponding process data for a building. The open source standard file format

for storing building information models and related information is called Industry Foundation

Classes (IFC). This file format is maintained and developed by the BuildingSMART organisa-

tion.
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In Version 4 of the IFC data model, the IfcTask entity was extended by the subtype IfcTask-

Time to represent all process information and dependencies for a building element with direct

relations to corresponding elements (BuildingSmart, 2014). The IfcTask entity holds all task

related information like the description, construction status or work method. The IfcTask is

related to an object using IfcRelAssignsToProduct but could also be assigned to another re-

lating process. The complete time-related information is hold in the sub entity IfcTaskTime.

The information hold here include, next to the process duration, additional process data like

EarlyStart or EarlyFinish. Therefore, this entity gives the possibility to combine geometry and

process data with all monitoring related process information in a convenient way in one file.

Technological dependencies
In current industry practice, construction schedules are created manually in a laborious, time-

consuming and error-prone process. As introduced by Huhnt and Enge (2007), the process

generation can be supported by detecting technological dependencies automatically. These

dependencies are the most important conditions in construction planning. In the following, the

concept of the technological dependencies is illustrated with the help of a simple two-storey

building (Fig. 19).

Figure 19 Sample building used to illustrate technological dependencies

The specimen building has four walls and a slab for each floor. One example for deriving

dependencies from the model is the following: The walls on the second floor cannot be built

before the slab on top of the first floor is finished. The same applies for this slab and the walls

beneath it. These dependencies are defined as technological dependencies. Other depen-

dencies that have to be taken into account for scheduling, such as logistical dependencies,

are defined by process planners and thus cannot be detected automatically.
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A good solution for representing and processing these dependencies are graphs (Enge,

2010). Each node represents a building element while the edges represent the dependen-

cies. The graph is directed since the dependencies apply in one way. By convention, we

define the edges as being directed from an object (predecessor) to the depending object

(successor). Fig. 20 shows the technological dependencies of the sample building in the

corresponding precedence relationship graph.

Figure 20 The technological dependencies for the sample building depicted in Fig. 3 in a precedence relationship graph

Checkpoint components
The graph visualizes the dependencies and shows that all following walls are depending on

the slab beneath them. In this research, these objects are denoted as checkpoint compo-

nents. They play a crucial role for helping to identify objects from the point clouds that cannot

be confirmed with a sufficient measure by the as built point cloud (see Section 4.3.3).

In graph theory, a node is called articulation point, if removing it would disconnect the graph

(Deo, 2004). As defined in this paper, all articulation points represent a checkpoint compo-

nent. An articulation point is an important feature for supporting object detection, since it

depends on all its preceding nodes. In other words, all objects have to be finished before

the element linked to the articulation point can be started to be built. As soon as a check-

point component is detected (represented by an articulation point in the graph), all preceding

nodes can be marked as completed. Doing so, also occluded objects can be detected by the

proposed method.

4.3.3. Comparing as-built and as-planned state
The "as-planned" vs. "as-built" comparison can be divided into several stages. This includes

the direct verification of building components based on the point cloud and the indirect infer-

ence of the existence of components by analysing the model and the precedence relation-

ships to make statements about occluded objects.
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Matching point cloud and object surfaces
For the verification process, which is based only on geometric condition in a first step, a

triangle mesh representation of the model is used. Every triangle is treated individually. It is

split into two-dimensional raster cells of size xr as shown in Fig. 5 a). For each of the raster

cells it is decided independently if the as-built points confirm the existence of this part of the

triangle surface using the measure M. For the calculation of this measure the points within

the distance δd before and behind the surface are extracted from the as-built point cloud. The

measure M is based on the orthogonal distance d from a point to the surface of the building

part, taking into account the number of points extracted for each raster cell and the accuracy

of the points δd, and is calculated as follows:

The points are weighted by their inverse distance. This is represented by the weighting func-

tion g(di) which is shown in Fig. 21 b). The term wi weights the points by their standard

deviation and can take values between 0 and 1. The weight wdmin
for standard deviation

equal or smaller to σmin = dmin is 1. The weight wσd is chosen for a standard deviation hav-

ing the same value as δd. The parameter δd is the allowed distance tolerance for accepting

a point to contribute for the verification of a building part. All σdi that are larger than σmax
get the weight 0. The value δd denotes the mean value of the distances of all points to the

surface within one raster cell. We compareM against a threshold S to decide if the raster cell

is confirmed as existent through the points. S can be calculated based on the chosen values

for δd and xr by defining minimum requirements for a point configuration that is assumed

sufficient (see example in Section 4.4). All parameters are shown and explained in Table 3.

Graph-based identification
To further improve the process of comparing actual and target state, checkpoint components

and especially articulation points from the precedence relationship graph that represents the

technological dependencies help to infer the existence of objects, which cannot be detected

by point cloud matching due to occluded objects. Those objects are present on the construc-

tion site but are occluded by scaffolding, other temporary work equipment or machines.

Identifying articulation points in a graph can be achieved with the following method:

Loop over all existing nodes in the graph and per-form the following routine:
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(a)

(b)

Figure 21 a) Rasterization of a rectangular part of building element, split into two triangular model planes. Each triangle is split
into raster cells of size xr (here in blue), for each raster cell points are extracted using a bounding box of size δd; b) Weighting
function g(di) with dmin = 0.5cm and δd = 2.5cm

Parameter Explanation Typical Value

d Absolute value of orthogonal distance between triangle
plane and point

0− 5cm

µd Mean value of all d within one raster cell 0− 5cm

dmin Smallest value allowed for d for the calculation of M 0.5cm

δd Maximum distance a point can have to support the decision
that a building part exists

2− 3cm

wi Weight for each point based on its standard deviation 0...1

wdmin
Weight for a point having the standard deviation dmin or
smaller

1

wδd Weight for a point having the standard deviation equal to δd 0.8

σmin Points with standard deviation σmin and smaller get the
highest weight wdmin

dmin

σmax Calculated for a linear decreasing weight function (standard
deviation with the weight 0)

> 5cm

Table 3 Parameters and variables
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(a) (b)

Figure 22 a) Snippet of the point cloud; b) Result for the as-built as-plant comparison, model planes marked blue having the
state not built or unknown, model planes marked in red having the state built; The yellow frame shows the area used for
evaluation.

• Remove node

• Depth first search (DFS) to check whether the graph is still connected

• Add node

This routine helps to automatically detect checkpoint components.

4.4. Case Study

For a case study, we monitored a recently built 5-storey office building in the inner city of

Munich, Germany. In regular time intervals, the building was captured by means of the pho-

togrammetric methods as explained in Section 4.3.1. A snippet of a point cloud created by

the procedure is depicted in Fig. 22 a). The accuracy of the points is in the range of one to

a few centimetres. Only points that can be seen from three or more images are regarded.

For co-registration 11 corresponding points were measured in the images and the model on

building parts which were already built.

For the experiment, the model surfaces are split into raster cells with a raster size of xr =

10cm. Points are extracted within the distance ∆d = 5cm. As minimum requirement for S, a

point density of 25 points per dm2 (i.e. in one raster cell) is defined, with all points getting a

maximum weight wi = 1 and having the distance to the plane of δd = 2.5cm. The resulting

threshold for S is 5. In Fig. 22 b) all model planes having at least 50 % raster cells with a

value M larger S are marked in red are regarded as verified, all other are marked in blue

which comprises the states unknown and not built.

Without an exact numerical analysis, the following statements about the quality of the results

can be made. All planes that are marked as built (in red) are built on site, except for one,

which has a formwork around. However, there are several existing building parts, which are

not marked as verified. This has various reasons:

• The acquisition was insufficient, this holds here for the both columns on the right, where
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not enough images were taken for 3D reconstruction.

• Occlusions: For the planes which are on the rear part it is obvious that they are not rep-

resented in the point cloud, since only images have been taken in front of the building.

Another reason are disturbing objects like scaffolding, container, temporary walls or a

tram shelter in front of the building.

• Objects, which are not represented in the model: In this building model the insulation

in front of the ceiling slabs are represented, but not the concrete slab itself. Since the

insulation was not yet installed the areas of the ceiling slabs are not verified, but this is

correct in this case.

For the part marked in yellow in Fig. 22 b) an analysis based on the number of triangles which

face to the acquisition positions in front of the building is performed. The results are shown in

Figure 23. They show what was mentioned above: Nearly all triangles that are classified as

built are detected correctly (user’s accuracy for "built" is 92.3%), but there is a larger number

of triangles that have been classified as not built, even if they already exist.

Figure 23 Confusion matrix for the evaluation of the area marked with the yellow frame in Fig. 21 b).

As discussed in Section 4.3.2, additional information can help to identify objects that cannot

be detected but must be present due to technological dependencies. Fig. 24 shows the

corresponding precedence relationship graph for the monitored building in this case study. It

has been generated by means of a spatial query language for Building Information Models

(Borrmann, 2007; Daum and Borrmann, 2013). For the generation, the query language was

used to select touching elements.

In a further refinement, the graph was produced by ordering the elements in their respective

vertical position and by filtering for supporting components. The mentioned articulation points

(Section 4.3.2) are clearly visible. In this case, these nodes represent the slabs of each floor,

as they are crucial building elements that are necessary for all subsequent parts of the next

floor. When a slab is detected and correctly identified, all predecessors in the precedence

relationship graph are set to the status "built". Therefor a statement is possible, even for

objects that were not identified through visual detection.
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Figure 24 precedence relationship graph with corresponding BIM

4.5. Discussion and future work

This paper presents a concept for photogrammetric production of point clouds for construction

progress monitoring and for the procedure for as-planned – as-built comparison based on the

geometry only.

Additionally possibilities to improve these results using additional information provided by the

BIM and accompanying process data are discussed. For the determination of the actual state,

a dense point cloud is calculated from images of a calibrated camera. To determine the scale,

control points are used, which requires manual intervention during orientation. The evaluation

measure introduced for component verification detects built parts correctly but misses a larger

number of them because of occlusion, noisy points or insufficient input data. Thus there is the

need to extend this geometrical analysis by additional information and visibility constraints.

Future research will target at achieving greater automation of image orientation, e.g. by

automatically identifiable control points. The as-planned vs. as-built comparison can be

improved by additional component attributes provided by the BIM, such as the colour of the

components. The automated generation of precedence relationship graphs will be addressed

by a spatial query language approach.
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The proposed methods and concepts presented in Section 3 introduce new possibilities for

an enhancement in progress monitoring. Currently, the effort for photogrammetric techniques

and object detection is still very high and needs to be investigated further to improve those

methods. However, they can offer a variety of new possibilities for planners and on-site

personnel, including:

• Time for photo-documentation can be reduced to a very low level, since the monitoring

process is based on images.

• Automated process optimization can be pursued directly from the results of the process

monitoring.
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5. Acquisition and consecutive
registration of photogrammetric
point clouds for construction
progress monitoring using a 4D
BIM

Previously published as: Tuttas, S., Braun, A., Borrmann, A. et al., Acquisition and Con-

secutive Registration of Photogrammetric Point Clouds for Construction Progress Monitoring

Using a 4D BIM, PFG (2017) 85: 3. https://doi.org/10.1007/s41064-016-0002-z

Abstract

In construction progress monitoring, a site must be observed many times throughout the con-

struction process. Aiming at an automatic procedure for progress monitoring using 3D point

clouds created from photogrammetric images, these have to be compared to a reference

building model created from a Building Information Model (BIM). To accomplish this task,

point clouds must be acquired at many acquisition dates and subsequently be co-registered

with the building model. This paper proposes a co-registration system for consecutive reg-

istration that proceeds in three main steps: (I) Installation of photogrammetric control points

and determination of their positions in the construction site coordinate system; (II) creation

of an initial image block from these control points, which is co-registered with the building

model; (III) registration of images from later acquisition dates based on the initial image block.

Therefore, the images at consecutive time steps are registered by a Structure-from-Motion

(SfM) process. The approach is evaluated in two scenarios with different acquisition tech-

niques; namely, terrestrial with a hand-held camera and aerial with an Unmanned Aerial

Vehicle (UAV). In total 14 acquisitions are investigated. In both scenarios the consecutive

registration was successful. The registration accuracy is evaluated based on reconstructed

planes which occur in several acquisitions and based on the control points, and was found to

be ∼3 to 5 cm, demonstrating the applicability of the proposed approach.
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5.1. Introduction

5.1.1. Motivation
In contrast to industrial production, the processing steps on construction sites are extremely

dynamic. Reasons for this are boundary conditions like the weather, which are difficult to

predict, the strong dependency between single process steps and the lack of strict process

sequences as they exist in assembly line production. Because of the many external depen-

dencies the actual execution of the construction work usually deviates from the planning.

Therefore, the monitoring of the construction process is important for recognizing delayed

or premature construction steps. The deviations from the planning affect the overall organi-

zation, the schedule and the calculated costs and can lead to strong delays and a budget

overrun. These effects can be mitigated by early detection of the deviations by a monitoring

system. The classical manual recording of the sequential construction steps by a construction

diary is labor-intensive, error-prone and allows no transparent evaluation of the productivity.

Because of this, methods for the automatic area-wide capturing of the changing 3D structure

of a construction site over time are developed in this DFG funded project. The goal is to

compare photogrammetric acquisitions of the as-built state automatically with the as-planned

state requested to a 4D Building Information Model (BIM). A BIM is a digital representation of

a planned or built building. A BIM contains the 3D geometry, process information and sched-

ule, semantic classification of building elements as well as their relations. The BIM stores

information for all project partners during the whole life cycle of a building from the early plan-

ning and design phase over the construction phase, the operation and maintenance phase

to renovation or demolition. In a BIM the object-oriented 3-dimensional geometric model is

linked to temporal information like realization periods or predicted completion dates. Addition-

ally, quantities and costs can be modeled. Based on the BIM, several analytic and simulation

tools (energy consumption, cost estimation, visualizations, structural analysis, ...) can be ap-

plied. The available geometric and semantic data is also used for construction site monitoring

and its results are used to keep the BIM up-to-date.

5.1.2. As-built as-planned comparison
For construction progress monitoring the BIM (Figure 25a) has to be compared to the actual

state (Figure 25b) at the date of an acquisition ti. Figure 26 shows the components and

general procedure for the monitoring. The as-planned state of the construction is represented

by the BIM. The as-built state is created from photogrammetric images, which are processed

to create a 3D point cloud. In the following, this paper concentrates on the steps for generating

an as-built point cloud to be used for the comparison process. The comparison between as-

built and as-planned state is always performed when a new acquisition is available. The

planned state is extracted for the respective date from the BIM. For each building element, it

is checked if the point cloud proofs its existence. Based on the detected building elements,

statements on the overall progress can be derived. The results are used to update the BIM,

and particularly to optimize the schedule.
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(a) (b)

Figure 25 3D model of the building (a) and overview image in the construction phase (b).

Figure 26 General procedure for construction progress monitoring using photogrammetric point clouds and BIM.
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A result of the as-built as-planned comparison is shown in Figure 27. Figure 27a shows the

evaluation at the end of construction, elements labeled in green are built before the planned

date, gray elements are built in time, while red elements are built with delay. Figure 27b

shows the comparison result for one acquisition date. The elements are labeled based on

the schedule information and the ground truth. Details on the as-built as-planned comparison

are described in (Tuttas et al., 2015), details on the labeling scheme are illustrated in (Braun

et al., 2016).

(a) (b)

Figure 27 Example for results retrieved from an as-built as-planned comparison. (a) Building elements are labeled in green
(before schedule), gray (in time) and red (delayed). (b) Detection result for one acquisition date, elements are labeled
according to schedule and ground truth.

5.1.3. Consecutive registration
The abovementioned process must be fed with multiple consecutive acquisitions, and the

reconstructed 3D point clouds have to be correctly aligned with high precision to the previous

acquisitions and the BIM. In particular, co-registration errors should not lead to indicated

building construction differences. In general, three co-registration tasks can be distinguished

for consecutive registration as follows:

1. Co-registration of data acquired on the same date, for creating a consistent 3D-point

cloud on that date. The relative orientation of the images has to be determined.

2. Co-registration of the complete point clouds (processed by Step (i)) acquired on differ-

ent acquisition dates.

3. Co-registration of the point clouds and the building model.

The order and implementation of these tasks can be varied. The device positions can be

determined from targets or markers with known coordinates (in a local or global coordinate

system), which must be identified in the data. Corresponding features (points, lines, planes)

are necessary for the co-registration of data acquired at the same time in a relative coordinate
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system. A reconstructed scene is linked to the coordinate system of the building model by

identifying corresponding points in the model and in the point cloud or images. This is not

necessary if the control points are already specified in the model coordinate system. If a

navigation unit is available, the data can be directly geo-referenced. Continuous monitoring

requires a correct and stable co-registration at each date of the data acquisition. In the

following sections we motivate and describe our approach for the co-registration of images

on construction sites.

5.1.4. Structure of the paper
The remainder of this paper is structured as follows. In the following Section 5.2 an overview

of works on construction site monitoring are given, whereby the focus is on the co-registration

methods. Based on the review our contribution is outlined. Section 5.3 shows the procedure

for the generation of dense as-built point clouds based on oriented images. Section 5.4

describes our approach for the co-registration. Section 5.5 introduces the two test sites used

for evaluation. Section 5.6 presents the results on the test sites considering the success

rate and geometric accuracy. The results are discussed in Section 5.7 and future work is

proposed in Section 5.8.

