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Abstract

In light of the energy transition towards a greener generation mix, power grids are

witnessing increasing shares of variable renewable sources, responsible for bringing

uncertainty to the electricity supply. Stochastic optimization and energy storage

represent respectively a framework and an asset to respond to this uncertainty.

This dissertation focuses on issues revolving around both topics. The first essay

tackles the topic of parametric sensitivity analysis in multistage stochastic linear

problems. It develops the theoretical background and the methodology with which

to calculate first-order derivatives of the value function with respect to parameters

of the problem. It extends the classical envelope theorem to stochastic optimization,

and offers a sampling method with which to calculate derivatives and perform sen-

sitivity analysis in such problems. The second and third essays focus on the issue of

energy storage. The second essay presents a framework with which to measure the

added economic benefits of pairing energy storage to a variable renewable source.

The essay challenges the popular belief of joint planning and proposes that in a spot

market with a real-time adjustment market, there is no benefit in joint planning

compared to an independent use of both assets. The third essay focuses on the

operation of energy storage in the German secondary control reserve. It offers a

mixed-integer bilinear description of optimal bidding in this market and analyzes

the profit potential of storage as a function of its duration. It shows that this po-

tential saturates with increasing duration, reaching a maximum at a duration value

of 13 hours.
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Chapter 1

Introduction

1.1 Motivation

The widespread deregulation of energy markets, coupled with the increasing share of

renewables in the grid has brought about considerable change in our power markets.

Ever since the Energy Policy Act was passed into law in 1992 (US Congress 1992),

the electricity market in the United States has been opened to competition. Until

then, state-regulated utilities held the monopoly of supply and with it much control

over the price of electricity. Deregulation did not come overnight, with some states

taking the first steps to deregulated power markets in the late 1990s and early

2000s. As of 2018, 17 states have deregulated markets to some degree, most in

the interconnected northeast, or in heavily populated regions such as California

or Texas (American Public Power Association 2018). In the European Union, the

liberalization of electricity markets occurred during the same period of the late

1990s and 2000s (European Parliament 2016). Concurrently, an increasing number

of countries around the world are opening their markets to competition. Along with

allowing third parties to access wholesale as well as retail markets, the liberalization

of the electricity market ensures the unbundling of generation, transmission and

distribution.

Additionally, environmental concerns and the realities of climate change have

1
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prompted the emergence and growth of renewable technologies around the world.

In particular, wind and solar photovoltaic sources have seen exponential growth

rates averaging respectively a 23% and 46% annual increase in installed capacity

over the last 20 years (British Petroleum 2019). Nowadays, they are indisputable

forces in the electricity sector, accounting for a combined 6.1% share of the world

generation energy mix (International Energy Agency 2019a). In the OECD members

this aggregate value is even larger, where in 2018 10% of all electricity generation

came from wind and solar (International Energy Agency 2018). In Germany, wind

became the main source of electricity in 2019, with a share of nearly 25% of all

generated electricity (Fraunhofer ISE 2020). During the same year in Germany,

solar accounted for 9% of all generated electricity.

Although the development of these renewable sources represent a great strength

in the transition towards greener power markets, the increasing share of wind and

solar in the electricity generation mix have introduced greater uncertainty in the

power supply. Their production is inherently uncontrollable and is subject to the

uncertainty of weather, namely the intensity of the wind and the amount of sunlight.

The intermittency of these sources and their growing share in the generation mix

have brought about considerable challenges to the markets. Owners of these sources

in particular must employ measures and be equipped with appropriate modelling

tools with which to manage their assets. Not only do market participants already

have to deal with market uncertainties in the form of prices or demand, but they

must now also contend with the uncertainty of production.

Stochastic optimization is a framework that can be adequate to tackle challenges

brought about by these uncertainties. With the goal of determining the best course

of action in an uncertain environment, the field of optimization under uncertainty

lends itself to solve problems that arise in the market. Such problems may involve

individual agents deciding on bidding strategies to maximize their performance, util-

ities minimizing their operating costs while serving their customers, or grid system
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operators attempting to minimize operating costs while guaranteeing the stability

of the grid.

Another response to the intermittency of renewables is the development of energy

storage. Storage technologies intended for grid operations are predicted to become

an important sector and play a greater role in the energy mix of power markets. In

the five years between 2013 and 2018, deployment in the sector has grown twelve-fold

to an annual deployment of 1.2 GW in 2018 (International Energy Agency 2019b).

Overall deployment in grid-scale but also in behind-the-meter storage is expected

to increase at an exponential rate in the next few years (Bloomberg New Energy

Finance 2019).

Storage technologies, as they can both deliver and consume electricity, can be

used as a vehicle to regulate the amount of energy in the grid. When there is

too much energy in the grid, storage can extract the excess, and when there is a

shortage of power, storage can be called upon to provide it. This becomes especially

important when there is a lot of uncertainty in the power supply such as when the

share of renewables is high.

In fact, the flexibility brought about by storage is such an attractive notion,

that this has led market participants to not only include storage to their generation

portfolio, but also to pair it to their existing power plants, some of which may include

intermittent renewables, and do joint planning, often by way of participating in one

or several markets, with one bidding strategy. There are a few challenges to address

when considering storage, such as determining in what way can storage better assist

power markets. In the present document, we address two such cases.

