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Goldstone bosons in the universe: composite dark matter and the QCD
axion in neutron stars

Goldstone-Bosonen im Universum: zusammengesetzte dunkle Materie und das
QCD-Axion in Neutronensternen

Reuven Balkin

Abstract

The hierarchy problem of the standard model can be naturally explained if the Higgs is a
composite particle described as a Goldstone boson. In the first part of this thesis we explore the
rich collider and dark matter phenomenology of composite Higgs models with extended composite
sectors. The second part is dedicated to another Goldstone boson, the QCD axion, which solves
the strong CP problem. We explore the e�ects of dense baryonic background on the QCD axion
properties in nuclear densities, as well as in the color superconducting phase.

Zusammenfassung

Das Hierarchieproblem des Standardmodells lässt sich auf natürliche Art lösen, wenn das Higgs
ein zusammengesetztes Teilchen ist, das als Goldstone-Boson beschrieben wird. Im ersten Teil
dieser Arbeit untersuchen wir die vielfältige Collider- und dunkle Materie Phänomenologie von
nicht-minimalen Composite-Higgs Modellen. Der zweite Teil ist einem weiteren Goldstone-Boson
gewidmet, dem QCD-Axion, das das Strong CP Problem löst. Wir untersuchen die Auswirkungen
einer Baryondichte auf die Eigenschaften des QCD-Axions sowohl bei nuklearer Dichte als auch
in der farbsupraleitenden Phase.
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O ne of the crowning achievements of science, and perhaps even humanity, was the discovery
of the Higgs particle in the Large Hadron Collider [1, 2]. The Higgs boson was the last

piece needed in the mechanism which explains the origin of the short-range weak force and the
long-range electromagnetic force, the mechanism of spontaneous symmetry breaking. Even prior
to the Higgs discovery, a similar mechanism was used to explain the spectrum of the light mesons,
e.g. pions, which we understand to be pseudo Nambu-Goldstone bosons of a broken global
chiral symmetry. Importantly, the Higgs mechanism was conceived out of necessity, namely to
address the unitarity violation in the perturbative scattering of massive gauge bosons [3, 4].
To the low energy observer, who knows nothing about the Higgs boson, the scattering cross
section of longitudinal massive gauge bosons appears to increase uncontrollably with energy,
until perturbative unitarity is violated is the theory becomes strongly coupled. The appearance
of the Higgs at high energies prevents the violation of perturbative unitarity and e�ectively
UV-completes the standard model as a weakly coupled gauge theory. With its last piece in place,
the standard model of particle physics constitutes a consistent model which is able to accurately
describe physics up to the highest terrestrially accessible scales. There is currently no similar
obstruction limiting the validity of the standard model up to the Plank scale, where gravity must
be included.

However, we have several reasons to assume that the standard model is not a complete description
of Nature, namely that new physics must emerge at scales lower than the Plank scale. Some
of these reasons are based on hard experimental evidence. A prime example of such a smoking
gun is the observation of what appears to be large quantities of non-luminous matter in the
universe. This additional matter, dubbed dark matter, cannot be conventionally explained using
the particle content of the standard model (see Sec. 1.6 for an extended discussion). Other
evidence for physics beyond the standard model are more circumstantial in nature. They are
a result of a mismatch between the measured value of a standard model parameter and our
expectation for its value. The expectation is not arbitrary but rather based on observations of
similar phenomena in Nature. In this category we include the Hierarchy problem (see Sec. 1.1)
and the Strong CP problem (see Sec. 4.1). All of the above-mentioned issues can be resolved by
standard model extensions which are based on the spontaneous symmetry breaking mechanism.
These extensions and the phenomenology of the corresponding Goldstone bosons are the main
theme of this thesis.

In Part II we investigate the phenomenology of composite dark matter in non-minimal com-
posite Higgs models. We start by presenting the motivation and framework for these models
in Chapter 1. As mentioned above, we start by introducing in detail the Hierarchy problem in
Sec. 1.1. In the composite Higgs framework, presented in Sec. 1.2, the Higgs is described as a
pseudo Nambu Goldstone boson of a spontaneously broken symmetry G æ H. The lightness
of the Higgs is than understood to be a consequence of an approximate shift symmetry. The
compositeness scale f , above which the Higgs is no longer a relevant degree of freedom, is the
natural cuto� scale of the theory. The phenomenon of dimensional transmutation can further
explain the large scale separation between f and a much higher cuto� scale �. The formalism
which describes the low energy theory that results from a symmetry breaking pattern G æ H was
developed by Callan, Coleman, Wess and Zumino (CCWZ) [5, 6] and is presented in Sec. 1.3. In
this work we consider two non-minimal models based on the Little Higgs construction (Sec. 1.4)
and on the minimal composite Higgs (Sec. 1.5). We conclude in Sec. 1.6 by presenting the dark
matter problem and discussing the generic features of the composite dark matter.
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The first model under consideration is the Little Higgs with T -Parity, whose phenomenol-
ogy is the focus of Chapter 2. The original Little Higgs model does not contain the electroweak
custodial group, and therefore in the original model unacceptably large contribution to elec-
troweak precision observables are generated at tree level, forcing the compositeness scale to
be above 10 TeV. Such a high compositeness scale e�ectively reintroduces the fine tuning of
the Higgs mass. The original model was extended by an additional discrete symmetry dubbed
T -Parity, which prohibits tree level contributions to the electroweak precision observables. We
review the Little Higgs with T -Parity in Sec. 2.1, and in particular we discuss the di�culties
in constructing such a theory without introducing a massless T -odd doublet. This di�culty is
addressed by a minimal extension of the Little Higgs with T -Parity model, which we review for
the remainder of this section. The detailed full Lagrangian is presented in App. 2.A. Importantly,
this extension contains an additional singlet Goldstone boson, denoted by s. If s is the lightest
T -odd particle, it is stable and therefore a viable dark matter candidate. In Sec. 2.2 we present the
radiatively generated scalar potential, which is in general not calculable in this model. We provide
supplemental information regarding the scalar potential in App. 2.B. The LHC phenomenology of
the fermionic top partners, which are a generic prediction in composite Higgs models, is presented
in Sec. 2.3. Next we review the model constraints due to electroweak precision observables in
Sec. 2.4. Lastly we investigate the dark matter phenomenology of the composite dark matter in
Sec. 2.5.

The second model, which we investigate in Chapter 3, is the SO(7)/SO(6) extension of the
minimal composite Higgs. The composite sector contains, in addition to the Higgs, a complex
scalar, denoted by ‰, which is charged under a U(1)DM subgroup of SO(6). This symmetry can
be used to stabilize the complex scalar, thus making it a viable dark matter candidate. We
start this chapter by reviewing the e�ective Lagrangian of the Higgs and ‰ in Sec. 3.1 and the
composite dark matter phenomenology, which crucially depends on the manner in which the dark
matter shift symmetry is broken. The shift symmetry in the minimal composite Higgs framework
is broken by the linear couplings between the elementary sector (standard model fields) and the
composite sector, under the partial compositeness hypothesis. After reviewing the SO(7)/SO(6)
model in Sec. 3 (for supplementary material see Apps. (3.A) - (3.C)), we investigate the dark
matter phenomenology of several qualitatively di�erent scenarios, where the shift symmetry
breaking of dark matter originates from the top quark couplings in Sec. 3.3, the bottom quark
couplings in Sec. 3.4 and lastly the gauging of U(1)DM in Sec. 3.5. The latter scenario is of special
interest due to addition of a dark photon, which leads to a rich dark matter phenomenology.
The collider phenomenology of the heavy resonances, which is similar in all three scenarios, is
presented in Sec. 3.3.4.

The focus of Part III of this thesis is another well motivated Goldstone boson : the QCD
axion. The motivation behind the axion is the strong CP problem , namely the observation
that the CP violating phase in the strong sector is extremely small ◊ < 10≠10, in stark con-
tradiction to the expected O(1) value, like the one observed in the CP violating phase in the
weak interaction. We present the origin on the strong CP problem and its relation to chiral
anomalies in Sec. 4.1. The QCD axion is a consequence the Peccei-Quinn mechanism [7]: it is
the Goldstone boson of an anomalous U(1) symmetry, which allows the axion the dynamically
relax the ◊ angle to 0. We present the Peccei-Quinn mechanism in Sec. 4.2, as well as the
most notable realizations. First we discuss the so called visible axion due to Weinberg and
Wilczek [8, 9]. Next, we discuss the so called invisible axion, which was developed after the
exclusion of the Weinberg and Wilczek axion due to various experiments. In particular we
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present the axion models formulated by Dine, Fischler, Srednicki and Zhitnitsky (DFSZ) [10,
11] and Kim, Shifman, Vainshtein and Zakharov (KSVZ) [12, 13]. The last part of the general
introduction to the QCD axion is given in Sec. 4.3, where we discuss the axion potential in vacuum.

While the properties of the axion in finite temperature have been carefully studied [14], its prop-
erties in medium remained unexplored. Our goal in the remainder of Part III of this thesis is to
investigate the T = 0 properties of the QCD axion in a dense background of baryons, such as the
one found in neutron stars. Finite density is introduced in quantum field theory by introducing
its canonical conjugate variable - the chemical potential. We review the relevant formalism in
Sec. 4.4. In preparation to the next topic, we present the phenomenon of density-induced meson
condensation in Sec. 4.5 and discussing its e�ect on the axion properties using a simple toy
model.

As oppose to finite temperature e�ects which can be simulated on the lattice, realistic QCD
at finite density cannot be simulated on the lattice due to the so called sign problem. Thus,
we must rely on the available theoretical descriptions. For baryon densities n . 2n0, with
n0 = 0.16 fm≠3 being the nuclear saturation density, matter is described by nucleons and other
baryons which experience the long-range electric force and the short-range nuclear force, the
latter being mediated by the pions. This theory is described using chiral perturbation theory.
We explore the axion properties within this framework in Part 5. In particular we single out the
e�ects on the axion potential due to the density dependence of the quark condensates in Sec. 5.1,
and due to the possible appearance of a kaon condensate at higher densities, which we discuss
in Sec. 5.2. Supplemental material regarding the kaon condensed phase is given in Apps 5.A
and 5.B. We conclude Part 5 by discussing the matter coupling of axion to nucleons inside
dense matter in Sec. 5.3. These are of special importance due to the oft-quoted SN1987A cool-
ing bounds [15], which are based on the cooling process of dense nuclear matter via axion emission.

At higher densities n & 2n0, nuclear matter becomes strongly coupled and the perturbative
description begins to break down. Another perturbative regime reemerges only at ultra-high
densities n & (10 ≠ 100)n0, where it is postulated that matter is in a color superconducting
phase, also known as the color-flavor locking (CFL) phase. Although this regime is somewhat
denser than the expected density in the core of a neutron star n ≥ (3 ≠ 6)n0, it is plausible that
the description of matter in terms of the CFL phase is still qualitatively valid. We consider the
properties of the axion in the CFL phase in Part 6. After reviewing the major ingredients of the
theory, namely the kinetic terms (Sec. 6.1), the mass terms (Sec. 6.2) and the instanton induced
terms (Sec. 6.3), we present the axion potential in the CFL phase in Sec. 6.4. Interestingly, we
find the in both phases - nuclear and CFL - the axion may be destabilized around the origin,
which could lead to a sourcing of axions inside large dense object i.e. neutron stars. We briefly
discuss some of the potential observable e�ects of such sourcing in Part 7, before presenting our
final conclusions in Part IV, pertaining to both Parts II and III of the thesis.
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1
Motivation and framework

1.1 The hierarchy problem

The Standard model (SM) is a renormalizable quantum field theory (QFT) written in terms of
relevant and marginal operators. The SM has been incredibly successful in describing physics at
small scales. The validity of the renormalizable theory is further reinforced by the experimental
evidence, which demonstrate how well various charges, associated with global symmetries such
as baryon and lepton numbers, are conserved [20].

However, the SM must be an e�ective field theory: we know that at some cuto� scale �NP, new
physics beyond the SM (BSM) must emerge. For example, gravity becomes strongly coupled
around the plank scale MPL ≥ 1019 GeV. This presents one clear upper bound on the cuto�
scale. Moreover, there are already hints that a lower cuto� scale is required e.g. in order to unify
the gauge couplings at MGUT ≥ 1016 GeV. The latter scale also appears to explain the origin of
neutrino masses.

The usual argument used to demonstrate the Hierarchy problem involves the calculations
of the quantum corrections to the Higgs mass, for example from the top quark loop

”m2
h

m2
h

= 3y2
t

8fi2

A
�2

NP

m2
h

B

≥
3 �NP

450 GeV

42
, (1.1)

where yt ≥ 1 is the top Yukawa and the calculation is regulated using a hard cut-o� at the new
physics (NP) scale �NP. For �NP ∫ 450 GeV, the measured mass of m2

H = 125 GeV implies
an unnatural large cancelation between the contribution of Eq. (1.1) and a counter term. This
statement, while correct, obscures the physical argument which make the Hierarchy problem,
well, a problem. This large cancellation between counter term and quantum correction might
seem harmless to the naive IR observer, but the Hierarchy problem is in essence a UV problem.
From a UV perspective, the above statement is reformulated in terms of the renormalization
group equation (RGE) flow of the Higgs mass m2

H(µ), given schematically by

m2
h(µIR) ¥ m2

h(�NP) ≠ 3y2
t

8fi2 �2
NP , (1.2)

where the natural expectation is m2
h(�NP) ≥ O(�2

NP). Hence we see that a UV theory at a
scale much larger than m2

h can only account for the measured Higgs mass if two independent
contributions are tuned.
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16 Chapter 1. Motivation and framework

If this tuning occurs in Nature, it has a very practical implications for the future of parti-
cle physics, namely our ability to resolve our parameters in terms of more fundamental constants.
A known successful example is the fermi constant GF which e�ectively describes the weak
interaction strength between fermions at low energies. We know now that GF ≥ g2/M2

W , i.e. a
combination of the more fundamental parameters g and MW , the weak interaction coupling and
the W -boson mass, respectively. If the measured m2

h is a result of a fine-tuned cancelation of
fundamental parameters, the required experimental accuracy needed to resolve them might be
beyond reach in the foreseeable future.

There are several possible solutions to the hierarchy problem. The first type of solutions
is phrased in terms of anthropical reasoning [21, 22, 23], with similar arguments used to explain
the smallness the cosmological constant [24]. A second type involves a dynamical relaxation
mechanism which explains the large mass hierarchy [25]. The third type utilizes additional sym-
metries which protect the Higgs mass from large corrections, most notably supersymmetry [26]
and composite Higgs models [27, 28]. We postpone the discussion about the latter as a solution
to the Hierarchy problem to Sec. 1.2.

1.2 The composite Higgs

In this section we present the conceptual building blocks of composite Higgs models (for a
detailed discussion see Ref. [29]) and present the mechanism which allows it to solve the Hierarchy
problem. Let us assume that our UV theory is approximately conformal (hence scaleless and
devoid of a Hierarchy problem) at some high scale e.g. MGUT. The theory has a large global
symmetry G and gauged symmetries. As we flow to the IR, at some low scale the theory becomes
strongly coupled, breaking the global symmetry G æ H. This dynamical generation of scale
is known as dimensional transmutation, which was already presented to us by Nature. The
�QCD scale, where QCD becomes strong, is largely separated from the scale of weakly interacting
Nf = 3 QCD at µ = mZ ,

log
3

mZ

�QCD

4
= 1

18

3 4fi

gS(µ = mZ)

42
. (1.3)

In direct analogy,

log
3

mú
MGUT

4
≥

3 4fi

g(µ = MGUT)

42
. (1.4)

where g denotes some gauge coupling of the new sector and mú denotes the compositeness scale.
Below mú, similar to QCD, the theory contains resonances as well as the Goldstone-Nambu
bosons (NGBs) that result from the global symmetry breaking G æ H. The Higgs doublet
is assumed to be an NGB in the coset G/H, with some associated scale f . This implies that
Dim(G/H) Ø 4, and that the electroweak group SU(2)L ◊ U(1)Y must be a subgroup of H, with
the Higgs transforming as a doublet.

In the limit where G is exact, the Higgs potential is protected by a shift symmetry and electroweak
symmetry breaking (EWSB) is not possible. Therefore, some explicit breaking of G is required
in order to generate a scalar potential, making the Higgs a pseudo Nambu-Goldstone boson
(pNGB). The explicit breaking is introduced by tree level interactions with matter and gauge
fields, which lead to a radiatively generated scalar potential à-la Coleman-Weinberg [30]. EWSB
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can be interpreted geometrically as a misalignment between two directions in field space, one
direction associated with the global symmetry breaking and the scale f , and another direction
associated with EWSB and the measured vacuum expectation value (VEV) of the Higgs field
v = 246 GeV. One usually defines the misalignment angle as

›2 ≥ sin2
3ÈhÍ

f

4
© v2

f2 . (1.5)

A generic breaking of G naturally leads to a large misalignment angle › ≥ 1. Such a scenario is
equivalent to the disfavored minimal technicolor model (see e.g. Ref. [31]). Thus, some mechanism
that can allow for › π 1 is required. As discussed below in Sec. 1.4, in little Higgs models it
is achieved by a symmetry protection for the Higgs mass. For models based on the minimal
composite Higgs of Sec. 1.5, some contributions to the Higgs potential must be fine-tuned to
some extent in order to achieve › π 1.

1.3 CCWZ

The Callan, Coleman, Wess and Zumino (CCWZ) formalism [5, 6] provides the building blocks
required in order to systematically write an e�ective field theory of NGB’s and resonances below
the confinement scale of a theory with a G æ H symmetry breaking pattern. It has the advantage
of allowing us to remain agnostic regarding the unknown physics above the confinement scale.
The central object which parameterizes the vacuum fluctuations is

›(x) © exp
C

ifiâ(x)X â

f

D

. (1.6)

with fiâ the NGB’s associated with the broken (global) symmetries and X â the corresponding
broken generators. The index â numerates the broken generators. Under a generic global
transformation g œ G

g œ G : ›(x) æ g

C
ifiâ(x)X â

f

D

h≠1(g, fiâ(x)) , (1.7)

where the non-linear transformation h œ H is an element of the unbroken subgroup which depends
on g and fi(x). Due to the fiâ(x) dependence, it is e�ectively a local transformation. The d and
e symbols are decomposed from the Maurer-Cartan form

i›†(x)ˆµ›(x) © dâ
µX â + ea

µT a , (1.8)

where T a are the unbroken generators numerated by the index a. One can than show that under
a global transformation

g œ G : dµ æ h(g, fiâ(x)) dµ h≠1(g, fiâ(x)) ,

eµ æ h(g, fiâ(x)) (eµ + iˆµ) h≠1(g, fiâ(x)) . (1.9)

The d symbol transforms regularly under h (still non-linearly) compared to the eµ symbol, which
transforms as a covariant derivative. The latter is used to construct G-invariant kinetic terms
for fields transforming non-linearly under G in some representation of H. The d and e symbols
carry one derivative such that [d] = [e] = 1, and a perturbative expansion in ˆ/E is performed
by writing higher order terms in d and e. For example, the leading order term in d is given by

L ∏ c f2 dâ
µdâµ . (1.10)
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This term contains the usual kinetic terms for the NGB’s (c is chosen such that they are
canonically normalized) as well the self-interactions. This formalism can be easily generalized to
include a gauging of some subgroup of G by promoting the derivative of Eq. (1.8) to a covariant
derivative

i›†(x)Dµ›(x) © dâ
µX â + ea

µT a , (1.11)

with Dµ = ˆµ ≠ igAâ
µX â ≠ igAa

µT a.

There are two interesting private cases worth noting regarding the transformation of the NGB’s.
In the first case, under a global transformation of the unbroken subgroup h̄ œ H, the NGB’s
transform linearly

h̄ œ H : fiâ(x)X â æ h̄(fiâ(x)X â)h̄≠1 , (1.12)

namely h(h̄, fiâ(x)) = h̄ is a regular linear transformation. It is therefore often useful to decompose
fiâ to irreducible H representation1. In the second case, under a transformation ḡ = exp

Ë
i–âX â

f

È

in G/H associated with the broken generators, the NGB’s shift

ḡ œ G/H : fiâ(x) æ fiâ(x) + –â . (1.13)

It is this shift symmetry that protects the NGB from non-derivative interactions.

Lastly let us address the inclusion of external fields, sometimes referred to as an elementary
sector. These fields transform linearly under G

g œ G : Âelem æ g Âelem (1.14)

and can be dressed by ›† and projected into all the H representation contained within a specific
G representation,

g œ G : Âcomp © ›≠1Âelem æ h(g, fiâ(x)) ›≠1Âelem = h(g, fiâ(x))Âcomp . (1.15)

For example, for SO(N)/SO(N ≠1), a fundamental representation of SO(N) can be dressed with
›† and projected to a singlet and fundamental representation of SO(N ≠1), since N = 1ü(N ≠ 1).
Equivalently, non-linearly transforming representations of H can be dressed by › and projected
into all the G representations that contain them.

1.4 Littlest Higgs
One realization of the composite Higgs is the so-called Little Higgs, with its minimal realization
denoted as the Littlest Higgs (LH) [32, 33, 34, 35, 36, 37, 38]. As shown below, the explicit
breaking of the Higgs shift symmetry is realized in a non-trivial manner dubbed Collective
Breaking. It relies on the shift symmetry of H being restored in the limit where either g1 æ 0 or
g2 æ 0, with g1, g2 gauge or Yukawa couplings which partially break the Higgs shift symmetry.
As a result, the Higgs potential V (H) Ã g1 · g2. This restriction limits the divergence level of
some operators that are generated radiatively. In particular, the Higgs mass is not quadratically
sensitive to the cuto� scale at 1 loop, but only logarithmically.

1In practice it is more useful to decompose fiâ to irreducible representations of the gauged subgroup of H
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The model is based on an SU(5)/SO(5) coset. � is a linearly transforming field, in the 15
(symmetric) representation of SU(5):

� æ U�UT . (1.16)

This field acquires a VEV which spontaneously breaks SU(5) æ SO(5):

È�Í © �0 =

Q

ca
12

1
12

R

db . (1.17)

The 10 unbroken SO(5) generators satisfy:

T a�0 + �0(T a)T = 0 , (1.18)

While the 14 broken SU(5) generators satisfy:

X â�0 ≠ �0(X â)T = 0 . (1.19)

We can reparameterize the � field using the non-linear realization of the NGB’s, defining
�� = fiâX â:

� = ei��/f �0ei�T
�/f = e2i��/f �0 . (1.20)

The 14 Goldstone boson decompose under the EW group as 10 ü 30 ü 21/2 ü 31 and can be
written as

�� =

Q

cca

· ·‡
2 + „0

2
Ô

512
HÔ

2 �
H†Ô

2 ≠2„0Ô
5

HTÔ
2

�† HúÔ
2

· ·‡ú

2 + „0
2
Ô

512

R

ddb , � =
A

�++ �+/
Ô

2
�+/

Ô
2 �0

B

. (1.21)

The „0 and · (in the 10 and 30 representations, respectively) are associated with spontaneously
broken gauged generators and are removed from the spectrum in the unitary gauge. H is the
doublet (21/2) that we identify as the SM Higgs and � is an SU(2) triplet (31).
In order to realize the collective breaking scheme in the gauge sector, G must contain two copies
of SU(2) ◊ U(1). This implies that the group rank is at least 4, making SU(5) the smallest
SU(n) group possible. The generators of these two copies are defined as:

Qa
1 =

A
‡a/2 02◊2
02◊2 03◊3

B

, Y1 = diag(≠3, ≠3, 2, 2, 2)/10 , (1.22)

Qa
2 =

A
03◊3 02◊2
02◊2 ≠‡aú/2

B

, Y2 = diag(≠2, ≠2, ≠2, 3, 3)/10 . (1.23)

Both of these subgroups are gauged. One linear combination, Qa
1 ≠ Qa

2 is spontaneously broken.
The other linear combination remains exact - it corresponds to the usual SM electroweak (EW)
gauge group. The new gauge fields have masses mWH

≥ gf , mBH
≥ gÕf , (with g, gÕ the SM

gauge couplings) and they contribute at tree level to the electroweak oblique parameters, leading
to strong constraints on the parameter space of the model, see discussion below regarding T -Parity.

Given the above gauge groups, let us examine how the collective breaking mechanism works. The
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SU(5) group in this model contains two custodial SU(3)’s spanned by the Gell-Mann matrices
⁄i in the upper and lower 3-by-3 blocks

⁄i
1 =

A
⁄i 03◊2

02◊3 02◊2

B

, ⁄i
2 =

A
02◊2 02◊3
03◊2 ⁄i

B

. (1.24)

It is clear from Eq. (1.21) that the generators associated with the shift symmetries of the Higgs
field can be written as linear combination of SU(3)1 and SU(3)2 generators. Therefore, if any
of these two SU(3)’s is exact, the Higgs field is protected by shift symmetry. In particular, in
the limit gi æ 0 for either i = 1 or i = 2 (with g1, g2 the gauge coupling associated with the
gauge groups defined in Eq. (1.22) and Eq. (1.23), respectively), the group SU(3)i becomes
exact and the Higgs potential vanishes. Therefore, the Higgs potential generated from the gauge
interactions VV(H) Ã g1 · g2.

The usual term which contains the kinetic terms and self-interactions of the NGB’s is given by

L ∏ f2

8 Tr[D�(D�)ú] (1.25)

with

D� © ˆ� ≠ i
ÿ

i=1,2

S

U
ÿ

a=1,2,3

1
giW

a
i (Qa

i � + �Qa
i

T )
2

≠ gÕ
iBi(Yi� + �Yi

T )

T

V . (1.26)

Now we turn out attention to the top sector. It is of special importance, as the top quark loop
contributes the most to the Higgs mass. We introduce an incomplete SU(5) representation of
Weyl fermions2:

� =

Q

ca
Â
‰

02◊1

R

db , (1.27)

where Â and ‰ are an EW doublet an EW singlet, respectively. We also introduce two EW
singlet Weyl fermions · and t̃, with the following interactions

Ltop =
ÿ

i,j,k=1,2,3

ÿ

x,y=4,5

⁄1f

2
Ô

2
‘ijk‘xy�̄i�jx�ky t̃c + ⁄2fÔ

2
‰̄· c + h.c . (1.28)

Similarly to the gauge sector, the matter couplings break the Higgs shift symmetry collectively.
In the limit ⁄2 æ 0, the SU(3)1 defined above in Eq. (1.24) is an exact symmetry which generates
a shift in the Higgs field. In the limit ⁄1 æ 0, the Higgs is completely decoupled from the matter
sector and in particular, none of the Higgs shift symmetries are broken. Therefore, the Higgs
potential generated from the Yukawa interactions Vf(H) Ã ⁄1 · ⁄2.

Let us see how the interaction of Eq. (1.28) lead to the usual SM Yukawa interaction. Expanding
Eq. (1.28) to leading order in H,

Ltop = ≠⁄1
1
Â̄iHú2

t̃c + fÔ
2

‰̄
!
⁄2· c + ⁄1t̃c"

+ h.c . (1.29)

2Unless noted otherwise, Weyl fermions are left-handed. The superscript c denotes a conjugate field transforming
as a right-handed field. When L and R subscripts are introduced they should be understood in the obvious way.
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‰ gets a Dirac mass term with one linear combination of t̃ and · , with mT + =
Ò

⁄2
1+⁄2

2
2 f . The

orthogonal combination of t̃ and · is identified as the right-handed top quark tR, and after
integrating out the heavy top partner one finds

Ltop = yt

1
q̄LH̃

2
tR + h.c , H̃ © i‡2Hú , (1.30)

where

qL =
A

tL

bL

B

= ‡2Â and yt = ⁄1⁄2Ò
⁄2

1 + ⁄2
2

. (1.31)

Note that we remain agnostic regarding the other Yukawa couplings, since their contribution to
the Higgs mass is negligible compared to the top quark.

T-Parity
From a modern model building prospective, the Littlest Higgs lacks an essential component,
namely the electroweak custodial group SU(2)L ◊ SU(2)R

≥= SO(4), under which the Higgs
transforms in the bi-fundamental or fundamental representation, respectively. The explicit
breaking of the custodial symmetry leads to sizable corrections to electroweak precision test
(EWPT) observables, e.g. the fl parameter [39, 40, 41, 42, 43, 44, 45, 46]. These constraints
pushed the symmetry breaking scale f to be a few TeV, thus reintroducing considerable fine-
tuning. T -Parity has been proposed in order to prevent tree-level exchanges of heavy states [47,
48, 49, 50], resulting in the so-called Little Higgs with T≠Parity (LHT) model. The new heavy
states are odd under a discrete T -parity, therefore contributions to electroweak observables are
possible only at the 1-loop level. This allows the symmetry breaking scale f to be O(1) TeV. As
an added benefit, T -Parity can be used as a stabilizing symmetry for a DM candidate, as the
lightest T -odd particle is guaranteed to be stable. Let us present how T -Parity is implemented
in the Littlest Higgs model. It relies on an automorphism, under which the broken and unbroken
generators are mapped to

T -parity : X â æ ≠�X â� , T a æ �T a� , (1.32)

with

� = ≠ exp[2fii(Q3
1 + Q3

2)] = diag(1, 1, ≠1, 1, 1) . (1.33)

Note that � is a member of SU(5), and its overall sign is arbitrarily chosen. From Eq. (1.32) we
can immediately deduce the T-parity transformation of the NGBs, namely

T -parity : �� æ ≠���� , (1.34)
� æ ��0�†�0� © �̃ . (1.35)

The � matrix represents an SU(2)L rotation of 2fi around the 3rd direction, and its e�ect is an
extra minus sign for all half-integer representations of SU(2)L. This insures that the Higgs field
is T-even while all the other NGB’s are T-odd.

The realization of T -Parity in the gauge sector is straight forward. T -Parity is realized as
an exchange of the so-called sites 1 ¡ 2:

T -parity : W a
1 ¡ W a

2 , B1 ¡ B2 . (1.36)
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Therefore, the heavy gauge Bosons associated with the odd combinations Qa
1 ≠ Qa

2 are T-odd,
while the SM gauge boson associated with the even combination Qa

1 + Qa
2 are T-even,

VH = 1Ô
2

(V1 ≠ V2) , VSM = 1Ô
2

(V1 + V2) for V = W 1, W 2, W 3, B

The indistinguishability of the two sites implies that one must impose

g1 = g2 ©
Ô

2gSM , gÕ
1 = gÕ

2 ©
Ô

2gÕ
SM . (1.37)

We continue the detailed discussion about the realization of the Little Higgs with T -Parity (LHT)
model, in particular in the matter sector in Sec. 2.1.

1.5 Minimal composite Higgs
In this section we discuss minimal composite Higgs models and their main features. The generic
features discussed below are shared by extensions of the minimal composite Higgs, including
the SO(7)/SO(6) extension studied in Chapter 3. We start by presenting the general symmetry
structure of the model. Next we review the NGB self- and gauge interactions. As part of the
discussion on the matter sector, we present the partial compositeness hypothesis and discuss
the inclusion of fermionic and gauge resonances in the theory. We conclude by discussing the
calculation of the scalar potential and the Weinberg sum rules.

The minimal composite Higgs (MCH) [51] is based on the SO(5)/SO(4) coset. The un-
broken SO(4) is identified as the custodial group SO(4) ≥= SU(2)L ◊ SU(2)R, under which the 4
NGB’s transform as a 4 = (2, 2). SU(2)L is identified as the SM gauge group. The symmetry
group must be extended by an additional U(1)X factor in order to realize hypercharge symmetry
with adjustable charges, as we demonstrate below. Hypercharge is than defined as the linear
combination Y = T 3

R + X. Since U(1)X commutes with SO(5), the X-charge of the NGB’s
vanishes and after gauging (2, 2) æ 21/2 under SU(2)L ◊U(1)Y , as needed. MCH models benefit
from the custodial symmetry and are therefore protected from dangerous EWPT constraints.

The gauge fields and the SM fermions in the MCH framework are external sources. They
are considered as an elementary sector which furnishes linear representations of SU(5). These
linear representations are incomplete e.g. only a subgroup of SO(4) is gauged, leading to an
explicit breaking of the global symmetries. The SM fermions also come in incomplete represen-
tations of SO(5), introducing another source of explicit symmetry breaking. The interactions
of the Higgs with the SM fermions can be seen as a consequence of mixing between the SM
elementary states and the resonant composite states. This is the mechanism behind the partial
compositeness hypothesis, to be discussed below.

The MCH models enjoy an additional practical advantage, namely that the coset structure
is simple enough to allow closed analytic forms. This greatly simplifies calculations, in compari-
son to the SU(5)/SO(5), for which closed analytic forms are not available. The leading order
term in the d symbol, which contains the Higgs-gauge interactions, is given in the unitary gauge
H = 1Ô

2(0, ÈhÍ + h)T by

f2

4 di
µdµi = 1

2 ˆµh ˆµh + 1
4g2f2 sin2

3ÈhÍ + h

f

4 3
|W |2 + 1

2cw
Z2

0

4
(1.38)
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where cw = cos ◊w, tan ◊w = gÕ

g and g, gÕ are the gauge couplings of SU(2)L ◊ U(1)Y , respectively.
We identify sin2

1 ÈhÍ
f

2
© › = v2

f2 . This calculation relies on the CCWZ construction for the
SO(5)/SO(4) coset which can be found in the literature (e.g. [29]). It can also be easily deduced
from the SO(7)/SO(6) CCWZ construction given in App. 3.A. The composite nature of the
Higgs manifests itself, among other ways, through deformation of the gauge couplings. Expanding
to linear order in h,

f2

4 di
µdµi ∏ 1

4g2v2
3

|W |2 + 1
2cw

Z2
0

4 C

2


1 ≠ ›
h

v
+ O

A
h2

v2

BD

(1.39)

The linear hV V coupling is reduced by a factor of
Ô

1 ≠ › in comparison to the elementary Higgs
coupling. In the limit › æ 0, taken as the limit f æ Œ with fixed v, the Higgs is e�ectively
reduced to an elementary particle. This is the generic expectation, since all the interactions that
originate from the strong sector and are weighted by powers of 1/f .

The top sector is constructed under the partial compositeness hypothesis [52]. Let us re-
view the hypothesis and its implications. We assume that in the UV theory at some high scale
�, the SM fermions have a linear interaction terms with composite fermion operators, given
schematically by

⁄L

�[Of
L]≠5/2 Q̄LOf

L + ⁄R

�[Of
R]≠5/2 t̄ROf

R . (1.40)

For operators whose dimension is close to the critical value ≥ 5/2, the RGE flow is slow (ap-
proaching logarithmic) and sizable couplings can survive deep in the IR around the compositeness
scale mú

⁄(mú) = ⁄(�)
3

mú
�

4[O]≠5/2
. (1.41)

As a result, in the IR the elementary states linearly mix with composite states. The simplest toy
model is given by [29]

L ∏ ≠múq̄q ≠ múT̄ T ≠ ⁄Lf(Q̄Lq + h.c) ≠ ⁄Rf(t̄RT + h.c) . (1.42)

The mixing angle is given schematically by

◊L/R =
⁄L/RÒ

⁄2
L/R + g2ú

, (1.43)

where gú © mú/f . The resulting Yukawa coupling is given by

yf = gú sin ◊L sin ◊R . (1.44)

This simple picture can be easily modified by introducing more resonances and more mixing
angles. In order to write SO(5) invariant terms, we first imbed the SM fermion in incomplete
SO(5) ◊ U(1)X representations which reproduce the appropriate SM quantum numbers (this
is equivalent to choosing the SO(5) representations of the composite operators). For example,
take the 52/3 of SO(5) ◊ U(1)X . We can decompose it in two steps, according to the symmetry
breaking pattern SO(5) ◊ U(1) æ SU(4) ◊ U(1)X æ SU(2)L ◊ U(1)Y , namely

52/3 æ (2, 2)2/3 ü 12/3 æ 27/6 ü 21/6 ü 12/3 . (1.45)
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The last two representations contained in the 52/3 are the appropriate SM representations for
the left-handed quark doublet and the right-handed quark singlet, respectively3. Equivalently, it
indicates that the composite operators in these representations contain states which can mix with
SM fermions. Once the SM fermions are imbedded in an SO(5) representation, we have a finite
set of SO(4) representation for the fermion resonances for which SO(5) invariant mixing terms
can be written. This is achieved by dressing the SO(4) representation with the NGB matrix
denoted in Eq. (1.6) as ›.

Let us briefly present on the parallel procedure for vector resonances, based on the hidden
local symmetry formalism [53, 54]. Let us consider a simple example. A non-linearly transform-
ing (3, 1)0 of SO(4) ◊ U(1)X can in principle mix with the Wµ triplet. Let us denote this vector
by flµ © fla

µT a
L. It transforms non-linearly under g œ G as a gauge field

flµ æ h flµ h≠1 + i(h ˆµ h≠1) , (1.46)

where the last term should be projected to the space of SU(2)L generators. The composite
operator with the exact same transformation properties is found by decomposing the e symbol,
which transform as a 6 of SO(4), to its irreducible representations under SU(2)L ◊ SU(2)R,
namely 6 = (3, 1) ü (1, 3)

ea
µT a = (eL)a

µT a
L + (eR)a

µT a
R . (1.47)

The interactions terms are therefore given by

L ∏ ≠ 1
4g2

fl

flµ‹flµ‹ +
m2

fl

2g2
fl

(flµ ≠ (eL)µ)2 (1.48)

Note that the combination (flµ ≠ (eL)µ) transforms regularly (and non-linearly) under G. Depend-
ing on the representations of the fermion resonances, this combination can be used to construct
additional SO(5) invariant interactions. The mixing between the gauge states implies that the
e�ective gauge coupling g is a mixture of the elementary gauge coupling g0 and gfl, namely
g≠2 = g≠2

0 + g≠2
fl . Analogously, one can add a (3, 1) vector resonance. This representation

contains a state with the same quantum numbers of the hypercharge gauge field Bµ, inducing a
similar mixing and redefinition of the e�ective hypercharge gauge coupling.

The introduction of resonances and their interactions with the elementary sector explicitly
breaks the shift symmetry of the NGB’s. This explicit generates a Coleman-Weinberg potential,
which can be easily calculated at one loop. In the context of MCH models and their extensions,
it is usually preformed as a two-step calculation. The first step involves integrating out the heavy
resonances, resulting in form factors defined as

L µ �Lt̄L/ptL + �Rt̄R/ptR ≠ �LR(t̄LtR + h.c) . (1.49)

The form factors �L, �R, �LR are functions of the NGB’s (only h in the MCH in the unitary
gauge), the composite sector parameters i.e. the vector masses and mixing couplings {mú, ⁄}
and momentum p2 (remnant of the resonants’ propagators). The second step is the calculation
the Coleman-Weinberg potential, which in this case is given by

V (h) = ≠2Nc

⁄ d4p

(2fi)4 log(p2�L�R + |�LR|2) . (1.50)

3Note that U(1)X was necessary in order to recover the SM hypercharges.
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The coe�cient of the renormalizable operators can be extracted by taking the appropriate number
of derivatives. Schematically this results in momentum integral of the following form, e.g. for
the Higgs mass term

µ2
h = ˆV (h)

ˆh2

----
h=0

=
⁄

dp2 p2 F (p2, {mú, ⁄}) (1.51)

Lastly, the Weinberg sum rules [55] can be used the regulated the high momentum behavior of
F (p2, {mú, ⁄}). This is achieved by imposing the following constraints on the resonant sector
parameters {mú, ⁄}, namely

lim
p2æŒ

p2 F (p2, {mú, ⁄}) = 0 (to remove quadratic divergence) , (1.52)

lim
p2æŒ

p4 F (p2, {mú, ⁄}) = 0 (to remove logarithmic divergence) . (1.53)

This renders the potential UV-independent, and therefore finite and calculable. The relations
imposed on the parameters can be often understood in terms of enhanced symmetries in the UV
e.g. restoration of the full SO(5) symmetry, i.e. reemergence of the Higgs shift symmetry which
prevents the generation of a non-derivative scalar interactions.

1.6 Dark matter
The gravitational e�ects of what appears to be non-baryonic matter were detected in various
astrophysical and cosmological scales. Starting from the galactic scale, observed rotation curves of
stars are inconsistent with the theoretically predicted curves [56, 57], suggesting there is additional
matter in galaxies, known as dark matter (DM). The DM is electrically neutral (hence dark) and
its dark halo is only detectable via its gravitational e�ects, e.g.. the flatting of rotation curves.
From gravitational lensing around galaxy clusters one can deduce that considerable amount of
DM exists in clusters of galaxies as well [58]. Lastly, at the cosmological scale, the cosmological
model �-CDM, which contains a cosmological constant � and cold (i.e. non-relativistic) DM,
is consistent with the observed Cosmic Microwave Background (CMB) [59, 60] and large-scale
structure formation in the universe [61].

CMB measurements provide the most accurate determination of the present-day DM relic
abundance [62]

�DMh2 = 0.1198 ± 0.0012 . (1.54)

There have been numerous realizations of DM, spanning an enormous range of scales. Starting
from ultra-heavy objects like primordial black holes [63, 64], all the way to ultra-light bosonic
particles [65]. One of the best motivated realizations of DM is the weakly interacting massive
particle (WIMP), which is the case we consider in this work. Initially, the active neutrinos were
considered DM candidates as they are both stable and electrically neutral. This idea has been
long excluded [66]. Moreover, with present day neutrino masses data, we know that they can
only account for small amount of the universe energy budget �‹ ≥ 10≠3 (

q
m‹/0.1 eV), and

that they are still fairly relativistic [67].

One therefore concludes that the SM does not contain a neutral and stable particle which
could be a viable DM candidate. As a result, BSM physics is often required in order to provide
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such a candidate. This fact has further motivated various extensions of the SM, which were orig-
inally intended to address other issues like the Hierarchy problem (see Sec. 1.1) or the strong CP
problem (see Sec. 4.1). If a new particle predicted by some SM extension is electrically and color
neutral, it could be a good DM candidate provided that it is stable in cosmological time scales.
From our understanding of Nature, stable particles are a consequence of symmetries, whether it
is the electron (electric charge conservation) or the proton (baryon number conservation). Since
DM is not charged under any of the SM symmetries, in most cases an additional symmetry is
needed in order to achieve the desired stability.

The stabilizing symmetry of DM can be a global symmetry, most simply a Z2 discrete symmetry.
This is the case in the little Higgs with T -Parity, as well as in non-minimal composite Higgs
model such as the SO(6)/SO(5) [68], where the symmetry is extended to O(6) in order to include
a parity operator making the additional NGB odd, and thus stable. There are two caveats
regarding the use of a global symmetry for DM stabilization. First, it is conjectured that strong
gravitational e�ects break all global symmetries (see Refs. [69, 70, 71] and further references
therein)4. Second, global symmetry may be anomalous: respected at the classical level but
broken at the quantum level. In fact, in QCD the fi0 is symmetric under a Z2 symmetry and
naively stable. This Z2 is however anomalous, and the anomaly diagram mediates the main
decay channel of fi0 to ““. In this respect, it is hard to imagine an anomalous symmetry as an
e�cient mean to stabile DM5. Note that while the first caveat is an open theoretical question,
and the second caveat can be considered a model-building issue, neither of them is relevant in
case the stabilizing symmetry is local i.e. gauged.

Once DM is stable, one must come up with a production mechanism which could explain
its present-day abundance. A prominent (but certainly not the only) mechanism is the so-called
freeze-out mechanism (e.g.. Ref. [72]), which successfully predicts the present-day abundance of
neutrinos . The freeze-out mechanism could be easily understood by examining the Boltzmann
equation which determines the time dependence of the DM density n(t),

ṅ + 3H n = È‡‰‰æSMvÍ (n2
‰ ≠ n2

eq) , (1.55)

where H is the Hubble parameter and È‡vÍ is a thermally averaged annihilation cross section of
DM to SM particles. Initially H π È‡vÍ n and the DM is in kinetic and chemical equilibrium
with the SM heat bath. The dilution term 3Hn can be neglected and the abundance of DM
closely follows the equilibrium abundance n ¥ neq. Freeze-out occurs when H ≥ È‡vÍ n, after
which the dilution of DM is driven solely by the expansion of the universe. The Boltzmann
equation can be solved numerically. An approximate solution predicts the final relic abundance
(for self-conjugated DM) to be

�‰h2

0.1198 ¥ 3 · 10≠26cm3s≠1

È‡‰‰æSMvÍ . (1.56)

The WIMP miracle is phrased as the coincidence that È‡‰‰æSMvÍ ≥ g4

m2
‰

produces the correct
relic abundance for m‰ ≥ O(100 GeV) and g ≥ 0.1. WIMP’s are consequently one of the most
popular and studied form of DM.

4The counter argument would be that the coe�cients of the MPL-suppressed breaking terms are unknown,
which leaves the possibility that this e�ect does not jeopardize the stability of DM at cosmological time scales.

5The counter argument would be that given the correct matter content, global symmetries can be non-anomalous,
like B ≠ L in the SM. Another possible approach to avoid anomalous global symmetries is to use groups which
allow only real representations, e.g.. SO(7).
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Composite dark matter
In non-minimal composite Higgs models, additional stable NGB’s in G/H constitute compelling
DM candidates. Let us assume {H, ‰} œ G/H, with ‰ being a complex (or real) scalar stabilized
by a global U(1) (or Z2) symmetry. The non-renormalizable operators play a crucial role in
the phenomenology of composite DM [73]. H and ‰ interact derivatively through the dim. 6
operator

L ∏ 1
f2 ˆµ|H|2ˆµ|‰|2 . (1.57)

As shown in Sec. 3.1, one can always find a basis where this is the only derivative interaction term
at this order in the 1/f expansion. After EWSB, this interaction leads to s-channel annihilation
of ‰ in the early universe. In the non-relativistic limit, the thermally averaged annihilation cross
section È‡vÍ Ã ÈsÍ/f2 ¥ 4m2

‰/f2 can be of the right size in order to account for the observed DM
relic abundance with m‰ ≥ 100 GeV and f ≥ 1 TeV. This is a fortunate (some might even say
miraculous) coincident that the correct relic abundance is produced with the naturally expected
values for m‰ and f . As an added benefit, this interaction is extremely suppressed in scattering
processes probed by direct detection experiments: the cross section for the elastic scattering
scales like |t|/f2 ≥ (100 MeV)2/(1 TeV) ≥ 10≠8, with t the usual Mandelstam variable associated
with the momentum transfer. Thus, one concludes that if the only interaction between the Higgs
and ‰ was the derivative interaction of Eq. (1.57), ‰ can account for all the DM while being
virtually invisible to present day direct detection experiments.

However, the fact that H and ‰ are massive already implies that their shift symmetry is
broken, and therefore one must also consider the so-called Higgs portal coupling,

L ∏ ≠⁄|H|2|‰|2, (1.58)

which is strongly constrained by direct detection experiments. If no other annihilation channels
are available, one finds that the derivative terms and portal coupling destructively interfere [73],
and the annihilation cross section scales like

È‡‰‰æSMvÍ Ã
A

4m2
‰

f2 ≠ 2⁄

B2

. (1.59)

If ⁄ ∫ m2
‰/f2, the composite nature of DM is negligible compared to the explicit shift symmetry

breaking e�ects and the model is reduced to the elementary singlet DM model. If ⁄ ≥ m2
‰/f2,

there are two compatible values for the portal coupling, {⁄≠, ⁄+}, which can reproduce the
correct relic abundance. Couplings inside the interval [⁄≠, ⁄+] lead to over-abundance of DM
and are excluded. Couplings outside the interval lead to under-abundance DM and are in
principle allowed. If ⁄ π m2

‰/f2, as stated above the observed relic abundance is produced for
m‰ ≥ 100 GeV and f ≥ 1 TeV.

We consider three possible sources for the DM shift symmetry breaking:

DM shift symmetry broken by top quark couplings - we explore this possibility in
Chapter 2 in the LHT model and in Sec. 3.3 in the SO(7)/SO(6) model. In this case, the portal
coupling is generated by the same dynamics which generate the Higgs quartic ⁄H . The naive
expectation is ⁄ ≥ ⁄H ≥ 0.1, which is in tension with direct detection bounds. In the LHT model
the scalar potential is not calculable due to the unknown UV contribution, but we confirm that
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the IR contribution is indeed O(⁄H). In the SO(7)/SO(6) model, we verify this expectation
numerically by scanning over the parameter model and calculating the scalar potential. The
conclusion is the same for both models: a model in which the DM shift symmetry is broken
by the top interactions can evade DM direct detection bounds if some cancellation takes place
which reduces ⁄, at the price of fine tuning some of the model’s parameters. In Sec. 3.3.2 we
explicitly show how in the SO(7)/SO(6) model, this cancellation can be achieved by adding more
resonances and tuning their contribution. Let us note that the models di�er in their prediction
for the DM mass. In the LHT model, the DM mass is protected at 1 loop and is generated
only at the 2-loop order. It is than reasonable to assume that the m‰ ≥ mh. On the other
hand, in the SO(7)/SO(6) model the DM mass is again generated by the same dynamics as the
Higgs mass, but in general would not enjoy the same cancellation which allows for the small
misalignment angle › π 1. Thus, the naive expectation is m‰ ∫ mh, which is confirmed by the
numerical results. Lastly we note that for the determination of the relic abundance, the following
dim. 5 operator

L ∏ ≠2ctt‰‰ mtt̄t
|‰|2
v2 , (1.60)

has to be considered as well. The coe�cient ctt‰‰ ≥ O(›) such that the whole term scales like
1/f , and the amplitude for the annihilation process to top quarks scales like |M‰‰æt̄t| Ã m2

‰/f2.
This leads to an irreducible annihilation cross section for m‰ > mt, which above some critical
m‰/f value leads to under-abundant DM for every value of ⁄.

DM shift symmetry broken by bottom quark couplings - this possibility is consid-
ered in Sec. 3.4 in the framework of the SO(7)/SO(6) model. In this case the naive expectation
for the portal coupling becomes ⁄ ≥ (y2

b /y2
t )⁄H π 1, making the portal coupling small enough

such that it is irrelevant for direct detection. The dominant scattering process in this case is via
the contact term b̄b|‰|2, leading to a scattering cross section that is within reach of future direct
detection experiments. Due to the smallness of the bottom Yukawa coupling, the DM mass can
be comparable to the Higgs mass m‰ ≥ Ô

gúybf ≥ mh.

DM shift symmetry respected by SM gauge/fermion couplings - if all the couplings
between the elementary sector and the composite sector respect the DM shift symmetry, a
new BSM source of explicit symmetry breaking must be introduced. For a complex scalar DM,
gauging the stabilizing U(1) symmetry leads to an explicit breaking of the DM shift symmetry
and the addition of a dark photon to the theory. ‰ and the dark photon form a minimal dark
sector, leading to a rich DM phenomenology which we explore in Sec. 3.5. The dark sector heat
bath can decouple from the SM heat bath once the rate of the interactions keeping the two
baths in kinetic equilibrium becomes slower than Hubble. After decoupling both sectors have
separately conserved entropy and independent temperature. In a dark sector, additional versatile
annihilation channels may become accessible, leading to scenarios such as co-annihilations [74]
and semi-annihilations [75]. If the dark photon is massless, its contribution to the energy budget
of the universe can be indirectly probed through CMB measurements, which gives a bound on
the relativistic degrees of freedom at recombination. A light mediator can lead to Boltzmann
enhanced annihilation cross sections at low velocities and potentially strong indirect detection
signatures. We consider the possibility of a massless dark photon in Sec. 3.5.1. If the dark photon
itself massive and stable, it can serve as an additional source of cold DM. The number densities
in this multicomponent DM scenario are determined via coupled Boltzmann equations which
must be solved numerically. We consider the possibility of a massless dark photon in Sec. 3.5.2.
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Composite dark matter in Little Higgs

2.1 Model
In Sec. 1.4 we review the littlest Higgs model and conclude with a discussion regarding the
necessity of T -Parity. In this section we present the realization of T -Parity in LH model. We
continue to discuss the challenge of realizing a spectrum compatible with the SM and some
potential solutions. The remainder of the section specifies in detail the structure and content of
the model in a minimal extension of the LHT model [76].

In the original littlest Higgs mode, the new heavy gauge states contribute at tree level to
the electroweak oblique parameters. These contributions lead to stringent constraints from
EWPT, pushing the symmetry breaking scale of the original LH model f ≥ a few TeV (e.g [39]).
The corrections to electroweak observables from the heavy gauge states are made smaller by
introducing a discrete symmetry which forbids tree level exchanges of heavy states. The addition
of a discrete symmetry stabilizes the lightest odd particle, making it a viable DM candidate.
This discrete symmetry, usually referred to as T -parity, is defined as [47]

T -parity: Ti æ �Ti� , Xj æ ≠�Xj� (2.1)

with

� = ≠ exp[2fiiQ3
1+2] = diag(1, 1, ≠1, 1, 1) , (2.2)

which is an automorphism defined on the SU(5) generators. This definition determines the
T -parity of all the fields associated with the SU(5) generators, namely the Goldstone and gauge
fields. The � rotation is introduced to make the Higgs even under T -parity, while keeping the rest
of the Goldstone fields odd. For the gauge fields, the T -parity transformation can be interpreted
as an exchange symmetry between the gauge groups 1 ¡ 2. Hence the diagonal combination is
even, and the broken combination is odd.

Let us understand how linear representations of SU(5) transform under T -parity. One can
use Eq. (2.2) to show that each transformation g = ei–jXj+i—iTi œ SU(5) is mapped under
T -parity to

g æ g̃ © ��0gú�0� . (2.3)

Therefore, up to a constant matrix, fundamental and anti-fundamental indices of SU(5) are
mapped to each other

Vi¸˚˙˝
5

¡ (�0�)ij U j
¸˚˙˝

5

. (2.4)

29
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The � field transforms with two fundamental SU(5) indices, so under T -parity

� æ �̃ © ��0�†�0� . (2.5)

2.1.1 A UV doubling problem, making the T -odd doublet massive

The coset structure of LH with T -parity is in tension with the SM matter content [77, 76]. The
low energy theory must contain a T -even massless SU(2) doublet, the left-handed quark doublet
of the SM. Since T -parity can be understood as an exchange symmetry between the two gauged
SU(2) subgroups of SU(5) (we omit the U(1) factors for the following discussion), one must
therefore introduce two doublets Âi, each transforming under a di�erent SU(2)i with i = 1, 2.
Under T -parity the two doublets are mapped into each other

Â1 ¡ Â2 . (2.6)

We would like to write a mass term for the T -odd combination Â≠ © (Â1 ≠ Â2) that respects the
SM gauge group. Let us introduce a right-handed field Âc transforming as a doublet under the
SM gauge group [SU(2)]1+2

L ∏ (Â1 ≠ Â2)Âc . (2.7)

This term respects the SM gauge group, however each term by itself breaks SU(2)1 ◊ SU(2)2
and cannot be generated by a reasonable UV theory which respects those gauge symmetries,
unless they are spontaneously broken. Assuming that Âc cannot be a doublet of just one of the
SU(2)Õs, we expect the mass term to arise as a result of spontaneous symmetry breaking

L ∏ (Â1 È„1Í ≠ Â2 È„2Í)Âc , (2.8)

where we introduced two sources of spontaneous symmetry breaking, the VEV’s È„1Í and È„2Í.
Let us examine now the VEV’s which we can use to write this term in a gauge-invariant way. We
first examine two di�erent constructions presented in the literature that generate the mass term
of Eq. (2.7): first by using a non-linear representation and second by adding a third SU(2)◊ U(1).
We mention possible shortcomings of these constructions, which motivate the construction used in
this thesis. This third and last construction, which involves the mirroring of the 1 ¡ 2 exchange
symmetry, is presented at the end of this section.

Non-linear formulation of a massive odd doublet

One construction commonly presented in the literature uses the CCWZ formalism [5, 6]. The
main advantage of this approach is that no new sources of spontaneous symmetry breaking are
needed.
First we have the linear representations of SU(5) [48]

�1 =

Q

ca
Â1
0
0

R

db

5

, �2 =

Q

ca
0
0

Â2

R

db

5

, (2.9)

with the following T -parity transformation

�1 æ ��0�2 . (2.10)
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A mass term for the T -odd combination is constructed using a non-linearly transforming field

�̃c =

Q

ca
Âc

1
‰c

Âc
2

R

db , a 5 of SO(5) . (2.11)

Under a transformation g œ SU(5)

�̃c æ h(��, g)�̃c , h œ SO(5) . (2.12)

ei��/f transforms under a transformation g œ SU(5) in the following way

ei��/f æ gei��/f h† = hei��/f (�0gT �0) . (2.13)

The kinetic term for �̃c contains the eµ symbol defined by [5, 6]

ie≠i��/f (ˆµei��/f ) © dj
µXj + ei

µT i . (2.14)

Using the automorphism defined in Eq. (2.2) we can write eµ © ei
µT i in a T -parity symmetric

form

eµ = i

2
1
e≠i��/f ˆµei��/f + ei��/f ˆµe≠i��/f

2
. (2.15)

The eµ symbol transform as a covariant derivative

(ˆµ + eµ) æ h(ˆµ + eµ)h† , (2.16)

which allows us to write an invariant kinetic term for �̃c. Note that under T -parity

eµ æ �eµ� , (2.17)

therefore the transformation of �̃c under T -parity is

�̃c æ ≠��̃c . (2.18)

The benefit of the CCWZ formalism is that the pion matrix can be used to dress the field �̃c as
linear representations of SU(5), e.g 5 and 5̄

ei��/f �̃c æ g(ei��/f �̃c) , (2.19)

and

�0e≠i��/f �̃c æ gú(�0e≠i��/f �̃c) , (2.20)

with g œ SU(5). Finally the mass term is given by [48]

L ∏ ŸfÔ
2

(�1�0e≠i��/f ≠ �2ei��/f )�̃c + h.c

= ŸfÔ
2

1
Â1 ≠ Â2

2
Âc

2 + ... . (2.21)

The field �̃c must be a complete SO(5) representation, otherwise the kinetic term for �̃c would
explicitly break the global symmetry protecting the Higgs mass [48]. The field Âc

1 is still massless
at this point. One could formally introduce an additional doublet ÷ and write a mass term

L ∏ M(÷̄Âc
1 + h.c) . (2.22)

This term breaks the global symmetries protecting the Higgs mass, generating O(M2) contribu-
tions to the Higgs mass.
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Adding a third SU(2) ◊ U(1)

We conclude that the model requires additional structure in order to give mass to the T -odd
combination without explicit breaking of the global symmetry.
One possible solution is to add an additional gauge group [77, 78], denoted by [SU(2) ◊ U(1)]3.
Now Âc of Eq. (2.8) transforms as a doublet under [SU(2) ◊ U(1)]3 and the scalars „i transform
as a bi-fundamentals of [SU(2)◊U(1)]i ◊ [SU(2)◊ U(1)]3 with i = 1, 2. This solution introduces
new heavy T -even gauge fields. The new T -even gauge fields can be made heavy by making the
coupling constant of the third SU(2) ◊ U(1) gauge group large, e�ectively decoupling them from
the theory without spoiling the naturalness of the model. One has the choice of how to enlarge
the global symmetry to incorporate this additional gauge group. The most naive extension is

SU(5) æ SU(5) ◊ [SU(2) ◊ U(1)]3 (2.23)

We introduce additional scalars �1 and �2 transform under the enlarged group as (5̄, 2̄) and
(5, 2̄) respectively (disregarding the U(1) charges), namely

�1 ægú�1g†
3 , �2 æ g�2g†

3 ,

g œSU(5) , g3 œ [SU(2) ◊ U(1)]3 . (2.24)

Under T -parity

�1 æ �0��2 , Âc æ ≠Âc . (2.25)

The T -odd doublet gets a mass

L ∏ ŸÔ
2

1
�1 È�1Í ≠ �2 È�2Í

2
Âc

= ŸfÔ
2

1
Â1 ≠ Â2

2
Âc + ... , (2.26)

after �1 and �2 acquire VEV’s given by

È�1Í = f

Q

ca
2 ◊ 2

01 ◊ 2
02 ◊ 2

R

db = �0� È�2Í . (2.27)

The appearance of �1, �2 results in a deviation from the original coset structure of the LH, with
the altered coset structure

SU(5) ◊ SU(2) ◊ U(1)
[SU(2) ◊ U(1)]1+2+3

. (2.28)

We now identify [SU(2) ◊ U(1)]1+2+3 as the SM gauge group. This coset contains in the
original 14 NGB’s of the LH coset, and additional 10 NGB’s from the spontaneously broken
SO(5). These 10 additional states decompose under the SM gauge group as

10 ü 30 ü 21/2 ü 11/2 . (2.29)

The additional neutral singlet 10 and triplet 30 are eaten by the additional T -even gauge fields.
This naive approach unavoidably introduces additional physical NGB’s in the form of a T -odd
doublet 21/2 and a T -even complex scalar 11/2 . These states must be made massive without
spoiling the symmetry protection of the SM Higgs. Additional NGB’s are a generic result of
the enlarged global symmetry structure, even more so when the additional SU(2) is a gauged
subgroup of a larger global symmetry [77].
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Mirroring the 1 ¡ 2 exchange symmetry

In this thesis we consider a concrete solution suggested in [76]. We extend the global symmetry

SU(5) æ SU(5) ◊ [SU(2) ◊ U(1)]L ◊ [SU(2) ◊ U(1)]R.

(2.30)

We introduce a scalar field, X, which transforms linearly under [SU(2)◊U(1)]L ◊ [SU(2)◊U(1)]R

X æ gLXg†
R . (2.31)

When the � and X acquire VEV’s, È�Í = �0 and ÈXÍ = 2, the symmetry is spontaneously
broken to

SU(5)
SO(5) ◊ [SU(2) ◊ U(1)]L ◊ [SU(2) ◊ U(1)]R

[SU(2) ◊ U(1)]V
. (2.32)

We gauge two SU(2) ◊ U(1) subgroups defined as the combinations [SU(2) ◊ U(1)]1+L and
[SU(2) ◊ U(1)]2+R. The residual gauge symmetry [SU(2) ◊ U(1)]1+2+L+R is identified as the
SM gauge group. We can parametrise X using the non-linearly transforming Goldstone fields
associated with this symmetry breaking,

X © e
i

f Õ �X ÈXÍ e
i

f Õ �X = e
2i
f Õ �X , �X = 1

2
1
fii‡

i + fi0 2
2

. (2.33)

Note that the symmetry breaking scale f Õ may be di�erent than f , the symmetry breaking scale
of the original coset defined in Eq. (1.21). T -parity in the additional coset is realized as an
L ¡ R exchange, mirroring the 1 ¡ 2 exchange symmetry of the original coset. Under T -parity,

�X æ ≠�X , (2.34)

We introduce a non-linear representation of

[SU(2) ◊ U(1)]L ◊ [SU(2) ◊ U(1)]R .

Âc is a doublet of the unbroken subgroup [SU(2) ◊ U(1)]L+R, transforming non-linearly under
gL, gR œ [SU(2) ◊ U(1)]L ◊ [SU(2) ◊ U(1)]R

Âc æ V (�X , gL, gR)Âc , (2.35)
V œ [SU(2) ◊ U(1)]L+R .

The transformation properties under [SU(2) ◊ U(1)]L ◊ [SU(2) ◊ U(1)]R of ei�X/f Õ in this case
are

ei�X/f Õ æ gLei�X/f Õ
V † = V ei�X/f Õ

g†
R . (2.36)

This object can be used to dress Âc as linear representations

ei�X/f Õ
Âc æ gL(ei�X/f Õ

Âc) , (2.37)
e≠i�X/f Õ

Âc æ gR(ei�X/f Õ
Âc) . (2.38)

Finally the mass term can be written as [76]

L – (Â1ei�X/f Õ ≠ Â2�0e≠i�X/f Õ)Âc + h.c . (2.39)

This extension allows us to add a single SU(2) doublet to the spectrum, Âc, and write a mass
term for the T -odd doublet, without any explicit breaking of the global symmetry. In additional
to the 14 original NGB’s of Eq. (1.21), our spectrum includes now an additional NGB’s, a real
singlet 10 and a real triplet 30.
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2.1.2 Gauge sector

We write the Lagrangian for the non-linear ‡ model

Lnl‡ = f2

8 Tr[(Dµ�)(Dµ�ú)] + f Õ

4 Tr[(DµX)(DµX†)] . (2.40)

We parameterize �, X using the NGB’s as defined in Eq. (1.21) and Eq. (2.33). The exact form
of the covariant derivatives can be found in App. 2.A.
Once we set �, X to their respected VEV’s, we find that the following linear combinations,

W a
H = 1Ô

2
(W a

1 ≠ W a
2 ) , BH = 1Ô

2
(B1 ≠ B2) , (2.41)

acquire a mass

M2
WH

= g2f2(1 + r2) , M2
BH

= 1
5gÕ2f2

3
1 + 1

5r2
4

, (2.42)

with

r © f Õ

f
. (2.43)

We recognize the orthogonal linear combinations,

W a = 1Ô
2

(W a
1 + W a

2 ) , B = 1Ô
2

(B1 + B2) , (2.44)

as the SM gauge fields.

2.1.3 Goldstone sector

In addition to the complex Higgs doublet H and the charged triplet �, the Goldstone sector
includes additional physical states: a real singlet s and a real triplet Ï © 1

2Ïa‡a, defined as the
following linear combinations

s = c0fi0 + s0„0 , Ïa = c3·a ≠ s3fia , (2.45)

with the mixing angles

s0 =
Ò

1 ≠ c2
0 © rÔ

5 + r2 , (2.46a)

c3 =
Ò

1 ≠ s2
3 © rÔ

1 + r2 . (2.46b)

The orthogonal linear combinations,

G0 = ≠s0fi0 + c0„0 , Ga = s3·a + c3fia , (2.47)

are eaten by the heavy gauge fields and removed from the spectrum in the unitary gauge.