5.2. State of the art and contribution

In general, works on construction site monitoring can be distinguished by the sensor tech-

nology which is used. Common sensors for construction site monitoring are laser scanners

(Bosché et al., 2009, 2010; Bosché, 2012; Golparvar-Fard et al., 2011; Kim et al., 2013a;

Maalek et al., 2015; Turkan et al., 2013; Turkan, 2012; Turkan et al., 2014) and cameras

(Golparvar-Fard et al., 2011, 2015, 2011; Kim et al., 2013b; Rankohi and Waugh, 2015; Son

and Kim, 2010). An essential step in current research on construction monitoring is co-

registration between the building model and a point cloud. Registration is most commonly

performed by Iterative-Closest-Point (ICP) algorithm (Besl and McKay, 1992) or some variant

of it (Pătrăucean et al., 2015).

The co-registration of data from laser scanning is addressed in the following works: (Bosché

et al., 2010) used ICP to co-register a laser-scanned point cloud with the mesh of a building

model. (Turkan et al., 2013; Turkan, 2012; Turkan et al., 2014) adopted the same approach to

progress monitoring. In a later study a modified ICP algorithm based on corresponding planes

is presented, but only for coarse registration (Bosché, 2012). It is suggested to fit planes to

the point cloud and assign them to corresponding planes in the model. Also (Kim et al.,

2013a) use an adapted ICP to register each individual component after a coarse registration

step. The ICP approach of (Tang and Rasheed, 2013) rejects points with an overly large

data-model difference. Laser scanning point clouds can also be co-registered with a model

using targets. (Zhang and Arditi, 2013) adopted this approach but did not explain how the

targets and BIM coordinate system were aligned.
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The co-registration of image data on construction sites has been addressed in the following

works: In Han et al. (2015) and Karsch et al. (2014) corresponding points in a reference

camera and the BIM were manually selected for registration. In (Golparvar-Fard et al., 2011)

corresponding points are also manually selected in an image and the BIM. They also sug-

gest (but did not show) the alternative use of surveying points. (Kim and Kano, 2008) used

fixed cameras whose positions were determined by direct surveying with a total station. An

example of direct georeferencing using Unmanned Aerial Vehicle (UAV) and Global Naviga-

tion Satellite System (GNSS) data is given in (Zollmann et al., 2014). The accuracy of this

approach depends on the GPS conditions. Positional accuracy below one meter is possible

only by using Real Time Kinematic (RTK), which requires additional data for correction. (Son

and Kim, 2010) use an ICP-based approach to co-register point clouds from a stereo camera

system.

We assume that ICP can not be used to perform the co-registration. This has two reasons:

1. At the beginning of the construction site no, or only very few parts of the building are

already existing, that means that there is just nothing to co-register with.

2. It can not be assured that the assumption inherent for applying ICP can be ensured on

a dynamic scene like a construction site. For ICP it is assumed that the parts which

have to be co-registered are the same, but there are two reasons why this cannot be

assured: It can be neither guaranteed that the model represents the correct state for

the current acquisition (since this is what shall be verified by the monitoring system)

nor that consecutive point clouds have included a sufficient number of surfaces which

are identical.

In this paper we investigate the consecutive acquisition and co-registration of photogrammet-

ric point clouds for a large number of acquisition dates. Photogrammetric point clouds for

construction site monitoring have so far only investigated by the group of Goldpavar-Fard et

al. (Bae et al., 2015; Golparvar-Fard et al., 2011, 2015; Ham et al., 2016; Han et al., 2015;

Karsch et al., 2014).

The approach for co-registration described in (Han et al., 2015) and (Karsch et al., 2014) is

closest to ours. They propose to have a single anchor camera which is aligned manually

based on the model. In contrast to this we propose to do a manual measurement of control

points on the first acquisition date and align the images of the following acquisition date

based on the acquisition of the first one. In (Han et al., 2015; Karsch et al., 2014) the mesh

model is used to support the registration process. Our approach is designed to avoid this,

because of the same reasons as we want to avoid ICP registration. In (Karsch et al., 2014)

the accuracy of the co-registration is evaluated based on the camera positions but not on the

deviations between model and point cloud. Also it is not shown how many acquisitions dates

could be co-registered and what kind of construction stages were used. In contrast to other
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works on construction site monitoring we evaluate the acquisition and co-registration on a

large number of acquisitions in different stages of construction. Many works often show only

one single acquisition or results only for the ground floor of the buildings. The studies which

investigate a larger number of acquisition sets, e.g., (Turkan et al., 2013), perform an ICP at

every acquisition date, differ from our tests as they are based on laser scanning data and

have a lot of building elements available which are already finished.

5.3. Point-cloud-generation

This section describes the generation of a dense point cloud from oriented images as it is

used to create the as-built point clouds in this paper. First, image pairs for dense stereo

matching have to be selected. For that the following criteria are considered:

• maximum and minimum baseline

• maximum angle between camera axes

• maximum deviation from a right angle from the angle between baseline and the camera

axes (avoids that cameras are located behind each others are used)

• maximum angle between baseline and x- or y- axis of the camera coordinate system

(avoids that cameras are used having a strong tilt)

Every image is selected once as master image. For all master images all potential match

images are selected based on these criteria. To avoid that a image receives two (or more)

match images which are close together (i.e., below the minimum baseline), only this image is

selected which has the lowest sum of the angle deviation criteria. For all remaining k match

images SGM matching (Hirschmuller, 2008) is performed using LibTSGM (Rothermel et al.,

2012) and k disparity maps are calculated. The resulting disparity maps are fused based

on a scheme which mainly follows the one presented in (Rothermel et al., 2012). For every

pixel of the undistorted master image, the disparities are interpolated from all disparity maps.

Now for every pixel, k disparity values are available. An interval for the distance D from the

camera center to the 3D-point is determined by adding and subtracting an uncertainty value

s from the disparity value. For every pixel, the depth values are clustered into one group if the

intervals are overlapping. For calculating the final depth, the cluster having the most entries

is chosen. Only clusters are retained which have at least two depth values (i.e., the point

will be calculated from at least three image rays). The final value for D and its accuracy σD
are determined by a least-square adjustment as described by (Rothermel et al., 2012). The

focal lengths as well as the image coordinates are fixed here for the estimation of D. The final
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3D-point coordinates (X, Y, Z) are then calculated by
X

Y

Z


= RCam→Obj · (n ·D) +


X0

Y0

Z0


(5.1)

with rotation matrix R, unit vector n from perspective center to pixel and camera position

X0, Y0, Z0. By applying the law of error propagation, the accuracy of the coordinates are

calculated, using the standard deviations estimated in the bundle block adjustment (for ω, φ, κ

and X0, Y0, Z0) and in the determination of the depth (D), respectively. As last step, the point

clouds of all master images are fused and filtered.

For filtering a voxel grid with cell size v is created. First all points are removed which are the

only one in a voxel grid cell. In the remaining cells only the best point is retained. For that

the point generated from the most rays is selected. If there are more points having the same

amount of rays, the point with the smallest value σD is chosen.

5.4. Co-registration procedure

5.4.1. Concept
The proposed registration approach proceeds in three major steps, as depicted in Figure 28:

1. Installation of photogrammetric control points and determination of their coordinates

in the construction site coordinate system using the control points of the surveying

network.

2. Creation of an initial bundle block incorporating these photogrammetric control points.

3. Acquisition of the image blocks at the required dates and integration to the existing

image block of the previous acquisition date.

The tasks performed in each of these steps are outlined below:

(I) The photogrammetric control points must be positioned such that they are visible in the im-

ages of the initial block, and can be simultaneously measured by the total station and leveling.

Ideally, the control points will be mounted where they are visible during the whole construction

process, and are unlikely to be removed or destroyed in the construction activity. If possible,

they should be installed outside the active area. Although the markers are required only in the

first step of the approach, they provide important backup if the consecutive registration fails

at a later acquisition date. The second task is the measurement itself. The photogrammetric
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Figure 28 Schemmatic of the general procedure: I: Generation of a network of photogrammetric markers in the coordinate
system of the construction site; II: The initial Bundle Block Adjustment (BBA) incorporates the coordinates of the
photogrammetric markers as ground control points and the tie points created in the Structure-from-Motion (SfM) process; III:
Consecutive registration of images based on the exterior orientations calculated in the previous step

markers are measured by surveying using the surveying points available at the construction

site.

(II) The images for the initial block are captured within this step. For a stable determination of

the coordinate system, the photogrammetric control points must be uniformly distributed with

respect to the image block. The captured areas should include areas which will be unchanged

during the construction process, or at least until the next acquisition. In this step, the image

coordinates of the control points are (manually) measured once in all images.

(III) This step captures the images documenting the construction progress, recognizing that

a) the changed areas are covered with overlapping images, and b) unchanged areas are also

captured.

In steps II and III the image orientations incorporating the control point information must be

determined. For this purpose a Structure-from-Motion (SfM) process, which recovers the ex-

terior orientation (pose of the camera) and the sparse 3D scene geometry from (unordered)

image sequences (Koutsoudis et al., 2015; Snavely et al., 2006; Wu, 2013a), and an addi-

tional (BBA) for integrating the control point coordinates is employed. The above tasks are

processed on three types of points:
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• control points - surveying network

• control points - photogrammetric marker and/or natural points

• tie points - based on point correspondences e.g., from SIFT (scale-invariant feature trans-

form) features (Lowe, 2004)

Figure 29a shows two control points in an UAV image acquired from an approximate height of

25m. The photogrammetric marker is clearly visible and measurable. The rough position of

the surveying point is identifiable, but the actual marker, a chisel mark, cannot be recognized.

Figure 29b shows "natural" tie points in an inner city scenario. For this kind of control points,

features must be selected which can be clearly and unambiguously identified in the images

from different viewing directions. Additionally they must either be measureable reflectorless

with a total station or identifiable in a laser scanning point cloud.

(a) Photogrammetric marker (yellow arrow)
and surveying point (green arrow)

(b) "Natural" control points,
marked with red circles (window

corners)

Figure 29 Types of control points

Tie points are generated using a feature detector (and descriptor) such as SIFT. These points

are selected by inlier matching of the image pairs during the SfM process.

Since the characteristics of the individual construction site and the acquisition geometry can

vary strongly, adaptions to the general approach may be necessary. The experiments in Sec-

tion 5.5 can be distinguished by their scenario. The first test site (A) is an urban construction

site with enclosing streets and buildings which is acquired by a hand held camera. In such

terrestrial acquisition the main viewing direction is horizontal. Therefore, the markers must

be mounted on vertical walls (such as surrounding building) so that they face the camera. If

markers cannot be mounted, natural features such as window corners can be used. It has to

be taken care that always unchanged buildings in the surrounding are acquired. The second

test site (B) has a free surrounding and is acquired by an UAV. Here, where the viewing direc-

tion is towards the ground, the markers can be mounted on the ground, facing the camera.

The monitored area should be wider than actually needed and include multiple man-made

structures. This recommendation acknowledges that vegetation areas are not suitable for co-
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registration of images from different acquisition dates, or even (in many cases) from images

acquired at the same time.

5.4.2. Proposed procedure
Above, the requirements for the data acquisition are described. Now the processing steps of

the resulting data are discussed. The surveying step (step I in Figure 28) provides the coor-

dinates of the control points. Regardless of the scenario, final registration in the construction

site coordinate system is performed by the SfM process and BBA at each acquisition date.

Among the many available SfM implementations (Koutsoudis et al., 2015) the well estab-

lished Visual Structure from Motion (VSfM) tool (Wu, 2013a) is selected here. As features

the well known SIFT features are adopted there. The image coordinates of the tie points

(obtained from the SIFT features correspondences), 3D-coordinates and image orientations

in an arbitrary coordinate system are provided.

For the initial bundle (step II in Figure 28), the images of the first acquisition date are pro-

cessed by SfM. To approximate the exterior orientation in all images, at least one image with

known position and orientation and another images with known position in the construction

site coordinate system are required. The initial bundle block adjustment (cf. Equation 5.2)

requires the following input parameters (where n, nP and nCP denote the number of images,

tie points and control points, respectively):

xij : Image coordinates comprising the manually measured coordinates of the control

points and the SfM-determined image coordinates of all images in the initial image

block.

XP : Coordinates of all 3D points reconstructed during the SfM processing.

XCP : Coordinates of the photogrammetric control points obtained by surveying.

Ti: Translation of image i, approximated from the SfM results and at least two images

registered in the target coordinate system.

Ri: Rotation of image i, approximated from the SfM results and at least two images reg-

istered in the target coordinate system.

Ik: Interior orientation of camera k. These parameters can be fixed, if the camera has

been calibrated in advance, or estimated during the bundle adjustment.

The initial block adjustment is given by the following, (where estimated parameters are marked

with a hat):

min
n∑
i=1

nP+nCP∑
j=1

‖xij − f(X̂j,P ,Xj,CP , T̂i,t0 , R̂i,t0 , Ik)‖2 (5.2)
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The first adjustment determines the positions of the cameras in the target coordinate sys-

tem. From this result a dense point cloud can be calculated (as described in Section 5.3)

which is co-registered with the building model and can directly be used for the as-built - as-

planned comparison. It is intended to register images of the next acquisition date in the same

coordinate system. However, the control points are not measured manually in the subse-

quent images. Instead, the procedure searches for correspondences among images of the

previous, registered, and new image sets.

To this end, the images acquired at times t-1 and t are integrated in a single SfM process. If

there are sufficient images with features existing at both acquisition dates, the exterior orien-

tations of all images can be determined in a common coordinate system. As the orientations

of the previous acquisition date are known, the exterior orientations of the new images can be

calculated. In the final bundle adjustment, the exterior orientations of the previous step are

fixed to ensure a consistent coordinate system. They are selected based on their estimated

accuracy in the previous bundle adjustment.

The input parameters to the consecutive bundle block adjustments (cf. Equation 5.3) are

defined below:

xij : Image coordinates of the common SfM of two acquisition dates.

XP : Coordinates of all 3D points reconstructed during the SfM processing.

Ti,t−1: Fixed translation of image i of the previous acquisition, obtained in the previous bun-

dle block adjustment.

Ri,t−1: Fixed rotation of image i of the previous acquisition, obtained in the previous bundle

block adjustment.

Ti,t: Translation of image i, approximated from the SfM results and the known orientations

of the previous bundle adjustment.

Ri,t: Rotation of image i, approximated from the SfM results and the known orientations of

the previous bundle adjustment.

Ik: Interior orientation of camera k.

Consecutive blocks are then adjusted as:

min
n∑
i=1

nP∑
j=1

‖xij − f(X̂j,P ,Ti,t−1,Ri,t−1, T̂i,t, R̂i,t, Ik)‖2 (5.3)
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In the above procedure, images are added to the SfM system in an unordered manner and

correspondences are searched for every image pair. The cameras in the experiments have

been calibrated in advance and are fixed for all BBA.

When different parts of the construction site are covered by images with insufficient overlap,

the whole process can be separated into multiple blocks that are processed independently. In

this case, the process of Figure 28 is performed multiple times between two consecutive time

steps. This requires only that all images are oriented with respect to the same initial block. If

two consecutive acquisition dates cannot be connected, the images can still be registered by

one of the following methods: If (at least three, but better more) control points are visible in

the image (sub-block), their image coordinates can be manually measured and the position of

the images in the construction site coordinate system can be calculated. Alternatively, these

images can be registered using an image block of an earlier date, which may provide more

images.

5.5. Experiments

The proposed approach was validated in experiments at two test sites, labeled A and B.

Subsections 5.5.1 and 5.5.2 describe the geometric and temporal aspects of the test sites,

respectively. The geometric aspects of each experiment are characterized by the selected

acquisition device and geometry, a short description of the test site, types of control points

and realization of the initial state. Subsection 5.5.3 describes the setup of control points

network at Test Site B.

5.5.1. Geometric aspects
Test Site A - Karlstrasse

Acquisition: Terrestrial, hand-held SLR camera

Camera parameters: c = 24mm, sensor size 36 x 24mm (4256 x 2832 pixel)

Description: Test Site A is an inner city construction site with limited surrounding space.

Streets and buildings enclose all sides of the site. The images were taken

with a hand-held camera from the sidewalk of the enclosing streets and from

elevated positions on the crane and surrounding buildings.

Control points: The control points were extracted from a very dense point cloud acquired by

laser scanning during the earlier excavation phase. As control points window

corners of the surrounding buildings (cf. Figure 29b) as well as four rotatable

laser scanner targets are used. The latter are used for the evaluation shown in

Table 7.
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Initial state: The initial state comprises data acquired on June 27, 2013. These images best

fulfilled the initial-state criterion, as they were obtained from all locations at the

test site. All other acquisition dates, both backward and forward in time, were

registered from this initial time position.

Typical camera positions and images of this test site are shown in Figure 30.

Figure 30 Camera configuration and example images on Test Site A with hand-held camera. The gray block represents a
coarse model of the building. Images are acquired on the ground level and are supplemented by images from elevated
positions on adjacent buildings and the crane.

Test Site B - Haus für Kinder

Acquisition: UAV, nadir and oblique images (Images were acquired as a photogrammetric

block with overlapping stripes at two different heights. Additionally, oblique im-

ages were taken)

Camera parameters: c = 18mm, sensor size 23.5 x 15.6mm (6000 x 4000 pixel)

Description: Test Site B is a peripheral construction site with neighboring houses at one side

and grassland on the other.

Control points: Photogrammetric markers were installed around the construction site and

measured by a total station and leveling.

Initial state: The initial state was a combination of the first two acquisitions.

Typical camera positions and images of this test site are shown in Figure 31.

5.5.2. Temporal aspects
Figure 32 presents the timelines of the acquisition dates at both sites. At Test Site A (Fig-

ure 32a), images were acquired approximately monthly. At Test Site B (Figure 32b), images
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Figure 31 Camera configuration and example images on Test Site B with UAV acquisition. The gray block represents a coarse
model of the building. Images are acquired in nadir view from two different heights and in oblique view.

were also acquired approximately monthly but with a longer interval between the last two

acquisitions.

a)

b)

Figure 32 Acquisition dates at a) Test Site A and b) Test Site B

5.5.3. Control points network
Figure 33 shows the geodetic network of Test Site B, together with a 2D plan of the building.