In this thesis, the work is focused on these two aspects: first, there was a focus on

optimization methods, a topic that falls in the general area of operations research;

second, the thesis targets the study of storage and its role in power markets.

Regarding the former, we tackle the issue of parameter sensitivity analysis in

multistage stochastic optimization problems. Given that decision variables in such
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problems are random, would it make sense to talk about the sensitivity of the

objective function with respect to parameters in the problem? Parameters that

could be deterministic or uncertain. And if it did, which is to say if they can

be proven to exist, would there be a framework that would allow us to compute

derivatives quantifying the sensitivity of the objective function to these parameters?

In management science, there exists the challenge to take optimal decisions. A

natural problem that accompanies and extends this is to consider how sensitive are

the decisions we make with respect to the parameters of the problem. What happens

when the parameter is nudged just a little bit; what effect does this have on the

objective function, and on the decision policy? This is the topic of the first paper

in this thesis, and the object of this first part on optimization methods.

Concerning the second focus of the thesis on energy storage, we address the issue

of whether the market-wide economic value that storage offers as a stabilization

mechanism for market supply uncertainty also holds true for individual agents in

power markets. Additionally, we address the role of storage in balancing markets and

discuss what storage unit dimensions are appropriate to operate on those markets.

The first of the two essays on storage challenges the notion that the pairing of

storage to variable renewable energy sources such as wind farms or photovoltaic

solar plants, in what we shall refer to as joint planning from now on, brings added

economic benefits to the holder of both assets. The essay instead makes the ar-

gument that under special conditions there are no added benefits in joint planning

when compared to separate planning, which is the term we shall use to describe the

independent and uncoupled use of both assets.

The second essay on storage looks into the problem of placing optimal bids on the

German secondary reserve market (SRL) with a storage unit operating exclusively

in that market. It models the optimization problem as a mixed-integer bilinear

program, to which is then applied a relaxation method to render it an easier to

solve mixed-integer linear problem (MILP). The essay focuses on the duration of a
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storage unit, which is the ratio between its capacity and maximum power output,

and how it affects the optimal value of the bidding problem on the SRL.

1.2 Findings and Contributions

1.2.1 Optimization methods and Parametric Sensitivity

Analysis

The idea for the first paper came about from trying to address a very specific

issue, which was to understand whether it would be possible to calculate parameter

sensitivities of the value of derivative contracts, which in the financial sector are

colloquially known as Greeks, using a multistage stochastic optimization framework.

1.2.1.1 Greeks, Black-Scholes and Benchmarks

Greeks in Finance are sensitivity indicators that quantify how sensitive the price

of a derivative instrument, such as an options contract, is with respect to inher-

ent parameters characterizing the derivative instrument, such as the price of the

underlying asset or the time to maturity of the derivative instrument. These indica-

tors, besides being designated by the term “Greeks”, which they became known as

because of the Greek letters usually assigned to describe them, are also interchange-

ably called hedge parameters or risk sensitivities. They are very useful to trading

professionals who use the information to make decisions on whether to buy or sell

options contracts, and generally manage and hedge their portfolio of assets.

To describe an example of this, the most well known and utilized of all the Greeks

in the last decades has been the Delta. In the context of a call option contract, Delta

describes the sensitivity of the value of the option with respect to the price of the

underlying asset. Given the asymmetric profit profile of the call option contract, it

is well established that the price of the option is less sensitive to a movement in the

underlying price when the price of the underlying asset is in the vicinity of the strike
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price of the contract rather than if it were significantly greater than the strike price.

In other words, option prices are more sensitive to movements in the underlying

price when they are in the money as opposed to when they are out of the money.

The Delta indicator would capture this sensitivity by assigning a higher value to the

latter case. The trading professional, who has access to the value of Delta on his

trading screen, would interpret this in the following way: a high Delta signifies that

the underlying price is currently in the money, which means that if the contract

were to expire now, the option would be executed. This information would prompt

the trader to make a decision regarding whether to keep or remove the option from

his portfolio, depending on his portfolio objectives. If, on the one hand, the trader

has no position on the underlying asset, he may have a purely speculative strategy

on the option. If this is the case, and he does not believe the underlying price will

change until the maturity date, he will either keep the option in his portfolio if he

is long and the option is in the money, or he is short and the option is out of the

money. Conversely, he will remove it from his portfolio if he is long and the option

is out of the money, or if he is short and the option is in the money.

If, on the other hand, the trader has a position on the underlying asset, he may

be trading options to employ a hedging strategy. This is the more usual case and the

main reason Greeks indicators are used for in derivatives trading. With portfolios

consisting of stocks and options, traders can reduce the risk associated to their

portfolios. To do this, they rely on the information provided to them by the Greek

indicators. Keeping with the example of Delta, if a trader has bought a call option

(relative to a standard number of 100 shares) , and the Delta on that option stands

at 0.6, he could hedge his exposure to the underlying asset by selling 60 shares

of the underlying stock, thereby eliminating his exposure to small movements in

the underlying price and protecting his portfolio if the underlying price drops. It

should be noted that many traders implicitly associate the meaning of Delta with

the probability that an option contract will expire in the money. Although this
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interpretation is not quite correct from a formal standpoint, it is close enough that

traders can use the interpretation in practice effectively. Other Greek sensitivities

such as Gamma, Vega, Theta, etc. have their own interpretation and uses to traders

hedging their portfolios. For a comprehensive study of Greeks in Finance, one may

consult for example Hull (2014).