2.1. Model 35

2.1.4 Matter sector

The top Yukawa generates the largest quadratically divergent contribution to the Higgs mass,
therefore we limit our discussion to the third quark family. The terms in the top sector must
respect enough of the global symmetries in order for the Higgs mass to be protected from 1-loop
quadratically divergent contributions. This mechanism is usually referred to as collective breaking.
In order to respect these symmetries we enlarge the multiplets introduced in Eq. (2.9) and
introduce top partners. The quadratically divergent contribution to the Higgs mass from these
top partners would eventually cancel out with the top contribution. We start by introducing
left-handed Weyl fermions. We embed the doublets Â1,2 with the singlets ‰1,2 (the top partners)
in incomplete SU(5) multiplets

�1 =

Q

ca
Â1
‰1
0

R

db

5

, �2 =

Q

ca
0
‰2
Â2

R

db

5

. (2.48)

Under T -parity,

�1 æ ��0�2 , (2.49)

or equivalently

Â1 ¡ Â2 , ‰1 ¡ ≠‰2 . (2.50)

We introduce 3 right-handed singlets denoted by t̃R, ·1,2. Under T -parity,

t̃R ¡ t̃R , ·1 ¡ ·2 . (2.51)

The top Yukawa is given by [32, 49]

Ltop =⁄1f

2
1
�1iOi + (�2��0)iÕi

2
t̃R + ⁄2fÔ

2
(‰1·1 ≠ ‰2·2) + h.c ,

Oi ©‘ijk�j4�k5 , Õi © ‘ijk�̃j4�̃k5 . (2.52)

�̃ is defined in Eq. (2.5). The indices i, j, k are summed over 1, 2, 3. We define the T -parity
eigenstates

�+ = 1Ô
2

(�1 + ��0�2) ©

Q

ca
‡2qL

‰+
0

R

db , (2.53)

�≠ = 1Ô
2

(�1 ≠ ��0�2) ©

Q

ca
‡2Â≠

L

T ≠
L

0

R

db , (2.54)

with

qL =
A

t̃L

bL

B

= 1Ô
2

‡2(Â1 + Â2) , (2.55)

Â≠
L = 1Ô

2
‡2(Â1 ≠ Â2) . (2.56)
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The singlet T -parity eigenstates are defined as

‰+ = 1Ô
2

(‰1 ≠ ‰2) , ·+ = 1Ô
2

(·1 + ·2) , (2.57)

T ≠
L = 1Ô

2
(‰1 + ‰2) , T ≠

R = 1Ô
2

(·1 ≠ ·2) . (2.58)

Note that the T -even fields, and in particular t̃L, t̃R, are not the mass eigenstates (hence the
tilde). After the Higgs field acquires its VEV, ÈHÍ = 1Ô

2(0, v)T , we find the following mass matrix
for the T -even fermions

Ltop – f
1
t̃L ‰+

2 A
⁄1sv

2 0
⁄1(1+cv)

2
Ô

2
⁄2Ô

2

B A
t̃R

·+

B

+ h.c . (2.59)

We denoted

sv = sin


2› , cv = cos


2› , › © v2

f2 . (2.60)

The physical basis is given by
A

tL

T +
L

B

=
A

cL ≠sL

sL cL

B A
t̃L

‰+

B

, (2.61)
A

tR

T +
R

B

=
A

cR ≠sR

sR cR

B A
t̃R

·+

B

, (2.62)

with sin ◊L/R © sL/R and cos ◊L/R © cL/R. The mixing angles are given by [50]

◊L =1
2 tan≠1

A
2
Ô

2⁄2
1sv(1 + cv)

4⁄2
2 + (1 + cv)2⁄2

1 ≠ 2⁄2
1sv

B

, (2.63)

◊R =1
2 tan≠1

3 4⁄1⁄2(1 + cv)
4⁄2

2 ≠ ⁄2
1(2s2

v + (1 + cv)2)

4
. (2.64)

The masses at leading order in › are

m2
t = 1Ô

2

Q

a ⁄1⁄2Ò
⁄2

1 + ⁄2
2

R

b


›f , (2.65)

mT + =

Ò
⁄2

1 + ⁄2
2Ô

2
f . (2.66)

The top Yukawa coupling at leading order in › is therefore

yt = ⁄1⁄2Ò
⁄2

1 + ⁄2
2

. (2.67)

We shall keep ⁄2 as a free parameter and fix ⁄1 to produce the correct top Yukawa yt ¥ 1. The
mixing angles at leading order in › are

sL = ⁄2
1

⁄2
1 + ⁄2

2


› =

3
yt

⁄2

42 
› , (2.68)

sR = ⁄1Ò
⁄2

1 + ⁄2
2

= yt

⁄2
. (2.69)
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For the T -odd sector we must introduce a mass term for the doublet similar to the term
in Eq. (2.39). To this end, we introduce a RH doublet Â≠

R transforming non-linearly under
[SU(2) ◊ U(1)]L ◊ [SU(2) ◊ U(1)]R according to the CCWZ formalism. Â≠

R is odd under T -parity

Â≠
R æ ≠Â≠

R . (2.70)

The mass term is given by [76]

LŸ = ŸfÔ
2

3
Â1‡2e

i
f Õ �X ≠ Â2‡2e

≠ i
f Õ �X

4
Â≠

R + h.c . (2.71)

Our spectrum contains a T -odd singlet T ≠ and a T -odd doublet Â≠ with the following masses

mT ≠ = ⁄2Ô
2

f , mÂ≠ = Ÿf . (2.72)

Lastly, the explicit form of the kinetic terms can be found in App. 2.A.

2.2 Scalar potential
At tree level, the pNBG’s interact only through derivative interactions and their classical
potential vanishes. The gauge and top sector couplings explicitly break the global symmetry.
The classical scalar potential is radiatively generated from fermion and gauge loops. At 1-loop
the UV-dependent fermion and gauge loops contributions are given by [30]

Vf (H, �, s, Ï)

= ≠ Nc

8fi2 �2a1 Tr
Ë
Mf M †

f

È
≠ Nc

16fi2 a2Tr

S

U
1
Mf M †

f

22
log

Q

aMf M †
f

�2

R

b

T

V , (2.73)

VV(H, �, s, Ï)

= 3
32fi2 �2a3 Tr

Ë
M2

V

È
+ 3

64fi2 a4Tr
C

M4
V log

A
M2

V

�2

BD

, (2.74)

respectively. Mf (H, �, s, Ï) and M2
V(H, �, s, Ï) are the fermion and gauge bosons mass matrices

in the background of the pNGB’s. The ai parameters with i = 1, .., 4 are O(1) numbers originating
from unknown UV contributions to these operators. � ≥ 4fif is the cuto� scale of the theory.
Expanding the scalar potential V = Vf + VV in the NGB fields, we find that

V = m2
�Tr[�†�] ≠ µ2

h|H|2 + m2
ÏTr[Ï2] + ⁄h|H|4 + ⁄ s2|H|2 + ⁄ÏsH†ÏH + ... . (2.75)

We have omitted additional radiatively generated operators that are inconsequential for the
upcoming discussions. A detailed analysis of the symmetries of the scalar potential of this model
can be found in App. 2.B. In this section we summarize the most important features of the scalar
potential.

The mass of the charged triplet � is quadratically divergent, m� ≥ a few TeV. We consider
energy scales well below m�. We remove � from our spectrum by integrating it out. Due
to T -parity, integrating out � at tree-level does not influence any of the couplings explicitly
written in the scalar potential of Eq. (2.75). Like m2

�, the Higgs quartic ⁄ is generated by 1-loop
quadratically divergent diagrams.
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The rest of the operators in Eq. (2.75), including the Higgs mass term µ2
h, are generated

through logarithmically divergent loops, and as such they exhibit a mild dependence on the
UV cuto� scale. The explicit calculations, found in App. 2.B, give us an order of magnitude
estimation for the IR contribution to these operators at 1-loop. However quadratically divergent
2-loop diagrams as well as UV contributions can have comparable e�ects on these operators.
Therefore we do not presume to be able to predict these couplings accurately in terms of the
fundamental parameters of this model. In this thesis we treat the couplings in Eq. (2.75) as free
parameters, except µ2

h and ⁄h which are fixed to their measured values. Our goal is to allow the
free parameters to take values that are reasonable in light of the approximation given by the
1-loop IR contribution, and state explicitly when this is not the case.

In addition to m2
Ï, ⁄ and ⁄Ï, we must introduce a mass term for the singlet s. The sin-

glet remains massless at 1-loop, and a mass for s is generated at the 2-loop level. We take the
pre-EWSB mass term of the singlet, denoted as m̃2

s, as a free parameter as well. The sizes and
ranges of m2

Ï, ⁄Ï, m̃2
s, ⁄ are dictated by the DM phenomenology and are discussed in Sec. 2.5.

2.3 LHC phenomenology

2.3.1 T -even singlet T +

The T -even singlet is responsible for cancelling the quadratically divergent top loop contribution
to the Higgs mass, hence it is the standard top partner predicted by composite Higgs models.
It can be doubly produced at the LHC via QCD processes, as well as singly produced with an
associated third generation quark through the following EW interactions

L – g

2CbW T̄ +
L

/WbL + g

2CtZ T̄ +
L

/ZtL + h.c . (2.76)

In this model,

CbW =
Ô

2sL ¥
Ô

2›

⁄2
2

¥ 0.35
3 1

⁄2

42 31 TeV
f

4
,

CtZ =sLcL

cW
¥

Ô
›

cW ⁄2
2

¥ 0.28
3 1

⁄2

42 31 TeV
f

4
. (2.77)

Decay modes

We consider the limit mT + ∫ mH , mW , mZ . In this regime EWSB e�ects are negligible and
we can formally take › æ 0. The dominant decays of T + are to the physical Higgs or to the
longitudinal components of the SM gauge bosons with an associated third generation quark, in
accordance with the equivalence theorem. We can parameterize the Higgs field in a general R›

gauge using these would-be longitudinal components as

H =
A

„+
1Ô
2(v + h + i„0)

B

. (2.78)

The relevant interactions between the Higgs doublet and T + are

Ltop – ≠ 1Ô
2

⁄1sR

1
tL(v + h + i„0) ≠

Ô
2bL„+

2
T +

R , (2.79)

predicting that in the high energy limit,

Br[T+ æ h t] : Br[T+ æ Z t] : Br[T+ æ W + b] = 1 : 1 : 2 . (2.80)
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LHC searches

Single production: T+ can be singly produced at the LHC in association with a third generation
quark. A recent search from CMS [79] looked for (T + æ Z t)bq with a fully leptonic Z decay.
The search places a lower bound on the mass of the singlet LH Top partner at 1.2 TeV, assuming
negligible width and BR[T + æ Zt] = 0.25. The bound strongly relies on a model-dependent
production cross-section, which in term depends on the coe�cients of Eq. (2.77). In the CMS
search the coupling is fixed at CbW = 0.5. Conservatively we consider the mT + > 1.2 TeV bound
at face value, although we expect a smaller value for CbW , as can be seen in Eq. (2.77). CbW is
further suppressed for ⁄2 > 1, which is the region in parameters space that, as we later show, is
consistent with the LHC constraints on the T -odd top partners masses. The mass of the T -odd
singlet is bound from below to be mT + >

Ô
2f . The lower bound of 1.2 TeV can be trivially

satisfied by taking f > 850 GeV.
Double production: T+ can also be doubly-produced via QCD processes. A recent search from
ATLAS [80] looked for a pair produced top partners in a range of final states, assuming that at
least one of the top partner decays to th. The quoted nominal bound of the singlet top partner is

mT + > 1.02 TeV . (2.81)

This bound can be satisfied by taking f > 700 GeV.

2.3.2 T -odd singlet T ≠

The phenomenology of the T -odd singlet resembles that of a stop squark with conserved R-parity.
It can be doubly produced at the LHC via QCD processes, and consequently decay to tops and
missing energy.

Decay modes

We consider the limit mT ≠ ∫ ms, mBH
, mt. T ≠ couples to the singlet „0 of the original

SU(5)/SO(5) coset. In a general R› gauge, „0 is composed of the physical singlet and the
would-be longitudinal component of BH ,

„0 = s0s + c0G0 . (2.82)

The relevant interactions are

Ltop – i⁄1

Ú
2
5

1
„0T̄ ≠tR

2
+ h.c

= i⁄1

Ú
2
5

1
s0 s T̄ ≠tR + c0 G0 T̄ ≠tR

2
+ h.c . (2.83)

Leading to the simple prediction in the high energy limit

�(T ≠ æ s t) : �(T ≠ æ BHt) =
3

s0
c0

42
= r2

5 . (2.84)

LHC searches

We performed a simple recast of recent stop bounds by accounting for the enhanced production
cross section of the fermionic T ≠ relative to the scalar stop squark case. We would like to account
for the presence of the T -odd doublet, which contributes to the same final states as T ≠. We
postpone the derivation of these bounds to Sec. 2.3.3.
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2.3.3 T -odd doublet Â≠

The phenomenology of the T -odd doublet resembles that of a mass-degenerate stop and sbottom
squarks with conserved R-parity. The upper (lower) component up Â≠ can be doubly produced
at the LHC via QCD processes, and consequently decay to tops (bottoms) and missing energy.

Decay modes

We consider the limit where mÂ≠ ∫ mBH
, mWH

, ms, mÏ. In a general R› gauge, we can express
our original pNGB’s in terms of the physical pNGB’s and the would-be longitudinal modes of
the heavy gauge fields defined in Eqs. (2.45) and (2.47),

A
·a

fia

B

=
A

c3 s3
≠s3 c3

B A
Ïa

Ga

B

, (2.85)
A

fi0

„0

B

=
A

c0 ≠s0
s0 c0

B A
s

G0

B

. (2.86)

with the mixing angles c0, c3, s0, s3 defined in Eq. (2.46). The relevant interaction in the › æ 0
limit originate from LŸ. For (Â≠

R)1,

LŸ – iŸ

2
1
r

Ë
(c0s ≠ s0G0)tL + (≠s3Ï3 + c3G3)tL +

Ô
2(≠s3Ï≠ + c3G≠)bL

È
(Â≠

R)1 , (2.87)

and similarly for (ÂR≠)2,

LŸ – iŸ

2
1
r

Ë
(c0s ≠ s0G0)bL ≠ (≠s3Ï3 + c3G3)bL +

Ô
2(≠s3Ï+ + c3G+)tL

È
(Â≠

R)2 . (2.88)

In the high energy limit

Br[Â≠ æ q s] =c2
0
4 , Br[Â≠ æ q G0] = s2

0
4 , (2.89)

Br[Â≠ æ q Ï3] =1
2[Â≠ æ q Ï±] = s2

3
4 , (2.90)

Br[Â≠ æ q G3] =1
2[Â≠ æ q G±] = c2

3
4 . (2.91)

with the final state with q = {b, t} depending on the electric charge of the initial state. The
exact branching ratios for Â≠ including EWSB and phase space e�ects can be found in Fig. 2.1.

LHC searches

The T -odd sector contains two top-like and one bottom-like fermions. We perform a recast of
recent bounds on stop and sbottom masses by accounting for the enhanced production cross
section of a fermionic colored top partner, along the lines of [81] and [82]. The quoted bounds in
Ref. [83] for the stop and sbottom masses are

mt̃ Ø 1070 GeV , mb̃ Ø 1175 GeV , (2.92)

respectively. We denote the QCD pair production cross section at
Ô

s = 13 TeV for a spin s
coloured particle with mass M as ‡s

pair(M). We require that
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Figure 2.1: Numeric results for the branching ratios of the upper (lower) component of Â≠ presented in
the left (right) panel, with f = 1 TeV, r = 3, ms = 200 GeV, mÏ = 1 TeV and ⁄2 = 2.5.
The masses of the heavy gauge boson are fixed at mBH

= 270 GeV and mWH
= 2.1 TeV.

The dashed colored lines indicate the branching ratios to the di�erent exclusive final states.
The solid thick lines indicate the sum of branching ratios with either a top (purple curve) or
a bottom (yellow curve) at the final state.

‡0
pair(1070 GeV) Ø ‡1/2

pair (mT ≠) + ‡1/2
pair(mÂ≠) ◊ BR[(Â≠)1 æ t + MET] (2.93)

and

‡0
pair(1175 GeV) Ø ‡1/2

pair(mÂ≠) ◊ BR[(Â≠)2 æ b + MET] , (2.94)

with mÂ≠ = Ÿf and mT ≠ = ⁄2fÔ
2 the masses of the T -odd doublet and T -odd singlet top partners

respectively. We use ‡0
pair(M) reported by the CMS collaboration [84] and ‡1/2

pair(M) calculated
using HATHOR [85]. We conservatively assume all the branching ratios to be 100%. We thus
obtain the following lower bounds on the T -odd fermion masses

mÂ≠ , mT≠ > 1.6 TeV . (2.95)

The combination of all LHC constrains in the (f, ⁄2) plane is shown in the right panel of Fig. 2.2.
We summarize the constraints for the couplings for a for a given f ,

1.6 TeV
f

<Ÿ < 4fi , (2.96)

Max
5
1,

2.3 TeV
f

6
<⁄2 < 4fi . (2.97)

2.4 Electroweak precision tests
The main contributions to electroweak precision observables are una�ected by the extended coset
structure. The mixing in the left-handed sector generates a correction to the T oblique parameter
due to loops of the T -even singlet T + [50]

TT + = TSM sL
2

C
sL

2

xt
≠ 2 + sL

2 ≠ 2sL
2

1 ≠ xt
log xt

D

, (2.98)
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Figure 2.2: Left Panel: Exclusion limits (blue region) in the (mÂ≠ , mT ≠) plane, using recasted limits
from the CMS SUSY search of Ref. [83]. We impose the condition of Eqs. (2.93) and (2.94),
assuming branching ratios of 100%. Right Panel: Exclusion limits in the (f, ⁄2) plane using
Ref. [83] (blue region, using the bound from Eq. (2.96)), Ref. [79] (orange region) and
Ref. [80] (green region).

with

TSM = 3
16fi

1
s2

wc2
w

m2
t

m2
Z

¥ 1.24 , xt © m2
t

m2
T +

¥
A

⁄2
2 ≠ 1
⁄4

2

B

› , (2.99)

and

sL © sin ◊L u
Û

xt

⁄2
2 ≠ 1 . (2.100)

We express TT + in terms of xt using Eq. (2.100). In light of the LHC constrains on the T -even
top partner mass of Eq. (2.81), we expect xt Æ 0.03 π 1. We therefore expand Eq. (2.98) to
leading order in xt:

TT +

TSM
¥

3
xt

⁄2
2 ≠ 1

4 3
2 log 1

xt
+

5 1
⁄2

2 ≠ 1

6
≠ 2

4

=
3

›

⁄4
2

4 A

2 log
C

⁄4
2

(⁄2
2 ≠ 1)›

D

+
5 1

⁄2
2 ≠ 1

6
≠ 2

B

. (2.101)

An additional contribution to the T parameter is due to loops of T -odd heavy gauge bosons.
The correction is proportional to the mass splitting after EWSB,

�m2
WH

© m2
W 3

H
≠ m2

W ±
H

= 1
2f2g2 sin4

Q

a
Û

›

2

R

b , (2.102)

neglecting corrections of order O(gÕ2). The T -odd gauge loops generate the following correction
to the T parameter [50]

TWH
= ≠ 9

16fic2
ws2

wM2
Z

�m2
WH

log
A

�2

f2g2(1 + r2)

B

= ≠ 9
16fis2

w

› log
A

�
fg

Ô
1 + r2

B

. (2.103)
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Figure 2.3: Combined EWPT and LHC exclusion regions in the (f, ⁄2) plane, for r = 3 and � =
4fif . The EWPT exclusion regions due to T-parameter (blue region) and ”gZb̄b

L (orange
region) are plotted at the 3‡ level using the results of Ref. [86], T = 0.12 ± 0.07 and
”gbb̄

L = 0.002 ± 0.001. The LHC exclusion (green region) is due to Ref. [83] using the
lower bound of Eq. (2.96).

This correction is ⁄2 independent, and becomes the dominant one for higher values of ⁄2 as
TT + æ 0. We assume that the UV contributions to these loop processes are sub-leading with
respect to the log-enhanced IR contribution.

Let us mention that the oblique S and U parameters also receive corrections due to the mixing the
LH fermion sector. As noted in Ref. [50], the size of these corrections are an order of magnitude
smaller than the correction to the T parameter and are therefore sub-leading. Additionally, the
Zb̄LbL vertex receives corrections due to T+ loops [50]

”gZb̄b
L = g

cw

–

8fis2
w

m4
t

m2
W m2

T +

3 1
⁄2

2 ≠ 1

4
log

m2
T +

m2
t

, (2.104)

with ”gZb̄b
L © gZb̄b

L ≠ gZb̄b
L SM and gZb̄b

L SM = ≠1
2 + s2

w
3 . We constrain the parameters of the model

using the results of Ref. [86], namely

T = 0.12 ± 0.07 , ”gZb̄b
L = 0.002 ± 0.001 . (2.105)

The combinations of the EWPT and LHC constraints are plotted in Fig. 2.3. For f . 1.5 TeV,
values of ⁄2 < 1.5 are excluded by LHC. The correction TT + decreases as ⁄2 increases, and in the
allowed regions we find that TWH

∫ TT + . We conclude that the correction from T -odd gauge
loops to the T-parameter is the dominant constraint in the allowed region where ⁄2 is large. We
find the following lower bound on f from Eq. (2.103) at 3‡ after taking � = 4fif

f >(1240 GeV) ◊
Ú

1 ≠ 1
6 log(1 + r2)

¥ (970 GeV) ◊ (1 ≠ 0.08(r ≠ 3))) . (2.106)

Therefore we set the lower bound on the symmetry breaking scale to be f > 1 TeV.
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2.5 DM phenomenology

2.5.1 Spectrum

The lightest T -odd particle (LTP) in the spectrum is stable and therefore a natural DM candidate.
One possible LTP is the gauge field BH . This possibility has been considered in the past in the
context of the original LHT model [87]. In this thesis we explore the possibility of DM being part
of the composite scalar sector, in particular the singlet s. The singlet mass ms is a free parameter
in our model. The mass mBH

, given in Eq. (2.42), is of order O(200) GeV. The region in which s
is the LTP corresponds to r ≥ 2 ≠ 3 and thus would be the focus of our study. In this region
we may safely neglect co-annihilation e�ects of s with BH . Since larger values of r correspond
to heavier T -odd gauge bosons, one might be concerned that the gauge contribution to the
Higgs mass su�ers from larger tuning. However, by comparing the logarithmically divergent
contributions to the Higgs mass from the gauge and top sector

µ2
gauge

µ2
top

≥ g4(1 + r2)
⁄2

1⁄2
2

≥
A

g4

⁄2
2

B

(1 + r2) ≥ a few precent ◊ (1 + r2) , (2.107)

one finds that the gauge contributions is in any case negligible compared to the dominant
contribution of the top sector, which remain the dominant source of tuning in the model.

2.5.2 Singlet-triplet mixing

The last term of the scalar potential in Eq. (2.75) induces mixing between the singlet s and the
neutral component of the triplet Ï3 after EWSB. The e�ects of singlet-triplet mixing on the
DM phenomenology have been considered in Ref. [88]. We focus on the composite nature of the
singlet DM. For simplicity, we limit ourselves to the region in parameter space where we may
neglect the mixing e�ects. The mixing angle is given by

sin2 ◊sÏ = 1
2

C

1 ≠
Û

1
1 + t2

D

= t2

4 + O(t4) , (2.108a)

t © 1
2

⁄Ïv2

|m2
Ï ≠ m2

s| . (2.108b)

Assuming for simplicity that ms ≥ v, ⁄Ï ≥ 1 and demanding conservatively that sin ◊sÏ < 5%,
we find the following lower bound

mÏ

ms
& 2.5 , (2.109)

which implies mÏ & 600 GeV, consistent with current collider bounds. 1 We note that the
assumption ⁄Ï ≥ 1 as well as the lower bound on mÏ are consistent with the IR contribution of
Eq. (2.75) to these operators. We find that the operator corresponding to ⁄Ï enjoys an accidental
factor ≥ 5 enhancement to its coe�cient in the CW potential. The IR contributions can be
found in App. 2.B in Eqs. (2.180) and (2.181). We conclude that a moderate mass separation is
su�cient in order to neglect the singlet-triplet mixing e�ects.

1 The LHC phenomenology of Ï resembles that of the Wino, which implies that the charged components can
be doubly produced via electroweak processes and decay to W ± and missing energy. However, the relevant SUSY
searches, e.g [89, 90] , do not pose strong constraints on mÏ, especially in light of the reduced production cross
section of the scalar triplet in comparison to the fermionic Wino.
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2.5.3 Annihilation cross section
The DM relic abundance is calculated by solving the Boltzmann equation for the particle
density [72]

ṅs + 3Hns = ≠ È‡vÍ
Ë
n2

s ≠ (nEQ
s )2

È
. (2.110)

The thermally averaged cross section for a non-relativistic gas at temperature T is given by [91]

È‡vÍ =
s Œ

4m2
s

ds ‡(s ≠ 4m2
s)

Ô
sK1(

Ô
s/T )

8m4
sTK2

2 (m/T ) , (2.111)

and the usual approximation yields [72]

�sh2

0.12 ¥
A

3 ◊ 10≠26 cm3 s≠1

È‡vÍ

B

=
31 pb c

È‡vÍ

4
. (2.112)

The measured DM relic abundance is [92]

�DMh2 = 0.1199 ± 0.0027 . (2.113)

In the following we consider three types of interactions relevant to our model that determine the
annihilation cross section, the Higgs portal, the derivative couplings and the contact term [73,
93].

Higgs portal

Due to the explicit breaking of the global symmetry, the scalar potential of Eq. (2.75) is generated
radiatively, and in particular the following operators are present in the theory

L ∏ ≠1
2m̃2

ss2 ≠ ⁄ s2H†H . (2.114)

⁄ is the usual Higgs portal coupling of the singlet DM model [94, 95, 96]. The Higgs mediates
s-channel annihilation to SM gauge fields and fermions. The annihilation channel ss æ hh is
also possible via the s,t and u channels as well as directly via the dimension 4 operator s2h2. We
assume that freeze-out occurs after the EW phase transition. In unitary gauge, we can rewrite
Eq. (2.114) as

L ∏ ≠1
2

1
m̃2

s + ⁄v2
2

s2 ≠ ⁄v s2h ≠ ⁄

2 s2h2. (2.115)

We define the physical mass of the singlet

m2
s © m̃2

s + ⁄v2 . (2.116)

As discussed in Sec. 2.2, we take ms, ⁄ to be free parameters. We note a posteriori that the
phenomenologically viable regions not excluded by direct detection have ⁄ . 1%. The naive IR
contribution to ⁄ is O(10%). To obtain a viable model we assume that additional contributions
generate cancellations of order a few in order for the Higgs portal coupling to take smaller values.
These additional contributions can originate from UV physics, e.g loops of heavier resonances, and
higher loop order diagrams containing the lightest top partners . The latter can be quadratically
dependent on the UV scale, since we expect the collective breaking mechanism to break down at
higher loop order. These additional contributions are expected to be comparable to the leading
logarithmic contributions, allowing a substantial cancelation with the leading order contributions
to take place in some parts of parameter space.
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Goldstone derivative interaction

The kinetic term of the non linear sigma model of Eq. (2.40) contains derivative interactions
among the Goldstone fields, in particular in the unitary gauge (before EWSB)

Lnl‡ ∏ 1
2(ˆµh)2 + 1

2(ˆµs)2 ≠ 5s2
0

24f2 (sˆµh ≠ hˆµs)2 . (2.117)

We can remove the derivative terms that contribute to the direct detection cross-sections (namely
h2(ˆµs)2 and s2(ˆµh)2) by the non-linear transformation

h æ h

A

1 + 5s2
0

24f2 s2
B

, s æ s

A

1 + 5s2
0

24f2 h2
B

. (2.118)

In this new basis the leading order derivative interactions are

Lnl‡ ∏ 1
2(ˆµh)2 + 1

2(ˆµs)2 + 5s2
0

16f2 ˆµh2ˆµs2 , (2.119)

The transformation of Eq. (2.118) changes the form of the scalar potential, in particular it
generates a shift in the portal coupling

⁄ æ ⁄ + 5s2
0

!
m2

h + m2
s

"

12f2 . (2.120)

In this new basis, the e�ect of the derivative interactions are disentangled: the term in Eq. (2.119)
contributes to the s-channel annihilation of DM after EWSB, and its contribution scales like
m2

s/f2. As discussed below, the derivative interaction interferes with the portal coupling ⁄. The
⁄ in the old basis is e�ectively larger, as seen in Eq. (2.120). This is is due to the derivative
interactions of the old basis, and the e�ective portal coupling has an additional contribution
proportional to s2

0m2
s/f2, s2

0m2
h/f2 ≥ 10≠3 for f ≥ 1 TeV and r = 3. Importantly , the derivative

interaction term of Eq. (2.119) is suppressed in the elastic scattering probed by direct detection
experiments.

Contact term

The non-renormalizable nature of the theory and the mixing in the top sector leads to the
appearance of the following contact term,

Ltop ∏ ≠ctt ss mtt̄t
s2

v2 (2.121)

with

ctt ss = s2
0

5
cL

37›

15

4
+ 4

5sL


›
6

. (2.122)

As opposed to the standard singlet DM which interacts with the SM only through the Higgs
portal, this dimension 5 operator allows the singlet to annihilate directly into tops without
the mediation of the Higgs. Similarly to the derivative interactions, the contact term becomes
increasingly important at higher energies. At leading order in ›, we obtain

cs2 t̄t = 7s2
0

15

3
1 + 12

7⁄2
2

4
› + O(›2) . (2.123)
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Note that both the derivative interactions and the dim. 5 contact term scale with s2
0. The

r æ Œ limit correspond for f Õ ∫ f . In this limit s ¥ „0 (with „0 the singlet that belongs to the
SU(5)/SO(5) coset) and the derivative interactions are at the maximal value as s0 æ 1. In the
opposite regime, r æ 0, which corresponds to f Õ π f , the DM is comprised almost entirely of
s ¥ fi0 (with fi0 the singlet that belongs to the [SO(2) ◊ U(1)]2/[SU(2) ◊ U(1)] coset). h and fi0
are decoupled since they belong to di�erent cosets, and the derivative interactions between h
and s are e�ectively shut down as s0 æ 0.

2.5.4 Relic abundance
We can characterize the DM phenomenology in 3 distinct mass regions, see also [97]. In the first
region where ms π

Ô
⁄DMf , all the e�ects of the interactions originating from higher dimensional

operators, namely the derivative interactions and contact term, are negligible compared to
the portal coupling interaction. The DM phenomenology in this region coincides with the
standard singlet DM [94, 95, 96]. In regions where ms ≥

Ô
⁄DMf , the e�ect of higher dimensional

operators becomes comparable with the marginal portal coupling operator. In particular we find a
destructive interference between the Higgs portal coupling and the derivative interactions. Lastly,
for heavy DM masses ms ∫

Ô
⁄DMf , the higher dimensional derivative operators dominate. For

the following discussion it would be useful to parameterize the thermal cross section as

È‡vÍ = ‡0 (x)
Ë
(⁄ ≠ f1 (x))2 + f2(x)�(ms ≠ mt)

È
,

x © ms

f
. (2.124)

‡0, f1, f2 are monotonically increasing functions of x. Furthermore, ‡0, f1, f2 depend in general
on f, r, ⁄2. f1(x) parametrizes the destructive e�ects of the dimension 6 operator of Eq. (2.117),
hence we expect f1 ≥ x2 . f2(x) accounts for the dimension 5 operator of Eq. (2.121), which
allows the singlet to annihilate into two tops independently of the Higgs interactions, therefore
we expect f2 ≥ x.

Portal coupling dominance

In regions of parameter space where

ms π


⁄DMf , (2.125)

the composite features of the DM are negligible, and the phenomenology is that of the standard
singlet DM [94, 95, 96], where irrelevant operators are irrelevant. In this area of parameter space,
the thermally averaged cross section is approximately

È‡vÍ ¥ ‡0 (x) ⁄2 , (2.126)

and the observed relic abundance is produced for

⁄+(x) ¥
Û

1 pb
‡0 (x) . (2.127)

For ⁄ < ⁄+ the singlet is over-abundant. These regions are experimentally excluded. In the
range ⁄ > ⁄+ the singlet is under-abundant. In this region an additional source of DM must be
present in order to account for the observed relic abundance. For a fixed value of f , this region
is characterized by a large portal couplings or small DM masses. The mass region ms < mh/2 is
severely constrained by the LHC due to the Higgs invisible width to singlets. For ms ¥ mh/2,
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the Higgs mediator is resonantly produced and ⁄DM must be extremely suppressed in order to
produce the correct relic abundance, making this finely tuned region hard to probe experimentally.
We shall focus on DM masses above mh/2 the avoid the above-mentioned issues.

This region can be seen in the left panel of Fig. 2.4 where ms < 150 GeV. In this region the
total annihilation cross section for a fixed portal coupling decreases with ms, as expected in the
standard singlet DM scenario for ms > mh/2. In the right panel of Fig. 2.4, the portal coupling
dominance region is to the right of the minima of the curves. In this region, for a fixed value of
the mass, the total annihilation cross section increases with ⁄.

Contact term dominance

In region of masses where

ms ≥


⁄DMf , (2.128)

the derivative interactions and Higgs portal are comparable. In this region ⁄ ≥ x2 ≥ f1(x) such
that the portal coupling and derivative interactions interfere destructively, implying that

È‡vÍ ¥ ‡0f2(x)�(ms ≠ mt) . (2.129)

In regions where x < mt/f , È‡vÍ becomes arbitrarily small and the singlet is over-abundant.
This parameter space is experimentally excluded. In the range where x > mt/f we find that
È‡vÍ is positive since the singlet is kinematically allowed to decay into tops. For a particular
value x = xmax defined by

‡0(xmax)f2(xmax) = 1 pb , (2.130)

the observed relic abundance is produced. In the parameter space where mt/f < x < xmax

we find that È‡vÍ < 1 pb and the singlet is over-abundant. This range is also experimentally
excluded. For coupling and masses such that xmax < x we find that È‡vÍ > 1 pb and the singlet is
under-abundant. In this region an additional source of DM must be present in order to account
for the observed relic abundance. We conclude that for a given point in (⁄2, r, f) parameter
space, the largest DM mass for which the singlet can account for the entire DM relic abundance
is therefore given by mmax

s = Ô
xmaxf .

The relevant parameter space in the left panel of Fig. 2.4 corresponds to the region where
ms ≥ 220 GeV, close to the minimal value of the cross section. The annihilation to the Higgs and
gauge bosons is e�ectively suppressed by the destructive interference between the portal coupling
and the derivative interactions. As this suppression occurs where ms > mt, the remaining
annihilation cross section is exclusively to tops. In the right panel of Fig. 2.4, the minima of the
di�erent curves are precisely mapped to this area of maximal interference. For the fixed mass
ms = 150 GeV, the singlet is not allowed kinematically to decay into tops and the annihilation
cross section vanishes. Conversely, for ms = 200 GeV the decay into tops is allowed and the
annihilation cross section is dominated by the contact term. Lastly, the minimum of the curve
corresponding to ms = 250 GeV is approximately 1 pb, meaning that for this particular point in
the (⁄2, r, f) parameter space, xmax ¥ 250/1000 = 1/4.

Derivative interaction dominance

In the regions of parameters space where

ms ∫


⁄DMf , (2.131)
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the irrelevant operators, namely the dimension 6 operators corresponding to the derivative
interactions, are dominating, and the annihilation cross section grows with the singlet mass. The
observed relic abundance is produced for

⁄≠ ¥ f1(x) ≠
Û

1 pb
‡0 (x) ≠ f2(x)�(ms ≠ mt) (2.132)

for x > xmin, with xmin defined by

f1(xmin) =
Û

1 pb
‡0 (xmin) ≠ f2(xmin)�(xmin ≠ mt

f
) . (2.133)

For x ≥ xmin the correct relic abundance is recovered with ⁄≠ π 1 and with DM mass
mmin

s © Ô
xminf . The nuclear cross section is typically ≥ 10≠11 pb, beyond the reach of current

direct detection experiments. For ⁄ > ⁄≠ the singlet is over-abundant. This regions are ex-
perimentally excluded. In the region ⁄ < ⁄≠ the singlet is under-abundant. In this region an
additional source of DM must be present in order to account for the observed relic abundance.

In the left panel of Fig. 2.4, the derivative interactions become dominant at ms > 225 GeV. The
total annihilation cross section increases with ms for a fixed ⁄, and the annihilation channels to
the Higgs and gauge bosons become dominant compared to the annihilation channel to tops. In
the right panel of Fig. 2.4 the derivative interactions dominance region can be identified to the
left of the minima, where ⁄ is small. The annihilation cross section increases as ⁄ decreases. In
this region smaller values of ⁄ correspond to smaller destructive interference between the portal
coupling and the derivative interactions, and therefore an increased overall annihilation cross
section. For the curve corresponding to ms = 150 GeV, we see that ⁄+ ¥ 0.065 and ⁄≠ π 1,
meaning that for this particular point in the (⁄2, r, f) parameter space, xmin ¥ 150/1000 = 0.15.
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Figure 2.4: Left panel: The thermally averaged cross section as a function of the DM mass ms for
⁄ = 0.07, f = 1000 GeV, r = 3 and ⁄2 = 3. The dashed line at È‡vÍ = 1 pb represents
the cross section that produces the correct relic abundance according to Eq. (2.112). Right
panel: The thermally averaged cross section as a function of ⁄ for di�erent values of ms

with f = 1000 GeV , r = 3 and ⁄2 = 3. The dashed line at È‡vÍ = 1 pb represents the cross
section that produces the correct relic abundance according to Eq. (2.112).

2.5.5 Direct detection
The model was implemented using FeynRules [98] and exported to micrOMEGAs [99]. The
strongest direct detection bounds are due to XENON1T [100] after 34.2 live days. Scan results
for this model can be seen in Fig. 2.5. The two branches appearing in each panel represent the
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two possible solutions for ⁄ for each mass value which produce the observed relic abundance. The
branches meet at some maximal DM mass, above which the singlet is always under-abundant.
The upper branch is ruled out by direct detection. Some of the lower branch is still consistent
with experimental bounds. In the region where ms ¥ Ô

xminf , ⁄ can be arbitrarily small, thus
avoiding direct detection. In this regions, the theory gives a sharp prediction for the DM
mass. At mentioned previously, the naive IR contribution to ⁄ is too big and of O(10%). We
therefore assume that additional contributions from UV physics and higher loops generate mild
cancellations, allowing this coupling to take the allowed O(1%) values.
Note that the 34.2 live days XENON1T bounds are sensitive to ⁄ ≥ 10≠2 ∫ s2

0m2
s/f2 ≥ 10≠3,

therefore the bounds are insensitive to the value of ms (except for a slight mass-dependence
coming the Xenon bound itself, which becomes less sensitivity for higher DM masses). The
1.1 yrs ◊ Ton live days XENON1T bounds, on the other hand, are sensitive to much lower values
⁄ ≥ 10≠3, which becomes comparable to the s2

0m2
s/f2 contribution of the derivative interactions

shown in Eq. (2.120). As expected, this e�ect is clearly more visible for lower values of f , and
the direct detection bounds become stronger for higher values of ms, see left panel of Fig. 2.5.

The impact of varying ⁄2, r for a fixed value of f can be seen in Fig. 2.6. The largest ef-
fect is seen for increasing r, which in turn raises the importance of the non-renormalizable
interactions at lower DM masses. A smaller e�ect due to the increase of ⁄2 can be seen in
the meeting point of the two branches. Larger values of ⁄2 decrease the contact term, pushing
mmax

s = Ô
xmaxf to higher values.
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Figure 2.5: Singlet relic abundance in the {ms, ⁄ = ⁄
DM

} plane for f = 1 TeV (left), f = 1.2 TeV
(middle) and f = 1.4 TeV (right), for fixed r = 3 and minimal ⁄2 ≥ 2300 GeV

f . The solid
blue lines represent areas where �s = �

DM

. The blue areas are regions where �s > �
DM

,
and therefore are excluded. The grey regions are excluded by XENON1T [100] after 34.2 live
days. The Dashed lines are the projected sensitivities for XENON1T at 1.1 yrs ◊ Ton [101].

2.A The complete Lagrangian
The model is defined by the global symmetry

G = SU(5) ◊ [SU(2)L ◊ U(1)L] ◊ [SU(2)R ◊ U(1)R] ◊ U(1)Q . (2.134)

A global unbroken U(1)Q is added in order to fix the hyper charges of the matter fields.
SU(5) contains two SU(2) ◊ U(1) subgroups defined in Eqs. (1.22) and (1.23), denoted by
[SU(2) ◊ U(1)]1/2. We gauge the following subgroup

SU(2)1+L ◊ U(1)1+L+Q ◊ SU(2)2+R ◊ U(1)2+R+Q .

(2.135)

We implicitly include SU(3)c as an external gauge symmetry. We introduce fields in representa-
tions of G denoted by (R, RL, RR)qL,qR,qQ . A generic representation of Eq. (2.134) is mapped
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Figure 2.6: The e�ects of changing r and ⁄2 on the relic abundance curves, shown as solid curves. The
dashed curves represent the XENON1T [100] bounds after 34.2 live days. Increasing r has
similar e�ects to lowering f - the coe�cients of the non-renormalizable terms increase and
their e�ect is noticeable at lower DM masses. Increasing ⁄2 reduces the size of the coe�cient
of the dimension 5 contact term, therefore increasing mmax

s = Ô
x

max

f .

under T -parity to

(R, RL, RR)qL,qR,qQ æ (R, RR, RL)qR,qL,qQ . (2.136)

The representation R is defined by the automorphism of Eq. (2.2). The Lagrangian is described
by the following sum

L = Lgauge + Lkin + Ltop + LŸ . (2.137)

The gauge kinetic terms are given as usual by

Lgauge = ≠ 1
4

ÿ

i=1,2
W µ‹

ia W ia
µ‹ ≠ 1

4
ÿ

i=1,2
Bµ‹

i Bi
µ‹ ≠ 1

4Gµ‹
a Ga

µ‹ . (2.138)

We introduce two scalar fields with the following G representation

� : (15, 1, 1)0,0,0 , X : (1, 2, 2)qX ,≠qX ,0 . (2.139)

The charges of X under U(1)L ◊ U(1)R are constrained by the requirement to preserve the
T -even combination U(1)R+L. We determine the value of qX in Eq. (2.154). The global symmetry
is spontaneously broken by the VEV’s of � and X with the following coset structure

SU(5)
SO(5) ◊ [SU(2) ◊ U(1)]L ◊ [SU(2) ◊ U(1)]R ◊ U(1)Q

[SU(2) ◊ U(1)]L+R ◊ U(1)Q
.

(2.140)

We parametrize � and X following Eqs. (1.21) and (2.33) and write down the kinetic terms of
the non-linear sigma model

Lnl‡ = f2

8 Tr[(Dµ�)(Dµ�ú)] + f Õ2

4 Tr[(DµX)(DµX†)] , (2.141)

with

D� = ˆ� ≠ i
ÿ

i=1,2
giW

a
i (Qa

i � + �Qa
i

T ) ≠ i
ÿ

i=1,2
gÕ

iBi(Yi� + �Yi
T ) , (2.142)

DX = ˆX ≠ i

2(g1W a
1 ‡aX ≠ g2W a

2 X‡a) ≠ iqX(gÕ
1B1 ≠ gÕ

2B2) . (2.143)
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T -parity dictates that

g1 = g2 =
Ô

2g , gÕ
1 = gÕ

2 =
Ô

2gÕ , (2.144)

with g, gÕ the SM gauge couplings.
The matter sector contains the following linearly transforming fields

�1 =

Q

ca
Â1
‰1
0

R

db : (5, 1, 1)0,0, 1
3

, �2 =

Q

ca
0
‰2
Â2

R

db : (5, 1, 1)0,0, 1
3

, (2.145)

as well as the singlets

·1 : (1, 1, 1) 8
15 , 2

15 ,0 , ·2 : (1, 1, 1) 2
15 , 8

15 ,0 , t̃R : (1, 1, 1)0,0, 1
3

. (2.146)

We introduce a non linearly transforming doublet Â≠
R . Non-linear representations are described

in terms of representations of the unbroken subgroup

H = SO(5) ◊ SU(2)L+R ◊ U(1)L+R ◊ U(1)Q . (2.147)

Â≠
R transforms non-linearly under the full global group G using the CCWZ formalism. In our

case

Â≠
R : (1, 2)qX ,qÂ

under H . (2.148)

The U(1)Q charge of Â≠
R , denoted here by qÂ, is determined in Eq. (2.154). qX is the same

charge appearing in Eq. (2.143). Under T -parity,

�1 æ ��0�2 , ·1 ¡ ·2 , (2.149a)
t̃R æ t̃R , Â≠

R æ ≠Â≠
R . (2.149b)

The U(1) charge assignments are fixed by matching the required SM hyper charges and requiring
that all the gauged U(1) symmetries are conserved. The SM hyper charge is given by

YSM = Y1 + Y2 + qL + qR + 2qQ . (2.150)

e.g for Â1,

YSM = ≠ 3
10 ≠ 2

10 + 0 + 0 + 2 ◊ 1
3 = 1

6 . (2.151)

Let us determine the qX and qÂ charges.
Defining U © e

i�X
f Õ , the combinations UÂ≠

R and U †Â≠
R transform linearly under the global group

UÂ≠
R : (1, 2, 1)qX ,0,qÂ

, U †Â≠
R : (1, 1, 2)0,qX ,qÂ

. (2.152)

Using these identifications as linear representations, it is clear that conservation of U(1)1+L+Q

and U(1)2+R+Q, e.g in the first term of Eq. (2.71), requires

≠
3

≠ 3
10 + 1

3

4
+ qX + qÂ = 0 (2.153)

and

≠
3

≠1
5 + 1

3

4
+ qÂ = 0 æ qÂ = 2

15 , qX = ≠ 1
10 . (2.154)
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We introduce the kinetic terms

Lkin = i
ÿ

i=1,2
�i /D�i + i

ÿ

i=1,2
· i /D·i

+it̃R /Dt̃R + iÂ≠
R

/DÂ≠
R . (2.155)

The kinetic term for the non-linearly transforming doublet Â≠
R is given by

DµÂ≠
R = (ˆµ + eµ ≠ iqÂ(gÕ

1B1µ + gÕ
2B2µ))Â≠

R . (2.156)

The eµ © ei
µT i symbol of the CCWZ formalism connects the non-linearly transforming field and

the NGB’s via the matrix U [5, 6]

U †(DµU) © dj
µXj + ei

µT i , (2.157a)

DµU =
3

ˆµ ≠ ig1W a
1

‡a

2 ≠ iqXgÕ
1B1

4
. (2.157b)

Using the automorphism defined by T -parity we can also write

U(DµU †) © ≠dj
µXj + ei

µT i , (2.158a)

DµU † =
3

ˆµ ≠ ig2W a
2

‡a

2 ≠ iqXgÕ
2B2

4
. (2.158b)

This automorphism allows us to write the eµ symbol in terms of the pion matrix U and the
gauge fields

eµ = 1
2

1
U †DµU + UDµU †2

. (2.159)

The covariant derivatives of �1 and �2 are

Dµ�1 = (ˆµ + i
ÿ

i=1,2
[giW

a
iµQaú

i + gÕ
iBiµY ú

i ]

≠ i

3(gÕ
1B1µ + gÕ

2B2µ))�1 , (2.160)

Dµ�2 = (ˆµ ≠ i
ÿ

i=1,2
[giW

a
iµQa

i + gÕ
iBiµYi]

≠ i

3(gÕ
1B1µ + gÕ

2B2µ))�2 . (2.161)

The covariant derivative of a singlet field ‰ transforming as (1, 1, 1)qL,qR,qQ is given by

Dµ‰ = (ˆµ ≠ i(qL + qQ)gÕ
1B1µ ≠ i(qR + qQ)gÕ

2B2µ)‰ .

(2.162)

For completeness we report the top sector Lagrangian

Ltop = ⁄1f

2
1
�1iOi + (�2��0)iÕi

2
t̃R

+⁄2fÔ
2

(‰1·1 ≠ ‰2·2) + h.c , (2.163a)

Oi © ‘ijk�j4�k5 , Õi © 2‘ijk�̃j4�̃k5 , (2.163b)

and the terms that gives the T -odd doublet combination a mass

LŸ = ŸfÔ
2

1
Â1‡2U ≠ Â2‡2U †2

Â≠
R + h.c . (2.164)
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�1 �2 t ·1 ·2 Â≠
R ⁄1 ⁄̃1 ⁄2 ⁄̃2 Ÿ Ÿ̃

a b c d e f a ≠ c b ≠ c a ≠ d b ≠ e a ≠ f b ≠ f

Table 2.1: Spurionic U(1) assignment for the fields and couplings.

2.B The scalar potential and its symmetries
In this appendix we discuss in detail the symmetry structure of the model and the scalar potential.
The Higgs doublet is protected by two di�erent shift symmetries. Each of the shift symmetries is
contained inside a di�erent SU(3) subgroup of SU(5)

exp

S

WU
iÔ
2f

Q

ca
‘̨

‘̨T

R

db

T

XV œ [SU(3)]1 , (2.165a)

exp

S

WU
iÔ
2f

Q

ca ‘̨T

‘̨

R

db

T

XV œ [SU(3)]2 . (2.165b)

All the couplings that explicitly break the global symmetry in this model, namely the gauge
couplings and the top sector couplings, preserve at least one of the SU(3) subgroups. A Higgs
potential is generated only when at least two couplings are non zero, such that all the shift
symmetries are broken. This so-called collective breaking mechanism insures the absence of
quadratically divergent contributions to the Higgs mass. The couplings and their T -parity
conjugate respect di�erent symmetries, therefore it is useful to denote the T-conjugate couplings
with a tilde

Ltop = f

4
1
⁄1�1iOi + ⁄̃1(�2��0)iÕi

2
t̃R

+ fÔ
2

1
⁄2‰1·1 ≠ ⁄̃2‰2·2

2
+ h.c , (2.166)

LŸ = fÔ
2

1
ŸÂ1‡2U ≠ Ÿ̃Â2‡2U †2

Â≠
R + h.c . (2.167)

In order to better understand the structure of the generated scalar potential, we assign spurionic
U(1) charges to our fields and couplings, which can be found in Table 2.1. The combinations
of couplings appearing in the quadratically divergent contribution to the scalar potential must
be of the form gg† or g̃g̃†. We can deduce from the residual symmetries a generic form for the
quadratically divergent potential. For concreteness let us consider the coupling ⁄1 and set all the
other explicit symmetry breaking couplings to zero. The original coset in Eq. (2.140) contains
(24 ≠ 10) + (9 ≠ 5) = 18 NGB’s, out of which 4 are eaten, leaving us with 14 physical NGB’s
with the following SUL(2) ◊ UY (1) representations

3±1 ü 2±1/2 ü 30 ü 10 . (2.168)

Turning on only ⁄1 breaks the global symmetry and changes the coset structure
SU(3) ◊ [SU(2) ◊ U(1)]2

[SU(2) ◊ U(1)]1+2

◊ [SU(2) ◊ U(1)]L ◊ [SU(2) ◊ U(1)]R ◊ U(1)Q

[SU(2) ◊ U(1)]L+R ◊ U(1)Q
,

(2.169)
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This coset contains (8 + 4) ≠ 4 + (9 ≠ 5) = 12 NGB’s, out of which 4 are eaten, leaving us with 8
physical NGB’s with the following SUL(2) ◊ UY (1) representations

2±1/2 ü 30 ü 10 . (2.170)

There must exist a non-linear combination of the goldstone fields

�̃ij © f1

A

1,
s

f
,

s2

f2 ,
Ï2

f2 ,
|H|2
f2 , ...

B

�ij

+f2

A

1,
s

f
,

s2

f2 ,
Ï2

f2 ,
|H|2
f2 , ...

B
HiHj

f
(2.171)

with f1, f2 some functions of gauge-invariants, such that the quadratically divergent potential
can be written as gauge-invariant function of only �̃

V (�, H, s, Ï) = V (�̃) . (2.172)

This constraint limits the form of the quadratically divergent scalar potential. E.g the mass term
in the RHS of Eq. (2.172) would appear in the original NGB basis as

�2|⁄1|2Tr[�̃�̃ú] =

�2|⁄1|2(|f1|2Tr[��ú] + 1
f

f1fú
2 Tr[H†�Hú]

+ 1
f

fú
1 f2Tr[HT �úH] + 1

f2 |f2|2(H†H)2) . (2.173)

This argument can be repeated for every coupling c œ {⁄̃1, g1, g2, gÕ
1, gÕ

2} which generates a
scalar potential proportional to |c|2�2. We can immediately see that the symmetry structure
allows a quadratically divergent mass term for �. The collective breaking structure prevents the
appearance of |H|2 in the quadratically divergent potential, as well other operators, such as

s2, Ï2, s2|H|2 and sH†ÏH . (2.174)

Logarithmically divergent 1-loop contributions to the scalar potential contain four couplings.
Possible combinations are trivial combination like |c|2|cÕ|2, and non trivial combinations like

⁄1⁄̃†
1Ÿ̃Ÿ† , ⁄̃1⁄†

1ŸŸ̃† + T-conjugates . (2.175)

At this level all scalar operators can be generated except the singlet mass. The singlet remains
exactly massless at 1-loop and must acquire a mass from higher order loops, e.g 2-loop diagram
by closing the Higgs loop in the 1-loop induced s2|H|2 interaction. We report the radiatively
generated couplings calculated from Eq. (2.73) after setting all the T-conjugate couplings to their
respective values c̃ = c. We neglect the gauge contributions which generate O(1%) corrections to
the fermion loops contribution. We define C © Nc

16fi2 a2 log
1

�2

f2

2
. Note that C ≥ 0.1 for a2 = 1
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and � = 4fif .

m2
� = Nc

4fi2 a1|⁄1|2�2 , (2.176)

⁄h = Nc

16fi2 a1|⁄1|2
3�

f

42
, (2.177)

⁄ = C|⁄1|2r2 !
25|⁄2|2 + 6|Ÿ|2(r + 5)2"

30 (r2 + 5) > 2.3C ,

(2.178)
µ2

h = ≠Cf2|⁄1|2|⁄2|2 < ≠4Cf2 , (2.179)

⁄Ï = C|⁄1|2r2 !
5|⁄2|2 + 6Ÿ2(r + 1)(r + 5)

"

3
Ô

5
Ô

r4 + 6r2 + 5
> 5.2C ,

(2.180)

The bounds are calculated assuming Ÿ, r > 1. We find the minimal/maximal value with respect
to ⁄1, ⁄2 under the top Yukawa constraint. The triplet mass is generated only from gauge loops.
We define D © 3

64fi2 a4 log
1

�2

f2

2
= C

4
a4
a2

≥ 0.025. The triplet mass is given by

m2
Ï = Df2

A
8g4r2(1 + r)2

1 + r2

B

¥
3

D

0.025

4 3
f

1200 GeV

42
(850 GeV)2 , (2.181)

where we used r = 3. Lastly, we report the Higgs potential. The Higgs potential in the unitary
gauge up to order O(sin4 h)

Vh = Nc

16fi2 f2�2a1
1
|⁄1|2 + |⁄̃1|2

2
s4

h (2.182)

+Cf4
1
|⁄̃1|2|Ÿ̃|2 ≠ ⁄̃1⁄†

1ŸŸ̃† ≠ |⁄̃1|2|⁄̃2|2 + [g ¡ g̃]
2

s2
h

+1
4Cf4

1
≠|⁄1|2|⁄̃1|2 ≠ |⁄1|2|⁄1|2 + 2|⁄̃1|2|⁄̃2|2

+4
1
⁄†

1⁄̃1ŸŸ̃† ≠ |⁄̃1|2|Ÿ̃|2
2

+ [g ¡ g̃]
2

s4
h

A
hÔ
2f

B

.

where we defined sn
h © sinn

1
hÔ
2f

2
. After setting g̃ = g, we find

Vh = ≠2Cf4|⁄1|2|⁄2|2s2
h

+
5

Nc

8fi2 �2a1 + Cf2
1
|⁄2|2 ≠ |⁄1|2

26
f2|⁄1|2s4

h . (2.183)

Although terms proportional to |⁄1|2|Ÿ|2 could have appeared a priori in the Higgs potential,
they vanish due to T -parity. Clearly if we were to set Ÿ̃ = ≠Ÿ, which is equivalent to flipping the
parity of Â≠

R and coupling it to the T -even combination 1Ô
2(Â1 + Â2), the Ÿ coupling would have

appeared in the Higgs potential. Since Ÿ does not appear in the Higgs potential, taking large
values of Ÿ would have no influence on the tuning of the Higgs potential at one loop.
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Composite dark matter in SO(7)/SO(6)

3.1 E�ective Lagrangian for Higgs and DM pNGBs

The low-energy e�ective Lagrangian for the pNGBs, namely the Higgs doublet H and the
SM-singlet DM, taken to be a complex scalar ‰ stabilized by a U(1)DM symmetry,1 has the form

Le� = LGB + Lf ≠ Ve� , (3.1)

where LGB contains only derivative interactions, whose structure is determined by the non-linearly
realized global symmetry. Lf contains the couplings to the SM fermions, which originate from
elementary-composite mixing couplings that break G explicitly. These elementary-composite
mixings, together with the gauging of a subgroup of G that includes the SM electroweak symmetry,
generate the radiative potential Ve� . We discuss first the leading order Lagrangian LGB, and
then turn to the e�ects of the explicit symmetry breaking, contained in Lf ≠ Ve� .

3.1.1 Two-derivative Lagrangian

The most general two-derivative, SU(2)L ◊ SU(2)R ◊ U(1)DM µ H invariant Lagrangian2 that
arises from the nonlinear sigma model kinetic term is3

LGB = |DµH|2 + |ˆµ‰|2 + cH

2f2 ˆµ|H|2ˆµ|H|2 + cd

f2 ˆµ|H|2ˆµ|‰|2 + c‰

2f2 ˆµ|‰|2ˆµ|‰|2. (3.2)

We could have written four additional operators,

c1
f2 |DµH|2|H|2 ,

c2
f2 |DµH|2|‰|2 ,

c3
f2 |ˆµ‰|2|H|2 ,

c4
f2 |ˆµ‰|2|‰|2 , (3.3)

but these can be removed through the O(1/f2) field redefinition

H æ
1
1 ≠ c1

2f2 |H|2 ≠ c2
2f2 |‰|2

2
H , ‰ æ

1
1 ≠ c3

2f2 |H|2 ≠ c4
2f2 |‰|2

2
‰ . (3.4)

1For real DM ÷ that is stable due to a Z2 symmetry, we simply replace ‰ æ ÷/
Ô

2 in Le� .
2More precisely, this is the most general SU(2)L ◊ SU(2)R ◊ U(1)DM invariant Lagrangian where SU(2)R is

only broken by the gauging of hypercharge.
3We do not include in LGB operators containing ‰ú

¡
ˆµ‰ © ‰úˆµ‰ ≠ ˆµ‰ú‰, which vanish trivially in the

SO(6)/SO(5) model where ‰ æ ÷/
Ô

2 with real ÷, and are forbidden in the SO(7)/SO(6) model by custodial
SO(4) ƒ SU(2)L ◊ SU(2)R invariance, since H and ‰ belong to the same irreducible representation of H = SO(6).
Notice also that ‰ú

¡
ˆµ‰ is odd under the charge conjugation associated to U(1)DM.
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Notice that for c1 = c2 = c3 = c4 = ≠2/3 these are the leading terms of

sin(fi/f)
fi

fia æ fia

f
, fi =

Ô
fį T fį , (3.5)

where fį is the GB vector [68]. This redefinition has customarily been adopted in studies of
the SO(6)/SO(5) and SO(7)/SO(6) models, see App. 3.A. In the basis of Eq. (3.2), which also
coincides with the SILH basis [102] when restricted to Higgs interactions, the scalar potential
reduces to a simple polynomial and the vacuum expectation value (VEV) of the Higgs is equal
to v ƒ 246 GeV. In those models the coe�cients take the values cH = cd = c‰ = 1, which we
often adopt as reference in the following.

The “derivative Higgs portal” operator parametrized by cd, which constitutes the only
interaction between the DM and the SM contained in LGB, allows the DM to annihilate to SM
particles via s-channel Higgs exchange, and the observed DM relic density to be produced via the
freeze-out mechanism. This fixes the interaction strength cd/f2 as a function of the DM mass,
as shown by the blue curve in Fig. 3.1, which was obtained by solving the Boltzmann equation
for the ‰ number density using micrOMEGAs [103]. For m‰ > mh the relation is very simple,
being approximately determined by

1 = �‰+‰ú

�DM
ƒ È‡vrelÍcan

1
2È‡vrelÍ

, È‡vrelÍ ƒ
c2

dm2
‰

fif4 (3.6)

hence

f

c1/2
d

¥ 1.1 TeV
3

m‰

130 GeV

41/2
, (3.7)

where È · Í denotes thermal average, �DM = 0.1198 h≠2 [62], È‡vrelÍcan ¥ 2 ◊ 10≠26 cm3 s≠1 is
the canonical value of the thermal cross section [104], and the dominant ‰‰ú æ WW, ZZ, hh
channels were included in the annihilation.4

Crucially, the derivative Higgs portal also leads to negligibly small cross sections for the
scattering of DM with heavy nuclei: the amplitude for q‰ æ q‰ scattering mediated by Higgs
exchange is proportional to |t|/f2 . (100 MeV)2/(1 TeV)2 ≥ 10≠8, where we took 100 MeV as
a rough estimate of the maximum momentum transfer. The expected strength of the direct
detection signal is then set by the interactions contained in Lf ≠ Ve� , which depend on the
explicit breaking of the global symmetry.

The other important e�ect encapsulated in LGB is that h, due to its pNGB nature, has all
its couplings rescaled by a universal factor with respect to their SM values: writing in unitary
gauge H = (0 , h̃/

Ô
2)T we have

h̃ = v +
1
1 ≠ cH

2
v2

f2

2
h . (3.8)

A robust and model-independent probe of this e�ect is the measurement of the hV V couplings
(V = W, Z). In Fig. 3.1 we compare the projected sensitivity on this observable of current and
future colliders [105] with the pNGB DM parameter space, under the assumption that cH = cd.

4The cross section for annihilation to tt̄ scales as ‡tt̄ vrel ≥ Ncm2
t /(fif4), as opposed to ‡W W,ZZ,hh vrel ≥

m2
‰/(fif4), therefore tt̄ is important only for m‰ not much larger than mt. See the right panel of Fig. 3.1.
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Figure 3.1: Left panel: value of the global symmetry breaking scale f that allows to reproduce the observed
DM relic density via the derivative Higgs portal, as function of the DM mass. In solid blue
the full Boltzmann solution, in dashed orange the approximate relation given in Eq. (3.7).
The gray lines show the 95% CL lower bounds achievable from the measurement of the hV V
couplings at current and future colliders, assuming cH = cd. Right panel: fractions for
annihilation to the di�erent SM final states. f̄f denotes the sum over all light quarks and
leptons.

3.1.2 Explicit symmetry breaking e�ects

The most general e�ective Lagrangian coupling the pNGBs to the third generation quarks is

Lf = ≠ytq̄L
ÂHtR

A

1 ≠ ct

f2 |H|2 ≠ c‰
t

f2 |‰|2
B

≠ ybq̄LHbR

A

1 ≠ cb

f2 |H|2 ≠ c‰
b

f2 |‰|2
B

+ h.c.. (3.9)

The general form of the one-loop scalar potential generated by the explicit symmetry breaking is,
up to quartic order in the fields,

Ve� = µ2
h|H|2 + ⁄h|H|4 + µ2

DM|‰|2 + ⁄DM|‰|4 + 2⁄|H|2|‰|2 . (3.10)

The parameters µ2
h and ⁄2

h are fixed by requiring the observed mass and VEV for the SM-like
Higgs. We only consider regions of parameters where È‰Í = 0, so that U(1)DM is not spontaneously
broken and ‰ is stable. This imposes a mild constraint on the parameter space of the fermionic
sector (see App. 3.C for a concrete example), whereas the gauging of U(1)DM automatically
yields µ2

DM > 0 .
In addition to providing the DM with a mass m2

‰ = µ2
DM + ⁄v2, the explicit symmetry

breaking can a�ect its phenomenology in important ways. The annihilation to SM particles is
still dominated by s-channel Higgs exchange, but now the ‰ú‰h coupling has both a derivative
and a non-derivative component,

M(‰‰ú æ SM) Ã
1
cd

s

f2 ≠ 2⁄
2
v ƒ

1
cd

4m2
‰

f2 ≠ 2⁄
2
v . (3.11)

A priori, for m‰ > mt the ‰ú‰t̄t interaction proportional to c‰
t can also give an important

contribution to ‰ú‰ æ tt̄. This is the case when the shift symmetry is broken by the top quark,
considered in Sec. 3.3. In case the top quark couplings respect the DM shift symmetry, as in
Secs. 3.4 and 3.5, c‰

t is suppressed or altogether absent, hence Eq. (3.11) is a good approximation
of the strength for annihilation to SM particles.
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DM scattering with nuclei proceeds via t-channel Higgs exchange and through the contact
interactions parametrized by c‰

q . The e�ective interactions with the SM quarks q have the form

2mqaq q̄q‰ú‰ , aq ¥ ⁄

m2
h

+
c‰

q

2f2 . (3.12)

As already emphasized, the contribution of the derivative Higgs portal is negligible.
Note that, for any relevant values of the parameters, the DM self-interactions mediated by c‰

and ⁄DM are far too small to have any e�ects on cosmological scales.

3.1.3 Origins of explicit breaking and DM scenarios
Two irreducible sources of explicit symmetry breaking, which generate at least some of the
interactions contained in Eqs. (3.9) and (3.10), are the gauging of the SM electroweak subgroup
SU(2)L ◊ U(1)Y µ H and the Yukawa couplings for the SM fermions. The SM gauging only
contributes to the scalar potential and, under our assumption that the DM is a SM singlet, at
one-loop level generates only µ2

h and ⁄h. In the fermion sector, Yukawas are assumed to arise via
the partial compositeness mechanism [52]: the elementary fermions couple linearly to operators
of the strong sector,

LUV
mix ≥ ⁄qf q̄LOq + ⁄tf t̄ROt + ⁄qÕf q̄LOq Õ + ⁄bf b̄ROb + h.c., (3.13)

where we have ignored the flavor structure and put our focus on the masses of the third generation
of quarks [106]. We have included mixings of the left-handed quark doublet with two distinct
operators, as it is in general required to generate both the top and bottom Yukawa couplings. For
example, in the SO(6)/SO(5) and SO(7)/SO(6) models the global symmetry is extended by an
unbroken U(1)X , hence if tR and bR are coupled to operators with di�erent X charge, two distinct
embeddings of qL are needed in order to generate both yt and yb. At low energies Eq. (3.13) leads
to mass mixing between the elementary fermions and the composite resonances, and as a result
the physical SM fields are linear combinations of elementary and composite degrees of freedom.
Their compositeness fractions are defined schematically as ‘t

L,R ≥ ⁄q, tf/
Ò

m2úq, t + ⁄2
q, tf

2 and
‘b
L,R ≥ ⁄qÕ, bf/

Ò
m2

úqÕ, b + ⁄2
qÕ, bf

2, where múq, t, qÕ, b are the relevant masses of the resonances in
the top and bottom sectors. The Yukawas have the form

yÂ ƒ MúÂ

f
‘Â
L ‘Â

R , (Â = t, b) (3.14)

where MúÂ is a combination of the resonance mass parameters.
Since the elementary fermions do not fill complete G representations, Eq. (3.13) breaks

explicitly at least part of the global symmetry. The Higgs shift symmetry must be broken by the
couplings of both the top and bottom, in order to generate the observed values of yt,b , v and mh.
However, whether each of these couplings breaks or preserves the ‰ shift symmetry is a priori
unknown, and all possibilities deserve close scrutiny. The three scenarios discussed in this thesis
are listed in Fig. 3.2, along with the Feynman diagrams that dominate the annihilation and direct
detection of DM in each case. In Sec. 3.3 we consider the scenarios where the leading breaking
of the DM shift symmetry originates from the top quark. In Sec. 3.4 we consider the case of
DM shift symmetry breaking due to the bottom quark couplings. Then, in Sec. 3.5 we study the
scenario where the fermion sector is fully symmetric, and the leading explicit breaking arises
from the gauging of the U(1)DM symmetry that stabilizes the DM. Before considering all these
cases, let us first present the framework in which these were studied, namely the SO(7)/SO(6)
model.
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Sec. 3.3

Sec. 3.4

Sec. 3.5.1

Sec. 3.5.2

Figure 3.2: Schematic summary of the three scenarios discussed in this thesis. The EFT coe�cients
cd, c‰

b and ⁄ were defined in Eqs. (3.2), (3.9) and (3.10), respectively. In the third scenario
we denote with “D the dark photon associated to the gauging of U(1)DM with coupling gD,
and mark the gauge interactions in green.

3.2 SO(7)/SO(6) model

We assume that the strong sector possesses an SO(7) global symmetry, spontaneously broken
to SO(6) at the scale f . The six Goldstone bosons (GBs) fia, a = 1, . . . , 6 transform in the
fundamental representation of the unbroken SO(6), which under SO(4) decomposes into H ≥ 4,
identified with the Higgs doublet, and two real singlets ÷, Ÿ. Following the Callan-Coleman-
Wess-Zumino (CCWZ) construction [5, 6], whose details are given in App. 3.A, the GBs are
parameterized by the matrix U = exp

1
i
Ô

2fiaXa/f
2
, where the Xa are the broken generators.