The figure depicts also the position of the surveying points and photogrammetric markers

in the network, along with the point numbers (see Table 11). The network was split into a

positional and a height network.
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Figure 33 Surverying Network and 2D plan of Test Site B. Red dots: photogrammetric control points; black triangles:
surveying points; blue lines indicate the tachymetric measurements
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5.6. Results

5.6.1. Remarks on results
The results are visualized and evaluated based on different criteria. For both test sites there

are the sections "Estimated point accuracy", "Registration quality" and "Control points net-

work".

The first section gives the estimated accuracies of the dense point clouds estimated as shown

in Section 5.3. For all evaluations the point clouds are filtered using a voxel cell size of

v = 1 cm.

The second section shows the results of the co-registration, which is divided in the parts suc-

cess and accuracy. First it is shown for which consecutive acquisition dates the registration

was successful. For this purpose, the timelines shown in Section 5.5 are complemented with

the results of the consecutive registration. It is depicted if the registration was successful

(green), not successful (red) or partly successful (yellow). In the partially successful cases,

the registration was successful for most of the images, but some images required manual

interaction; for example, by measuring the image coordinates of some control points in non-

registered images. The initial steps are indicated by blue markers at their respective dates.

The dates of correctly registered images are marked in black. Light blue marks indicate that

the images were successfully registered at that date, but required some manual intervention.

Secondly, the accuracy is evaluated. For that planes of building elements are selected from

all acquisition dates which are built according to the ground truth. Furthermore only planes

are selected which are at least 3m2 large and are covered at least by 80 % with points. A

plane is fitted to the points extracted around the model plane. The maximum orthogonal dis-

tance between this plane and the model plane within the area of the building element surface

is calculated. Also the deviation of the plane normal to the normal of the model plane is

determined. Finally planes are selected which occur in at least two acquisition dates. Since

the model planes can also have a deviation from the true position also the variation of the

distance within the different acquisition dates is evaluated as measure for the stability of the

co-registration.

The third section evaluates the accuracy based on the control points. For verifying the stability

of the photogrammetric control points and the registration solution the image coordinates

are measured manually in the images acquired on an acquisition after some steps of the

consecutive registration. The 3D coordinates of the control points are then estimated by BBA

(Equation 5.4) and compared to the coordinates which were the input to the initial bundle

block.

66



min

n∑
i=1

nP+nCP∑
j=1

‖xij − f(X̂j,P , X̂j,CP , T̂i,tn , R̂i,tn , Ik)‖2 (5.4)

a)

b)

Figure 34 Results of consecutive registration for a) Test Site A and b) Test Site B. The symbols and their colors are explained
in Section 5.6.1
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5.6.2. Test Site A
Estimated point accuracy
In Figure 35 point clouds and as-planned model for three selected acquisition dates are

shown. In Table 4 the estimated accuracy for all points are given. The results are split based

on the number of stereo pairs the points are reconstructed from (number of rays = number

of pairs + 1). For Test Site A the mean value is around 3 cm for the 3D point accuracy and

around 1 cm for the depth accuracy.

Figure 35 Point cloud of three selected acquisition dates (right) and the corresponding as-planned model (left) for Test Site A.

Registration quality
Figure 30 shows the camera positions at the initial state. The results of the consecutive

registration are visualized in Figure 34a. As explained in Section 5.5.1 (Initial state), the initial

step was not the first step for Test Site A. In this case the experiment was also performed in

the backward direction; that is, an earlier acquisition date was registered from the following
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mean [cm] median [cm] std [cm] number

Pairs 3D D 3D D 3D D of points

all 2.6 1.2 1.4 0.7 2.9 1.5 59 555 741

2 2.9 1.1 1.4 0.6 3.1 1.5 33 638 156

3 2.2 1.4 1.4 0.9 2.4 1.5 21 837 548

4 3.0 1.3 1.7 0.8 3.3 1.3 3 227 209

5 3.5 1.3 2.9 1.1 3.6 1.1 852 557

>5 1.3 0.7 1.3 0.6 0.2 0.1 271

Table 4 3D point accuracy (3D) and depth accuracy D for the dense point clouds of Test Site A

acquisition date. In the figure, this situation is marked by a backward-pointing arrow. Also,

at this test site, the processing was split into five sub-blocks, indicated by the numbers in the

status circles. One of the blocks was skipping one of the acquisition dates. The initial state

and the two earliest states are processed as a single image block.

The accuracy of the co-registration is assessed with the values given in Table 5. The values

are created as described in Section 5.6.1. The RMS of the plane fits ranges from 0.5 to 1.5

cm and is 1 cm on average. The mean variation, i.e., the difference in the maximum distance

to the reference plane, is 2.9 cm, the mean normal deviation is 0.6◦.

Control points network
Four control points are measured in the images acquired on 13 February (i.e., the first ac-

quisition date) and compared to the control point coordinates as they were introduced to the

initial BBA on 26 July. The results are shown in Table 7.

69



max deviation [cm] max variation

15.05. 12.06. 27.06. 17.7. 06.08. 04.09. [cm]

0.7 - - 1.8 - - 1.0

2.4 - 1.2 - - - 1.2

- - - 1.9 - -3.5 5.4

- - - -1.9 -4.5 -3.8 2.6

- 1.2 - -2.0 -4.2 - 5.4

- - - - 2.5 2.8 0.3

- - 0.9 - 3.5 2.0 2.6

- - 0.8 - 3.9 3.0 3.1

- - 2.1 2.6 3.5 2.9 1.4

- - 2.0 2.7 3.2 1.7 1.5

- 0.3 -1.3 0.9 -2.1 -3.4 4.3

- -0.7 -1.2 0.9 -1.1 -4.3 5.2

- 0.5 -1.1 -1.2 -1.4 - 2.0

- 0.8 -0.7 -0.6 -0.7 -5.5 6.4

- - - -0.7 - -3.0 2.4

- - - - -3.6 -1.5 2.1

- - -1.0 - - 0.7 1.7

- - 1.1 - - 2.7 1.6

- - 1.5 2.8 -1.2 -1.5 4.4

- - - 1.3 - -1.4 2.7

- - - -3.0 -3.2 - 0.2

- - - -1.7 2.3 - 4.0

- - - - -5.7 -2.7 3.0

- - - - -5.5 -2.6 2.9

- - - - -0.9 1.4 2.3

- - - - -1.9 2.5 4.4

Table 5 Deviations (variation) between point cloud and as-planned model for Test Site A. Planes are used which are visible at
least on two acquisitions dates. The calculation of the values is described in detail in Section 5.6.1. No reappearing planes
could be reconstructed at the first two acquisitions.
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deviation [deg] max deviation

15.05. 12.06. 27.06. 17.7. 06.08. 04.09. [deg]

0.285 - - 0.651 - - 0.651

0.503 - 0.470 - - - 0.503

- - - 0.658 - 0.810 0.810

- - - 0.384 0.559 0.532 0.559

- 0.357 - 0.527 0.878 - 0.878

- - - - 0.469 0.868 0.868

- - 0.499 - 0.444 0.318 0.499

- - 0.078 - 0.470 0.267 0.470

- - 0.507 0.321 0.357 0.621 0.621

- - 0.564 0.382 0.498 0.670 0.670

- 0.213 0.258 0.241 0.407 0.652 0.652

- 0.425 0.480 0.280 0.344 0.593 0.593

- 0.141 0.431 0.153 0.049 - 0.431

- 0.476 0.069 0.295 0.083 0.247 0.476

- - - 0.377 - 0.288 0.377

- - - - 0.830 0.248 0.830

- - 0.154 - - 0.236 0.236

- - 0.308 - - 0.681 0.681

- - 0.762 0.124 0.364 0.457 0.762

- - - 0.098 - 0.473 0.473

- - - 0.890 0.890 - 0.890

- - - 0.581 0.628 - 0.628

- - - - 0.629 0.444 0.629

- - - - 0.649 0.667 0.667

- - - - 0.254 0.444 0.444

- - - - 0.701 0.668 0.701

Table 6 Deviations (degrees) between point cloud and as-planned model for Test Site A. Planes are used which are visible at
least on two acquisitions dates. The calculation of the values is described in detail in Section 5.6.1. No reappearing planes
could be reconstructed at the first two acquisitions.

P-Nr. sx [mm] sy [mm] sz [mm] Rays dX [mm] dY [mm] dZ [mm] 2D [mm] 3D [mm]

1 0.7 1.2 0.6 65 50.0 22.2 −8.8 54.7 55.4

2 1.2 1.0 0.8 62 30.8 21.8 −8.4 37.7 38.6

3 1.1 1.0 0.7 68 55.2 −1.3 −18.6 55.2 58.2

4 0.9 1.0 0.7 55 23.8 −3.2 −17.4 24.0 29.6

Table 7 The standard deviations and number of rays for the control points calculated from images acquired on 13 February on
Test Site A and the deviations from the geodetic measurement.
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5.6.3. Test Site B
Estimated point accuracy
In Figure 36 point clouds and as-planned model for three selected acquisition dates are

shown. In Table 8 the estimated accuracy for all points are given. The results are split based

on the number of stereo pairs the points are reconstructed from (number of rays = number

of pairs + 1). For Test Site B the mean value is around 1 cm for the 3D point accuracy and

around 0.4 cm for the depth accuracy.

Figure 36 Point cloud of three selected acquisition dates (right) and the corresponding as-planned model (left) for Test Site B.

Registration quality
The camera positions for one of the acquisition dates are shown in Figure 31. At this test

site, the consecutive registration was successful at all acquisition dates (Figure 34b). A few

images acquired on 16 January required manual intervention for registration.

The accuracy of the co-registration is assessed with the values given in Table 9 and Table 10.

The values are created as described in Section 5.6.1. The RMS of the plane fits ranges from
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mean [cm] median [cm] std [cm] number

Pairs 3D D 3D D 3D D of points

all 1.0 0.4 0.8 0.3 0.7 0.4 242 590 539

2 1.0 0.3 0.8 0.2 0.7 0.4 120 087 989

3 1.0 0.5 0.9 0.3 0.6 0.5 86 094 624

4 1.0 0.4 0.8 0.3 0.6 0.5 26 682 896

5 0.8 0.2 0.6 0.2 0.4 0.2 6 874 435

>5 0.6 0.2 0.6 0.1 0.3 0.1 2 850 595

Table 8 3D point accuracy (3D) and depth accuracy D for the dense point clouds of Test Site B

0.6 to 1.4 cm and is 1 cm on average. The mean variation, i.e., the difference in the maximum

distance to the reference plane, is 2.2 cm, the mean normal deviation is 0.3◦.

max deviation [cm] max variation

20.10. 20.11. 12.12. 16.01. 26.02. [cm]

- - - 3.4 4.2 0.8

- - - 2.3 2.7 0.4

- 3.2 - 2.5 1.9 1.4

- -1.6 3.0 2.3 3.3 4.9

- - - 2.1 1.9 0.2

- - -1.5 -2.4 -1.9 0.8

0.9 - - 2.6 4.2 3.2

1.9 -2.0 1.6 2.5 2.7 4.7

- - 3.7 3.8 4.3 0.6

- - 2.7 1.8 3.7 1.9

- - - 2.1 1.1 0.9

- - - 2.3 1.6 0.7

- - 3.1 1.3 1.2 2.0

- - 1.2 -1.4 2.3 3.7

- - - -1.9 1.7 3.6

- -3.4 1.8 -1.2 1.0 5.2

Table 9 Deviations [cm] between point cloud and as-planned model for Test Site B. Planes are used which are visible at least
on two acquisitions dates. The calculation of the values is described in detail in Section 5.6.1.

Control points network
Six control points are measured in the images acquired on 26 February (i.e., the second last

acquisition date, since some of the control points have been already destroyed on the last

acquisition) and compared to the control point coordinates as they were introduced to the

initial BBA. The results are shown in Table 11 which lists standard deviation of the estimated
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deviation [deg] max deviation

20.10. 20.11. 12.12. 16.01. 26.02. [deg]

- - - 0.338 0.213 0.338

- - - 0.217 0.397 0.397

- 0.189 - 0.217 0.113 0.217

- 0.142 0.223 0.048 0.142 0.223

- - - 0.299 0.352 0.352

- - 0.014 0.069 0.056 0.069

0.196 - - 0.221 0.311 0.311

0.150 0.206 0.124 0.195 0.218 0.218

- - 0.218 0.264 0.210 0.264

- - 0.044 0.387 0.273 0.387

- - - 0.203 0.339 0.339

- - - 0.309 0.180 0.309

- - 0.269 0.151 0.022 0.269

- - 0.328 0.357 0.235 0.357

- - - 0.232 0.305 0.305

- 0.446 0.443 0.176 0.259 0.446

Table 10 Deviations [deg] between point cloud and as-planned model for Test Site B. Planes are used which are visible at least
on two acquisitions dates. The calculation of the values is described in detail in Section 5.6.1.

coordinates and the number of rays from which they were calculated. This table shows also

the differences from the initial values. The point numbers of the photogrammetric control

points are indicated in Figure 33. For most of the points, the horizontal and vertical errors

ranges from 1 to 2 cm and up to 3 cm, respectively.

P-Nr. sx [mm] sy [mm] sz [mm] Rays dX [mm] dY [mm] dZ [mm] 2D [mm] 3D [mm]

100 2.0 2.1 6.2 11 −16.7 −6.3 −31.0 17.9 35.8

101 1.8 2.5 4.7 18 −4.7 −2.7 −12.4 5.5 13.5

102 2.2 3.4 6.4 12 −19.0 2.3 −4.8 19.1 19.7

103 2.2 2.6 4.0 16 −11.5 3.0 −20.8 11.9 23.9

104 1.4 1.4 2.5 22 12.9 13.6 6.8 18.7 19.9

105 3.5 3.8 5.5 12 −30.1 2.7 33.1 30.2 44.8

Table 11 The standard deviations and number of rays for the control points calculated from images acquired on 26 February
on Test Site B and the deviations from the geodetic measurement.
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5.7. Discussion

The proposed approach for co-registration of point clouds and the building model was suc-

cessfully applied and validated on real construction sites under different acquisition geome-

tries and scenarios. Better results were achieved at Test Site B which has a slightly higher

accuracy and no sub-blocks were constructed (as at Test Site A). Based on the evaluation a

registration accuracy of ∼3-5 cm can be expected. The results were determined based on,

in total, eleven acquisition dates on two different construction site using 26 (Test Site A) and

16 (Test Site B) planes as reference. The accuracy is sufficient for the verification of the exis-

tence of building elements, but not for the detection of small inaccuracies of the execution of

construction work.

The accuracy of the dense point is estimated in the range from 1 to 2 cm. The accuracy for

the points with few rays (3 to 4) seems to be estimated too positive, possibly because of the

small sample of observations for the calculation of σD. The deviations of the control points

are in the range from 2 to 5 cm and show also larger values on Test Site A. In general these

deviations can be sourced from the following four errors:

1. Manual measurements of photogrammetric markers, which introduce (sub-pixel) errors

in the image coordinates.

2. Uncertainty because of the ray intersection.

3. Additive accumulation of errors during consecutive registration.

4. Instability of ground control points

On Test Site B the larger values in z-direction point to the typical depth error of the ray inter-

section (case ii). On Test Site A no clear dependencies are identifiable.

The successful registrations at Test Site B can be ascribed to the free area around the con-

struction site, which provides a sufficiently large unchanged area throughout the construction

process, and to the UAV acquisition, which provides both nadir and oblique images. The latter

allows complete coverage of the construction site and large overlap of images. It was even

possible to connect two states having more than four months in between. The limitations of

UAVs are related to safety issues.

Namely, the UAV must maintain a safe distance from all towering objects (chiefly the cranes,

but also the surrounding buildings). The safety regulations also forbid the UAV from flying over

roads, limiting its use in some scenarios, for example at Test Site A. Inaccessibility of obser-

vation positions are a main problem, especially for the terrestrial acquisition (Test Site A). This

results in the problem of splitting into different sub-blocks at this test site. Although consec-

utive acquisition dates could be connected, not all of the images acquired on the same date

had enough corresponding features. Therefore, the data were processed as four to five indi-
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vidual sub-blocks. The advantages and disadvantages of the different acquisition techniques

are also discussed in (Tuttas et al., 2016).

5.8. Future Work

In future work the following outstanding issues are addressed: Here, different acquisition

techniques are employed for the test sites. It has to be investigated how they can be combined

to improve the results in terms of a more stable co-registration and an improved reconstruction

of the point cloud. The matching complexity in the two-view matching step of the SfM process

could be reduced: To this end, the number of images in the co-matching could be reduced

by choosing only the relevant key images from the previous acquisition date, which contain

minimal or zero changes. These images could be manually or automatically defined using

the orientation and progress information of the BIM. This information would reveal the image

areas that are unlikely to change, or that never change because they are outside the active

areas. The matching pairs could also be reduced by exploiting the position and orientation

information from navigation data, e.g. provided by the navigation unit of the UAV.