The construct by which traders have so readily benefited from the information

Greek indicators provided them over the years was developed in the 1970s by Fischer

Black, Robert Merton, and Myron Scholes, in what became known as the Black

Scholes, or Black-Scholes-Merton, model for the valuation of option contracts (Black

and Scholes 1973). Before their approach, there was no mathematical framework

with which to objectively determine the price of an options contract. They effectively

developed a way to assign an arbitrage-free price to options contracts, and their

method was universally adopted in the industry soon thereafter. Nowadays, it is

considered a standard method with which to price options contracts.

One main assumption in the Black-Scholes-Merton model is to describe the price

of the underlying asset as lognormally distributed. By treating the underlying asset

price as a stochastic process that follows geometric Brownian motion with constant

drift and volatility, the model admits a closed-form solution that possesses the im-

portant property of differentiability. The profit profile at the time of maturity of

an options contract has an inherent kink at the strike price; the revenue is flat and

worth zero on the unfavorable side of the strike price, and grows linearly when on

the other side of the strike price where the option is executed.

This closed-form solution to the Black-Scholes-Merton model is crucial to com-

pute the Greek indicators. As sensitivity measures, they quantify rates of change,

and so by having the value of the option and the price of the underlying be char-

acterized by differentiable functions, it is natural that these sensitivity measures

be derivatives. Therefore, coming back to our example, under the Black-Scholes-

Merton model, Delta is the derivative of the option value with respect to the price of
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the underlying asset. Other Greek quantities describe the sensitivity of the option

value with respect to other parameters in the problem. One such example is for

instance Vega. Although not a Greek letter per se, this indicator is the derivative

of the option value with respect to the volatility of the underlying asset price. In

the first paper, we compute one such quantity, which to be precise is the derivative

of the objective function with respect to the volatility parameter of the stochastic

process.

In this summarized exposition of the Black-Scholes-Merton model, we should

add that the model treats time as a continuous variable.

The purpose of this detour and brief glance at Greeks in Finance was to provide

a motivation for our initial interest in the topic described in the first paper. Greeks

are derivatives that are very much of interest to options traders, but as they are

calculated with the Black-Scholes-Merton framework, they rely on the assumptions

that the model be adequate, namely that the assumption of complete markets holds.

The Black-Scholes-Merton model has several limitations that are well known and

exhaustively documented elsewhere, the subject of which does not fall within the

scope of this thesis (see for example, Teneng 2011, for an overview).

What is relevant to these proceedings is that we had a benchmark with which

to compare the results of our method, and an application with immediate real-

world impact. Our initial goal and motivation was then to attempt to reproduce

the calculation of Greeks by solving a multistage stochastic replication problem.

Not only would a successful calculation confirm the validity of our method, but it

would also mean that we could compute Greeks that would not be reliant on the

assumption of a geometric Brownian motion process for the underlying asset price,

but could indeed be described by a different stochastic process, presumably one

deemed better suited to describe asset price movements.

This attempt would prove to be unsuccessful. We could not solve the multistage

stochastic replication problem convincingly, not because of a flaw in the reasoning
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of our method, but rather because the algorithmic strategy we were using to solve

multistage problems was ill-suited to solve the replication problem. We did nev-

ertheless find another well-known problem with an analytical solution with which

to benchmark our method, the classic newsvendor problem, which is described in

detail in a numerical study in the paper.

Rather than trying to solve the very specific problem of computing Greeks in an

option replication problem, our aim in more general terms with the first paper was

two-fold: 1) to provide a method with which to calculate derivatives in multistage

stochastic linear problems, whereby these derivatives indicate the sensitivity of the

objective function to changes in model parameters, parameters that may even con-

tribute to the characterization of the underlying uncertainty of the problem, and

2), develop a mathematical framework with which to substantiate the method and

justify its validity.

1.2.1.2 Envelope Theorems

The theoretical foundation of the first paper consisted in exploring the properties

of the envelope theorem and seek to extend them to multistage stochastic linear

optimization.

The envelope theorem establishes a property with which to quantify the sensitiv-

ity of the objective value of an optimization problem with respect to the parameters

of the problem. This topic has been extensively studied in microeconomics, being

the underlying argument in central results such as Hotelling’s Lemma in producer

theory, Shephard’s lemma and Roy’s Identity in the theory of the firm and consumer

choice.

In its most basic form, for unconstrained optimization, provided that the ob-

jective function is differentiable with respect to a problem parameter, the envelope

theorem gives a result on the derivative of the objective value with respect to that

parameter. Namely, that this derivative is equal to the partial derivative of the
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objective function with respect to the parameter evaluated at the optimal value.

One may start proving this result by applying the chain rule to determine the total

derivative of the objective value with respect to the parameter. What is remarkable

about this result is that the variation of the optimal solution with respect to the

parameter is irrelevant, as the first-order condition at the maximum guarantees that

the derivative of the optimal value with respect to the solution vanishes. This leaves

only the partial derivative of the objective value to the parameter as a non-zero

term. Therefore, only a variation in the parameter is required to determine its effect

on the objective value.