At the leading order in derivatives, the Goldstone Lagrangian is given by

Lfi = f2

4 da
µda µ, (3.15)
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where the CCWZ dµ symbol is constructed out of U and its SU(2)L ◊ U(1)Y covariant derivative.
In the unitary gauge the vector of GBs can be written as

fį =
1
0, 0, 0, h̃, ÷, Ÿ

2T
, (3.16)

with h̃ denoting the field whose physical excitation will be identified with the observed Higgs
boson. After performing a convenient field redefinition (see Eq. (3.85)), the Goldstone Lagrangian
reads

Lfi = 1
2

Ë
(ˆµh̃)2+(ˆµ÷)2+(ˆµŸ)2

È
+ 1

2

!
h̃ˆµh̃ + ÷ˆµ÷ + ŸˆµŸ

"2

f2 ≠ h̃2 ≠ ÷2 ≠ Ÿ2 + h̃2

4
Ë
ḡ2|W̄ +

µ |2+ 1
2

!
ḡW̄ 3

µ ≠ḡÕB̄µ
"2È

.

(3.17)

The bar on the gauge fields (and their associated couplings) indicates that these are elementary
states. In analogy to photon-rho mixing in QCD, the gauge fields couple linearly to resonances of
the strong sector. The resulting mass mixing is diagonalized, for example for the charged fields,
by ḡW̄ ±

µ æ gW ±
µ + . . . , where g and W ±

µ are the SM gauge coupling and field, respectively, and
the dots stand for terms containing the vector resonances (see Eq. (3.96)). Hence we identify
Èh̃Í = v ƒ 246 GeV. Assuming furthermore È÷Í = ÈŸÍ = 0 and expanding around the vacuum,
we find that the singlets have canonical kinetic terms, whereas for the Higgs the canonical
normalization is achieved with

h̃ = v +


1 ≠ › h , › © v2

f2 , (3.18)

where h is the physical excitation.

Coupling to elementary fermions and dark matter stability
To examine the di�erent options for the embedding of the SM fields, it is convenient to consider
the decomposition of the representations of SO(7) under its subgroup SO(4) ◊ SO(3), which we
can write as SU(2)L ◊SU(2)R ◊SU(2)Õ, where SO(4) ≥= SU(2)L ◊SU(2)R while SO(3) ≥= SU(2)Õ

is generated by the broken generators under which the two singlets shift, X÷ © X5 and XŸ © X6,
together with

T DM © T 56 = 1Ô
2

diag(04◊4, ‡2, 0) œ SO(6), (3.19)

where we used block notation. The label given to this generator anticipates its role in the dark
matter stabilization, which will be discussed momentarily. For the first few irreducible SO(7)
representations we have the following (SU(2)L, SU(2)R, SU(2)Õ) decompositions (see for example
Ref. [107]),

1 = (1, 1, 1),
7 = (2, 2, 1) ü (1, 1, 3),
8 = (2, 1, 2) ü (1, 2, 2),

21 = (2, 2, 3) ü (3, 1, 1) ü (1, 3, 1) ü (1, 1, 3),
27 = (3, 3, 1) ü (2, 2, 3) ü (1, 1, 5) ü (1, 1, 1).

(3.20)

For the top Yukawa, we imbed qL in the (2, 2)2/3 representation of (SU(2)L, SU(2)R)X . This
guarantees custodial protection against zero-momentum corrections to the ZbLb̄L vertex, which
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would conflict with LEP measurements [108]. Hence a natural and minimal possibility is
Oq ≥ 72/3. In this case the coupling of qL preserves the entire SU(2)Õ. The requirement of
U(1)X -invariance of the top mass term fixes then the X charge of Ot to be 2/3, but several
options are available for its transformation under SO(7). Additionally, once the top quark
couplings respect the DM shift symmetry, additional embeddings might be needed in order to
break the shift symmetry i.e for the right handed bottom quark. We summarize the embeddings
used throughout this thesis in Table 3.1.

Section Embeddings
DM
shift
sym.

Zb̄b
cust.
sym.

Secs. 3.3-3.5 ›(t)
L ≥ 72/3 ∏ (2, 2, 1)2/3 = (2)0

7/6 ü (2)0
1/6 X X

Sec. 3.3 ›(t)
R ≥ 72/3 ∏ (1, 1, 3)2/3 = (1)+1

2/3 ü (1)0
2/3 ü (1)≠1

2/3 X -

Sec. 3.4
›(t)

R ≥ 212/3 ∏ (1, 3, 1)2/3 = (1)0
5/3 ü (1)0

2/3 ü (1)0
≠1/3 X -

›(b)
L ≥ 7≠1/3 ∏ (2, 2, 1)≠1/3 = (2)0

1/6 ü (2)0
≠5/6 X X

›(b)
R ≥ 7≠1/3 ∏ (1, 1, 3)≠1/3 = (1)+1

≠1/3 ü (1)0
≠1/3 ü (1)≠1

≠1/3 X X

Sec. 3.5 ›(t)
R ≥ 212/3 (as in Sec. 3.4) X -

›(b)
R ≥ 212/3 ∏ (1, 3, 1)2/3 = (1)0

5/3 ü (1)0
2/3 ü (1)0

≠1/3 X X

Table 3.1: The various SM fermion embeddings used in the thesis. We specify the used SO(7) ◊ U(1)X

representation and focus on the relevant (SU(2)L, SU(2)R, SU(2)Õ)X representation, which we
subsequently decompose to its (SU(2)L)DM

Y representations. We highlight in red the relevant
SM representation. In Sec. 3.3 only the right handed top breaks the DM shift symmetry.
In Secs. 3.4 and 3.5 the right handed top coupling preserves the DM shift symmetry. The
DM shift symmetry is eventually broken in those cases by the right handed bottom (Sec. 3.4)
and the U(1)

DM

gauging (Sec. 3.5). Note that in Sec. 3.4, a second embedding of qL is
needed in order to produce the bottom Yukawa, which introduces a X = ≠1/3 sector and the
accompanying resonances, see App. 3.C

As an example, let us consider the embedding used in Sec. 3.3,

tR ≥ (1, 1, 3) µ 7 . (3.21)

In this case the SU(2)Õ is explicitly broken, but the embedding can be chosen as to preserve
a residual U(1), generated by one among {X÷, XŸ, T DM}. Therefore we can either leave the
shift-symmetry of one of the singlets intact, thus keeping it massless, or preserve the U(1)
symmetry acting on ÷ and Ÿ that is generated by T DM. We choose the latter, hence ÷ and Ÿ are
combined into a complex scalar field

‰ © (Ÿ + i÷) /
Ô

2 , (3.22)

that is an eigenstate of U(1)DM with charge +1, while tR is uncharged under this symmetry.
The complex scalar ‰ is our DM candidate, and the unbroken U(1)DM ensures its stability. This
setup is represented schematically in Fig. 3.3.

Under (SU(2)L, SU(2)R)DM
X the 72/3 decomposes as

72/3 = (2, 2)0
2/3 ü (1, 1)0

2/3 ü (1, 1)±1
2/3 , (3.23)
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Figure 3.3: Schematic overview of the SO(7) algebra. In the left drawing the structure of the SU(2)L ◊
SU(2)R ◊ SU(2)Õ subgroup is displayed, whereas the right drawing shows the symmetries
that remain unbroken after the weak gauging of the SM electroweak group and the coupling
of qL, tR to operators Oq, Ot ≥ 72/3 of SO(7)X .

where the tR is embedded in the (1, 1)0
2/3, while the qL is embedded in the (2, 2)0

2/3. In Sec. 3.3,
the coupling of tR to the strong sector explicitly breaks the shift symmetry for ‰, which will
acquire a potential, and in particular a mass, of the same parametric size as the Higgs. The
explicit form of the embeddings is

›L = 1Ô
2

1
ibL, bL, itL, ≠tL, 0, 0, 0

2T
, ›R =

1
0, 0, 0, 0, 0, 0, tR

2T
.

(3.24)

A di�erent phenomenological scenario is realized if the embedding of tR preserves SU(2)Õ.
Glancing at Eq. (3.20), this can be obtained in several ways: for example, tR ≥ (1, 3, 1) µ 21
(antisymmetric tensor) or tR ≥ (1, 1, 1) µ 27 (symmetric traceless tensor). Alternatively, we
may assume that tR is a fully composite SO(7) singlet. In all these cases the couplings of the
top quark do not break the symmetries under which ‰ shifts, hence the leading contributions to
its potential come from the couplings of the light fermions, from the weak gauging of U(1)DM, or
from both. As a consequence, the DM is naturally much lighter than the Higgs. This intriguing
possibility is considered in Secs. 3.4 and 3.5. For m‰ < mh/2, an important constraint comes
from the invisible decay width of the Higgs, mediated by the derivative interactions in Eq. (3.17).
The decay width is

�(h æ ‰ú‰) = m3
hv2

16fif4(1 ≠ ›)

Û

1 ≠
4m2

‰

m2
h

, (3.25)

where we neglected the contribution of the radiative portal coupling ⁄ (see Eq. (3.29) below),
which is expected to be very small in the light ‰ scenario. The current 95% CL lower bound of
BR(h æ ‰ú‰) < 0.24 [109] translates into f & 1.2 TeV.

One further comment about the DM stability is in order. In the above discussion we have
assumed that each elementary fermion multiplet couples, in a U(1)DM-invariant way, to only
one operator of the strong sector. However, in general additional, subleading couplings to
other operators could be present. If any of these break the U(1)DM, the DM stability may
be compromised. Therefore we need to make the assumption that the U(1)DM is either a
global symmetry respected by all elementary-composite mixing couplings, or an unbroken gauge
symmetry.
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3.3 Breaking of the DM shift symmetry by top quark couplings

3.3.1 Resonances

The strong sector resonances fill multiplets of the unbroken SO(6) and can be consistently
described in the CCWZ framework. We begin with the fermion sector, which plays a dominant
role in our discussion. Since we have chosen to embed the top quark in the fundamental of
SO(7), which decomposes as 72/3 = 62/3 ü 12/3 under SO(6) ◊ U(1)X , we consider top partners
in the fundamental Q and singlet S representations of SO(6). The explicit expression of the
fundamental is

Q = 1Ô
2

1
iB ≠ iX5/3, B + X5/3, iT + iX2/3, ≠T + X2/3, ≠iY + iZ, Y + Z

2T
. (3.26)

The doublet (T, B)T transforms as 20
1/6 under (SU(2)L)DM

Y , and therefore has the same quantum
numbers as qL, whereas the exotic doublet (X5/3, X2/3)T ≥ 20

7/6 contains an exotic fermion with
electric charge equal to 5/3. The two states Y, Z ≥ 1±1

2/3 share the SM quantum numbers of
the tR, but are additionally charged under U(1)DM. The latter symmetry, being exact, strongly
constrains their couplings. Finally, the quantum numbers of the SO(6) singlet are S ≥ 10

2/3 .
The leading order Lagrangian describing the fermion sector is

Lf = iq̄L /DqL + it̄R /DtR +
NQÿ

i=1
Q̄i

!
i /D + /e ≠ mQi

"
Qi +

NSÿ

j=1
S̄j

1
i /D ≠ mSj

2
Sj

+
NQÿ

i=1

1
‘i
tQ›̄A

RUAaQ a
iL + ‘i

qQ›̄A
L UAaQ a

iR

2
+

NSÿ

j=1

1
‘j
tS ›̄A

RUA7SjL + ‘j
qS ›̄A

L UA7SjR

2
+ h.c.,

(3.27)

where NQ and NS denote the number of copies of each species of resonance that lie below the
cuto� of the low-energy theory, and A (a) is an index in the fundamental of SO(7) (SO(6)). The
second line of Eq. (3.27) is the low-energy interpolation of Eq. (3.13): the embeddings ›L,R

defined in Eq. (3.24), which transform linearly under SO(7), have been ‘dressed’ into reducible
SO(6) representations via insertions of the Goldstone matrix U . Also notice that the kinetic
term of the Qi includes the eµ symbol, which is necessary to respect the nonlinearly realized
SO(7). In general the following term should also be added to the Lagrangian,

Ld =
NQÿ

i=1

NSÿ

j=1
cL

jiS̄jL /d
a
Q a

iL + h.c. + (L æ R), (3.28)

where cL,R
ji are coe�cients of O(1). The operators in Eq. (3.28) arise purely from the strong

dynamics, and as a consequence they do not contribute to the scalar potential. At leading
order in the 1/f expansion, they give rise to derivative interactions of one GB and two fermions,
which scale as ≥ cL,R p/f , where p is the relevant energy. In the processes relevant for DM
phenomenology, namely annihilation and scattering with heavy nuclei, we have p/f . m‰/f π 1,
hence these interactions are suppressed compared to the G-breaking couplings that arise from
Eq. (3.27), which scale as ≥ ‘/f . For this reason, the interactions in Eq. (3.28) will be neglected
in the remainder of this thesis, unless otherwise noted. Nevertheless, since they can be important
in hadron collider processes [110], where p/f ≥ mú/f ≥ O(1) with mú the mass of a resonance,
we will return to them in the discussion of the LHC and future collider prospects in Sec. 3.3.4.
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3.3.2 Scalar potential and realistic EWSB

Resonances in the gauge sector are assumed to follow the generalized hidden local symmetry
approach [54], where given a G/H sigma model, the vector resonances are introduced as gauge
fields of a local G symmetry. In our case G = SO(7), whose adjoint representation decomposes
as 21 = 15 ü 6 under SO(6). Thus we introduce vector resonances in the adjoint flµ ≥ 15
and in the fundamental aµ ≥ 6 of SO(6). Their Lagrangian is given in App. 3.A. The explicit
SO(7) breakings introduced by the weak gauging of SU(2)L ◊ U(1)Y and by the fermionic
elementary-composite mixing parameters in Eq. (3.27), which we will often collectively denote by
‘, generate a radiative potential for the GBs. This can be computed at 1-loop using the standard
Coleman-Weinberg (CW) technique [30]. In the unitary gauge and expanded to quartic order in
the fields, the e�ective potential takes the form

V (h̃, ‰) = 1
2µ2

hh̃2 + ⁄h

4 h̃4 + µ2
DM‰ú‰ + ⁄DM(‰ú‰)2 + ⁄h̃2‰ú‰ . (3.29)

This potential must, first of all, yield a correct EWSB VEV, Èh̃Í = v π f . Even though U(1)DM
is exactly preserved by the Lagrangian, in general it may still be broken spontaneously. Since
this would spoil the DM stability, in the following we only consider parameter choices that satisfy
È‰Í = 0 . Then the masses of the physical scalars are

m2
h = (1≠›) ˆ2V

ˆh̃2

-----
h̃ = v, ‰ = 0

= (1≠›)2⁄hv2 , m2
‰ = ˆ2V

ˆ‰ˆ‰ú

-----
h̃ = v, ‰ = 0

= µ2
DM +⁄v2 , (3.30)

where the (1 ≠ ›) factor in the expression of m2
h is due to Eq. (3.18). In general, the mass

parameters µ2
h, µ2

DM and couplings ⁄h, ⁄DM, ⁄ are quadratically and logarithmically sensitive,
respectively, to the UV cuto� � . 4fif of the e�ective theory.5 However, to retain predictivity
we assume that they are fully saturated by the contribution of the SM fields plus the first few
vector and fermion resonances that we introduced in Sec. 3.3.1. This is achieved by imposing a
set of generalized WSRs [55], which ensure that the form factors determining the parameters of
the CW potential vanish su�ciently fast at large momenta [111, 112]. In addition, we assume
that further explicit breakings of SO(7) originating from the UV dynamics, if present, give a
subleading contribution to the scalar potential.6

Beginning with the gauge sector, we recall that the gauging of SU(2)L ◊ U(1)Y preserves
U(1)DM (see e.g. Fig. 3.3), hence the associated loops only yield a contribution to the Higgs
mass parameter, denoted µ2

h,g, and one to the quartic coupling, ⁄h,g. The UV-finiteness of these
coe�cients can be obtained by introducing one multiplet of vector resonances in the adjoint of
SO(6), flµ, and one in the fundamental, aµ, and imposing two WSRs that translate into the

5Notice that by naive power counting, the quartic couplings can also be quadratically divergent.
However, the structure of the field-dependent mass matrices leads to a quadratically divergent term
≥ �2STr m2(h, ‰) = �2(k0 + khh2 + k‰‰ú‰) with k0,h,‰ field-independent constants. Thus the leading degree
of divergence of the quartics is only logarithmic.

6Notice also that, due to the contribution of top quark and SM gauge boson loops, the expression of ⁄h in
Eq. (3.29) is infrared (IR) divergent. To retain full predictivity, this issue is resolved by adding to V (h̃, ‰) an
additional quartic for h̃ that is non-analytic at h̃ = 0. See App. 3.C for further details.
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conditions

2f2
fl ≠ 2f2

a = f2 , f2
fl m2

fl = f2
a m2

a , (WSR 1 + 2)g (3.31)

where ffl, a are the decay constants of the resonances, and mfl, a their masses. The first relation
removes the quadratic divergence in µ2

h,g and makes ⁄h,g finite, whereas the second ensures the
cancellation of the residual logarithmic divergence in µ2

h,g. Equations (3.31) allow us to express
fa and ma in terms of ffl, mfl and f ; the first one also requires ffl > f/

Ô
2. The contribution

to the Higgs mass parameter reads, at leading order in g2/g2
fl π 1 (where gfl = mfl/ffl) and

neglecting the subleading hypercharge coupling,

µ2
h, g ¥ 9 g2

32fi2 m2
fl

f2
fl

f2 log
A

2f2
fl /f2

2f2
fl /f2 ≠ 1

B

. (3.32)

Since this is strictly positive, the gauge loops alone do not lead to EWSB. However, a negative
contribution to µ2

h can easily arise from the fermionic sector, and µ2
h, g will be tuned against it to

obtain a realistic Higgs VEV v π f . On the other hand, the gauge contribution to the Higgs
quartic is small, and plays a subleading role.

In the fermionic sector, the elementary-composite mixing parameters ‘ explicitly break the
shift symmetries protecting both h̃ and ‰, therefore in general fermion loops yield contributions
to all the coe�cients in the e�ective potential of Eq. (3.29). To ensure their UV finiteness, we
impose two sets of WSRs, which translate into the relations

NQÿ

i=1

---‘i
qQ

---
2

=
NSÿ

j=1

---‘j
qS

---
2

,
NQÿ

i=1

---‘i
tQ

---
2

=
NSÿ

j=1

---‘j
tS

---
2

, (WSR 1)f (3.33)

NQÿ

i=1

---‘i
qQ

---
2

m2
Qi

=
NSÿ

j=1

---‘j
qS

---
2

m2
Sj

,
NQÿ

i=1

---‘i
tQ

---
2

m2
Qi

=
NSÿ

j=1

---‘j
tS

---
2

m2
Sj

. (WSR 2)f (3.34)

The first set of WSRs reduce the 1-loop degree of divergence of the mass parameters µ2
h,f and

µ2
DM,f (where the “f” subscript indicates the fermionic piece) from quadratic to logarithmic and

make the dimensionless couplings finite, whereas the second set remove the residual logarithmic
divergences in µ2

h,f and µ2
DM,f . The minimal set of resonances compatible with Eqs. (3.33, 3.34)

consists of one SO(6) fundamental Q and one singlet S. This ‘one-layer’ setup is very predictive,
but, as discussed in Sec. 3.3.2, it leads to a DM candidate that is phenomenologically ruled
out. Nevertheless, thanks to the simplicity of the one-layer model, we obtain some analytical
results and thus gain valuable insight. We then turn to an enlarged setup where two copies of
each species of resonance are present below the cuto�. As shown in Sec. 3.3.2, this “two-layer”
construction gives su�cient freedom to accommodate a fully viable DM candidate, leading us to
concentrate on this model for our phenomenological analysis.

One layer of fermionic resonances

We consider the fermionic Lagrangian of Eq. (3.27) with NQ = NS = 1. In this case the WSRs
in Eqs. (3.33, 3.34) give

‘2
qQ = ‘2

qS , ‘2
tQ = ‘2

tS , m2
Q = m2

S , (3.35)

where we have assumed all the parameters to be real, so that CP is conserved. In the following
we take, without loss of generality, positive masses mQ = mS © m > 0. Then the conditions in
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Eq. (3.35) do not fix the relative signs of the mixing parameters, ‘qQ = ± ‘qS and ‘tQ = ± ‘tS .
If these two signs are equal, then the non-derivative part of Eq. (3.27) has an additional SO(7)
symmetry that allows the Goldstone matrix to be removed by means of a field redefinition (see for
example Ref. [113]), hence the scalar potential vanishes. If instead the mixings have opposite sign,
the potential does not vanish. Taking for definiteness ‘qQ = ≠‘qS © ≠‘q and ‘tQ = ‘tS © ‘t ,7 we
find

µ2
DM,f = ⁄DM,f = 0 , ⁄f = ≠

µ2
h,f

f2 =
Nc‘2

q‘2
t m2 log(M2

T /M2
S)

2fi2f4(M2
T ≠ M2

S) , (3.36)

where M2
T,S = m2 + ‘2

q,t are the squared masses of the top partners that mix with the qL and
tR, respectively, neglecting small corrections due to EWSB. Equation (3.36) gives the complete
expressions of µ2

DM, ⁄DM and ⁄, which do not receive any contribution from the gauge sector. In
addition, we find the following approximate expression for the Higgs quartic,

⁄h ¥
Nc‘2

q‘2
t m2 log(M2

T /M2
S)

fi2f4(M2
T ≠ M2

S) , (3.37)

obtained by neglecting the gauge contribution to the potential. Equations (3.36) and (3.37)
suggest the relation ⁄ ¥ ⁄h/2, which is indeed verified within 20% in our numerical scan of the
parameter space. Therefore both the portal coupling and the DM mass are fixed in terms of v
and the Higgs mass,

⁄ ¥ ⁄h

2 ƒ m2
h

4v2 ƒ 0.065 , m2
‰ = ⁄v2 ¥ ⁄hv2

2 ƒ m2
h

4 ƒ (63 GeV)2 . (3.38)

Unfortunately, this combination of DM mass and coupling has already been ruled out experi-
mentally: since the DM is light and the portal coupling is not very suppressed, the derivative
interactions in Eq. (3.17) have negligible e�ects, and the phenomenology of ‰ can be approxi-
mately described with a renormalizable Higgs portal model [94, 95, 96]. In this model, the region
⁄ ≥ ⁄h/2, m‰ ≥ mh/2 has been ruled out by direct detection experiments and, for m‰ < mh/2,
also by LHC bounds on the Higgs invisible width, see e.g. Ref. [115] for a recent assessment.

The problematic values in Eq. (3.38) arose because in the presence of only one layer of
resonances, the second set of WSRs in Eq. (3.34) imply that the form factors �L1 and �R1 in
Eqs. (3.110, 3.111) vanish, and as a consequence we find a non-generic form of the potential,
whose structure is entirely determined by the top mass form factor �LR. Thus it seems plausible
that a viable phenomenological scenario may be obtained by extending the model to include
a second layer of resonances, which provides additional parametric freedom and should allow
for significant departures from Eq. (3.38) while preserving full calculability via WSRs. This
hypothesis is supported by a test on the one-layer model, where we lift the second set of WSRs
and instead cut o� the residual logarithmic divergences in µ2

h,f and µ2
DM,f at the scale � = 4fif .

In this case the potential has a generic form, and accordingly we find that large deviations from
Eq. (3.38) are realized. Therefore, in the next subsection we will analyze the model where two
layers of fermionic resonances lie below the cuto�. Before doing so, however, we point out a few
additional properties of the case NQ = NS = 1, which apply at least at the qualitative level also
in the extended model. Combining Eq. (3.37) with the expression of the top mass at leading
order in › π 1, mt ƒ

Ô
2‘q‘tv/(MT MSf), we obtain

m2
h

m2
t

¥ Nc

fi2f2
M2

T M2
S

M2
T ≠ M2

S

log(M2
T /M2

S) . (3.39)

7Notice that by redefining the phases of the resonances, we can equivalently choose a field basis with same-sign
mixings and mQ + mS = 0. This is a realization of the “maximal symmetry” of Ref. [114]. Accordingly, the tuning
of the model is minimal, see Eq. (3.41) below.
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This relation, which was already obtained in the context of the MCHM based on SO(5)/SO(4)
[116, 112], shows that realizing a light Higgs requires at least one of the top partners to be
relatively light, with mass roughly comparable to f . Equation (3.39) is verified numerically to
good accuracy, with minor corrections arising due to the presence of the gauge contribution in
the potential, which was neglected in the derivation of Eq. (3.37). The fine-tuning needed to
obtain v π f can be estimated using the standard measure [117]

� = �› = maxi

----
ˆ log ›

ˆ log ci

---- , (3.40)

where ci denotes the input parameters. In the one-layer model we have ci = {‘q, ‘t, m, ffl, mfl}, but
an immediate estimate of the tuning can be obtained by noticing that if the gauge contribution
to V is neglected, Eqs. (3.36)-(3.38) give › ¥ 1/2. Thus µ2

h,g must be adjusted to give › π 1,
leading to a fine-tuning

�≠1 ≥ 2› . (3.41)

This is in fact the minimal (or irreducible) amount of tuning characteristic of models where the
Higgs potential is entirely generated at the radiative level. A numerical estimate obtained using
Eq. (3.40) agrees well with this result.

To conclude, we remark that very similar results, including the prediction of Eq. (3.38), were
previously found in Ref. [93] for the realization of the SO(6)/SO(5) model with minimal fermion
content.

Two layers of fermionic resonances

We consider the fermionic Lagrangian of Eq. (3.27) with NQ = NS = 2. In this case the conditions
imposed by the first set of WSRs, Eq. (3.33), can be solved in terms of two mixings ‘q,t and four
angles –, ◊, — and „ ,

‘1
qQ

cos –
=

‘2
qQ

sin –
=

‘1
qS

cos ◊
=

‘2
qS

sin ◊
= ‘q ,

‘1
tQ

cos —
=

‘2
tQ

sin —
= ‘1

tS

cos „
= ‘2

tS

sin „
= ‘t . (3.42)

The second set of WSRs in Eq. (3.34) fixes two of the angles, modulo discrete ambiguities. We
choose

s2
◊,„ =

m2
Q1 ≠ m2

S1 +
1
m2

Q2 ≠ m2
Q1

2
s2

–,—

m2
S2

≠ m2
S1

(s2
x © sin2 x), (3.43)

and without loss of generality we assume mS2 > mS1 and mQ2 > mQ1 . The resulting parameter
space8 is scanned numerically, see App. 3.C for details. Figure 3.4 shows the resulting distribution
in the (m‰, ⁄) plane for two values of f , namely 1 TeV and 1.4 TeV. As expected, large deviations
from the predictions of 1-loop-finite one-layer model are generic. First of all, ‰ is typically much
heavier than mh/2 ≥ 63 GeV. In particular, its mass populates the 100 - 400 GeV range where,
as will be shown in Sec. 3.3.3, we find that the DM relic abundance is around the observed value.
In addition, the portal coupling ⁄ can be smaller than ⁄h/2 ≥ 0.065. This is crucial because, as
will also be discussed in detail in Sec. 3.3.3, direct detection bounds require smaller values of
this coupling. In Fig. 3.4 we also observe that a reduction of the portal coupling is correlated
with the appearance of light top partners, which can run into tension with the current lower

8Note that for special values of the parameters, the model can be realized via a three-site construction [118].
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Figure 3.4: Distribution in the (m‰, ⁄) plane for the parameter scan of the two-layer model. The left panel
corresponds to f = 1 TeV, the right panel to f = 1.4 TeV. The black boxes roughly indicate
the viable regions of parameters for DM. The red dot shows the approximate prediction of
the one-layer model, Eq. (3.38). For orange (blue) points, the lightest fermionic resonance is
heavier (lighter) than the approximate LHC lower bound of 1 TeV.

bound of approximately 1 TeV set by LHC searches. (We will discuss the LHC constraints in
detail in Sec. 3.3.4, but this rough estimate su�ces for the scope of the present discussion.) In
fact, for f = 1 TeV we do not find any points that have viable DM parameters, i.e. roughly
100 GeV . m‰ . 200 GeV and ⁄ . 0.02 (indicated by the black box in the left panel of Fig. 3.4),
without running into conflict with top partner bounds. Increasing f relaxes this tension, because
it allows the top partners to be naturally heavier and it shifts the viable DM mass region to
higher values, where the constraints on ⁄ from direct detection are less stringent. The minimal f
that yields a sizable region of allowed parameter space is 1.4 TeV, which we will therefore use as
our primary benchmark for the remainder of this subsection. The corresponding viable ranges
for the DM mass and portal coupling are 200 GeV . m‰ . 400 GeV and ⁄ . 0.04, respectively,
shown by the black box in the right panel of Fig. 3.4.
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Figure 3.5: Fine-tuning of the two-layer model, shown versus the DM mass (left panel) and versus the
portal coupling (right panel). For orange (blue) points, the lightest fermionic resonance is
heavier (lighter) than the approximate LHC lower bound of 1 TeV. The scale f is fixed to
1.4 TeV.

The irreducible tuning associated to f = 1.4 TeV is, according to Eq. (3.41), �≠1 ≥ 2› ƒ 6%.
A more precise, point-by-point estimate is obtained by applying the general definition of Eq. (3.40),
and shown in Fig. 3.5. We see that as the departure from the predictions of the one-layer model
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becomes larger, namely as the ‰ mass is raised to m‰ ∫ mh/2 and the portal coupling is
suppressed to ⁄ π ⁄h/2 , the minimum tuning required increases. The worsening of the tuning
for larger m‰, observed in the left panel of Fig. 3.5, can be explained by noticing that a heavier
‰ can only be obtained by increasing the size of the form factor �R1 , which vanishes in the
one-layer model (see Eq. (3.113)). This in turn requires a more severe cancellation in the Higgs
mass parameter in order to achieve a small ›. Nevertheless, a phenomenologically viable DM
mass, 200 GeV . m‰ . 400 GeV, can be obtained without significantly exacerbating the tuning
compared to irreducible contribution of 2› ≥ 6%. On the other hand, from the right panel of
Fig. 3.5 we read that a portal coupling that is small enough to satisfy the current direct detection
bounds, ⁄ . 0.04, requires �≠1 . 1%. We have also checked that once the Higgs VEV and mass
are fixed to the observed values, no additional tuning is needed in the DM mass: replacing ›
with µ2

DM in Eq. (3.40), for the points shown in Fig. 3.5 we found that �≠1
µ2

DM
can be of O(1)

even for DM mass as low as 200 GeV. In summary, we estimate that in this model the level of
fine-tuning required to solve both the Higgs naturalness and DM puzzles is 1% or slightly worse.
This is primarily a consequence of the experimental pressure from direct detection experiments
and LHC direct searches for top partners.
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Figure 3.6: Mass of the lightest top partner mixing with the tR (MS1) versus mass of the lightest top
partner mixing with the qL (MT1), neglecting EWSB corrections, in the two-layer model.
Orange (blue) points have a Higgs mass within (outside) the range 120 GeV < mh < 130
GeV. The red line shows the approximate prediction of the one-layer model, Eq. (3.39). We
set f = 1.4 TeV.

Figure 3.6 shows that the correlation between a light Higgs and light top partners, which in the
one-layer model was expressed by Eq. (3.39), holds in the two-layer setup as well. Furthermore,
Eq. (3.39) still yields a reasonable quantitative first approximation, provided we identify MT

and MS with the masses of the lightest top partners mixing with qL and tR, respectively.
Having qualitatively characterized the viable parameter space, we are now ready to present

its phenomenology. We begin in Sec. 3.3.3 with DM physics, and then discuss the collider aspects
in Sec. 3.3.4.

3.3.3 Dark matter phenomenology

In this section we present the phenomenology of our DM candidate ‰. We focus on two main
observables, namely the DM relic abundance and the DM-nucleus scattering cross section, which
is relevant for direct detection experiments. We conclude the section with a brief comment on
the constraints from indirect detection.
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E�ective theory for DM annihilation

The DM relic abundance is set by the annihilation rate in the early universe, which takes place
at an energy scale

Ô
s ≥ 2m‰ π mú, where mú denotes the mass of the strong sector resonances

(mú ≥ gúf , with gú some strong sector coupling). The relic abundance can therefore be calculated
in an e�ective theory where the resonances have been integrated out, and only the pNGB scalars
‰, h, the SM gauge bosons and the SM fermions are included as propagating degrees of freedom.
Assuming that the freeze-out temperature satisfies Tf π v, which is generically the case for
DM with a weak-scale mass, the Lagrangian can be written in the broken electroweak phase.
Additionally, we will consider operators which are at most quadratic in the DM field, since
higher-order terms do not contribute to the annihilation processes. The e�ective Lagrangian has
the structure

Le� = LGB + Lt¸ ˚˙ ˝
tree

≠ Ve�¸ ˚˙ ˝
1-loop

. (3.44)

The first piece originates from the sigma model Lagrangian in Eq. (3.17), expanded in terms of
the physical fields

LGB = 1
2(ˆµh)2

1
1 + 2 ahhh

h

v
+ 2 ahh‰‰

‰ú‰

v2

2
+ ˆµ‰ˆµ‰ú + 1

v
ˆµh ˆµ(‰ú‰)

1
bh‰‰ + bhh‰‰

h

v

2

+ 2 ahV V
h

v

1
m2

W W +
µ W ≠ µ + m2

Z

2 ZµZµ
2
. (3.45)

Ve� arises instead from the radiative scalar potential, Eq. (3.29), and reads

Ve� = 1
2m2

hh2 + dhhh
m2

h

2v
h3 + m2

‰‰ú‰ + 2 dh‰‰v⁄h‰ú‰ + dhh‰‰⁄h2‰ú‰ . (3.46)

The scalar couplings in Eq. (3.46), despite being loop-suppressed, can have e�ects comparable
to those of the tree-level interactions in LGB, whose derivative structure leads to a suppression
≥ s/f2 π 1 (see Eq. (3.51) below) [73]. With the exception of ⁄, all the dimensionless coe�cients
in Eqs. (3.45, 3.46) are functions of › only and are given in Eq. (3.130).

Finally, the Lagrangian containing the couplings of the top quark relevant to DM annihilation
is

Lt = it̄ /̂t ≠ mtt̄t
1
1 + ctth

h

v
+ 2 ctt‰‰

‰ú‰

v2

2
, (3.47)

where the dimensionless coe�cients have the form

ck = cnl‡m
k (›) + O

1
›

‘2

m2ú

2
, k = {tth, tt‰‰}. (3.48)

The functions cnl‡m
k (›) encode the nonlinearity of the sigma model and read

cnl‡m
tth = 1 ≠ 2›Ô

1 ≠ ›
, cnl‡m

tt‰‰ = ≠ ›

2(1 ≠ ›) . (3.49)

The additional terms in the RHS of Eq. (3.48) come instead from the mixing of the top with
the top partners. These terms are suppressed unless one of the chiralities of the top is largely
composite, in which case ‘ ≥ mú , and were neglected in the previous studies of composite
pNGB DM of Refs. [73, 93]. In our analysis, however, we find that these corrections play a very
important role, as can be seen in Fig. 3.7, where the full numerical value of the ck coe�cients
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Figure 3.7: Corrections from top partner mixing to the e�ective tt̄h and tt̄‰ú‰ couplings, defined as
”tt‰‰ © ctt‰‰/cnl‡m

tt‰‰ and ”tth © (ctth ≠ 1)/(cnl‡m
tth ≠ 1), as functions of the compositeness

fraction sR of the right handed top (see Eq. (3.117) for its definition). The gray dashed line
indicates the pure sigma model result, where top partner mixing is neglected. The points
shown are obtained from a parameter scan of the two-layer model with f = 1.4 TeV, requiring
all fermionic resonances to be heavier than the approximate LHC bound of 1 TeV.

is compared to the cnl‡m
k (›). In particular, the coe�cient ctt‰‰ is strongly suppressed by top

partner mixing even for moderate tR compositeness, and in the limit of fully composite tR the
top partner contribution exactly cancels cnl‡m

tt‰‰ (›), leading to a vanishing ctt‰‰ . This can be
understood as follows: With our choice of embeddings, the shift symmetry of the DM pNGB ‰
is automatically preserved by the couplings of the elementary qL to the strong sector resonances,
whereas the couplings of the elementary tR break it (see Eq. (3.24)). However, in the limit where
the physical RH top is a fully composite field (whose overlap with the elementary fermion is
zero), its couplings also preserve the ‰ shift symmetry, hence a non-derivative tt̄‰ú‰ coupling is
forbidden. On the other hand, the tt̄h coupling receives smaller, but still important, corrections
from top partner mixing.9

DM relic abundance

The present abundance of DM, which arises from its freeze-out in the early Universe, is computed
by solving the corresponding Boltzmann equation. A useful approximate solution is given by

�DMh2

0.1198 ƒ 3 · 10≠26cm3 s≠1

1
2 È‡vrelÍ (Tf )

. (3.50)

On the LHS of this equation, �DM is the ratio between the energy density of DM and the
critical energy density of the Universe, h = H0/(100 km/s/Mpc) is the reduced value of the
present Hubble parameter, and (�DMh2)exp = 0.1198 ± 0.0015 is the experimental value as
measured by the Planck collaboration [119]. On the RHS, È‡vrelÍ (Tf ) is the thermally averaged
annihilation cross section times the relative velocity of two DM particles, computed at the
freeze-out temperature Tf ¥ m‰/20 . The factor 1/2 in the denominator of the RHS accounts
for the fact that the DM is not self-conjugate.

DM annihilation proceeds dominantly via ‰‰ú æ tt̄, WW, ZZ and hh. All these processes
are mediated by diagrams where a Higgs is exchanged in the s-channel. Even though the
‰‰ú æ hh, tt̄ amplitudes receive additional contributions, it is nevertheless useful to assume in

9Notice that the tt̄h coupling does not vanish at full RH top compositeness, because even in that limit the
coupling of qL to the strong sector breaks the h shift symmetry.
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first approximation that annihilation proceeds entirely through s-channel Higgs exchange. In this
case the cross section is proportional to the square of the ‰‰úh vertex, which from the e�ective
Lagrangian of Eq. (3.44) reads

WW ZZ hh bb tt tot
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Figure 3.8: Thermally averaged cross section for DM annihilation. The gray dashed line shows the value
required to reproduce the present relic abundance according to the approximate relation in
Eq. (3.50). The scale f was fixed to 1.4 TeV. In the left panel we set the portal coupling
to the representative value ⁄ = 0.05, in the right panel we chose two representative values
of the DM mass. In both panels the tt̄h and tt̄‰ú‰ couplings were set to their sigma model
values (Eq. (3.49)), thus neglecting top partner mixing. With this simplification, È‡vrelÍ is
completely determined by f, m‰ and ⁄.

‡vrel Ã
1bh‰‰

v
s ≠ 2 dh‰‰⁄v

22
¥ v2

1 s

f2 ≠ 2⁄
22

, (3.51)

where the first term comes from the derivative interactions in Eq. (3.45) and the second term from
the radiative scalar potential in Eq. (3.46). Neglecting relativistic corrections we have s ¥ 4m2

‰,
therefore the two contributions cancel out for m2

‰ ≥ ⁄f2/2, leading to a strong suppression of
the annihilation cross section [73, 93, 120]. This feature can be clearly observed in the cross
sections for annihilation into WW, ZZ and also hh, see the left panel of Fig. 3.8. The structure
in Eq. (3.51) also implies that for given f and m‰, there are two values of the portal coupling ⁄
that reproduce the observed DM relic density, see the right panel of Fig. 3.8. As will be shown
below, however, the branch with larger ⁄ is excluded by direct detection, whereas the one with
smaller portal coupling provides a viable scenario.

For m‰ > mt, the simple scaling in Eq. (3.51) is violated by the ‰‰ú æ tt̄ amplitude, where
the tt̄‰ú‰ contact interaction plays an important role. This is illustrated in Fig. 3.9, where
we show the e�ect on the total annihilation cross section of varying the tt̄‰ú‰ coupling within
the range cnl‡m

tt‰‰ < ctt‰‰ < 0, which contains all phenomenologically interesting points (recall
Fig. 3.7). The e�ect of top partner mixing is to suppress |ctt‰‰|, which in turn shifts the DM
relic abundance contour to larger m‰ for fixed ⁄, or conversely, to smaller ⁄ for fixed DM mass.
As can be seen in the right panel of Fig. 3.9, at fixed m‰ the shift is larger for the branch with
smaller ⁄. This can be explained by noticing that the size of the amplitude containing the tt̄‰ú‰
contact interaction, relative to the one that couples ‰‰ú to an s-channel virtual Higgs via the
portal coupling, is parametrically 2m2

‰/(⁄f2) (for m‰ ∫ mh/2). On the branch with larger
⁄ this ratio is smaller than 1, so the corrections to the tt̄‰ú‰ coupling play a subleading role.
Conversely, on the branch with smaller ⁄ the ratio is larger than 1, hence the reduction of the
portal coupling caused by top partner mixing is sizable. As it will be shown below, this e�ect is
crucial to evade direct detection bounds.
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Figure 3.9: Impact on the total annihilation cross section of varying the strength of the tt̄‰ú‰ contact
interaction in the range ctt‰‰ œ [cnl‡m

tt‰‰ , 0]. The lower value corresponds to the pure sigma
model, where top partner mixing is neglected, whereas the upper value corresponds to a setup
with fully composite tR, where top partner mixing is maximal. The realistic parameter points
lie within this range, i.e. they fall within the band shaded in blue. The gray dashed line shows
the value required to reproduce the present relic abundance according to the approximate
relation in Eq. (3.50). In the left panel we set ⁄ = 0.05, whereas in the right panel the DM
mass was fixed to m‰ = 300 GeV. We took f = 1.4 TeV in both panels.

Radiative corrections to pNGB derivative interactions

Throughout our discussion thus far, the e�ects of gauge and fermionic loops were taken into
account via the CW e�ective potential. In particular, for the computation of the annihilation
cross sections we made use of Eq. (3.44), where the tree-level couplings were supplemented by
the 1-loop CW term. The e�ective potential, however, only captures the radiative corrections in
the approximation of vanishing external momenta. This is not appropriate for DM annihilation,
where the relevant external momentum scale is p ≥ m‰, and 1-loop corrections to derivative
operators of O(p2) are expected to be also important. As an illustrative example, let us consider
the ‰‰úhh interaction at high energies, where EWSB e�ects can be neglected. From Eq. (3.45),
the tree-level (derivative) coupling reads simply

LGB ∏ 1
f2 hˆµh(‰úˆµ‰ + ‰ˆµ‰ú). (3.52)

Radiative corrections to this interaction arise only from the fermion sector. The O(p0) 1-loop
contribution is proportional to the SO(7)-breaking parameters ‘ and is just given by the portal
coupling, Ve� ∏ ⁄h2‰ú‰ . It is in general logarithmically UV-divergent, but it is rendered finite
by the set of WSRs in Eq. (3.33). The O(p2) 1-loop term must also be proportional to the ‘
parameters, because in the limit of vanishing explicit breaking, ‘ æ 0, the O(p2) scalar Lagrangian
is simply given by the sigma model kinetic term, Eq. (3.15), whose coe�cient is fixed by f . Then
the radiatively corrected form of the two-derivative coupling can be estimated as

i(ctree + c1≠loop) p2

f2 , ctree ≥ 1 , c1≠loop ≥ Nc‘2

16fi2f2 log �2 . (3.53)

Notice that c1≠loop is expected to be logarithmically divergent, since the WSRs in Eqs. (3.33, 3.34)
do not soften its UV behavior. The log enhancement, together with the fact that in general
the ratio ‘/f is of O(1) or even somewhat larger, make this 1-loop correction potentially very
important and thus warrant a detailed calculation. We find four classes of diagrams that
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renormalize the operator in Eq. (3.52), depicted in Fig. 3.10. Two types of fermion-scalar vertices
appear in the diagrams: the non-derivative couplings arising from elementary-composite mixing
terms, as well as the derivative couplings originating from the eµ symbol that are contained in
the kinetic terms of the resonances in the SO(6) fundamental,

q
i Q̄i/eQi .10 Neglecting external

masses, so that s + t + u ƒ 0, we find for the O(p2) piece of the ‰ú‰ æ hh amplitude (see
App. 3.D for details)

i(ctree + c1≠loop) s

f2 , ctree = 1 , c1≠loop = Nc

2fi2f2

1
‘2
t ≠

‘2
q

8
2

log �2

m2ú
, (3.54)

where we have imposed the WSRs, and mú stands for the mass of some fermionic resonance.
Notice the mild loop suppression factor Nc/(2fi2), and the log enhancement. After EWSB,
this interaction contributes to the trilinear ‰ú‰h derivative coupling, which as we discussed in

Figure 3.10: Representative set of 1-loop diagrams that contribute to the renormalization of the ‰ú‰hh in-
teraction at O(p2). The circles indicate non-derivative interactions arising from elementary-
composite mixing terms, whereas the squares denote derivative couplings originating from
the eµ symbol (see Eq. (3.27)).

Sec. 3.3.3 enters all annihilation cross section amplitudes, and in fact dominates in the viable
region of parameters, where ⁄ is suppressed. Therefore in order to retain predictivity, we must
keep the size of the radiative correction under control. We find an irreducible uncertainty of
about 50% at the cross section level, which corresponds to

0.5 <
1
1 + c1≠loop

ctree

22
< 1.5 ≠æ ≠ 0.4 <

1
f2

1
‘2
t ≠

‘2
q

8
2

< 0.3 , (3.55)

where we have estimated � ≥ 10 TeV and mú ≥ 1 TeV. Barring a cancellation ‘2
q ¥ 8 ‘2

t , which
may be regarded as a tuning unless it can be enforced by a symmetry, a further reduction of
the uncertainty would lead to values of ‘q,t that are too small to reproduce the measured top
mass. In conclusion, we will require that Eq. (3.55) is satisfied throughout our phenomenological
analysis, and we will correspondingly assign a 50% theoretical uncertainty on the total DM
annihilation cross section.

Constraints from DM direct detection

Direct detection experiments aim at revealing DM-nucleus scattering events by measuring
the nuclear recoil energy. Currently, the strongest constraints on the spin-independent (SI)
DM-nucleon elastic cross-section come from the Xenon-based XENON1T [100] and LUX [121]
experiments, with the former providing a slightly tighter bound. In our model, the elastic
scattering of DM with a quark q is mediated by three types of diagrams: Higgs exchange
in the t-channel, the ‰ú‰q̄q contact interaction, and diagrams involving the exchange of the

10Notice that in general the couplings containing the dµ symbol that appear in Eq. (3.28) also contribute.
However, for simplicity we set their coe�cients to zero in the computation.
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U(1)DM-charged top partners Y, Z. The first two classes mediate scattering with all quarks,
whereas the exchange of Y, Z only a�ects the scattering with (virtual) tops. Importantly, in Higgs
exchange diagrams the contribution of the derivative coupling ≥ (v/f2)ˆhˆ(‰ú‰) is suppressed by
≠q2/f2 π 1, where


≠q2 . 100 MeV is the small momentum transfer. Therefore these diagrams

are e�ectively proportional to the portal coupling ⁄. Furthermore, throughout the realistic
parameter space the Higgs exchange amplitude dominates, being enhanced by 2⁄f2/m2

h ∫ 1
with respect to the sum of the other two terms. Hence the SI DM-nucleon cross section is well
approximated by the simple expression familiar from the renormalizable Higgs portal model (see
e.g. Ref. [122]),

‡‰N
SI ƒ f2

N

fi

m4
N ⁄2

m2
‰m4

h

≥ 4 · 10≠46 cm2
3

⁄

0.03

42 A
300 GeV

m‰

B2

, (3.56)

where mN is the nucleon mass, and fN ƒ 0.30 contains the dependence on the nucleon matrix
elements. The exact expression of ‡‰N

SI is reported in App. 3.D. The cross section value 4 · 10≠46

cm2 corresponds to the current 90% CL upper bound at mDM = 300 GeV from XENON1T
[100], showing that direct detection constraints require ⁄ to be suppressed by about a factor 2
with respect to the most natural value ⁄ ≥ ⁄h/2 ≥ 0.065. Notice that to calculate the excluded
regions in the (m‰, ⁄) plane of Fig. 3.11 below, the local DM density was assumed to take the
standard value fl0 = 0.3 GeV cm≠3, independently of the predicted thermal value. All direct
detection constraints are given at 90% CL.

Results

The main results of our phenomenological analysis are shown in Fig. 3.11. We set f = 1.4 TeV
and perform a parameter scan, imposing that v, mh and mt match the experimental values. We
also require each point to be compatible with detailed LHC constraints on top partners, which
are discussed in Sec. 3.3.4 below and summarized in Eq. (3.60). In addition, the parameter space
is restricted by the condition of Eq. (3.55), thus ensuring that the theoretical uncertainty on
the annihilation cross section due to missing radiative corrections is within 50%. The points
are projected onto the plane (m‰, ⁄), using three di�erent colors depending on whether the
relic abundance is compatible with (green), exceeds (red) or undershoots (purple) the observed
value. To compute the relic abundance we implemented the e�ective Lagrangian of Eq. (3.44) in
FeynRules [98] and used micrOMEGAs [123] to solve the Boltzmann equation (see App. 3.D
for details) for the DM density.11 Notice that the couplings involving the top quark depend
on the elementary-composite mixings and top partner masses, hence the relic abundance is not
a function only of f, m‰ and ⁄, but must be separately evaluated at each point in parameter
space. By contrast, the bounds from direct detection experiments, namely LUX (brown) and
XENON1T (gray), are insensitive to the top partner parameters.

In the upper panel of Fig. 3.11, we illustrate the e�ect of neglecting the 50% theoretical
uncertainty on È‡vrelÍ, and show in green color the points that yield a relic abundance within 5%
of the observed value. For reference we also show, as thick blue lines, the 3‡ relic abundance
contours that are obtained by setting the tt̄h and tt̄‰ú‰ couplings to their sigma model values.
In this limit the annihilation cross section is completely fixed by {f, m‰, ⁄}. The “two-branch”
structure discussed in Sec. 3.3.3 is clearly visible: for each value of m‰ & 180 GeV there are two
values of ⁄ that reproduce the correct relic abundance. In the upper branch DM annihilation
proceeds dominantly through the portal coupling, whereas in the lower branch it is controlled

11This treatment includes annihilation into light quarks and leptons, as well as into the three-body final states
W W ú or ZZú, which become important for lighter DM.
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Figure 3.11: Distributions in the (m‰, ⁄) plane that summarize our analysis of DM phenomenology.
The points have di�erent colors depending on whether they are compatible with (green),
exceed (red) or undershoot (purple) the observed value of the DM relic abundance. In the
upper (lower) panel, the theoretical uncertainty of 50% on the annihilation cross section
is neglected (included). See the main text for further explanations on the meaning of the
di�erent curves.

primarily by the derivative interactions. In between the branches the two e�ects strongly cancel
(see the discussion below Eq. (3.51)), leading to a suppressed annihilation cross section and
therefore to over-abundant DM. On the contrary, outside of the two branches one of the two
couplings becomes too strong, and as a consequence the DM is under-abundant. The upper
branch is robustly ruled out by direct detection, and we therefore focus on the lower branch. Here
the green points fall between the two relic abundance contours obtained setting ctt‰‰ = cnl‡m

tt‰‰

(solid blue) and ctt‰‰ = 0 (dashed blue). The latter corresponds to maximal tR compositeness.
For fixed m‰, a suppressed |ctt‰‰| reduces the portal coupling required for the correct relic
abundance, and this in turn relaxes the direct detection constraints. Indeed, the subset of viable
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points that are compatible with direct detection limits lies close to the ctt‰‰ = 0 curve. Had we
not included top partner mixing, we would have wrongly concluded that all these points are
ruled out by LUX and XENON1T data. This highlights the importance of carefully taking into
account the e�ects of the fermionic resonances.

In the lower panel of Fig. 3.11 we show the complete picture. The theoretical uncertainty is
now included, so the green points reproduce the experimental value of the relic abundance within
50%. We find a large set of points that reproduce the relic abundance within the uncertainty,
and at the same time evade the current direct detection bounds. The DM mass is in the range
200 GeV . m‰ . 400 GeV and the portal coupling between roughly 0.01 . ⁄ . 0.04. We also
show, as a dashed gray curve, the projected XENON1T sensitivity after two years of data taking
[101] (whereas the “35d” label on the solid dashed curve refers to the current exposure of 35 days
[100]). All the currently viable points lie well within the ultimate reach of XENON1T, which
will thus be able to test the entire parameter space of the model for f = 1.4 TeV.

Indirect detection

Indirect detection experiments, which search for signals of DM annihilation in the galaxy halo,
constitute an additional probe of the model discussed here. Detailed constraints from the
antiproton spectrum measured by PAMELA [124] were presented, for the real singlet pNGB DM
in the SO(6)/SO(5) model, in Ref. [93]. Since the annihilation pattern of our complex DM is very
similar, we were able to check that the viable region of our parameter space is safely compatible
with PAMELA antiproton data. It is important to observe that changing the assumptions on
the systematic uncertainties that a�ect the astrophysical backgrounds can have a very large
impact on the antiproton limits. For example, the more conservative approach taken in Ref. [125]
resulted in bounds on the DM annihilation cross section at present time, È‡vrelÍ0, that were an
order of magnitude weaker than those quoted in Ref. [93]. Very recently, Refs. [126, 127] used
the new AMS-02 antiproton measurement [128] to set very strong constraints. For example,
assuming annihilation into bb̄ the thermal value of the cross section È‡vrelÍ0 ≥ 3 ◊ 10≠26 cm3 s≠1

was excluded for DM masses in the range 150 GeV . mDM . 500 GeV [126]. A detailed scrutiny
of the AMS-02 constraints on pNGB DM, including the aforementioned large impact of the
assumptions on systematic uncertainties, is an interesting direction for future work. Finally, we
note that gamma ray observations of nearby dwarf spheroidal galaxies also set competitive bounds
on DM annihilation, while being a�ected by smaller systematics compared to the antiproton
channel. The current limits are roughly È‡vrelÍ0 . 10≠25 cm3 s≠1 for DM mass in the few hundred
GeV range [129].12

3.3.4 Collider phenomenology
In this section the collider phenomenology of the model is outlined, focusing on the signals of
fermionic top partners at hadron colliders, which constitute the most sensitive probe. Nevertheless,
before discussing this aspect in more detail we briefly touch upon other observables. Due to its
pNGB nature, the Higgs boson couples to the other SM particles with strength that deviates
at O(v2/f2) from the SM predictions. In particular, the hV V coupling (V = W, Z) is rescaled
by a factor cV =

Ô
1 ≠ › . For our benchmark value f = 1.4 TeV, the deviation is of ¥ 1.5%,

which is unaccessible at the LHC, but will be tested at future e+e≠ colliders (see Ref. [130]
for a recent overview). Parametrically similar deviations a�ect other SM couplings, such as
ht̄t, hgg/h““ and Zt̄t, which however will be tested with less accuracy than hV V . In addition,
monojet searches only provide subleading constraints, because the coupling of ‰ to the proton

12We thank A. Urbano for illuminating discussions about indirect detection constraints.
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constituents is very weak. In particular the contact interactions q̄q‰ú‰, where q is a light quark,
are Yukawa-suppressed (if present at all).

LHC constraints on top partners

A rather generic feature of pNGB Higgs models with partial compositeness is that the lightness
of the Higgs requires at least some of the top partners to be light, mú = gúf with gú ≥ 1 (see
Ref. [131] for an extensive discussion). In our model, this is illustrated by Fig. 3.6. Since the
top partners are colored, the searches for their signals at hadron colliders, in particular at the
LHC, are among the most important experimental tests of the composite Higgs framework
[132, 133, 134, 110]. In the following discussion we adopt a simplified model where only one
layer of resonances, containing one SO(6) fundamental Q and one singlet S, is included. This
captures the main phenomenological features of the complete model, provided the second layer
of resonances is somewhat heavier than the first, as it is the case in most of the parameter space.

We start from the fermionic Lagrangian in Eq. (3.27) with NQ = NS = 1. Notice that,
as consistently done throughout our analysis, the coe�cients of the derivative interactions in
Eq. (3.28) are set to zero, cL,R = 0. We will return to the possible role of these interactions
in LHC physics in Sec. 3.3.4. Neglecting EWSB e�ects, the elementary-composite mixings are
diagonalized by the rotations

A
tR

SR

B

æ
A

cos „R ≠ sin „R

sin „R cos „R

B A
tR

SR

B

,

A
qL

QL

B

æ
A

cos „L ≠ sin „L

sin „L cos „L

B A
qL

QL

B

, (3.57)

where Q © (T, B)T and the mixing angles are tan „R = ‘tS/mS and tan „L = ‘qQ/mQ . On the
other hand, the remaining fermions contained in Q, namely the exotic doublet (X5/3, X2/3)T and
the U(1)DM-charged SM singlets Y, Z, do not mix with the elementary fermions. In summary,
the top partner masses are

MS =
Ò

m2
S + ‘2

tS , MT, B =
Ò

m2
Q + ‘2

qQ , MX5/3, X2/3, Y, Z = mQ . (3.58)

Hence at the bottom of the spectrum we find either a singlet S, or four approximately degenerate
states X2/3, X5/3, Y and Z.13 The scan of the complete two-layer model, shown in the left
panel of Fig. 3.12, demonstrates that the lightest top partner is typically a singlet, although
the alternative configuration is also possible. The decay patterns of the resonances can be
immediately understood using the Goldstone equivalence theorem. Expanding the U matrix to
O(1/f) and diagonalizing the elementary-composite mixings via Eq. (3.57), one immediately
finds the leading order results

BR(S æ W +b) = 2 BR(S æ Zt) = 2 BR(S æ ht) = 1
2 ,

BR(T æ ht) = BR(T æ Zt) = BR(X2/3 æ ht) = BR(X2/3 æ Zt) = 1
2 ,

BR(X5/3 æ W +t) = BR(B æ W ≠t) = BR(Y æ ‰t) = BR(Z æ ‰út) = 1 .

(3.59)

In particular, as a consequence of U(1)DM conservation, Y (Z) always decays into a top quark and
a ‰ (‰ú) particle (see Refs. [135, 81, 82] for recent studies of top partner decays into additional
Goldstone scalars). The above predictions are well respected in the complete model. For example,
in the right panel of Fig. 3.12 the exact branching ratios of the singlet are shown, for the
parameter points where it is the lightest fermionic resonance. We find good agreement with
Eq. (3.59).

13EWSB e�ects do not alter the masses of X5/3, Y and Z, which remain exactly degenerate, but they do shift
MX2/3 slightly. The correction can have either sign depending on the parameter point.
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Figure 3.12: Distributions in the model with two fermionic resonance layers. Left: mass of the lightest
exotic top partner (mQ1) versus the mass of the lightest singlet top partner (MS1). For or-
ange (blue) points, the lightest fermionic resonance is heavier (lighter) than the approximate
LHC lower bound of 1 TeV. The red line corresponds to mQ1 = MS1 . Right: branching
ratios of the lightest singlet S1, for the parameter points where it is the lightest fermionic
resonance. The dashed lines indicate the leading order predictions, see Eq. (3.59).

The LHC searches for top partners target two distinct production mechanisms: pair production
via the QCD interactions, namely pp æ Â̄Â where Â is a generic top partner, and single production
in association with a top or bottom via the electroweak interactions, for example for a singlet
S the leading process is pp æ Sb̄j via the b̄W ≠S vertex. Notice that the U(1)DM-charged top
partners Y and Z cannot be singly produced. We have verified that under our assumption
cL,R

ji = 0, the bounds from single production [79] are weaker than those coming from QCD pair
production [80, 136], hence we only discuss the latter. For simplicity, in the following we set
the branching ratios to the approximate values of Eq. (3.59). The search of Ref. [80] focuses on
the Â̄Â æ t(h æ bb̄)+X process in 1- and 0-lepton final states, yielding the 95% CL constraints
MS > 1.02 TeV and MX2/3 > 1.16 TeV (henceforth, LHC limits will always be quoted at 95%
CL). The bound on X2/3 is stronger due to the larger branching ratio into th. The search of
Ref. [136] instead specifically targets the X5/3 in the same-sign-dileptons final state, and gives
MX5/3 > 1.16 TeV.14 In addition to these “standard” constraints, we must account for those on Y
and Z, which are mass-degenerate and always decay into a top quark and a DM particle, giving
rise to tt̄ + missing transverse energy (MET) signatures. The corresponding constraint depends
on the DM mass. As motivated by the results of our phenomenological analysis (see Fig. 3.11),
we choose the representative value m‰ = 300 GeV. To estimate the current bound on MY = MZ ,
we start from the result obtained in the dedicated 8 TeV analysis of Ref. [137], mÂ > 0.85 TeV
based on ≥ 20 fb≠1 of data. Using the Collider Reach [138] method, we rescale this bound to the
current luminosity and energy, ≥ 36 fb≠1 at 13 TeV, obtaining mÂ > 1.30 TeV. Finally, to take
into account that Y and Z are two degenerate Dirac fermions that contribute to the signal, we
solve the following equation for MY : ‡pp æ Â̄Â, 13 TeV(mÂ = 1.30 TeV) = 2 ‡pp æ Â̄Â, 13 TeV(MY),
arriving to MY > 1.42 TeV.15 In summary, the current LHC constraints on the top partner

14This is the bound obtained for a purely right-handed t̄ W ≠X5/3 coupling, as appropriate since in this model
the left-handed coupling is suppressed by one extra power of v.

15As an independent cross-check, we have recast the constraint on the stop mass extracted from Ref. [139], mt̃ >
1.04 TeV with ≥ 36 fb≠1, by solving for MY the equation ‡pp æ t̃ú t̃, 13 TeV(mt̃ = 1.04 TeV) = 2 ‡pp æ Â̄Â, 13 TeV(MY),
obtaining a consistent bound MY > 1.47 TeV.
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masses are, at 95% CL,

MS > 1 TeV, MX5/3, X2/3 > 1.2 TeV, MY, Z > 1.4 TeV. (3.60)

These conditions are imposed at every point in the parameter scan presented in Fig. 3.11.

Beyond the lightest top partner(s)

As discussed in Sec. 3.3.4, the first experimental manifestation of the model at colliders would
most likely be the discovery of the lightest top partner. We now turn to a brief discussion of the
opportunities to probe the heavier fermionic resonances at the LHC and future colliders. If the
lightest top partner is a singlet S, the connection with the DM problem could not be made until
the U(1)DM-charged top partners Y and Z, which belong to the heavier multiplet Q, can be
accessed. For large enough splitting mQ ≠ MS , the direct decay to ‰(ú)t and the cascade decay
to ‰(ú)S are both unsuppressed. The branching fraction is, assuming ‘tQ, MS π mQ and in the
limit of full tR compositeness sin „R æ 1,

BR(Y æ ‰t) = BR(Z æ ‰út) ƒ c2
R

c2
L + c2

R

, (3.61)

where to keep the discussion general we took nonzero coe�cients for the derivative interactions in
Eq. (3.28), setting cL,R = i cL,R so that CP is conserved. Equation (3.61) suggests that Y and Z
decay rather democratically into the two available channels. Therefore the QCD pair production
of Y and Z, either at the LHC or at a future FCC-hh, can generate cascades where the decay of
an intermediate S yields a Z or h in addition to the “stop-like” bW b̄W‰‰ú signature, potentially
providing an additional handle to characterize the exotic top partners.

In the opposite scenario mQ < MS , since the Y and Z are at the bottom of the spectrum,
their discovery in the tt̄ + MET final state would happen early on, hinting to a connection with
DM physics. The heavier singlet may then be accessed via single production pp æ Sb̄j, whose
rate can be enhanced by the derivative interactions proportional to cL,R [110]. Of special interest
is the decay into the U(1)DM-charged top partners, S æ ‰úY, ‰Z, leading at the end of the
cascade to the final state t‰‰úb̄j, i.e. a monotop signature. The branching ratio for these decays
is, assuming ‘tQ, mQ π MS and in the limit of full tR compositeness,

BR(S æ ‰úY) = BR(S æ ‰Z) ƒ 1
6 . (3.62)

Notice that this result holds for arbitrary cL and cR. Hence ¥ 1/3 of the singly-produced singlets
yield the monotop final state. This promising signature deserves a dedicated analysis, which is
however beyond the scope of this work.

3.4 Breaking of the DM shift symmetry by bottom quark cou-
plings

A di�erent scenario is obtained if the DM shift symmetry is fully preserved by the interactions
of the top quark, but it is broken by those of the bottom. As a concrete example we take
Oq ≥ 72/3, Ot ≥ 212/3 and OqÕ, b ≥ 7≠1/3 under SO(7) ◊ U(1)X , in which case only the couplings
of bR to the strong sector break the ‰ shift symmetries. Only the essential features of the setup
are presented here, while a detailed discussion is provided in Appendix 3.C. We focus on the
region of parameter space where ‘b

L ≥ ‘b
R ≥


ybf/Múb , which in turn lead to the scalings

⁄ Ã y2
b and m‰ Ã (ybgú)1/2f , (3.63)
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with gú ≥ Múb/f . As a result, the ‰ mass can be of O(100) GeV while the portal coupling
remains very suppressed. Quantitatively, we estimate

m‰ ƒ
Ò

µ2
DM ¥ 120 GeV

3
Múb

8 TeV

43/2 31 TeV
f

41/2
, (3.64a)

⁄ ¥ 3 ◊ 10≠4
3

Múb

8 TeV

42 31 TeV
f

42
. (3.64b)

The above parametrics have been confirmed by a numerical scan of the SO(7)/SO(6) model
whose results are reported in Appendix 3.C. The important message contained in Eq. (3.64) is
that since ⁄f2 π m2

‰, ‰ annihilation proceeds dominantly via the derivative portal, and the DM
is heavy enough that the correct relic density can be reproduced for f ≥ TeV, see Fig. 3.1. In
addition, we have c‰

b ƒ 1 and ⁄f2 π m2
h in Eq. (3.12), so the scattering with nuclei is dominated

by the ‰ú‰bb̄ contact interaction. The DM-nucleon scattering cross section is

‡‰N
SI ƒ f̃2

N

fi

m4
N

4f4m2
‰

¥ 1.0 - 5.6 ◊ 10≠47 cm2
31 TeV

f

44 A
100 GeV

m‰

B2

, (bR breaking) (3.65)

where the range of values accounts for the theory uncertainty on the couplings of the first and
second generation quarks. The lower estimate corresponds to breaking of the DM shift symmetry
only by the bottom quark (c‰

b = 1 and c‰
q = 0 for all q ”= b, case I), yielding a nucleon form factor

f̃N ƒ 0.066. The higher estimate corresponds to breaking by all down-type quarks (c‰
d,s,b = 1 and

c‰
u,c,t = 0, case II),16 yielding f̃N ƒ 0.15. The extremely suppressed cross sections in Eq. (3.65)

will be probed by next-generation experiments such as LZ [140], for which they constitute a very
motivated target.

A summary of the current constraints and future reach on the (m‰, f) parameter space is
shown in Fig. 3.13, where we have set cd = c‰

b = 1, c‰
t = ⁄ = 0. Points lying on the blue

curve reproduce the observed DM relic density. The red-shaded region is ruled out by current
XENON1T results [141] assuming case I for the DM-nucleon cross section, whereas the dashed red
line corresponds to the exclusion for case II. The solid gray (dashed gray) lines show the expected
sensitivity achieved by LZ [140] for case I (case II). The region m‰ < mh/2 is also constrained by
LHC searches for invisibly-decaying Higgses. The current 95% CL bound BR(h æ ‰ú‰) < 0.24
[142] rules out the region shaded in orange, which extends up to f ƒ 1.2 TeV for very light
‰. The projected HL-LHC limit BR(h æ ‰ú‰) < 0.08 [143], corresponding to the dotted
orange curve, will extend the reach to f ƒ 1.6 TeV. Finally, the region shaded in purple is
excluded by searches for present-day DM annihilations from dwarf spheroidal galaxies (dSphs)
performed at Fermi-LAT [144]. This bound was derived by comparing the total cross section
for DM annihilation in our model to the limit reported by Fermi for the bb̄ final state, and
should therefore be taken as approximate. Additional indirect detection constraints [126, 127]
arise from the measurement of the antiproton spectrum by AMS-02 [128]. These are, however,
a�ected by systematic uncertainties whose sizes are under active debate. We have therefore
chosen to quote only the more conservative bounds from dSphs. Figure 3.13 shows that most of
the best-motivated parameter space, with 80 GeV . m‰ . 200 GeV and 0.8 TeV . f . 1.4 TeV,
is currently untested but within reach of LZ.