The co-registered point clouds are and will be used for reconstruction of scaffolding compo-

nents (Xu et al., 2015, 2016) and progress monitoring (Braun et al., 2017; Tuttas et al., 2014,

2015).
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6. Improving progress monitoring by
fusing point clouds, semantic data
and computer vision

Previously published as: Braun, A., Tuttas, S., Stilla, U., Borrmann, A., Improving progress

monitoring by fusing point clouds, semantic data and computer vision, Automation in Con-

struction 116, 2020, DOI: 10.1016/j.autcon.2020.103210

Abstract

Automated construction-progress monitoring enables the required transparency for improved

process control, and is thus being increasingly adopted by the construction industry. Many

recent approaches use Scan-to/vs-BIM methods for capturing the as-built status of large

construction sites. However, they often lack accuracy or are incomplete due to occluded

elements and reconstruction inaccuracies. To overcome these limitations and exploit the

rich project knowledge from the design phase, the authors propose taking advantage of the

extensive geometric-semantic information provided by Building Information Models. In par-

ticular, valuable knowledge on the construction processes is inferred from BIM objects and

their precedence relationships. SfM methods enable 3D building elements to be located

and projected into the picture’s 2D coordinate system. On this basis, the paper presents a

machine-learning-based object-detection approach that supports progress monitoring by ver-

ifying element categories compared to the expected data from the digital model. The results

show that, depending on the type of construction and the type of occlusions, the detection of

built elements can rise by up to 50% compared to an SfM-based, purely geometric as-planned

vs. as-built comparison.
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6.1. Introduction

6.1.1. Automated progress monitoring
Construction progress monitoring is currently still performed mostly manually, in a laborious

and error-prone non-automated process. To prove that all works have been completed as

agreed contractually, all completed tasks must be documented and monitored. Complete and

detailed monitoring techniques are required for large construction sites where the entire con-

struction area and the number of subcontractors become too large for manual tracking to be

efficient. Detecting possible deviations from the schedule provides a benchmark for the per-

formance of the construction site. Regulatory matters add to the requirement of keeping track

of the current status on the site. The ongoing establishment of building information modeling

(BIM) technologies in the planning of construction projects facilitate the application of digital

methods also in the execution phase. In an ideal implementation of BIM, all relevant infor-

mation on materials, construction methods, and even the process schedule are interlinked.

On this basis, it is possible to estimate project costs and project duration more precisely than

with conventional methods (Hardin and McCool, 2015).

On top of the digitized construction design process, recent advancements for capturing the

as-built geometry by laser scanning (Bosché and Haas, 2008a) or photogrammetry (Golparvar-

fard et al., 2009) allow using the resulting point cloud data to be compared against the as-

planned model. Photogrammetry, in particular, has gained more attention with the broader

availability of Unmanned Aerial Vehicles (UAVs), making this method more flexible in terms

of camera positions (Lin et al., 2015). The main idea is not to use laser scanners but con-

ventional camera equipment on construction sites to capture the current construction state

("as-built"). Since the acquisition from different perspectives is significantly faster than laser

scanners, the building can be captured in a comprehensive manner with comparatively low

effort. As soon as a sufficient number of images from different points of view are available,

a 3D point cloud can be produced using Structure from Motion (SfM) methods (Wu, 2013a).

Finally, the point cloud, representing one particular observation time-point, can be compared

against the geometry of the Building Information Model.

6.1.2. Problem statement
Currently, the detection of built elements using SfM methods and other point-cloud-based

approaches faces several challenges:

As-planned modeling vs. as-built construction
As introduced in Braun et al. (2016), the as-planned model is represented by a 4D building

information model (see Figure 37 a)). All 4D construction processes are linked to their associ-

ated elements, allowing for statements regarding the expected construction state at any given

observation time. As the relevant model and point cloud are co-registered, an initial detection

algorithm can compare the model’s geometry with the 3D information from the point cloud.
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Figure 37 Process modeling problems depicted by a) as-planned modeling, b) as-built modeling, c) as-built image, d) as-built
point cloud on sample construction site.

During the construction phase, the actual as-built process can deviate from the original as-

planned process. To clarify this deviation, Figure 37 depicts the digital model from one of the

test sites, a corresponding UAV-aerial image, and the generated point cloud ( a), c) and d) ).

Accordingly, the as-planned 4D model does not represent the real construction sequencing.

This problem is also described in Huhnt et al. (2008); Tulke (2010).

In comparison, Figure 37 b) shows the correct corresponding as-planned model for the given

timestamp, with all subsequent elements being removed from the as-scheduled model.

Reconstruction
The monitoring of construction sites by applying photogrammetric methods has become com-

mon practice. Currently, several companies (for example, Pix4D or DroneDeploy) provide

commercial solutions for end users that permit the generation of 3D meshes and point clouds

from UAV or other image-based site observations. All these methods provide proper solutions

for finished construction sites or visible elements of interest.

However, UAV-based monitoring of construction sites exhibits several problems. On the one

hand, photogrammetric methods are sensitive to low-structured surfaces like monochrome

painted walls, or windows. Because of the used method, each element needs to be visible

from multiple (at least two) different points of view. Thus, elements inside of a building cannot

be reconstructed as they are not visible from a UAV flying outside of the building.
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Monitoring inside of a building is currently still the subject of much research (Kropp et al.,

2014) and not available via an automated method, as localization in such mutable areas like

construction sites is hard to tackle. These problems lead to holes or misaligned points in the

final point cloud, which hinders the accurate and precise detection of building elements. On

the other hand, laser scanning requires many acquisition points and takes significantly more

time and manual effort in acquisition.

Occlusions
Finally, both techniques are challenged by occlusions for regions that are not visible during

construction. The as-built 3D point cloud with n points holds all respective coordinates but

also color information based on the feature’s pixel color value in the initial image. The value

n depends on many factors such as

• lighting conditions

• feature detection from different points of view

• surface textures

• amount and resolution of the images taken

A point cloud from one timestamp on one of our test construction sites can be seen in Figure

37 d). Besides scaffolding and formwork, various holes are visible in the point cloud that exist

due to insufficient image quality for reconstruction or occlusions. The depicted point cloud

matches the expected quality for an as-built acquisition and is incomplete due to changing

visibility conditions from working equipment and similar items.

However, it is not sufficient for reliable results in a purely geometric as-planned vs. as-built

comparison as significant parts of the actual building are occluded. As seen in figure 38,

another problem lies in elements that are occluded by temporary construction elements. In

particular, scaffolding and formwork occlude the direct view on walls or slabs, making it harder

for algorithms to detect the current state of construction progress.

Currently available methods do not take these problems into account and make only limited

use of BIM-related information such as type of construction and the general structure of a

building.
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Figure 38 Occluded construction elements in generated point cloud caused by scaffolding, formworks, existing elements and
missing information during the reconstruction process

6.1.3. Contributions
In this paper, the authors propose a number of inter-related methods to tackle the aforemen-

tioned problems. Specifically, this paper presents the following contributions:

• Known technological dependencies of construction sequences are used to enrich the

model by precedence relationships, by applying formal graph theory. This allows the infer-

ence of the existence of elements, if they have not been directly detected.

• A method is presented that makes use of the knowledge of construction methods and

4D data to adjust the detection thresholds (as-planned vs. as-built deviations allowed)

according to their expected construction stage. This permits the detection of elements

that are currently under construction and are, for example, covered by formwork.

• We introduce a method based on visibility analysis to identify elements that are detectable

from the identified camera positions. Deep learning on projected element positions in the

2D plane of the gathered images for the initial SfM process allows the detection rates of

built elements to be further enhanced.

The combined application of these methods helps to significantly improve the accuracy of

construction progress monitoring, as documented by the case studies presented in this pa-

per.

The details of the individual methods are described in Section 6.3.
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6.2. Related Work

6.2.1. Scan vs. BIM
Progress monitoring has become a heavily researched topic in recent years. Omar and Nehdi

(2016) provide an overview of these developments and compare the individual approaches:

The as-built status of a construction site is usually captured by laser scanners or cameras

using SfM methods. Laser scanning has the advantage that 3D point measuring is fast and

very accurate (within the range of millimeters). However, the equipment is heavy and requires

trained personnel.

Additionally, the setup at the point of observation is time-consuming and, depending on the

size of the construction site, many observation points are required to scan the whole construc-

tion site. Photogrammetric approaches produce less accurate point clouds in comparison to

laser scanning and require significant computing power for the reconstruction. However, this

method is more flexible and easier in its application, as camera equipment is standard, low-

cost, and widely used on UAVs. Other devices, such as Microsoft Kinect, combine multiple

sensors and can also be used for progress monitoring (Pučko et al., 2018).

The registration of the acquired point cloud and corresponding as-planned geometry is either

performed manually or semi-automatically, e.g. by point-to-point matching through Iterative

Closest Point (ICP) algorithms. Here, the algorithm minimizes the distance between the

points of the laser scan and the BIM geometry (Bosché, 2012).

Currently, three methods are deemed to be established in the comparison with the as-planned

status:

1. comparison of points from the as-planned geometry with as-built point clouds. These

methods compare point clouds that are acquired by laser scanners (Bosché, 2010;

Turkan et al., 2012) or SfM methods and derived point clouds from as-planned surfaces

(Kim et al., 2013). Point proximity metrics mainly do this following a data-alignment

process.

2. Feature detection in the acquired images from the as-built state. Using feature detec-

tion algorithms to assess the progress of as-planned elements (as the construction site

evolves in time) by comparing measurements with dynamic thresholds learned through

a Support Vector Machine (SVM) classifier, construction elements are directly identified

from the acquired images (Golparvar-Fard et al., 2015).

3. Matching the as-planned geometry surfaces directly with the as-built points. Here,

relevant points from the point cloud are directly matched onto triangulated surfaces

of the as-planned model after using octree-based checks for occupied regions (Tuttas

et al., 2015).
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The first approaches involving object detection in laser-scanned point clouds were published

by Bosché and Haas (2008a). Turkan et al. (2012) extend this system and uses it for progress

estimation. Kim et al. (2013b) detect specific component types using a supervised classifica-

tion based on Lalonde features derived from the as-built point cloud. An object is regarded as

detected if the type matches the type present in the model. As above, this method requires

that the model is sampled into a point representation. Zhang and Arditi (2013) introduce a

measure for deciding four cases (object not in place, point cloud represents a full object or a

partially completed object or a different object) based on the relationship of points within the

boundaries of the object and the boundaries of the shrunk objects.

However, the authors test their approach in a very simplified artificial environment, which is

significantly less challenging than the processing of data acquired on real construction sites.

In Mahami et al. (2019), SfM and Multi-View Stereo (MVS) algorithms are coupled with coded

targets to improve the photogrammetric process itself. Ibrahim et al. (2009) use a single

camera approach and compare images taken during a specified period, and rasterize them.

Individual elements are identified for each use case. Most publications focus on identifying

one particular type of element like, for example, columns or walls.

Indoor monitoring has been researched by several groups. Asadi et al. (2019) propose a

new method to localize and align the camera position and building model in a real-time sce-

nario. Kropp et al. (2018) tried to detect in-door construction elements based on similarities.

Turkan et al. (2014) present an approach for detecting elements under construction that uses

threshold extensions for those elements. Han and Golparvar-Fard (2015) published another

attempt to solve the problem of elements under construction. The focus lies on visibility is-

sues, e.g., assuming that an anchor bolt for a column must be present, despite being invisible,

as the column on top of it requires the anchor bolt for structural reasons. Further research

has been conducted in regard to multi-layered elements and the introduction of construction

sequencing (Han et al., 2015).

Another critical aspect of the as-planned vs. as-built comparison is dependencies. Techno-

logical dependencies determine which element is depending on another element, meaning

that it cannot be built after the first element is finished. Precedence relationships (Wu et al.,

2010) can define these dependencies. Szczesny et al. (2012) discuss a storage solution for

these dependencies. The approach with regard to progress monitoring is presented in Braun

et al. (2017). Hamledari et al. (2017) introduce an IFC-based schedule updating workflow

that relies on detected construction elements.

In their outlook, Turkan et al. (2014) state that further improvements to their work should in-

clude color analysis or even image-based methods. Thus, the authors propose incorporating

these techniques, as well as the use of semantic data like construction methods, model anal-

ysis using technological dependencies, and image-based deep learning, to further enhance

the detection of elements in an as-planned vs. as-built comparison.
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6.2.2. Computer vision and deep learning
Rising computational power has enabled significant advances in machine learning in recent

years. Deep learning (LeCun et al., 2015) and especially Convolutional Neuronal Networks

(CNN) provide solutions for training computers to learn patterns and apply them to previ-

ously unseen data. In this context, computer vision is a heavily researched topic that has

received even more attention through recent advances driven by, for example, the needs of

autonomous vehicles.

Image analysis in the construction sector, on the other hand, is a rather new topic. Up to now,

the main focus has been on defect detection (for example, cracks) in construction images

(Akinci et al., 2006). Crack detection for asphalt roads has also been the subject of research

(Nhat-Duc et al., 2018). Since one of the critical aspects of machine learning is the collection

of large datasets, current approaches focus on data gathering. In the scope of automated

progress monitoring, Han and Golparvar-Fard (2017a) published an approach for labeling

image datasets based on the commercial service Amazon Turk. Braun and Borrmann (2019)

introduce a method for automated image labeling by fusing semantic and photogrammetric

data.

Regarding the application of deep learning for construction progress tracking, Chi and Caldas

(2011) used initial versions of neural networks to detect construction machinery on images,

and Kim et al. (2013) used ML-based techniques for construction progress monitoring. They

analyzed images by filtering them to remove noise and uninteresting elements, so as to fo-

cus the comparison on relevant construction processes. Hamledari et al. (2017) applied CV

approaches to indoor appliances like electrical outlets and insulation.

These approaches are currently mostly independent from the actual building model, as orien-

tation and scale with respect to the digital twin are neglected or assumed to be given for the

application of CV methods. The application of these methods, in combination with SfM-based

orientation data, has not been the subject of research to date.

6.3. Concept

6.3.1. Objective
The main goal of this research is to improve the results of element detection from a point-

cloud-based as-planned vs. as-built comparison by using additional information provided

through the Structure-from-Motion process (images and camera positions), as well as the as-

designed building information model (semantic data, geometric representation of elements,

and position and dependencies of elements). The following concept presents the proposed

solutions to tackle the mentioned challenges with several approaches, such as incorporating

additional information on construction methods into the comparison algorithms.
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6.3.2. Point of departure
The concept builds upon the body of knowledge of the research community as well as the

previous research conducted by the authors. Thus, several steps in the process of automated

progress monitoring are assumed to be given. Firstly, image acquisition for the generation of

point clouds and camera position estimation is required. The authors provided several studies

on image acquisition and proposed a UAV-based method as it is more flexible in comparison

to fixed cameras (Tuttas et al., 2017). Secondly, the point cloud and the as-designed building

information model must be aligned to one another (also known as registration). According to

the well-documented state of the art, this is either performed via geodetic reference points that

align the as-planned digital model with the point cloud on the measured geodetic position, via

automated ICP methods (as mentioned earlier), or manually via point-to-point picking. The

authors provide a detailed description of these approaches in (Braun et al., 2016) and (Braun

and Borrmann, 2019). In this paper, we significantly extend the state-of-the-art approach by

using computer vision (CV) methods.

6.3.3. Concept overview
The concept presented in this paper relies on the exploitation of as-design building informa-

tion models to improve the progress-detection process. We assume them to be available

as IFC instance models. These models provide a geometric representation of all relevant

building components, as well as the related semantic information (such as component type,

material or the attribute "load-bearing") as well as 4D process data. The general idea is to en-

hance the purely geometric as-planned vs. as-built comparison from point-cloud to geometry

level, with additional layers of information. Fig. 39 depicts the conceived processing chain.

The highlighted process components provide new elements that are introduced in this paper.

After defining the different sets of building elements required for the process in Sec. 6.3.4,

these new elements are explained in detail in dedicated subsections.

The creation of the precedence relationship graph is discussed in Sec. 6.3.5. The following

sections focus on schedule analysis (Sec. 6.3.6), and color detection (Sec. 6.3.7). The latter

process step helps to identify whether an element is present or occluded by other structures.

Finally, we introduce a method that projects the 3D as-designed geometry provided by the

building information model into the 2D plane, so as to apply image analysis techniques for

element detection. Sec. 6.3.8 describes the projection process. Subsequently, Sec. 6.3.9

discusses the application of computer vision methods to detect the type of the element that

is visible in the projected region of interest.

The combination of these individual processing steps results in a significant improvement in

the accuracy of the overall automated progress detection method, as demonstrated through

the case studies presented in Section 6.4.6.
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Figure 39 Concept for the enhancement of element detection. The highlighted process steps are introduced in this paper.
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6.3.4. Sets of elements and detection status
In the context of the research presented, the following sets of construction elements are

defined in regard to as-built vs. as-planned comparison:

• E represents all elements of the current building

• EP (t) defines the amount of elements that should be present at the time t of observation

according to the as-planned schedule

• EGT (t) defines the ground truth as all elements that are built at observation t

• ED(t) defines all elements that were detected during an observation at timestamp t

• END(t) defines all elements that were not detected during an observation at timestamp t

• EV (t) defines all elements that are visible from the corresponding points of view during

observation at timestamp t

t defines the observation timestamp, at which the construction site has been monitored.

The following definitions hold true for all given sets at any timestamp t:

E = ED(t) ∪ END(t) (6.1)

ED(t) 6 EV (t) 6 EGT (t) 6 E (6.2)

According to these definitions, the set of TruePositives is defined as

ETP (t) = ED(t) ∩ EGT (t) (6.3)

while FalsePositives are the counterpart:

EFP (t) = ED(t) \ EGT (t) (6.4)

The goal of this research is to verify as many existing construction elements as possible, so

as to minimize the differences between these sets while keeping EFP (t) minimized. Mathe-

matically speaking:

ED(t) −→ EGT (t) (6.5)

It is not possible to define a relation between the planned elements EP (t) and the ground

truth EGT (t) as the progress of the construction site depends on many external factors that

cannot be formalized with the given data. The set of EP (t) can contain more elements than
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EGT (t) in the event of a delay on the construction site but also fewer elements in the event of

faster construction times.