This idea was extended to constrained optimization by requiring further smooth-

ness assumptions on the optimal solutions. However, these additional assumptions

are too restrictive when considering that in most linear optimization problems the

optimal solution is often not differentiable and sometimes not continuous or even

unique with a variation in the parameter. The points in the parameter where there

are changes in the optimal solution are noticeable when plotting the optimal value

as a function of the parameter as they take the form of either a kink, i.e a continuous

but non-differentiable point, or a jump (discontinuous point) in the objective value

function. The envelope theorem would break down at these non-differentiable and

even discontinuous (in the case of a jump) points of the objective value function in

the parameter, thereby limiting the range of parameters points where the theorem is

applicable. It seemed then necessary to identify these regions where discontinuities

or kinks occurred.

These issues led us to consider the field of parametric linear programming, and

specifically to evaluate the existing body of work related to sensitivity analysis in

linear optimization problems. While we found significant results focused on the

variation of the parameters appearing on the objective function and on the right-

hand side of the set of constraints, the literature was sparser when it came to the

variation of the parameters in the matrix of coefficients. In the paper, we explore



Introduction
1.2. Findings and Contributions 11

and classify the set of points where the objective function is not differentiable.

Indeed, one of the results in the paper is to have determined that this set is finite

and has Lebesgue measure zero, which implies that the envelope theorem can be

applied almost everywhere in the parameter range. This statement is of particular

importance as we attempt to extend the envelope theorem to stochastic optimization.

When adapting the envelope theorem to multistage stochastic programming, we

first prove a result for optimization problems where the stochastic process is dis-

crete. We do this by showing that the traditional envelope theorem, armed with

the statement regarding the finite nature of the set of non-differentiable values of

the parameter, can be directly applied to the deterministic equivalent of the dis-

crete problem. We further extend this to the case where the stochastic process is

continuous.

1.2.1.3 Sampling Derivatives

The envelope theorem for multistage stochastic optimization gives us a result where

the derivative of the objective function with respect to the parameter is a function

of expectation operators. One of the issues in solving optimization problems where

the stochastic process is continuous and we would like to evaluate an expected value,

is that no matter how many discrete points are used to approximate a continuum,

we can only ever claim to compute a sampled mean that approximates the expected

value. This is a reasonable approximation to make as the number of discrete points

increases, as we know this to be the case when we can apply the law of large numbers.

In the paper, we describe a similar strategy to calculate the derivatives that we

are looking for. Moreover, the algorithmic solution strategy that we use to solve

multistage stochastic problems, Approximate Dual Dynamic Programming (ADDP),

very naturally lends itself to such a sampling approach, as it employs a sampling

strategy to solve multistage problems.
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1.2.1.4 ADDP and its place in optimization theory

Linear programming in its modern formulation developed in the 1940s as a planning

framework with which to solve logistics, inventory and resource allocation problems

in what was initially a military setting. Kantorovich, Koopmans, von Neumann and

Dantzig led the early developments and established the theoretical foundations in

this field. Indeed, Dantzig is credited as having invented the simplex algorithm,

which became the first numerical algorithm to efficiently solve linear optimization

problems.

Soon thereafter, decomposition methods such as Benders’ or Dantzig-Wolfe’s

were developed to tackle large-scale linear optimization problems. The requirement

behind these methods is that the very large problem be structured into blocks, where

decision variables can be partitioned into subsets in a way that separates a first-stage

master problem from second-stage sub-problems that are solved given the solution

to the first-stage problem.

This method of decomposing a large problem into smaller problems structured in

several layered stages with recourse became a standard with which to solve stochastic

optimization problems, optimization problems where parameters of the problem are

uncertain. In these problems, the uncertainty of a particular parameter is modelled

as a random variable following a specific probability distribution that is defined by

the modeler. Examples of uncertain parameters in practical applications may be

the price of a stock or commodity, the hourly energy production of a wind farm, the

aggregate demand for electricity, etc.

1.2.1.4.1 The L-shaped Method

The L-shaped method is a standard iterative algorithm to solve two-stage, and

even multistage, recourse problems, where a large linear optimization problem is

decomposed in the manner alluded to above (Van Slyke and Wets 1969).

Having decomposed the original large optimization problem in a layered struc-
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ture of master and subproblems, the master problem solution is passed on as input

to each subproblem of the same layer. Whenever the resulting subproblem is infea-

sible, a linear feasibility cut is added to the master problem, so that the solution it

provided to the set of subproblems is no longer allowed in the next iteration. Ad-

ditionally, as feasible subproblem solutions better inform the shape of the objective

of the recourse function - that we shall refer to interchangeably as the post-decision

value function - of the master problem, optimality cuts capturing the post-decision

value function behavior are introduced in the master problem. Optimality cuts,

or subgradient cuts, are linear cuts where the slope coefficients and independent

term are probability-weighted means across all scenarios of product terms between

the vector of dual variables and the subproblem data, respectively the matrix of

coefficients affecting the first-stage solution and the vector of independent terms.

Together they constitute linear constraints with which to approximate the post-

decision value function of the master problem. It should be noted that with each

iteration of the algorithm, two estimations of the post-decision value function are

evaluated. The first consists of the post-decision value function component of the

optimal value of the master problem, which is computed via the set of optimality

cuts collected thus far. The second consists of the evaluation of the latest optimal-

ity cut of the current iteration. The algorithm stops when these two estimations

coincide, namely when the first evaluation is greater than or equal to the second in

a minimization problem, and vice-versa in a maximization problem.