16This is the pattern obtained by extending the embeddings Oq ≥ 72/3, Ot ≥ 212/3 and OqÕ, b ≥ 7≠1/3 to all
three generations.
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Figure 3.13: Parameter space of the model where the bottom quark gives the leading breaking of the
DM shift symmetry. The coe�cients of the e�ective Lagrangian are set to cd = c‰

b = 1,
c‰

t = ⁄ = 0. To draw the exclusions from direct and indirect detection we have assumed
that all of the observed DM is composed of ‰ particles, irrespective of the thermal value of
the ‰ density predicted at each (m‰, f) point.

3.5 Breaking of the DM shift symmetry by U(1)DM gauging
It is possible to couple all the elementary quarks to the strong sector in a way that preserves
the DM shift symmetry [73, 17]. For example, in the SO(7)/SO(6) model this is achieved with
Oq ≥ 72/3, Ou,d ≥ 212/3 for all three generations. This setup gives c‰

q = 0 in Eq. (3.9) and no
contribution to µ2

DM, ⁄DM and ⁄ in Eq. (3.46) from the fermion sector, while at the same time
top loops easily produce a realistic Higgs potential. In this case, some additional explicit breaking
should be responsible for generating the DM mass. If ‰ is a complex scalar, a natural possibility
is that the explicit breaking originates from the gauging of U(1)DM. In the SO(7)/SO(6) coset
the generators associated with the real and imaginary parts of ‰ together with the U(1)DM
generator form an SU(2)Õ ≥ {XRe, XIm, T DM}, hence gauging U(1)DM generates a radiative
mass for ‰ in very similar fashion to the contribution of photon loops to the charged pion mass
in the SM.

From the e�ective theory point of view, the e�ects of gauging U(1)DM with coupling gD can
be taken into account by replacing in LGB in Eq. (3.2),

|ˆµ‰|2 æ |(ˆµ ≠ igDAµ
D)‰|2 ≠ 1

4F µ‹
D FDµ‹ + 1

2 m2
“D

ADµAµ
D , (3.66)

where we took ‰ to have unit charge. Note that to be general we have included a mass term
for the dark photon “D, which can arise via the Stückelberg mechanism without spontaneous
breaking of U(1)DM. The one-loop DM mass and marginal portal coupling are

m‰ =
Ò

µ2
DM ƒ

Ú
3–D

2fi
mfl ¥ 100 GeV

3
–D

10≠3

41/2 3
mfl

5 TeV

4
, ⁄ = 0 , (3.67)

where –D © g2
D/(4fi) and the loop that generates m‰ was cut o� at mfl, the mass of vector

resonances (in the SO(7)/SO(6) model, this is the mass of the 15 multiplet of SO(6)). The
estimate for the DM mass in Eq. (3.67) is valid as long as m“D π mfl, which we assume.
Importantly, since the Higgs is uncharged under U(1)DM the marginal portal coupling is not
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generated at one loop, leading from Eq. (3.12) to an extremely suppressed DM-nucleon cross
section. We find it remarkable that such a simple model is e�ectively inaccessible to direct
detection experiments.

The introduction of the dark photon has significant impact on the phenomenology. It is
important to stress that in Eq. (3.66) we have not included the operator ÁBµ‹F µ‹

D /2 that mixes
kinetically U(1)DM and the SM hypercharge. The choice to set Á = 0 in the EFT is motivated by
the SO(7)/SO(6) model, where the kinetic mixing is forbidden by CD, the charge conjugation
of U(1)DM, which is an accidental symmetry (provided it is respected by subleading spurionic
embeddings of the SM fermions, see Appendix 3.E). In particular, in the low-energy theory CD

transforms Aµ
D æ ≠Aµ

D and ‰ æ ≠‰ú, whereas all SM fields are left unchanged. An additional,
important consequence of this discrete symmetry is that the dark photon is stable if m“D < 2m‰,
when the “D æ ‰‰ú decay is kinematically forbidden. The complete discussion of kinetic mixing,
as well as the details on the implementation of CD as an O(6) transformation that we call P6,
are contained in Appendix 3.E.

The dark sector, composed of the DM and the dark photon, is thus characterized by the four
parameters {m‰, f, –D, m“D }. In the remainder of this section we analyze its phenomenology in
detail, beginning in Sec. 3.5.1 with the simplest setup where the dark photon is massless, and
later moving to the massive case in Sec. 3.5.2.

3.5.1 Phenomenology for massless dark photon
Setting m“D = 0 leaves the three-dimensional parameter space {m‰, f, –D}. We begin the
discussion with a summary of the thermal history of the model. At early times the dark
sector, composed of ‰ and “D, and the visible sector are kept in kinetic equilibrium by elastic
‰f æ ‰f scatterings mediated by Higgs exchange, where f denotes the still-relativistic SM
fermions. These processes are e�ective down to temperatures T π m‰, but eventually they
become slower than the Hubble expansion rate and the dark and visible sectors decouple. The
corresponding decoupling temperature Tdec is defined through [145] H(Tdec) = “(Tdec)/2, where
H(T ) = fi


gú(T ) T 2/(3

Ô
10MPl) is the Hubble parameter for a radiation-dominated Universe

(gú(T ) is the total number of relativistic degrees of freedom including both the visible and dark
sectors, and MPl is the reduced Planck mass), whereas “(T ) is the momentum relaxation rate,
which scales as “ ≥ (T/m‰)nf È‡‰f vrelÍ. Using the exact expression of “(T ) given in Ref. [145]
we calculate17 Tdec as a function of m‰ and f , finding that it is typically between 1 and 3 GeV
as shown in the left panel of Fig. 3.14.

The massless dark photon behaves as radiation at all temperatures. The strongest constraint
on new relativistic degrees of freedom arises from Cosmic Microwave Background (CMB) mea-
surements of the Hubble parameter, usually formulated in terms of the e�ective number of light
neutrino species Ne� . In our model the dark photon gives a contribution [146]

�Ne� = Ne� ≠ 3.046 = 8
7

gdark(T )
2

3
T

T‹

44 A
gdark(Tdec)
gdark(T )

gús,vis(T )
gús,vis(Tdec)

B4/3

, (3.68)

where T ≥ 0.3 eV is the photon temperature at decoupling, Ne� = 3.046 is the SM prediction,
T/T‹ = (11/4)1/3 and gús,vis(T ) = 3.91. To obtain Eq. (3.68) we have used the fact that below
Tdec the entropies of the dark and visible sectors are separately conserved. Since ‰ is already
non-relativistic at kinetic decoupling, we have gdark(Tdec) = gdark(T ) = 2 and �Ne� is determined
by the number of SM relativistic degrees of freedom at Tdec. As shown in the right panel of

17For simplicity, in deriving Tdec the total number of relativistic degrees of freedom was set to the approximate
constant value gú = gú,vis + gdark = 75.75 + 2 = 77.75, which corresponds to m· < T < mb.
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Figure 3.14: Left panel: temperature of kinetic decoupling between the dark and visible sectors. Right
panel: contribution of the dark photon to �Ne� at photon decoupling, calculated from
Eq. (3.68). In the evaluation of gús,vis(Tdec) we assumed 150 MeV as temperature of
the QCD phase transition. The region shaded in red corresponds to the current CMB
constraint �Ne� . 0.6, while the dashed red line shows the projected Stage-IV CMB bound
�Ne� . 0.04.

Fig. 3.14, as long as Tdec ∫ 100 MeV the current bound �Ne� . 0.6 [62] (95% CL) is easily
satisfied. As we have seen, the typical decoupling temperature is 1 - 3 GeV, corresponding to
�Ne� ¥ 0.07 - 0.09. Such values could be probed in future Stage-IV CMB measurements, which
are expected to constrain �Ne� . 0.04 at 95% CL [147]. A similar, but slightly weaker, current
bound is obtained from Big-Bang nucleosynthesis [148].

In addition, the Compton scattering process ‰“D æ ‰“D delays kinetic decoupling of the DM
compared to the standard WIMP scenario [146, 149], suppressing the matter power spectrum on
small scales and leading to a minimum expected DM halo mass. For weak-scale DM and typical
coupling –D ≥ 10≠3, though, ‰ - “D kinetic decoupling takes place at temperature of O(MeV)
and the minimum halo mass is too small to be testable with current observations [149].

Having established that the massless dark photon does not conflict with cosmological obser-
vations, we turn to the DM phenomenology. The ‰‰ú pairs undergo s-wave annihilation both
to SM particles via the derivative Higgs portal, and to “D“D with amplitude mediated by the
scalar QED interactions in Eq. (3.66). The cross section for the latter is

È‡“D“D vrelÍ = 2fi–2
D

m2
‰

, (3.69)

where we took the leading term in the velocity expansion. Notice that the “mixed” dark-visible
annihilation ‰‰ú æ “Dh is instead p-wave suppressed: the amplitude vanishes at threshold,
because spin cannot be conserved for m“D = 0.18 Therefore this process has only a very small
impact on the freeze-out. The requirement to obtain the observed relic density yields a two-
dimensional manifold in the parameter space, whose features are best understood by considering
slices with fixed f .

As discussed in Sec. 3.1.1, there exists then only one value of the DM mass which gives the
correct relic density by annihilation only through the derivative Higgs portal: for example, for
f = 1 (1.4) TeV this is m(f)

‰ ¥ 122 (194) GeV. For m‰ > m(f)
‰ the derivative portal coupling

strength ≥ m2
‰/f2 is too large, yielding DM underdensity for any value of –D. Conversely, for

18The p-wave suppression applies also for m“D ”= 0, since the longitudinal polarization does not contribute to
the amplitude due to U(1)DM invariance.
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Figure 3.15: Left panel: contours of observed DM relic density for representative values of f . The
inset shows the fraction of annihilations to dark photons. Contours of constant vector
resonance mass mfl are also shown, as dashed grey lines. Right panel: the colored curves
show È‡SMvrelÍSE, the present-day annihilation cross section to SM particles including
Sommerfeld enhancement, calculated along the relic density contours shown in the left panel.
The black line is the observed 95% CL upper limit from the dSphs analysis in Ref. [129].
The yellow band corresponds to 95% uncertainty on the expected limit in the same analysis.
We also show, as dashed black line, the observed limit from the analysis of a smaller dSphs
sample [144]. The quoted experimental limits were obtained assuming DM annihilation to
bb̄.

m‰ < m(f)
‰ the ‰‰ú æ “D“D annihilation compensates for the reduced derivative portal for an

appropriate value of –D. Comparing Eqs. (3.6) and (3.69), the two annihilation channels have
equal strength when –2

D ≥ m4
‰/(2fi2f4), which since m‰/f ≥ 1/10 corresponds to –D ≥ 2 ◊ 10≠3.

For very light DM, m‰ π mh/2, only annihilation to dark photons is relevant and the coupling is
fixed to –D ¥ 7 ◊ 10≠4 (m‰/30 GeV) by the analog of Eq. (3.6). These features are illustrated by
the left panel of Fig. 3.15, where contours of the observed relic abundance in the (m‰, –D) plane
are shown. Notice that in the window 55 GeV . m‰ . 62.5 GeV the DM is always underdense,
because the annihilation to SM particles is too strongly enhanced by the Higgs resonance. To help
identify the most plausible parameter space we also show contours of constant vector resonance
mass mfl, as obtained from the one-loop expression of the ‰ mass in Eq. (3.67).19 We expect
1 . mfl/f . 4fi, although stronger lower bounds can arise from electroweak precision tests and
from direct searches for the fl particles at colliders.

The massless dark photon mediates a long-range force between DM particles, which leads to
the non-perturbative Sommerfeld enhancement (SE) [150] of the annihilation cross section. For
s-wave annihilation the cross section times relative velocity including SE is

(‡vrel)SE = (‡vrel)0 S(–D/vrel), S(’) = 2fi’

1 ≠ e≠2fi’
, (3.70)

where (‡vrel)0 is the perturbative result, e.g. (‡vrel)0 = 2fi–2
D/m2

‰ for ‰‰ú æ “D“D. The SE is
important when the ratio –D/vrel is not too small, and scales as S ƒ 2fi–D/vrel for –D/vrel & 1/2.
Assuming a Maxwell-Boltzmann distribution for the DM velocity, the thermally averaged cross

19Precisely, we employed Eq. (3.107) with ffl = f .
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section times relative velocity including SE can be written in the approximate form [151]

È‡vrelÍSE = (‡vrel)0 Sann , Sann =
Ú

2
fi

1
v3

0N

⁄ vmax

0
dvrel S(–D/vrel)v2

rel e
≠ v2

rel
2v2

0 (3.71)

where v0 is the most probable velocity. The maximal relative velocity vmax and the normalization
constant N depend on whether we consider early-Universe annihilation around the time of freeze-
out, in which case vmax = Œ and N = 1, or present-day annihilation in a galaxy halo, where
vmax = 2 vesc with vesc the escape velocity, and N = erf(z/

Ô
2) ≠


2/fi z e≠z2/2 , z © vmax/v0.

We have checked that Eq. (3.71) agrees within a few percent with the full numerical treatment.
At DM freeze-out the typical DM speed is v0 =


2/xfo ≥ 0.3 since xfo © m‰/Tfo ≥ 25, so for

the typical coupling –D ≥ 10≠3 the SE enhancement is negligible. Today, however, DM particles
are much slower, with typical relative velocities of 10≠3 in the Milky Way (MW), and . 10≠4

in dwarf galaxies. For the MW we take v0 = 220 km/s and vesc = 533 km/s [152], obtaining a
typical SE of Sann ¥ 6.9 for –D = 10≠3. For a dwarf galaxy with representative parameters
v0 = 10 km/s and vesc = 15 km/s [153] we find Sann ¥ 150, again for –D = 10≠3. If the DM has
a sizeable annihilation to SM particles, these large enhancements lead to conflict with bounds
from indirect detection of DM.

The strongest constraint comes from the non-observation by the Fermi-LAT [144, 129] of
excess gamma ray emission from dSphs, which are the most DM-dominated galaxies known. For
m‰ ≥ 100 GeV the current exclusion on È‡vrelÍ is about the thermal relic value. In the right
panel of Fig. 3.15 we show the total cross section for ‰ annihilation to SM particles, including
the SE, calculated along contours in the {m‰, f, –D} parameter space where the observed relic
density is reproduced. Due to the large SE the region m‰ > mh/2, where an O(1) fraction
of DM annihilations produce SM particles, is ruled out by dSphs analyses. Notice that the
experimental limits shown in Fig. 3.15 were obtained assuming DM annihilates to bb̄ only, whereas
our ‰ annihilates to a combination of SM final states (see the right panel of Fig. 3.1), but the
uncertainty due to this approximation is mild and cannot change the conclusion that the region
m‰ > mh/2 is excluded. Furthermore, in our analysis we have neglected the e�ects of bound
state formation, which has the same parametric dependence on –D/vrel as the SE and is expected
to further enhance the signal from dSphs by an O(1) factor (see Ref. [153] for a comprehensive
analysis). On the other hand, bound state formation has negligible impact on freeze-out for the
relatively light DM we consider in this work, m‰ ≥ 100 GeV [154].

Additional, important constraints on the DM self-interaction mediated by the dark photon
arise from observations of DM halos. The strongest such bounds come from the triaxial structure
of galaxy halos, in particular from the well-measured nonzero ellipticity of the halo of NGC720
[155]. This disfavors strong self interactions, which would have reduced the anisotropy in the DM
velocity distribution via the cumulative e�ect of many soft scatterings [149]. In the nonrelativistic
limit the scattering of two DM particles is dominated by dark photon exchange. The di�erential
cross section in the center of mass frame is

d‡

d� ƒ –2
D

4m2
‰v4

cm(1 ≠ cos ◊cm)2 (3.72)

where we only retained the leading singular behavior at small ◊cm, which is the same for same-
charge ‰‰ æ ‰‰ and opposite-charge ‰‰ú æ ‰‰ú scattering. Notice the very strong velocity
dependence Ã v≠4

cm, which implies that constraints from galaxies are much stronger than those
from clusters. The authors of Ref. [149] obtained a constraint by requiring that the relaxation
time to obtain an isotropic DM velocity distribution be longer than the age of the Universe,

·iso © ÈEkÍ/ÈĖkÍ = N m3
‰v3

0(log �)≠1/(
Ô

fi–2
Dfl‰) > 1010 years (3.73)
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Figure 3.16: Parameter space of the model where the gauging of U(1)DM gives the leading breaking of
the DM shift symmetry, for f = 1.2 TeV (left panel) and f = 1.4 TeV (right panel). The
coe�cients of the e�ective Lagrangian are set to cd = 1, c‰

t = c‰
b = ⁄ = 0, m“D

= 0. The
exclusions from Fermi dwarfs were drawn assuming that all of the observed DM is composed
of ‰ particles, irrespective of the thermal value of the ‰ density predicted at each point in
parameter space.

where Ek = m‰v2/2, Ėk is the rate of energy transfer proportional to d‡/d�, N is an O(1)
numerical factor, v0 is the velocity dispersion (very roughly 250 km/s in NGC720), fl‰ = m‰n‰ is
the ‰ energy density and the “Coulomb logarithm” log � originates from cutting o� the infrared
divergence arising from Eq. (3.72). The ellipticity bound was recently reconsidered by the authors
of Ref. [156], who found it to be significantly relaxed compared to the original calculation of
Ref. [149]. We do not review their thorough analysis here, but simply quote the result

–D < 2.4 ◊ 10≠3
3

m‰

100 GeV

43/2
. (ellipticity) (3.74)

Although Ref. [156] considered Dirac fermion DM, their ellipticity bound directly applies to our
model, because the leading term of the self-scattering cross section in Eq. (3.72) is the same for
fermions and scalars.20 Furthermore, there exist several reasons [156] to take even the bound
in Eq. (3.74) with some caution, including the fact that it relies on a single galaxy, and that
the measured ellipticity is sensitive to unobservable initial conditions (for example, a galaxy
that recently experienced a merger may show a sizeable ellipticity even in the presence of strong
DM self-interactions). Therefore we also quote the next most stringent constraint, obtained by
requiring that the MW satellite dSphs have not evaporated until the present day as they traveled
through the Galactic DM halo [157]. This yields

–D < 5 ◊ 10≠3
3

m‰

100 GeV

43/2
, (dwarf survival) (3.75)

which stands on a somewhat more robust footing than ellipticity, but is not free from caveats
either [156].

A summary of all constraints on our parameter space is shown in Fig. 3.16, for the choices
f = 1.2 and 1.4 TeV. While the region m‰ > mh/2 is ruled out by gamma ray observations
from dSphs, for m‰ < mh/2 the strongest bounds arise from ellipticity and dwarf evaporation.

20Notice that Fig. 4 in Ref. [156] was drawn requiring �X = 0.265 for the DM density, instead of the correct
2 �X = 0.265. As a result, for mX < 200 GeV (where the SE is negligible) their relic density contour should be
multiplied by

Ô
2. We thank P. Agrawal for clarifications about this point.
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In light of the previous discussion, however, we do not interpret these as strict exclusions, but
rather note that they constitute an important class of probes of our setup, which may in the
near future provide important evidence in favor of, or against, DM self-interactions mediated by
a massless dark photon. Such self-interactions could also have interesting implications [156] for
the small-scale issues of the collisionless cold DM paradigm [158]. A complementary test of the
light DM mass region is the search for invisible h æ ‰ú‰ decays at the LHC,21 which will be
sensitive to f . 1.6 TeV by the end of the high-luminosity phase (see Fig. 3.13).

3.5.2 Phenomenology for massive dark photon

We regard the mass of the dark photon as a free parameter of our model. Having extensively
discussed the simplest possibility m“D = 0 in Sec. 3.5.1, we turn here to the study of the massive
case. The physics is qualitatively di�erent if m“D < m‰ or m‰ < m“D , so we analyze these two
regions separately. Our main findings are that (1) the region m“D < m‰ is ruled out, unless “D

is so light that it still behaves as radiation today, and (2) for m‰ . m“D < 2m‰ we obtain a
two-component DM setup with novel properties. Table 3.2 summarizes the mileposts in the m“D

parameter space.

m“D < 6 ◊ 10≠4 eV X/ X “D is dark radiation today,
strong constraints from SE of ‰‰ú æ SM

6 ◊ 10≠4 eV < m“D . 3m‰/25 X “D is relativistic at freeze-out,
ruled out by warm DM bounds/overabundant

3m‰/25 < m“D < m‰ X “D is non-relativistic at freeze-out, overabundant
m‰ . m“D < 2m‰ X both “D and ‰ are cold DM

2m‰ < m“D X “D is unstable

Table 3.2: Overview of the di�erent regions in the dark photon mass space. The second column indicates
whether each region satisfies (X) or conflicts with (X) experimental constraints, while the
third column summarizes the key features.

Light dark photon: m“D < m‰

If m“D < m‰, the dark photon abundance freezes out almost simultaneously with the ‰ abundance.
Assuming “D is still relativistic at freeze-out, i.e. m“D . 3T ‰

fo ¥ 3m‰/25, the ratio of its
number density to the SM entropy density sSM = (2fi2/45)gús,visT 3 is r“D = n“D /sSM =
45 ’(3)g“D /(2fi4gús,vis) ¥ 0.01, where we assumed that the dark and visible sectors are still in
kinetic equilibrium at freeze-out, and took g“D = 3, gús,vis ≥ 80. Since after freeze-out there
are no “D-number-changing interactions in equilibrium (the scattering “D‰ æ (hú æ ff̄ )‰ is
extremely suppressed), r“D is conserved.22 As the Universe cools the dark photon becomes non
relativistic, its energy density being �“D = m“D r“D sSM. Requiring that today this does not

21The Higgs can also decay to “D“D via a ‰ loop. The decay width for m“D = 0 is �(h æ “D“D) =
m3

h–2
Dc2

dv2|F
! m2

h

4m2
‰

"
|2/(64fi3f4), where F (·) is given in Eq. (3.148). Numerically, for m‰ < mh/2 this is negligible

compared to �(h æ ‰ú‰), while for m‰ > mh/2 it is too small to be observable: e.g. for m‰ = 100 GeV and
f = 1 TeV we have �(h æ “D“D) ≥ 10≠12 GeV.

22Before kinetic decoupling of the dark and visible sectors only n“D /stot is conserved, where stot is the total
entropy, but stot ¥ sSM since g“D π gús,vis.
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exceed the observed DM density yields

�“D < �DM æ m“D < 40 eV (dark photon over-abundance) (3.76)

where we used gús,vis(T0) = 3.91.
Stronger constraints are derived from studies of “mixed DM” models, where the DM consists

of an admixture of cold and non-cold particles. Recently, Ref. [159] obtained bounds on the
fraction fncdm of the non-cold DM component, assumed to be a thermal relic, for a wide range
of masses, by combining observations of the CMB, baryon acoustic oscillations (BAO) and the
number of dwarf satellite galaxies of the MW. In our model, if the dark photon freezes out when
relativistic it constitutes a hot DM component. Its temperature at late times is obtained from
entropy conservation, T“D /T = [gús,vis(T )/gús,vis(Tdec)]1/3 ¥ 0.37, where T is the SM photon
temperature and we took gús,vis(Tdec) = 75.75. The fraction of non-cold DM is

fncdm ƒ �ncdm
�DM

= fl“D,0
flc

0�DM
= r“D sSM,0

flc
0�DM

Y
]

[

fi4T“D,0
30 ’(3)

m“D

¥

Y
]

[
5.8 ◊ 10≠6 m“D . 3 T“D,0

0.024
1

m“D
1 eV

2
m“D & 3 T“D,0

(3.77)

where the first (second) expression applies to the case where the dark photon is still relativistic
(non-relativistic) today, with 3 T“D,0 ¥ 2.6 ◊ 10≠4 eV. In the first equality we assumed �ncdm π
�DM since the non-cold component is in practice constrained to be small, while flc = 3H2M2

Pl
is the critical density. The prediction in Eq. (3.77) can be compared with the bounds given
in Ref. [159], after correcting for the fact that there the non-cold relic was assumed to have
temperature equal to that of the SM neutrinos, hence the mass needs to be rescaled by a factor
T“D /T‹ ¥ 0.52. The result is shown in Fig. 3.17, from which we read a 95% CL bound

m“D < 6 ◊ 10≠4 eV, (CMB + BAO + MW satellites) (3.78)

roughly equivalent to the requirement that “D be still relativistic today. For dark photon masses
that satisfy the overclosure bound of Eq. (3.76) the relevant observables are CMB and BAO
measurements, while the MW satellite count becomes important at higher masses, of order
keV [159]. In the region m“D . 1 eV, where the dark photon behaved as radiation at photon
decoupling, the constraints shown in Fig. 3.17 are stronger than those derived purely from �Ne� .
This is due to the inclusion of BAO, which are sensitive to the suppression of the matter power
spectrum on small scales caused by the free-streaming of the hot DM component.

For dark photon masses satisfying Eq. (3.78), the phenomenology for m“D = 0 discussed in
Sec. 3.5.1 still applies. The ‰ annihilation is una�ected, including the SE, as the dark photon
mediates an e�ectively long-range force: its wavelength is much larger than the Bohr radius
of the (‰ú‰) bound state, m“D π –Dm‰/2. In addition, the Coulomb limit of Eq. (3.70) is
still appropriate, since the average momentum transfer is much larger than the mediator mass,
m“D π m‰vrel/2 [160]. In the calculation of the ellipticity bound for massless dark photon [156]
the infrared divergence that arises from integrating Eq. (3.72) over angles was cut o� at the
inter-particle distance, ⁄P = (m‰/fl‰)1/3 ≥ 5 cm, where the numerical value was estimated for
a representative DM mass m‰ = 100 GeV and density fl‰ ≥ 1 GeV/cm3 in the DM-dominated
outer region (r Ø 6 kpc) of NGC720 [161]. When m“D > 1/⁄P ≥ 4 ◊ 10≠6 eV, it is 1/m“D that
must be taken as IR cuto�. However, since the cuto� only enters logarithmically in the expression
of the timescale for velocity isotropization, the ellipticity bound discussed for m“D = 0 applies
essentially unchanged to the whole region defined by Eq. (3.78). The same holds for the bound
from dwarf galaxy survival.23

For 3T ‰
fo ¥ 3m‰/25 . m“D < m‰ the dark photon freezes out non-relativistically, but is

nevertheless over-abundant.
23The small dark photon masses in Eq. (3.78) are legitimate from an EFT standpoint. Still, it has recently been
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Figure 3.17: The fraction of non-cold DM embodied by the dark photon as predicted by our model (dashed
blue), compared to the 2‡ (thick red) and 3‡ (thin red) upper bounds from Ref. [159].

Heavy dark photon: m‰ < m“D

In the region m‰ . m“D < 2m‰ both “D and ‰ are stable and freeze out when non-relativistic,
naturally giving rise to a two-component cold DM model. The features of this region are
best explained by fixing f and m‰ > m(f)

‰ , so that ‰ would be under-abundant in isolation,
owing to its too strong annihilation to SM particles via the derivative Higgs portal. Requiring
that the heavier dark photon provides the remaining DM fraction then gives a contour in the
(m“D /m‰, –D) plane, shown in the left panel of Fig. 3.18 for f = 1 TeV and some representative
choices of m‰. The relic densities of ‰ and “D were computed solving the coupled Boltzmann
equations with micrOMEGAs [164]. To understand the basic features of Fig. 3.18 -left, a useful
first approximation is to treat the freeze-outs of ‰ and “D as decoupled processes, since in this
limit the relic density of ‰ is simply fixed by the freeze-out of ‰‰ú æ SM and therefore completely
determined by f and m‰. This simplified picture does receive important corrections in some
regions of parameter space, as we discuss below. Focusing first on the m‰ = 300 GeV case, four
qualitatively di�erent regions arise in our analysis:

1. The non-degenerate region, 2m‰ ≠ mh ¥ 1.6 m‰ < m“D < 2m‰. The dark photon freeze-
out is determined by the semi-annihilation process “Dh æ ‰‰ú, which is kinematically
allowed at zero temperature. Hence the relic density contour is approximately given by
neq

h È‡“Dhæ‰‰úvrelÍ = constant, where the LHS is evaluated at the “D freeze-out temperature,
T fo

“D
¥ m“D /25, and the thermally averaged cross section is given in Eq. (3.151). As

m“D /m‰ decreases, the dark fine structure constant increases exponentially to compensate
for the suppression of the Higgs number density, –D Ã exp

! mh
m‰

25
m“D

/m‰

"
, where we dropped

subleading power corrections. The importance of semi-annihilation processes, which change
the total DM number by one unit (rather than two units as for ordinary annihilation), was
discussed for the first time in Ref. [75].

2. The intermediate region, 1.3 m‰ . m“D . 1.6 m‰ ¥ 2m‰ ≠ mh. The “D freeze-out

conjectured [162] that quantum gravity forbids arbitrarily small Stückelberg masses: local quantum field theory
would break down at �UV ≥ (m“D MPl/gD)1/2. Taking gD ≥ 0.1 as needed to obtain the observed relic density for
‰, Eq. (3.78) corresponds then to a troublesome �UV . 4 TeV. The conjecture does not apply, however, if m“D

arises from a dynamical symmetry breaking [162]. This topic is currently under debate [163].
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Figure 3.18: Left panel: contours in the (m“D
/m‰, –D) plane where the sum of the ‰ and “D densities

matches the observed total DM density, �‰+‰ú + �“D
= �DM, assuming f = 1 TeV and for

representative values of m‰ > m(f)
‰ ¥ 122 GeV. The solid portions highlight the range of

–D where m‰ can be obtained from dark photon loops cut o� at 2.5 TeV < mfl < 4fif (see
Eq. (3.107)), where the lower bound comes from the S parameter, ‚S ≥ m2

W /m2
fl . 10≠3

(see e.g. Ref. [102]). Right panel: e�ective cross section for present-day DM annihilation
to SM particles, calculated along the relic density contours in the left panel. Also shown are
the observed 95% CL limits from dSphs in the WW channel [144] (dashed lines), together
with the 95% CL uncertainties on the expected limits (colored regions). For reference, the
black solid line shows È‡vrelÍcan, the cross section expected for a single thermal relic that
annihilates entirely to SM particles.

is still determined by “Dh æ ‰‰ú, which however is now forbidden at zero tempera-
ture. Using detailed balance, the relic density contour is given by neq

h È‡“Dhæ‰‰úvrelÍ =
(neq 2

‰ /neq
“D

)È‡‰‰úæ“DhvrelÍ = constant, where the LHS is evaluated at T fo
“D

¥ m“D /25 and
the cross section can be found in Eq. (3.152). The dependence of –D on m“D /m‰ is
exponential and faster than in the non-degenerate region, –D Ã exp

#!
2 ≠ m“D

m‰

" 25
m“D

/m‰

$
,

where power corrections were neglected.

3. The degenerate region, m‰ . m“D . 1.3 m‰. As m“D /m‰ decreases the semi-annihilation
is increasingly Boltzmann suppressed, while the rate of the annihilation “D“D æ ‰‰ú

increases as –2
D . Therefore the dark photon freezes out when its annihilation to ‰‰ú goes out

of equilibrium. The relic density contour is approximately described by È‡“D“Dæ‰‰úvrelÍ =
constant, where the cross section is given in Eq. (3.150). The resulting variation of –D

is slow in comparison to the regions dominated by semi-annihilation, thus explaining the
nearly flat behavior of the contours. Importantly, in this region the evolutions of the ‰ and
“D densities are tightly coupled, and the injection of ‰ particles due to the “D“D æ ‰‰ú

process gives a larger ‰ abundance than the one expected based on the simplified decoupled
picture. This interesting type of system was first studied numerically in Ref. [165], and we
provide here analytical insight into its dynamics. After the yields Y‰,“D become much larger
than their equilibrium values, they obey the simplified Boltzmann equations (x © m‰/T )

‚⁄≠1x2 dY‰

dx
= ≠È‡vrelÍSMY 2

‰ + 1
2È‡vrelÍ“D“D Y 2

“D
(3.79a)

‚⁄≠1x2 dY“D

dx
= ≠È‡vrelÍ“D“D Y 2

“D
(3.79b)

where ‚⁄ © (2
Ô

10 fi/15)(gúsm‰MPl/
Ô

gú), while È‡vrelÍSM refers to ‰‰ú æ SM and È‡vrelÍ“D“D
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to “D“D æ ‰‰ú. The analytical solution of this system gives at x ∫ 1

1
a‡

A
2Y‰

Y“D

B2

ƒ 1 + 1
2

3
a‡ +

Ò
a‡(a‡ + 4)

4
, a‡ © È‡vrelÍ“D“D

È‡vrelÍSM/2 , (3.80)

where a‡ goes to a constant since both processes are s-wave. This result is obtained by
solving a quadratic equation, whose other root yields dY‰/dx > 0 and is therefore unphysical.
For a‡ π 1, as verified in the m‰ = 300, 600 GeV examples, the RHS of Eq. (3.80) goes to
1 and the formula expresses the equality of the fluxes that enter and leave the ‰ population,
Y 2

“D
È‡vrelÍ“D“D = (2Y‰)2È‡vrelÍSM/2 . Correspondingly, the relative ‰ density is suppressed

(albeit still larger than in the simplified decoupled picture), 2n‰/n“D ƒ a1/2
‡ . In the

m‰ = 150 GeV example we have a‡ = O(1) instead: in this regime the annihilation to
the SM is not as e�cient, leading to an accumulation of the ‰ particles injected by “D“D

annihilation and therefore to a large relative ‰ abundance, 2n‰/n“D ƒ few.

4. The very degenerate and forbidden [74] region, m“D . m‰. The dark photon freeze-out is
determined by “D“D æ ‰‰ú, but –D increases very rapidly as m“D /m‰ is decreased toward
and eventually slightly below 1, in order to compensate for the kinematic suppression.

The previous discussion focused on the m‰ = 300 GeV benchmark. The features of the relic
density contour for m‰ = 600 GeV are very similar. On the contrary, in the case m‰ = 150 GeV
we have 2m‰ ≠ mh ¥ 1.2 m‰ and as a consequence we observe a direct transition from the
non-degenerate to the degenerate region, while the intermediate region is absent.

The right panel of Fig. 3.18 shows the e�ective cross section for DM annihilation to SM
particles today, computed along the relic density contours. All processes that yield SM particles
were included in the numerical evaluation, but we have checked that ‰‰ú æ SM is always
dominant and the subleading channels (such as “D‰ æ h‰ and “D“D æ SM, the latter of which
proceeds at one loop) contribute at the sub-percent level.24 Two di�erent regimes can be observed.
In the non-degenerate region the freeze-outs of ‰ and “D can be treated as independent to a
good approximation, hence from Eq. (3.6) the e�ective cross section is reduced compared to the
standard thermal value È‡vrelÍcan ¥ 2◊10≠26 cm3 s≠1 by a factor È‡vrelÍcan /(1

2È‡vrelÍ‰‰úæ SM) < 1.
For m‰ = 600 GeV the suppression amounts to more than one order of magnitude. Conversely,
in the degenerate region the already discussed injection of ‰ particles from “D“D annihilations
compensates the increased È‡vrelÍ‰‰úæ SM , resulting in e�ective cross sections that are numerically
close to È‡vrelÍcan.

Finally, if 2m‰ < m“D the dark photon is unstable, with decay width �(“D æ ‰ú‰) =
(–Dm“D /12)(1 ≠ 4m2

‰/m2
“D

)3/2. In the early Universe, the inverse decay process keeps the dark
sector in chemical equilibrium until H ≥ È�Í n“D /n‰, when the ratio of the number densities is

n“D

n‰
≥ H

� ≥ 10 T 2

MPl–Dm“D

< 10≠12
3

m“D

100 GeV

4 A
10≠3

–D

B

, (3.81)

where we assumed that T < m“D at this point, and neglected O(1) factors. Thus, the subsequent
decay of the remaining dark photons has negligible impact on the ‰ relic density, which can
e�ectively be computed considering only the freeze-out of ‰‰ú annihilations to SM particles,
with the results summarized in Fig. 3.1. In the region 2m‰ < m“D the only phenomenologically
relevant imprint of the dark photon is the one-loop mass for ‰, estimated in Eq. (3.67).

24Note that due to the large mass of the dark photon, in this case the Sommerfeld enhancement of the ‰‰ú æ SM
annihilation is negligible.
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3.A CCWZ construction for SO(7)/SO(6)

For the generators of the fundamental representation of SO(7) we take

(T –
L,R)IJ = ≠ i

2

51
2‘–—“(”—

I ”“
J ≠ ”—

J ”“
I ) ± (”–

I ”4
J ≠ ”–

J ”4
I )

6
, – = 1, 2, 3,

T ab
IJ = ≠ iÔ

2
(”a

I ”b
J ≠ ”a

J”b
I), b = 5, 6; a = 1, . . . , b ≠ 1, (3.82)

Xa
IJ = ≠ iÔ

2
(”a

I ”7
J ≠ ”a

J”7
I ), a = 1, . . . , 6,

where the indices I, J take the values 1, . . . , 7. T –
L,R and T ab are the generators of SO(6), collec-

tively denoted by T â (â = 1, . . . , 15), with T –
L,R spanning the custodial SO(4) ≥= SU(2)L ◊ SU(2)R

subgroup, while Xa are the broken generators that parameterize the coset space SO(7)/SO(6).
Notice that the unbroken generators are block-diagonal in our basis,

T â =
A

tâ 0
0 0

B

, tâ œ SO(6). (3.83)

All generators T A (A = 1, . . . , 21) are normalized such that Tr
Ë
T AT B

È
= ”AB. Under the

unbroken SO(6), the six GBs fia transform linearly and in the fundamental representation, whose
decomposition under SO(4) is 6 = 4 ü 1 ü 1. The Higgs doublet H = (hu, hd)T is identified with
the 4, so that

fį = 1Ô
2

1
≠i(hu ≠ hú

u), hu + hú
u, i(hd ≠ hú

d), hd + hú
d,

Ô
2 ÷,

Ô
2 Ÿ

2T
. (3.84)

In unitary gauge, i.e. hu = 0, hd = h̃/
Ô

2, this has the expression in Eq. (3.16) and the
Goldstone matrix U(fį) = exp

1
i
Ô

2fiaXa/f
2

can be written, after performing the convenient
field redefinition [68]

sin(fi/f)
fi

fia æ fia

f
with fi =

Ô
fį T fį , (3.85)

in the following form

U =

Q

cccccccca

13◊3

1 ≠ h̃2

f2(1+�) ≠ h̃÷
f2(1+�) ≠ h̃Ÿ

f2(1+�)
h̃
f

≠ h̃÷
f2(1+�) 1 ≠ ÷2

f2(1+�) ≠ ÷Ÿ
f2(1+�)

÷
f

≠ h̃Ÿ
f2(1+�) ≠ ÷Ÿ

f2(1+�) 1 ≠ Ÿ2

f2(1+�)
Ÿ
f

≠ h̃
f ≠ ÷

f ≠Ÿ
f �

R

ddddddddb

, � = 1
f

Ò
f2 ≠ h̃2 ≠ ÷2 ≠ Ÿ2 .

(3.86)

Under g œ SO(7), the GB matrix transforms as

U (fį) æ g U (fį) h (fį; g)T , (3.87)

where h (fį; g) is block-diagonal in our basis,

h (fį; g) =
A

h6 0
0 1

B

, h6 œ SO(6). (3.88)
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The dµ and eµ symbols are defined via25

iU †DµU © da
µXa + eâ

µT â , (3.89)

where DµU = ˆµU ≠ iAâ
µT âU . Notice that we took the gauge fields as belonging to the

SO(6) subalgebra, since this is the relevant case. Explicitly, for SU(2)L ◊ U(1)Y we have
Aâ

µT â = ḡW̄ –
µ T –

L + ḡÕB̄µT 3
R . If the U(1)DM were also gauged, then Aâ

µT â æ Aâ
µT â + gDADµT 56,

with AD the associated vector field and gD its coupling. Under g œ SO(7),

da
µ æ (h6)a

b db
µ , eµ © eâ

µtâ æ h6 (eµ + iˆµ) hT
6 , (3.90)

where h6 was defined in Eq. (3.88). To leading order in 1/f , we have

da
µ = ≠

Ô
2

f
Dµfia + O(1/f3), eâ

µ = Aâ
µ + O(1/f2) , (3.91)

where Dµfia = ˆµfia ≠ iAâ
µ(tâ)a

bfi
b . The fermion covariant derivatives that appear in Eq. (3.27)

read

DµqL =
1
ˆµ ≠ iḡW̄ –

µ

‡–

2 ≠ iḡÕ 1
6B̄µ

2
qL , Dµ� =

1
ˆµ ≠ i

2
3 ḡÕB̄µ

2
� , (3.92)

where � = tR, Qi, Sj , and in all cases the color SU(3) component is understood.
At the leading order in derivatives, the Lagrangian describing the vector resonances flµ ©

flâ
µtâ ≥ 15 and aµ © aa

µXa ≥ 6 reads

LV = ≠1
4Tr (flµ‹flµ‹) +

f2
fl

2 Tr (gflflµ ≠ eµ)2 ≠ 1
4Tr (aµ‹aµ‹) + f2

a

2�2 Tr (gaaµ ≠ �dµ)2 , (3.93)

where ffl, a are decay constants, gfl, a are couplings, and � is a dimensionless parameter. The
field strengths are given by

flµ‹ = ˆµfl‹ ≠ ˆ‹flµ ≠ igfl [flµ, fl‹ ] , aa
µ‹ = Òµaa

‹ ≠ Ò‹aa
µ, Òµ = ˆµ ≠ ieµ . (3.94)

In the limit where the external gauge fields are neglected, the masses of the fl and a read

m2
fl = g2

flf2
fl , m2

a = g2
af2

a

�2 . (3.95)

Neglecting EWSB, only flµ can mix with the SU(2)L ◊ U(1)Y gauge fields. The mass eigenstates
are obtained via the rotations

A
W̄ –

fl–
L

B

æ 1
Ò

g2
fl + ḡ2

A
gfl ≠ḡ
ḡ gfl

B A
W –

fl–
L

B

,

A
B̄
fl3

R

B

æ 1
Ò

g2
fl + ḡÕ 2

A
gfl ≠ḡÕ

ḡÕ gfl

B A
B
fl3

R

B

, (3.96)

with W – and B identified with the SM states. The associated SM couplings are g = gflḡ/
Ò

g2
fl + ḡ2

and gÕ = gflḡÕ/
Ò

g2
fl + ḡÕ 2.

Now let us consider the case where U(1)DM is gauged. The dµ and eµ symbols are computed
starting from DµU = ˆµU ≠ iAâ

µT âU , where

Aâ
µT â = ḡW̄ –

µ T –
L + ḡÕB̄µT 3

R +
Ô

2 ḡDĀDµT DM (3.97)
25Notice that we define the dµ and eµ symbols with opposite sign compared to, e.g., Ref. [110].
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when SU(2)L ◊ U(1)Y ◊ U(1)DM µ SO(6) are gauged. The normalization of the U(1)DM gauge
coupling is chosen in such a way that the ‰ kinetic term obtained from the two-derivative GB
Lagrangian of Eq. (3.15) is |(ˆµ ≠ iḡDĀDµ)‰|2. flµ contains an SO(4) ◊ U(1)DM singlet flD that
mixes with ĀD. The mass matrix and the rotation that diagonalizes it are

f2
fl

2 (ĀD, flD)
A

2ḡ2
D ≠

Ô
2ḡDgfl

≠
Ô

2ḡDgfl g2
fl

B A
ĀD

flD

B

,

A
ĀD

flD

B

æ

Q

ca

gflÔ
g2

fl+2ḡ2
D

≠
Ô

2ḡDÔ
g2

fl+2ḡ2
DÔ

2ḡDÔ
g2

fl+2ḡ2
D

gflÔ
g2

fl+2ḡ2
D

R

db

A
AD

flD

B

,

(3.98)

hence the physical dark photon coupling is gD = gflḡD/
Ò

g2
fl + 2ḡ2

D .

3.B Scalar potential : gauge sector
Integrating out the vector resonances at tree level, we obtain the e�ective Lagrangian containing
the gauge fields W̄ –, B̄ and the Higgs,

Le�
g = 1

2
1
gµ‹ ≠ pµp‹

p2

2 1
2�+≠W̄ +

µ W̄ +
‹ + �33W̄ 3

µW̄ 3
‹ + �BBB̄µB̄‹ + 2�3BW̄ 3

µB̄‹

2
(3.99)

where

�+≠ = �33 = �0 + h̃2

4f2 �g
1 , �BB = �B + ḡÕ 2

ḡ2
h̃2

4f2 �g
1 , �3B = ≠ ḡÕ

ḡ

h̃2

4f2 �g
1 . (3.100)

The dynamics of the strong sector resonances are encoded in the momentum-dependent form
factors, which read in Euclidean space

�0(B) = p2
A

1 +
ḡ(Õ) 2f2

fl

p2 + m2
fl

B

, �g
1 = ḡ2

C

f2 + 2p2
A

f2
a

p2 + m2
a

≠
f2

fl

p2 + m2
fl

BD

. (3.101)

The e�ective potential for the Higgs has the expression

Vg(h̃) = 3
2

⁄
d4p

(2fi)4 log
Ë
�2

+≠(�33�BB ≠ �2
3B)

È
. (3.102)

Integrating out the dark photon at tree level generates additional contribution to the e�ective
Lagrangian, Le�

g + ”Le�
g , where Le�

g is given in Eq. (3.99), while

”Le�
g = 1

2
1
gµ‹ ≠ pµp‹

p2

2
�AAĀDµĀD‹ , �AA = �A + 2ḡ2

D

ḡ2
‰ú‰

f2 �g
1, (3.103)

with Euclidean-space form factors

�A = p2
A

1 +
2ḡ2

Df2
fl

p2 + m2
fl

B

, �g
1 = ḡ2

C

f2 + 2p2
A

f2
a

p2 + m2
a

≠
f2

fl

p2 + m2
fl

BD

. (3.104)

The one-loop e�ective potential is also modifies Vg(h̃) + ”Vg(‰), where the Higgs-dependent piece
is given Eq. (3.102), and

”Vg(‰) = 3
2

⁄
d4p

(2fi)4 log
C

1 + ḡ2
D

ḡ2
2‰ú‰

f2
�g

1
�A

D

. (3.105)
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Note that, importantly, the one-loop potential does not contain a Higgs portal term ≥ ⁄h̃2‰ú‰.

If the gauging of U(1)DM is the only source of DM shift symmetry breaking, expanding the
logarithm in Eq. (3.105) and matching to Eq. (3.46) gives for the ‰ mass term

µ2
DM = 3ḡ2

D

16fi2ḡ2f2

⁄ Œ

0
dp2p2 �g

1
�A

, (DM shift symmetry broken by gauging) (3.106)

which is in general quadratically UV-divergent, but is automatically rendered finite after the two
WSRs that ensure finiteness of Vg(h̃) are imposed, namely 2(f2

fl ≠ f2
a ) = f2 and f2

fl m2
fl = f2

a m2
a.

After the WSRs are used to express fa, ma in terms of ffl, mfl, and f , we find �g
1 > 0, which

guarantees that U(1)DM is never spontaneously broken. Performing the integral and taking the
leading order in ḡ2

Df2/m2
fl, ḡ2

Df2
fl /m2

fl π 1 we arrive at

µ2
DM ƒ 3–D

2fi

f2
fl

f2 m2
fl log

A
2f2

fl /f2

2f2
fl /f2 ≠ 1

B

. (3.107)

The results above assume massless dark photon. A Stückelberg mass can be obtained by extending
the coset to SO(7) ◊ U(1)Õ/SO(6) and gauging the diagonal combination of U(1)DM ◊ U(1)Õ,
namely

Ô
2 T DM + Z Õ. All SM fields are assumed to be uncharged under U(1)Õ. The extended

Goldstone matrix is U = exp(i
Ô

2fiaXa/f) exp(ifîZ Õ/f Õ) and the two-derivative Lagrangian
becomes Lfi + (f Õ 2/2)d̂µd̂µ, where d̂µ = ≠(ˆµfî ≠ ḡDf ÕĀDµ)/f Õ to all orders in 1/f Õ. The
additional piece is precisely the Stückelberg Lagrangian, which gives a mass mA = ḡDf Õ to ĀD.
In the e�ective Lagrangian of Eq. (3.103) we must then replace �A æ �A + m2

A, which in turn
leads to a suppression of the ‰ mass: taking for simplicity ffl = f , Eq. (3.107) becomes

µ2
DM(m2

A)
µ2

DM(0)

---
ffl = f

=
1 + y

2(1≠y)
log y
log 2

1 ≠ y
2

, y © m2
A

m2
fl

. (3.108)

Numerically, the suppression is small: for example µ2
DM(m2

A)/µ2
DM(0) ¥ 0.97 for mA/mfl = 1/10.

As long as m2
A/m2

fl, ḡ2
D/g2

fl π 1, after m2
A is included in the mass matrix in Eq. (3.98) the

diagonalization is still obtained through a rotation of angle ◊ ≥
Ô

2ḡD/gfl .

3.C Scalar potential : fermion sector
Integrating out the fermionic resonances at tree level we obtain an e�ective Lagrangian containing
the top quark, the bL and the GBs as degrees of freedom,

Le�
t = �L0 b̄L/pbL + �Lt̄L/ptL + �Rt̄R/ptR ≠

!
�LR t̄LtR + h.c.

"
, (3.109)

In order to proceed, one must specify the couplings between the elementary and composite
operators. For example, let us focus on the couplings given in Eq. (3.27). In this scenraio, the left
handed top coupling break only the Higgs shift symmetry, while the right handed top coupling
break both the Higgs and the DM shift symmetry. This leads to the following form factors

�L = �L0 + h̃2

2f2 �L1 , �R = �R0 +
A

h̃2

f2 + 2‰ú‰

f2

B

�R1 , �LR = h̃Ô
2f

Û

1 ≠ h̃2

f2 ≠ 2‰ú‰

f2 �t
1 .

(3.110)
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The momentum-dependent form factors read, in Euclidean space,

�L0 = 1 +
NQÿ

i=1

|‘i
qQ|2

p2 + m2
Qi

, �L1 =
NSÿ

j=1

|‘j
qS |2

p2 + m2
Sj

≠
NQÿ

i=1

|‘i
qQ|2

p2 + m2
Qi

,

�R0 = 1 +
NSÿ

j=1

|‘j
tS |2

p2 + m2
Sj

, �R1 =
NQÿ

i=1

|‘i
tQ|2

p2 + m2
Qi

≠
NSÿ

j=1

|‘j
tS |2

p2 + m2
Sj

, (3.111)

�t
1 =

NSÿ

j=1

‘új
tS‘j

qSmSj

p2 + m2
Sj

≠
NQÿ

i=1

‘úi
tQ‘i

qQmQi

p2 + m2
Qi

.

The e�ective potential for the GBs reads

Vf (h̃, ‰) = ≠2Nc

⁄
d4p

(2fi)4 log
1
p2�L�R + |�LR|2

2
. (3.112)

Expanding Eqs. (3.102) and (3.112) to quartic order in the fields and matching with Eq. (3.29),
we obtain the expressions of the parameters µ2

h, ⁄h, µ2
DM, ⁄DM and ⁄ as integrals over the form

factors. For the dominant fermion contribution we find

µ2
h,f = ≠ Nc

8fi2f2

⁄ Œ

0
dp2p2

A
�L1

�L0
+ 2�R1

�R0
+ (�t

1)2

p2�L0�R0

B

,

⁄h,f = Nc

4fi2f4

⁄ Œ

µ2
IR

dp2p2

S

U1
4

A
�L1

�L0
+ 2�R1

�R0
+ (�t

1)2

p2�L0�R0

B2

+ (�t
1)2 ≠ p2�L1�R1

p2�L0�R0

T

V ,

µ2
DM = ≠ Nc

4fi2f2

⁄ Œ

0
dp2p2 �R1

�R0
, ⁄DM = Nc

4fi2f4

⁄ Œ

0
dp2p2 �2

R1

�2
R0

,

⁄ = Nc

8fi2f4

⁄ Œ

0
dp2p2

C

2
�2

R1

�2
R0

+ (�t
1)2

p2�L0�R0

3
1 + �R1

�R0

4D

, (3.113)

where we assumed real mixing parameters ‘. Notice that the integral for the Higgs quartic ⁄h,f is
IR divergent; the same happens for the (small) gauge contribution ⁄h,g. The IR divergence signals
that the potential is non-analytic at h̃ = 0, due to the contribution of the light degrees of freedom
(the top quark and SM gauge bosons). To remove this issue, the expansion of the potential in
Eq. (3.29) is extended to include an additional term �V = (”h/2)h̃4 log(h̃2/f2), which captures
the non-analytic contribution to the Higgs quartic. Then all the coe�cients of V + �V are
IR-finite, including ”h. The Higgs VEV Èh̃Í = v is obtained by solving the equation Èh̃Í2 =
≠µ2

h/[⁄h + ”h(1 + 2 log(Èh̃Í2/f2))], and the Higgs mass is m2
h = (1 ≠ ›)2v2(⁄h + 3”h + 2”h log ›).

We now summarize our procedure for the parameter scan. From Eq. (3.43), requiring that
0 Æ s2

◊,„ Æ 1 leads to the constraints

m2
S1 ≠ m2

Q1

m2
Q2

≠ m2
Q1

Æ s2
–,— Æ

m2
S2 ≠ m2

Q1

m2
Q2

≠ m2
Q1

. (3.114)

These can be satisfied only for mS2 > mQ1 , which we therefore assume. Taking into account
that �t

1 is the only form factor that is sensitive to the signs of the mixing parameters ‘, and
that furthermore the scalar potential is una�ected by �t

1 æ ≠�t
1, the angles are restricted to the

following ranges

◊, – œ [≠fi/2, fi/2], „ œ [0, fi/2], — œ [0, fi]. (3.115)

We summarize here the procedure adopted in the parameter scan of the two-layer model with
WSRs (the procedure for the scan of the one-layer model is analogous).
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1. The following parameters are randomly selected: ‘t œ [f/10, 8f ] , mS1,Q1 œ [0, 6f ] ,
mS2,Q2 œ [mQ1 , 6f ], ffl œ

Ë
f/

Ô
2, 2f

È
;

2. The angles – and — are randomly picked, compatibly with the restrictions in Eqs. (3.114)
and (3.115). Then „ is completely fixed, while the sign of sin ◊ is picked randomly.

3. ‘q is fixed by solving the following equation

m2
t =

--�LR(m2
t )

--2

�L(m2
t )�R(m2

t )

-----
h̃ = v, ‰ = 0

, (3.116)

where the numerical value of the top mass is set to mt = mMS
t (2 TeV) = 150 GeV.

4. mfl is fixed by requiring the Higgs VEV to match the observed value, Èh̃Í = v ƒ 246 GeV.

In the two-layer model, the compositeness fraction sL (sR) of the left (right) handed top
is computed by diagonalizing analytically the fermion mass matrix for v æ 0, and taking the
projection onto the composite fermions of the normalized eigenvector that corresponds to the
physical tL (tR). For example, the compositeness fraction of tR is defined as

sR ©
Û

a2
2 + a2

3
a2

1 + a2
2 + a2

3
with tp

R = 1
Ò

a2
1 + a2

2 + a2
3

(a1tR + a2S1 + a3S2), (3.117)

where tp
R denotes the mass-eigenstate right-handed top (for v æ 0). The compositeness fractions

satisfy 0 Æ sL,R Æ 1. In the one-layer model, they are identified with the sine of the elementary-
composite mixing angles.

In the scenarios where the DM shift symmetry is preserved by the top quark, the following
embeddings are used

72/3 ≥ ›(t)
L = 1Ô

2

1
ibL, bL, itL, ≠tL, 0 T

3
2T

, 212/3 ≥ ›(t)
R = i tR

2

Q

ccccca

0 ≠1
1 0

0 1
≠1 0

03◊3

R

dddddb
,

(3.118)

where empty entries in the expression of ›(t)
R are zeros. Since 7 = 6 ü 1 and 21 = 15 ü 6

under SO(6), in the top sector we expect fermionic resonance multiplets G ≥ 152/3, Q ≥ 62/3
and S ≥ 12/3 under SO(6) ◊ U(1)X . The decomposition and component expression of Q is
given in Eq. (3.26), whereas G decomposes as 15 = [(3, 1) + (1, 3)]0 ü (1, 1)0 ü (2, 2)±1 under
SU(2)L ◊ SU(2)R ◊ U(1)DM, where the X = 2/3 charge is understood. In components,

G = 1
2

Q

cccccccca

0 ≠iT 12
+ B12

+ ≠ X12
+ ≠i(B12≠ + X12≠ ) ≠B≠ ≠ X5/3 ≠ ≠i(B+ + X5/3 +)

0 ≠i(B12
+ + X12

+ ) ≠B12≠ + X12≠ i(B≠ ≠ X5/3 ≠) ≠B+ + X5/3 +
0 ≠iT 12≠ ≠T≠ ≠ X2/3 ≠ ≠i(T+ + X2/3 +)

0 ≠i(T≠ ≠ X2/3 ≠) T+ ≠ X2/3 +
0 ≠i

Ô
2 ÂS

0

R

ddddddddb

,
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(3.119)

where the lower triangle is determined by antisymmetry. We have made the definitions T 12± ©
ÂT1 ± ÂT2, Q12± © ( ÂQ1 ± ÂQ2)/

Ô
2 (Q = X, B) and Q± © (Q(+) ± Q(≠))/

Ô
2 (Q = T , B, X2/3, X5/3).

Here ( ÂXi, ÂTi, ÂBi)T is a (3, 1)0 for i = 1 and a (1, 3)0 for i = 2, ÂS ≥ (1, 1)0 , and the fields with
calligraphic names compose the (2, 2)±1.26 The elementary-composite mixing Lagrangian for the
top sector is

L(t)
mix = ‘i

qS ›̄(t)A
L UA7SR,i + ‘j

qQ›̄(t)A
L UAaQa

R,j + ‘j
tQ›̄(t)BA

R UAaUB7Qa
L,j

+ ‘k
tG›̄(t)BA

R UAaUBbG
ab
L,k + h.c.,

(3.120)

where repeated indices are summed. Here {i, j, k} count the multiplicities of resonances and
therefore run from 1 to {NS , NQ, NG}, respectively, while A, B are SO(7) indices and a, b are
SO(6) indices. Calculability of the one-loop scalar potential is obtained via generalized Weinberg
sum rules (WSRs). The minimal field content that gives a completely ultraviolet (UV)-finite one-
loop Higgs potential is NS = NQ = NG = 1, which we adopt. The embeddings in Eq. (3.118) yield
a Higgs potential with “double tuning” structure [131], where parametrically �≠1 ≥ (v2/f2)(‘t)2.

We now describe the embeddings of the bottom quark in the two models discussed in the
main text: the one of Sec. 3.4, where the ‰ shift symmetry is broken by bR, and the one of
Sec. 3.5, where the ‰ shift symmetry is preserved by the bottom sector.

DM shift symmetry broken by b quark The bottom quark embeddings are

7≠1/3 ≥ ›(b)
L = 1Ô

2

1
≠itL, tL, ibL, bL, 0 T

3
2T

, 7≠1/3 ≥ ›(b)
R = bR

1
0 T

6 , 1
2T

. (3.121)

We thus expect resonances Q(b) ≥ 6≠1/3 and S(b) ≥ 1≠1/3 under SO(6) ◊U(1)X . The component
expression of Q(b) is

Q(b) = 1Ô
2

1
iU≠4/3 ≠ i ÂT , U≠4/3 + ÂT , iU≠1/3 + i ÂB, ≠U≠1/3 + ÂB, ≠iV + iW, V + W

2T
, (3.122)

where under (SU(2)L)DM
Y we have (U≠1/3, U≠4/3)T ≥ 20

≠5/6, ( ÂT , ÂB)T ≥ 20
1/6 and V, W ≥ 1±1

≠1/3.
The elementary-composite mixing Lagrangian for the bottom sector reads

L(b)
mix = (‘m

qS(b) ›̄
(b)A
L S(b)

R,m + ‘m
bS(b) ›̄

(b)A
R S(b)

L,m)UA7 +(‘n
qQ(b) ›̄

(b)A
L Q(b)a

R,n + ‘n
bQ(b) ›̄

(b)A
R Q(b)a

L,n )UAa +h.c.,

(3.123)

where {m, n} run from 1 to {NS(b) , NQ(b)}, respectively. The complete fermionic Lagrangian is
Lf = (kin. terms)+(resonance masses)+L(t)

mix +L(b)
mix, where the kinetic terms include both those

for the elementary fields and the CCWZ ones for the resonances. Integrating out the resonances
we obtain an e�ective Lagrangian for the top and bottom quarks and the GBs, which we use to
calculate the one-loop potential for h̃ and ‰. In particular, for the DM mass parameter we find

µ2
DM = ≠ Nc

4fi2f2

⁄ Œ

0
dp2p2 �b

R1

�b
R0

, (bR loops) (3.124)

26Fields with calligraphic names have the same SO(4) quantum numbers as their non-calligraphic versions. For
example X (±)

5/3 transforms as X5/3 under SO(4), but has in addition charge ±1 under U(1)DM.
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with Euclidean form factors

�b
R0 = 1 +

N
S(b)ÿ

m=1

|‘m
bS(b) |2

p2 + m2
S

(b)
m

, �b
R1 =

N
Q(b)ÿ

n=1

|‘n
bQ(b) |2

p2 + m2
Q

(b)
n

≠
N

S(b)ÿ

m=1

|‘m
bS(b) |2

p2 + m2
S

(b)
m

. (3.125)

We introduce NQ(b) = NS(b) = 1 resonances and to obtain partial calculability of the bottom-
induced potential we impose one set of WSRs, which make the dimensionless couplings UV-finite
and reduce to logarithmic the degree of divergence of the mass parameters. The WSRs correspond
to the relations ‘2

qS(b) = ‘2
qQ(b) and ‘2

bS(b) = ‘2
bQ(b) , the latter of which implies from Eq. (3.125) that

µ2
DM vanishes for m2

Q(b) = m2
S(b) . Assuming mQ(b) , mS(b) > 0 we take as solutions to the sum rules

‘qS(b) = + ‘qQ(b) and ‘bS(b) = ≠ ‘bQ(b) , in which case ⁄ does not vanish even for mQ(b) = mS(b) .
We have then the parametric scalings

µ2
DM ƒ a

Nc

16fi2
M4

úb

f2 (‘b
R)2 CQS , CQS ©

m2
Q(b) ≠ m2

S(b)

M2
úb

, ⁄ ƒ b
Nc

16fi2
M2

úb

f2 y2
b , (3.126)

where a, b > 0 are O(1) coe�cients and Múb, defined via Eq. (3.14), is identified with Múb =
mQ(b) + mS(b) , which implies |CQS | < 1. An important constraint on this setup comes from
tree-level corrections to the Zb̄LbL coupling, since the embedding of bL in a (2, 2)≠1/3 of
SU(2)L ◊ SU(2)R ◊ U(1)X is not invariant under the PLR custodial symmetry [108]. The
corrections scale as

g

cw
Zµb̄L“µ(gSM

bL
+ ”gbL

)bL , ”gbL
ƒ +(‘b

L)2 v2

f2 (3.127)

(gSM
bL

= ≠1/2 + s2
w/3), where the sign is fixed to be positive. For comparison, the exper-

imental bound is ≠1.7 < 103 ”gbL
< +1.4 at 99% CL [166].27 A large bL compositeness,

namely ‘b
L ≥ 1 and ‘b

R ≥ ybf/Múb, leads to µ2
DM . ⁄v2 and therefore very light DM, m‰ ¥

4 GeV (Múb/8 TeV)(1 TeV/f),28 but is robustly ruled out by Zb̄LbL unless f ∫ TeV. Conversely,
a large bR compositeness ‘b

R ≥ 1, ‘b
L ≥ ybf/Múb easily satisfies the Zb̄LbL constraint. This region,

however, yields parametric scalings for µ2
DM and ⁄ that are similar to those already discussed

in the case where the DM shift symmetry is broken by tR couplings. We are thus led to focus
on the “intermediate” range ‘b

L ≥ ‘b
R ≥


ybf/Múb , where the correction to Zb̄LbL is typically

moderate, 103 ”gbL
≥ + few ◊ 0.1 (8 TeV/Múb) (1 TeV/f), and the DM potential scales as in

Eq. (3.64), where in the (crude) estimate of the DM mass we have taken a typical CQS ≥ 0.2 for
this parameter region.

For illustration a numerical scan of the model parameter space was performed, setting
f = 1 TeV and requiring that the scalar potential generated by the top and bottom sectors gives
the observed Higgs VEV and mass. We chose mQ(b) > mS(b) , yielding 0 < CQS < 1 and µ2

DM > 0,
therefore U(1)DM is never spontaneously broken. In addition, we took � = 10f as UV cuto� for
the bottom contributions to µ2

DM and µ2
h. The results of the scan are reported in Fig. 3.19, where

to approximately account for LHC constraints [167] only points where all resonances are heavier
than 1.2 TeV are shown. The distribution of the mixings ‘b

L,R, shown in the left panel, clearly
follows Eq. (3.14) and significantly populates the region ‘b

L ≥ ‘b
R ≥


ybf/Múb ≥ 0.03 - 0.04, where

the parametric scalings in Eq. (3.64) approximately apply. From the right panel, which shows
27In this model bR is embedded in a (1, 1)≠1/3 µ 7≠1/3, so the Zb̄RbR coupling is protected by PLR and very

suppressed. Therefore it makes sense to set ”gbR = 0 in the electroweak fit. Since ”gbL is weakly correlated with
the remaining precision observables, we can then simply quote its one-parameter bound.

28We have fixed the numerical value of yb via mb = mMS
b (2 TeV) ƒ 2.5 GeV.
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Figure 3.19: Results of the parameter scan of the model where the DM shift symmetry is broken by
bR, for f = 1 TeV. Left panel: distribution of the mixings for the two chiralities of the
bottom quark. The blue (green) curve corresponds to the relation yb ƒ ‘b

L‘b
RMúb/f with

Múb = 8 (16) TeV. Notice that Múb = mQ(b) + mS(b) is not a physical mass, and can
therefore exceed 4fif . Right panel: tree-level correction to the Zb̄LbL coupling versus the
physical ‰ mass. The black dashed line indicates the 99% CL experimental upper bound,
103 ”gbL

< 1.4, whereas the green vertical line corresponds to the mass for which ‰ yields
the observed DM density by annihilating purely through the derivative Higgs portal.

the tree-level ”gbL
versus the physical ‰ mass, we read that in the region where ‰ constitutes all

or part of the observed DM, i.e. m‰ Ø m(f = 1 TeV)
‰ ¥ 122 GeV, the tree-level correction to Zb̄LbL

is always below the experimental bound.
DM shift symmetry preserved by b quark The right-handed bottom is embedded as

212/3 ≥ ›(b)
R = bR

2
Ô

2

Q

ccccca

02◊2
1 i

≠i 1
≠1 i
≠i ≠1 02◊2

03◊3

R

dddddb
, (3.128)

where empty entries are zeros. Therefore the embedding of qL in Eq. (3.118) is su�cient to
generate the bottom mass, and an X = ≠1/3 sector needs not be introduced. The Lagrangian
that mixes the bR with the composite resonances reads

ÂL(b)
mix = ‘j

bQ›̄(b)BA
R UAaUB7Qa

L,j + ‘k
bG›̄(b)BA

R UAaUBbG
ab
L,k + h.c., (3.129)

and the complete fermionic Lagrangian is Lf = (kin. terms) + (resonance masses) + L(t)
mix + ÂL(b)

mix.
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As a final remark, we have neglected one-derivative operators built out of fermionic resonances,
such as (schematically) S̄i/d

a
Qa

j and Q̄a
j /d

b
Gab

k in the X = 2/3 sector and S̄(b)
m /d

a
Q(b)a

n in the
X = ≠1/3 sector, which are generically expected to appear in Lf with O(1) coe�cients.
Their presence does not a�ect our discussion, but can have important e�ects on the resonance
phenomenology at high-energy colliders [110].