In addition to the mentioned sets, every construction element is classified individually for each

of the following states: built (Ground Truth), detected, planned, encased in formwork, under

construction.

These definitions are used in the described concepts.

6.3.5. Process sequencing and precedence relationships
As-built monitoring with SfM methods or laser scanning always captures one particular times-

tamp.

For automated handling of dependencies, a precedence relationship graph (PRG) is intro-

duced (Braun et al., 2017). The PRG formalizes technological dependencies between con-

struction elements and is defined as a directed, acyclic graph (DAG) with each node repre-

senting one construction element (Zobrist and Leonard, 1992). Technological dependencies

for load-bearing structures between two elements can be automatically detected when they

have a particular spatial constellation that, in combination with the construction method ap-

plied, unambiguously defines their sequential order. For example, when conventional in-situ

concreting methods are applied, a slab on top of a column can only be built after the col-

umn is finished. To generate this graph, the semantic as well as the geometric data from

the digital model is used in combination with a knowledge base representing the construction

methods. The geometric data is used to identify elements that are touching each other, and

for sequencing them in their respective vertical order. Additionally, the semantic data is used

to determine the construction method for an individual element, and to filter load-bearing ele-

ments. The generation of the initial precedence graph is performed as depicted in Algorithm

1. This method relies on a spatial query language, as introduced in Daum and Borrmann

(2014).

Algorithm 1 Pseudo code for the generation of an initial Precedence Relationship Graph

1: procedure GENERATEPRECEDENCERELATIONSHIPGRAPH

2: E← set of all construction elements
3: for all E(LoadBearing) do
4: for all ET do
5: if Above(E(LoadBearing),ET ) then

AddDirectedEdge(E(LoadBearing),ET );

The initial precedence graph is completed manually in order to take project-specific boundary

conditions and non-spatial precedence relationships into account.

The PRG is used to identify objects that are possibly under construction at the time of obser-

vation.

88



Using the introduced PRG, it is possible to identify elements that might be under construction

and thus are considered for further investigation. The basic flowchart depicted in Figure 39

shows the implemented workflow for enhanced detection.

Based on the construction type and the erection method, different steps follow. As detailed

above, walls and other vertically erected elements are considered for an extended threshold

in order to identify possible formwork. Additionally, color matching helps to differentiate the

material properties.

Moreover, the PRG allows for assumptions with regard to elements that are invisible due to

occlusions, and thus not directly detectable. For example, load-bearing columns underneath

a detected slab are expected to be built even if it is not possible to verify them via the point

cloud.

6.3.6. Identified tasks during construction
Several tasks are required to construct in-situ concrete elements or similar elements. In

concrete construction, formwork for in-situ concrete is the most common construction method.

Several different methods are depicted in Figure 37 b) and d). All possible elements under

construction are considered in order to detect formwork. In general, elements are counted as

detected as soon as a certain amount of points per area [Pts/m2] with a distance of less than

2 cm are matched on the surface of the element (Tuttas et al., 2016). If the expected elements

are not detected, the threshold for the maximum distance can be adjusted to take into account

the fact that the formwork with a thickness of around 0.20m might be currently in place. If this

iteration brings positive results, the element can be marked as "under construction".

6.3.7. Color detection
In general, formwork for walls and columns consists of a wooden, smooth plate on the con-

crete side, and a steel structure for stability on the backside. This steel structure is often

painted red, yellow or orange, and is distinct from the gray concrete. Formwork for slabs

usually consists of elevated wooden plates that have the same color range as the steel struc-

ture mentioned. This color difference can be measured and may help to further improve the

detection quality of formwork. The HSV (Hue-Saturation-Value) color space provided useful

data for the color detection (Sural et al., 2003). In contrast to the RBG color space, the HSV

color space can describe color as perceived by humans but also saturation and brightness

(value). Each value has a range from 0 to 1.

Comparing the color distribution of identified subsections of the point cloud can consequently

help to achieve further verification of the existence of an element. The material color, as

well as the type of construction, is retrieved from the building information model in order to

gather color information. After identifying a gray color distribution for an expected concrete

element, this data further confirms the existence of said element. In comparison, a mainly red

or orange color distribution leads to the assumption that a formwork element is present, if the
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initial element has not been verified but is meant to be constructed with in-situ concrete.

6.3.8. Visibility analysis and projection of elements
Photogrammetry is based on estimating the position of all cameras that are used for the point

cloud generation. Since the digital model of the construction sites is aligned to the point cloud

during the comparison process, it is possible to project the 3D geometry of all elements into

the respective 2D plane of a corresponding image (Braun and Borrmann, 2019). Knowing the

expected position of an element in image space enables highly accurate object-detection to

be performed, using CV approaches.

More specifically, it is possible to perform a visibility detection by using the camera parame-

ters to compute the projection of the model elements onto image space and of the process

information, to define the set of construction elements that are supposed to be built. The

building model coordinate system needs to be transformed into the camera coordinate sys-

tem or vice versa in order to align both models. By applying this method, rendered images

from all points of acquisition are generated that allow the determination of which elements

are actually visible and can potentially be found in a generated point cloud. The resulting set

of visible elements EV (t) enables greater detection accuracy.

The general approach for this method is explained in Braun and Borrmann (2019), though for

a slightly different application scenario. For further clarification, the key steps are explained

in this section.

In order to calculate the projection, the intrinsic camera matrix for the distorted images that

projects 3D points in the camera coordinate frame to 2D pixel coordinates using the focal

lengths (Fx, Fy) and the principal point (x0, y0) is required. Additionally, the skew coefficient

sk for the camera is required. It is zero if the image axes are perpendicular. The matrix K

can be described as defined in equation 6.6.

K =


Fx sk x0

0 Fy y0

0 0 1


(6.6)
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The translation of the camera is defined as:

T =


t1

t2

t3


(6.7)

Additionally, the rotation matrix for each image, as defined in equation 6.8 is needed.

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33


(6.8)

Both, translation and rotation can be described in one 3 x 4 matrix:

RT =


r11 r12 r13 T1

r21 r22 r23 T2

r31 r32 r33 T3


(6.9)

Using the model coordinates of all triangulated construction elements, it is possible to calcu-

late the projection of each element into the camera coordinate system and therefore overlay

the model projection and the corresponding image taken from the point of observation with

equation 6.10.

t = K ∗RT ∗ p; (6.10)

The resulting 2D coordinates that are rendered into the image are calculated by using the

vector t and calculating the x and y coordinates by

x = t[0]/t[2] (6.11)
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and

y = t[1]/t[2] (6.12)

With this projection, the model can be rendered from the camera’s perspective for all images

acquired during observation. After including the 4D temporal information from the as-planned

model, this information can be fused, to render the model with the expected set of elements

EP (t) from all estimated camera positions. The term "rendering" here refers to the creation

of the 2D projection of the model according to the rendering pipeline established in computer

graphics (Foley and Foley, 1990), but without applying advanced features such as reflections,

light sources or shading. These rendered images are analyzed for all visible elements EV (t)

by applying the Painter’s algorithm (Elvins, 2005). With knowledge of this set of elements,

the set ED(t) can be checked for false positives, but also measured for accuracy regarding

its true positive rate. This is done by excluding elements from set EP (t) or EGT (t) that are

invisible from any camera position during acquisition.

6.3.9. Image-based object detection
To further enhance the detection of construction elements, we propose making use of the

images taken in the course of the initial acquisition for the photogrammetric point cloud gen-

eration. By applying the previously described projection technique, all construction elements

can be localized on any image taken during the acquisition. A sample is shown in Fig. 40:

A column of interest is selected in the 3D view (marked red); detailed information about this

element is shown in the lower right. Accordingly, a corresponding image that validated the

existence of the selected element - and additionally the 3D to 2D projection described in

Section 6.3.8 - is used to display the expected position of the element in this image.

Figure 40 Projection of a selected 3D geometry into the 2D plane of a corresponding image

As machine-learning methods have made significant advancements in recent years, tasks like
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image classification or even region detection on images are mow being used in various sce-

narios. For the task of progress monitoring, the authors propose the use of a Convolutional

Neural Network (CNN) trained on construction elements and thus able to detect the type and

instances of construction elements on the given images. In the case that an element is not

detected and validated by the point cloud, the implemented workflow is followed as described

in Fig. 41.

Figure 41 Occluded construction elements in generated point cloud caused by scaffolding, formworks, existing elements and
missing information during the reconstruction process

If the element is expected according to the up-to-date schedule and requires in-situ work, in

a first step, the thresholds are increased as defined in Sec. 6.3.6. If this helps to validate

the elements’ existence, it is added to the set of detected elements ED(t). If not, the 2D

projection, as mentioned in Sec. 6.3.8, is used to identify the region of interest in a suitable

image.

Subsequently, the trained CNN (He et al., 2016) classifies the region according to the prede-
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fined states and thus contributes to a refined state detection. If, e.g., formwork is detected

here, the element can be marked as "under construction".

In order to use a CNN for object-based region detection, the training of said network is re-

quired. For this purpose, 5,000 images were labeled with the categories formwork, scaf-

folding, columns, and walls. This resulted in 9,700 labeled formwork elements. The labeling

procedure is depicted in Fig. 42. The data is converted into the COCO data format (Andriluka

et al., 2014) and prepared for training by augmenting the images to enlarge the training set

even further.

Figure 42 Sample image of the labeling process. Displayed are the labeled formwork (blue) and column (green) elements.
During this research, Labelbox (Labelbox, 2020) is used for labeling.

To sum up, all introduced methods make the overall process much more robust compared to

a purely geometry-based approach, and lead to a higher detection accuracy.

6.4. Case Study

Several construction sites were monitored with different observation methods to validate the

introduced concepts. The construction sites are all German-based and cover a number of

structural engineering buildings as well as infrastructure (one bridge, one wastewater treat-

ment plant). The main construction method is in-situ concreting, this being the most common

construction technique in Germany. Listed in Table 12 are the three construction sites that

are used as case studies in this section.
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Site Elements Observations Pictures taken Duration

Test Site A 671 6 1,805 5 months

Test Site B 943 9 2,350 10 months

Test Site C 2,229 23 3,144 5 months

Table 12 Test sites monitored during this case study

In this context, the authors published several papers presenting their approach and devel-

oped a software framework, which was introduced in Braun et al. (2017) and shown in Figure

43. To visualize the comparison results and the detected elements, and to verify the used

algorithms, all gathered data is stored in a database that is accessible via this software. The

tool displays all geometric and semantic building element information as well as scheduling

data that has been parsed from IFC instance models. The detected elements are highlighted

for easy identification. Figure 43 shows the software interface with the example of one of the

construction-site case studies used in this research. The building mainly consists of in-situ

concrete elements that were cast using formwork on site. In the figure, one individual captur-

ing event is selected, and all detected elements are highlighted. Green coloring represents

elements that have been built and are correctly detected and confirmed through the point

cloud. All yellow elements are built but were not confirmed through the point cloud.

Figure 43 Screenshot of a developed tool for as-planned vs. as-built comparison. A specific observation is selected to
visualize the detected construction elements at that time. Details of selected elements are shown in a separate viewer.

There are several reasons why some of those elements may not be detected. The most

prominent reason is the occlusions that occur on site. During construction, large amounts of

temporary structures like scaffolds, construction tools, and construction machinery obstruct

the view of the element surfaces. Limited acquisition positions further reduce the visible
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surfaces and hence the overall quality of the generated point clouds. Additionally, elements

inside of the building are also occluded by other building elements for acquisitions outside of

the building.

Another reason for weak detection rates is building elements that are currently under con-

struction. As those elements count towards the overall progress, they must not be missed,

and play a crucial role in defining the exact state in the current process. In general challenges

exist for all construction methods, whose geometry under construction differs largely from the

final element geometry which requires the use of temporary construction objects. This ap-

plies, e.g., to reinforced concrete and multi-layered walls. On the one hand, formwork which

is used for concrete pouring, may obstruct the view of the element, making it impossible to be

detected. On the other hand, the plane surface of formwork for a slab might be detected as

the surface of the slab itself and thus would lead to a false positive. Due to these challenges,

further enhancements to the comparison and detection algorithms are needed. Since the

digital model contains information on construction methods, the authors propose using this

knowledge in the overall detection process. By deducing the precedence relationships with

a query language, assumptions regarding occluded elements can be made. Construction

methods and derivation of expected elements lead to new as-planned vs. as-built compari-

son capabilities, such as extended thresholds and computer vision methods to detect objects

like formwork on the raw observation images, taken for the point cloud generation.

6.4.1. Precedence Relationship Graph
The PRG for all construction sites is generated by using a query language for Building In-

formation Models (QL4BIM, Daum and Borrmann (2014)). With the algorithm introduced in

Sec. 6.3.5, any building information model that has sufficient semantic information can be

analyzed, and technological dependencies are formalized by the introduced graph. Fig. 44

shows the PRG for one of the mentioned case studies. Each node represents one construc-

tion element; the directed edges show the corresponding dependency.

Based on the detected elements (marked in green and yellow), all dependent elements can be

identified via this graph. Specifically, this graphs allows one to make assumptions regarding

the construction elements that were either invisible during observation, or were not detected

due to occlusions or other issues (as mentioned before). The elements marked in blue in Fig.

44 are identified as depending elements with this method.

Table 13 shows detailed enhancements for the introduced PRG. In particular, a significant

amount of construction elements were identified as depending upon the detected elements.

In this respect, these elements are logically required to be built despite the fact that they were

not confirmed visually by the point cloud.

This information helps to obtain additional information for the as-planned vs. as-built com-

parison: if a slab is built, all load-bearing elements underneath it must have been built, even
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Figure 44 Generated precedence relationship graph for Test Site A. Elements marked blue were derived from the PRG in
combination with the detected elements marked in green and yellow.

Date EGT (t) ED(t) δEPRG(t)

15.05. 89 37 20

12.06. 152 32 57

27.06. 184 59 54

17.07. 233 53 85

06.08. 277 95 102

04.09. 342 98 159

Table 13 Enhancing results by applying the introduced PRG for Case Study site A
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though they cannot be verified by any visual method.

6.4.2. Varying dimensions
Figure 45 depicts a part of a snippet of a point cloud, generated at one individual time-

step during observation. It is overlaid with the corresponding 3D geometry and visualized in

green, to symbolize the as-planned as well as the as-built status. Based on this example,

the general workflow for elements under construction is shown. As depicted, the front wall is

already finished, and the concrete surface is visible. The wall in the second row is currently

under construction, and the formwork is present and registered in the point cloud.

Figure 45 Point cloud of a finished, plain wall and formwork overlaid with the corresponding 3D geometry on Test Site B

During detection, it is expected that the first row of walls will be detected. Due to the threshold

of max. 1 cm, the second row should not be detected due to the formwork. Figure 46 a) shows

the expected result, with an additional set threshold of 1000 points/m2 (in green). Triangles

marked in yellow have matching points but do not qualify for the set thresholds, while elements

marked red have no qualifying points at all. The walls in the second row are expected to be

in progress. As presented in the concept in Section 6.3, the detection is therefore carried

out with a larger threshold. Based on this result, the accepted point-to-surface distance is

increased to 10 cm, which leads to the results depicted in Figure 46 b).

The increased threshold leads to the expected higher point density on the wall under con-

struction, as the formwork is considered, too. According to the introduced workflow, the wall

is now marked as "under construction", leading to a further detailed automated progress

monitoring.
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Figure 46 Triangles detected during the time-step shown in Figure 45. a) with 1cm gaps and ρ > 1000pts/m2, b) with 10cm

gaps and ρ > 1000pts/m2

(a) HSV color distribution for concrete (b) HSV color distribution for formwork

Figure 47 Distribution of frequency in the HSV color space shows clear deviations between concrete and formwork elements
with the Hue value represented by blue bars and Saturation value represented by orange bars.

6.4.3. Color detection for formwork and reinforcement
As detailed in Section 6.3, taking colors into account can improve the detection of formwork or

reinforcements due to their significantly varying colors, in comparison to the grey colors of the

concrete. The color values of the different elements were compared to prove this statement.

Figure 47 shows the calculated mean values for different elements under different lighting

conditions.

In calculating the mean HSV values, all points relevant to an element are considered, along

with the relevant color information. The results show that the brightness (value) varies largely,

which is due to the lighting conditions itself. Therefore, this value has no further significance

for this study. However, the hue values for formwork fall into the correct range for warm, red

colors, whereas the concrete walls are based on "colder" colors. Additionally, the saturation

differs by at least a factor 2.3. This color distribution analysis at a point-cloud level allows

automated color interpretation to be carried out, and helps to identify differences between

expected and actual color ranges based on material properties. The described process is

used during the whole comparison to obtain a higher accuracy of information.
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6.4.4. Visible elements
The visibility analysis is tested on several construction sites. Fig. 48 shows four samples

from different observation times and construction sites. Each element has a unique color for

identification purposes.

Figure 48 Visibility analysis with rendered geometry of set EP (t) for several construction sites and observations. All elements
are rendered in different colors to distinguish them from each other.

Based on these results, all visible elements are identified and added to a corresponding set

EV (t). This additional step does not detect any additional elements during the as-planned

vs. as-built process, however it helps to set the detection results in a more accurate context.

In detail, false positives can be reduced by removing invisible elements. Additionally, the

thresholds used for the comparison process can be validated in a more precise manner, as

the invisible elements are not added to the set of not detected elements.

Table 14 shows this data for one of our case studies during the whole observation period.