The solution strategy employed in the L-shaped method to solve decomposable

linear problems is the basis with which we can begin to understand sampling al-

gorithms such as stochastic dual dynamic programming (SDDP) and most notably

ADDP.

1.2.1.4.2 SDDP and the curse of dimensionality

One of the issues with a decomposition approach such as the one employed in

the L-shaped method is the curse of dimensionality. As the number of layered sub-
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problems increases, or as the number of scenarios per layer increases, the number of

computational operations increases, which very quickly slows down the total runtime

of the program. Sampling algorithms such as SDDP (Pereira and Pinto 1991) and

ADDP (Löhndorf et al. 2013) were developed to mitigate the disadvantages posed

by the curse of dimensionality when solving a large multistage problem.

The L-shaped method is characterized by a two-step process where there is first

a forward pass, where all subproblems across all stages are solved sequentially, each

master problem providing its subproblems with its solution as input. The forward

pass is then followed by a backward pass, where each subproblem is solved with the

purpose of computing optimality cuts for each subproblem of the preceding stage.

The main insight of sampling algorithms such as SDDP is that the forward pass

may be made leaner by evaluating only one random path generated by the stochastic

process in the information structure, which is to say to solve one problem per stage,

instead of solving all subproblems. In the backward pass, each subproblem receives

as input the solution from the problem of the preceding stage that was chosen in

the forward pass. The resulting optimality cut that is computed from considering

all subproblems in a given stage is added to all subproblems of the preceding stage,

instead of just the subproblem that belonged to the forward pass path.

The algorithm computes two bounds. One is deterministic and consists of the

objective value calculated using the value function approximations from all nodes

in the information structure. The second bound is statistical, and consists of the

evaluation of the policy in forward random paths. In a minimization problem,

the deterministic bound consists of a lower bound to the objective bound, and

the statistical bound consists of an upper bound. The algorithm stops when the

two bounds converge to sufficiently close values, where the modeler determines the

criterion of “sufficiently close”.

To better understand the difference between SDDP and ADDP, one must first

take a look at the information structure of the two algorithms. Stochastic processes
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Figure 1.1: Information structure representations: scenario tree (left) and scenario lattice (right)

in multistage problems often lend themselves to being represented by tree-like struc-

tures, where each node in the tree has one unique parent node, but can itself be a

parent node to a multitude of nodes. A root node represents the master problem.

This root node has no uncertainty, as it represents a deterministic state, oftentimes

the initial value of the stochastic process. Nodes constituting the second stage then

represent multiple scenarios of the stochastic process, each joined to the root node

by an arc representing the probability distribution of that scenario. Third stage

scenarios representing the stochastic process movement from a given second-stage

scenario then make up the subset of third stage nodes. This structure repeats itself

from parent node to daughter node until the last stage of the problem.

This tree structure is the basis on which the SDDP algorithm operates. The

ADDP algorithm can be considered a variant of SDDP, where the stochastic process

is not represented by a scenario tree, but is instead represented by a scenario lattice,

also known as a recombining tree. A scenario lattice is an information structure

where each node may have one or more parent nodes. It is especially useful to

represent Markov decision processes, which consist of processes where the conditional

probability distribution of the stochastic process depends solely on the present state,

and not on the full history of the process. Therefore, with a scenario lattice, each
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node represents a state of the process, but the path to get to that state is not unique.

This allows for a problem in which the Markov property applies to be represented by

a smaller information structure. A scenario lattice can code the same information

with fewer nodes than a scenario tree can.

The problems that we tackle in the numerical section of the first paper consist

of a two-stage newsvendor problem, and a multistage gas valuation problem. Note

that in two-stage problems, SDDP and ADDP are no different from one another,

as there is no difference in the information structure between a tree and a lattice

where only two stages exist. However, in multistage problems where the stochastic

process is markovian, the ADDP algorithm is a suitable strategy, and it is what we

use to solve the gas valuation problem.

1.2.1.5 Contributions to Parametric Sensitivity Analysis in Multistage

stochastic linear problems

This condensed presentation of these sampling algorithms is meant to justify the

approach we take in the paper to calculate derivatives. We compute sampled means

of the derivative by taking evaluations in sampled forward passes. The same method

is used in sampling algorithms to compute the statistical bound with which to make

convergence checks and thus provoke the stopping point for the algorithm. For

this reason, derivatives can be calculated on the fly in the normal execution of the

algorithm when performing convergence checks.

In the numerical section of the paper, we test the performance of this method

against two benchmarks. The first benchmark is available in the newsvendor prob-

lem, and consists of the analytical solution to the problem. The newsvendor problem

is one of the few stochastic optimization problems having a closed-form solution.

This problem is very convenient to use as a benchmark for this reason. The sec-

ond benchmark we use is the calculation of well-known finite differences numerical

derivatives. The idea consists of taking the difference between two evaluations of
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the objective value of the problem, solved for different values of the parameter.

This requires that the optimization problem be solved twice per evaluation of one

finite difference, which is impractical compared to the on-the-fly calculation of our

method.

1.2.2 Storage and its applications in Power Markets

The second and third papers revolve around the use of storage in electricity markets.

Consisting of a group of emerging technologies that is expected to represent a large

share in the energy mix of electricity markets, storage is especially seen as a welcome

stability mechanism to regulate the grid, as grid variability brought about by an

increasing share of intermittent renewables is expected to increase. Furthermore,

storage offers flexibility to supply and demand in a market that is traditionally

rigid, but that nevertheless must always be balanced.