3.D Details on DM phenomenology

The explicit values of the couplings in Eqs. (3.45, 3.46) are

ahhh = bh‰‰ = ›Ô
1 ≠ ›

, ahh‰‰ = ›2

1 ≠ ›
, bhh‰‰ = ›

1 + ›

1 ≠ ›
,

ahV V = dh‰‰ = dhhh =


1 ≠ › , dhh‰‰ = 1 ≠ › .

(3.130)

The couplings between the scalars and the top quark in Eq. (3.47) can be easily computed by
matching with Eq. (3.109), where the top partners have been integrated out in the original
field basis. However, the results of the parameter scan show that the “composite” mass of the
lightest singlet, mS1 , can in some cases be as low as few hundred GeV (while the physical mass
of the lightest singlet is still above the experimental lower bound of 1 TeV, because it receives a
large contribution from the elementary-composite mixing parameters ≥ ‘t), thus invalidating the
simple e�ective theory approach in this basis. Therefore we proceed as follows: Starting from
the UV Lagrangian in Eq. (3.27), after exact, numerical diagonalization of the fermion mass
matrices we consider the following terms

Lf – it̄ /̂t ≠ mtt̄t
1
c̃tth

h

v
+ 2 c̃tt‰‰

‰ú‰

v2

2
(3.131)

+
NQÿ

i=1

Ë
Y i

!
i /̂ ≠ mQi

"
Yi + Zi

!
i /̂ ≠ mQi

"
Zi + t̄(bi

LPL + bi
RPR)(Yi‰

ú + Zi‰) + h.c.
È
,

where we introduced the coe�cients c̃tth, c̃tt‰‰, bi
L and bi

R, which are real if CP invariance is
imposed. After integrating out the Yi and Zi and matching to Eq. (3.47), we find that ctth = c̃tth,
whereas

ctt‰‰ = c̃tt‰‰ ≠ v2

mt

NQÿ

i=1

C
bi

Lbi
R

mQi

+ mt

2m2
Qi

(bi 2
L + bi 2

R )
D

. (3.132)

We have verified that for parameter choices where the EFT approximation is justified, the values
of ctth and ctt‰‰ obtained from Eq. (3.109) agree with those computed with this semi-numerical
method.

The cosmological evolution of the ‰ number density29 is described by the Boltzmann equation

dn‰

dt
+ 3Hn‰ = ≠È‡vrelÍ

5
n2

‰ ≠
1
neq

‰

22
6

, (3.133)

where neq
‰ is the equilibrium number density, H is the time-dependent Hubble parameter and

È‡vrelÍ is the thermally averaged annihilation cross-section times the relative velocity of two DM
particles, whose expression is [91]

È‡vrelÍ(T ) = 1
16m4

‰TK2
2 (m‰/T )

⁄ Œ

4m2
‰

ds s
Ò

s ≠ 4m2
‰ K1(

Ô
s/T ) ‡vrel(s) , (3.134)

29Notice that the DM number density is obtained summing over particles and anti-particles, nDM = 2 n‰.
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where T denotes the temperature and K1, K2 are modified Bessel functions of the second kind.
Dark matter annihilates dominantly into WW, ZZ, hh and tt̄. The corresponding cross sections
were calculated analytically in terms of the parameters of the e�ective Lagrangian in Eq. (3.44),
and found to agree with those of Ref. [73] in the limit ctth = cnl‡m

tth , ctt‰‰ = cnl‡m
tt‰‰ . Equation

(3.50) provides a naive solution of the Boltzmann equation, which is nevertheless useful for a
qualitative understanding.

The leading 1-loop corrections to the derivative ‰‰úhh coupling in Eq. (3.52) are obtained
computing the set of Feynman diagrams depicted in Fig. 3.10, and selecting the logarithmically
divergent pieces. For simplicity, we report the result in the limit where the GB masses are
neglected. Even though this is a rough approximation for DM annihilation, where the kinematic
variables take the values (assuming m2

‰ ∫ m2
h) s ≥ 4m2

‰ and t ≥ u ≥ ≠m2
‰, it is nevertheless

su�cient for the purpose of estimating the theoretical uncertainty on the cross section. In
particular, it implies that s + t + u ƒ 0. The first class of diagrams in Fig. 3.10, which contain
two insertions of the elementary-composite mixings, yield the result in momentum space

iNc

8fi2f4

1
‘2
t ≠

‘2
q

8
2
s log �2 . (3.135)

Notice that this class of diagrams also yield the O(p0) coupling ⁄. The second class of diagrams
contain two derivative couplings arising from the eµ symbol, and give

iNc

8fi2f4

1
≠

‘2
q

8
2
3 s log �2 , (3.136)

which can be seen as arising from two ‘ insertions on the internal fermion lines. The contribution
of the third class of diagrams turns out to be proportional to the external masses, and thus
negligible within our approximations. Lastly, the triangle diagrams composing the fourth class
yield

iNc

8fi2f4
!
‘2
t

"
3 s log �2 . (3.137)

Summing Eqs. (3.135), (3.136) and (3.137) and making the argument of the logarithm dimen-
sionless by inserting m2ú, we arrive at the final result in Eq. (3.54).

The SI DM-nucleon cross section is given by

‡‰N
SI = 1

fi

3
mN

m‰ + mN

42 5
ZFp + (A ≠ Z)Fn

A

62
, (3.138)

where mN = (mp + mn)/2 is the average nucleon mass, and for Xenon A = 130, Z = 54. The
e�ective couplings of the DM to nucleons can be written as

Fx

mx
=

ÿ

q=u,d,s

fx
Tq

aq + 2
27 fx

Tg

3 ÿ

q=c,b

aq + kt
g

4
, (x = p, n) (3.139)

where the first term represents the tree-level coupling to the light quarks u, d, s, while the second
term parameterizes the coupling to gluons via loops of heavy fermions. For convenience, in the
second term we have further singled out the contribution mediated by the top and top partners,
kt

g, from the one coming from the charm and bottom. The former can be easily computed using
the low-energy theorem for the GBs,

kt
g = ⁄v

m2
h

dh‰‰Dh ≠ 1
2D‰‰ú (3.140)
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with the definitions

Dh ©


1 ≠ ›
3

ˆ

ˆh̃
log |det Mt(h̃, ‰)|

4

h̃ = v, ‰ = 0
= 1

v

1 ≠ 2›Ô
1 ≠ ›

,

D‰‰ú ©
A

ˆ2

ˆ‰ˆ‰ú log |det Mt(h̃, ‰)|
B

h̃ = v, ‰ = 0
= ≠ 1

f2(1 ≠ ›) ,
(3.141)

where Mt is the field-dependent mass matrix for the top sector. The expression of the coe�cients
aq was given in Eq. (3.12). Even though kt

g receives contributions from the top partners, its final
expression depends only on f and is insensitive to the resonance parameters. This cancellation
can be traced to the fact that with our choice of fermion embeddings, qL, tR ≥ 7 of SO(7),
there is only one SO(6) invariant that generates the top mass [168, 169].30 We remark that our
computation based on Eq. (3.140) is only approximate for the box diagrams that contain Y, Z
propagators, and could be improved through an exact computation of the ‰g æ ‰g scattering
amplitude, see Ref. [170] for an extensive discussion in the similar case of neutralino-nucleon
scattering. However, we have checked that for realistic parameter points the contribution of the
box diagrams to kt

g is . 10%, hence we estimate that the corrections to our approximation would
only a�ect ‡‰N

SI at the percent level.
The contribution of the light SM quarks is encoded by the coe�cients aq (q = u, d, c, s, b) in

Eq. (3.139). It is somewhat model-dependent, being determined by the choice of the corresponding
embeddings, which we have not specified so far since they do not a�ect any other aspect of the
phenomenology. For concreteness, we assume all left-handed light quarks to be embedded in the
7, whereas for the right-handed light quarks we take bR ≥ 7, leading to a contribution identical
to the one of the top sector, and qR ≥ 1 (q = u, d, c, s), yielding a vanishing coe�cient for the
‰ú‰q̄q contact term. In summary, we have

kt
g = ab = ⁄

m2
h

(1 ≠ 2›) + 1
2f2(1 ≠ ›) , au,d,c,s = ⁄

m2
h

(1 ≠ ›). (3.142)

For the nuclear matrix elements that appear in Eq. (3.139) we take fp
Tu

= 0.021, fp
Td

= 0.041,
fn

Tu
= 0.019, fn

Td
= 0.045, obtained from agreeing determinations of the pion-nucleon sigma term

‡fiN from chiral perturbation theory [171] and dispersive methods [172], and fp,n
Ts

= 0.043, based
on lattice QCD results [173]. The gluon matrix element is then fp,n

Tg
= 1 ≠ q

q=u,d,s fp,n
Tq

ƒ 0.89.
For realistic parameters the Higgs exchange dominates and the cross section can be approximated
by the simple expression in Eq. (3.56), with fN © 2/9 + (7/9)

q
q=u,d,s fp,n

Tq
ƒ 0.30.

In the scenario where the ‰ shift symmetry is broken by bR, ⁄ is negligible and the cross
section takes the form in Eq. (3.65), where f̃N = (2/27)fTg ¥ 0.066 in case I and f̃N =
fTd

+ fTs + (2/27)fTg ¥ 0.15 in case II.

3.E U(1)Y - U(1)DM kinetic mixing

In this appendix we show that kinetic mixing of U(1)Y and U(1)DM (in short, Y -DM kinetic
mixing) can vanish exactly in the SO(7)/SO(6) model, thus motivating the choice Á = 0 made
throughout our discussion.

As first step, we neglect the explicit G breaking in the fermion sector and consider the bosonic
Lagrangian including the gauging of SU(2)L ◊ U(1)Y ◊ U(1)DM . At O(p2) this is simply given

30Notice that the expression of kt
g is identical to that obtained in SO(6)/SO(5) when qL, tR ≥ 6 [73].
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by Eq. (3.15), and the kinetic mixing operators arise at O(p4). The four-derivative bosonic
Lagrangian was first written down for the SO(5)/SO(4) model in Ref. [174]. To obtain a basis
of operators for our model we find it convenient to follow Ref. [175], where the O(p4) Lagrangian
for SO(5)/SO(4) was discussed by parametrizing the GBs with the matrix �(fį) = U(fį)2. This
alternative, but equivalent, description is possible for symmetric cosets such as SO(N +1)/SO(N),
which admit an automorphism (grading) R of the algebra that flips the sign of only the broken
generators, T â æ + T â and Xa æ ≠Xa. The three building blocks that are used to construct
invariant operators, all transforming in the adjoint of G, are

Vµ = (Dµ�)�≠1, Aµ‹ = ˆµA‹ ≠ ˆ‹Aµ ≠ i[Aµ, A‹ ], �AR
µ‹�≠1, (3.143)

where AR
µ‹ © R(Aµ‹) and we formally took the whole of G to be gauged by Aµ = gGAA

µ T A, hence
the covariant derivative is Dµ� = ˆµ� ≠ i(Aµ� ≠ �AR

µ ). In this formalism, the two-derivative
Lagrangian is Lfi = ≠(f2/16)Tr

#
VµV µ

$
.

In our model the physical sources are given by Eq. (3.97), which satisfies AR
µ = Aµ. By

constructing a complete basis for the O(p4) Lagrangian L4, we find that Y -DM kinetic mixing is
encoded by the operators

Tr
#
B̄µ‹F̄µ‹

D

$
, Tr

#
�B̄µ‹�≠1F̄µ‹

D

$
, (3.144)

where B̄µ‹ © ḡÕB̄µ‹T 3
R and F̄µ‹

D ©
Ô

2 ḡDF̄ µ‹
D T DM. Both operators in Eq. (3.144) vanish

identically. In fact, we have checked that the whole Lfi + L4 is invariant under the parity
P6 = diag (1, 1, 1, 1, 1, ≠1, 1) œ O(7). Recalling that T DM generates rotations in the (5, 6) plane
[
Ô

2 T DM = diag (04◊4, ‡2, 0)], P6 is identified with the charge conjugation CD that we referred
to in the main text. The action of P6 on the SO(7) generators is

P6 TP6 = + T, T =
Ó

T –
L,R, T a5, Xb

Ô
and P6 T P6 = ≠ T , T =

Ó
T DM, T a6, X6

Ô

(3.145)

where a = 1, . . . , 4 and b = 1, . . . , 5. As a consequence, the GBs and the elementary gauge fields
transform as

‰ æ ≠‰ú, ĀD æ ≠ĀD , {hi, W̄ , B̄} æ + {hi, W̄ , B̄} (i = 1, . . . , 4), (3.146)

which shows that if P6 is exact, Y -DM kinetic mixing is forbidden. Furthermore, “higher-
derivative kinetic mixing” operators (i.e. operators that mix B̄µ‹ and F̄ µ‹

D , but with the insertion
of additional derivatives) also have to be built out of the objects in Eq. (3.143), and are found
to vanish. Summarizing our results thus far, the explicit breaking of SO(7) due to the weak
gauging does not generate Y -DM kinetic mixing.

As second step, we turn on the explicit G breaking in the fermion sector. Since [T DM, P6] ”= 0,
the SM fermions cannot be simultaneously assigned a nonzero U(1)DM charge and definite P6
parity. Therefore if the SM fermions were taken to have QDM ”= 0, then fermion loops would
generate Y -DM kinetic mixing: for example, this would happen if qL were embedded in the
(2, 2)+1 µ 212/3 of SO(7) ◊ U(1)X and tR in the (1, 1)+1 µ 72/3. However, for our purposes we
must take QDM = 0 for all SM fields, in order for ‰ to be the lightest U(1)DM-charged particle
and therefore stable. In this case each elementary fermion can be assigned definite parity (all
the fermion embeddings employed in this thesis have in fact P6 = +1), which guarantees that
fermion loops do not generate Y -DM kinetic mixing.

Note that the last conclusion can be altered by subleading spurions, if a single elementary
fermion couples to operators with di�erent P6. As a concrete example we can imagine that tR has,
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in addition to the embedding in the (1, 3)0 µ 212/3 given in Eq. (3.118), a second embedding
in the (1, 1)0 µ 212/3, namely ›Õ(t)

R = tRT DM. Then it is clear from Eq. (3.145) that the first
spurion has P6 = +1 while the second has P6 = ≠1, so tR cannot be assigned a definite parity.
Nonetheless, P6 invariance of the fermionic Lagrangian can still be enforced, by imposing that
each elementary field couples to only even operators (or only odd ones, although we are not
interested in that possibility here).

Notice that from Eq. (3.145) it follows that P6 also acts on the resonances: taking as examples
the S, Q and G fermionic multiplets, we have

Y ¡ ≠Z , ÂS æ ≠ ÂS, {T (+), B(+), X (+)
2/3 , X (+)

5/3 } ¡ ≠ {T (≠), B(≠), X (≠)
2/3 , X (≠)

5/3 }, (3.147)

while all the other components are left invariant. One can similarly derive the transformation
properties of the other fermionic resonances and of the vector multiplets, where in particular
flD æ ≠flD.

3.F Collected results for phenomenology
The loop function for the h æ “D“D decay is, for m“D = 0,

F (·) = ·

3A0(·), A0(·) = 3
·2 [f(·)≠· ] , f(·) =

Y
]

[

arcsin2 Ô
· , · Æ 1 ,

≠1
4

5
log

3
1+

Ô
1≠1/·

1≠
Ô

1≠1/·

4
≠ ifi

62
, · > 1 .

(3.148)

Note that A0(·) = 1 + O(·) for small · .
Finally we report the thermally averaged cross sections relevant to the region m‰ . m“D <

2m‰. The one for ‰‰ú æ “D“D is

È‡‰‰úæ“D“D vrelÍ = 2fi–2
D

m2
‰

Ô
1 ≠ R

1 ≠ R + 3R2/8
(1 ≠ R/2)2 , R ©

m2
“D

m2
‰

, (3.149)

whereas

È‡“D“Dæ‰‰úvrelÍ = 22fi–2
D

9m2
“D

(1 ≠ ÂR)1/2
1
1 ≠ 24 ÂR

11 + 16 ÂR2

11
2

, ÂR ©
m2

‰

m2
“D

. (3.150)

For the semi-annihilation

È‡“Dhæ‰‰úvrelÍ = –Dv2mh(m“D + mh)2

6f4m3
“D

Ë
1 ≠

4m2
‰

(m“D + mh)2

È3/2
, (3.151)

while for the inverse process we have

È‡‰‰úæ“DhvrelÍ = –Dv2m4
hT

8f4m5
‰

—h“D

1 ≠ (3
2R“D + 2Rh) + Rh(Rh + 3R“D ) + 1

2R“D (R“D ≠ Rh)2

(1 ≠ Rh ≠ R“D )4 ,

(3.152)

where —h“D
© [1 + (Rh ≠ R“D)2 ≠ 2(Rh + R“D)]1/2 and Ri © m2

i /(4m2
‰). Notice the additional

factor T/m‰ coming from the p-wave suppression.
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Lastly,

È‡“D‰æh‰vrelÍ = –Dv2m4
h G(m“D , mh; m‰)

24f4m‰m3
“D

, È‡h‰æ“D‰vrelÍ =
–Dv2mhm2

“D
G(mh, m“D ; m‰)

8f4m‰(mh + 2m‰)2 ,

G(m1, m2; m‰) =
#
(m2

1 ≠ m2
2)((m1 + 2m‰)2 ≠ m2

2)
$3/2

(m1 + m‰)2[m‰(m1 + 2m‰) ≠ m2
2]2 . (3.153)
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4
Motivation and framework

4.1 The strong CP problem
In order to present the Strong CP Problem which constitutes the motivation for the Axion, we
start by reviewing the vacuum structure of non-abelian gauge theories [176, 177, 178, 179]. We
show that due to the vacuum structure and tunneling e�ects driven by instantons, an additional
term must be added to the Lagrangian

L ∏ ◊g2

32fi2 ‘µ‹–—TrFµ‹F̃–— , (4.1)

where ◊ is a constant and g is the gauge coupling. Next we discuss the e�ects of instantons on
a theory with fermions and the axial anomaly [180, 181, 182]. We conclude by discussing the
consequences of the ◊ term and formulate the Strong CP Problem.

4.1.1 Vacuum structure of non-abelian gauge theories
For simplicity, we focus on SU(2), but the results are generalizable to other non-abelian gauge
groups containing an SU(2) subgroup. We note that a more intuitive picture of the vacuum
structure emerges when working in the A0 = 0 gauge, which we shall adopt in this section. Under
a generic gauge transformation U(x) œ SU(2)

Ai æ AÕ
i = UAiU

≠1 + i

g
UˆiU

≠1 . (4.2)

Any particular gauge configuration in the A0 = 0 is not uniquely defined - gauge equivalent
configurations are found by performing time-independent transformations which conserve the
gauge fixing condition. We consider gauge configurations that are gauge equivalent to the trivial
vacuum Ai = 0 for i =, 1, 2, 3,

Ai = i

g
U≠1ˆiU . (4.3)

Let us assume that U(x) becomes a constant as x æ Œ, which we can set without loss of
generality to be the identity 1. The topology of IRN with spatial infinity identified as the same
point is equivalent to an N -sphere. In our case N = 3, and Eq. (4.3) represents a mapping
between a 3-sphere and SU(2) group members. The manifold describing SU(2) is a 3-sphere
as well: this could be easily shown from the fact that a generic SU(2) transformation can be
written as

U({c}) = c01 + ici‡i , (4.4)
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with the constraint c2
0 + c2

1 + c2
2 + c2

3 = 1. All the mapping from S3 æ S3 can be collected into
equivalency classes. Each equivalency class is comprised of mappings which are continuously
deformable into each other. All the classes form a group, in this case

fi3(S3) = Z , (4.5)

namely each class is defined by an integer, known as the winding number. The winding number
is given by

N [U ] = 1
24fi2 ‘ijk

⁄
d3x Tr[(U≠1ˆiU) (U≠1ˆjU) (U≠1ˆkU)] . (4.6)

One can show that for any two configurations U1, U2 œ SU(2) ,

N [U1 · U2] = N [U1] + N [U2] , (4.7)

as excepted from the group Z. For example, a family of configurations with winding number n is
given by

U (n) = exp
5

n xi‡i

r
f(r)

6
, (4.8)

with f(r) any monotonic function with f(0) = ≠fi and f(Œ) = 0. It is useful to define the gauge
variant current

jµ
A = g2

16fi2 ‘µ‹–—Tr
5
A‹F–— + 2ig

3 A‹A–A—

6
, (4.9)

whose divergence is the gauge invariant expression

ˆµJµ
A = g2

32fi2 ‘µ‹–—Fµ‹F –— © g2

16fi2 Fµ‹F̃ µ‹ . (4.10)

The charge associated with this current (which is not conserved since ˆµJµ
A ”= 0) is

QA =
⁄

d3x j0
A = g2

16fi2 ‘ijk
⁄

d3x Tr
5
AiFjk + 2ig

3 AiAjAk

6
.. (4.11)

In a vacuum gauge configuration where Fjk = 0, and Ai is of the form of Eq. (4.3), one immedi-
ately finds that QA = N [U ].

We have shown the existence of degenerate vacua, characterized by a winding number (or
topological charge) which are not continuously deformable to each other. In other words, the
gauge transformation relating configuration with di�erent winding numbers are large in the sense
they cannot be constructed from a set of infinitesimal transformation. Thus, we can treat these
degenerate minima as being separated by energy barriers. At the classical level each vacuum is
stable, but at the quantum level transitions between vacua are possible due to instantons: gauge
configuration which describe the tunneling process from one degenerate minima to another. Let
us consider such a configuration, describing a transition starting from some initial time ti with
winding number Ni, and ending at some final time tf with winding number Nf . One can show
that

⁄
d4x ˆµJµ

A =
⁄

d3x
⁄

dt ˆ0J0
A +

⁄
dt

⁄
d3x ˆiJ

i
A = Nf ≠ Ni , (4.12)
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where the spatial gradient term vanishes at the boundary under the assumption that Ai æ 0 at
spatial infinity, leaving only the contribution from the time derivative. The latter is evaluated
as the charge at the temporal boundaries, fixed as Ni and Nf at initial and final time, respectively.

The presence of instantons requires a redefinition of the true vacuum state. For example,
in the simple 1D double well potential in quantum mechanics, the true ground state of the system
becomes the symmetric linear combination |LÍ + |RÍ, with |LÍ , |RÍ the vacua state of each well
in the absence of tunneling. A generalization of this occurs in case of infinite degenerate vacua,
which can be thought of as a periodic potential. In this case, the vacuum is written as a Bloch
wave, and one defines the ◊ vacuum as

|◊Í =
+Œÿ

n=≠Œ
e≠in◊ |nÍ , (4.13)

with |nÍ representing a vacuum state with winding number n, which are summed over with
the phase factor ein◊. 1. The defining feature of the ◊-vacuum is that is it an eigenstate of the
operator T acting as

T |nÍ = |n + 1Í , (4.14)

which could be realized simply by performing the gauge transformation of Eq. (4.8) with n = 1.
One than finds that T |◊Í = ei◊ |◊Í. Importantly, ◊ vacua are eigenstates of the Hamiltonian, and
therefore do not overlap at any time

+
◊Õ-- e≠iHt |◊Í =

ÿ

n,m

eim◊Õ
e≠in◊ Èm| e≠iHt |nÍ =

ÿ

n,m

eim(◊Õ≠◊)ei◊(m≠n) Èm| e≠iHt |nÍ (4.15)

However since

Èm| e≠iHt |nÍ = Èm| e≠iHtTT † |nÍ = Èm| Te≠iHtT † |nÍ = Èm ≠ 1| e≠iHt |n ≠ 1Í , (4.16)

where we used the fact that [H, T ] = 0 since the Hamiltonian is gauge invariant, we can replace
Èm| e≠iHt |nÍ = Èm ≠ n| e≠iHt |0Í and relabel the indices to find

+
◊Õ-- e≠iHt |◊Í =

ÿ

m,l

eim(◊Õ≠◊)ei◊l Èl| e≠iHt |0Í = 2fi”(◊ ≠ ◊Õ)
ÿ

l

ei◊l Èl| e≠iHt |0Í . (4.17)

The last term can be conveniently written using the path integral formalism as
ÿ

l

ei◊l Èl| e≠iHt |0Í =
ÿ

l

ei◊l
⁄

[DAµ]l exp
;

i
⁄

d4x L[Aµ]
<

=
⁄

DAµ exp
I

i
⁄

d4x L[Aµ] + ◊g2

16fi2 TrFµ‹F̃ µ‹

J

, (4.18)

where the measure [DAµ]l integrates over all the configurations which transition from Ni = 0
and Nf = l. Than we used Eqs. (4.10) and (4.12) the express the topologic charge l as the
space time integral of the FF̃ term. Lastly, in the final expression we absorbed the sum of all
final winding number in the measure [DAµ], which integrates over all possible winding number
changing transitions. Lastly, let us point out that the ◊ vacuum is invariant under a discrete
shift symmetry ◊ æ ◊ + 2fi.

1Note that in the A0 gauge, each topological sector contains additional internal gauge redundancies, relating
di�erent configuration within the same sector. These can be removed using an appropriate gauge condition, see
Ref. [179].
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4.1.2 Anomalies
One of the important physical e�ects of instantons emerge when theories beyond pure Yang-Mills
are considered, namely when fermions are introduced. Let us consider a theory with Nf fermions
in some representation of a non-abelian gauge group

L ∏ ◊0g2

16fi2 TrFµ‹F̃ µ‹ + q̄ii /̂qi ≠ (q̄i
LM ijqj

R + h.c) (4.19)

= ◊0g2

16fi2 TrFµ‹F̃ µ‹ + q̄ii /̂qi ≠ (q̄i[M̃ cos QM ]ijqj + iq̄i[M̃ sin QM ]ij“5qj) , (4.20)

where the repeated indices are summed i, j = 1, ..., Nf . We parameterize M © M̃ exp[iQM ],
where M̃ and QM is a real diagonal Nf -by-Nf matrices in flavor space. The former matrix carries
dimensions of mass while the latter is dimensionless and encodes the phase of each diagonal
entry. Classically, in the M æ 0 limit the theory contains the global symmetry

SU(Nf )L ◊ SU(Nf )R ◊ U(1)L ◊ U(1)R . (4.21)

Of particular interest is the axial combination U(1)A © U(1)R≠L, defined as the transformation

q æ ei–“5Qq , (4.22)

where Q is a real diagonal Nf -by-Nf matrix in flavor space and – a real number. Let us use
an old trick and allow – to be space-time dependent and performs this transformation (we can
always set it to constant at a later point). The Lagrangian shifts at O(–) by

–≠1�L = ˆµ(q̄“µ“5Qq) ≠ 2iq̄QM̃ cos QM “5q + 2q̄QM̃ sin QM q + g2

8fi2 Tr[Q]TrFµ‹F̃ µ‹ .

(4.23)

The first term in the right-hand side of Eq. (4.23) is the divergence of the would be conserved
current jµ

5 = q̄“µ“5Qq in the limit M, g æ 0. The second and third terms represent the explicit
breaking of U(1)A in the theory due to the presence of a mass term. The fourth and final term
is the anomaly term, which represent the breaking of the symmetry at the quantum level. Using
Fujikawa’s method [183], the appearance of the anomaly term could be also understood as the
Jacobian associated with the chiral transformation of Eq. (4.22), which changes the measure in
the path integral.

Since �L ”= 0, U(1)A is not a symmetry of the Lagrangian, and Eq. (4.22) can be regarded as a
field redefinition or equivalently, a change of basis. In the new basis

◊0 æ ◊0 + 2– Tr[Q] , (4.24)
QM æ QM + 2–Q . (4.25)

It is therefore useful to identify the base-independent and thus physical angle

◊ © ◊0 ≠ Arg det M , (4.26)

where Arg det M = Tr[QM ] shifts precisely like the ◊0 angle. Note that if we insist that – is
space-time dependent, the new basis also contains the derivative term

L ∏ ≠(ˆµ–)jµ
5 . (4.27)
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In light of Eqs. (4.24) and (4.25), the chiral transformation can be used either to completely
remove the FF̃ term from the Lagrangian, or to remove all the phases from the mass parameters
thus making them real.

The anomalous nature of the U(1)A and its explicit breaking to due to the presence of in-
stantons lead to the solution of the so called U(1) problem [184], which is the absence in the low
energy spectrum of a Goldstone boson associated with the U(1)A, usually denoted as ÷Õ. See
Sec. 4.3 for further discussion.

4.1.3 ◊ angle measurement
We now include the relevant term in the SM,

LSM ∏ ◊g2

16fi2 TrGµ‹G̃µ‹ , (4.28)

where we explicitly wrote it in terms of the gluon field strength Gµ‹ and use the basis where all
the mass parameters in LSM are real2. As shown above, the GG̃ term can be written as a full
derivative, see Eqs. (4.9) and (4.10). This implies that the term does not have any e�ect on the
classical equation of motion, as well as no e�ect at the quantum level: in momentum space the
relevant vertex is proportional to the sum of incoming momenta and vanishes identically due
to momentum conservation. One could then naively conclude that the ◊ GG̃ term leads to no
observable e�ects.

However, the ◊ angle does have physically observable consequences. ◊ is a pure phase pa-
rameter: the GG̃ term is odd under CP (or T ), and ◊ breaks CP invariance unless it is set to 0
or fi. Importantly, CP is already violated in the SM by the weak interactions, and the so called
CKM matrix contains an O(1) CP violating phase ” = tan≠1(÷̄/fl̄) ≥ 0.38fi [185]. Therefore, it
is reasonable to assume that ◊ is O(1) as well. One notable observable which probes ◊ is the
neutron electric dipole moment, given by [186]

dn ≥ 5 ◊ 10≠16 ◊ e cm . (4.29)

A recent bound on the magnitude of dn [187]

|dn| < 3 ◊ 10≠26 e cm (90% C.L) , (4.30)

implies that

|◊| < 10≠10 n 1 . (4.31)

The fact that the experimental evidence suggest that ◊ π 1 is known as the strong CP problem3.
Interestingly, the ◊ angle also appears in a contribution to the so-called vacuum energy

L ∏ �4
QCD cos ◊ . (4.32)

2In principle a weak ◊ term, ◊wg2

16fi2 TrWµ‹W̃ µ‹ , can be introduced as well. However due to the chiral nature of
SU(2)L, ◊w is not physical and can be removed by a vector-like transformation of the fields: first, the term can be
removed by a rotation of the left-handed fields only. As discussed above, this transformation would in general
generate a shift in the mass terms (or equivalently in this case, the Yukawa couplings with the Higgs field). A
similar rotation on the right-handed fields can remove the shift in the mass terms without reintroducing a weak ◊
term, since the right-handed fields do not carry SU(2)L quantum numbers.

3The strong CP problem can be immediately solved by making one of the quarks, e.g. the up quark, massless.
In this case, ◊ can be absorbed in the phase of the vanishing mass parameter, thus removing it from the theory and
making it unphysical. However, experiments and lattice simulations seem to suggest that there are no massless
quarks in Nature.
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The fact that the contribution appears as a periodic function can be understood as a consequence
of the discrete shift symmetry ◊ æ ◊ + 2fi, which leaves the ◊ vacuum invariant. Since ◊ is simply
a constant, this sort of term is usually regarded in QFT as an inconsequential constant shift
in the vacuum energy, which does not lead to any observable e�ects in perturbation theory4.
However, Eq. (4.32) does motivate an interesting question: what if ◊ was not a constant but
rather a dynamical field? In light of the potential of Eq. (4.32), the field would than dynamically
relax the value of ◊ to 0! This observation is at the heart of the QCD axion solution to the
strong CP problem, which we present in the next section.

4.2 The QCD Axion

We start this section by introducing the Peccei-Quinn (PQ) mechanism [7] behind the QCD axion
solution to the strong CP problem. We continue by reviewing the earlier realization of the axion
due to Weinberg and Wilczek [8, 9]. In this earlier version, where the axion couples to the SM
via interactions that scale like 1/f with f ≥ vEW, these strong interactions lead to observables
e�ects that were excluded by multiple terrestrial experiments. We than present the realizations
of the so-called invisible axion due to Dine, Fischler, Srednicki and Zhitnitsky (DFSZ) [10, 11]
and Kim, Shifman, Vainshtein and Zakharov (KSVZ) [12, 13].

4.2.1 The Peccei-Quinn mechanism
In order to demonstrate the way the PQ mechanism works, let us consider the toy model of the
original Ref. [7] with Nf = 1

L ∏ ◊g2

16fi2 TrFµ‹F̃ µ‹ ≠ g(Ïq̄LqR + h.c) + µ2|Ï|2 ≠ ⁄(|Ï|2)2 , (4.33)

where we introduce a complex scalar field Ï(x). g is a Yukawa coupling which we take to be real
without loss of generality. The scalar potential is the standard Mexican hat potential with real
and positive parameters µ2, ⁄ > 0. At the classical level, the Lagrangian is invariant under a
chiral U(1)PQ symmetry known as the PQ symmetry

q æ ei–“5
q , (4.34)

Ï æ e≠2i–Ï . (4.35)

We introduce a non-linear parameterization of Ï © 1Ô
2fl(x)e≠ia(x)/fa . Under U(1)PQ,

fl æ fl , (4.36)
a æ a + 2– fa . (4.37)

a(x) is known as the axion field. As we show below, U(1)PQ is spontaneously broken making
the axion its Goldstone boson. Let us perform a change of basis by using the chiral rotation
q æ ei(a(x)/2fa)“5

q. Using Eqs. (4.24) and (4.25), we find in this basis, the Lagrangian is given by

L ∏
3

◊ + a

fa

4
g2

16fi2 TrFµ‹F̃ µ‹ ≠ gÔ
2

flq̄q ≠ ˆµa

2f
q̄“µ“5q + 1

2µ2fl2 ≠ 1
4⁄fl4 . (4.38)

4Note that in the context of general relativity and cosmology, the so-called cosmological constant �, which
e�ectively contains quantum contributions from SM fields similar to Eq. (4.32), plays an important role. Its
small measured value leads to a fine-tuning problem, even when considering smaller contributions e.g. from
�QCD n MPL. One can than ask whether it is possible that ◊ is actually anthropically selected, see e.g. Refs. [188,
189].
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At this point we would like to determine the vacuum structure of the scalar sector. The scalar
potential is given by (neglecting quantum corrections to the fl potential due to fermion loops)

V (fl, a) = ≠1
2µ2fl2 + 1

4⁄fl4 ≠ �4 cos
3

◊ + a

fa

4
, (4.39)

where the last term, which parametrizes the non-perturbative e�ects5, explicitly breaks U(1)PQ

and the shift symmetry of the axion, making it a pNGB. Note that one implicitly assumes that
� π fa such that the explicit breaking e�ects can be regarded as a small perturbation (as oppose
to the case of ÷Õ in QCD). U(1)PQ is spontaneously broken by the VEV of the radial mode

ÈflÍ = µÔ
⁄

© fa . (4.40)

where fa is usually referred to as the PQ scale. In the absence of the last term, or more accurately
for energies E ∫ �, the axion field enjoys the shift symmetry of Eq. (4.37), which can be used
to remove the ◊ term from the Lagrangian. For E . �, the explicit breaking of U(1)PQ cannot
be neglected. The axion than acquires a VEV

ÈaÍ = ≠◊fa . (4.41)

Expanding the field around its classical value at low energies has the same e�ect as utilizing the
shift symmetry at high energies, namely the disappearance of the ◊ from the Lagrangian, thus
making it unphysical. Note that in this toy model, the fermion and radial mode each acquire a
mass which scales like fa,

mq = g faÔ
2

, mfl =
Ô

2⁄fa , (4.42)

respectively. The axion mass, on the other hand, depends also on the scale which captures the
non-perturbative e�ects,

ma = �2

fa
π � , (4.43)

where the last inequality is a consequence of the assumption � π fa.

To summarize, the PQ mechanism involves the introduction of an axial symmetry, U(1)PQ,
spontaneously broken at some scale fa. Its Goldstone boson, the axion, acts e�ectively as a
dynamical phase for the masses of the U(1)PQ charged fermion fields (or equivalently, a dynamical
◊ angle). In the notation of the last section, before performing the chiral rotation we have
Arg det M = ≠a(x)/fa. The base independent and thus physical combination is given by ◊ + a

fa
,

and the ◊ angle can always be removed from the Lagrangian by performing an axion field
redefinition6.

5Note that in QCD, this term cannot be reliably calculated in perturbation theory since it is dominated
by large instantons contributions in the strongly coupled regime. Semi-classical approximations suggest that
� ≥ �QCD ≥ 0.2 GeV.

6In order for the PQ mechanism to work, any other shift symmetry breaking e�ects must be suppressed
enough such that the strong experimental bound ◊ < 10≠10 is respected. This leads to the so-called axion quality

problem [190, 191, 192, 193], which involves additional sources of shift symmetry breaking, e.g. gravity, that may
spoil the e�ectiveness of the PQ mechanism.
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4.2.2 Weinberg-Wilczek axion

An early realization of the axion due to Weinberg and Wilczek (WW) [8, 9] unified the PQ
symmetry with electroweak symmetry breaking, such that the PQ scale is of the same order as
vEW. Consider a toy model for the SM with a single generation of quark and the symmetry is

SU(2)c ◊ SU(2)L ◊ U(1)Y ◊ U(1)PQ . (4.44)

We introduce quarks with the following representations

qL : (3, 2) 1
6 ,0 , uR : (3, 1) 2

3 ,– dR : (3, 1)≠ 1
3 ,— (4.45)

and two Higgs doublets

Hu : (1, 2) 1
2 ,– , Hd : (1, 2) 1

2 ,≠— . (4.46)

The invariant Lagrangian is

LWW = ◊g2

16fi2 TrFµ‹F̃ µ‹ + (DµHu)† DµHu + (DµHd)† DµHd

≠ gu(q̄LH̃uuR + h.c) ≠ gd(q̄LHddR + h.c) ≠ V (Hu, Hd) . (4.47)

where gu, gd are taken to be real without loss of generality. We assume that due to the potential
V (Hu, Hd), the scalar fields acquire (real) VEVs

ÈHuÍ © 1Ô
2

(0, v cos ⁄)T , ÈHdÍ © 1Ô
2

(0, v sin ⁄)T , (4.48)

where v ¥ 247 GeV is the electroweak VEV. The symmetry is spontaneously broken SU(2)L ◊
U(1)Y ◊U(1)PQ æ U(1)EM. According to Goldstone’s theorem, we expect to find 5≠1 = 4 NGBs.
However, since three of the broken generators are gauged, in the unitary gauge only a single
NGB remains, namely the axion. One can check that given the non-linear parameterization of
the neutral GBs

Hu = exp
5

i (a sin ⁄ ≠ ÏY cos ⁄)
v cos ⁄

6
ÈHuÍ , Hd = exp

5
≠ i (a cos ⁄ + ÏY sin ⁄)

v sin ⁄

6
ÈHdÍ , (4.49)

the GB denoted by ÏY is eventually eaten by the Z boson and is removed from the spectrum in
the unitary gauge. The only remaining GB is the axion, leading to the following interactions

L ∏ ◊g2

16fi2 TrGµ‹G̃µ‹ ≠ mu(e≠ i a tan ⁄
v ūLuR + h.c) ≠ md(e≠ i a cot ⁄

v d̄LdR + h.c) , (4.50)

where we defined mu © guv cos ⁄Ô
2 and md © gdv sin ⁄Ô

2 . We change basis by performing a field
redefinition

q = (u, d)T æ exp
C

ia

2v

A
tan ⁄ 0

0 cot ⁄

B

“5
D

q . (4.51)

In this basis the quark masses are real, the ◊ angle is shifted, and the quarks interact derivatively
with the axion. Since we are considering fields that are charged under another gauged symmetry,
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namely electromagnetism, the chiral rotation also generates a FF̃ term which couples the axion
to photons, and the Lagrangian is given by

L ∏
3

◊ + a

fa

4
g2

16fi2 TrGµ‹G̃µ‹ + a

fa

E

N

e2

16fi2 Fµ‹F̃ µ‹

≠ muūu ≠ mdd̄d ≠ ˆµa

2fa
(sin2 ⁄ū“µ“5u + cos2 ⁄d̄“µ“5d) , (4.52)

The color and electric anomaly coe�cients N and E are given by7

N = Tr[Q] , E = 3Tr[QQ2
e] , (4.53)

respectively. Q = Diag[tan ⁄, cot ⁄] is the flavor space matrix associate with the chiral rotation
and Qe = Diag[2/3, 1/3] the electric charges of the up and down quark. We identify the e�ective
PQ scale as fa © v

N = 1
2v sin 2⁄ Æ v

2 . We note that Eq. (4.52) is a generic starting point for
any axion realization: the basis in which all the quark masses are real and the axion couples to
GG̃. The model dependence is introduced through the e�ective PQ charges, namely in the FF̃
term and in the derivative interactions of the axion. This model is easily generalizable to 2 or 3
generations of quarks. For simplicity, we disregarded the lepton Yukawa which would couple
the left-handed doublet ¸L and the right-handed singlet eR through either Hu or Hd in a similar
fashion. Importantly, the axion in this realization coupled directly to the SM quarks and leptons.
The WW axion is relatively heavy

(ma)W W ≥ �2
QCD

v
≥ 100 keV , (4.54)

and short lived

�(a æ ““) = –2

9fi3v2
N2m3

a

sin2 2⁄
≥ (2 ◊ 10≠2 s)≠1 , (4.55)

where for the numerical approximation we take N = 3, ⁄ = fi/4 and ma = 100 keV. Due to
strong interaction between the axion and the SM, this earlier version of the axion was excluded by
several experimental results. For example, one bound comes from the decay of K+ æ fi+a [195,
196]

Br(K+ æ fi+a) ¥ 10≠6 tan2 ⁄ < 3.8 ◊ 10≠8(90% C.L) . (4.56)

which implies tan ⁄ < 0.1. This is however in contradiction to bounds from Quarkonium
decay [197]

Br(� æ “a) = Br(� æ µ+µ≠) ◊ m2
b

2fi–EWv2 cot2 ⁄ ¥ 1.4 ◊ 10≠4 cot2 ⁄ < 3 ◊ 10≠4 , (4.57)

which implies tan ⁄ > 0.7. Additional experimental constrain lead to the exclusion of the WW
axion and lead to the development of the invisible axion, the topic of our next section.

4.2.3 The invisible axion
The main lesson from the first axion models is that a large separation fa ∫ v is required in
order to evade the experimental bounds. Indeed, a-priori the PQ scale need not be related to
electroweak scale but rather to physics at a much higher scale e.g. the GUT scale. This hierarchy
suggests that the axion very light and feebly coupled to the SM. This scenario is dubbed the
invisible axion. Let us shortly present two of the popular axion realizations and discuss their
generic properties.

7The expressions in Eq. (4.53) are not the most general, and in particular we assume that all the colored
fermions are in the fundamental representations of SU(3). For a more general derivation, see Ref. [194].
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DFSZ

In the DFSZ axion construction [10, 11] we introduce an SU(2)L ◊ U(1) singlet scalar „ in
additional to the two Higgs doublets

Hu : (1, 2) 1
2 ,Xu

, Hd : (1, 2) 1
2 ,Xd

, „ : (1, 1)0,X„
. (4.58)

Initially the PQ charges as fixed such that ≠Xu + Xd = ≠2X„ = 1. The invariant Lagrangian is
now The invariant Lagrangian is

LDFSZ = ◊g2

16fi2 TrFµ‹F̃ µ‹ + (DµHu)† DµHu + (DµHd)† DµHd + |ˆµ„|2

≠ gu(q̄LH̃uuR + h.c) ≠ gd(q̄LHddR + h.c) ≠ V (Hu, Hd, „) , (4.59)

where the scalar potential is given by the usual Mexican hat potentials, as well as possible mixing
terms

V (Hu, Hd, „) ∏c1|Hu|2|Hd|2 + c2|Hu|2|„|2 + c3|Hd|2|„|2 + c4[(H†
uHd)„2 + h.c]

+c5|H†
uHd|2 + c6|H†

uH̃d|2 . (4.60)

The details of the scalar potential are not important as long as it allows the fields to acquire the
following VEVs

ÈHuÍ © 1Ô
2

(0, v cos ⁄)T , ÈHdÍ © 1Ô
2

(0, v sin ⁄)T , È„Í = 1Ô
2

f„ , (4.61)

with the added assumption that v„ ∫ v. We parameterize the NBGs as

Hu = exp
5

iÏu

v cos ⁄

6
ÈHuÍ , Hd = exp

5
iÏd

v sin ⁄

6
ÈHuÍ , „ = exp

C
iÏ„

f„

D

È„Í . (4.62)

Note that Ïu, Ïd and Ï„ are not independent, but rather linear combination of the two neutral
GBs : ÏB which is eaten by the Z boson and the physical axion a. To identify the two physical
combinations, we construct the relevant Noether currents in the usual way

JY
µ = 1

2H†
u

¡
ˆµHu + 1

2H†
d

¡
ˆµHd = iv

2 ˆµ(cos ⁄Ïu + sin ⁄Ïd) , (4.63)

JP Q
µ = XuH†

u

¡
ˆµHu + XdH†

d

¡
ˆµHd + X„„† ¡

ˆµ„ = ivˆµ

3
Xu cos ⁄Ïu + Xd sin ⁄Ïd + f„

v
Ï„

4

(4.64)

As before we identify the combination associated with Hypercharge and the orthogonal combina-
tion

A
ÏY

Ï

B

=
A

cos ⁄ sin ⁄
≠ sin ⁄ cos ⁄

B A
Ïu

Ïd

B

. (4.65)

In this basis the currents are given by

JY
µ = iv

2 ˆµÏY (4.66)

JP Q
µ = ivˆµ

3
[Xu cos2 ⁄ + Xd sin2 ⁄]ÏY + sin ⁄ cos ⁄ Ï + f„

v
Ï„

4
(4.67)
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It is convenient to remove ÏY from JP Q
µ by choosing

Xd = cos2 ⁄ , Xu = ≠ sin2 ⁄ . (4.68)

Now we can identify the physical axion as the combination

a = sin –Ï + cos –Ï„ , (4.69)

where

tan – © v sin ⁄ cos ⁄

f„
. (4.70)

To conclude, the physical basis is given by
Q

ca
Ïu

Ïd

Ï„

R

db =

Q

ca
c⁄ ≠s⁄s–

s⁄ +c⁄s–

0 c–

R

db

A
ÏY

a

B

. (4.71)

ÏY is removed in the unitary gauge and we find the following couplings to quarks

LDFSZ ∏ ◊g2

16fi2 TrFµ‹F̃ µ‹ ≠ mu

3
exp

5
ias⁄s–

vc⁄

6
ūLuR + h.c

4

≠ md

3
exp

5
iac⁄s–

vs⁄

6
d̄LdR + h.c

4
, (4.72)

where mu, md are defined as before, see below Eq. (4.50). We change basis by performing a field
redefinition

q = (u, d)T æ exp
C

≠ ia

2v

A
tan ⁄ sin – 0

0 cot ⁄ sin –

B

“5
D

q . (4.73)

In this basis the quark masses are real, the ◊ angle is shifted, and the quarks interact derivatively
with the axion

L ∏
3

◊ ≠ a

fa

4
g2

16fi2 TrGµ‹G̃µ‹ ≠ a

fa

E

N

e2

16fi2 Fµ‹F̃ µ‹

≠ muūu ≠ mdd̄d + ˆµa

2fa
(sin2 ⁄ū“µ“5u + cos2 ⁄d̄“µ“5d) , (4.74)

where identify fa = v sin 2⁄
2 sin – =

Ú
f2

„ +
1

v sin 2⁄
2

22
∫ v. This model essentially reproduces the WW

axion Lagrangian of Eq. (4.52) but without the added requirement that fa ≥ v: it allows for
fa ∫ v such that the axion is much lighter, as well as very weakly coupled to the SM. This
allows the axion to be invisible. As we commented in the previous section, the model dependence
is introduced through the e�ective PQ charges, in particular in the axion-photon coupling and
in the last term of the Lagrangian. This model is easily generalizable to 2 or 3 generations of
quarks as well. For simplicity, we again disregarded the lepton Yukawa which would couple the
left-handed doublet ¸L and the right-handed singlet eR through either Hu or Hd in a similar
fashion. Importantly, this sort of setup predicts that the axion interacts with the SM quarks and
leptons directly, with an interaction strength which is model-dependent.
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KSVZ

Lastly, let us present another simple realization of the invisible axion. The KSVZ axion [12,
13] is completely decoupled from the mechanism of electroweak symmetry breaking, and the
minimal model requires a single Dirac fermion Q and a complex scalar „ which are electroweak
singlets. The SM fermions receive their mass via the usual Higgs mechanism, while the mass of
Q is initially forbidden due to U(1)PQ symmetry. The Lagrangian is essentially the same as in
the toy model considered in Sec. 4.2.1

LKSVZ ∏ ◊g2

16fi2 TrFµ‹F̃ µ‹ ≠ g(„Q̄LQR + h.c) + µ2|„|2 ≠ ⁄(|„|2)2 , (4.75)

After „ © fl(x)Ô
2 eia(x)/fa acquires a VEV, ÈflÍ = µÔ

⁄
© fa, the remaining GB a is identified as the

axion. A chiral rotation can be performed to remove the axion dependence from the quark mass,
and the resulting Lagrangian is

L ∏
3

◊ + a

fa

4
g2

16fi2 TrFµ‹F̃ µ‹ ≠ gÔ
2

(fa + fl̃)Q̄Q ≠ ˆµa

2f
Q̄“µ“5Q ≠ 1

4((fa + fl̃)2 ≠ f2
a )2 ,

(4.76)

where we defined fl = fa + fl̃. The masses of the radial mode fl̃ and the quark Q scale with fa ∫ v

mQ = g faÔ
2

, mfl̃ =
Ô

2⁄fa . (4.77)

Therefore, they can be made heavy such that they e�ectively decoupled from the low energy
theory. In this minimal setup the axion does not couple directly to the SM. As we discuss in
Sec. 5.3, the only irreducible interactions between the axion and the SM in this case is due to its
mixing with the pions, a mixing which is determined by the parameters of the low energy theory.
Lastly we remark that Q can in principle also carry any electrical charge, which would generate
a coupling between the axion and photons.

As discussed above, the invisible axion is much lighter [198]

ma = 5.70 ± 0.07 eV
A

106 GeV
fa

B

, (4.78)

and long lived

�aæ““ =
g2

a“m3
a

64fi
= (9.1 ◊ 1023s)≠1

3
ma

eV

45
, (4.79)

where ga“ = –
2fifa

1
E
N ≠ 2

3
4+mu/md

1+mu/md

2
is the coe�cient of the operator 1

4aF F̃ . The numerical result
is given for E/N = 0. The existence of such a light and long-lived particle leads to various
observable e�ects in cosmology and astrophysics (see e.g. [199, 200]), which presently bound
fa & (108 ≠ 109) GeV. A cosmologically stable axion is a viable dark matter candidate with
an extremely rich dark matter phenomenology and non-standard production mechanisms (see
Ref. [201] and references therein).

After introducing the actual axion realizations, we proceed to discuss the axion potential
at low energies in the next section from a model-independent starting point.
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4.3 Axion potential in vacuum
The most general QCD and axion e�ective Lagrangian below the electroweak scale, at leading
order order in fields and derivatives, is given by

L = LQCD + La , (4.80a)

LQCD = ≠1
4Gµ‹Gµ‹ + iq̄ /Dq ≠ (q̄LMqR + h.c) , (4.80b)

La = 1
2(ˆµa)2 +

3
a

fa
+ ◊

4
g2

s

32fi2 Gµ‹G̃µ‹ + 1
4a g0

a““F µ‹F̃µ‹ + ˆµa

2fa
Jµ

PQ,0 , (4.80c)

with implicit flavor and color indices. Jµ
PQ =

q
q c0

q q̄“µ“5q is a model-dependent current associated
with a spontaneously broken axial U(1)PQ symmetry, made of the SM matter fields q. The
Nambu-Goldstone boson (NGB) of the U(1)PQ is the axion field a(x), with decay constant fa

defined by its coupling to gluons. The axion coupling to photons is given by g0
a““ = e2

8fi2fa

E
N , with

E/N the ratio of the electromagnetic (EM) and the color anomalies.
In the free and chiral limit the theory is invariant under the symmetry group

SU(3)c ◊ SU(Nf )L ◊ SU(Nf )R ◊ U(1)B ◊ U(1)A , (4.81)

with the quark representations, for Nf = 3 (the number of flavors we consider in this work)

qL : (3, 3, 1)+1,+1 , qR : (3, 1, 3)+1,≠1 . (4.82)

At low energies, QCD confines and a chiral condensate Èq̄RqLÍ develops that breaks spontaneously
the global symmetries

SU(Nf )L ◊ SU(Nf )R ◊ U(1)B ◊ U(1)A æ SU(Nf )R+L ◊ U(1)B . (4.83)

The low energy degrees of freedom are described by the fluctuations of the condensate, i.e. the
NGBs of the broken chiral symmetries 8

� © exp
5

ifia⁄a

ffi

6
exp

C
i÷Õ

f÷ÕNf

D

© � exp
C

i÷Õ

f÷ÕNf

D

, (4.84)

where ⁄a for a = 1, .., N2
f ≠ 1 are the SU(Nf ) generators with the normalization convention

Tr[⁄a⁄b] = 2”ab. Under the symmetries in (4.81), � transforms as

� : (1, 3, 3̄)0,+2 . (4.85)

The explicit breaking of the chiral symmetries by the quark masses can be incorporated in
the low-energy theory by promoting the quark mass matrix, M = Diag[mu, md, ms], to a spurion
with the transformation properties

M : (1, 3, 3̄)0,+2 . (4.86)

Under a U(1) axial rotation, the ◊ angle shifts as ◊ æ ◊ + 2Nf –A. The U(1)A is therefore
anomalous, explicitly broken by non-perturbative e�ects associated with incalculable large
instantons. Since the shift symmetry of the axion, associated with U(1)PQ, can be used to remove

8We chose to include the ÷Õ, even though it is not well described as a NGB (unless in the large Nc limit), to
make explicit the similarities with the e�ective Lagrangian in the CFL phase, see Sec. 6.
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the ◊ angle from the Lagrangian Eq. (4.80), a æ a ≠ ◊fa, the axion can be treated as an actual
dynamical spurion for the U(1)A.

The non-perturbative nature of the axial anomaly means that the e�ective Lagrangian for
the ÷Õ, which shifts under U(1)A as ÷Õ æ ÷Õ + 2Nf –Af÷Õ , is not calculable. 9 That would be the
case for the axion as well, if not for the fact that one can move to a di�erent basis by performing
a local chiral transformation of the quarks in Eq. (4.80),

q æ e
ia(x)
2fa

“5Qaq , (4.87)

with Qa an arbitrary matrix in flavor space which, if Tr[Qa] = 1, eliminates the axion coupling
to gluons. In this basis, the Lagrangian above the QCD confinement scale reads

LQCD = ≠1
4Gµ‹Gµ‹ + iq̄ /Dq ≠ (q̄LMaqR + h.c) , Ma © e

ia(x)Qa
2fa Me

ia(x)Qa
2fa , (4.88a)

La = 1
2(ˆµa)2 + 1

4a ga““F µ‹F̃µ‹ + ˆµa

2fa
Jµ

PQ (4.88b)

Jµ
PQ =

ÿ

q

cq q̄“µ“5q , cq © c0
q ≠ [Qa]q , ga““ = e2

8fi2fa

3
E

N
≠ 6Tr[QaQ2

e]
4

(4.88c)

with Qe = Diag[2/3, ≠1/3, ≠1/3] the flavor-space matrix of electric charges. After such a
redefinition of the quark fields, and upon integrating out the heavy ÷Õ, the axion potential can
be related to that of the QCD pions

V0 = b(Tr[�†Ma] + h.c) , (4.89)

with

b = ≠ m2
fif2

fi

2(mu + md) , (4.90)

where mfi is the neutral pion mass and we neglected O(�m/ms) terms, �m © 1
2(mu ≠ md).

In this Nf = 2 approximation, the quark condensates evaluated in the vacuum are 2b =
Èq̄qÍ0 © 1

2

e
ūu + d̄d

f

0
, which leads to the Gell-Mann-Oakes-Renner (GOR) relation

Èq̄qÍ0(mu + md) = ≠m2
fif2

fi . (4.91)

The axion mass can be calculated at leading order by integrating out the chiral NGBs at tree-level,
see App. 6.A. The final result for the axion mass reads

(m2
a)0 = m2

fif2
fi

f2
a

mumd

(mu + md)2 , (4.92)

where we neglected corrections of order O(mu,d/ms), since they are numerically of the same
order as other next-to-leading order (NLO) corrections (e.g. ÷Õ mixing) [14]. We finally note
that, as it could not be otherwise, the axion mass is independent of the arbitrarily chosen Qa.
Such a matrix however can be chosen to simplify the calculation of a given observable. For
example, choosing Qa = M≠1

Tr[M≠1] removes all the tree-level mixing between the axion and the
neutral mesons, thus simplifying e.g. the calculation of the axion mass.

9If a perturbative expansion in the number of instantons were possible, the leading e�ective potential would
read V0 = b(Tr[�†M ] + h.c) ≠ c(e≠ia/fa det�† + h.c). This will in fact be the case in the CFL phase, see Sec. 6.
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4.4 Chemical potential in QFT
Introducing a chemical potential in quantum field theory is a generalization of the procedure in
statistical mechanics. One defines a new operator corresponding to the thermodynamic Landau
free energy (a.k.a. grand thermodynamic potential density)

�̂ = H ≠ µiJ
0
i , (4.93)

with H the Hamiltonian density, J0
i the conserved charge density associated with a given global

symmetry of the system (i.e. the temporal component of the conserved current), and µi the
corresponding chemical potential. 10 From the path integral representation of the partition
function (see e.g. [202]), one arrives at the following prescription: the temporal derivative of each
field transforming under the global symmetry in question is shifted by

ˆ0 æ ˆ0 + iµiT
R
i , (4.94)

with T R
i the generator of the global symmetry in the appropriate representation R. Chemical

potential therefore acts as a source for the temporal component of the corresponding conserved
current, much like a background gauge field potential. Since it singles out the time direction, the
chemical potential breaks the Lorentz symmetry down to its SO(3) subgroup of spatial rotations.
Charge conjugation symmetry (C), under which J0

i æ ≠J0
i , is also broken, while parity (P)

and time-reserval (T) are preserved – CP and CPT are thus broken. If part of a non-abelian
group, a chemical potential also breaks the global symmetry by singling out a specific direction
in generator space, namely µiTi, which defines an unbroken U(1) subgroup.

U(1) toy model
A simple toy model that illustrates the main e�ect of the chemical potential is a complex scalar
theory with a global U(1) symmetry [203, 204]. After using the prescription of Eq. (4.94), one
finds the following Lagrangian

L(µ) = ˆµ„úˆµ„ + iµ(„ˆ0„ú ≠ „úˆ0„) ≠ (m2 ≠ µ2)|„|2 ≠ ⁄|„|4 . (4.95)

For m2 > µ2, the field expectation value is trivial, È„Í = 0, and respects the global U(1) symmetry.
The two propagating degrees of freedom have di�erent dispersion relations

Ê„(k̨) =


k2 + m2 ≠ µ , Ê„ú(k̨) =


k2 + m2 + µ . (4.96)

The appearance of the chemical potential breaks C symmetry, which appears as a „ ¡ „ú

exchange symmetry in the µ = 0 theory – therefore µ can be treated as a spurion transforming
as µ æ ≠µ.

Above the threshold |µ| > m, the global U(1) is spontaneously broken by the expectation
value and the theory describes a Bose-Einstein condensate (BEC) phase. In contrast to the ideal
(⁄ = 0) ultra-relativisitic Bose gas [203], in the interacting theory (with ⁄ > 0) the chemical
potential can be larger than m [204], without leading to any inconsistencies. Note, that our

10We recall that the grand-canonical density matrix is given by fl̂ = exp [≠—(H ≠ µiQi)], with — = 1/T
(T is the temperature), H the Hamiltonian, and Qi the conserved charge. The partition function is then
Z(V, T, µi) = Tr fl̂, where V is the volume, eventually taken to infinity. The thermodynamic potential density is
�(T, µ) = ≠(T/V) ln Z = fl ≠ µini = ≠p, with fl the energy density, ni the number density, and p the pressure.
The grand-canonical average of an operator O is then ÈOÍT,µi = Tr[Ofl̂]/Z (with a slight abuse of notation, when
clear we will denote ensemble averages simply by ÈOÍ). Then ni = ÈJ0

i Í = ≠(ˆ�/ˆµ)T , while the entropy density
is given by s = ≠(ˆ�/ˆT )µ.
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fundamental potential being the Landau free energy �, the fixed thermodynamical parameter
is µ, which sets the e�ective energies of the particles in the system due to a coupling to the
“particle bath”. This allows the flow of particles in and out of the system, implying that the
charge density, n„ ≠ n„ú , is a derived quantity set by µ.11 As we show below, for |µ| > m, the
T = 0 system contains non vanishing charge density in the form of the BEC. One can interpret
this appearance of charge as particles from the “particle bath” being inserted in the ground state
of the system.

In the BEC phase, the following parameterization is useful

„(x) = 1Ô
2

ei‰(x)/v(v + ‡(x)) . (4.97)

The classical potential is minimized for v2 = µ2≠m2

⁄ , and we find the following Lagrangian

L(µ) = 1
2

C

(ˆµ‰)2
3

1 + ‡

v

42
+ (ˆµ‡)2

D

+ µv
3

1 + ‡

v

42
ˆ0‰ ≠ V (µ) , (4.98a)

V (µ) = 1
2m2

‡‡2 + ⁄v‡3 + 1
4⁄‡4 ≠ 1

4⁄v4 , (4.98b)

with m2
‡ = 2⁄v2 = 2(µ2 ≠ m2). The charge density in the condensed phase is non-vanishing in

the limit of zero temperature — © 1/T æ Œ and infinite volume V æ Œ,

(n„ ≠ n„ú)|T =0 = lim
—,VæŒ

1
—V

3
ˆ ln Z

ˆµ

4

—

= ≠
3

ˆV

ˆµ

4----
È‡Í=0

= µ3

⁄

A

1 ≠ m2

µ2

B

, (4.99)

where we used the classical (~ æ 0) result for the generating functional ln Z = ≠—VV (µ) for
a homogeneous classical configuration È‡Í. By diagonalizing the quadratic field operators in
momentum space one finds the dispersion relations for the two propagating degrees of freedom

Ê2
±(k̨) = (3µ2 ≠ m2)

S

U1 + k2

3µ2 ≠ m2 ±
Û

1 +
3 2µk

3µ2 ≠ m2

42
T

V , (4.100)

which at zero momentum are

Ê≠(̨0) = 0 , Ê+(̨0) =
Ò

6µ2 ≠ 2m2 . (4.101)

As expected, there is one massless excitation, corresponding to the NGB of the spontaneously
broken U(1), and one massive excitation, the radial (or Higgs) mode.

4.5 Meson condensation

We review now the importance of a chemical potential in the context of meson condensation
in QCD, in particular for the case of two flavors [205, 206, 207, 208], and discuss for the first
time its e�ects on the axion potential. This is a simplified version of the more complicated, but
plausibly more realistic, scenario of kaon condensation (Nf = 3), to be discussed in Sec. 5.2.

11This is in complete analogy to temperature T , with sets the e�ective energy of particles in the system due to a
coupling to a “heat bath”. This allows the flow of heat in and out of the system, implying that the entropy of the
system is a derived quantity set by T .
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For Nf = 2, the chiral condensate breaking SU(2)L ◊SU(2)R ◊U(1)B ◊U(1)A spontaneously
to SU(2) ◊ U(1)B can be parameterized, in full generality, as

Èq̄RqLÍ © Èq̄RqLÍ0 ei– �0 ,

�0 = cos ◊ 12 + i sin ◊ n̂ · ‡̨ , n̂ = (sin Â cos ‰, sin Â sin ‰, cos Â) , (4.102)

where ≠fi/2 Æ ◊ < fi/2,12 and with the sigma field transforming as

�0 æ L�0R† . (4.103)

In Eq. (4.102), we used the fact that a field transforming as a bi-fundamental under SU(2)L ◊
SU(2)R can be written as a radial mode, here frozen to some constant value Èq̄RqLÍ0, times a
2-by-2 unitary matrix �0, which parameterizes the orientation of the ensemble average in the
presence of finite µ, which we call the orientation of the expectation value here. 13

The phase factor ei– is identified with the direction in field space associated with the anomalous
axial U(1). A potential for – is generated by non-perturbative e�ects, whose minimum is at
– = 0, which we take from this point on. The angles defined in Eq. (4.102) can be related to
expectation values of the usual pion fields (at vanishing chemical potential)

◊ © È�Í
ffi

,
1Ô
2

sin Âeûi‰ = Èfi±Í
È�Í , cos Â = Èfi3Í

È�Í , (4.104)

where we defined


ÈfiifiiÍ © È�Í. In Dirac notation

Èq̄qÍ = 1
2Èq̄qÍ0(�0 + �†

0) , Èq̄i“5qÍ = 1
2i

Èq̄qÍ0(�0 ≠ �†
0) , (4.105)

where we denoted Èq̄RqLÍ0 = Èq̄LqRÍ0 © Èq̄qÍ0/2. Therefore CP is broken in the ground state if
�0 ”= �†

0, that is if ◊ ”= 0.
We wish to study this system at a non-vanishing chemical potential for isospin

µ̂ = µ(T 3
L + T 3

R) , (4.106)

and we shall neglect for the remainder of this section isospin breaking due to the quark masses
and electromagnetic interactions, making the choice in Eq. (4.106) completely generic. Such a
chemical potential is associated with the ‡3 rotation of the vector SU(2)L+R subgroup. Therefore,
according to Eqs. (4.94) and (4.103), we promote the temporal derivative of �0 to

ˆ0�0 æ ˆ0�0 + iµT 3
L�0 ≠ iµ�0T 3

R = i

2µ[‡3, �0] . (4.107)

Note that changing µ̂ æ µ̂ + 1
612 in Eq. (4.106) has no e�ect on Eq. (4.107) and on the following

derivation, therefore in this context the isospin chemical potential can be equivalently associated
with the chemical potential for electric charge.14 The resulting potential for the pions and the
axion, the latter entering via the quark mass matrix, M = m12 (mu = md), as in Eq. (4.88)
(with Qa = 12/2), is given by

V = f2
fiµ2

16 Tr[[‡3, �0][‡3, �†
0]] + Èq̄qÍ0

2 Tr[�0Me≠ ia
2fa + �†

0Me
ia

2fa ] , (4.108)

12The shift ◊ æ ◊ + fi can be compensated by shifting – æ – + fi.
13SU(2)L and SU(2)R are generated by T a

L = 1
2 ‡a and T a

R = 1
2 ‡a, respectively, where as usual it should be

understood that the L and R operators act on di�erent indices and therefore commute.
14One can then think of µ as a non-vanishing averaged value for the zero component of the photon field µ = ÈA0Í,

which can be intuitively understood as a classical background electric charge density.
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at leading order in m/�‰ and µ/�‰, �‰ being the cuto� of the chiral Lagrangian. We note
that the first term arises from the usual kinetic term, 1

4f2
fi Tr[ˆµ�0ˆµ�†

0], after the replacement
(4.107). Using Eq. (4.102) we find

V = ≠1
2µ2f2

fi sin2 ◊ sin2 Â ≠ m2
fif2

fi cos ◊ cos
3

a

2fa

4
, (4.109)

where mfi here is the neutral pion mass in vacuum, i.e. m2
fif2

fi = ≠2mÈq̄qÍ0. We see that the
isospin chemical potential introduces an additional source of explicit symmetry breaking – while
leaving unbroken the U(1)L+R symmetry defined by the generator in Eq. (4.106), µ̂ explicitly
breaks the shift symmetries associated with the would-be NGBs charged under U(1)L+R, i.e.
the charged pions. Indeed, as discussed above, U(1)L+R is equivalent to the electric charge.
Consequently, the first term in Eq. (4.109) is proportional to the expectation value of the charged
pions, sin2 ◊ sin2 Â Ã Èfi+fi≠Í. Since µ̂ commutes with the U(1)L≠R associated with the neutral
pion, the neutral NGBs are una�ected by the chemical potential and the potential Eq. (4.109) is
minimized at Èfi3Í = 0 (Â = fi/2) and ÈaÍ = 0 as in the µ = 0 vacuum.