6.4.5. Image-based object detection
For the image-based object detection described in Sec. 6.3.9 we trained a Mask R-CNN-

based (He et al., 2016) neural network using a training set consisting of over 5,000 images

from five different construction sites and 40 observations with 9,700 labeled formwork ele-

ments and around 5,000 labeled column elements. Depicted in Figure 50, the results for

formwork and column elements are shown in an image that was not part of the training set.
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Date EGT (t) ED(t) EV (t) %V is

15.05. 89 37 73 82.0 %

12.06. 152 32 122 80.3 %

27.06. 184 59 155 84.2 %

17.07. 233 53 214 91.8 %

06.08. 277 95 275 99.3 %

04.09. 342 98 325 95.0 %

Table 14 Visible elements based on the introduced algorithm for Test Site A.

A common method to quantify the estimated result is the mean average precision that calcu-

lates as

Precision =
TruePositives

TruePositives+ FalsePositives
(6.13)

In combination with the recall

Recall =
TruePositives

TruePositives+ FalseNegatives
(6.14)

the harmonized F1 score can be calculated as:

F1score = 2 ∗ Precision ∗Recall
Precision+Recall

(6.15)

An ideal network with perfect precision and recall values would achieve a F1 score of 1. The

trained network has a mean average precision (mAP) of 90.7% with an IoU (Intersection

over Union) of 0.5 over all categories. With TP = 11731, FP = 1099 and FN = 928, the

precision is at 0.914, the recall at 0.927, resulting in an F1Score = 0.920 proving the suitability

of the implemented methods. Fig. 49 shows the corresponding precision-recall curve for the

trained network.

It has been tested against previously unknown images from the internet and other construc-

tion sites.

The results of this image-based region detection are subsequently used for the as-planned

vs. as-built comparison. As introduced in Figure 41, construction elements that have not been
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Figure 49 Precision-recall Curve for the trained network

Figure 50 Formwork and column elements detected by a trained CNN using Mask R-CNN on Test Site C
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verified by the point cloud, are run through an additional workflow, in order to check for form-

work elements. If the CNN verifies the existence of a formwork element, the corresponding

concrete structure is labeled as "under construction", making the process estimation more

accurate. After testing this approach on a real-world construction site, this additional step

proved to be suitable for construction sites that use in-situ concreting as a manufacturing

method. Table 15 shows the amount of detected formwork elements with the help of the

trained network.

Date 15.05. 12.06. 27.06. 17.07. 06.08. 04.09.

Detected 9 11 8 2 0 8

Table 15 Detected formwork elements during the observations for Test Site A.

6.4.6. Results
After the evaluation of all steps, the methods are incorporated into the presented software

framework. Table 16 shows the results for one of our case studies during the complete

construction process. During the initial, point-cloud-based comparison, the following data

was gathered:

Date EP (t) EGT (t) ED(t) EFP (t) AD(t)[m2] AGT (t)[m2] %A

15.05. 60 89 37 2 1162.76 1916.95 60.66 %

12.06. 133 152 32 11 1326.95 3557.74 37.3 %

27.06. 240 184 59 0 2244.51 4808.6 46.68 %

17.07. 348 233 53 5 4147.65 6261.07 66.25 %

06.08. 456 277 95 1 4480.78 6773.9 66.15 %

04.09. 569 342 98 1 4763.63 9197.7 51.79 %

Table 16 Resulting element sets for Test Site A

According to this data, the detection rates differ over a range of 37 % to 66 % correctly

detected elements, based on the area surfaces. As mentioned above, these results largely

depend on the point-cloud density and reconstruction quality from the SfM process. For

any construction planner, these results would be insufficient as a comprehensive progress-

monitoring tool.

After applying the newly introduced methods to this initial as-planned vs. as-built comparison,

these additional results were gathered as shown in Table 17 with detected, cast elements

defined as EFW (t) and elements inferred by the PRG, in addition to the previously detected

elements, as δEPRG(t).

This table summarizes the results of the previous sections.
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Date EV (t) EFW (t) δEPRG(t) EDnew(t) AD(t)[m2] AV (t)[m2] %A

15.05. 73 9 20 66 1509.42 1681.04 83.8 %

12.06. 122 11 57 100 2792.95 3284.76 85.0 %

27.06. 155 8 54 121 3975.51 4579.60 86.8 %

17.07. 214 2 85 140 4975.65 6059.13 82.1 %

06.08. 275 0 102 197 5780.78 6644.94 87.0 %

04.09. 325 8 159 265 7675.58 9021.86 85.1 %

Table 17 Enhanced results for the detection with the newly introduced methods for Test Site A.

As shown, the number of detected true positives is raised significantly by applying the in-

troduced steps. The newly detected rates all lie in the range between 80% to 90% of the

actually built elements. An improvement of more than 100% in detected elements in compar-

ison to the pure point-cloud vs. geometry-based detection methods was achieved. To draw

conclusions from the results, there is still potential for further improvements. However, the

introduced methods were tested on real-world construction sites over the complete construc-

tion cycle, and not only on a limited test area which usually constitutes a more controlled

environment. Real-world data from construction sites always introduces many occlusions,

and non-modeled elements that make it nearly impossible to detect all elements on a con-

struction site.

6.5. Discussion and Outlook

6.5.1. Conclusion
Detailed progress monitoring is of utmost importance for efficient construction site manage-

ment as it allows delays to be identified early, and for respective counter-measures to be

taken. Matching the as-designed 4D building information model to point clouds provides a

suitable basis for automating this process. The general approach of Scan-vs-BIM has been

proposed and investigated by a number of researchers in recent years.

In this paper, a number of methods are introduced that further improve the accuracy of the

detection process of the as-planned vs. as-built comparisons. The common approach lies

in fusing information generated by different techniques and from different sources, namely

the images, the point cloud and the building information model. The formal description of

the technological dependencies in the construction process in the form of a precedence rela-

tionship graph allows the inference of status information on components that are not directly

detectable. Image-based color detection and a higher threshold for elements with possible

formwork in place enable the correct identification of elements that are under construction at

the time of capturing the site.

104



As a core contribution, the paper presents how CNN-based object-detection methods are

applied to the captured images to correctly detect elements that tend to be otherwise falsely

classified. Significant synergies are created by training the network with images that are

automatically labeled, by applying Scan-vs-BIM techniques. The use of image-based object

detection extends the reliability of the status-detection process significantly, due to the larger

density of pixel-based information, in comparison with a pure point-cloud-based approach.

6.5.2. Limitations
It is crucial to note that the image data can only be used thanks to the photogrammetric pro-

cess and the underlying camera pose estimation. Laser scanners usually do not provide this

data and are therefore not suitable for this approach. Another limitation is the requirement for

a well-aligned BIM. In our approach, this is achieved by markers on site. However, a minor

manual step is required in order to find the exact orientation and scaling. Only after com-

bining this data with the aligned building information model is it possible to gather additional

information from the images in relation to the building model.

The described ML approach is limited to the provided training data. This data currently only

includes construction sites in Germany, which might make the network biased and unsuitable

for different regions that use different construction methods. The observed construction sites

so far mainly used in-situ concreting and a small number of prefabricated elements.

6.5.3. Outlook
All introduced methods enhance the automated construction progress monitoring workflow.

However, it is still the case that not all elements can be detected. Better acquisition methods

will play an essential role in solving these issues. Several research groups have proposed dif-

ferent acquisition methods to detect indoor elements, too. A combination of all these methods

could help to improve element detection even further.

More comprehensive data sets for image-based ML are required to cover different construc-

tion methods and materials from other regions.
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7. Combining inverse photogrammetry
and BIM for automated labeling of
construction site images for
machine learning

Previously published as: Braun, A., Borrmann, A.: Combining inverse photogrammetry and

BIM for automated labeling of construction site images for machine learning, Automation in

Construction 106, pp. 1-13, 2019, DOI: 10.1016/j.autcon.2019.102879

Abstract

Image-based object detection provides a valuable basis for site information retrieval and con-

struction progress monitoring. Machine learning approaches, such as neural networks, are

able to provide reliable detection rates. However, labeling of training data is a tedious and

time-consuming process, as it must be performed manually for a substantial number of im-

ages. The paper presents a novel method for automatically labeling construction images

based on the combination of 4D Building Information Models and an inverse photogrammetry

approach. For the reconstruction of point clouds, which are often used for progress monitor-

ing, a large number of pictures are taken from the site. By aligning the Building Information

Model and the resulting point cloud, it is possible to project any building element of the BIM

model into the acquired pictures. This allows for automated labeling as the semantic infor-

mation of the element type is provided by the BIM model and can be associated with the

respective regions. The labeled data can subsequently be used to train an image-based neu-

ral network. Since the exact regions for all elements are defined, labels can be generated for

basic tasks like classification as well as more complex tasks like semantic segmentation. To

prove the feasibility of the developed methods, the labeling procedure is applied to several

real-world construction sites, providing over 30,000 automatically labeled elements. The cor-

rectness of the assigned labels has been validated by pixel based area comparison against

manual labels.
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7.1. Introduction

Large construction projects require a variety of different manufacturing companies of sev-

eral trades on site (for example masonry, concrete and metal works, Heating, Ventilation,

Air Conditioning (HVAC), ...). An important goal for the main contractor is to keep track of

accomplished tasks by subcontractors to maintain the general schedule. Additionally, the

documentation of correctly executed tasks plays a crucial role for all involved parties. In con-

struction, process supervision and monitoring is still a mostly analog and manual task. To

prove that the work has been completed as defined per contract, all performed tasks have

to be monitored and documented. The demand for a complete and detailed monitoring tech-

nique rises for large construction sites where the complete construction area becomes too

large to monitor by hand, and the number of subcontractors rises. Main contractors that con-

trol their subcontractors’ work need to keep an overview of the current construction state.

Regulatory issues add up on the requirement to keep track of the current status on site.

The ongoing digitization and the establishment of building information modeling (BIM) tech-

nologies in the planning of construction projects help to establish new methods for process

optimization. In an ideal implementation of the BIM concept, all semantic data on materials,

construction methods, and even the process schedule are connected. On this basis, it is pos-

sible to make much more precise estimations about the project costs and its duration. Most

importantly, possible deviations from the schedule can be detected early, and the resources

can be adapted accordingly.

This technological advancement allows new methods in construction monitoring. In Braun

et al. (2017), the authors propose a method for automated progress monitoring using pho-

togrammetric point clouds and 4D Building Information Models. The central concept is to use

standard camera equipment on construction sites to capture the current construction state by

taking pictures of the complete facility under construction at regular intervals. As soon as a

sufficient number of images from different points of view are available, a 3D point cloud can

be reconstructed with the help of photogrammetric methods. This point cloud represents one

particular time-stamp of the construction progress (as-built) and is subsequently matched

against the geometry of the BIM (as-planned) on a per-element basis.

Figure 51 shows the C#-based Windows Presentation Foundation (WPF) software tool, de-

veloped in the scope of this research. The tool visualizes a building information model and all

corresponding semantic data. Additionally, the observation results can be selected and are

supported by the possible overlay of the corresponding point clouds.

The presented approach can be varied in terms of acquisition method (laser scanning, man-

ual acquisition, . . . ) and matching methods (as discussed in Section 2 - Related work).

However, none of the methods is capable of providing absolute reliability due to occlusions or

other boundary conditions. To further improve the reliability of the methods mentioned above,

107



Figure 51 progressTrack: 4D BIM viewer incorporating detection states, process information and point clouds from
observations

image-based machine learning techniques offer a promising approach. These techniques

allow to analyze pictures based on their contents and even mark and classify specific regions

of pictures. This new information can further improve the geometric as-planned vs. as-built

comparison based on point clouds by increasing the reliability of made assumptions while

comparing semantic data from the BIM with classified categories on similar pictures.

Recently, Convolutional Neural Networks (CNN) were introduced in this context (Girshick

et al., 2014; He et al., 2016). These networks require large training sets to learn similarities

of provided data-sets to make assumptions on unknown data. Applications of CNNs range

from face-detection in security-related applications to autonomous driving (Redmon et al.,

2016). With respect to automated construction monitoring, these methods can help to detect

construction elements on pictures and provide an alternative method for detection in case

of low point cloud densities and to improve the overall accuracy of detection (Dimitrov and

Golparvar-Fard, 2014; Brilakis et al., 2005). However, data pre-processing and labeling of

test-sets for the training of said algorithms is a laborious and time-consuming task since

common CNNs require large amounts of labeled data (Lin et al., 2015).

This paper presents a method to automate the process of construction-site image labeling.

The proposed method makes use of available information on image localization from the

photogrammetric process as well as information on the presence of individual construction

elements from the as-planned vs. as-built comparison by the process described above. The

resulting availability of training data provides the basis for applying the trained CNN for image-

based object detection on any construction site, in particular, those where a 4D-BIM does not
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exist or only a limited number of images are taken, and the generation of a point cloud is

not possible. However, this paper does not report on these next stages but focuses on the

provision of correctly labeled images as an essential first step.

7.2. Related work

7.2.1. Automated construction monitoring
Several methods for BIM-based progress monitoring have been developed in recent years

(Omar and Nehdi, 2016). Basic methods make use of minor technical advancements like

introducing email and tablet computers into the manual monitoring process. These meth-

ods still require manual work, but already contribute to the shift towards digitization. More

advanced methods try to track individual building components through radio-frequency iden-

tification (RFID) tags or similar methods (for example QR codes).

Current state-of-the-art procedures apply vision-based methods for more reliable element

identification. These methods either make direct use of photographs or videos taken on

site as input for image recognition techniques or apply laser scanners or photogrammetric

methods to create point clouds that hold point-based 3D information and additionally color

information.

Bosché and Haas (2008a); Bosché (2012) present a system for as-planned vs. as-built com-

parisons based on laser-scanning data. The generated point clouds are co-registered with

the model using an adapted Iterative-Closest-Point-Algorithm (ICP). Within this system, the

as-planned model is converted into a point cloud by simulating the points using the known

positions of the laser scanner. For verification, they use the percentage of simulated points,

which can be verified by the real laser scan. Turkan et al. (2012) use and extend this sys-

tem for progress tracking using schedule information for estimating the progress in terms of

earned value and for detecting secondary objects.

Kim et al. (2013b) detect specific component types using a supervised classification based on

Lalonde features derived from the as-built point cloud. An object is regarded as detected if the

type matches the type present in the model. As above, this method requires that the model is

sampled into a point representation. Zhang and Arditi (2013) introduce a measure for deciding

four cases (object not in place, point cloud represents a full object or a partially completed

object or a different object) based on the relationship of points within the boundaries of the

object and the boundaries of the shrunk objects. The authors test their approach in a very

simplified artificial environment, which is significantly less challenging than the processing of

data acquired on real construction sites.

In comparison with laser scanning, photogrammetric methods are less accurate. However,

standard cameras have the advantage that they can be used more flexibly, and their costs

are much lower. This leads to the need for other processing strategies when image data is
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used. Omar and Nehdi (2016) give an overview and comparison of image-based approaches

for monitoring construction progress. Ibrahim et al. (2009) use a single camera approach and

compare images taken during a specified period and rasterize them. The change between

two time-frames is detected using a spatial-temporal derivative filter. This approach is not

directly bound to the geometry of a BIM and therefore cannot identify additional construction

elements on site. Kim et al. (2013a) use a fixed camera and image processing techniques

for the detection of new construction elements and the update of the construction schedule.

Since many fixed cameras would be necessary to cover a whole construction site, more

approaches rely on images from hand-held cameras covering the whole construction site.

For finding the correct scale of the point cloud, stereo-camera systems can be used, as

done in (Son and Kim, 2010; Brilakis et al., 2011). Rashidi et al. (2015) propose using a

colored cube of known size as a target, which can be automatically measured to determine

the scale. Additionally, image-based approaches can be compared with laser-scanning re-

sults (Golparvar-Fard et al., 2011). The artificial test data is strongly simplified, and the real

data experiments are limited to a small part of a construction site. Only relative accuracy

measures are given since no scale was introduced to the photogrammetry measurements.

Golparvar-Fard et al. (2011, 2015) use unstructured images of a construction site to create a

point cloud. The orientation of the images is computed using a SfM process.

Subsequently, dense point clouds are calculated. For the comparison of as-planned and

as-built geometry, the scene is discretized into a voxel grid. The construction progress is

determined in a probabilistic approach, in which the threshold parameters for detection are

determined by supervised learning. This framework makes it possible to take occlusions into

account. This approach relies on the discretization of space as a voxel grid to the size of a few

centimeters. In contrast, the approach presented here is based on calculating the deviation

between a point cloud and the building model directly and introduces a scoring function for

the verification process.

The mentioned approaches provide valuable enhancements for automated construction

progress monitoring. However, so far, not all potential benefits from using semantic BIM data

are unlocked to their full extent. Also, current research does not present solutions for occluded

elements as well as temporary construction elements like scaffolds. These elements cover

large parts of construction sites and thus cannot be neglected. The presented approach tries

to solve this issue by analyzing the images taken during the SFM process.

7.2.2. Computer Vision
Computer Vision is a heavily researched topic, that got even more attention through recent

advances in autonomous driving and machine learning related topics. Image analysis for

construction sites, on the other hand, is a rather new topic. Since one of the key aspects

of machine learning is the collection of large data-sets, current approaches focus on data

gathering. In the scope of automated progress monitoring, Han and Golparvar-Fard (2017a)
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published an approach for labeling based on the commercial service Amazon Turk.

Chi and Caldas (2011) used first versions of neural networks to detect construction machinery

on images, Kropp et al. (2018) tried to detect in-door construction elements based on simi-

larities, focusing on radiators. Kim et al. (2013) used ML-based techniques for construction

progress monitoring. They analyzed images by filtering them to remove noise and uninterest-

ing elements to focus the comparison on relevant construction processes. Other publications

mainly focus on defect detection (like for example cracks) in construction images (Akinci et al.,

2006).