1.2.2.1 Coordinated or uncoordinated participation in electricity mar-

kets

Although there are unchallenged benefits for overall grid stability and flexibility,

academics are taking this logic one step further and are looking to bring storage

into renewable energy portfolios with the intention of coupling storage operations

with their remaining portfolio in joint market bidding. This is particularly the case

with wind farms and solar plants. The inherent argument is that as these renewable

sources are characterized by a variable and uncontrollable production which depends

on how much the wind blows or whether the skies are clear, storage would offer the

possibility to provide a controllable and stable production output, stepping in to

provide energy when the wind farm is short of its commitments, and storing the

extra energy when the wind farm is producing too much. Wind farms would thereby

avoid paying imbalance costs for deviating from their scheduled commitments to the

grid.
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Furthermore, storage offers the possibility to couple the portfolio’s supply with

market demand and the electricity price, by deferring sales to periods of higher

prices, and charging in times of lower demand or when prices are low.

It is the purpose of the paper to challenge these notions and explore under which

conditions it is demonstrably true that there is an advantage to joint planning, and

coincidentally, under which conditions there is no advantage.

1.2.2.1.1 Market Structures

Deregulated wholesale electricity markets have different design structures across

the world, but one common element is that they all have some form of day-ahead

market that makes up part of the spot market. If we do not account for futures

markets or bilateral contracts that tend to involve large industrial consumers, the

purchase and sale of electricity is regularly done via the spot market. The day-ahead

auction is the first point of contact, where producers and consumers place bids to sell

and purchase power volumes to be delivered on the next day. The manner with which

these bids are cleared depends on the individual market rules, but the day-ahead

auction aims to maximize the amount of volume traded while defining a uniform

price for electricity across a defined region. The auction defines a planning schedule

for each producer, who commits to deliver constant power volumes over discretized

periods of time, generally one hour intervals, over the course of the following day.

With 24 auctions held, the hourly schedule for each market participant is determined

on the day before delivery.

Given the introduction of variability in the power supply through the emergence

of renewable sources in the last two decades, markets across the world have had to

adapt their design such as to give an adequate response and accommodate for this

variability. Indeed, the increase in variability of supply has engendered the need

for a mechanism with which to correct and adjust deviations between the expected

production volumes planned at the moment bids are placed on the day preceding the

time of delivery and the actual production volumes that are realized. The response
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to this issue, however different the implementation in each market, invariably takes

the form of some kind of intraday market, where trading can be made on the day

of delivery up to a time much closer to delivery. The format of this market varies

across regions. Typical implementations consist of an intraday market that is either

structured as an auction or is continuously cleared, and may have shorter delivery

periods, such as 15-minute increment intervals. Examples of such markets are the

German intraday continuous market representative of many European countries,

the real-time markets generally found in American power markets or the intraday

markets in Spain or Italy, which consist of not just one but several markets, the

difference between them being the closing times before delivery. The addition of an

intraday market to the spot market allows the producer to update his schedule as he

has more accurate information on account of the closer time to delivery. These mar-

kets will generally have much lower aggregate trading volumes than the day-ahead

market. From the viewpoint of a producer facing a variable and uncontrollable sup-

ply, the day-ahead market bid is a first-order approximation, which is then adjusted

in the intraday-market.

Although the variability between expected and realized production is decreased

in intraday market bids, it is not however zero, as there is still uncertainty at the

closing time of the market before delivery. When power plants deviate from their

production schedule, either by falling short of their production commitments or

by generating too much energy, modern-day grids must procure the appropriate

balancing energy in reserve markets, while passing on the procurement costs to the

producers that caused the deviation. These costs, which are also known as imbalance

costs or imbalance penalties, take into account whether the producer is short of his

commitment to the market or has produced above its planned volume, and whether

the market as a whole has an aggregate shortage or has too much energy in the grid.

The relative position of the trader vis-à-vis the aggregate position of the market

determines whether he stands to pay or receive a payment to or from the grid. The
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following table captures the four possible combinations.

Table 1.1: Imbalance position

Market Aggregate Position

Imbalance Position Short Long

Short Cost Revenue

Long Revenue Cost

If the aggregate position of the market is short, a market participant with a short

position pays a penalty to the grid system operator, and a participant with a long

position stands to receive a payment for his opposite position. Likewise, in the event

of an aggregate market oversupply, the participant with a short position receives a

payment, and the participant with a long position pays a penalty. Notice that the

penalty itself need not be always positive. It may in fact be negative, reversing the

payment directions established in the table above.

The nature of these imbalance settlement schemes vary from market to market.

However, most markets usually fall in one of two categories: either the imbalance

costs are symmetric, where the penalty for being long or short is the same, or they

are asymmetric, in which case they are not the same and long and short imbalance

positions are resolved at different prices. Asymmetric imbalance settlements are

practiced in British, French, Italian and Spanish markets, and symmetric imbalances

are practiced in the German spot market.

Considering the general structure of the spot market, the goal sought out by

producers when pairing a storage unit with a variable renewable source consists in

reducing the imbalance penalties they face on account of the variability of produc-

tion.