The minimum of the potential for any value of µ is then found at

cos ◊ = Min
C

1,
m2

fi

µ2

D

. (4.110)

For |µ| < mfi, the ground state is the trivial one, �0 = 1, thus its orientation is the same as for
µ = 0. For |µ| > mfi, pion condensation takes place and the orientation of the expectation value
is no longer trivial. We note that in this case ‰ constitutes a flat direction which, as we confirm
later, corresponds to a NGB from the spontaneous breaking of electric charge, U(1)L+R. Setting,
without loss of generality, ‰ = 0, we can write the QCD orientation for |µ| > mfi as

�0 =
A

cos ◊ i sin ◊
i sin ◊ cos ◊

B

. (4.111)

At this point we recall that since ◊ ”= 0, CP is broken by the expectation value, a result of a
su�ciently large explicit breaking of CP by the chemical potential in the charged pion sector.
Instead, CP-invariance in the neutral sector is preserved by the charge chemical potential, which
leaves the expectation values in that sector untouched. We see now that only if Èfi3Í ”= 0 (Â ”= fi/2)
could the axion condense, which requires additionally explicit breaking of isospin, i.e. mu ”= md.

Having established the Goldstone boson expectation values at finite-density, let us turn our
attention to their fluctuations. Since these are associated with the SU(2)L ◊ SU(2)R generators
broken by �0, we define the following rotated generators

(T a
L)◊ = ›0(T a

L)›†
0 , (T a

R)◊ = ›†
0(T a

R)›0 , (4.112)

where ›0 ©
Ô

�0. The broken and unbroken generators are then given by

Xa = (T a
L)◊ ≠ (T a

R)◊ , T a = (T a
L)◊ + (T a

R)◊ , (4.113)

respectively. The fluctuations around the �0 ground state can be parameterized as

� = ›L�0›†
R = exp

5
ifia(T a

L)◊

ffi

6
�0 exp

5
ifia(T a

R)◊

ffi

6
= ›0 exp

5
ifia‡a

ffi

6
›0 , (4.114)

where, abusing notation, we have written the (pseudo-)NGBs as fia, like the standard ◊ = 0
pions. 15

15We note that, given Eq. (4.112) and T a
L = 1

2 ‡a, T a
R = 1

2 ‡a, it follows that ›L = ›0 exp
#

ifia‡a

2ffi

$
›†

0 and
›R = ›†

0 exp
#
≠ ifia‡a

2ffi

$
›0.
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The dispersion relations for the neutral degrees of freedom, fi0 and the axion, are the same
as for vanishing chemical potential. Their masses can be obtained from Eq. (4.108) (with the
substitution of �0 by �),

(m2
fi0)◊ = m2

fi/ cos ◊ , (m2
a)◊ = (m2

a)0 cos ◊ , (4.115)

with (m2
a)0 the mass of the axion in vacuum, Eq. (4.92), and where we note that for |µ| > mfi,

(m2
fi0)◊ = µ2. The change of the axion mass for ◊ ”= 0 simply follows from the fact that,

once the mixing with fi3 is eliminated, it has to be proportional to the CP-even combination
Tr[�0 + �†

0] Ã cos ◊. The increase in the neutral pion mass can be understood as a result of its
repulsive interaction with the charged pions. The dispersion relation for the charged pions is very
similar to the U(1) toy model of Sec. 4.4. In the uncondensed phase |µ| < mfi, their dispersion
relations are

Êfi±(k̨) =
Ò

m2
fi + k2 û µ . (4.116)

Indeed, for the charged states fi± © 1Ô
2(fi1 û ifi2) we recognize the same mass splitting we

found in Eq. (4.96). In the condensed phase |µ| > mfi, the remaining U(1)L+R symmetry is
spontaneously broken. The e�ective masses of the charged pions are

Êfi+ (̨0) = 0 , Êfi≠ (̨0) = µ

Û

1 + 3m4
fi

µ4 . (4.117)

As in the U(1) toy model, the condensed phase contains one massless Goldstone mode and one
massive radial mode. In this phase, the system has a non-vanishing charge density

nfi+ ≠ nfi≠ = ≠
3

ˆV

ˆµ

4----
fii=a=0

= f2
fiµ

A

1 ≠ m4
fi

µ4

B

. (4.118)

The e�ective masses of the pions and the axion are plotted in Fig. 4.1.
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Figure 4.1: Mass spectrum of the vacuum excitations as a function of µ/mfi. The masses are normalized
to their respective µ = 0 value. The charged fi+ and fi≠ modes (orange and blue curves
respectively) evolve similarly as the „ and „ú modes in the U(1) toy model: a linear split
in masses in the uncondensed phase, continuously transitioning to a massless Goldstone
mode and a massive radial mode in the condensed phase. The masses of the neutral modes,
fi0 and a (green and red curve respectively) are una�ected by the chemical potential in the
uncondensed phase. In the condensed phase, mfi0 increase linearly with µ, while the axion
becomes lighter as µ increases.



5
Nuclear densities

In this chapter we study how the properties of the axion, mainly its potential and coupling
to nucleons, change in systems at finite baryon density, n. In particular, our focus here is on
densities around nuclear saturation, n ≥ n0, where a description of QCD in terms of hadrons is
still meaningful.

For the axion potential, we identify two main e�ects: 1) the change in the size and, to
some degree, flavor orientation of the quark condensates, as “measured” by the mass of the
pions (Sec. 5.1), and 2) kaon condensation (Sec. 5.2), similar to meson condensation, introduced
in Sec. 4.5. Both of these e�ects can be taken into account by a generalization of the axion
potential in vacuum, Eq. (4.89), to

V (n) = 1
2Tr[Èq̄qÍnM̂a + h.c] , M̂a = ›†

0›†
LMa›R›†

0 (5.1)

with Ma encoding the dependence on the axion as in Eq. (4.88). �0 = ›2
0 parametrizes the

orientation of the QCD ground state that spontaneously breaks SU(3)L ◊ SU(3)R to SU(3) and
therefore encodes the e�ects of kaon condensation. In vacuum, we have ›0 = 13 and the unbroken
subgroup is the usual SU(3)L+R, while in the kaon-condensed phase, we have ›0 = ›0(◊), with ◊
controlling the size of the kaon condensate which, as explained below, ultimately depends on the
baryon density. ›L,R are the Goldstone matrices, given by

›L = ei fia

2ffi
(T a

L)◊ = ›0 exp
5

ifia⁄a

2ffi

6
›†

0 , ›R = e≠i fia

2ffi
(T a

R)◊ = ›†
0 exp

5
≠ ifia⁄a

2ffi

6
›0 , (5.2)

a generalization to SU(3)L ◊ SU(3)R of those in Eq. (4.114). Finally, the quark condensate Èq̄qÍn

at finite density becomes a matrix in flavor space,

Èq̄qÍn = Diag[ÈūuÍn, Èd̄dÍn, Ès̄sÍn] , (5.3)

The detailed derivation of Eq. (5.1) is given in App. 5.A. The result can also be understood in
terms of symmetries: M̂a is a spurion that has been dressed by the Goldstones and projected into
the SU(3)L+R subgroup. Therefore, it transforms as M̂a æ V M̂aV †, where V is an SU(3)L+R

transformation. Èq̄qÍn transforms in the same way, since it is the result of a non-vanishing
expectation value of the temporal component of the baryonic current, n = ÈJ0

BÍ. 1

Concerning the couplings of the axion to nucleons, the main e�ect we consider can be traced to
a change at finite baryonic density of the nuclear matrix elements Èp|q̄“µ“5q|pÍ (with p the proton,
q = u, d) as “measured” by the axial pion-nucleon coupling (Sec. 5.3). These set the size of the

1When the quark condensate is trivial, Èq̄qÍn Ã 13, we recover V (n) Ã Tr[�†Ma + h.c]. Instead, when the
ground state is trivial, �0 = 13, the change in condensates e�ectively amounts to mq æ mqÈq̄qÍn/Èq̄qÍ0.
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couplings of protons and neutrons to the axion, as they follow from either its model-dependent
UV couplings to light quarks, or from axion-pion mixing. The latter also changes at finite density
although, as we explain below, the e�ect is within known uncertainties.

Before going into the details, several general comments about our treatment of the nuclear
medium are in order. To describe the state of the system, we will work directly in terms of
baryon densities, np and nn considering only protons and neutrons, respectively. In practice, our
independent parameters are the total baryonic density, n = np + nn, and the proton fraction,
np/n. This will be more convenient than introducing the corresponding chemical potentials,
because our analysis is limited to linear order in n, i.e. we work in the mean-field or Hartree
approximation, where e.g. np ¥ Èp̄“0pÍT,µi (and in fact np ¥ Èp̄pÍT,µi in the non-relativistic limit)
– higher-order corrections generically being beyond perturbative control when relevant. Besides,
the relative fraction of protons and neutrons is, as shown below, relevant only in our discussion
of kaon condensation. There, the chemical potential for electric charge, µ, will also be required
to properly describe the system, along with the condition of charge neutrality.

5.1 Quark condensates
We first discuss how the quark condensate changes at finite baryonic density, since this is the
most robust e�ect from the point of view of perturbative control. We derive the implications for
the axion mass, which were first noted in [209]. The change with density of the quark condensates
can be calculated utilizing the Hellmann-Feynman theorem [210]

’q̄q(n) © Èq̄qÍn

Èq̄qÍ0
= 1 + 1

Èq̄qÍ0

ˆ�E(n)
ˆmq

, q = u, d, s . (5.4)

�E(n) is the energy shift of the QCD ground state due to the finite density background, such
that �E(0) = 0. It can be decomposed as

�E = Efree + Eint. , (5.5)

where the first term represents the energy shift due to the presence of a non-interacting Fermi
gas, while the second term encodes the energy shift due to nuclear interactions. Neglecting these
interactions as well as relativistic corrections, we have �E =

q
x=n,p,... mxnx, and we arrive at

the so-called linear approximation for the in-medium condensate

’q̄q(n) = 1 + 1
Èq̄qÍ0

ÿ

x

nx
ˆmx

ˆmq
, q = u, d, s . (5.6)

The derivatives ˆmx/ˆmq describe the shift in the nucleon mass due to the non-vanishing quark
masses. For two nucleons {n, p} and three quarks {u, d, s}, one naively counts six independent
shifts. However, due to the {p, u} ¡ {n, d} exchange symmetry, only three shifts are independent.
Working in the isospin basis for the quark masses, m̄ © 1

2(mu + md) and �m © 1
2(mu ≠ md), the

following sigma terms are identified and defined

‡fiN © m̄
3

ˆmp

ˆm̄

4
= m̄

3
ˆmn

ˆm̄

4
, (5.7)

‡̃fiN © �m
3

ˆmn

ˆ�m

4
= ≠�m

3
ˆmp

ˆ�m

4
, (5.8)

‡s © ms

3
ˆmp

ˆms

4
= ms

3
ˆmn

ˆms

4
, (5.9)
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such that

mn = MB + ‡fiN + ‡̃fiN + ‡s , (5.10)
mp = MB + ‡fiN ≠ ‡̃fiN + ‡s . (5.11)

with MB the baryon mass in the chiral limit, mq æ 0. We note that the sigma terms can be
expressed in terms of the parameters of the Nf = 3 chiral Lagrangian for baryons, see Eq. (5.110)
in App. 5.A. The ‡fiN and ‡s terms have been extracted from pion-nucleon and kaon-nucleon
scattering experiments, as well as from lattice simulations by calculating the mass shifts of the
nucleons. There are ongoing e�orts aimed at the determination of the precise values of these sigma
terms. A summary of latest results [211] shows that their current values are scattered over a fairly
wide range, with some tension between experimental and lattice results. In this work we use the
conservative estimates ‡fiN = 45 ± 15 MeV and ‡s = 30 MeV . The other sigma term is extracted
from the p ≠ n non-electromagnetic mass splitting 2‡̃fiN = (mn ≠ mp)non-EM = 2 ± 0.3 MeV [212].
Using the GOR relation in Eq. (4.91), we rewrite the ratios Èq̄qÍn/Èq̄qÍ0 as

’ūu(n) = 1 ≠ b1
n

n0
+ b2

5
2np

n
≠ 1

6
n

n0
, (5.12a)

’d̄d(n) = 1 ≠ b1
n

n0
≠ b2

5
2np

n
≠ 1

6
n

n0
, (5.12b)

’s̄s(n) = 1 ≠ b3
n

n0
, (5.12c)

with

b1 © ‡fiN n0
m2

fif2
fi

= 3.5 ◊ 10≠1
3

‡fiN

45 MeV

4
, (5.13a)

b2 © ‡̃fiN n0
m2

fif2
fi

m̄

�m
= ≠2.2 ◊ 10≠2

3
‡̃fiN

1 MeV

4
, (5.13b)

b3 © ‡sn0
m2

fif2
fi

2m̄

ms
= 1.7 ◊ 10≠2

3
‡s

30 MeV

4
. (5.13c)

Clearly the Ès̄sÍn condensate is only weakly a�ected by the nucleonic background. Therefore, as
in vacuum, its contribution to the axion mass will be subleading, being suppressed by mu,d/ms.
Additionally, ÈūuÍn ¥ Èd̄dÍn up to the small isospin breaking correction [213], which we neglect.
From Eq. (5.1) with ›0 = 13 and after taking care of axion-pion mixing (which we discuss in
the context of the axion couplings Sec. 5.3) we reproduce the axion mass at finite density found
in [209]

(ma)2
n = m2

fif2
fi

f2
a

mumd

mu + md
ÈūuÍn ¥ (ma)2

0

3
1 ≠ b1

n

n0

4
, (5.14)

where mfi here is the neutral pion mass in vacuum, Eq. (4.91). In this regard, we note that
at the linear order in density the same correction as the axion enters the neutral pion mass in
medium, i.e. (mfi)2

n = m2
fiÈūuÍn. This is why for the remainder of this section, we shall only

consider n < nc © n0/b1 ¥ 2.8 n0 (45 MeV/‡fiN ), with nc being the critical density in which one
naively expects chiral symmetry restoration in the linear approximation.

At this point, let us turn our attention to the corrections to the linear, non-relativistic
approximation we have considered. This will allow us to estimate the densities up to which our
leading result is under perturbative control and can therefore be trusted. First, the energy of
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a degenerate (zero temperature) ideal Fermi gas receives relativistic corrections. In the fully
relativistic limit, the free part of the energy for a fermion x is given by

Efree
x = 2

⁄ kx
f d3k

(2fi)3

Ò
k2 + m2

x = mxnxF (kx
f /mx) , (5.15)

F (q) = 3q


q2 + 1
!
2q2 + 1

"
≠ 3 sinh≠1(q)

8q3 = 1 + 3q2

10 + O(q4) , (5.16)

where kx
f is the Fermi momentum, kx

f =


m2
x ≠ µ2

x, which determines the number density,

nx = 2
⁄ |̨k|Ækx

f d3k

(2fi)3 =
(kx

f )3

3fi2 . (5.17)

Therefore, relativistic corrections, of O((kx
f /mx)2), become important at large densities. When

this happens, corrections to the QCD ground state energy Eq. (5.5) from nucleon interactions
become important as well. These are predominantly due to pion exchange, but also from four-
baryon contact interactions. It is clear that the latter become important when nx/�‰f2

fi becomes
order one. Given Eq. (5.17), this is also the place where ChPT is beyond control, kx

f ≥ �‰,
e.g. the pion-exchange contribution to the energy is not predictable. In addition, since the cuto�
of ChPT �‰ is numerically close to mp ¥ mn, relativistic corrections are approximately controlled
by the same expansion parameter,

k2
f

�2
‰

¥ (3fi2n/2)2/3

�‰
¥ (15 %)

3
n

n0

42/3
A

700 MeV
�‰

B2

, (5.18)

where we took kf = kp
f ≥ kn

f . Ultimately the best way to asses the validity of our linear
approximation is to explicitly compute the relevant NLO corrections. The interaction energy Eint.

has been calculated by summing the so-called Hugenholtz diagrams, which are connected bubble
diagrams describing ground-state to ground-state transitions [214]. The resulting higher-order
finite density e�ects on the quark condensates have been obtained in ChPT for symmetric
nuclear matter [215, 216] and pure neutron matter [217, 218]. These authors have indeed found
O(1) deviations from the linear approximation for densities somewhat above nuclear saturation.
Specifically, nucleon interactions seem to ameliorate the linear decrease of ÈūuÍn ¥ Èd̄dÍn in
Eq. (5.12), such that already at n ¥ 2n0, the condensates are only at approximately 60 % of their
vacuum value, as opposed to the 15 % predicted by the linear approximation, and in fact start
increasing with density [215]. This then implies that a more realistic prediction of the axion
mass in dense symmetric nuclear matter is

(ma)2
n.2n0 & 0.6 (ma)2

0 . (5.19)

while for larger densities n & 20 ≥ nc it becomes di�cult to trust the results of ChPT.
Therefore, the determination of the quark condensates and the axion mass at densities signifi-

cantly beyond nuclear saturation remains an open and di�cult theoretical problem. Importantly,
realistic lattice simulations at finite density are currently not feasible due to so-called sign
problem. In addition, at such high densities other issues arise (ultimately related to the problem
of perturbativity), such as the “hyperon puzzle”, which concerns the appearance, or absence, of
hyperons, see e.g. [219] and references therein. In the next section we will focus our attention
instead on another e�ect of strangeness, potentially much more relevant for the fate of the axion
at finite density.
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5.2 Kaon condensation
In the previous section we assumed that the vacuum of QCD is trivially oriented and CP-
preserving, or equivalently that none of the mesons acquire a non-trivial expectation value. This
might, however, not be the case in dense matter. It has been hypothesized [220] that above
certain baryonic densities it becomes energetically possible for the strangeness changing process
of a neutron splitting into a proton and a scalar K≠ meson, and vice versa, to take place

n ¡ p+ + K≠ , (5.20)

The reason being the low in-medium kaon mass, which eventually leads to the formation of a
K≠ condensate. This process takes place along with, and even becomes favored over, the usual
neutron —-decay, n æ p+ + e≠ + ‹̄e, and inverse —-decay, p+ + e≠ æ n + ‹e, because of the
high price of occupying the increasingly energetic Fermi surface of the electrons. Because of
this fact, also the processes e≠ ¡ K≠ + ‹e and e≠ ¡ µ≠ + ‹̄µ + ‹e, µ≠ ¡ e≠ + ‹µ + ‹̄e reach
—-equilibrium [221]. On the other hand, the formation of a pion (fi≠) condensate (n ¡ p+ + fi≠)
seems to be disfavored, as we shall discuss below.

Motivated by these arguments, we shall now entertain the possibility of kaon condensation
and derive its e�ects on the axion potential. Several important comments and some caveats
are however in order. We consider this scenario because of the thrilling possibility of leading
to axion condensation, even though it takes place – if it takes place at all – at densities where
a perturbative expansion is questionable, n & 2n0. Because of the inherent uncertainties at
such densities, our conclusions will be qualitative rather than quantitive. Indeed, similar to our
discussion at the end of the previous section on the quark condensates and their finite density
corrections beyond the linear approximation, kaon condensation cannot be simply described by
the leading order terms in ChPT. In particular, nucleon self-interactions and interactions with
pions need to be considered in order to capture the full complexity of this strongly interacting
system [222] – for instance, the latter are the reason behind the fact that K≠ condensation
is more likely than fi≠ condensation. Our working assumption is that all the processes above
(neglecting the pions) are in equilibrium, which implies a set of equations relating the chemical
potentials of the particle species involved,

µµ = µe = µK≠ = µ , µp ≠ µn = µ , (5.21)

where µ is the chemical potential associated with (positive) electric charge. For convenience,
we work directly with muon and electron densities, nµ and ne respectively, both of which are
determined by µ as they follow from an ideal Fermi gas. The size of the kaon condensate, ◊,
is determined, as in the simple example of meson condensation discussed in Sec. 4.5, by the
minimization of the scalar potential, which of course also determines if the axion condenses or
not. Finally, due to the importance of nuclear interactions, the densities of protons and neutron,
or equivalently the total baryon density n and the proton fraction np/n, are not determined by
µ. Instead, we enforce the condition of (electric) charge neutrality nEM = 0, and present our
results in terms of n and np/n.

An additional important final comment regards the implications of kaon condensation on
the NS equation of state (EoS). It has been argued that the inclusion of kaon condensation
generically leads to a softer EoS [221, 223], which usually cannot sustain a large NS mass. This
is in conflict with the most massive NSs observed, with masses around 2M§ [224, 225]. This is
the main reason why kaon condensation is currently considered an “exotic” possibility. However,
axion e�ects can in fact harden the EoS [226] and reopen this window. Also, kaon condensation
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is in fact related to another issue, namely the hyperon puzzle [227]. The appearance of hyperons
also tends to soften the EoS, resulting in a similar apparent conflict with the observation of
massive NSs. Therefore, although the appearance of strangeness seems to be in tension with
observations, we think it would be premature to definitively exclude the possibility of kaon
condensation at this point, especially in the presence of new physics.

Let us consider then the possibility that kaon condensation occurs in nuclear matter and
qualitatively examine its e�ects on the axion potential. Once the chemical potential for electric
charge µ is introduced, the dispersion relations for the K± modes are given by

ÊK±(k̨) =
Ú1

m2
K±

2

n
+ k2 ± µ , (5.22)

with the kaon e�ective in-medium mass
1
m2

K±

2

n
= 1

f2
fi

3
≠Èūu + s̄sÍn

2 ms ≠ 1
2(n + np) µ

4
. (5.23)

The first term in Eq. (5.23) is the usual kaon mass to leading order in ms, with the inclusion of
the finite density corrections to the relevant quark condensate, which in the linear approximation
are given by

≠Èūu + s̄sÍn

2f2
fi

ms = m2
K

3
1 ≠ 1

2

5
b1 ≠ b2

32 np

n
≠ 1

4
+ b3

6
n

n0

4
, (5.24)

where m2
K = ≠msÈq̄qÍ0/f2

fi , the neutral kaon mass in vacuum, neglecting O(mu,d/ms) terms.
The second term in Eq. (5.23) is a mass correction induced by the baryonic background, due
to the model-independent s-wave interactions of the baryons with the mesons, arising from the
baryon kinetic term,

(LB)n = i Tr[B̄“µDµB]∏≠µ Tr[B̄“0[Q̂e, B]] , Q̂e = 1
2

1
›†

0›†
LQe›L›0 + ›0›†

RQe›R›†
0

2
(5.25)

as it follows from the covariant derivative of ChPT, DµB = ˆµB + [eµ, B] with the chiral
connection eµ = 1

2(›†
0›†

Lˆµ›L›0 + ›0›†
Rˆµ›R›†

0), upon introducing the charge chemical potential,
ˆ0 æ ˆ0 + iµQe with Qe = Diag[2/3, ≠1/3, ≠1.3], see App. 5.A for the details. Note that since
b2 π b1, the e�ective kaon mass decreases with density, and condensation is expected to occur
when 2

ÊK≠(0) = (mK±)n ≠ µ = 0 (5.27)

Kaon condensation is introduced by allowing the kaon field to take a non-trivial average value,
È
Ô

2K±/ffiÍ, or equivalently, in our notation, reorienting the QCD ground state in medium [221],

�0 =

Q

ca
cos ◊ 0 i sin ◊

0 1 0
i sin ◊ 0 cos ◊

R

db . (5.28)

2It is illustrative to also consider the pion e�ective in-medium mass,
!
m2

fi±
"

n
= 1

f2
fi

1
≠Èūu + d̄dÍnm̄ + 1

2(n ≠ 2np)µ
2

, (5.26)

since it shows that, due to the second term and contrary to the kaon, the charge pion becomes heavier with
increasing density, at least for a neutron rich background np/n < 1/2 [228]. The argument against pion condensation
becomes even stronger when considering higher order terms in ChPT [213], as we discussed at the end of Sec. 5.1 –
these additional corrections even make the pion mass increase with density for n ¥ 2n0, even in symmetric nuclear
matter, np/n = 1/2.
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The ground state orientation is determined by the static Lagrangian after setting all the fluctua-
tions to zero. Neglecting for the time being the axion, we find a similar potential to Eq. (4.109)

V (◊) = ≠1
2µ2f2

fi sin2 ◊ ≠ f2
fi(m2

K±)n cos ◊ . (5.29)

Minimizing V (◊) leads to the condition

cos ◊ = Min
C

1,
(m2

K±)n

µ2

D

, (5.30)

which can be used to determined ◊ = ◊(µ, n, np/n). The requirement of electrical neutrality,
nEM = ≠ÈˆL/ˆµÍ = 0, leads to

≠f2
fiµ sin2 ◊ + cos ◊ np ≠ sin2 (◊/2) nn ≠ ne(µ) ≠ nµ(µ) = 0 , (5.31)

where we included the lepton charge densities, given by

nl(µ) = �(|µ| ≠ ml) Sign(µ) (µ2 ≠ m2
l )3/2

3fi2 , l = e, µ . (5.32)

Solving (numerically) the coupled Eqs. (5.30) and (5.31), one can determine the values of {◊, µ}
as a function of {n, np/n}. In Fig. 5.1 we show the results for ◊ and µ as a function of baryon
density for di�erent values of the proton fraction, while in Fig. 5.3 we plot the region (blue) in
the {n, np/n} plane where ◊ ”= 0, namely where the system is in the kaon-condensed phase. The
evolution for given {n, np/n} can be understood as follows: for a fixed proton fraction np/n, as n
increases the amount of positive charge due to the protons increases as well, and more leptons are
required to satisfy the neutrality condition, leading to an increase in µ. This increase in µ drives
the e�ective mass of the kaon, Eq. (5.23), further down (on top of the decrease in ÈūuÍ at finite
density), until eventually the threshold condition for kaon condensation is met, µ = (mK±)n,
and a further increase in the proton density can be compensated by inserting K≠ particles in
the ground state.

Even though we keep them undetermined, let us briefly comment at this point on how the
proton fraction could be determined in terms of the total density. Since the interaction energy of
nuclear matter also depends on the proton fraction, Eint. = n ‘int.(n, np), one could enforce that
the total energy density is minimal with respect to np/n, which would lead to the constraint [221],

c4 sin2 (◊/2) + µ cos2 (◊/2) + ˆ‘int.(n, np)
ˆ(np/n) = 0 , (5.33)

where c4 © (2b2f2
fim2

K)/n0 ≥ 49 MeV.
After determining the ground state orientation, let us examine the consequences on the

axion potential. The pseudo-NGB potential, after reintroducing the fluctuations we are mainly
interested in, namely the neutral mesons fi0, ÷ and the axion, is given by

V (fi0, ÷, a) = f2
fiµ2

4 Tr[[Qe, �][Qe, �†]] + 1
2Tr[Èq̄qÍnM̂a + h.c] (5.34)

with M̂a given in Eq. (5.1) and

� = ›L�0›†
R = ›0 exp

5
ifia⁄a

ffi

6
›0 . (5.35)



140 Chapter 5. Nuclear densities

1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

Figure 5.1: The ground state orientation angle ◊ (left panel) and the chemical potential µ in units of
pion mass (right panel) as function of baryon density n for fixed values of proton fraction
np/n. The blue, orange and green curves correspond to np/n = 0.1, 0.3 and 0.5, respectively.
The solid curves correspond to the numerical solution using the central value of ‡fiN =
45 ± 15 MeV, while the bands are obtained by the corresponding 1‡ variation. The gray
slashed region corresponds to n > nc ¥ 2.8 n0 where the quark condensate ÈūuÍn changes
sign (for the central value of ‡fiN ).

Note this potential is similar to that discussed in Sec. 4.5 in the context of meson condensation,
with the additional relevant feature of the density dependent quark condensates, in particular
their decrease with density, ’ūu ¥ ’d̄d ¥ 1 ≠ b1(n/n0). The three mass eigenstates, corresponding
to mixtures of fi3, ÷ and a, have the following masses in the isospin symmetric limit �m = 0 and
at leading order in ◊ and m̄/ms, 3

(m2
fi0)n,◊ ¥ m2

fi ’ūu

C

1 + 1
8

A
2µ2

m2
fi’ūu

≠ ms

m̄

B

◊2
D

, (5.36)

(m2
÷)n,◊ ¥ m2

÷

5
1 ≠ 1

4

3
1 + ’ūu

4

4
◊2

6
, (5.37)

(m2
a)n,◊ ¥ (m2

a)0 ’ūu

5
1 ≠ 1

8

3
1 + 1

’ūu

4
◊2

6
. (5.38)

with mfi and m÷ the masses in vacuum, respectively Eq. (4.91) and m2
÷ = ≠4msÈq̄qÍ0/3f2

fi

neglecting O(mu,d/ms) terms. Note that only the neutral pion mass depends on the charge
chemical potential, and that such dependence enters along with kaon condensation. The e�ect
of a non-vanishing ◊ on (m2

fi0)n,◊ therefore depends on the relative size of ms/m̄ ¥ 27 and
2µ2/(m2

fi’ūu), which enter with opposite signs. Note in this regard that while we use the leading
order result for the quark condensate ratio ’ūu, we did not perform an expansion in density.
This is because, as we advanced at the beginning of this section and as explicitly shown in
Fig. 5.1, when kaon condensation sets is we have n/n0 > 1. Then, when ms/m̄ > 2µ2/m2

fi’ūu,
the coe�cient of ◊ is negative and fi0 becomes lighter as kaon condensation sets in. Such a
decrease could potentially lead to an instability and CP violation in the neutral sector. However,
in the opposite case, when ms/m̄ < 2µ2/(m2

fi’ūu), which occurs at larger densities where ’ūu

is small and µ/mfi large (see Fig. 5.1), the coe�cient of ◊ is positive and fi0 becomes heavier
in the kaon-condensed phase. As opposed to the fi0, the ÷ mass depends only weakly on ◊. In
Fig. 5.2 we plot the numerical result for (m2

fi0)n,◊ as a function of density for fixed values of
3The calculation of the axion mass is simplified by choosing a particular ◊-dependent Qa matrix which removes

the tree-level mixing between the axion and fi0 and ÷, see App. 5.B for more details.
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Figure 5.2: Numerical result for the neutral pion (dashed line) and axion (solid line) masses normalized
to their n = ◊ = 0 values as a function of density n/n0 for ‡fiN = 30 MeV (left panel) and
‡fiN = 45 MeV (right panel). The blue, orange and green curves correspond to fixed values
of the proton fraction np/n = 0.1, 0.3 and 0.5, respectively. We consider densities in the
region n < nc © n0/b1 ¥ 2.8n0 (45 MeV/‡fiN ) for the corresponding values of ‡fiN . The
e�ect of kaon condensation is to eventually increase the neutral pion mass, while the axion
becomes lighter and even massless at some density below nc. Above this density the axion
field is therefore unstable around ÈaÍ = 0 and axion condensation is expected to occur.
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Figure 5.3: Phase diagram in the plane of baryon density n/n0 and proton fraction np/n based on the
numerical solution of Eqs. (5.30) and (5.31) for ‡fiN = 30 MeV (left panel) and ‡fiN =
45 MeV (right panel). The blue region marks the kaon-condensed phase, while the green
region marks the axion-condensed phase. We consider densities in the region n < nc for the
corresponding values of ‡fiN .

proton fraction, using the numerical results for ◊(n) and µ(n) displayed in Fig. 5.1. We find
that the µ2 contribution leads to an increase in the mass of the neutral pion, similar to the
e�ect of pion condensation in the simplified case discussed in Sec. 4.5. Finally, the axion mass is
independent of µ and decreases with the size of the kaon condensate. Interestingly, the negative
coe�cient of ◊2 is enhanced as density increases, since then ’ūu becomes smaller. As shown in
Fig. 5.3, this behavior eventually results in axion condensation at large densities, yet before the
quark condensate vanishes. In this phase CP is thus spontaneously broken in the neutral sector.
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Lastly, we note that one should be wary of the fact that for the quark condensates we included
only density corrections at linear order and disregarded higher order corrections. As discussed
at the end of the previous section, for densities n ≥ nc, these corrections are in fact important.
In this regard, we would like to stress the fact that while our results might not be trustable
at the quantitative level, this does not necessarily make an axion-condensed phase less likely.
First, let us note that qualitatively we expect (m2

a)n,◊ to decrease with n even when considering
higher-order corrections to ’ūu(n). Second, to further support our claim, let us consider the limit
of maximal kaon condensation, i.e. ◊ æ fi/2, where

(m2
a)n,fi/2 ¥ (m2

a)0(’ūu ≠ ’s̄s) ¥ ≠(m2
a)0 b1

n

n0
. (5.39)

If one ignores the density dependence of the condensates by taking b1 = 0, this result is consistent
with the naive expectation of a vanishing axion mass for cos ◊ æ 0, since (m2

a)◊ Ã Tr[�0 + �†
0] Ã

cos ◊, as we showed in Sec. 4.5. However, as discussed in Sec. 5.1, a background of protons and
neutrons makes ’ūu < ’s̄s ¥ 1, in other words b1 > 0, this implies a negative axion mass for
large kaon condensates, where it becomes energetically favorable for the axion field to develop a
non-vanishing expectation value.

5.3 Axion couplings
Let us now turn our attention to the couplings of the axion to QCD matter at finite density.
These couplings are of special importance, as they are a crucial input in the astrophysical axion
bounds [200], in particular regarding supernovae and neutron star cooling, see e.g. [229, 230, 231,
232] for recent works on the subject.

In vacuum

These coupling have been precisely calculated including RGE e�ects [14] and more recently at
next-to-next-to-leading order in ChPT [233, 234]. We review here how the couplings to protons
and neutrons are derived in ChPT, following closely the discussion in [14]. The relevant part of
the low-energy e�ective Lagrangian for the isospin doublet N = (p, n)T in the non-relativistic
approximation is given by

L(1)
fiN ∏ N̄ivµDµN + gAN̄SµuµN + gi

0N̄Sµûi
µN + . . . , (5.40)

where we omitted mass terms proportional to the axion-dependent quark mass matrix Ma, since
there are no linear interactions coming from them if CP is preserved, see the discussion on
CP violation at the end of this section. We also omitted higher-order terms in the expansion
in (spatial) momenta, k/�‰ ≥ k/MB. vµ is the velocity of the non-relativistic fields, which
satisfy vµ“µN = N , while Sµ is the spin operator, N̄SµN = 1

2N̄“µ“5N = 1
2N̄(i“5‡µ‹v‹)N .

Dµ is the usual covariant derivative of ChPT, DµN = (ˆµ + eµ)N with the chiral connection
eµ = 1

2(›†Òµ› + ›Òµ›†), while the vielbein is uµ = i(›Òµ›† ≠ ›†Òµ›), where › = exp[ifia‡a/2ffi].
Here we have introduced the derivative Òµ, which contains the external (isospin) axial and
vector currents, i.e. Òµ› = ˆµ› ≠ i(Vµ ≠ Aµ)› and Òµ›† = ˆµ›† ≠ i(Vµ + Aµ)›†. 4 Finally, ûi

µ is
associated to the (isospin) axial scalar current, ûi

µ = 2Âi
µ, 5 where the index i = (u + d, s) runs

over iso-scalar quark combinations.
4We have also introduced the Goldstone matrix ›, because when the QCD orientation is trivial, ›L = ›†

R = ›.
Besides, note that in our convention uµ is twice that used in [14], following the standard in the ChPT literature,
see e.g. [235] (however, in this reference the roles of › and ›† are interchanged with respect to ours).

5In case the ÷Õ was light, then ûi
µ Ã ˆµ÷Õ.
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Because of its UV couplings to the axial currents made out of quarks, Eq. (4.88c), the axion
enters Eq. (5.40) as an external axial current, with components in both the iso-vector and
iso-scalar directions. Therefore, with the inclusion of the axion, one finds

uµ =
3

ˆµfii

ffi

4
‡i + cIR

≠
3

ˆµa

fa

4
‡3 + O

A
fi2

i ˆµfij

f3
fi

B

, (5.41)

ûµ = (cIR
+ , cIR

s )
3

ˆµa

fa

4
(5.42)

with cIR± © (cIR
u ± cIR

d )/2 and where we have written ûµ explicitly as a two-component vector. The
couplings cIR

u,d,s are related to the UV couplings by

cIR
q = CqqÕ(c0

qÕ ≠ [Qa]qÕ) . (5.43)

where the matrix CqqÕ accounts for renormalization group evolution (RGE) [14],

CqqÕ =
I

0.975 q = qÕ

≠0.024 q ”= qÕ , (5.44)

see [14] for a detailed derivation.
We recall from Sec. 4.3 that the c0

q are the UV model-dependent couplings of the axion to
SM axial quark currents, while the matrix Qa was introduced in order to remove the aGG̃ term.
To further eliminate all axion-pion mixing, we chose a particular rotation matrix Qú

a, which at
zero density (denoted by the “0” subscript) is given by

(Qú
a)0 = Diag[1, z, zw]

1 + z + zw
, (5.45)

with [236]

z © mu

md
= 0.47+0.06

≠0.07 , w © md

ms
= (17 ≠ 22)≠1 . (5.46)

The coe�cients gA and gi
0 in Eq. (5.40) are given by linear combinations of hadronic matrix

elements encoding the contribution of a quark q to the spin operator of the proton,

gA = �u ≠ �d , gi
0 = (�u + �d, �s) , Sµ�q © Èp|q̄“µ“5q|pÍ . (5.47)

The axial-vector coupling gA have been precisely measured in —-decay experiments, while gud
0

and �s have been be extracted from lattice calculations, where in both cases isospin breaking
e�ects are neglected. Their values at zero density are [236, 14]

(gA)0 = 1.2723(23) , (gud
0 )0 = 0.521(53) , (�s)0 = ≠0.026(4) . (5.48)

With this information, the couplings of the axion to nucleons,

ˆµa

fa
(cp p̄ Sµ p + cn n̄ Sµ n) (5.49)

can be finally extracted from the e�ective Lagrangian in Eq. (5.40),

cp = +gAcIR
≠ + gud

0 cIR
+ + �scIR

s , (5.50)
cn = ≠gAcIR

≠ + gud
0 cIR

+ + �scIR
s . (5.51)
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This leads for instance to the accurate determination of the model-independent axion couplings,
i.e. those of the KSVZ or hadronic axion [12, 13], for which c0

q = 0,

(cp)KSVZ
0 = ≠0.47(3) , (cn)KSVZ

0 = ≠0.02(3) . (5.52)

We note in particular that the axion coupling to neutrons in vacuum is suppressed with respect
to the naive O(1) expectation due to an accidental cancelation between z = mu/md ¥ 1/2 and
the ratio of matrix elements in vacuum �u/�d = (gud

0 + gA)/(gud
0 ≠ gA) ¥ ≠2,

A
cn

cp

BKSVZ

0
Ã 1 + z(�u/�d)0

(�u/�d)0 + z
¥ 7.6 ◊ 10≠2 , (5.53)

neglecting RGE and other subleading e�ects such as mu,d/ms corrections. It is precisely this
cancelation that makes cn sensitive to small variations of the parameters. For example, RGE
is naively an O(10≠2) e�ect according to Eq. (5.44) – however, because of the accidental
cancelation of the axion-neutron coupling in the KSVZ model, it is in fact an O(1) e�ect,
(cn)no RGE

0 /(cn)0 ¥ 1.5. As we will be showing in the following, finite density corrections also spoil
the cancellation, leading in fact to a much larger e�ect.

In-medium mixing angles

The mixing angles with the neutral pions change at finite baryon density due to the change in
the values of the quark condensates, as discussed in Sec. 5.1. The Qú

a matrix that diagonalizes
such mixings becomes therefore density dependent,

(Qú
a)n = Diag[1, zZ, zZwW ]

1 + zZ + zZwW
, (5.54)

where we defined

Z © ÈūuÍn

Èd̄dÍn

, W © Èd̄dÍn

Ès̄sÍn
. (5.55)

Using Eq. (5.12) for the quark condensates at linear order in density, we find

Z = 1 ≠ 2 b2
n ≠ 2np

n0
, W = 1 ≠

5
b1 ≠ b2

3
1 ≠ 2np

n

4
≠ b3

6
n

n0
, (5.56)

where b1,2,3 have been defined in terms of sigma terms in Eq. (5.13). Note that the deviation of Z
from unity is small, being proportional to the anomalously small coe�cient b2, while the e�ects
of W will be suppressed by mu,d/ms. However, similar to the RGE e�ects discussed above, the
small density e�ect from Z gets amplified due to the cancellation structure of (cn)KSVZ

0 , while no
large enhancement is expected in cp. Indeed, one finds

(�cn)Z,W ”=1
n /(cn)KSVZ

0 ¥ 40% n ≠ 2np

n0
, (5.57)

(�cp)Z,W ”=1
n /(cp)KSVZ

0 ¥ ≠2.5% n ≠ 2np

n0
. (5.58)

Note that both the O(1) correction to cn and the O(10≠2) correction to cp fall within the
uncertainty range of the KSVZ axion couplings in vacuum given in Eq. (5.52).
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In-medium matrix elements

The hadronic matrix elements �u, �d and �s are also density dependent quantities in medium.
In particular, the combination gA © �u ≠ �d, which fixes the coupling of the pions to nucleons,
is known to get quenched inside nucleons [237]. This was observed from the reduced rates for
—-decay in various large nuclei [238], suggesting that in medium (gA)n0/2/(gA)0 ¥ 0.75, with
n0/2 being the typical baryon density around the surface of such large nuclei.

The in-medium change in the e�ective axial coupling can be derived from the following
higher-order terms in the non-relativistic baryon chiral Lagrangian [239, 240] 6

L(2)
fiN ∏ ĉ3

�‰
N̄uµuµN +

A
ĉ4
�‰

+ 1
4M

B

N̄ [Sµ, S‹ ]uµu‹ N , (5.59)

L(1)
fiNN ∏ ≠ cD

2f2
fi�‰

(N̄N)(N̄ Sµuµ N) . (5.60)

The density dependence of gA was originally calculated in [241] and used recently to explain
the apparent discrepancy in —-decay rates in large nuclei [242]. 7 It is given, at leading order in
n/�‰f2

fi (recall �‰ ≥ MB), by

(gA)n

(gA)0
= 1 + n

�‰f2
fi

5
cD

4(gA)0
≠ I(mfi/kf )

3

3
2ĉ4 ≠ ĉ3 + �‰

2MB

46
, (5.61)

with

I(x) = 1 ≠ 3x2 + 3x3 tan≠1
3 1

x

4
. (5.62)

We identify two types of corrections. The terms proportional to I(mfi/kf ) arise from (the
resummation of) pion-exchange contributions originating in the operators in Eq. (5.59), where
kf = (3fi2n/2)1/3 ¥ (270 MeV) (n/n0)1/3 and we took the limit of vanishing momentum carried
by the pion (there is little variation if instead the Fermi gas average value p2

fi = 6k2
f /5 is taken).

The contribution proportional to cD comes instead from the contact term in Eq. (5.60), as it
immediately follows from the mean field result ÈN̄NÍ = n. The values of the low energy couplings
ĉ3, ĉ4 and cD can be extracted from experiments. In this work we use the values provided in [242]

cD = ≠0.85 ± 2.15 , (2ĉ4 ≠ ĉ3) = 9.1 ± 1.4 , (5.63)

for �‰ = 700 MeV. The finite density value of axial-vector coupling that follows from Eqs. (5.61)
and (5.63) is then

(gA)n

(gA)0
¥ 1 ≠ (30 ± 20)% n

n0
. (5.64)

Similar to gA, higher-order operators in ChPT will give rise to a density dependent modification
of gud

0 © �u + �d and �s,

L(2)
fiN ∏ ĉi

3
�‰

N̄uµûi
µN + ĉi

4
�‰

N̄ [Sµ, S‹ ]uµûi
‹ N , (5.65)

L(1)
fiNN ∏ ≠ ci

D

2f2
fi�‰

(N̄N)(N̄ Sµûi
µ N) , (5.66)

6Note that in the literature these terms usually appear with dimensionful coe�cients c3 and c4. Here we
normalized them to the cuto� of ChPT, ci © ĉi�‰.

7This change in gA does not only a�ect the axion but also neutrino dynamics in supernovae (see e.g. [243] for a
review on neutrinos in supernovae), which would be interesting to explore.
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from where one could derive, analogously to gA, the density corrections from pion exchange or
contact terms. We parametrize our ignorance about the density dependence of the axial-scalar
coupling gud

0 by defining Ÿ,

(gud
0 )n

(gud
0 )0

© 1 + Ÿ
n

n0
, (5.67)

and, in light of Eq. (5.64), we will consider the two benchmarks, Ÿ = ±0.3, leading to in-medium
quenching, as (gA)n, or enhancement. Besides, while we could use a similar parametriza-
tion for �s, its contribution to the axion couplings to nucleons is already subleading, since
(�s)0 = O(10≠2), thus we will neglect it in the following. We stress that it is certainly important
to properly compute the density corrections to gud

0 and �s, a challenging task given the expected
uncertainties that would be associated with the determination of the coe�cients in Eqs. (5.65)
and (5.66). We wish to point out however that we find no reason for the approximate relation
�u/�d ¥ ≠1/z ¥ ≠2 to hold even if all the relevant finite density corrections are taken into
account.

Combining both the finite density e�ects discussed above, let us write the density dependent
axion-nucleon couplings as the obvious generlization of Eq. (5.51),

(cp)n = +(gA)n(cIR
≠ )n + (gud

0 )n(cIR
+ )n + (�s)n(cIR

s )n , (5.68)
(cn)n = ≠(gA)n(cIR

≠ )n + (gud
0 )n(cIR

+ )n + (�s)n(cIR
s )n , (5.69)

with

(cIR
q )n = CqqÕ

1
c0

qÕ≠[(Qú
a)n]qÕ

2
. (5.70)

where we recall that, since [(Qú
a)0]q/[(Qú

a)n]q ≥ b2(n/n0) = O(10≠2) for q = u, d, the main e�ect
of a baryonic background comes via (gA)n (as well as (gud

0 )n), a change that a�ects any type of
axion (something fully encoded in the coe�cients (cIR± )n).

To highlight the main point of this analysis, namely that the couplings of the axion to nucleons
significantly change at finite density, we plot in Fig. 5.4 the ratio of the model-independent
but density-dependent axion couplings to nucleons (including RGE), normalized to the vacuum
values, as a function of n/n0. As argued above, for such a hadronic axion the finite density e�ects
are most striking, because the accidental suppression of the in-vacuum axion-neutron coupling is
gone.

In the left panel, where we take Ÿ positive, the O(1) modification of (gA)n and (gud
0 )n

translates into an O(10) enhancement of (cn)KSVZ
n at nuclear-saturation densities. In case of a

negative Ÿ, the ratio �u/�d remains similar to its n = 0 value, and the accidental cancellation
persists even after including in-medium e�ects leading only to O(1) modification of cn, although
with large uncertainties. For the coupling to protons we find the opposite behaviour: for Ÿ > 0
the increase in (gud

0 )n compensates for the decrease in (gA)n, such that the coupling is almost
unchanged at saturation density. On the other hand, for Ÿ < 0, both (g0)n and (gud

0 )n decrease,
which leads to an O(1) decrease of cp.

In kaon- and axion-condensed phases

Let us briefly comment on the couplings of the axion when this acquires a non-trivial background
value, which is the most interesting potential consequence of kaon condensation. If ÈaÍ ”= 0 in
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Figure 5.4: The model-independent axion coupling to neutrons (protons) plotted in green (red) as a
function of n/n0. The couplings are normalized to the zero density values, Eq. (5.52). The
bands represent the uncertainty in the couplings due to the coe�cients in Eq. (5.63). The
density dependence of gud

0 is parameterized by Ÿ, see Eq. (5.67). We consider two benchmark
cases, Ÿ = +0.3 (left panel) and Ÿ = ≠0.3 (right panel).

medium, CP is violated in the neutral scalar sector and the axion acquires scalar-like couplings
to nucleons,

yaN̄N aN̄N, (5.71)

see e.g. [244, 245]. While the e�ects of these couplings certainly deserve further investigation, in
particular in the context of dense systems such as neutron stars, we only wish to point out that
they are proportional to the quark masses,

yaN̄N ≥ ÈaÍ ‡fiN /f2
a ≥ ÈaÍ mu,d/f2

a , (5.72)

since in the chiral limit the expectation value of the axion is not physical. 8

5.A Baryon-ChPT with non-trivial vacuum alignment
We generalize the Nf = 3 chiral Lagrangian with baryons for a non-trivial ground state orientation,
�0 ”= 1 with �†

0�0 = 13, e.g. in the kaon-condensed phase

�0(◊) =

Q

ca
cos ◊ 0 i sin ◊

0 1 0
i sin ◊ 0 cos ◊

R

db . (5.73)

We denote �0(◊/2) © ›0(◊) (such that ›2
0 = �0) and drop for brevity the explicit ◊-dependence.

The standard SU(3)L ◊ SU(3)R generators are given by the Gell-Mann matrices

T a
L = ⁄a , T a

R = ⁄a . (5.74)

It should be understood that the L and R operators act on di�erent indices and therefore
commute. We define the following rotated generators

(T a
L)◊ = ›0(T a

L)›†
0 , (T a

R)◊ = ›†
0(T a

R)›0 , (5.75)
8Axion CP-violating (self-)interactions enable the axion to mediate forces between neutron stars as investigated

in [209].
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The broken and unbroken generators are given by

Xa = (T a
L)◊ ≠ (T a

R)◊ , T a = (T a
L)◊ + (T a

R)◊ , (5.76)

respectively. The fluctuation around the vacuum are parametrized by the Goldstone matrices

›L = ei fia

2ffi
(T a

L)◊ = ›0 exp
5

ifia⁄a

2ffi

6
›†

0 , ›R = e≠i fia

2ffi
(T a

R)◊ = ›†
0 exp

5
≠ ifia⁄a

2ffi

6
›0 , (5.77)

with transformation properties

›L æ L›LV †
◊ , ›R = R›RV †

◊ , (5.78)

with V◊ a NGB-dependent transformation under the unbroken SU(3) subgroup of SU(3)L ◊
SU(3)R, the transformations under the latter denoted by L and R respectively. As usual, it is
convenient to construct

� = ›L�0›†
R = ›0 exp

5
ifia⁄a

ffi

6
›0 , (5.79)

which transforms as � æ L�R†. Following standard notation,

fia⁄a =
Ô

2

Q

cca

fi0Ô
2 + ÷Ô

6 fi+ K+

fi≠ ≠ fi0Ô
2 + ÷Ô

6 K0

K≠ K̄0 ≠
Ò

2
3÷

R

ddb . (5.80)

We introduce the (◊-rotated) baryon octet as linearly-transforming fields, B̂◊
L,R,

B̂◊
L æ LB̂◊

LL† , B̂◊
R = RB̂◊

RR† , (5.81)

where we use the ◊-superscript because the finite-density backgrounds we consider consist of a
non-vanishing ensemble of the standard (non-rotated) baryons, given by

B̂L = ›†
0B̂◊

L›0 , B̂R = ›0B̂◊
R›†

0 , (5.82)

with the usual parameterization

BL,R =

Q

cca

�0Ô
2 + �Ô

6 �+ p

�≠ ≠ �0Ô
2 + �Ô

6 n

�≠ �0 ≠
Ò

2
3�

R

ddb

L,R

. (5.83)

The Lagrangian in this basis is given by

L = L0
� + L0

B + LM + L0
¸ , (5.84)

L0
� = f2

fi

4 Tr[ˆµ�†ˆµ�] , (5.85)

L0
B = i Tr[ ¯̂B◊

L“µˆµB̂◊
L] + i Tr[ ¯̂B◊

R“µˆµB̂◊
R] ≠ MB Tr[ ¯̂B◊

L�B̂◊
R�† + h.c] , (5.86)

LM = ≠ Èq̄qÍ0
2 Tr[�†M ]

+ a1 Tr[ ¯̂B◊
LMB̂◊

R�†] + ā1 Tr[ ¯̂B◊
R�†M�†B̂◊

L�]

+ a2 Tr[ ¯̂B◊
R�†B̂◊

LM ] + ā2 Tr[ ¯̂B◊
L�B̂◊

R�†M�†]

+ a3 Tr[ ¯̂B◊
L�B̂◊

R�† + ¯̂B◊
R�†B̂◊

L�] Tr[�†M ] + h.c , (5.87)
L0

¸ =
ÿ

¸=e,µ

¯̧(i“µˆµ ≠ m¸)¸ . (5.88)
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where we recall the quark mass matrix spurion transforms as M æ LMR†, we dropped some
terms at the same order in derivatives (acting on the � matrices) that are irrelevant for our
discussion, and we included leptons.

5.A.1 Adding chemical potential

We add chemical potentials for the three mutually commuting abelian symmetries associated
with neutron and proton numbers and electric charge (from here on we neglect the other baryons).
Under U(1)n,p, Â æ ei–Â for Â = n, p respectively, while under U(1)EM electromagnetism,

B̂L,R æ ei–QeB̂L,Re≠i–Qe , � æ ei–Qe�e≠i–Qe , ¸ æ e≠i–¸ , (5.89)

with

Qe = 1
3

Q

ca
2

≠1
≠1

R

db . (5.90)

Chemical potentials are introducing following the prescription in Eq. (4.94), i.e. by modifying
temporal derivatives as

ˆ0� æ ˆ0� + i[µ̂, �] , (5.91)
ˆ0B̂L,R æ ˆ0B̂L,R + i[µ̂, B̂L,R] + iµ̂n,pB̂L,R , (5.92)

ˆ0¸ æ ˆ0¸ ≠ iµ¸ , (5.93)

where we denoted

µ̂ = µ Qe , µ̂n,p = Diag[µp ≠ µ, µn, 0] . (5.94)

We then get the following additional terms to the Lagrangian (5.84)

Lµ
� = L0

� + f2
fi

4
1
Tr[2iˆ0�[µ̂, �†]] ≠ Tr[[µ̂, �][µ̂, �†]]

2
, (5.95)

Lµ
B = L0

B ≠
1
Tr[ ¯̂B◊

L“0[µ̂, B̂◊
L]] + Tr[ ¯̂B◊

R“0[µ̂, B̂◊
R]]

2

≠
1
Tr[ ¯̂B◊

L“0µ̂n,pB̂◊
L] + Tr[ ¯̂B◊

R“0µ̂n,pB̂◊
R]

2
, (5.96)

Lµ
¸ = L0

¸ + µ
ÿ

¸=e,µ

¯̧“0¸ . (5.97)

5.A.2 Non-linear field basis

It is usually most convenient to work in a field basis for the baryons in which these only transform
under the non-linearly realized unbroken SU(3) subgroup of SU(3)L ◊ SU(3)R,

B◊
L æ V◊B◊

LV †
◊ , B◊

R = V◊B◊
RV †

◊ , (5.98)

with the dressed fields

B◊
R = ›†

RB̂◊
R›R , B◊

L = ›†
LB̂◊

L›L . (5.99)
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In this basis there are no non-derivative interactions of the mesons with the baryons from the
mass terms in Eq. (5.87). Besides, in complete analogy to Eq. (5.82), the standard (non-rotated)
baryons are given by

BL = ›†
0B◊

L›0 , BR = ›0B◊
R›†

0 . (5.100)

In terms of such fields, which we recall make up the finite-density background, the baryon
Lagrangian is given by

Lµ
B = i Tr[B̄“µDµB] ≠ MB Tr[B̄B] ≠ µ Tr[B̄“0[Q̂e, B]] ≠ Tr[B̄“0µ̂u,dB] , (5.101)

where the baryon covariant derivative is given by DµB = ˆµB + [eµ, B], with

eµ © 1
2

1
›†

0(eL)µ›0 + ›0(eR)µ›†
0

2
, (eL)µ © i›†

Lˆµ›L , (eR)µ © i›†
Rˆµ›R , (5.102)

and

Q̂e © 1
2

1
›†

0›†
LQe›L›0 + ›0›†

RQe›R›†
0

2
, (5.103)

reproducing Eq. (5.25). The part of the Lagragian proportional to the quark mass matrix reads

LM = ≠Èq̄qÍ0
2 Tr[M̂ ] + a1 Tr[B̄LM̂BR] + ā1 Tr[B̄RM̂BL]

+ a2 Tr[B̄RBLM̂ ] + ā2 Tr[B̄LBRM̂ ] + a3 Tr[B̄LBR + B̄RBL] Tr[M̂ ] + h.c .

where we defined the dressed mass matrix

M̂ © ›†
0›†

LM›R›†
0 , (5.104)

as in Eq. (5.1). From LM in this form it becomes apparent that the L ¡ R exchange symmetry
of QCD implies a1,2 = ā1,2, which allows us to write

LM = ≠1
2Tr[Èq̄qÍn(M̂ + M̂ †)] , (5.105)

Èq̄qÍn © Èq̄qÍ013 ≠ 2a1BB̄ ≠ 2a2B̄B ≠ 2a3 Tr[B̄B]13 . (5.106)

From this expression one can derive the density-dependent quark condensate of Eq. (5.12), since
in the non-relativistic limit B̄B = B̄“0B and in the mean-field approximation we can treat the
baryons as fixed classical background fields, thus

p̄p = p̄“0p æ Èp̄“0pÍ = np (5.107)

and likewise for the neutron. Besides, note that the baryon masses mn and mp are given in terms
of {‡fiN , ‡̃fiN , ‡s} in Eqs. (5.10) and (5.11) respectively. One can then relate the coe�cients
{a1, a2, a3} of the baryon chiral Lagrangian to the sigma terms

‡fiN = ≠2m̄(a1 + 2a3) , (5.108)
‡̃fiN = 2�m a1 , (5.109)

‡s = ≠2ms(a2 + a3) . (5.110)
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Finally, we recall that at zero temperature all the states with E(p) =
Ò

p2 + m2
Â < µÂ are

occupied, such that

nÂ = ÈÂ̄(x)“0Â(x)Í = gÂ

⁄ E(p)<µÂ

0

d3p

(2fi)3 = gÂ

6fi2 (µ2
Â ≠ m2

Â)3/2 , (5.111)

with gÂ counting the internal degrees of freedom, e.g. gÂ = 2 for a fermion. In Sec. 5.1 we fixed
the values of {n, np} by implicitly fixing the values of {µp, µn}

µp =
Ò

(3fi2np)2/3 + m2
p , (5.112)

µn =
Ò

(3fi2nn)2/3 + m2
n . (5.113)

Note that one can fix {n, np} while still keeping the charge chemical potential µ free by choosing
the appropriate value of µp, namely if µ æ µ + ”µ, then µp æ µp ≠ ”µ.

5.B Axion mass in Kaon-condensed phase
Tree-level mixing with the mesons in the kaon-condensed phase are removed when the matrix
Qa satisfies the following condition

{Èq̄qÍn, ›0MQa›0 + ›†
0MQa›†

0} Ã 13 . (5.114)

If Re(�0) is a diagonal matrix, such that [Re(�0), Èq̄qÍn] = 0, the Qa matrix given by

(Qa)◊
n = X◊

n

TrX◊
n

, X◊
n = M≠1

A

›0
Èq̄qÍ≠1

n

Re(�0)›†
0 + ›†

0
Èq̄qÍ≠1

n

Re(�0)›0

B

, (5.115)

satisfies 5.114. Plugging Eq. (5.115) in Eq. (5.1), we find the axion mass

(m2
a)◊,n = ≠ 1

2f2
a

Tr
Ë
Èq̄qÍn

1
›0M(Q◊

a)2›0 + ›†
0M(Q◊

a)2›†
0

2È
. (5.116)





6

CFL densities

In this chapter we make a jump to asymptotically large baryon densities, or equivalently large
quark chemical potentials, µq ∫ �‰ (µq © µu = µd = µs). At such high densities, two
quark around the highly energetic Fermi surface interact weakly via tree-level gluon exchange,
interactions which can be e�ectively parametrized below the Fermi momentum by 4-Fermi
operators. Such operators, when in the attractive color 3̄ channel, become relevant for back-to-
back scattering as one approaches the Fermi surface (see e.g. [246, 247]), leading to the formation
of diquark pairs and ultimately to color superconductivity [248, 249, 250, 251], see also [252]
for a comprehensive review. Such a diquark pairing manifests itself in the form of a diquark
condensate ÈqLCqLÍ, which leads to the color-flavor-locked symmetry breaking pattern

SU(3)c ◊ SU(Nf )L ◊ SU(Nf )R ◊ U(1)B ◊ U(1)A æ SU(Nf )L+R+c . (6.1)

The condensates are given by [252]

Èqia
L Cqjb

L Í =
1
‘abc‘ijkÈ�3̄

LÍkc + È�6
LÍij,ab

2 3
Ô

2fi

gs

µ2
q

2fi
, (6.2)

Èqīa
R Cqj̄b

R Í =
1
‘abc‘īj̄k̄È�3̄

RÍk̄c + È�6
RÍīj̄,ab

2 3
Ô

2fi

gs

µ2
q

2fi
, (6.3)

where i, j, k are SU(3)L indices, ī, j̄, k̄ are SU(3)R indices, and a, b, c are SU(3)c indices, upper
(lower) if in the (anti-)fundamental. The representations under the unbroken symmetries in (6.1)
of the scalar field matrices above are

�3̄
L : (3̄, 3̄, 1)+2,+2 , �6

L : (6, 6, 1)+2,+2 , (6.4)
�3̄

R : (3̄, 1, 3̄)+2,≠2 , �6
R : (6, 1, 6)+2,≠2 , (6.5)

while their expectation values, proportional to the gap parameters �3 and �6, are

È�3̄
LÍkc = ”kc�3 , È�6

LÍij,ab = (”ia”jb + ”ja”ib)�6 , (6.6)

È�3̄
RÍk̄c = ≠”k̄c�3 , È�6

RÍīj̄,ab = ≠(”īa”j̄b + ”j̄a”īb)�6 . (6.7)
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We parametrize the low-energy fluctuations of the ground state, i.e. the NGBs associated with
the symmetry breaking pattern (6.1) as

�3̄
L = ›†

LÈ�3̄
LÍ exp

C

2i

A
÷Õ

f÷Õ
+ H

fH

BD

, (6.8)

�3̄
R = ›†

RÈ�3̄
RÍ exp

C

2i

A

≠ ÷Õ

f÷Õ
+ H

fH

BD

, (6.9)

�6
L = ›T

L È�6
LÍ›L exp

C

2i

A
÷Õ

f÷Õ
+ H

fH

BD

, (6.10)

�6
R = ›T

RÈ�6
RÍ›R exp

C

2i

A

≠ ÷Õ

f÷Õ
+ H

fH

BD

, (6.11)

where

›L = ›†
R = exp

5
ifia⁄a

2ffi

6
. (6.12)

The ÷Õ and H are the NGBs associated with the spontaneous breaking of U(1)A and U(1)B,
respectively. The NGBs associated with the breaking of color have been removed, since they
are “eaten” by the gluons (unitary gauge). The rest of the NGBs, formally equivalent to those
of the standard QCD chiral Lagrangian, are contained in the ›L,R matrices, which are used to
construct the following linearly-transforming color-neutral Goldstone matrix

� © ›L›†
R : (1, 3, 3̄)0,0 , (6.13)

similarly as we did in vacuum, µq = 0, see Sec. 4.3.

6.1 Kinetic terms
The kinetic terms in the CFL phase are given by

LCFL
kin. = f2

fi

4 ÷µ‹
� Tr[Dµ�D‹�†] + 1

2÷µ‹
÷Õ ˆµ÷Õˆ‹÷Õ + 1

2÷µ‹
H ˆµHˆ‹H , (6.14)

with

÷µ‹
Ï = Diag[1, ≠v2

Ï, ≠v2
Ï, ≠v2

Ï] , Ï = �, ÷Õ, H . (6.15)

We recall that the introduction of chemical potential breaks Lorentz symmetry down to spatial
rotations, and the low-energy excitations, even if massless, propagate sub-luminally. These
velocities, as well as the decay constants, can be calculated by matching the UV microscopic
theory [253] to the e�ective low-energy theory [254, 255], 1

f2
fi = 21 ≠ 8 ln 2

18
µ2

q

2fi2 , f2
÷Õ,H = 18

µ2
q

2fi2 , v2
�,÷Õ,H = 1/3 . (6.16)

The � field gets a dynamically induced chemical potential due to the non-vanishing quark
masses [257]

D0� = ˆ0� + iµe�
L � ≠ i�µe�

R , (6.17)
1As mentioned above, the gluons, with electric and magnetic masses m2

D = g2
sf2

fi and m2
M = v2

Ïm2
D respectively,

are heavy and integrated out [256].
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with

µe�
L = (µe�

R )† = MM †

2µq
. (6.18)

Note that even if we choose a basis in which the axion enters the CFL e�ective Lagrangian via an
axion-dependent quark mass matrix Ma, as in Eq. (4.88), it will not appear in such an e�ective
chemical potential, since we can restrict ourselves to diagonal Qa matrices. In any case, for the
analysis of the axion potential in the CFL phase, it will be more convenient to work in a basis
where the axion is coupled to gluons, since a perturbative instanton expansion exists, being the
gluons heavy and weakly coupled.

6.2 Mass terms

Given the spurionic transformation properties of the quark mass M in Eq. (4.86), the leading
order terms preserving the global symmetries in (6.1) are

V CFL
M = A1‘ijk ‘̄ij̄k̄

1
[�3̄†

L �3̄
R] ī

i M j̄
j M k̄

k + h.c
2

≠ A2
2

1
[�6†

L �6
R]ij

īj̄
M ī

i M j̄
j + h.c

2
. (6.19)

Note that this potential respects U(1)A and it is generated perturbatively. Contrary to QCD in
vacuum, the axial symmetry thus dictates that the leading order terms in the scalar potential
are O(M2). Using Eqs. (6.6) - (6.11) one finds [254] 2

V CFL
M = ≠ A1�2

3
Ë
e≠4i÷Õ/f÷Õ

1
Tr[�†M ]Tr[�†M ] ≠ Tr[�†M�†M ]

2
+ h.c

È

+ A2�2
6

Ë
e≠4i÷Õ/f÷Õ

1
Tr[�†M ]Tr[�†M ] + Tr[�†M�†M ]

2
+ h.c

È
. (6.20)

The coe�cients can be computed by appropriately matching to the UV theory [254, 255, 258],

A1 = 2A2 = 3
4fi2 . (6.21)

Importantly, these two coe�cients enter with opposite signs in Eq. (6.19). This is due to the
fact that while the color 3̄ channel is attractive and lowers the total energy of the system, the
color 6 channel is repulsive and increases it. As a result, one finds that �6 = 0 at the classical
level. However, since È�6

L,RÍ does not break any additional symmetries compared to È�3̄
L,RÍ,

there is nothing preventing it from being generated at the quantum level in the presence of a
non-vanishing �3. Indeed, a perturbative calculation yields [259]

�2
6 = –s

ln2 2
162fi

�2
3 , (6.22)

where –s = g2
s/4fi. �3 itself can be calculated using the so-called gap equation, in particular in

the CFL phase with Nf = 3 [252]

�3 = 512fi4(2/3)5/2e≠ fi2+4
8 2≠1/3 µq

g5
s

exp
A

≠ 3fi2
Ô

2gs

B

. (6.23)

2The first term in Eq. (6.19) can also be written as ≠2A1�2
3(e4i÷Õ/f÷Õ Tr[M̃�] + h.c), where M̃ = det[M ]M≠1 =

(m̄ms, m̄ms, m̄2).
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The reason for considering the contribution of the condensate �6 to the potential, even though
it is suppressed with respect to �3, comes from the hierarchy in the quark masses. Indeed, one
finds e.g. contributions from both condensates to the masses of the mesons, of order [260],

�3m2
u,d ≥ �6m2

s . (6.24)

The similarity of these two contributions, along with the fact that the coe�cients of the respective
operators (in Eq. (6.21)) come with opposite signs, can lead to non-trivial vacuum structures, as
we review below.