Current research mainly uses manual labels for computer vision. Additionally, no construction

data set is currently covering the whole amount of construction elements. An automated

labeling approach could better this lack of data to further improve machine learning methods

in this scope of application.

7.3. Problem statement

Monitoring of construction sites by applying photogrammetric methods has become a com-

mon practice. Currently, several companies (for example Pix4D, DroneDeploy) provide com-

mercial solutions for end users that allows to generate 3D meshes and point clouds from

UAV-based site observations. All these methods give reasonable solutions for finished con-

struction sites or visible elements of interest.

However, there are still many unsolved problems in monitoring construction sites. Photogram-

metric methods are sensitive to low structured surfaces or windows. Because of the used

method, each element needs to be visible from multiple (at least two) different points of view.

Thus, elements inside of a building cannot be reconstructed as they are not visible from a

UAV flying outside of the building. Monitoring inside a building is currently still under heavy

research (Kropp et al., 2014) and not available in an automated manner as orientation and

observation in such mutable areas like construction sites is hard to tackle.

These problems lead to holes or misaligned points in the final point cloud, that hinder accurate

and precise detection of building elements. On the other hand, laser scanning requires many

acquisition points and takes significantly more time and manual effort for acquisition. Finally,

both techniques remain with occlusions for regions that are not visible during construction.

As can be seen in Figure 52, another problem is elements that are occluded by temporary

construction elements. Especially scaffolds and formwork elements occlude the view on walls

or slabs, making it harder for algorithms to detect the current state of construction progress.
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Figure 52 Occluded construction elements in generated point cloud caused by scaffolding, formworks, existing elements and
missing information during the reconstruction process

This paper proposes a method that is meant to overcome some of the limitations of the

available methods. It contributes to the final goal of exploiting images as an information

source for construction state detection, either as additional information in case one of the

methods mentioned above is applied, or even as sole and primary information if a 4D BIM

does not exist or an insufficient number of images is available for photogrammetric detection.

To achieve this, the authors propose to apply CNNs for automated object detection.

However, a huge set of correctly labeled images is required for training the CNN and achieve

high precision and low recall. So far, the labeling process had to be performed manually

in a laborious and error-prone process. This is why the authors propose to automate this

process by making use of the methods they originally developed for construction progress

monitoring. In particular, we use image localization from the photogrammetric process as

well as information on the presence of individual construction elements from the as-planned

vs. as-built comparison. This results in the availability of the required high quality, high volume

training data.

7.4. Automated labeling of images

An essential part of progress monitoring is the detection of an element’s status, i.e. to de-

cide whether an element is still under construction (e.g., surrounded by formwork) or finished.

Pure point-cloud-to-model matching methods are facing difficulties in this regard as tempo-

rary and auxiliary constructions (such as formwork) usually are not included in the BIM model.

As proposed in Braun et al. (2018), computer vision based methods can help here and signif-

icantly improve the reliability of as-planned vs. as-built comparison. The basic idea is to use

visual information to decide upon an element’s visibility status.
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The authors propose the use of machine learning (ML) methods for image-based detection

of a construction element’s status. However, ML techniques require a large set of labeled

images for training. As currently large labeled sets of construction site images or not avail-

able, the labeling has to be performed manually in a tedious and time-consuming process.

Generating these labels automatically can drastically reduce preparation efforts for training

and improving such networks.

The proposed concept of automatic labeling is based on fusing information available from the

photogrammetric process (images and relative position of the camera) and the information

available from the 4D BIM (object type, object position). Since the BIM and the resulting point

cloud are aligned, each BIM element can be projected onto the image initially taken for the

photogrammetric process. This allows to precisely identify the region covered by a building

element on a picture.

However, there is a significant problem remaining: Information on the actual presence of the

element cannot be reliably taken from the 4D as-planned BIM, as execution time very often

deviates from the original schedule (which is the underlying rationale for applying progress

monitoring). At this point, we benefit from the original point-cloud vs. BIM matching process

outlined in Section 1: It provides reliable information about the actual presence of an element

in reality and thus also on the captured images.

Consequently, the proposed method for automated labeling of construction elements uses the

data of previously monitored construction sites together with the results from the as-planned

vs. as-built comparison to generate valid data sets for the training of neural networks.

The proposed workflow is also depicted in Figure 53.

As soon as the training is successfully completed, these networks can be used on any con-

struction site for an image based detection of elements.

The following subsections describe the process and mathematical background for the projec-

tion of construction elements into pictures and the labeling procedure using these results.

7.4.1. Camera positions
In the proposed method, the point cloud is produced using photogrammetric methods. In this

process, pictures are taken, for example by UAVs (Unmanned aerial vehicles) from different

points of view. These pictures can then be used to generate a 3D point cloud if all elements

are visible from a sufficient amount of viewpoints. During the reconstruction process, the

camera positions around the construction site are estimated. This is illustrated in Fig. 54.

This estimation is refined during the dense reconstruction and can get more accurate by

using geodetic reference points on site.
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Figure 53 Proposed workflow for the automated labeling toolchain

Figure 54 Estimated camera positions during point cloud generation (in this example using VisualSFM (Wu, 2013a))
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7.4.2. 4D process data and as-planned vs. as-built comparison
Building information modeling can be used to combine the geometry of construction elements

with semantic data such as material information but also process schedules. In the scope of

this research, the corresponding process schedule is connected to all elements, resulting in a

fine-grained 4D-BIM model. This allows identifying all elements that are expected to be built

at each observation time.

As depicted in Fig. 55, the software tool used in this research is capable of integrating the

building information model with process data and construction elements such as scaffolding

and formwork.

Figure 55 4D building information model including all additional construction materials like scaffolding and formwork

This data is required to define the sets of elements that are used for the labeling method

described in this paper. Since the process schedule may change during construction, it is

crucial to update the schedule permanently based on the gathered observation data. Since

the as-planned vs. as-built comparison has already been conducted for the construction sites

in this research, the results are available for all construction elements. This information is

crucial since the labeling of elements that were not built yet would lead to incorrect labels.

7.4.3. Projection
Based on the gathered information, it is possible to do a visibility detection by using the

camera positions as the point of view, and the process information to define the set of con-

struction elements, that are meant to be built. To achieve this, the building model coordinate

system needs to be transformed into the camera coordinate system or vice versa. Several

parameters are needed for this transformation.
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On the one hand, the intrinsic camera matrix for the distorted images that projects 3D points

in the camera coordinate frame to 2D pixel coordinates using the focal lengths (Fx, Fy) and

the principal point (x0, y0) is required. Additionally, the skew coefficient sk for the camera is

required. This scalar parameter defines the relation between x and y axis. It is zero if the

image axes are perpendicular. The matrix K can be described as defined in equation 7.1.

K =


Fx sk x0

0 Fy y0

0 0 1


(7.1)

The translation of the camera is defined as:

T =


t1

t2

t3


(7.2)

Additionally, the rotation matrix for each image as defined in equation 7.3 is needed.

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33


(7.3)

Both, translation and rotation can be described in one 3 x 4 matrix:

RT =


r11 r12 r13 T1

r21 r22 r23 T2

r31 r32 r33 T3


(7.4)
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Using the model coordinates of all triangulated construction elements, it is possible to calcu-

late the projection of each element into the camera coordinate system and therefore overlay

the model projection and the corresponding picture taken from the point of observation with

equation 7.5.

t = K ∗RT ∗ p; (7.5)

The resulting 2D coordinates that are rendered into the picture are calculated by using the

vector t and getting the x and y coordinates by calculating

x = t[0]/t[2] (7.6)

and

y = t[1]/t[2] (7.7)

This is done for each point belonging to the triangulated geometry representation of all con-

struction elements.

As visible in Fig. 56 for an analytical column, the projection works as expected and helps to

identify the respective construction element in the recorded picture. The mentioned calcula-

tions need to include an optional transformation and rotation if the model is geo-referenced

and thus the two coordinate systems differ broadly.

7.4.4. Render model based on camera position
The algorithm introduced in section 7.4.3 enables the element-wise rendering of all construc-

tion elements in the respective coordinate system. To get a rendered image of all visible

construction elements, the following steps are carried out:

Algorithm 2 Pseudo code for rendering an image of all visible elements

1: procedure RENDERVISIBLEELEMENTS

2: O← set of all observations of the construction site
3: I← set of all images of current observation
4: E← set of all construction elements
5: C← set of all coordinates of the triangulated surfaces
6: d← distance of element to corresponding camera position
7: for all O do
8: for all I do
9: for all E do

10: for all C do
11: if isvisible(c) then P(x,y,d,color) = projection(c);

12: for all Pixels do
pmin = min(P (d));
p(x, y) = p(color);
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Figure 56 Sample of projected, triangulated column geometry into a corresponding picture
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While all geometric information is available, three problems need to be solved for an accurate

rendering of all construction elements:

1. For triangulated elements, only the boundaries are known. However, the whole surface

needs to be rendered correctly.

2. The rendered surface needs to be connected to the corresponding element since this

information is crucial for a proper visibility analysis

3. Elements may blend over from the viewpoint in some circumstances. This needs to be

addressed to get a correct rendering.

The first issue is solved by applying necessary inside/outside tests for points inside a bound-

ing box around each triangle. This is combined with min/max tests to verify that all points

are inside the given coordinate system of the current picture. The second issue is addressed

by assigning an individual color in the RGB color range to every construction element. This

allows identifying each element after the rendering is finished.

The third issue is solved by applying the Painter’s algorithm (Elvins, 2005) to each pixel in the

given picture. In the given challenge, the distance to the point of view is stored for the current

construction element and the color information is replaced in case an element has a smaller

distance to the point of view and is also visible in the same pixel of the picture.

The applied algorithms result in a rendering as seen in Fig. 57.

After applying this technique to all observations and all camera positions, a distinct list of all

visible construction elements can be generated by iterating over all pixels of each rendered

image. The color of each pixel is assigned to a construction element, and since the painters’

algorithm is applied, only the element is visible, that has the lowest distance to the point

of observation. Therefore, all visible, non-occluded elements can be determined with this

method.

7.4.5. Generating Labels for Machine Learning
Since machine learning tasks require large training sets for the learning procedure, the label-

ing and pre-processing of suitable data play a crucial role.

Labeling for ML depends on the desired output of the ML system. A basic ML system for

classification is only capable of making general statements on the content of an image and

hence only requires a set of images containing the classification category as training input.

On the other hand, a system for semantic segmentation can predict the exact location and

also the amount of (multiple) elements in one image. Labeling for this class of systems

requires detailed convex hull polygons around all instances of elements. Additionally, the

category for each label needs to be defined.
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Figure 57 Using projection methodology for model rendering based on the Painter’s Algorithm and 4D semantic information
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The automated labeling process presented here builds on the previously presented projection

algorithm and is capable of generating labels for all sorts of ML systems starting from neces-

sary bounding boxes up to detailed convex hulls around individual element instances. Image-

based labeling is realized by defining a polygon line around each object and associating a

corresponding category with this label. The polygon label can be generated by the above-

mentioned projection and fits precisely around the shape of each construction element. The

defining element category can be extracted from the semantic information provided by the

building information model. Since geometry and semantic data are connected, any additional

information can be added to the generated labels.

Besides using the mathematical algorithms for projection, also the results of the visibility

analysis are essential. As discussed before and depicted in Figure 58, labeling cannot only

rely on all available elements. A prominent but noteworthy factor is the actual presence of the

labeled element. The element must have been built to generate an image valid for training or

testing. By extracting this information from the as-planned vs. as-built comparison, the set of

available elements is reduced to the set of detected elements. In the next step, the set needs

to be further reduced to the set of visible elements for each picture.

Figure 58 Considered set of elements based on previous results from as-planned vs. as-built comparison. For CV-based
methods, visibility plays a crucial role, leading to reduced data sets from construction monitoring.

To sum up the labeling process, the following method is proposed:

Algorithm 3 Pseudo code for labeling all visible elements in an image

1: procedure LABELVISIBLEELEMENTS

2: I← set of all images
3: List < element, List < P >> LabelList← set of all labels
4: for all I do
5: E← set of all construction elements, visible in current picture
6: for all E do
7: List < P > ConvexHull = GetConvexHull();

LabelList.Add(E.elementtype, ConvexHull);

The proposed method works for all kinds of label requirements. To illustrate this, Table 18

shows sample labels for a Classification Network (which usually requires image snippets with

bounding boxes) and semantic segmentation (which usually requires polygon lines and the

corresponding images). The sample shown here uses the well known COCO format. For

better understanding, a graphic labeled image for semantic segmentation is added, too.
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Category Classification semantic seg. [JSON coords] seg. image

column [[3778, 1230, 3810, 1230,
3834, 1231, 3837, 1230, 3840,
1230, 3854, 983, 3852, 984,
3848, 984, 3791, 985]]

formwork [[2662, 1662, 2666, 1682,
2703, 1682, 2704, 1323,
2702, 1319, 2699, 1314, 2663,
1314]]

Table 18 Sample labels of two categories for different ML use cases

Current best practice in machine learning proposes to split the labeled data-set into a set of

training data for the actual training process, a set of validation that does not contain any data

from the training set to validate the current training rates. Finally, a set for testing that is not

used for training or validation at all is used for checking the overall performance of the neural

network without further changing the learning parameters.

Hence, the labeled images are split randomly into the mentioned categories to fulfill this

requirement.

7.5. Case study

To prove the introduced methods, the following case studies were conducted:

7.5.1. BIM element projection onto images
The developed methodology has been applied to several construction sites.

As depicted in Fig. 52, most observations lack details at some point and have mostly oc-

cluded areas due to the observation methods. In very disadvantageous observations, the

detection rate can drop down to 50% of the overall built construction elements. In this case,
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the detection rate d describes the percentage of elements that the proposed method marked

as detected over the ground truth of all elements that were built. The latter set of elements

has been acquired manually in order to verify used algorithms.

With the help of the presented methods, these rates can be explained since most of the

undetected elements were not visible from the observation points. To quantify the efficiency

of an algorithm for as-planned vs. as-built detection, it is essential to have a valid ground

truth to allow an unbiased evaluation of the used methods. This approach helps to quantify

the used methods correctly.

Figure 59 Detected construction elements from one observation. Green elements were successfully detected, yellow
elements were not detected but are built.

This concept is illustrated in Fig. 59. The green elements were detected correctly. The yellow

elements, however, are built but were not detected. This is because the inner walls were not

visible from a sufficient number of viewpoints. Thus there were not enough points in the cor-

responding point cloud that allowed to validate the existence of the elements. However, these

elements were identified as not visible using the method introduced earlier in this paper.

7.5.2. Automated labeling and validation
After successfully testing the projection, the actual labeling is performed being the key contri-

bution of this paper.

Many currently used CNNs rely on the COCO Data-set (Andriluka et al., 2014). Facebook’s

Mask R-CNN (He et al., 2017) has provided promising results for machine learning in previous

applications. The network itself also relies on the COCO data format as a basis. Thus,

the authors chose this schema as a basis for the generation of the labels. This schema

requires a defined structure for all labels, including information about each image (id, width,
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height, license, date captured), all annotations (id, corresponding image, label category, label

polygon, bounding box, ...) as well as the defined categories (in this case for example walls

or columns, all represented by individual IDs).

The construction projects on which the developed methods have been applied involve mainly

the production of concrete elements. The following construction elements and temporary

elements were modeled in the corresponding BIM:

• columns

• walls

• formworks

• slabs

• roofs

• stairs

Figure 60 Sample sub-set of auto-labeled columns in one picture from a construction site.

The proposed methods were tested on observation data from multiple construction sites,

resulting in 32,787 labeled construction elements on 1,300 images. The machine used for

this test is a Windows 10 system equipped with an Intel Xeon E5-1630 CPU @ 3.70GHz, 16

GB DDR4-RAM, AMD Fire Pro W4100 2GB RAM, and a 10GBit network connection.

The entire automated labeling process took around 20 minutes, outperforming manual label-

ing significantly. During this time, all images (close to 9 GB) were downloaded from a NAS

(Network attached storage) and randomly added to the training, validation, and test data
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Figure 61 Sample sub-set of auto-labeled columns and walls in another picture from a construction site.

sets. Additionally, the corresponding label files in JSON format were generated. A sample

visualization of the generated labels for one picture is depicted in Figure 60 and 61, showing

exported columns with their respective convex hull label around them.

The method was validated through human evaluation on all labels for the tested construc-

tion sites. The label projection worked without failure for all built construction elements in

terms of generating a valid convex hull as the existing elements have been verified against

a manually created ground truth. Since no issues were found in a set of over 32,000 snip-

pets, the projection can be regarded as working correctly. However, as depicted in Fig. 62,

the automatically generated labels (cyan poly-lines) have a slight deviation from the actual

construction elements.

This deviation can have multiple reasons:

• errors in pose estimation during Structure-from-Motion

• large scale deviations when using real-world coordinates

• construction inaccuracies

• modeling inaccuracies

Since all elements were validated in the as-planned vs. as-built comparison, allowing for only

very minor construction inaccuracies, construction inaccuracies can be disregarded in this

research. Otherwise, the element would not have been classified as "built" and would not

have been labeled at all.
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Figure 62 Validation of label correctness with cyan poly-lines representing the automatically generated labels and orange
poly-lines representing the manually generated validation set.
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Thus, the deviations, in this case, are minor and arise from an aggregation of the mentioned

reasons. To quantify the introduced error, a set of 1.000 elements have been labeled man-

ually and tested against the automatically created labels. The labels were then compared

pixel-wise. The overall accuracy of the automated system was measured by calculating the

overlapping area I of the resulting labels of both labeling methods over the manually labeled

area:

po = I/Amanuallabel (7.8)

with

I = Aautolabel ∩Amanuallabel (7.9)

The resulting accuracy po had an average of 91.7% overlap over all checked labels, constantly

lying within the bounds of 85% and 97%. The overlap rates give promising results and make

the labels usable for machine learning tasks. Rates could be further improved by taking

more pictures for the Structure-from-Motion process and enhancing the resulting camera

pose estimation.