1.2.2.1.2 Joint Planning and the proposition of equality of profits

In the paper, we seek to define a market setting in which there is no advantage to

this combination of assets, and simultaneously characterize existing market elements

that do make the combination worthwhile.
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The main argument made in the paper against joint planning is that any de-

viation incurred by the variable production source will disrupt the schedule of the

storage unit. This setting assumes that the storage unit may participate freely and

fully in the same market where the variable source operates. If this is the case, the

storage unit will bid in the market, and will have a schedule it must honor. If there

is a deviation in the variable source, the storage unit will incur a symmetric and

opposite deviation of its own in order to hedge the deviation of the variable source

and cancel the aggregate exposure to the imbalance settlement price. The avoided

costs from hedging the deviation internally in the manner described above are the

same as the loss in profit that the storage unit would otherwise have had, had it not

deviated from its schedule. The overall profit and loss from operating both assets

is therefore unchanged. This scenario assumes that the imbalance settlement prices

are symmetric, such as in the German market.

It should be noted that in many instances found in the literature where the

advantage of joint planning is quantified explicitly, the comparison is often between

a variable source operating alone and a variable source with a tethered storage unit

that does not have market access. In these instances, the advantage of the latter

system is unchallenged, as the storage unit offers flexibility that the variable source

alone would otherwise not have. However, the role of the storage unit is to merely

assist the variable source in its commitments to the market, not participating in the

market directly. This specific comparison does not address the issue discussed in

the paper, which is to consider the case where both assets, the variable source and

the storage unit, can participate in the market.

There are however many cases where the equality of profits proposed in the paper

between joint and separate planning cannot be achieved.

We assumed beforehand that the imbalance settlement prices were symmetric. If

the price a market participant pays for a positive deviation is different from the price

for a negative deviation, the offset correction in volume employed by the storage unit
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to balance out the variable source deviation is not financially equivalent and therefore

the equality in profits breaks down. Two cases may emerge from an asymmetry in

imbalance prices. Either the hedging operation brought about by the storage unit

is valued at a larger price than the original imbalance contracted by the variable

source, or it is valued at a lower price. One case would represent a relative profit,

while the other would mean a loss. The case is further complicated by adding to this

the overall aggregate position of the market and whether the imbalance prices are

positive or negative, elements that affect the magnitude of the imbalance prices and

the direction of payment. Regardless of what the preferred case is in any instance,

the decision maker does not know at the moment he or she must decide to hedge

a deviation with the storage unit what the exact imbalance price or prices will be.

Therefore, the decision maker cannot take advantage of imbalance prices.

Two-price imbalance settlement schemes are not the only possible source of price

asymmetries. Intraday markets are the markets where hedging adjustments to spot

market positions can be made, but they generally have lower trading volumes than

the day-ahead market. This makes them prone to illiquidity, and are thus susceptible

to bid-ask spreads. Bid-ask spreads define by their very nature different prices for

sellers and buyers.

Furthermore, grid fees are another source of asymmetry for producers and con-

sumers. In some markets, grid operators charge maintenance and operating costs to

consumers but not to producers.

These are but a few examples of elements that introduce an asymmetry in pricing

that would lead to a violation of the equality proposed in the paper. The paper

further highlights the effect of market power and how gaming the market with a

price maker strategy can benefit a joint and coordinated use of variable source and

storage unit. Additionally, we mention that any regulatory or technical issues that

restrict the use of the storage unit in market operations can disrupt the equality of

profits established in the paper. Such examples include market entry barriers on the
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basis of the nature of the technology or minimum power bid requirements.

1.2.2.1.3 Defense for independent use storage in practice

Although we explore in the paper many instances in which the assumptions that

lead to the proposition of invariant profits are violated, it was nevertheless our goal

to demonstrate that tethering a storage unit to a variable source with the purpose

of internal balancing may not constitute the better use of this asset. With this in

mind, we carried out a numerical exercise, in which we proceed with a comparison of

the profits that a storage unit joint to a wind farm would have generated operating

on the German spot market with the profits that the same storage unit would have

had operating on its own on the German secondary control reserve market in 2019.

Specifically, it was the point of this comparison to show that if the profits generated

by the storage unit operating alone with a suboptimal strategy exceeded the added

value in profits generated by the storage unit when tied to a wind farm and operating

optimally, then the argument for an independent use of a storage unit could be made.

To that end, we would make a comparison of the following two metrics. We

would compute an upper bound of profits for joint planning, and compare it to a

lower bound in separate planning. If the lower bound for separate planning exceeds

the upper bound for joint planning, it would prove our point.

On the one hand, we would solve a deterministic bidding problem on the day-

ahead and intraday markets, where market prices are known, and the wind farm

bids the expected production forecast on the day-ahead market. We assume that

the actual wind production is known in the second stage, where bids are placed in

the intraday market. The storage unit would make its own bids on both markets,

taking advantage of the perfect foresight of market prices. Deviations between ex-

pected wind forecast and actual production would be settled at the imbalance price,

the reBAP. These would represent the costs that would be avoided with storage

balancing. The upper bound would consist of the sum between the profits made

by the storage and the avoided imbalance costs. This metric is an upper-bound for
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two reasons: First, the storage unit operates on both markets with perfect foresight

of prices; Second, the imbalance costs that are avoided with the intervention of

the storage unit would require the storage unit to adjust its schedule and therefore

reduce its aggregate profits. In this upper bound, they added as a net profit.