Finally, we note that although at O(MM †) there exist other operators which could be
considered along with those in Eq. (6.19), Tr[M�†M †�] and Tr[M�†] Tr[M †�], these are not
generated at the order we are interested in [254].

6.3 Non-perturbative terms

Instantons explicitly break the U(1) axial symmetry of QCD, also in the CFL phase [261]. At
leading order in the gap parameters, one finds the following term generated via a single t’-Hooft
vertex

V CFL
1-inst. = A3

1
[�3̄†

L �3̄
R] ī

i [M †]i ī + h.c
2

= ≠A3�2
3 Tr[e≠4i÷Õ/f÷Õ �M † + h.c] . (6.25)

The coe�cient A3 can be calculated reliably at large chemical potentials due to the screening
of gluons for instantons of size fl & 1/µq π 1/�QCD, where �QCD ¥ 250 MeV is the QCD scale
parameter,

A3 = c (6fi)3 �9
QCD

3–7
sµ8

q

, (6.26)

with c = 0.155 [261, 252]. Given that the operator in Eq. (6.25) matches the leading term in
the meson potential of the chiral Lagrangian at zero density, Eq. (4.89), its coe�cient can be
mapped to the value of the standard quark condensate in the CFL phase

Èq̄qÍCFL
n

Èq̄qÍ0
= A3�2

3
Èq̄qÍ0

≥ 1 ◊ 10≠5
3 �3

50 MeV

42 3
fi

–s

47
A

500 MeV
µq

B8 3 �QCD

250 MeV

49
, (6.27)

where we set the chemical potential to a value expected to be realized in the core of a NS, noting
that –s is to be evaluated at the scale µq and that �3 depends on both –s and µq. Due to the
limited reliability of the perturbative result at such chemical potentials (see the discussion below),
as well as to the strong dependence on �QCD, it is clear that one cannot make a robust prediction
regarding the value of the quark condensate at realistic densities, yet a strong suppression of
Èq̄qÍ remains the most plausible outcome.

A higher-order operator that contributes to the mass of the ÷Õ in the chiral limit appears at
the two-instanton level,

V CFL
2-inst. = 1

�2

1
det[�3̄†

L �3̄
R] + h.c

2
= ≠2�6

3
�2 cos

A
12÷Õ

f÷Õ

B

. (6.28)

Note this term matches the would-be leading potential for the standard ÷Õ in vacuum, see
footnote 9.
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Before moving to the discussion of the axion potential in the CFL phase, let us note that
the matching procedure by which the coe�cients of the e�ective CFL Lagrangian are extracted
from the microscopic theory relies on perturbative calculations that have been found to be
under control for gs . 0.8 [262]. Such a small coupling corresponds to very high quark chemical
potentials, µq & 108 MeV, which in turn implies baryon densities that are five orders of magnitude
higher than those expected at the cores of dense NSs, where µq ≥ 500 MeV. Still, a quantitative
but more importantly a qualitative understanding of the CFL phase and of the corresponding
axion potential provides a solid ground from which to extrapolate to lower chemical potentials
and thus to realistic densities. In fact, the qualitative features and basic symmetry structure of
the CFL phase should hold down to µ ≥ m2

s/�3 ¥ 180 MeV (50 MeV/�3) [252].

6.4 Axion potential
In view of the previous discussion, in the following we examine the di�erent axion potentials
that arise by considering di�erent hierarchies between the coe�cients of the CFL operators.

Non-perturbative dominance

In this case we assume that the non-perturbative contributions to the potential dominate over
the mass terms, that is V CFL

1-inst., V CFL
2-inst. ∫ V CFL

M . Nevertheless, we still consider there exists a
weak-coupling expansion, in the sense that the one-instanton contribution dominates over the
two-instanton one, that is

e≠SI ∫ e≠2SI ≥ e≠SII , (6.29)

with SI , SII the action of the one- and two-instanton solutions, respectively. Given that the CFL
operators in Eq. (6.19) are of order V CFL

M ≥ m̄ms�2
3, where here and in the following we neglect

�m = 1
2(mu ≠ md), our hierarchy of potentials implies m̄A3 ∫ �4

3/�2 ∫ m̄ms. In this case the
potential, including the axion, reads

V CFL
1+2-inst. = ≠A3�2

3 Tr[ei(a/fa+4÷Õ/f÷Õ )�†M + h.c] + �6
3

�2 (ei(2a/fa+12÷Õ/f÷Õ ) + h.c) . (6.30)

After a field redefinition ÷Õ æ ÷Õ ≠ (f÷Õ/4fa)a, this is found to be the same as in the vacuum chiral
Lagrangian with a light ÷Õ, which is minimized at the trivial vacuum, È÷ÕÍ = ÈaÍ = 0 in particular.
The axion mass can be calculated by integrating out the mesons as we in zero density. The
details of this derivation can be found in App. 6.A. We find that the axion mass is suppressed
with respect to its vacuum value by

(m2
a)NP

CFL

(m2
a)0

= 8�6
3

(m2
fif2

fi)0�2 ≥ 3 ◊ 10≠3
3 �3

50 MeV

46 3500 MeV
�

42
. (6.31)

Perturbative dominance

Let us now consider the hierarchy V CFL
M ∫ V CFL

1-inst. ∫ V CFL
2-inst.. One should first note that if the

instanton terms are set to zero, the axion is massless, as can be immediately seen by using the
basis defined by Qa = 0 in Eq. (4.88); we use such a basis in the following. We write the potential
in terms of the variables

È4÷Õ/f÷ÕÍ © – , Èa/faÍ © — , (6.32)
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and use the ansatz [260]

È�Í = Diag[e≠iÏ, e≠iÏ, e2iÏ]

Q

ca
1 0 0
0 cos ◊ i sin ◊
0 i sin ◊ cos ◊

R

db , (6.33)

where the angles Ï and ◊ correspond to the expectation values È÷/
Ô

3ffiÍ and ÈK0/ffiÍ, respectively.
In this basis the meson potential is given by

V CFL
pert.,LO = ≠f2

fim4
s

8µ2
q

sin2 ◊ ≠ 4A1�2
3m̄ms(cos ◊ + 1) cos(– ≠ Ï) , (6.34a)

V CFL
pert.,NLO = ≠4A1�2

3m̄2 cos ◊ cos(– + 2Ï) + 4A2�2
6m2

s cos2 ◊ cos(– ≠ 4Ï) , (6.34b)
V CFL

1-inst. = ≠2A3�2
3ms cos ◊ cos(– + — + 2Ï) . (6.34c)

where we separated LO terms of O(m̄ms�2
3), from NLO terms of O(m̄2�2

3 ≥ m2
s�2

6), and
instanton-generated terms. 3 Minizing the LO potential V CFL

pert.,LO with respect to Ï and ◊ yields

Ï = – (6.35)

cos ◊ = Min
C

1,
16A1�2

3m̄

m3
s

3
µq

ffi

42
D

(6.36)

The solution Ï = – implies that the minimization of the NLO potential V CFL
pert.,NLO with respect

to – is found at

cos 3– = Sign[A1�2
3m̄2 ≠ A2�2

6m2
s cos ◊] . (6.37)

Eqs. (6.36) and (6.37) match the the results of [260]. Lastly, the instanton potential is minimized
with respect to — at

cos — = Sign [cos(3–)] . (6.38)

Therefore, one finds that the the axion is aligned with the ÷Õ, such that

Èa/faÍ =
I

0 , A1�2
3m̄2 > A2�2

6m2
s cos ◊

fi , A1�2
3m̄2 < A2�2

6m2
s cos ◊

, (6.39)

while the axion mass, neglecting mixing with ÷Õ and normalized to its vacuum value, is given by

(m2
a)CFL

(m2
a)0

= 8A3�2
3ms cos ◊

(m2
fif2

fi)0
≥ 7 ◊ 10≠4

3 �3
50 MeV

42 3
A3

4 ◊ 10≠4 MeV

4 3cos ◊

1

4
. (6.40)

where we evaluated A3 in Eq. (6.26) at µq = 1GeV, �QCD = 250 MeV and –s = fi. We therefore
find that the axion can develop a non-vanishing expectation value in the CFL phase also, when
the kaon condensate is large. Up to uncertainties associated with the value of A3, the axion is
significantly lighter than in vacuum.

3We should note at this point that we did not include the neutral pion fi0 in our analysis because the
corresponding first term in Eq. (6.34a), which destabilizes the potential at the origin of field space for K0, vanishes
for fi0.



6.A. Axion mass calculation with instantons 159

6.A Axion mass calculation with instantons

We calculate the axion mass by integrating out the neutral pions {fi0, ÷, ÷Õ} in the Nf = 3 chiral
Lagrangian, from the potential

V0 = b(Tr[�†M ] + h.c) ≠ c(e≠i(a/fa+÷Õ/f÷Õ ) + h.c) , (6.41)

where in vacuum b is given in Eq. (4.90) and e�ectively c æ Œ, while b = ≠A3�2
3 and c = �6

3/�2

in the CFL phase when instantons dominate. Note that the ÷Õ is normalized di�erently in the
CFL phase. This procedure produces the correct leading order result for the axion mass but
neglects (some of) the subleading corrections. In the generic basis of Eq. (4.88), the potential
then reads

V =2bmu cos
A

Qua

fa
≠

÷Ô
3 + fi0

ffi
≠ ÷Õ

3f÷Õ

B

+ 2bmd cos
A

Qda

fa
+

fi0 ≠ ÷Ô
3

ffi
≠ ÷Õ

3f÷Õ

B

+ 2bms cos
A

Qsa

fa
+ 2÷Ô

3ffi

≠ ÷Õ

3f÷Õ

B

≠ 2c cos
A

÷Õ

f÷Õ
≠ (Tr[Qa] ≠ 1) a

fa

B

, (6.42)

with Qa = Diag[Qu, Qd, Qs]. We integrate fi0 out by using its equation of motion at linear order
in the fields

fi0 = (muQu ≠ mdQd)
(md + mu)

3
ffi

fa
a

4
+ (md ≠ mu)

3 (md + mu)

AÔ
3÷ + ffi

f÷Õ
÷Õ

B

. (6.43)

Next we similarly integrate ÷ out

÷ =
Ô

3 (≠mdmsQs + mdmu (Qd + Qu) ≠ msmuQs)
2 (mdms + mumd + msmu)

3
ffi

fa
a

4

+ (md (ms ≠ 2mu) + msmu)
2
Ô

3 (mdms + mumd + msmu)

A
ffi

f÷Õ
÷Õ

B

. (6.44)

Finally, we integrate out ÷Õ

÷Õ = ≠bmdmsmuTr[Qa] + c (mdms + mumd + msmu) (Tr[Qa] ≠ 1)
≠bmdmsmu + c (mdms + mumd + msmu)

3
f÷Õ

fa
a

4
. (6.45)

The potential is minimized around ÈaÍ = Èfi0Í = È÷Í = È÷ÕÍ = 0 and we find the following axion
mass

m2
a = ≠2bc mumd

f2
a (mu + md)

1
c

Ë
1 + mumd

ms(mu+md)

È
≠ b

Ë
mdmu

mu+md

È2 . (6.46)

Once we have diagonalized the mass matrix, one could be concerned with the e�ect of the
O(ffi/fa) kinetic mixing which is generically induced by the derivative couplings of the axion.
Let us explictly show that this does not a�ect the leading order results for the axion mass. Our
starting point, without loss of generality, is the following Lagrangian

L = 1
2m2

fi

1
fį a

2 A
b 0
0 c›2

B A
fį
a

B

+ 1
2

1
ˆµfį ˆµa

2 A
1 ›d̨

›d̨T 1

B A
ˆµfį
ˆµa

B

, (6.47)
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where b = Diag[b1, .., bn] is an n ◊ n diagonal matrix of O(1) numbers, d̨ is a vector of n O(1)
numbers, c is an O(1) number, and › © ffi/fa is our expansion parameter. Let start by performing
the orthogonal rotation R1 in the meson subspace, such that

R1d̨ = (0, . . . , |d|). (6.48)

We rewrite the Lagrangian in this basis

L =1
2m2

fi

1
fį a

2 A
R1bRT

1 0
0 c›2

B A
fį
a

B

+ 1
2

1
ˆµfi1 ... ˆµfin ˆµa

2

Q

cccca

1
. . .

1 |d|›
|d|› 1

R

ddddb

Q

cccca

ˆµfi1
...

ˆµfin

ˆµa

R

ddddb
. (6.49)

We diagonalize and canonically normalize the lower 2 ◊ 2 block in the second term by rotating
and rescaling the fields

A
fin

a

B

= 1Ô
2

A
1 1

≠1 1

B

¸ ˚˙ ˝
©R2

Q

a
1Ô

1≠|d|› 0
0 1Ô

1+|d|›

R

b

¸ ˚˙ ˝
©T

A
fīn

ā

B

. (6.50)

Our mass matrix in the new basis now reads

m2
fiTRT

2

A
[R1bRT

1 ]nn 0
0 c›2

B

R2T . (6.51)

T can be expanded T = 1 + 1
2 |d|›‡3 + O(›2). At leading order T = 1 and the mass matrix can

be re-diagonalized by performing the inverse orthogonal rotation R≠1
2 , bringing it back to the

diagonal form of Eq. (6.47). One concludes that the axion mass does not receive any leading
order correction due to the kinetic mixing.



7
Observables

We briefly discuss in this section the potentially observable consequences of a non-vanishing
axion condensate in NSs, where the largest baryonic densities among the stars are found. We
defer to future work a more in-depth analysis of the corresponding phenomenology [226], as well
as the study of the implications of the change in the axion-nucleon couplings with density, the
latter particularly relevant for supernovae and NS cooling.

For simplicity, let us consider the following toy model, namely a stepwise radius-dependent
axion potential

V (a, r) =
I

f2
a (m2

a)in [cos(a/fa) ≠ 1] r < rc

≠f2
a (m2

a)out [cos(a/fa) ≠ 1] r > rc

, f2
a (m2

a)out ≥ m2
fif2

fi , (7.1)

where mfi and ffi are the vacuum values and we have fixed the constants such that in the
decoupling limit fa æ Œ, the potential vanishes. The potential grossly captures the e�ect of
matter on the axion potential, i.e. at a critical radius rc, which is of the order of the NS radius
R, the axion field gets destabilized and the minimum of the potential is located at Èa/faÍ = fi.
The field equation can be solved numerically and one finds the intuitive result based on energy
conservation, i.e. for the axion to get sourced the gain in potential energy needs to be enough to
compensate for the gradient energy that comes with the change in field value, �V ≥ (�a/R)2,
which occurs when the object is large enough compared to the de Broglie wavelength of the field
inside the object [209], namely

(ma)≠1
in . rc ≥ R . (7.2)

Let us assume this is the case for the rest of the discussion, keeping in mind that the axion mass
decreases with baryon density and that in vacuum (ma)≠1

out ≥ 16 km (fa/1018GeV). The typical
field configuration of the sourced axion is roughly

a(r)
fifa

=
I

1 , r < rc

rc
r e≠(ma)out(r≠rc) , r > rc

. (7.3)

In Fig. 7.1 we depict the typical field configurations of the axion sourcing, highlighting in grey
the possible observable implication, to be discussed in turn below.

7.1 Free (vacuum) energy
The first potentially observable implication is associated with the shift in potential energy density
inside the NS,

�V ≥ ≠2f2
a (m2

a)in, (7.4)
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Figure 7.1: Sketch of the typical field configurations of a sourced axion field, see the discussion in the
main text.

as a result of the axion sourcing. This e�ect is independent of the field configuration outside
the core of the NS, namely it is independent of

!
m2

a

"
out. Such an energy density shift can be

of considerable size compared to the energy density inside a NS, fl0 ¥ mnn0 ¥ (190 MeV)4.
Indeed, if the axion is sourced at relatively low baryon densities, as in the kaon condensed
phase (Sec. 5.2), one expects �V ≥ m2

fif2
fi , which is indeed not significantly below fl0 or the

energy change due to kaon condensation, of O(m2
Kf2

fi). Instead, if axion sourcing happens in the
CFL phase (Sec. 6), this e�ect is expected to be suppressed by a few orders of magnitude, see
Eq. (6.40), and therefore likely negligible.

A NS with a core of “vacuum energy” was considered as a generic scenario in [263, 264], in
the context of exotic QCD phases. It was found that the energy shift inside the NS leads to a
significant change in the mass-radius relation of NSs, as well as to changes of the so-called chirp
mass, one of main the gravitational wave observables of compact binary mergers. One could
then, in a similar fashion, consider axion condensation as a possible source for such a potential
energy shift.

7.2 Axion brane
Another interesting implication of axion condensation concerns the generation of a brane of
energy density inside the NS. In particular, if the condition

(ma)≠1
out π R , (7.5)

is met, the exponentially suppression of the axion field outside the NS is very rapid, a change
that contributes to the energy density of the system in the form of a gradient energy

(Ǫ̀a)2 ≥
3�a

�r

42
≥ f2

a (ma)2
out ≥ m2

fif2
fi . (7.6)

One can think of such an abrupt change in field values as a localized (spherical) brane of energy
density. The e�ect of such a brane has in fact not been considered in previous studies of NS
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structure. Such a brane would appear as an e�ective discontinuity in the temporal and radial
components of the metric, which because of Einstein’s field equations (known as the Tolman-
Oppenheimer-Volko� equations), imply a discontinuity in the pressure and enclosed mass of the
star.

7.3 Axion-EM conversion

Next we consider the interplay between the EM fields of rotating NSs (i.e. pulsars), which are
the strongest found in the Universe, and the axion, in particular when

(ma)≠1
out & R , (7.7)

such that the sourced axion field is still non-negligible in the close surroundings of the NS.
The axion and the classical EM fields form a coupled system, as seen from the generalized

form of the Maxwell equations

Ǫ̀ · E = ga““ B · (Ǫ̀a) , (7.8a)

Ǫ̀ ◊ B = ˆE
ˆt

+ ga““

Ë
E ◊ Ǫ̀a ≠ Bȧ

È
, (7.8b)

⇤a = ga““(E · B) ≠ ˆV

ˆa
= ga““(E · B) ≠ (m2

a)outa + O(a2) , (7.8c)

where the last line is the axion equation of motion. The interplay between the axion and the
EM field of pulsars has been actively investigated before, see e.g. [265, 266, 267, 268] for recent
works on the subject, although the e�ects we consider here, associated with a large classical
axion field configuration also sourced by the NS, are novel. Assuming the conventional rotating
dipole model, one finds that at the surface of the NS

Bdipole(R) ≥ Bú ≥ 1014 G ≥ MeV2 , (7.9)

Edipole(R) ≥ R�Bú ≥ 10≠3
3

R

10 km

4 3 �
100 Hz

4
Bú , (7.10)

with � the angular velocity of the NS. Even with such large EM fields, we may still neglect the
e�ects of the axion-photon coupling on the axion dynamics, since

ga““(E · B)
(m2

a)outÈa(R)Í ≥ –EMR�B2ú
m2

fif2
fi

≥ 10≠13
3

R

10 km

4 3 �
100 Hz

4 3
Bú

1014 G

42
, (7.11)

where we used (m2
a)out ≥ m2

fi(ffi/fa)2, Èa(R)Í ≥ fa and ga““ ≥ –EM/fa. While we can safely
assume that the back-reaction of the EM fields on the axion is negligible, it is also important to
note that the value of Èa(R)Í decreases exponentially outside the NS, see Eq. (7.3), such that
one could well imagine a situation where the e�ect of the ga““(E · B) term is in fact comparable
to the axion mass term. In this case the back-reaction of the EM fields would have to be taken
into account, which is beyond the scope of this work.

We thus treat the axion field as a rigid source of additional EM fields, which can be simply
estimated as

�E ≥ ga““BúÈa(R)Í ≥ –EMBú , (7.12)
�B ≥ ga““R�BúÈa(R)Í ≥ –EMR�Bú . (7.13)
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While the magnetic field receives a small correction �B/B ≥ –EMR� π 1, for the electric field

�E

E
≥ –EM

R� ≥ 2
310 km

R

4 3100 Hz
�

4
, (7.14)

thus leading to an O(1) enhancement around the surface of the NS. We note that since this
correction is large, one could be concerned about whether the system can be treated perturbatively.
This is in fact the case, since the higher order terms scale like

E ≥ R�Bú(1 + –2
EM + . . . ) + –EMBú(1 + –2

EM + . . . ) . (7.15)

This means that, apart from the leading O(–EMBú) correction, further contributions are sublead-
ing.

An additional sensitive observable is the dipole radiation output P that is responsible for
the spin-down of rotating NSs. In this case we find that �P/P ≥ –2

EM π 1, namely there is no
appreciable addition to the radiated energy due to the axion field.

7.4 Long-range force
Lastly, we can consider the case

(ma)≠1
out ∫ R , (7.16)

even though we note that from our previous analysis of the QCD axion at finite density, we
expect this regime not to be realized since (ma)≠1

out . (ma)≠1
in . R, where the last condition

follows from the requirement of the axion being actually sourced, Eq. (7.2). Therefore we expect
the hierarchy (ma)≠1

in . R π (ma)≠1
out to arise only in non-standard scenarios, such as the one

considered in [209]. If that is indeed the case, the long tails of the axion field configuration lead
to a long range force between the NSs, generated by the Yukawa-like potential

V ≥ Qe�
r

e≠(ma)outr , (7.17)

where Qe� = 4fifaR plays the role of the e�ective charge. This could lead to a deformation of
the merger wave-form predicted by general relativity in case of NS with opposite-sign charges.
A more dramatic e�ect would be found in the case of a repulsive force from same-sign charges,
since in this case at some critical distance the axion force would dominate gravity, which could
lead to halt in the merger process [209]. The presence of the axion field can also lead to an
additional mechanism of energy loss in NS mergers, in the form of the scalar equivalent of Larmor
radiation [269].
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I n this thesis, we studied the phenomenology of Goldstone bosons which appear in well-
motivated extension of the standard model. In particular, in Part II we studied realizations

of composite dark matter in non-minimal composite Higgs models. These models o�er a so-
lution to the hierarchy problem and contain compelling dark matter candidates. Generically,
non-renormalizable interactions play an important role in the phenomenology of composite dark
matter [73]. In particular, we saw that the annihilation cross section at the early universe is
sensitive both to the normal Higgs portal coupling, as well as to a derivative portal coupling.
The latter is an irreducible feature of dark matter in this paradigm, which arises due to the
self-interactions among the Higgs and the dark matter, both of which are realized as Nambu-
Goldstone bosons of a spontaneously broken global symmetry.

We first study in Chapter 2 the phenomenology of composite dark matter within a mini-
mal extension of Little Higgs with T -Parity, which consistently realizes the collective breaking
mechanism without introducing massless fermions. Importantly, the shift symmetry of the singlet
dark matter is broken by the its couplings to the top quark. Although the scalar potential is
not calculable, some conservative assumptions can be made. In particular, in light of the IR
contribution to the portal couplings, it seems likely that the expected portal coupling ⁄ is of
the same order as the Higgs quartic ⁄h ≥ O(0.1), putting this model within reach of present
direct detection experiments. The model can evade direct detection only by allowing the portal
coupling to be much smaller than its expected value, possibly due to some cancellation with the
UV contributions. Depending on the UV completion, this cancellation can be a consequence of
fine tuning or due to some symmetry which protects the portal coupling.

We are able to test our conclusion from the previous model in an extension of the minimal
composite Higgs, the SO(7)/SO(6) model which was the focus of Chapter 3. The first scenario
in Sec. 3.3 represents a similar setup, where the dark matter shift symmetry is broken by its
coupling with the top quark. The SO(7)/SO(6) model can be partially UV completed by the
introduction of resonances, and the implementation of the so-called Weinberg sum rules renders
the scalar potential finite and calculable. The model which contains a single layer of resonances
turns out the be extremely predictive, with ⁄ ≥ ⁄h/2 and m‰ ≥ mh/2, which is ruled out by
direct detection. By introducing a second layer of resonances, the model has the freedom to
deviate from the 1-layer case. As expected, a large deviation that allows m‰ ∫ mh and ⁄ π ⁄h

is achieved at the price of some additional tuning. The irreducible tuning of 2› ≥ 6% (due to
LHC bounds requiring f Ø 1.4 TeV) must be lowered to ≥ 1% in order to produce a model which
evades current direct detection bounds.

The additional tuning can be avoided if the suppression of the portal coupling is actually a result
of a symmetry, namely the dark matter shift symmetry. By making the explicit breaking of the
DM less severe, the portal coupling is naturally expected to become suppressed. Interestingly, as
discussed in Sec. 3.1, if the portal coupling is negligible, the correct relic abundance is produced
due to the derivative interactions with the natural values of f ≥ 1 TeV and m‰ ≥ 100 GeV.
This type of dark matter is extremely hard to detect in direct detection experiments, since
the scattering cross section scales with |t|/f2 ≥ (100 MeV)2/(1 TeV) ≥ 10≠8, with t the usual
Mandelstam variable. Thus, it seems that a model in which ⁄ π ⁄h is also theoretically appealing.

We studied two scenarios in which the suppression above naturally occurs. In Sec. 3.4 the
dark matter shift symmetry is broken only by the (smaller) bottom Yukawa. The portal coupling
is negligible in this case, ⁄ Ã y2

b , and the direct detection cross section, now dominated by the
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contact terms |‰|2b̄b, is expected to be within reach of direct detection experiments in the near
future. A second and perhaps more appealing possibility is explored in Sec. 3.5, where the
shift symmetry is broken only by the weak gauging of U(1)DM. Using a gauged symmetry as a
stabilizing symmetry (assuming it is not spontaneously broken) is a robust stabilizing mechanism;
it avoids some of the pitfalls of global stabilizing symmetries, i.e. additional sources of explicit
symmetry breaking, both at the classical level and at the quantum level. In this scenario, the
portal coupling vanishes at 1 loop due to a collective breaking mechanism. Since the coupling
to SM fermions respect the dark matter shift symmetry, the contact terms are absent as well,
making the direct detection cross section extremely suppressed.

The dark sector, containing a complex scalar and a dark photon, can only be probed indi-
rectly. If the dark photon is massless, the annihilation cross section of dark matter to SM
particles in dense objects, like galaxies, is enhanced due to the Sommerfeld e�ect, potentially
excluding a large part of the parameter space due to indirect detection bounds. As a cross check,
the e�ect of a dark photon can be probed also at the cosmological scale using the CMB indirect
measurement of the relativistic degree of freedom �Ne�. We find that the next generation of
CBM measurements will have the required sensitivity to probe the contribution of this dark
photon to the energy of the universe. If the dark photon is massive, we find that it can comprise
some of the dark matter in the region or parameter space where it is stable. Indirect detection
via dark matter annihilation in galaxies remains, in the case of a massive dark photon, the main
prospect for future detection of dark matter.

The collider phenomenology of composite Higgs models was examined in the various model and
scenarios presented above. Generically, the colored top partners (or more generally, resonances)
can be singly produced through weak processes or doubly produced through strong processes.
The latter production mechanism is the only mechanism relevant for the resonances charged
under the dark matter stabilizing symmetry. Current dedicated LHC searches, as well as recasting
SUSY searches with similar signatures as a result or R-Parity, put a lower bound on the masses of
the colored fermionic resonances at the TeV scale. Sensitivity is expected to increase in the future
as the production cross sections become larger. Another interesting aspect is the possibility of
probing the derivative interaction between the Higgs and the dark matter through an o�-shell
Higgs in future colliders [270].

Composite Higgs model are well-motivated frameworks which allows for the exploration of
non-minimal dark matter scenarios. After a systematic exploration of the various shift breaking
sources, we found a compelling non-minimal scenario where dark matter interacts only derivatively
with the Higgs. Such dark matter can be consistent with the measured present-day abundance, as
well as with the fact that dark matter has not yet been directly detected. Near future experiments
will be able to probe some of its parameter space.

In Part III we studied the properties of the QCD axion at finite density. The axion is a
prediction of the Peccei-Quinn mechanism designed to solve the strong CP problem. The
axion emerges as the Goldstone boson of a spontaneously broken and anomalous U(1) sym-
metry. The axion e�ectively serves as a dynamical ◊ angle, whose value is set to 0 due to
instanton induced potential in vacuum. In Sec. 5 we investigate the properties of the axion
is nuclear matter composed of neutrons and protons. We used the perturbative description
given by chiral perturbation theory to single out two sources of density dependence for the
axion potential in the nuclear phase. First, we discuss the e�ect of the quark condensates
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Èq̄qÍ, which are density dependent, in Sec. 5.1. Using the so-called linear approximation for
Èq̄qÍn, one generically finds that chiral symmetry is restored around (2 ≠ 3)n0, which in turn
implies the axion becomes massless. However, it is well known that the linear approximation,
which neglects the nuclear interactions, breaks down at around n0. Using existing state of the
art calculations of Èq̄qÍ, one finds that the axion experiences a mild reduction of mass inside
nuclear medium, namely (ma)2

n.2n0
& 0.6 (ma)2

0. The second e�ect we considered in Sec. 5.2
is the onset of kaon condensation, equivalent to the reorientation of the QCD ground state in
medium. This condensation is predicted to appear at higher densities, (3 ≠ 5)n0, where the
perturbative description is no longer valid, limiting the discussion to a qualitative one. We find
that the combination of the kaon condensation and the reduction of the quark condensate leads
to a destabilization of the axion field around the origin, even before the naive restoration of
chiral symmetry occurs. This could lead to a sourcing of the axion field by a large dense object
like a neutron star. The discussion on the observable e�ects of such sourcing is postponed to Sec. 7.

We also examined the couplings of the axion the nucleons in dense nuclear matter. These
are particularly important due to experimental bounds on the axion derived from the cooling of
SN1987A. The cooling process occurs in the dense collapsed core and depends directly on these
couplings. The couplings are in general density dependent, due to the density dependence of the
axion-pion mixing angles and the hadronic matrix elements. The former can be calculated within
perturbation theory, while the latter must be deduced from experiment. In particular, according
to experiment one combination of matrix elements gA © �u ≠ �d appears to be quenched in
large nuclei. After taking all these e�ects into consideration, we find that generically the in
medium couplings receive at least O(1) corrections in medium. A large correction may appear if
the orthogonal linear combination gud

0 © �u + �d increases in high densities. In this case, the
accidental cancelation of the axion coupling to neutrons in vacuum is spoiled in medium, which
could lead to an O(10) enhancement of the coupling.

Next we considered the axion in the color superconducting phase, also known as the color-
flavor locking (CFL) phase. This phase of matter is hypothesized to appears at very large
densities, and a perturbative description is applicable for densities above (10 ≠ 100)n0. The
densities reached in the core of a neutron star is expected to be (3 ≠ 6)n0, but phenomenological
models suggest that some of the qualitative features of the CFL phase remain in these densities
as well. After reviewing the various terms present in this phase in Secs. 6.1-6.3, we examine
the axion potential in the CFL phase in Sec. 6.4. We considered two possible scenarios. In the
first, the non-perturbative terms dominate over the perturbatively generated terms. In this
case, the form of the potential is similar to that in vacuum, with the exception that due to the
weak coupling, the perturbative expansion in number of instantons is assumed to be valid. One
can than calculate the axion mass and find that it is much smaller compared to its vacuum
value by a factor of ≥ 10≠3. In the second scenario we assumed that the non-perturbative terms
are negligible. In this case, it has already been shown that an ÷Õ condensate may occur under
certain circumstances. However, as we show, in the presence of the suppressed non-perturbative
e�ects the ÷Õ and the axion unavoidably mix. Thus, an ÷Õ condensation would trigger an axion
condensation, i.e. it would destabilize the axion around the origin.

Interestingly, we find that in both the nuclear and CFL phase, there is a mechanism which could
lead to the destabilization of the axion around the origin. If the size of the region in which the
axion is destabilized is comparable to the Compton wave length of the axion, it can be sourced by
the object e.g. a neutron star. We briefly review the potential observables e�ects of such a sourc-
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ing in Sec. 7. In particular we consider the e�ect of vacuum energy inside (Sec. 7.1), the gradient
energy which can appear as a thin brane (Sec. 7.1), the interplay between the axion and the strong
electromagnetic fields outside the neutron star (Sec. 7.3) and lastly we mention the scenario in
which the axion sourcing leads to long range forces (Sec. 7.4). The latter scenario is however
less likely in our minimal setup, since we predict that the Compton wave length outside the
object is smaller than inside, such that the range of the force is at most the size of the object itself.

The study of the in medium properties of the axion is an exciting and largely uncharted
territory, and there are many directions for future research. On the theoretical side, one can hope
to try and describe the axion in the densities of interest, namely (2 ≠ 6)n0, using phenomeno-
logical models e.g. the Nambu-Jona-Lasinio (NJL) model. Another compelling direction is the
application of this study to other new particles which couple to QCD, e.g. the relaxion. Lastly,
the possible observable implications of an axion sourcing in a neutron star deserves a careful
examination. We expect to learn a great deal about the local properties of neutron stars through
their collisions, which are already observable in gravitational wave detectors, with more events
expected in the next generation of gravitational wave experiments.



Acknowledgements
I am very grateful to my supervisor, Andreas Weiler, for allowing me to pursue my interests in
physics in the last 4.5 years and for his supportive mentorship. The professional and personal
guidance he provided through the countless hours of discussions, whether in the o�ce or over a
bowl of spicy soup, was invaluable and helped me become a better physicist. His enthusiastic
attitude was a constant source of inspiration.

As the first member of T75, I am honored to have had the privilege of watching the group
form over the years and become an active research group. I had the pleasure of collaborating
over the years with Ennio Salvioni, Javi Serra, Max Ruhdorfer, Stefan Stelzl and Konstantin
Springmann. I would like to thank them and all the past and present members of the group
for the fantastic atmosphere which allowed all of us to do what we love and have fun in the process.

I thank my parents, Asia and Lev, for 33 years of unrelenting support. They gave me the
opportunity, the tools and the values which allowed me to reach this point and realize my
potential. I thank my sister Dana for her help and guidance through the years.

Last but not least, I would like to thank my wife Tal. You were there before physics, and
you were always there for me for the last ten years. Through all the hard times, I could always
rely on you and you never failed to give with your unconditional love and support. I could not
have asked for a better partner in life and a better mother to our children Nevo and Tavor. I
love you all.

171





173





Bibliography

[1] Georges Aad et al. “Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC”. In: Phys. Lett. B716 (2012), pp. 1–29.
doi: 10.1016/j.physletb.2012.08.020. arXiv: 1207.7214 [hep-ex].

[2] Serguei Chatrchyan et al. “Observation of a New Boson at a Mass of 125 GeV with the
CMS Experiment at the LHC”. In: Phys. Lett. B 716 (2012), pp. 30–61. doi: 10.1016/j.
physletb.2012.08.021. arXiv: 1207.7235 [hep-ex].

[3] Benjamin W. Lee, C. Quigg, and H.B. Thacker. “The Strength of Weak Interactions at
Very High-Energies and the Higgs Boson Mass”. In: Phys. Rev. Lett. 38 (1977), pp. 883–
885. doi: 10.1103/PhysRevLett.38.883.

[4] Benjamin W. Lee, C. Quigg, and H.B. Thacker. “Weak Interactions at Very High-Energies:
The Role of the Higgs Boson Mass”. In: Phys. Rev. D 16 (1977), p. 1519. doi: 10.1103/
PhysRevD.16.1519.

[5] Sidney R. Coleman, J. Wess, and Bruno Zumino. “Structure of phenomenological La-
grangians. 1.” In: Phys. Rev. 177 (1969), pp. 2239–2247. doi: 10.1103/PhysRev.177.2239.

[6] Curtis G. Callan Jr., Sidney R. Coleman, J. Wess, and Bruno Zumino. “Structure
of phenomenological Lagrangians. 2.” In: Phys. Rev. 177 (1969), pp. 2247–2250. doi:
10.1103/PhysRev.177.2247.

[7] R. D. Peccei and Helen R. Quinn. “CP Conservation in the Presence of Instantons”. In:
Phys. Rev. Lett. 38 (1977). [,328(1977)], pp. 1440–1443. doi: 10.1103/PhysRevLett.38.
1440.

[8] Steven Weinberg. “A New Light Boson?” In: Phys. Rev. Lett. 40 (1978), pp. 223–226. doi:
10.1103/PhysRevLett.40.223.

[9] Frank Wilczek. “Problem of Strong P and T Invariance in the Presence of Instantons”.
In: Phys. Rev. Lett. 40 (1978), pp. 279–282. doi: 10.1103/PhysRevLett.40.279.

[10] Michael Dine, Willy Fischler, and Mark Srednicki. “A Simple Solution to the Strong
CP Problem with a Harmless Axion”. In: Phys. Lett. 104B (1981), pp. 199–202. doi:
10.1016/0370-2693(81)90590-6.

[11] A. R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions. (In Russian)”.
In: Sov. J. Nucl. Phys. 31 (1980). [Yad. Fiz.31,497(1980)], p. 260.

[12] Jihn E. Kim. “Weak Interaction Singlet and Strong CP Invariance”. In: Phys. Rev. Lett.
43 (1979), p. 103. doi: 10.1103/PhysRevLett.43.103.

[13] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. “Can Confinement Ensure
Natural CP Invariance of Strong Interactions?” In: Nucl. Phys. B166 (1980), pp. 493–506.
doi: 10.1016/0550-3213(80)90209-6.

[14] Giovanni Grilli di Cortona, Edward Hardy, Javier Pardo Vega, and Giovanni Villadoro.
“The QCD axion, precisely”. In: JHEP 01 (2016), p. 034. doi: 10.1007/JHEP01(2016)034.
arXiv: 1511.02867 [hep-ph].

175

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1103/PhysRevLett.38.883
http://dx.doi.org/10.1103/PhysRevD.16.1519
http://dx.doi.org/10.1103/PhysRevD.16.1519
http://dx.doi.org/10.1103/PhysRev.177.2239
http://dx.doi.org/10.1103/PhysRev.177.2247
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1016/0370-2693(81)90590-6
http://dx.doi.org/10.1103/PhysRevLett.43.103
http://dx.doi.org/10.1016/0550-3213(80)90209-6
http://dx.doi.org/10.1007/JHEP01(2016)034
http://arxiv.org/abs/1511.02867


[15] Georg Ra�elt and David Seckel. “Bounds on Exotic Particle Interactions from SN 1987a”.
In: Phys. Rev. Lett. 60 (1988), p. 1793. doi: 10.1103/PhysRevLett.60.1793.

[16] Reuven Balkin, Gilad Perez, and Andreas Weiler. “Little composite dark matter”. In:
Eur. Phys. J. C 78.2 (2018), p. 104. doi: 10.1140/epjc/s10052-018-5552-3. arXiv:
1707.09980 [hep-ph].

[17] Reuven Balkin, Maximilian Ruhdorfer, Ennio Salvioni, and Andreas Weiler. “Charged
Composite Scalar Dark Matter”. In: JHEP 11 (2017), p. 094. doi: 10.1007/JHEP11(2017)
094. arXiv: 1707.07685 [hep-ph].

[18] Reuven Balkin, Maximilian Ruhdorfer, Ennio Salvioni, and Andreas Weiler. “Dark matter
shifts away from direct detection”. In: JCAP 11 (2018), p. 050. doi: 10.1088/1475-
7516/2018/11/050. arXiv: 1809.09106 [hep-ph].

[19] Reuven Balkin, Javi Serra, Konstantin Springmann, and Andreas Weiler. “The QCD
axion at finite density”. In: JHEP 07 (2020), p. 221. doi: 10.1007/JHEP07(2020)221.
arXiv: 2003.04903 [hep-ph].

[20] M. Tanabashi et al. “"Tests of Conservation Laws" in Review of Particle Physics”. In:
Phys. Rev. D 98.3 (2018), p. 030001. doi: 10.1103/PhysRevD.98.030001.

[21] V. Agrawal, Stephen M. Barr, John F. Donoghue, and D. Seckel. “Viable range of the
mass scale of the standard model”. In: Phys. Rev. D 57 (1998), pp. 5480–5492. doi:
10.1103/PhysRevD.57.5480. arXiv: hep-ph/9707380.

[22] Lawrence J. Hall and Yasunori Nomura. “Evidence for the Multiverse in the Standard
Model and Beyond”. In: Phys. Rev. D 78 (2008), p. 035001. doi: 10.1103/PhysRevD.78.
035001. arXiv: 0712.2454 [hep-ph].

[23] S.M. Barr and Almas Khan. “Anthropic tuning of the weak scale and of m(u) / m(d)
in two-Higgs-doublet models”. In: Phys. Rev. D 76 (2007), p. 045002. doi: 10.1103/
PhysRevD.76.045002. arXiv: hep-ph/0703219.

[24] Steven Weinberg. “Anthropic Bound on the Cosmological Constant”. In: Phys. Rev. Lett.
59 (1987), p. 2607. doi: 10.1103/PhysRevLett.59.2607.

[25] Peter W. Graham, David E. Kaplan, and Surjeet Rajendran. “Cosmological Relaxation
of the Electroweak Scale”. In: Phys. Rev. Lett. 115.22 (2015), p. 221801. doi: 10.1103/
PhysRevLett.115.221801. arXiv: 1504.07551 [hep-ph].

[26] Stephen P. Martin. “A Supersymmetry primer”. In: (1997). [Adv. Ser. Direct. High Energy
Phys.18,1(1998)]. doi: 10.1142/9789812839657_0001,10.1142/9789814307505_0001.
arXiv: hep-ph/9709356 [hep-ph].

[27] Howard Georgi and A. Pais. “Vacuum Symmetry and the PseudoGoldstone Phenomenon”.
In: Phys. Rev. D12 (1975), p. 508. doi: 10.1103/PhysRevD.12.508.

[28] David B. Kaplan and Howard Georgi. “SU(2) x U(1) Breaking by Vacuum Misalignment”.
In: Phys. Lett. B136 (1984), p. 183. doi: 10.1016/0370-2693(84)91177-8.

[29] Giuliano Panico and Andrea Wulzer. “The Composite Nambu-Goldstone Higgs”. In:
(2015). arXiv: 1506.01961 [hep-ph].

[30] Sidney R. Coleman and Erick J. Weinberg. “Radiative Corrections as the Origin of
Spontaneous Symmetry Breaking”. In: Phys. Rev. D7 (1973), pp. 1888–1910. doi: 10.
1103/PhysRevD.7.1888.

176

http://dx.doi.org/10.1103/PhysRevLett.60.1793
http://dx.doi.org/10.1140/epjc/s10052-018-5552-3
http://arxiv.org/abs/1707.09980
http://dx.doi.org/10.1007/JHEP11(2017)094
http://dx.doi.org/10.1007/JHEP11(2017)094
http://arxiv.org/abs/1707.07685
http://dx.doi.org/10.1088/1475-7516/2018/11/050
http://dx.doi.org/10.1088/1475-7516/2018/11/050
http://arxiv.org/abs/1809.09106
http://dx.doi.org/10.1007/JHEP07(2020)221
http://arxiv.org/abs/2003.04903
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.57.5480
http://arxiv.org/abs/hep-ph/9707380
http://dx.doi.org/10.1103/PhysRevD.78.035001
http://dx.doi.org/10.1103/PhysRevD.78.035001
http://arxiv.org/abs/0712.2454
http://dx.doi.org/10.1103/PhysRevD.76.045002
http://dx.doi.org/10.1103/PhysRevD.76.045002
http://arxiv.org/abs/hep-ph/0703219
http://dx.doi.org/10.1103/PhysRevLett.59.2607
http://dx.doi.org/10.1103/PhysRevLett.115.221801
http://dx.doi.org/10.1103/PhysRevLett.115.221801
http://arxiv.org/abs/1504.07551
http://arxiv.org/abs/hep-ph/9709356
http://dx.doi.org/10.1103/PhysRevD.12.508
http://dx.doi.org/10.1016/0370-2693(84)91177-8
http://arxiv.org/abs/1506.01961
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1103/PhysRevD.7.1888


[31] Kenneth D. Lane. “An Introduction to technicolor”. In: Theoretical Advanced Study
Institute (TASI 93) in Elementary Particle Physics: The Building Blocks of Creation - From
Microfermius to Megaparsecs. June 1993, pp. 381–408. doi: 10.1142/9789814503785\
_0010. arXiv: hep-ph/9401324.

[32] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson. “The Littlest Higgs”. In:
JHEP 07 (2002), p. 034. doi: 10.1088/1126-6708/2002/07/034. arXiv: hep-ph/0206021
[hep-ph].

[33] N. Arkani-Hamed et al. “The Minimal moose for a little Higgs”. In: JHEP 08 (2002),
p. 021. doi: 10.1088/1126-6708/2002/08/021. arXiv: hep-ph/0206020 [hep-ph].

[34] Ian Low, Witold Skiba, and David Tucker-Smith. “Little Higgses from an antisymmetric
condensate”. In: Phys. Rev. D66 (2002), p. 072001. doi: 10.1103/PhysRevD.66.072001.
arXiv: hep-ph/0207243 [hep-ph].

[35] Spencer Chang and Jay G. Wacker. “Little Higgs and custodial SU(2)”. In: Phys. Rev.
D69 (2004), p. 035002. doi: 10.1103/PhysRevD.69.035002. arXiv: hep-ph/0303001
[hep-ph].

[36] Witold Skiba and John Terning. “A Simple model of two little Higgses”. In: Phys. Rev.
D68 (2003), p. 075001. doi: 10.1103/PhysRevD.68.075001. arXiv: hep-ph/0305302
[hep-ph].

[37] Spencer Chang. “A ’Littlest Higgs’ model with custodial SU(2) symmetry”. In: JHEP
12 (2003), p. 057. doi: 10.1088/1126-6708/2003/12/057. arXiv: hep-ph/0306034
[hep-ph].

[38] Martin Schmaltz, Daniel Stolarski, and Jesse Thaler. “The Bestest Little Higgs”. In: JHEP
09 (2010), p. 018. doi: 10.1007/JHEP09(2010)018. arXiv: 1006.1356 [hep-ph].

[39] Csaba Csaki et al. “Big corrections from a little Higgs”. In: Phys. Rev. D67 (2003),
p. 115002. doi: 10.1103/PhysRevD.67.115002. arXiv: hep-ph/0211124 [hep-ph].

[40] Csaba Csaki et al. “Variations of little Higgs models and their electroweak constraints”.
In: Phys. Rev. D68 (2003), p. 035009. doi: 10.1103/PhysRevD.68.035009. arXiv:
hep-ph/0303236 [hep-ph].

[41] JoAnne L. Hewett, Frank J. Petriello, and Thomas G. Rizzo. “Constraining the littlest
Higgs”. In: JHEP 10 (2003), p. 062. doi: 10.1088/1126-6708/2003/10/062. arXiv:
hep-ph/0211218 [hep-ph].

[42] Tao Han, Heather E. Logan, Bob McElrath, and Lian-Tao Wang. “Phenomenology of the
little Higgs model”. In: Phys. Rev. D67 (2003), p. 095004. doi: 10.1103/PhysRevD.67.
095004. arXiv: hep-ph/0301040 [hep-ph].

[43] Thomas Gregoire, David Tucker-Smith, and Jay G. Wacker. “What precision electroweak
physics says about the SU(6) / Sp(6) little Higgs”. In: Phys. Rev. D69 (2004), p. 115008.
doi: 10.1103/PhysRevD.69.115008. arXiv: hep-ph/0305275 [hep-ph].

[44] Roberto Casalbuoni, Aldo Deandrea, and Micaela Oertel. “Little Higgs models and
precision electroweak data”. In: JHEP 02 (2004), p. 032. doi: 10.1088/1126-6708/2004/
02/032. arXiv: hep-ph/0311038 [hep-ph].

[45] Can Kilic and Rakhi Mahbubani. “Precision electroweak observables in the minimal moose
little Higgs model”. In: JHEP 07 (2004), p. 013. doi: 10.1088/1126-6708/2004/07/013.
arXiv: hep-ph/0312053 [hep-ph].

177

http://arxiv.org/abs/hep-ph/9401324
http://dx.doi.org/10.1088/1126-6708/2002/07/034
http://arxiv.org/abs/hep-ph/0206021
http://arxiv.org/abs/hep-ph/0206021
http://dx.doi.org/10.1088/1126-6708/2002/08/021
http://arxiv.org/abs/hep-ph/0206020
http://dx.doi.org/10.1103/PhysRevD.66.072001
http://arxiv.org/abs/hep-ph/0207243
http://dx.doi.org/10.1103/PhysRevD.69.035002
http://arxiv.org/abs/hep-ph/0303001
http://arxiv.org/abs/hep-ph/0303001
http://dx.doi.org/10.1103/PhysRevD.68.075001
http://arxiv.org/abs/hep-ph/0305302
http://arxiv.org/abs/hep-ph/0305302
http://dx.doi.org/10.1088/1126-6708/2003/12/057
http://arxiv.org/abs/hep-ph/0306034
http://arxiv.org/abs/hep-ph/0306034
http://dx.doi.org/10.1007/JHEP09(2010)018
http://arxiv.org/abs/1006.1356
http://dx.doi.org/10.1103/PhysRevD.67.115002
http://arxiv.org/abs/hep-ph/0211124
http://dx.doi.org/10.1103/PhysRevD.68.035009
http://arxiv.org/abs/hep-ph/0303236
http://dx.doi.org/10.1088/1126-6708/2003/10/062
http://arxiv.org/abs/hep-ph/0211218
http://dx.doi.org/10.1103/PhysRevD.67.095004
http://dx.doi.org/10.1103/PhysRevD.67.095004
http://arxiv.org/abs/hep-ph/0301040
http://dx.doi.org/10.1103/PhysRevD.69.115008
http://arxiv.org/abs/hep-ph/0305275
http://dx.doi.org/10.1088/1126-6708/2004/02/032
http://dx.doi.org/10.1088/1126-6708/2004/02/032
http://arxiv.org/abs/hep-ph/0311038
http://dx.doi.org/10.1088/1126-6708/2004/07/013
http://arxiv.org/abs/hep-ph/0312053


[46] W. Kilian and J. Reuter. “The Low-energy structure of little Higgs models”. In: Phys. Rev.
D70 (2004), p. 015004. doi: 10.1103/PhysRevD.70.015004. arXiv: hep-ph/0311095
[hep-ph].

[47] Hsin-Chia Cheng and Ian Low. “TeV symmetry and the little hierarchy problem”. In:
JHEP 09 (2003), p. 051. doi: 10.1088/1126-6708/2003/09/051. arXiv: hep-ph/0308199
[hep-ph].

[48] Hsin-Chia Cheng and Ian Low. “Little hierarchy, little Higgses, and a little symmetry”. In:
JHEP 08 (2004), p. 061. doi: 10.1088/1126-6708/2004/08/061. arXiv: hep-ph/0405243
[hep-ph].

[49] Ian Low. “T parity and the littlest Higgs”. In: JHEP 10 (2004), p. 067. doi: 10.1088/1126-
6708/2004/10/067. arXiv: hep-ph/0409025 [hep-ph].

[50] Jay Hubisz, Patrick Meade, Andrew Noble, and Maxim Perelstein. “Electroweak precision
constraints on the littlest Higgs model with T parity”. In: JHEP 01 (2006), p. 135. doi:
10.1088/1126-6708/2006/01/135. arXiv: hep-ph/0506042 [hep-ph].

[51] Kaustubh Agashe, Roberto Contino, and Alex Pomarol. “The Minimal composite Higgs
model”. In: Nucl. Phys. B 719 (2005), pp. 165–187. doi: 10.1016/j.nuclphysb.2005.
04.035. arXiv: hep-ph/0412089.

[52] David B. Kaplan. “Flavor at SSC energies: A New mechanism for dynamically generated
fermion masses”. In: Nucl. Phys. B 365 (1991), pp. 259–278. doi: 10.1016/S0550-
3213(05)80021-5.

[53] M. Bando et al. “Is rho Meson a Dynamical Gauge Boson of Hidden Local Symmetry?”
In: Phys. Rev. Lett. 54 (1985), p. 1215. doi: 10.1103/PhysRevLett.54.1215.

[54] Masako Bando, Taichiro Kugo, and Koichi Yamawaki. “Nonlinear Realization and Hidden
Local Symmetries”. In: Phys. Rept. 164 (1988), pp. 217–314. doi: 10 . 1016 / 0370 -
1573(88)90019-1.

[55] Steven Weinberg. “Precise relations between the spectra of vector and axial vector mesons”.
In: Phys. Rev. Lett. 18 (1967), pp. 507–509. doi: 10.1103/PhysRevLett.18.507.

[56] F. Zwicky. “On the Masses of Nebulae and of Clusters of Nebulae”. In: Astrophys. J. 86
(Oct. 1937), p. 217. doi: 10.1086/143864.

[57] S. M. Faber and R. E. Jackson. “Velocity dispersions and mass to light ratios for elliptical
galaxies”. In: Astrophys. J. 204 (1976), p. 668. doi: 10.1086/154215.

[58] A. N. Taylor et al. “Gravitational lens magnification and the mass of abell 1689”. In:
Astrophys. J. 501 (1998), p. 539. doi: 10.1086/305827. arXiv: astro- ph/9801158
[astro-ph].

[59] Wayne Hu. “Concepts in CMB anisotropy formation”. In: Lect. Notes Phys. 470 (1996),
p. 207. arXiv: astro-ph/9511130 [astro-ph].

[60] G. Hinshaw et al. “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa-
tions: Cosmological Parameter Results”. In: Astrophys. J. Suppl. 208 (2013), p. 19. doi:
10.1088/0067-0049/208/2/19. arXiv: 1212.5226 [astro-ph.CO].

[61] Volker Springel et al. “Simulating the joint evolution of quasars, galaxies and their large-
scale distribution”. In: Nature 435 (2005), pp. 629–636. doi: 10.1038/nature03597.
arXiv: astro-ph/0504097 [astro-ph].

[62] N. Aghanim et al. “Planck 2018 results. VI. Cosmological parameters”. In: (July 2018).
arXiv: 1807.06209 [astro-ph.CO].

178

http://dx.doi.org/10.1103/PhysRevD.70.015004
http://arxiv.org/abs/hep-ph/0311095
http://arxiv.org/abs/hep-ph/0311095
http://dx.doi.org/10.1088/1126-6708/2003/09/051
http://arxiv.org/abs/hep-ph/0308199
http://arxiv.org/abs/hep-ph/0308199
http://dx.doi.org/10.1088/1126-6708/2004/08/061
http://arxiv.org/abs/hep-ph/0405243
http://arxiv.org/abs/hep-ph/0405243
http://dx.doi.org/10.1088/1126-6708/2004/10/067
http://dx.doi.org/10.1088/1126-6708/2004/10/067
http://arxiv.org/abs/hep-ph/0409025
http://dx.doi.org/10.1088/1126-6708/2006/01/135
http://arxiv.org/abs/hep-ph/0506042
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.035
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.035
http://arxiv.org/abs/hep-ph/0412089
http://dx.doi.org/10.1016/S0550-3213(05)80021-5
http://dx.doi.org/10.1016/S0550-3213(05)80021-5
http://dx.doi.org/10.1103/PhysRevLett.54.1215
http://dx.doi.org/10.1016/0370-1573(88)90019-1
http://dx.doi.org/10.1016/0370-1573(88)90019-1
http://dx.doi.org/10.1103/PhysRevLett.18.507
http://dx.doi.org/10.1086/143864
http://dx.doi.org/10.1086/154215
http://dx.doi.org/10.1086/305827
http://arxiv.org/abs/astro-ph/9801158
http://arxiv.org/abs/astro-ph/9801158
http://arxiv.org/abs/astro-ph/9511130
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://dx.doi.org/10.1038/nature03597
http://arxiv.org/abs/astro-ph/0504097
http://arxiv.org/abs/1807.06209


[63] Ya. B. Zel’dovich and I. D. Novikov. “The Hypothesis of Cores Retarded during Expansion
and the Hot Cosmological Model”. In: Soviet Astronomy, Vol. 10, p.602 10 (Feb. 1967),
p. 602.

[64] B. J. Carr and S. W. Hawking. “Black Holes in the Early Universe”. In: Monthly Notices
of the Royal Astronomical Society 168.2 (Aug. 1974), pp. 399–415. issn: 0035-8711. doi:
10.1093/mnras/168.2.399. eprint: https://academic.oup.com/mnras/article-
pdf/168/2/399/8079885/mnras168-0399.pdf. url: https://doi.org/10.1093/
mnras/168.2.399.

[65] Wayne Hu, Rennan Barkana, and Andrei Gruzinov. “Cold and fuzzy dark matter”. In:
Phys. Rev. Lett. 85 (2000), pp. 1158–1161. doi: 10.1103/PhysRevLett.85.1158. arXiv:
astro-ph/0003365.

[66] Benjamin W. Lee and Steven Weinberg. “Cosmological Lower Bound on Heavy Neutrino
Masses”. In: Phys. Rev. Lett. 39 (1977). Ed. by M.A. Srednicki, pp. 165–168. doi: 10.
1103/PhysRevLett.39.165.

[67] M. Tanabashi et al. “"Neutrinos in Cosmology" in Review of Particle Physics”. In: Phys.
Rev. D 98.3 (2018), p. 030001. doi: 10.1103/PhysRevD.98.030001.

[68] Ben Gripaios, Alex Pomarol, Francesco Riva, and Javi Serra. “Beyond the Minimal
Composite Higgs Model”. In: JHEP 04 (2009), p. 070. doi: 10.1088/1126-6708/2009/
04/070. arXiv: 0902.1483 [hep-ph].

[69] Renata Kallosh, Andrei D. Linde, Dmitri A. Linde, and Leonard Susskind. “Gravity and
global symmetries”. In: Phys. Rev. D 52 (1995), pp. 912–935. doi: 10.1103/PhysRevD.
52.912. arXiv: hep-th/9502069.

[70] Nima Arkani-Hamed, Lubos Motl, Alberto Nicolis, and Cumrun Vafa. “The String
landscape, black holes and gravity as the weakest force”. In: JHEP 06 (2007), p. 060. doi:
10.1088/1126-6708/2007/06/060. arXiv: hep-th/0601001.

[71] Tom Banks, Matt Johnson, and Assaf Shomer. “A Note on Gauge Theories Coupled to
Gravity”. In: JHEP 09 (2006), p. 049. doi: 10.1088/1126-6708/2006/09/049. arXiv:
hep-th/0606277.

[72] Edward W. Kolb and Michael S. Turner. “The Early Universe”. In: Front. Phys. 69 (1990),
pp. 1–547.

[73] Michele Frigerio, Alex Pomarol, Francesco Riva, and Alfredo Urbano. “Composite Scalar
Dark Matter”. In: JHEP 07 (2012), p. 015. doi: 10.1007/JHEP07(2012)015. arXiv:
1204.2808 [hep-ph].

[74] Kim Griest and David Seckel. “Three exceptions in the calculation of relic abundances”.
In: Phys. Rev. D 43 (1991), pp. 3191–3203. doi: 10.1103/PhysRevD.43.3191.

[75] Francesco D’Eramo and Jesse Thaler. “Semi-annihilation of Dark Matter”. In: JHEP 06
(2010), p. 109. doi: 10.1007/JHEP06(2010)109. arXiv: 1003.5912 [hep-ph].

[76] Duccio Pappadopulo and Alessandro Vichi. “T-parity, its problems and their solution”. In:
JHEP 03 (2011), p. 072. doi: 10.1007/JHEP03(2011)072. arXiv: 1007.4807 [hep-ph].

[77] Csaba Csaki, Johannes Heinonen, Maxim Perelstein, and Christian Spethmann. “A Weakly
Coupled Ultraviolet Completion of the Littlest Higgs with T-parity”. In: Phys. Rev. D79
(2009), p. 035014. doi: 10.1103/PhysRevD.79.035014. arXiv: 0804.0622 [hep-ph].

179

http://dx.doi.org/10.1093/mnras/168.2.399
https://academic.oup.com/mnras/article-pdf/168/2/399/8079885/mnras168-0399.pdf
https://academic.oup.com/mnras/article-pdf/168/2/399/8079885/mnras168-0399.pdf
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1093/mnras/168.2.399
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://arxiv.org/abs/astro-ph/0003365
http://dx.doi.org/10.1103/PhysRevLett.39.165
http://dx.doi.org/10.1103/PhysRevLett.39.165
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1088/1126-6708/2009/04/070
http://dx.doi.org/10.1088/1126-6708/2009/04/070
http://arxiv.org/abs/0902.1483
http://dx.doi.org/10.1103/PhysRevD.52.912
http://dx.doi.org/10.1103/PhysRevD.52.912
http://arxiv.org/abs/hep-th/9502069
http://dx.doi.org/10.1088/1126-6708/2007/06/060
http://arxiv.org/abs/hep-th/0601001
http://dx.doi.org/10.1088/1126-6708/2006/09/049
http://arxiv.org/abs/hep-th/0606277
http://dx.doi.org/10.1007/JHEP07(2012)015
http://arxiv.org/abs/1204.2808
http://dx.doi.org/10.1103/PhysRevD.43.3191
http://dx.doi.org/10.1007/JHEP06(2010)109
http://arxiv.org/abs/1003.5912
http://dx.doi.org/10.1007/JHEP03(2011)072
http://arxiv.org/abs/1007.4807
http://dx.doi.org/10.1103/PhysRevD.79.035014
http://arxiv.org/abs/0804.0622


[78] Tom Brown, Claudia Frugiuele, and Thomas Gregoire. “UV friendly T-parity in the
SU(6)/Sp(6) little Higgs model”. In: JHEP 06 (2011), p. 108. doi: 10.1007/JHEP06(2011)
108. arXiv: 1012.2060 [hep-ph].

[79] CMS Collaboration. “Search for single production of vector-like quarks decaying to a Z
boson and a top or a bottom quark in proton-proton collisions at 13 TeV”. In: (2017).

[80] The ATLAS collaboration. “Search for new phenomena in tt̄ final states with additional
heavy-flavour jets in pp collisions at

Ô
s = 13 TeV with the ATLAS detector”. In: (2016).

[81] Archana Anandakrishnan et al. “Odd Top Partners at the LHC”. In: (2015). arXiv:
1506.05130 [hep-ph].

[82] Mikael Chala. “Direct bounds on heavy toplike quarks with standard and exotic decays”.
In: Phys. Rev. D96.1 (2017), p. 015028. doi: 10.1103/PhysRevD.96.015028. arXiv:
1705.03013 [hep-ph].

[83] CMS Collaboration. “Search for new physics in the all-hadronic final state with the MT2
variable”. In: (2017).

[84] Christoph Borschensky et al. “Squark and gluino production cross sections in pp collisions
at

Ô
s = 13, 14, 33 and 100 TeV”. In: Eur. Phys. J. C74.12 (2014), p. 3174. doi: 10.1140/

epjc/s10052-014-3174-y. arXiv: 1407.5066 [hep-ph].
[85] M. Aliev et al. “HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR”. In:

Comput. Phys. Commun. 182 (2011), pp. 1034–1046. doi: 10.1016/j.cpc.2010.12.040.
arXiv: 1007.1327 [hep-ph].

[86] Jorge de Blas et al. “Electroweak precision observables and Higgs-boson signal strengths
in the Standard Model and beyond: present and future”. In: JHEP 12 (2016), p. 135. doi:
10.1007/JHEP12(2016)135. arXiv: 1608.01509 [hep-ph].

[87] Andreas Birkedal, Andrew Noble, Maxim Perelstein, and Andrew Spray. “Little Higgs
dark matter”. In: Phys. Rev. D74 (2006), p. 035002. doi: 10.1103/PhysRevD.74.035002.
arXiv: hep-ph/0603077 [hep-ph].

[88] Oliver Fischer and Jochum J. van der Bij. “The scalar Singlet-Triplet Dark Matter
Model”. In: JCAP 1401.01 (2014), p. 032. doi: 10.1088/1475-7516/2014/01/032. arXiv:
1311.1077 [hep-ph].

[89] Georges Aad et al. “Search for direct production of charginos, neutralinos and sleptons in
final states with two leptons and missing transverse momentum in pp collisions at

Ô
s = 8

TeV with the ATLAS detector”. In: JHEP 05 (2014), p. 071. doi: 10.1007/JHEP05(2014)
071. arXiv: 1403.5294 [hep-ex].

[90] Search for electroweak production of supersymmetric particles in the two and three lepton
final state at

Ô
s = 13 TeV with the ATLAS detector. Tech. rep. ATLAS-CONF-2017-039.

Geneva: CERN, June 2017. url: https://cds.cern.ch/record/2267406.
[91] Paolo Gondolo and Graciela Gelmini. “Cosmic abundances of stable particles: Improved

analysis”. In: Nucl. Phys. B360 (1991), pp. 145–179. doi: 10.1016/0550-3213(91)90438-
4.

[92] P. A. R. Ade et al. “Planck 2013 results. XVI. Cosmological parameters”. In: Astron.
Astrophys. 571 (2014), A16. doi: 10.1051/0004-6361/201321591. arXiv: 1303.5076
[astro-ph.CO].

[93] David Marzocca and Alfredo Urbano. “Composite Dark Matter and LHC Interplay”. In:
JHEP 07 (2014), p. 107. doi: 10.1007/JHEP07(2014)107. arXiv: 1404.7419 [hep-ph].

180

http://dx.doi.org/10.1007/JHEP06(2011)108
http://dx.doi.org/10.1007/JHEP06(2011)108
http://arxiv.org/abs/1012.2060
http://arxiv.org/abs/1506.05130
http://dx.doi.org/10.1103/PhysRevD.96.015028
http://arxiv.org/abs/1705.03013
http://dx.doi.org/10.1140/epjc/s10052-014-3174-y
http://dx.doi.org/10.1140/epjc/s10052-014-3174-y
http://arxiv.org/abs/1407.5066
http://dx.doi.org/10.1016/j.cpc.2010.12.040
http://arxiv.org/abs/1007.1327
http://dx.doi.org/10.1007/JHEP12(2016)135
http://arxiv.org/abs/1608.01509
http://dx.doi.org/10.1103/PhysRevD.74.035002
http://arxiv.org/abs/hep-ph/0603077
http://dx.doi.org/10.1088/1475-7516/2014/01/032
http://arxiv.org/abs/1311.1077
http://dx.doi.org/10.1007/JHEP05(2014)071
http://dx.doi.org/10.1007/JHEP05(2014)071
http://arxiv.org/abs/1403.5294
https://cds.cern.ch/record/2267406
http://dx.doi.org/10.1016/0550-3213(91)90438-4
http://dx.doi.org/10.1016/0550-3213(91)90438-4
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5076
http://dx.doi.org/10.1007/JHEP07(2014)107
http://arxiv.org/abs/1404.7419


[94] Vanda Silveira and A. Zee. “SCALAR PHANTOMS”. In: Phys. Lett. 161B (1985), pp. 136–
140. doi: 10.1016/0370-2693(85)90624-0.

[95] John McDonald. “Gauge singlet scalars as cold dark matter”. In: Phys. Rev. D50 (1994),
pp. 3637–3649. doi: 10.1103/PhysRevD.50.3637. arXiv: hep-ph/0702143 [HEP-PH].

[96] C. P. Burgess, Maxim Pospelov, and Tonnis ter Veldhuis. “The Minimal model of non-
baryonic dark matter: A Singlet scalar”. In: Nucl. Phys. B619 (2001), pp. 709–728. doi:
10.1016/S0550-3213(01)00513-2. arXiv: hep-ph/0011335 [hep-ph].