7.6. Discussion

For improving the reliability of construction progress monitoring, this paper introduces a novel

concept for automating the labeling process of construction site images. It is based on fusing

information available from the photogrammetric process (images and relative position of the

camera) and the information available from the 4D BIM (object type, object position). Since

the BIM and the resulting point cloud are aligned, a digital element can be projected onto

the image, initially taken for the photogrammetric process. Also, matching the point cloud

and the BIM allows to make sure that only images are considered where the elements under

consideration exist in reality.

From the projected BIM elements, it is possible to automatically connect the covered image

segments with the semantic information provided by the Building Information Model. Since

the introduced as-planned vs. as-built comparison also offers valuable information on the

presence of all elements, the labels can be further refined regarding possible occlusions. As

a valid label should only be applied to an at least partially visible element, the gathered knowl-

edge from the previously applied as-planned vs. as-built comparison makes this automated

approach even more accurate. Since the comparisons’ resulting elements are built at the

correct positions, the labels are also correct. On the downside, only elements that were built

as-planned can be labeled.
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The sample-based validation showed over 91% pixel-wise accuracy of the automated proce-

dure when tested against manual labeling procedures. A previously tested, manual labeling

approach took over 100 working hours to accurately label only one category of elements.

Labeling and generating the corresponding images folders for this case study took around 20

minutes, including downloading of 9 GB of pictures from a remote NAS folder which takes

over 90% of the time used. Additionally, several studies show that manual labeling is also

introducing a range of errors due to missed elements or inaccurately labeled elements. As

the correct identification of construction elements also requires technical personnel (Han and

Golparvar-Fard, 2017b), labeling is hugely cost intensive and danger of bore-out to this group

of workers due to the repetitive work.

The construction sites used for this process are located in Germany and apply in-situ concrete

pouring as the primary construction methodology. Consequently, the resulting labels and

especially the trained network, will only be able to detect construction elements from this

domain of manufacturing. However, the presented approach can be easily extended by also

including construction sites from other countries or other construction techniques.

Future steps of this research will focus on creating a CNN for detecting the most important

construction elements on construction sites. The final objective is to enable a utterly image-

based construction monitoring process in the future.
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8. Discussion

The presented methods in the Chapters 4 to 7 introduce enhancements for an automated

way of construction progress tracking. A specific focus lies on the combination of point cloud-

based acquisition methods on the one hand and geometric and semantic data from digital

planning processes on the other hand. This data is further enhanced by CV and ML meth-

ods.

This chapter will discuss the main findings of the conducted investigations and the main

characteristics of the introduced methods, while Chapter 9 provides an outlook and introduces

possible future extensions in the scope of this research area.

Digital 4D models for construction planning enable planners to combine schedules with the

3D geometry. With this digitized approach, new monitoring techniques become available.

Point cloud-based representations that are gathered from laser scanners or photogrammetric

methods provide digital representations of the as-built status on construction sites. Com-

bining these two digital data sets makes it possible to automate the labor-intensive task of

progress tracking in large parts of the construction site.

8.1. Review

Automated progress monitoring can provide several advantages to this currently manual pro-

cess. Besides the reduction of manual and error-prone work, it allows for informed decision

making based on real-time information on the current progress on-site. The manual assess-

ment of construction progress can be reduced significantly by acquiring the as-built state with

automated methods. By transforming this work into a digital process, all acquired data and

information can be distributed to construction managers, independently of their current work-

ing location. Thus, the whole management can take place independently, and any parties

involved in the construction process can immediately check the current status of construc-

tion.
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The introduced methods in this thesis extend the state of the art in progress monitoring by

several new approaches, like semantic analyses and CV. The results show that depending on

the type of construction and the type of occlusions, the detection of built elements can rise by

up to 50% compared to an SfM-based, purely geometric as-planned vs. as-built comparison

(see Chapter 6). As introduced in Chapter 5, acquisition can be automated by using image-

based acquisition methods like crane cameras or UAVs.

8.1.1. Acquisition
As elaborated in Chapter 5, the acquisition of construction sites faces many challenges. Cur-

rently, laser scanning or photogrammetric methods are used to generate point clouds repre-

senting the as-built status of a construction site.

Image acquisition can be automated by either using UAVs or webcam-like cameras mounted

on cranes. In this regard, photogrammetric methods proved useful, since they provide faster

acquisition times in comparison to laser scanners, also they are cheaper and easier to use.

Compared to laser scanners, photogrammetric methods are significantly faster during acqui-

sition, and easier to implement (Omar and Nehdi, 2016). However, they can only provide an

accuracy of +/- 5cm, while laser scanners can achieve better accuracy in the region of sub-

centimeters. As elaborated in Chapter 6, this accuracy is sufficient for progress monitoring.

As introduced in Chapter 5, crane cameras provide continuous monitoring without any addi-

tional monitoring efforts. However, reconstruction accuracy in the z-direction is limited due to

insufficient coverage from side-wards facing camera positions. This problem can be solved

by placing additional cameras around the construction site. However, these positions need to

be carefully selected to ensure a continuous, unobstructed view on the construction site.

The UAV-based acquisition allows to focus monitoring on regions of interest during flight time

and additionally provides the possibility to ensure mostly unobstructed views on these regions

due to optimal camera positions from above. This method proves very suitable for most

situations. However, indoor monitoring is currently not possible with this method. Besides,

current regulations in most countries require a pilot to actively overlook the entire flight time,

resulting in manual work during acquisition.

As investigated by other research groups, indoor monitoring can also provide valuable results

on the construction progress (Kropp et al., 2018). These methods require significant efforts

on positioning since GPS signals cannot be received, introducing new vectors of errors with

high possibilities of error propagation, the further monitoring goes without any checkpoints.
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In conclusion, there is no monitoring solution available that offers 100 % coverage without any

manual work during acquisition. Nevertheless, the introduced methods provide significant

benefits for capturing the as-built status and facilitate a comprehensive data gathering while

minimizing manual labor. Despite the still manual task of flying a drone over the construction

site, this method provides valuable data and documentation of construction progress.

In the near future, more automated UAV flights could even further automate the progress.

Besides legal reasons, localization and distance sensors become more accurate, providing

new possibilities to plan automated flight routes over and even through construction sites.

In combination with crane cameras, head-mounted cameras, and additional sensors, these

methods will provide additional benefits to the automation of construction monitoring (See

Chapter 9).

8.1.2. Scan-vs-BIM matching
The comparison of the as-planned geometry with the captured as-built point cloud data re-

quires registration and geometric alignment of said data. Based on the research results in

Chapter 5, it is proposed to position the BIM at the actual geodetic measured reference points

manually. Markers on-site can geodetically reference the as-built point cloud to provide re-

liable accuracy compared to automated methods like ICP. The Scan-vs-BIM comparison is

proposed to be performed on a geometric basis in the first place. This method applies to any

point-cloud based approach since the general mathematical comparison approaches apply

to each of these methods. This approach provides good results for quick feedback on the cur-

rent construction state (see Section 9.1). It is crucial to note that this part of the comparison

solely concentrates on geometric matching. Especially deviations from the initially planned

positions cannot be identified with this approach. However, process-based (4D) deviations

can be identified if elements are not occluded. Processes like paint jobs that do not introduce

any geometric changes can not be assessed with this method.

Due to the nature of this comparison, occlusions on construction sites or inaccurate recon-

structions during acquisition lead to inaccurate results. Experiments with real-world cases

studies (Section 6.4.6 and 9.1) have shown that true positive detections of construction ele-

ments can decrease to around 50% of the overall available elements (ground truth). Based

on the results presented in Chapters 5 and 6, it is elaborated that additional measures are

required for more precise results. They are discussed in the following Sections.

8.1.3. Analysis of semantic information for Precedence Relationship Graph
generation and color-based detection

To further increase robustness, semantic data, including material and process information, is

extracted from the digital building model. This data is, among others, used to derive tech-

nological dependencies for the building based on its load-bearing structure. It includes color

information but also attributes like "load-bearing" or the type of construction. Chapter 6 intro-

duces a workflow that automatically derives precedence relationships from digital models.
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The dependencies are stored in a graph to be easily accessible for digital analysis. These

relationships are used for inferring the existence of elements that are not visible in the point

cloud due to occlusions. As visualized in Figure 63, this graph contains a vertex for every

element, making the overall graph quite large, containing several thousands of nodes. Query-

wise, however, it is computationally cheap to request depending elements based on their

dependencies in a graph (Zhao and Han, 2010).

The PRG allows to identify up to 50% more elements in comparison to a purely geometric

approach. It works particularly well for load-bearing elements. Other elements might not

possess enough dependency relationships, hindering the inference of the as-built status.

Figure 63 Automatically generated PRG visualized together with the corresponding model.

Besides, material-derived color analyses are introduced. Especially for elements under con-

struction, this approach provides data to distinguish between actual construction elements

and temporary elements, as these elements usually require temporary items such as form-

work (see Section 6.3.7). The Hue, saturation, value (HSV) color space describes the color

as perceived by humans and provides the basis for this method. Construction elements can

be assessed regarding their colors. The grey color of concrete can be distinguished clearly

from other colors like red or yellow formwork elements. These items’ colors differ largely from

the element’s color. The validation of color values provides further certainty to assess the

status of a construction element.

8.1.4. Computer Vision and Machine learning
As introduced in Chapters 6 and 7, computer vision can help to gather further information

about the construction progress based on a computational analysis of images. SfM methods

are based on estimating the camera positions for all images used for reconstruction. The

resulting camera position, including the view vector, is used for all methods applied in the

scope of CV.
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Firstly, CV methods are applied to identify visible elements during acquisition based on the

camera position during acquisition. This step is introduced to distinguish between the set of

visible and invisible construction elements. Based on these results, invisible elements can

be removed from any additional detection steps, resulting in better computing performance

during the as-planned vs. as-built comparison (see Section 6.4.4). Secondly, these elements

can be further investigated with the semantic methods, as summarized in Section 6.3.7. This

includes, e.g., checks whether an element is encased in formwork or whether it is detectable

via the color information from its material.

With the knowledge on the position of all elements on every acquired image, an image-based

evaluation follows. While most methods that make use of point clouds can benefit from the

3D spatial information, methods that only rely on images are lacking position and geometry

information from the 3D space. However, images have a higher density, resulting in more

potential data sources. The introduced projection approach makes use of both data sources,

combining the benefits of both approaches. On the one hand, the estimated camera positions

from the SfM process are needed to position an image concerning the model. On the other

hand, the aligned BIM model is needed to transform the 3D geometry of every element into

the 2D plane of an image.

Figure 64 Detected construction elements on an image taken during monitoring.
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Image analysis and ML supported object detection on ordinary pictures is well-established,

and so, a useful addition to progress monitoring is presented. After training a Mask R-CNN-

based network, construction elements can be detected on images at a pixel-wise level (see

Fig. 64). Introduced in Section 6.4.5, the network has a mean average precision (mAP) of

over 90 %.

8.1.5. Automated labeling
While the developed method is in principle performing well, there is currently no comprehen-

sive data set for construction elements available. These data sets are required to build reliable

ML systems that can be trained to detect construction elements. The training process of said

networks is computationally expensive and requires large amounts of images. Currently, la-

beling is done by trained personnel, which is expensive and has a high danger of "bore-out".

Manual labels of scaffolding, as shown in Figure 65, impressively visualize the high effort

required and the complexity of such tasks that demand a high amount of concentration.

Figure 65 Manually labeled scaffolding structures on an image from our data-set.

To overcome the necessity of laborious manual labeling as introduced in Chapter 7, the

projection-algorithm mentioned above can also be adapted to image labeling for ML. This

approach is solely possible once the Scan-vs-BIM comparison results are available, and a

statement can be made on the presence of an element in an image. Consequently, this

method can only be applied in the aftermath of a Scan-vs-BIM comparison, not providing any

benefit to this particular construction site. The fusion of all these results from the various

introduced methods now provides this by-product that can be used to train a dedicated CNN

for construction elements.
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Depicted in Fig. 66, a small subset of the generated elements is shown. The quality of

the resulting labels depends on the estimated camera positions during the SfM process. In

the conducted research in Chapter 7, the resulting accuracy po had an average of 91.7%

overlap over all checked labels, always lying within the bounds of 85% and 97%. The overlap

rates give promising results and make the labels usable for machine learning tasks. Rates

could be further improved by taking more pictures for the Structure-from-Motion process and

enhancing the resulting camera pose estimation.

Figure 66 Automatically generated labels for all types of construction elements, present on the case-study construction sites.

8.2. Research contributions

This work was able to advance automation in the area of construction progress monitoring

significantly and thus made a notable contribution to increasing transparency as a basis for

Informed Decision Making. The acquisition of construction sites has been assessed, and

a UAV-based monitoring approach is proposed (Chapter 5) as also introduced by other re-

search groups (Golparvar-fard et al., 2009; Ham et al., 2016). All introduced methods built

upon the current state of the art in construction progress monitoring.

The image-based acquisition uses SfM methods to reconstruct 3D point clouds to represent

the as-built status of the construction site. In the context of shading and indoor acquisitions,

there are still challenges to be met. In detail, the presented approaches make extensive use

of semantic information provided by the BIM model. For this purpose, several new methods

are introduced.

The structure of the model is analyzed with a query language to gain knowledge on the tech-

nological dependencies of the building (Chapter 4). These are stored in a precedence rela-

tionship graph that can be used to query depending elements for each detected construction
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element. In combination with the introduced visibility analysis (Chapter 6), this information

can be used to identify occlusions based on observation points according to the SfM pro-

cess. The color values derived from the images are used to compare the expected values

based on material information (Chapter 6).

ML based object detection on image basis has been introduced in Section 6.4.5. The pre-

sented combination of SfM and CV introduced a new way to project elements directly into the

image plane. With this knowledge, image-based comparisons become possible that can be

directly linked to the corresponding elements.

Finally, a novel approach in the scope of ML image labeling is introduced. It makes extensive

use of the Scan-vs-BIM comparison and its result in combination with SfM. This method

provides an automated way to label previously detected construction elements on image-

basis.

136



9. Possible Extensions and Outlook

Computational power, as well as automation on construction sites, will rise in the coming

years. In combination with more accurate acquisition methods, progress monitoring will be-

come more precise.

This thesis introduced new methods that partially automated this currently tedious work.

While the proposed workflows work well for the monitoring of structural works, several steps

can be improved. The presented results also show possible extensions for other requirements

besides progress monitoring.

9.1. Analysis and Performance Monitoring

This thesis laid a strong focus on the comparison of the as-planned objects that are expected

as per the process schedule with the as-built point cloud. The results are not used any

further since this has not been part of the research question addressed within this project.

Nevertheless, the set of detected elements and, subsequently, the identified stage in the

process plan provides data for further analysis.

Especially performance analysis in combination with Quantity take-off (QTO) can be per-

formed, including the determination of performance values such as "used concrete per day"

or the number of built walls per section. These results can help construction managers to,

i.e., identify staff shortages. Another possible application scenario can be the management

of just-in-time deliveries that require adjustments according to the detection results.
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9.2. Extension to indoor acquisition

Currently, the introduced approaches only work reliably for the monitoring of structural works.

Several approaches show the feasibility of indoor monitoring by overcoming localization is-

sues with markers or, i.e., path-finding algorithms. Also, current research introduces combina-

tions of laser scanning and cameras that are mobile and thus become suitable for construction

sites.

The combination of these methods can provide even better results and overcome some of

the issues, a solely UAV-based approach needs to tackle.

9.3. Quality assessment and monitoring

Quality assessment has multiple aspects that need to be considered. One crucial aspect

of quality control is to validate whether all construction elements are built up as designed.

This includes the check for correct placement as well as geometric correctness of the as-built

element.

Another part is material check for cracks or similar visual defects (Zhou and Song, 2020).

These defects usually occur if too little reinforcement has been placed or sheer forces are

too high. Identifying and documenting these issues in an automated manner would provide

a great benefit to construction managers. First steps are sketched in Braun et al. (2019),

proposing the introduced data from SfM methods.

Another valuable extension to the introduced methods is the monitoring of built structures.

Defects due to corrosion or constant overloads lead to cracks in concrete. A comprehensive

overview of methods to monitor these defects with CV is provided by Koch et al. (2015).

9.4. Digital construction diary and documentation

Mentioned in Section 3.2.1, digital construction diaries are already implemented on several

construction sites. However, these diaries lack a direct connection to the digital model, espe-

cially the individual construction elements. While applying the proposed methods, a logical

next step can be implementing an interlinked construction diary that incorporates the connec-

tion between the acquired images and the BIM model.
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9.5. Scan-to-BIM

Current research focuses on Scan-to-BIM approaches, since acquisition methods advance

in terms of accuracy and automation. Research in this area dramatically benefits from ad-

vancements in Machine Learning. In this regard, the automated labeling approach presented

in Chapter 7 can be extended to point clouds to provide additional value to the training of a

point cloud-based neural network.

Current research in construction ML focuses on training directly on the point cloud (Charles

et al., 2017). Since these methods are still under development, the previously introduced

methods regarding CV methods and visibility analysis can provide valuable information to

improve future research approaches in this field. Especially the automated labeling approach

presented in Chapter 7 can provide significant benefits in this regard as it provides quick

labeling results without manual work.
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