[97] Sebastian Bruggisser, Francesco Riva, and Alfredo Urbano. “Strongly Interacting Light
Dark Matter”. In: (2016). arXiv: 1607.02474 [hep-ph].

[98] Adam Alloul et al. “FeynRules 2.0 - A complete toolbox for tree-level phenomenology”. In:
Comput. Phys. Commun. 185 (2014), pp. 2250–2300. doi: 10.1016/j.cpc.2014.04.012.
arXiv: 1310.1921 [hep-ph].

[99] G. Bélanger, F. Boudjema, A. Pukhov, and A. Semenov. “micrOMEGAs4.1: two dark
matter candidates”. In: Comput. Phys. Commun. 192 (2015), pp. 322–329. doi: 10.1016/
j.cpc.2015.03.003. arXiv: 1407.6129 [hep-ph].

[100] E. Aprile et al. “First Dark Matter Search Results from the XENON1T Experiment”. In:
(2017). arXiv: 1705.06655 [astro-ph.CO].

[101] E. Aprile et al. “Physics reach of the XENON1T dark matter experiment”. In: JCAP
1604.04 (2016), p. 027. doi: 10.1088/1475-7516/2016/04/027. arXiv: 1512.07501
[physics.ins-det].

[102] G.F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi. “The Strongly-Interacting Light
Higgs”. In: JHEP 06 (2007), p. 045. doi: 10.1088/1126-6708/2007/06/045. arXiv:
hep-ph/0703164.

[103] Geneviève Bélanger et al. “micrOMEGAs5.0 : Freeze-in”. In: Comput. Phys. Commun. 231
(2018), pp. 173–186. doi: 10.1016/j.cpc.2018.04.027. arXiv: 1801.03509 [hep-ph].

[104] Gary Steigman, Basudeb Dasgupta, and John F. Beacom. “Precise Relic WIMP Abundance
and its Impact on Searches for Dark Matter Annihilation”. In: Phys. Rev. D 86 (2012),
p. 023506. doi: 10.1103/PhysRevD.86.023506. arXiv: 1204.3622 [hep-ph].

[105] Andrea Thamm, Riccardo Torre, and Andrea Wulzer. “Future tests of Higgs compositeness:
direct vs indirect”. In: JHEP 07 (2015), p. 100. doi: 10.1007/JHEP07(2015)100. arXiv:
1502.01701 [hep-ph].

[106] Csaba Csaki, Adam Falkowski, and Andreas Weiler. “The Flavor of the Composite Pseudo-
Goldstone Higgs”. In: JHEP 09 (2008), p. 008. doi: 10.1088/1126-6708/2008/09/008.
arXiv: 0804.1954 [hep-ph].

[107] Naoki Yamatsu. “Finite-Dimensional Lie Algebras and Their Representations for Unified
Model Building”. In: (Nov. 2015). arXiv: 1511.08771 [hep-ph].

[108] Kaustubh Agashe, Roberto Contino, Leandro Da Rold, and Alex Pomarol. “A Custodial
symmetry for Zbb̄”. In: Phys. Lett. B 641 (2006), pp. 62–66. doi: 10.1016/j.physletb.
2006.08.005. arXiv: hep-ph/0605341.

[109] Vardan Khachatryan et al. “Searches for invisible decays of the Higgs boson in pp collisions
at

Ô
s = 7, 8, and 13 TeV”. In: JHEP 02 (2017), p. 135. doi: 10.1007/JHEP02(2017)135.

arXiv: 1610.09218 [hep-ex].

181

http://dx.doi.org/10.1016/0370-2693(85)90624-0
http://dx.doi.org/10.1103/PhysRevD.50.3637
http://arxiv.org/abs/hep-ph/0702143
http://dx.doi.org/10.1016/S0550-3213(01)00513-2
http://arxiv.org/abs/hep-ph/0011335
http://arxiv.org/abs/1607.02474
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1016/j.cpc.2015.03.003
http://dx.doi.org/10.1016/j.cpc.2015.03.003
http://arxiv.org/abs/1407.6129
http://arxiv.org/abs/1705.06655
http://dx.doi.org/10.1088/1475-7516/2016/04/027
http://arxiv.org/abs/1512.07501
http://arxiv.org/abs/1512.07501
http://dx.doi.org/10.1088/1126-6708/2007/06/045
http://arxiv.org/abs/hep-ph/0703164
http://dx.doi.org/10.1016/j.cpc.2018.04.027
http://arxiv.org/abs/1801.03509
http://dx.doi.org/10.1103/PhysRevD.86.023506
http://arxiv.org/abs/1204.3622
http://dx.doi.org/10.1007/JHEP07(2015)100
http://arxiv.org/abs/1502.01701
http://dx.doi.org/10.1088/1126-6708/2008/09/008
http://arxiv.org/abs/0804.1954
http://arxiv.org/abs/1511.08771
http://dx.doi.org/10.1016/j.physletb.2006.08.005
http://dx.doi.org/10.1016/j.physletb.2006.08.005
http://arxiv.org/abs/hep-ph/0605341
http://dx.doi.org/10.1007/JHEP02(2017)135
http://arxiv.org/abs/1610.09218


[110] Andrea De Simone, Oleksii Matsedonskyi, Riccardo Rattazzi, and Andrea Wulzer. “A First
Top Partner Hunter’s Guide”. In: JHEP 04 (2013), p. 004. doi: 10.1007/JHEP04(2013)
004. arXiv: 1211.5663 [hep-ph].

[111] David Marzocca, Marco Serone, and Jing Shu. “General Composite Higgs Models”. In:
JHEP 08 (2012), p. 013. doi: 10.1007/JHEP08(2012)013. arXiv: 1205.0770 [hep-ph].

[112] Alex Pomarol and Francesco Riva. “The Composite Higgs and Light Resonance Connec-
tion”. In: JHEP 08 (2012), p. 135. doi: 10.1007/JHEP08(2012)135. arXiv: 1205.6434
[hep-ph].

[113] Christophe Grojean, Oleksii Matsedonskyi, and Giuliano Panico. “Light top partners and
precision physics”. In: JHEP 10 (2013), p. 160. doi: 10.1007/JHEP10(2013)160. arXiv:
1306.4655 [hep-ph].

[114] Csaba Csaki, Teng Ma, and Jing Shu. “Maximally Symmetric Composite Higgs Models”.
In: Phys. Rev. Lett. 119.13 (2017), p. 131803. doi: 10.1103/PhysRevLett.119.131803.
arXiv: 1702.00405 [hep-ph].

[115] J. Alberto Casas, David G. Cerdeño, Jesus M. Moreno, and Javier Quilis. “Reopening the
Higgs portal for single scalar dark matter”. In: JHEP 05 (2017), p. 036. doi: 10.1007/
JHEP05(2017)036. arXiv: 1701.08134 [hep-ph].

[116] Oleksii Matsedonskyi, Giuliano Panico, and Andrea Wulzer. “Light Top Partners for a
Light Composite Higgs”. In: JHEP 01 (2013), p. 164. doi: 10.1007/JHEP01(2013)164.
arXiv: 1204.6333 [hep-ph].

[117] Riccardo Barbieri and G.F. Giudice. “Upper Bounds on Supersymmetric Particle Masses”.
In: Nucl. Phys. B 306 (1988), pp. 63–76. doi: 10.1016/0550-3213(88)90171-X.

[118] Giuliano Panico and Andrea Wulzer. “The Discrete Composite Higgs Model”. In: JHEP
09 (2011), p. 135. doi: 10.1007/JHEP09(2011)135. arXiv: 1106.2719 [hep-ph].

[119] P.A.R. Ade et al. “Planck 2015 results. XIII. Cosmological parameters”. In: Astron.
Astrophys. 594 (2016), A13. doi: 10.1051/0004-6361/201525830. arXiv: 1502.01589
[astro-ph.CO].

[120] Nayara Fonseca, Renata Zukanovich Funchal, Andre Lessa, and Laura Lopez-Honorez.
“Dark Matter Constraints on Composite Higgs Models”. In: JHEP 06 (2015), p. 154. doi:
10.1007/JHEP06(2015)154. arXiv: 1501.05957 [hep-ph].

[121] D.S. Akerib et al. “Results from a search for dark matter in the complete LUX exposure”.
In: Phys. Rev. Lett. 118.2 (2017), p. 021303. doi: 10.1103/PhysRevLett.118.021303.
arXiv: 1608.07648 [astro-ph.CO].

[122] James M. Cline, Kimmo Kainulainen, Pat Scott, and Christoph Weniger. “Update on scalar
singlet dark matter”. In: Phys. Rev. D88 (2013). [Erratum: Phys. Rev.D92,no.3,039906(2015)],
p. 055025. doi: 10.1103/PhysRevD.92.039906,10.1103/PhysRevD.88.055025. arXiv:
1306.4710 [hep-ph].

[123] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. “micrOMEGAs 3: A program for
calculating dark matter observables”. In: Comput. Phys. Commun. 185 (2014), pp. 960–
985. doi: 10.1016/j.cpc.2013.10.016. arXiv: 1305.0237 [hep-ph].

[124] O. Adriani et al. “PAMELA results on the cosmic-ray antiproton flux from 60 MeV to
180 GeV in kinetic energy”. In: Phys. Rev. Lett. 105 (2010), p. 121101. doi: 10.1103/
PhysRevLett.105.121101. arXiv: 1007.0821 [astro-ph.HE].

182

http://dx.doi.org/10.1007/JHEP04(2013)004
http://dx.doi.org/10.1007/JHEP04(2013)004
http://arxiv.org/abs/1211.5663
http://dx.doi.org/10.1007/JHEP08(2012)013
http://arxiv.org/abs/1205.0770
http://dx.doi.org/10.1007/JHEP08(2012)135
http://arxiv.org/abs/1205.6434
http://arxiv.org/abs/1205.6434
http://dx.doi.org/10.1007/JHEP10(2013)160
http://arxiv.org/abs/1306.4655
http://dx.doi.org/10.1103/PhysRevLett.119.131803
http://arxiv.org/abs/1702.00405
http://dx.doi.org/10.1007/JHEP05(2017)036
http://dx.doi.org/10.1007/JHEP05(2017)036
http://arxiv.org/abs/1701.08134
http://dx.doi.org/10.1007/JHEP01(2013)164
http://arxiv.org/abs/1204.6333
http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://dx.doi.org/10.1007/JHEP09(2011)135
http://arxiv.org/abs/1106.2719
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1007/JHEP06(2015)154
http://arxiv.org/abs/1501.05957
http://dx.doi.org/10.1103/PhysRevLett.118.021303
http://arxiv.org/abs/1608.07648
http://arxiv.org/abs/1306.4710
http://dx.doi.org/10.1016/j.cpc.2013.10.016
http://arxiv.org/abs/1305.0237
http://dx.doi.org/10.1103/PhysRevLett.105.121101
http://dx.doi.org/10.1103/PhysRevLett.105.121101
http://arxiv.org/abs/1007.0821


[125] Carmelo Evoli, Daniele Gaggero, and Dario Grasso. “Secondary antiprotons as a Galactic
Dark Matter probe”. In: JCAP 12 (2015), p. 039. doi: 10.1088/1475-7516/2015/12/039.
arXiv: 1504.05175 [astro-ph.HE].

[126] Alessandro Cuoco, Michael Krämer, and Michael Korsmeier. “Novel Dark Matter Con-
straints from Antiprotons in Light of AMS-02”. In: Phys. Rev. Lett. 118.19 (2017), p. 191102.
doi: 10.1103/PhysRevLett.118.191102. arXiv: 1610.03071 [astro-ph.HE].

[127] Ming-Yang Cui, Qiang Yuan, Yue-Lin Sming Tsai, and Yi-Zhong Fan. “Possible dark matter
annihilation signal in the AMS-02 antiproton data”. In: Phys. Rev. Lett. 118.19 (2017),
p. 191101. doi: 10.1103/PhysRevLett.118.191101. arXiv: 1610.03840 [astro-ph.HE].

[128] M. Aguilar et al. “Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of
Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic
Spectrometer on the International Space Station”. In: Phys. Rev. Lett. 117.9 (2016),
p. 091103. doi: 10.1103/PhysRevLett.117.091103.

[129] A. Albert et al. “Searching for Dark Matter Annihilation in Recently Discovered Milky Way
Satellites with Fermi-LAT”. In: Astrophys. J. 834.2 (2017), p. 110. doi: 10.3847/1538-
4357/834/2/110. arXiv: 1611.03184 [astro-ph.HE].

[130] Gauthier Durieux, Christophe Grojean, Jiayin Gu, and Kechen Wang. “The leptonic
future of the Higgs”. In: JHEP 09 (2017), p. 014. doi: 10.1007/JHEP09(2017)014. arXiv:
1704.02333 [hep-ph].

[131] Giuliano Panico, Michele Redi, Andrea Tesi, and Andrea Wulzer. “On the Tuning and the
Mass of the Composite Higgs”. In: JHEP 03 (2013), p. 051. doi: 10.1007/JHEP03(2013)
051. arXiv: 1210.7114 [hep-ph].

[132] Roberto Contino, Thomas Kramer, Minho Son, and Raman Sundrum. “Warped/composite
phenomenology simplified”. In: JHEP 05 (2007), p. 074. doi: 10.1088/1126-6708/2007/
05/074. arXiv: hep-ph/0612180.

[133] Roberto Contino and Geraldine Servant. “Discovering the top partners at the LHC
using same-sign dilepton final states”. In: JHEP 06 (2008), p. 026. doi: 10.1088/1126-
6708/2008/06/026. arXiv: 0801.1679 [hep-ph].

[134] Jan Mrazek and Andrea Wulzer. “A Strong Sector at the LHC: Top Partners in Same-Sign
Dileptons”. In: Phys. Rev. D 81 (2010), p. 075006. doi: 10.1103/PhysRevD.81.075006.
arXiv: 0909.3977 [hep-ph].

[135] Javi Serra. “Beyond the Minimal Top Partner Decay”. In: JHEP 09 (2015), p. 176. doi:
10.1007/JHEP09(2015)176. arXiv: 1506.05110 [hep-ph].

[136] “Search for heavy vector-like quarks decaying to same-sign dileptons”. In: (Mar. 2017).
[137] Sabine Kraml, Ursula Laa, Luca Panizzi, and Hugo Prager. “Scalar versus fermionic top

partner interpretations of tt̄ + Emiss
T searches at the LHC”. In: JHEP 11 (2016), p. 107.

doi: 10.1007/JHEP11(2016)107. arXiv: 1607.02050 [hep-ph].
[138] G. Salam and A. Weiler, “Collider Reach,” http://collider-reach.web.cern.ch/collider-

reach/.
[139] Albert M Sirunyan et al. “Search for new phenomena with the MT2 variable in the all-

hadronic final state produced in proton–proton collisions at
Ô

s = 13 TeV”. In: Eur. Phys.
J. C 77.10 (2017), p. 710. doi: 10.1140/epjc/s10052-017-5267-x. arXiv: 1705.04650
[hep-ex].

183

http://dx.doi.org/10.1088/1475-7516/2015/12/039
http://arxiv.org/abs/1504.05175
http://dx.doi.org/10.1103/PhysRevLett.118.191102
http://arxiv.org/abs/1610.03071
http://dx.doi.org/10.1103/PhysRevLett.118.191101
http://arxiv.org/abs/1610.03840
http://dx.doi.org/10.1103/PhysRevLett.117.091103
http://dx.doi.org/10.3847/1538-4357/834/2/110
http://dx.doi.org/10.3847/1538-4357/834/2/110
http://arxiv.org/abs/1611.03184
http://dx.doi.org/10.1007/JHEP09(2017)014
http://arxiv.org/abs/1704.02333
http://dx.doi.org/10.1007/JHEP03(2013)051
http://dx.doi.org/10.1007/JHEP03(2013)051
http://arxiv.org/abs/1210.7114
http://dx.doi.org/10.1088/1126-6708/2007/05/074
http://dx.doi.org/10.1088/1126-6708/2007/05/074
http://arxiv.org/abs/hep-ph/0612180
http://dx.doi.org/10.1088/1126-6708/2008/06/026
http://dx.doi.org/10.1088/1126-6708/2008/06/026
http://arxiv.org/abs/0801.1679
http://dx.doi.org/10.1103/PhysRevD.81.075006
http://arxiv.org/abs/0909.3977
http://dx.doi.org/10.1007/JHEP09(2015)176
http://arxiv.org/abs/1506.05110
http://dx.doi.org/10.1007/JHEP11(2016)107
http://arxiv.org/abs/1607.02050
http://dx.doi.org/10.1140/epjc/s10052-017-5267-x
http://arxiv.org/abs/1705.04650
http://arxiv.org/abs/1705.04650


[140] B.J. Mount et al. “LUX-ZEPLIN (LZ) Technical Design Report”. In: (Mar. 2017). arXiv:
1703.09144 [physics.ins-det].

[141] E. Aprile et al. “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T”.
In: Phys. Rev. Lett. 121.11 (2018), p. 111302. doi: 10.1103/PhysRevLett.121.111302.
arXiv: 1805.12562 [astro-ph.CO].

[142] “Search for invisible decays of the Higgs boson produced through vector boson fusion atÔ
s = 13 TeV”. In: (Mar. 2018).

[143] “Projections for measurements of Higgs boson cross sections, branching ratios and coupling
parameters with the ATLAS detector at a HL-LHC”. In: (Oct. 2013).

[144] M. Ackermann et al. “Searching for Dark Matter Annihilation from Milky Way Dwarf
Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data”. In: Phys.
Rev. Lett. 115.23 (2015), p. 231301. doi: 10.1103/PhysRevLett.115.231301. arXiv:
1503.02641 [astro-ph.HE].

[145] Paolo Gondolo, Junji Hisano, and Kenji Kadota. “The E�ect of quark interactions on
dark matter kinetic decoupling and the mass of the smallest dark halos”. In: Phys. Rev. D
86 (2012), p. 083523. doi: 10.1103/PhysRevD.86.083523. arXiv: 1205.1914 [hep-ph].

[146] Lotty Ackerman, Matthew R. Buckley, Sean M. Carroll, and Marc Kamionkowski. “Dark
Matter and Dark Radiation”. In: (Oct. 2008). Ed. by Hans Volker Klapdor-Kleingrothaus
and Irina V. Krivosheina, pp. 277–286. doi: 10.1103/PhysRevD.79.023519. arXiv:
0810.5126 [hep-ph].

[147] K.N. Abazajian et al. “Neutrino Physics from the Cosmic Microwave Background and
Large Scale Structure”. In: Astropart. Phys. 63 (2015), pp. 66–80. doi: 10.1016/j.
astropartphys.2014.05.014. arXiv: 1309.5383 [astro-ph.CO].

[148] Ryan Cooke et al. “Precision measures of the primordial abundance of deuterium”. In:
Astrophys. J. 781.1 (2014), p. 31. doi: 10.1088/0004-637X/781/1/31. arXiv: 1308.3240
[astro-ph.CO].

[149] Jonathan L. Feng, Manoj Kaplinghat, Huitzu Tu, and Hai-Bo Yu. “Hidden Charged Dark
Matter”. In: JCAP 07 (2009), p. 004. doi: 10.1088/1475-7516/2009/07/004. arXiv:
0905.3039 [hep-ph].

[150] A. Sommerfeld. “Über die Beugung und Bremsung der Elektronen”. In: Annalen der
Physik 403.3 (1931), pp. 257–330. doi: 10.1002/andp.19314030302. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19314030302. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/andp.19314030302.

[151] Jonathan L. Feng, Manoj Kaplinghat, and Hai-Bo Yu. “Sommerfeld Enhancements for
Thermal Relic Dark Matter”. In: Phys. Rev. D 82 (2010), p. 083525. doi: 10.1103/
PhysRevD.82.083525. arXiv: 1005.4678 [hep-ph].

[152] Til Pi� et al. “The RAVE survey: the Galactic escape speed and the mass of the Milky
Way”. In: Astron. Astrophys. 562 (2014), A91. doi: 10.1051/0004-6361/201322531.
arXiv: 1309.4293 [astro-ph.GA].

[153] Marco Cirelli et al. “Dark Matter’s secret liaisons: phenomenology of a dark U(1) sector
with bound states”. In: JCAP 05 (2017), p. 036. doi: 10.1088/1475-7516/2017/05/036.
arXiv: 1612.07295 [hep-ph].

[154] Benedict von Harling and Kalliopi Petraki. “Bound-state formation for thermal relic dark
matter and unitarity”. In: JCAP 12 (2014), p. 033. doi: 10.1088/1475-7516/2014/12/
033. arXiv: 1407.7874 [hep-ph].

184

http://arxiv.org/abs/1703.09144
http://dx.doi.org/10.1103/PhysRevLett.121.111302
http://arxiv.org/abs/1805.12562
http://dx.doi.org/10.1103/PhysRevLett.115.231301
http://arxiv.org/abs/1503.02641
http://dx.doi.org/10.1103/PhysRevD.86.083523
http://arxiv.org/abs/1205.1914
http://dx.doi.org/10.1103/PhysRevD.79.023519
http://arxiv.org/abs/0810.5126
http://dx.doi.org/10.1016/j.astropartphys.2014.05.014
http://dx.doi.org/10.1016/j.astropartphys.2014.05.014
http://arxiv.org/abs/1309.5383
http://dx.doi.org/10.1088/0004-637X/781/1/31
http://arxiv.org/abs/1308.3240
http://arxiv.org/abs/1308.3240
http://dx.doi.org/10.1088/1475-7516/2009/07/004
http://arxiv.org/abs/0905.3039
http://dx.doi.org/10.1002/andp.19314030302
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19314030302
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19314030302
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19314030302
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19314030302
http://dx.doi.org/10.1103/PhysRevD.82.083525
http://dx.doi.org/10.1103/PhysRevD.82.083525
http://arxiv.org/abs/1005.4678
http://dx.doi.org/10.1051/0004-6361/201322531
http://arxiv.org/abs/1309.4293
http://dx.doi.org/10.1088/1475-7516/2017/05/036
http://arxiv.org/abs/1612.07295
http://dx.doi.org/10.1088/1475-7516/2014/12/033
http://dx.doi.org/10.1088/1475-7516/2014/12/033
http://arxiv.org/abs/1407.7874


[155] David A. Buote, Tesla E. Jeltema, Claude R. Canizares, and Gordon P. Garmire. “Chandra
evidence for a flattened, triaxial dark matter halo in the elliptical galaxy ngc 720”. In:
Astrophys. J. 577 (2002), pp. 183–196. doi: 10.1086/342158. arXiv: astro-ph/0205469.

[156] Prateek Agrawal, Francis-Yan Cyr-Racine, Lisa Randall, and Jakub Scholtz. “Make Dark
Matter Charged Again”. In: JCAP 05 (2017), p. 022. doi: 10.1088/1475-7516/2017/
05/022. arXiv: 1610.04611 [hep-ph].

[157] Felix Kahlhoefer, Kai Schmidt-Hoberg, Mads T. Frandsen, and Subir Sarkar. “Colliding
clusters and dark matter self-interactions”. In: Mon. Not. Roy. Astron. Soc. 437.3 (2014),
pp. 2865–2881. doi: 10.1093/mnras/stt2097. arXiv: 1308.3419 [astro-ph.CO].

[158] Sean Tulin and Hai-Bo Yu. “Dark Matter Self-interactions and Small Scale Structure”.
In: Phys. Rept. 730 (2018), pp. 1–57. doi: 10.1016/j.physrep.2017.11.004. arXiv:
1705.02358 [hep-ph].

[159] Roberta Diamanti et al. “Cold dark matter plus not-so-clumpy dark relics”. In: JCAP
06 (2017), p. 008. doi: 10 . 1088 / 1475 - 7516 / 2017 / 06 / 008. arXiv: 1701 . 03128
[astro-ph.CO].

[160] Kalliopi Petraki, Marieke Postma, and Jordy de Vries. “Radiative bound-state-formation
cross-sections for dark matter interacting via a Yukawa potential”. In: JHEP 04 (2017),
p. 077. doi: 10.1007/JHEP04(2017)077. arXiv: 1611.01394 [hep-ph].

[161] Philip J. Humphrey et al. “A Census of Baryons and Dark Matter in an Isolated, Milky
Way-sized Elliptical Galaxy”. In: Astrophys. J. 729 (2011), p. 53. doi: 10.1088/0004-
637X/729/1/53. arXiv: 1010.6078 [astro-ph.CO].

[162] Matthew Reece. “Photon Masses in the Landscape and the Swampland”. In: JHEP 07
(2019), p. 181. doi: 10.1007/JHEP07(2019)181. arXiv: 1808.09966 [hep-th].

[163] Nathaniel Craig and Isabel Garcia Garcia. “Rescuing Massive Photons from the Swamp-
land”. In: JHEP 11 (2018), p. 067. doi: 10.1007/JHEP11(2018)067. arXiv: 1810.05647
[hep-th].

[164] Geneviève Bélanger et al. “micrOMEGAs5.0 : Freeze-in”. In: Comput. Phys. Commun. 231
(2018), pp. 173–186. doi: 10.1016/j.cpc.2018.04.027. arXiv: 1801.03509 [hep-ph].

[165] Genevieve Belanger and Jong-Chul Park. “Assisted freeze-out”. In: JCAP 03 (2012),
p. 038. doi: 10.1088/1475-7516/2012/03/038. arXiv: 1112.4491 [hep-ph].

[166] Diptimoy Ghosh, Matteo Salvarezza, and Fabrizio Senia. “Extending the Analysis of
Electroweak Precision Constraints in Composite Higgs Models”. In: Nucl. Phys. B 914
(2017), pp. 346–387. doi: 10.1016/j.nuclphysb.2016.11.013. arXiv: 1511.08235
[hep-ph].

[167] M. Aaboud et al. “Search for pair production of heavy vector-like quarks decaying to high-
pT W bosons and b quarks in the lepton-plus-jets final state in pp collisions at

Ô
s = 13 TeV

with the ATLAS detector”. In: JHEP 10 (2017), p. 141. doi: 10.1007/JHEP10(2017)141.
arXiv: 1707.03347 [hep-ex].

[168] Aleksandr Azatov and Jamison Galloway. “Light Custodians and Higgs Physics in Compos-
ite Models”. In: Phys. Rev. D 85 (2012), p. 055013. doi: 10.1103/PhysRevD.85.055013.
arXiv: 1110.5646 [hep-ph].

[169] Marc Montull, Francesco Riva, Ennio Salvioni, and Riccardo Torre. “Higgs Couplings in
Composite Models”. In: Phys. Rev. D 88 (2013), p. 095006. doi: 10.1103/PhysRevD.88.
095006. arXiv: 1308.0559 [hep-ph].

185

http://dx.doi.org/10.1086/342158
http://arxiv.org/abs/astro-ph/0205469
http://dx.doi.org/10.1088/1475-7516/2017/05/022
http://dx.doi.org/10.1088/1475-7516/2017/05/022
http://arxiv.org/abs/1610.04611
http://dx.doi.org/10.1093/mnras/stt2097
http://arxiv.org/abs/1308.3419
http://dx.doi.org/10.1016/j.physrep.2017.11.004
http://arxiv.org/abs/1705.02358
http://dx.doi.org/10.1088/1475-7516/2017/06/008
http://arxiv.org/abs/1701.03128
http://arxiv.org/abs/1701.03128
http://dx.doi.org/10.1007/JHEP04(2017)077
http://arxiv.org/abs/1611.01394
http://dx.doi.org/10.1088/0004-637X/729/1/53
http://dx.doi.org/10.1088/0004-637X/729/1/53
http://arxiv.org/abs/1010.6078
http://dx.doi.org/10.1007/JHEP07(2019)181
http://arxiv.org/abs/1808.09966
http://dx.doi.org/10.1007/JHEP11(2018)067
http://arxiv.org/abs/1810.05647
http://arxiv.org/abs/1810.05647
http://dx.doi.org/10.1016/j.cpc.2018.04.027
http://arxiv.org/abs/1801.03509
http://dx.doi.org/10.1088/1475-7516/2012/03/038
http://arxiv.org/abs/1112.4491
http://dx.doi.org/10.1016/j.nuclphysb.2016.11.013
http://arxiv.org/abs/1511.08235
http://arxiv.org/abs/1511.08235
http://dx.doi.org/10.1007/JHEP10(2017)141
http://arxiv.org/abs/1707.03347
http://dx.doi.org/10.1103/PhysRevD.85.055013
http://arxiv.org/abs/1110.5646
http://dx.doi.org/10.1103/PhysRevD.88.095006
http://dx.doi.org/10.1103/PhysRevD.88.095006
http://arxiv.org/abs/1308.0559


[170] Manuel Drees and Mihoko Nojiri. “Neutralino - nucleon scattering revisited”. In: Phys. Rev.
D 48 (1993), pp. 3483–3501. doi: 10.1103/PhysRevD.48.3483. arXiv: hep-ph/9307208.

[171] J.M. Alarcon, J. Martin Camalich, and J.A. Oller. “The chiral representation of the
fiN scattering amplitude and the pion-nucleon sigma term”. In: Phys. Rev. D 85 (2012),
p. 051503. doi: 10.1103/PhysRevD.85.051503. arXiv: 1110.3797 [hep-ph].

[172] Martin Hoferichter, J. Ruiz de Elvira, Bastian Kubis, and Ulf-G. Meißner. “High-Precision
Determination of the Pion-Nucleon ‡ Term from Roy-Steiner Equations”. In: Phys. Rev.
Lett. 115 (2015), p. 092301. doi: 10.1103/PhysRevLett.115.092301. arXiv: 1506.04142
[hep-ph].

[173] Parikshit Junnarkar and Andre Walker-Loud. “Scalar strange content of the nucleon from
lattice QCD”. In: Phys. Rev. D 87 (2013), p. 114510. doi: 10.1103/PhysRevD.87.114510.
arXiv: 1301.1114 [hep-lat].

[174] Roberto Contino, David Marzocca, Duccio Pappadopulo, and Riccardo Rattazzi. “On the
e�ect of resonances in composite Higgs phenomenology”. In: JHEP 10 (2011), p. 081. doi:
10.1007/JHEP10(2011)081. arXiv: 1109.1570 [hep-ph].

[175] Rodrigo Alonso et al. “Sigma Decomposition”. In: JHEP 12 (2014), p. 034. doi: 10.1007/
JHEP12(2014)034. arXiv: 1409.1589 [hep-ph].

[176] R. Jackiw and C. Rebbi. “Vacuum Periodicity in a Yang-Mills Quantum Theory”. In: Phys.
Rev. Lett. 37 (1976). Ed. by J.C. Taylor, pp. 172–175. doi: 10.1103/PhysRevLett.37.172.

[177] Jr. Callan Curtis G., R.F. Dashen, and David J. Gross. “The Structure of the Gauge
Theory Vacuum”. In: Phys. Lett. B 63 (1976). Ed. by J.C. Taylor, pp. 334–340. doi:
10.1016/0370-2693(76)90277-X.

[178] Claude W. Bernard and Erick J. Weinberg. “The Interpretation of Pseudoparticles in
Physical Gauges”. In: Phys. Rev. D 15 (1977), p. 3656. doi: 10.1103/PhysRevD.15.3656.

[179] Erick J. Weinberg. Classical solutions in quantum field theory: Solitons and Instantons
in High Energy Physics. Cambridge Monographs on Mathematical Physics. Cambridge
University Press, Sept. 2012. isbn: 978-0-521-11463-9, 978-1-139-57461-7, 978-0-521-11463-
9, 978-1-107-43805-7. doi: 10.1017/CBO9781139017787.

[180] J.S. Bell and R. Jackiw. “A PCAC puzzle: fi0 æ ““ in the ‡ model”. In: Nuovo Cim. A
60 (1969), pp. 47–61. doi: 10.1007/BF02823296.

[181] Stephen L. Adler. “Axial vector vertex in spinor electrodynamics”. In: Phys. Rev. 177
(1969), pp. 2426–2438. doi: 10.1103/PhysRev.177.2426.

[182] William A. Bardeen. “Anomalous Ward identities in spinor field theories”. In: Phys. Rev.
184 (1969), pp. 1848–1857. doi: 10.1103/PhysRev.184.1848.

[183] Kazuo Fujikawa. “Path Integral Measure for Gauge Invariant Fermion Theories”. In: Phys.
Rev. Lett. 42 (1979), pp. 1195–1198. doi: 10.1103/PhysRevLett.42.1195.

[184] Gerard ’t Hooft. “How Instantons Solve the U(1) Problem”. In: Phys. Rept. 142 (1986),
pp. 357–387. doi: 10.1016/0370-1573(86)90117-1.

[185] M. Tanabashi et al. “"CKM Quark-Mixing Matrix" in Review of Particle Physics”. In:
Phys. Rev. D 98.3 (2018), p. 030001. doi: 10.1103/PhysRevD.98.030001.

[186] R. J. Crewther, P. Di Vecchia, G. Veneziano, and Edward Witten. “Chiral Estimate of
the Electric Dipole Moment of the Neutron in Quantum Chromodynamics”. In: Phys.
Lett. 88B (1979). [Erratum: Phys. Lett.91B,487(1980)], p. 123. doi: 10.1016/0370-
2693(80)91025-4,10.1016/0370-2693(79)90128-X.

186

http://dx.doi.org/10.1103/PhysRevD.48.3483
http://arxiv.org/abs/hep-ph/9307208
http://dx.doi.org/10.1103/PhysRevD.85.051503
http://arxiv.org/abs/1110.3797
http://dx.doi.org/10.1103/PhysRevLett.115.092301
http://arxiv.org/abs/1506.04142
http://arxiv.org/abs/1506.04142
http://dx.doi.org/10.1103/PhysRevD.87.114510
http://arxiv.org/abs/1301.1114
http://dx.doi.org/10.1007/JHEP10(2011)081
http://arxiv.org/abs/1109.1570
http://dx.doi.org/10.1007/JHEP12(2014)034
http://dx.doi.org/10.1007/JHEP12(2014)034
http://arxiv.org/abs/1409.1589
http://dx.doi.org/10.1103/PhysRevLett.37.172
http://dx.doi.org/10.1016/0370-2693(76)90277-X
http://dx.doi.org/10.1103/PhysRevD.15.3656
http://dx.doi.org/10.1017/CBO9781139017787
http://dx.doi.org/10.1007/BF02823296
http://dx.doi.org/10.1103/PhysRev.177.2426
http://dx.doi.org/10.1103/PhysRev.184.1848
http://dx.doi.org/10.1103/PhysRevLett.42.1195
http://dx.doi.org/10.1016/0370-1573(86)90117-1
http://dx.doi.org/10.1103/PhysRevD.98.030001


[187] J. M. Pendlebury et al. “Revised experimental upper limit on the electric dipole moment of
the neutron”. In: Phys. Rev. D92.9 (2015), p. 092003. doi: 10.1103/PhysRevD.92.092003.
arXiv: 1509.04411 [hep-ex].

[188] Nemanja Kaloper and John Terning. “Landscaping the Strong CP Problem”. In: JHEP
03 (2019), p. 032. doi: 10.1007/JHEP03(2019)032. arXiv: 1710.01740 [hep-th].

[189] Michael Dine, Laurel Stephenson Haskins, Lorenzo Ubaldi, and Di Xu. “Some Remarks
on Anthropic Approaches to the Strong CP Problem”. In: JHEP 05 (2018), p. 171. doi:
10.1007/JHEP05(2018)171. arXiv: 1801.03466 [hep-th].

[190] Marc Kamionkowski and John March-Russell. “Planck scale physics and the Peccei-
Quinn mechanism”. In: Phys. Lett. B 282 (1992), pp. 137–141. doi: 10.1016/0370-
2693(92)90492-M. arXiv: hep-th/9202003.

[191] Stephen M. Barr and D. Seckel. “Planck scale corrections to axion models”. In: Phys. Rev.
D 46 (1992), pp. 539–549. doi: 10.1103/PhysRevD.46.539.

[192] S. Ghigna, Maurizio Lusignoli, and M. Roncadelli. “Instability of the invisible axion”. In:
Phys. Lett. B 283 (1992), pp. 278–281. doi: 10.1016/0370-2693(92)90019-Z.

[193] Richard Holman et al. “Solutions to the strong CP problem in a world with gravity”. In:
Phys. Lett. B 282 (1992), pp. 132–136. doi: 10.1016/0370-2693(92)90491-L. arXiv:
hep-ph/9203206.

[194] Mark Srednicki. “Axion Couplings to Matter. 1. CP Conserving Parts”. In: Nucl. Phys. B
260 (1985), pp. 689–700. doi: 10.1016/0550-3213(85)90054-9.

[195] William A. Bardeen, R.D. Peccei, and T. Yanagida. “CONSTRAINTS ON VARIANT
AXION MODELS”. In: Nucl. Phys. B 279 (1987), pp. 401–428. doi: 10.1016/0550-
3213(87)90003-4.

[196] Y. Asano et al. “Search for a Rare Decay Mode K+ —> pi+ Neutrino anti-neutrino and
Axion”. In: (Oct. 1981). Ed. by R.J. Cence, E. Ma, and A. Roberts, pp. 411–414. doi:
10.1016/0370-2693(81)91172-2.

[197] S. Yamada. “Search for New Particles”. In: Conf. Proc. C 830804 (1983), p. 525.
[198] M. Tanabashi et al. “"Axions and Other Similar Particles" in Review of Particle Physics”.

In: Phys. Rev. D 98.3 (2018), p. 030001. doi: 10.1103/PhysRevD.98.030001.
[199] Davide Cadamuro, Steen Hannestad, Georg Ra�elt, and Javier Redondo. “Cosmological

bounds on sub-MeV mass axions”. In: JCAP 02 (2011), p. 003. doi: 10.1088/1475-
7516/2011/02/003. arXiv: 1011.3694 [hep-ph].

[200] Georg G. Ra�elt. “Astrophysical axion bounds”. In: Lect. Notes Phys. 741 (2008).
[,51(2006)], pp. 51–71. doi: 10.1007/978-3-540-73518-2_3. arXiv: hep-ph/0611350
[hep-ph].

[201] Leanne D. Du�y and Karl van Bibber. “Axions as Dark Matter Particles”. In: New J.
Phys. 11 (2009), p. 105008. doi: 10.1088/1367-2630/11/10/105008. arXiv: 0904.3346
[hep-ph].

[202] J. I. Kapusta and Charles Gale. Finite-temperature field theory: Principles and applications.
Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2011.
isbn: 9780521173223, 9780521820820, 9780511222801. doi: 10.1017/CBO9780511535130.

[203] Howard E. Haber and H. Arthur Weldon. “Thermodynamics of an Ultrarelativistic Bose
Gas”. In: Phys. Rev. Lett. 46 (1981), p. 1497. doi: 10.1103/PhysRevLett.46.1497.

187

http://dx.doi.org/10.1103/PhysRevD.92.092003
http://arxiv.org/abs/1509.04411
http://dx.doi.org/10.1007/JHEP03(2019)032
http://arxiv.org/abs/1710.01740
http://dx.doi.org/10.1007/JHEP05(2018)171
http://arxiv.org/abs/1801.03466
http://dx.doi.org/10.1016/0370-2693(92)90492-M
http://dx.doi.org/10.1016/0370-2693(92)90492-M
http://arxiv.org/abs/hep-th/9202003
http://dx.doi.org/10.1103/PhysRevD.46.539
http://dx.doi.org/10.1016/0370-2693(92)90019-Z
http://dx.doi.org/10.1016/0370-2693(92)90491-L
http://arxiv.org/abs/hep-ph/9203206
http://dx.doi.org/10.1016/0550-3213(85)90054-9
http://dx.doi.org/10.1016/0550-3213(87)90003-4
http://dx.doi.org/10.1016/0550-3213(87)90003-4
http://dx.doi.org/10.1016/0370-2693(81)91172-2
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1088/1475-7516/2011/02/003
http://dx.doi.org/10.1088/1475-7516/2011/02/003
http://arxiv.org/abs/1011.3694
http://dx.doi.org/10.1007/978-3-540-73518-2_3
http://arxiv.org/abs/hep-ph/0611350
http://arxiv.org/abs/hep-ph/0611350
http://dx.doi.org/10.1088/1367-2630/11/10/105008
http://arxiv.org/abs/0904.3346
http://arxiv.org/abs/0904.3346
http://dx.doi.org/10.1017/CBO9780511535130
http://dx.doi.org/10.1103/PhysRevLett.46.1497


[204] Joseph I. Kapusta. “Bose-Einstein Condensation, Spontaneous Symmetry Breaking, and
Gauge Theories”. In: Phys. Rev. D24 (1981), pp. 426–439. doi: 10.1103/PhysRevD.24.
426.

[205] D. T. Son and Misha A. Stephanov. “QCD at finite isospin density”. In: Phys. Rev. Lett.
86 (2001), pp. 592–595. doi: 10.1103/PhysRevLett.86.592. arXiv: hep-ph/0005225
[hep-ph].

[206] J. B. Kogut and D. Toublan. “QCD at small nonzero quark chemical potentials”. In: Phys.
Rev. D64 (2001), p. 034007. doi: 10.1103/PhysRevD.64.034007. arXiv: hep-ph/0103271
[hep-ph].

[207] Andrea Mammarella and Massimo Mannarelli. “Intriguing aspects of meson condensation”.
In: Phys. Rev. D92.8 (2015), p. 085025. doi: 10.1103/PhysRevD.92.085025. arXiv:
1507.02934 [hep-ph].

[208] Massimo Mannarelli. “Meson condensation”. In: (2019). arXiv: 1908.02042 [hep-ph].
[209] Anson Hook and Junwu Huang. “Probing axions with neutron star inspirals and other

stellar processes”. In: JHEP 06 (2018), p. 036. doi: 10.1007/JHEP06(2018)036. arXiv:
1708.08464 [hep-ph].

[210] Thomas D. Cohen, R. J. Furnstahl, and David K. Griegel. “Quark and gluon condensates
in nuclear matter”. In: Phys. Rev. C45 (1992), pp. 1881–1893. doi: 10.1103/PhysRevC.
45.1881.

[211] Philipp Gubler and Daisuke Satow. “Recent Progress in QCD Condensate Evaluations
and Sum Rules”. In: Prog. Part. Nucl. Phys. 106 (2019), pp. 1–67. doi: 10.1016/j.ppnp.
2019.02.005. arXiv: 1812.00385 [hep-ph].

[212] J. Gasser and H. Leutwyler. “Chiral Perturbation Theory to One Loop”. In: Annals Phys.
158 (1984), p. 142. doi: 10.1016/0003-4916(84)90242-2.

[213] Ulf G. Meissner, Jose A. Oller, and Andreas Wirzba. “In-medium chiral perturbation
theory beyond the mean field approximation”. In: Annals Phys. 297 (2002), pp. 27–66.
doi: 10.1006/aphy.2002.6244. arXiv: nucl-th/0109026 [nucl-th].

[214] Norbert Kaiser, S. Fritsch, and W. Weise. “Chiral dynamics and nuclear matter”. In:
Nucl. Phys. A697 (2002), pp. 255–276. doi: 10.1016/S0375-9474(01)01231-3. arXiv:
nucl-th/0105057 [nucl-th].

[215] N. Kaiser, P. de Homont, and W. Weise. “In-medium chiral condensate beyond linear
density approximation”. In: Phys. Rev. C77 (2008), p. 025204. doi: 10.1103/PhysRevC.
77.025204. arXiv: 0711.3154 [nucl-th].

[216] Soichiro Goda and D. Jido. “Chiral condensate at finite density using the chiral Ward
identity”. In: Phys. Rev. C88.6 (2013), p. 065204. doi: 10.1103/PhysRevC.88.065204.
arXiv: 1308.2660 [nucl-th].

[217] N. Kaiser and W. Weise. “Chiral condensate in neutron matter”. In: Phys. Lett. B671
(2009), pp. 25–29. doi: 10 . 1016 / j . physletb . 2008 . 11 . 071. arXiv: 0808 . 0856
[nucl-th].

[218] T. Krger et al. “The chiral condensate in neutron matter”. In: Phys. Lett. B726 (2013),
pp. 412–416. doi: 10.1016/j.physletb.2013.08.022. arXiv: 1307.2110 [nucl-th].

[219] Wolfram Weise. “Dense Baryonic Matter and Strangeness in Neutron Stars”. In: 8th
International Conference on Quarks and Nuclear Physics (QNP2018) Tsukuba, Japan,
November 13-17, 2018. 2019. arXiv: 1905.03955 [nucl-th].

188

http://dx.doi.org/10.1103/PhysRevD.24.426
http://dx.doi.org/10.1103/PhysRevD.24.426
http://dx.doi.org/10.1103/PhysRevLett.86.592
http://arxiv.org/abs/hep-ph/0005225
http://arxiv.org/abs/hep-ph/0005225
http://dx.doi.org/10.1103/PhysRevD.64.034007
http://arxiv.org/abs/hep-ph/0103271
http://arxiv.org/abs/hep-ph/0103271
http://dx.doi.org/10.1103/PhysRevD.92.085025
http://arxiv.org/abs/1507.02934
http://arxiv.org/abs/1908.02042
http://dx.doi.org/10.1007/JHEP06(2018)036
http://arxiv.org/abs/1708.08464
http://dx.doi.org/10.1103/PhysRevC.45.1881
http://dx.doi.org/10.1103/PhysRevC.45.1881
http://dx.doi.org/10.1016/j.ppnp.2019.02.005
http://dx.doi.org/10.1016/j.ppnp.2019.02.005
http://arxiv.org/abs/1812.00385
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1006/aphy.2002.6244
http://arxiv.org/abs/nucl-th/0109026
http://dx.doi.org/10.1016/S0375-9474(01)01231-3
http://arxiv.org/abs/nucl-th/0105057
http://dx.doi.org/10.1103/PhysRevC.77.025204
http://dx.doi.org/10.1103/PhysRevC.77.025204
http://arxiv.org/abs/0711.3154
http://dx.doi.org/10.1103/PhysRevC.88.065204
http://arxiv.org/abs/1308.2660
http://dx.doi.org/10.1016/j.physletb.2008.11.071
http://arxiv.org/abs/0808.0856
http://arxiv.org/abs/0808.0856
http://dx.doi.org/10.1016/j.physletb.2013.08.022
http://arxiv.org/abs/1307.2110
http://arxiv.org/abs/1905.03955


[220] D. B. Kaplan and A. E. Nelson. “Kaon Condensation in Dense Matter”. In: Nucl. Phys.
A479 (1988), p. 273c. doi: 10.1016/0375-9474(88)90442-3.

[221] Vesteinn Thorsson, Madappa Prakash, and James M. Lattimer. “Composition, structure
and evolution of neutron stars with kaon condensates”. In: Nucl. Phys. A572 (1994).
[Erratum: Nucl. Phys.A574,851(1994)], pp. 693–731. doi: 10.1016/0375-9474(94)90962-
8,10.1016/0375-9474(94)90407-3. arXiv: nucl-th/9305006 [nucl-th].

[222] Angels Ramos, Jurgen Scha�ner-Bielich, and Jochen Wambach. “Kaon condensation
in neutron stars”. In: Lect. Notes Phys. 578 (2001). [,175(2000)], pp. 175–202. arXiv:
nucl-th/0011003 [nucl-th].

[223] Norman K. Glendenning and Jurgen Scha�ner-Bielich. “First order kaon condensate”.
In: Phys. Rev. C60 (1999), p. 025803. doi: 10.1103/ PhysRevC.60.025803. arXiv:
astro-ph/9810290 [astro-ph].

[224] John Antoniadis et al. “A Massive Pulsar in a Compact Relativistic Binary”. In: Science
340 (2013), p. 6131. doi: 10.1126/science.1233232. arXiv: 1304.6875 [astro-ph.HE].

[225] H. Thankful Cromartie et al. “Relativistic Shapiro delay measurements of an extremely
massive millisecond pulsar”. In: Nat. Astron. 4.1 (2019), pp. 72–76. doi: 10.1038/s41550-
019-0880-2. arXiv: 1904.06759 [astro-ph.HE].

[226] Reuven Balkin, Javi Serra, Konstantin Springman, and Andreas Weiler. “To Appear”.
[227] Haris Djapo, Bernd-Jochen Schaefer, and Jochen Wambach. “On the appearance of

hyperons in neutron stars”. In: Phys. Rev. C81 (2010), p. 035803. doi: 10.1103/PhysRevC.
81.035803. arXiv: 0811.2939 [nucl-th].

[228] Takumi Muto and Toshitaka Tatsumi. “Theoretical aspects of kaon condensation in
neutron matter”. In: Phys. Lett. B283 (1992), pp. 165–170. doi: 10.1016/0370-2693(92)
90001-K.

[229] Jae Hyeok Chang, Rouven Essig, and Samuel D. McDermott. “Supernova 1987A Con-
straints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an
Axion-like Particle”. In: JHEP 09 (2018), p. 051. doi: 10.1007/JHEP09(2018)051. arXiv:
1803.00993 [hep-ph].

[230] Pierluca Carenza et al. “Improved axion emissivity from a supernova via nucleon-nucleon
bremsstrahlung”. In: JCAP 1910.10 (2019), p. 016. doi: 10.1088/1475-7516/2019/10/
016. arXiv: 1906.11844 [hep-ph].

[231] Nitsan Bar, Kfir Blum, and Guido D’amico. “Is there a supernova bound on axions?” In:
(). arXiv: 1907.05020 [hep-ph].

[232] A. Y. Potekhin and G. Chabrier. “Magnetic neutron star cooling and microphysics”.
In: Astron. Astrophys. 609 (2018), A74. doi: 10.1051/0004-6361/201731866. arXiv:
1711.07662 [astro-ph.HE].

[233] Thomas Vonk, Feng-Kun Guo, and Ulf-G. Meißner. “Precision calculation of the axion-
nucleon coupling in chiral perturbation theory”. In: (2020). arXiv: 2001.05327 [hep-ph].

[234] Zhen-Yan Lu et al. “QCD ◊-vacuum energy and axion properties”. In: (2020). arXiv:
2003.01625 [hep-ph].

[235] V. Bernard, Norbert Kaiser, and Ulf-G. Meissner. “Chiral dynamics in nucleons and nuclei”.
In: Int. J. Mod. Phys. E4 (1995), pp. 193–346. doi: 10.1142/S0218301395000092. arXiv:
hep-ph/9501384 [hep-ph].

189

http://dx.doi.org/10.1016/0375-9474(88)90442-3
http://arxiv.org/abs/nucl-th/9305006
http://arxiv.org/abs/nucl-th/0011003
http://dx.doi.org/10.1103/PhysRevC.60.025803
http://arxiv.org/abs/astro-ph/9810290
http://dx.doi.org/10.1126/science.1233232
http://arxiv.org/abs/1304.6875
http://dx.doi.org/10.1038/s41550-019-0880-2
http://dx.doi.org/10.1038/s41550-019-0880-2
http://arxiv.org/abs/1904.06759
http://dx.doi.org/10.1103/PhysRevC.81.035803
http://dx.doi.org/10.1103/PhysRevC.81.035803
http://arxiv.org/abs/0811.2939
http://dx.doi.org/10.1016/0370-2693(92)90001-K
http://dx.doi.org/10.1016/0370-2693(92)90001-K
http://dx.doi.org/10.1007/JHEP09(2018)051
http://arxiv.org/abs/1803.00993
http://dx.doi.org/10.1088/1475-7516/2019/10/016
http://dx.doi.org/10.1088/1475-7516/2019/10/016
http://arxiv.org/abs/1906.11844
http://arxiv.org/abs/1907.05020
http://dx.doi.org/10.1051/0004-6361/201731866
http://arxiv.org/abs/1711.07662
http://arxiv.org/abs/2001.05327
http://arxiv.org/abs/2003.01625
http://dx.doi.org/10.1142/S0218301395000092
http://arxiv.org/abs/hep-ph/9501384


[236] M. Tanabashi et al. “Review of Particle Physics”. In: Phys. Rev. D98.3 (2018), p. 030001.
doi: 10.1103/PhysRevD.98.030001.

[237] I. S. Towner. “Quenching of spin matrix elements in nuclei”. In: Phys. Rept. 155 (1987),
pp. 263–377. doi: 10.1016/0370-1573(87)90138-4.

[238] B. A. Brown and B. H. Wildenthal. “Experimental and Theoretical Gamow-Teller Beta-
Decay Observables for the sd-Shell Nuclei”. In: Atom. Data Nucl. Data Tabl. 33 (1985),
pp. 347–404. doi: 10.1016/0092-640X(85)90009-9.

[239] D. R. Entem and R. Machleidt. “Chiral 2pi exchange at order four and peripheral NN
scattering”. In: Phys. Rev. C66 (2002), p. 014002. doi: 10.1103/PhysRevC.66.014002.
arXiv: nucl-th/0202039 [nucl-th].

[240] E. Epelbaum et al. “Three nucleon forces from chiral e�ective field theory”. In: Phys. Rev.
C66 (2002), p. 064001. doi: 10.1103/PhysRevC.66.064001. arXiv: nucl-th/0208023
[nucl-th].

[241] J. Menendez, D. Gazit, and A. Schwenk. “Chiral two-body currents in nuclei: Gamow-
Teller transitions and neutrinoless double-beta decay”. In: Phys. Rev. Lett. 107 (2011),
p. 062501. doi: 10.1103/PhysRevLett.107.062501. arXiv: 1103.3622 [nucl-th].

[242] P. Gysbers et al. “Discrepancy between experimental and theoretical —-decay rates resolved
from first principles”. In: Nature Phys. 15.5 (2019), pp. 428–431. doi: 10.1038/s41567-
019-0450-7. arXiv: 1903.00047 [nucl-th].

[243] H. Th. Janka. “Neutrino Emission from Supernovae”. In: (2017). doi: 10.1007/978-3-
319-21846-5_4. arXiv: 1702.08713 [astro-ph.HE].

[244] J. E. Moody and Frank Wilczek. “New macroscopic forces?” In: Phys. Rev. D30 (1984),
p. 130. doi: 10.1103/PhysRevD.30.130.

[245] Georg Ra�elt. “Limits on a CP-violating scalar axion-nucleon interaction”. In: Phys. Rev.
D86 (2012), p. 015001. doi: 10.1103/PhysRevD.86.015001. arXiv: 1205.1776 [hep-ph].

[246] Joseph Polchinski. “E�ective field theory and the Fermi surface”. In: Proceedings, Theo-
retical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles:
Boulder, USA, June 1-26, 1992. 1992, pp. 0235–276. arXiv: hep-th/9210046 [hep-th].

[247] David B. Kaplan. “Five lectures on e�ective field theory”. In: 2005. arXiv: nucl-th/
0510023 [nucl-th].

[248] Mark G. Alford, Krishna Rajagopal, and Frank Wilczek. “QCD at finite baryon density:
Nucleon droplets and color superconductivity”. In: Phys.Lett.B 422 (1998), pp. 247–256.
doi: 10.1016/S0370-2693(98)00051-3. arXiv: hep-ph/9711395.

[249] R. Rapp, Thomas Schäfer, Edward V. Shuryak, and M. Velkovsky. “Diquark Bose con-
densates in high density matter and instantons”. In: Phys.Rev.Lett. 81 (1998), pp. 53–56.
doi: 10.1103/PhysRevLett.81.53. arXiv: hep-ph/9711396.

[250] Mark G. Alford, Krishna Rajagopal, and Frank Wilczek. “Color flavor locking and chiral
symmetry breaking in high density QCD”. In: Nucl. Phys. B537 (1999), pp. 443–458. doi:
10.1016/S0550-3213(98)00668-3. arXiv: hep-ph/9804403 [hep-ph].

[251] D. T. Son. “Superconductivity by long range color magnetic interaction in high density
quark matter”. In: Phys. Rev. D59 (1999), p. 094019. doi: 10.1103/PhysRevD.59.094019.
arXiv: hep-ph/9812287 [hep-ph].

190

http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1016/0370-1573(87)90138-4
http://dx.doi.org/10.1016/0092-640X(85)90009-9
http://dx.doi.org/10.1103/PhysRevC.66.014002
http://arxiv.org/abs/nucl-th/0202039
http://dx.doi.org/10.1103/PhysRevC.66.064001
http://arxiv.org/abs/nucl-th/0208023
http://arxiv.org/abs/nucl-th/0208023
http://dx.doi.org/10.1103/PhysRevLett.107.062501
http://arxiv.org/abs/1103.3622
http://dx.doi.org/10.1038/s41567-019-0450-7
http://dx.doi.org/10.1038/s41567-019-0450-7
http://arxiv.org/abs/1903.00047
http://dx.doi.org/10.1007/978-3-319-21846-5_4
http://dx.doi.org/10.1007/978-3-319-21846-5_4
http://arxiv.org/abs/1702.08713
http://dx.doi.org/10.1103/PhysRevD.30.130
http://dx.doi.org/10.1103/PhysRevD.86.015001
http://arxiv.org/abs/1205.1776
http://arxiv.org/abs/hep-th/9210046
http://arxiv.org/abs/nucl-th/0510023
http://arxiv.org/abs/nucl-th/0510023
http://dx.doi.org/10.1016/S0370-2693(98)00051-3
http://arxiv.org/abs/hep-ph/9711395
http://dx.doi.org/10.1103/PhysRevLett.81.53
http://arxiv.org/abs/hep-ph/9711396
http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://arxiv.org/abs/hep-ph/9804403
http://dx.doi.org/10.1103/PhysRevD.59.094019
http://arxiv.org/abs/hep-ph/9812287


[252] Mark G. Alford, Andreas Schmitt, Krishna Rajagopal, and Thomas Schäfer. “Color
superconductivity in dense quark matter”. In: Rev. Mod. Phys. 80 (2008), pp. 1455–1515.
doi: 10.1103/RevModPhys.80.1455. arXiv: 0709.4635 [hep-ph].

[253] Deog Ki Hong. “An E�ective field theory of QCD at high density”. In: Phys. Lett. B473
(2000), pp. 118–125. doi: 10.1016/S0370-2693(99)01472-0. arXiv: hep-ph/9812510
[hep-ph].

[254] D. T. Son and Misha A. Stephanov. “Inverse meson mass ordering in color flavor locking
phase of high density QCD”. In: Phys. Rev. D61 (2000), p. 074012. doi: 10.1103/
PhysRevD.61.074012. arXiv: hep-ph/9910491 [hep-ph].

[255] D. T. Son and Misha A. Stephanov. “Inverse meson mass ordering in color flavor locking
phase of high density QCD: Erratum”. In: Phys. Rev. D62 (2000), p. 059902. doi:
10.1103/PhysRevD.62.059902. arXiv: hep-ph/0004095 [hep-ph].

[256] R. Casalbuoni and Raoul Gatto. “E�ective theory for color flavor locking in high density
QCD”. In: Phys. Lett. B464 (1999), pp. 111–116. doi: 10.1016/S0370-2693(99)01032-1.
arXiv: hep-ph/9908227 [hep-ph].

[257] Paulo F. Bedaque and Thomas Schäfer. “High density quark matter under stress”. In:
Nucl. Phys. A697 (2002), pp. 802–822. doi: 10.1016/S0375-9474(01)01272-6. arXiv:
hep-ph/0105150 [hep-ph].

[258] Thomas Schäfer. “Mass terms in e�ective theories of high density quark matter”. In: Phys.
Rev. D65 (2002), p. 074006. doi: 10.1103/PhysRevD.65.074006. arXiv: hep-ph/0109052
[hep-ph].

[259] Thomas Schäfer. “Patterns of symmetry breaking in QCD at high baryon density”. In:
Nucl. Phys. B575 (2000), pp. 269–284. doi: 10.1016/S0550-3213(00)00063-8. arXiv:
hep-ph/9909574 [hep-ph].

[260] Andrei Kryjevski, David B. Kaplan, and Thomas Schäfer. “New phases in CFL quark
matter”. In: Phys. Rev. D71 (2005), p. 034004. doi: 10.1103/PhysRevD.71.034004.
arXiv: hep-ph/0404290 [hep-ph].

[261] Thomas Schäfer. “Instanton e�ects in QCD at high baryon density”. In: Phys. Rev.
D65 (2002), p. 094033. doi: 10.1103/PhysRevD.65.094033. arXiv: hep-ph/0201189
[hep-ph].

[262] Krishna Rajagopal and Eugene Shuster. “On the applicability of weak coupling results in
high density QCD”. In: Phys. Rev. D62 (2000), p. 085007. doi: 10.1103/PhysRevD.62.
085007. arXiv: hep-ph/0004074 [hep-ph].

[263] Brando Bellazzini et al. “Cosmological and Astrophysical Probes of Vacuum Energy”.
In: JHEP 06 (2016), p. 104. doi: 10 . 1007 / JHEP06(2016 ) 104. arXiv: 1502 . 04702
[astro-ph.CO].

[264] Csaba Csáki et al. “Neutron Star Mergers Chirp About Vacuum Energy”. In: JHEP 09
(2018), p. 087. doi: 10.1007/JHEP09(2018)087. arXiv: 1802.04813 [astro-ph.HE].

[265] B. Garbrecht and J. I. McDonald. “Axion configurations around pulsars”. In: JCAP
1807.07 (2018), p. 044. doi: 10.1088/1475-7516/2018/07/044. arXiv: 1804.04224
[astro-ph.CO].

[266] Jean-François Fortin and Kuver Sinha. “Constraining Axion-Like-Particles with Hard X-ray
Emission from Magnetars”. In: JHEP 06 (2018), p. 048. doi: 10.1007/JHEP06(2018)048.
arXiv: 1804.01992 [hep-ph].

191

http://dx.doi.org/10.1103/RevModPhys.80.1455
http://arxiv.org/abs/0709.4635
http://dx.doi.org/10.1016/S0370-2693(99)01472-0
http://arxiv.org/abs/hep-ph/9812510
http://arxiv.org/abs/hep-ph/9812510
http://dx.doi.org/10.1103/PhysRevD.61.074012
http://dx.doi.org/10.1103/PhysRevD.61.074012
http://arxiv.org/abs/hep-ph/9910491
http://dx.doi.org/10.1103/PhysRevD.62.059902
http://arxiv.org/abs/hep-ph/0004095
http://dx.doi.org/10.1016/S0370-2693(99)01032-1
http://arxiv.org/abs/hep-ph/9908227
http://dx.doi.org/10.1016/S0375-9474(01)01272-6
http://arxiv.org/abs/hep-ph/0105150
http://dx.doi.org/10.1103/PhysRevD.65.074006
http://arxiv.org/abs/hep-ph/0109052
http://arxiv.org/abs/hep-ph/0109052
http://dx.doi.org/10.1016/S0550-3213(00)00063-8
http://arxiv.org/abs/hep-ph/9909574
http://dx.doi.org/10.1103/PhysRevD.71.034004
http://arxiv.org/abs/hep-ph/0404290
http://dx.doi.org/10.1103/PhysRevD.65.094033
http://arxiv.org/abs/hep-ph/0201189
http://arxiv.org/abs/hep-ph/0201189
http://dx.doi.org/10.1103/PhysRevD.62.085007
http://dx.doi.org/10.1103/PhysRevD.62.085007
http://arxiv.org/abs/hep-ph/0004074
http://dx.doi.org/10.1007/JHEP06(2016)104
http://arxiv.org/abs/1502.04702
http://arxiv.org/abs/1502.04702
http://dx.doi.org/10.1007/JHEP09(2018)087
http://arxiv.org/abs/1802.04813
http://dx.doi.org/10.1088/1475-7516/2018/07/044
http://arxiv.org/abs/1804.04224
http://arxiv.org/abs/1804.04224
http://dx.doi.org/10.1007/JHEP06(2018)048
http://arxiv.org/abs/1804.01992


[267] Francesca V. Day and Jamie I. McDonald. “Axion superradiance in rotating neutron
stars”. In: JCAP 1910.10 (2019), p. 051. doi: 10.1088/1475-7516/2019/10/051. arXiv:
1904.08341 [hep-ph].

[268] Malte Buschmann, Raymond T. Co, Christopher Dessert, and Benjamin R. Safdi. “X-ray
Search for Axions from Nearby Isolated Neutron Stars”. In: (2019). arXiv: 1910.04164
[hep-ph].

[269] Junwu Huang et al. “Prospects for axion searches with Advanced LIGO through binary
mergers”. In: Phys. Rev. D99.6 (2019), p. 063013. doi: 10.1103/PhysRevD.99.063013.
arXiv: 1807.02133 [hep-ph].

[270] Maximilian Ruhdorfer, Ennio Salvioni, and Andreas Weiler. “A Global View of the O�-Shell
Higgs Portal”. In: SciPost Phys. 8 (2020), p. 027. doi: 10.21468/SciPostPhys.8.2.027.
arXiv: 1910.04170 [hep-ph].

192


	I Introduction
	II Composite dark matter in composite Higgs models
	1 Motivation and framework
	1.1 The hierarchy problem
	1.2 The composite Higgs
	1.3 CCWZ
	1.4 Littlest Higgs
	1.5 Minimal composite Higgs
	1.6 Dark matter

	2 Composite dark matter in Little Higgs
	2.1 Model
	2.1.1 A UV doubling problem, making the T-odd doublet massive
	2.1.2 Gauge sector
	2.1.3 Goldstone sector
	2.1.4 Matter sector

	2.2 Scalar potential
	2.3 LHC phenomenology
	2.3.1 T-even singlet 
	2.3.2 T-odd singlet 
	2.3.3 T-odd doublet 

	2.4 Electroweak precision tests
	2.5 DM phenomenology
	2.5.1 Spectrum
	2.5.2 Singlet-triplet mixing
	2.5.3 Annihilation cross section
	2.5.4 Relic abundance
	2.5.5 Direct detection

	2.A The complete Lagrangian
	2.B The scalar potential and its symmetries

	3 Composite dark matter in SO(7)/SO(6)
	3.1 Effective Lagrangian for Higgs and DM pNGBs
	3.1.1 Two-derivative Lagrangian
	3.1.2 Explicit symmetry breaking effects
	3.1.3 Origins of explicit breaking and DM scenarios

	3.2 SO(7)/SO(6) model
	3.3 Breaking of the DM shift symmetry by top quark couplings
	3.3.1 Resonances
	3.3.2 Scalar potential and realistic EWSB
	3.3.3 Dark matter phenomenology
	3.3.4 Collider phenomenology

	3.4 Breaking of the DM shift symmetry by bottom quark couplings
	3.5 Breaking of the DM shift symmetry by U(1) gauging
	3.5.1 Phenomenology for massless dark photon
	3.5.2 Phenomenology for massive dark photon

	3.A CCWZ construction for SO(7)/SO(6)
	3.B Scalar potential : gauge sector
	3.C Scalar potential : fermion sector
	3.D Details on DM phenomenology
	3.E Hypercharge and dark U(1) kinetic mixing
	3.F Collected results for phenomenology


	III The QCD axion at finite density
	4 Motivation and framework
	4.1 The strong CP problem
	4.1.1 Vacuum structure of non-abelian gauge theories
	4.1.2 Anomalies
	4.1.3 Theta angle measurement

	4.2 The QCD Axion
	4.2.1 The Peccei-Quinn mechanism
	4.2.2 Weinberg-Wilczek axion
	4.2.3 The invisible axion

	4.3 Axion potential in vacuum
	4.4 Chemical potential in QFT
	4.5 Meson condensation

	5 Nuclear densities
	5.1 Quark condensates
	5.2 Kaon condensation
	5.3 Axion couplings
	5.A Baryon-ChPT with non-trivial vacuum alignment
	5.A.1 Adding chemical potential
	5.A.2 Non-linear field basis

	5.B Axion mass in Kaon-condensed phase

	6 CFL densities
	6.1 Kinetic terms
	6.2 Mass terms
	6.3 Non-perturbative terms
	6.4 Axion potential
	6.A Axion mass calculation with instantons

	7 Observables
	7.1 Free (vacuum) energy
	7.2 Axion brane
	7.3 Axion-EM conversion
	7.4 Long-range force


	IV Conclusions
	Bibliography