On the other hand, we compute the profit that a storage unit would have oper-

ating on the German secondary control reserve by bidding a fixed percentile of the

previous day’s auction. To guarantee that the storage unit can fulfill its commit-

ment to the market without ever needing to charge because it is empty or discharge

because it is full, we allow storage level management operations to be resolved on

the intraday market. We partitioned the storage capacity and output in a way that

half of the total capacity would be dedicated to bidding on the control reserve, and

the other half would be used to manage the overall storage level. The rule govern-

ing the intraday bidding is that the storage level must always be brought back to

half full, regardless of what the price is on the intraday market. This strategy is

both non-anticipative and suboptimal, as the bidder does not have knowledge of the

auction market bids, and does not attempt to determine an optimal policy. For this

reason, it is a lower bound of the profits that can be had in this market.

The experiment showed that despite the cost of maintaining feasible storage

levels on the intraday market, the overall profits of bidding on the secondary control

reserve were greater than the profits from tethering the storage unit to the wind

farm and bidding on the spot market.

From a literature perspective, the goal of the paper is to bring awareness to the

issue that it is not always a good idea to use storage as a mechanism with which to

balance deviations of a variable production source. The paper also aims to provide

a framework with which to analyze the merits of joint planning and to define the

conditions under which it offers no advantage.
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1.2.2.2 Storage Duration in Balancing Markets

The third paper, entitled “Optimal Battery Duration on the German Secondary

Control Reserve”, takes a look at the problem of dimensioning the size of a storage

unit fit to bid exclusively on the German secondary control reserve (SCR).

In particular, it is a study of the profit potential of operating on the SCR by

adopting an optimal bidding strategy, and how it evolves as a function of the dura-

tion of the battery. Duration, also known as the energy-to-power ratio, is a metric

that indicates how long a battery can sustain delivering energy at its maximum

power output before becoming empty. This metric is of particular importance when

considering to use a storage unit on the balancing markets, where a market partici-

pant may be asked to provide a constant power volume for a period of time spanning

several hours.

In the SCR, auctions are held the day before delivery, and apply to delivery

periods of four hours. For a storage unit to participate exclusively on a market with

a schedule that is beyond its control, it is especially important to understand what

profits it can expect to generate given its duration level. This paper aims to quantify

the maximum profits a storage unit can hope to achieve. These profits constitute

an upper bound that no storage unit can reasonably be expected to realize, as it is

the result of a clairvoyant bidding strategy where all auction data is known to the

decision-maker. However, they do inform the decision-maker in the following two

ways: first, its nature as an upper bound determines a ceiling to the expectations

of possible investors; secondly, and perhaps more importantly, as this upper bound

is computed for storage units of different durations, we can chart its evolution and

observe if there is a preferred value for the duration of a storage unit operating

on this market. The study of this curve, which is drawn for constant power but

increasing storage size, shows that profits increase with an increase in duration,

which is consistent with our expectations, as a larger storage capacity allows the

access to a larger spectrum of power levels. This curve also shows that profits
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saturate and converge to a limit value with increasing duration, suggesting that

from a certain duration value onwards, there are no more profits to be had, as the

potential for profits will have maxed out. This duration level is quantified, and is

found to be around 13 hours for most power levels in the range of bids commonly

found in the market.

The upper bound that we calculate is the result of solving a sequence of deter-

ministic mixed-integer bilinear optimization problems. Each problem corresponds to

finding the optimal bidding strategy to maximize the profits in a four-hour auction.

This involves bidding for positive and negative balancing energy, which includes a

power volume and a price. In order to simplify the problem, we apply McCormick

envelopes to relax and convert the bilinear terms in the objective function, which

consist of product terms between price and volume, both of which are decision

variables, into linear terms. We use a parametric search method to solve the mixed-

integer problem.

We solve each problem sequentially for a total of 2190 auctions, which corre-

sponds to an entire year’s worth of data, encompassing the period between August

of 2018 and July of 2019. This time span is judged to be a reasonable time horizon

to cancel out spurious effects in the data.
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1.3 Structure of the Thesis

The Thesis is organized with the following structure. Chapter 2 provides the article

on “Envelope Theorems for Multi-Stage Linear Stochastic Optimization”. This essay

has been submitted and accepted to the academic journal Operations Research,

having previously undergone two major revisions and one minor revision. Chapter

3 proceeds with the work on the “Economies of Scope for Electricity Storage and

Variable Renewables”. This paper has been submitted to the engineering journal

IEEE Transactions in Power Systems. After a first assessment to reject and resubmit

and a second assessment to revise and resubmit, the article has been revised and

submitted again, where it is currently under review. Chapter 4 presents the article

on “Optimal Battery Duration on the German Secondary Control Reserve”. Finally,

the thesis concludes with Chapter 5, with a reiteration of the main results to take

away from all three studies, general conclusions and a discussion on the possible

paths for further research.



Chapter 2

Envelope Theorems for

Multi-Stage Linear Stochastic

Optimization

written in collaboration with Prof. Dr. David Wozabal1

We propose a method to compute derivatives of multi-stage linear stochastic op-

timization problems with respect to parameters that influence the problem’s data.

Our results are based on classical envelope theorems and can be used in problems di-

rectly solved via their deterministic equivalents as well as in stochastic dual dynamic

programming for which the derivatives of the optimal value are sampled. We derive

smoothness properties for optimal values of linear optimization problems, which we

use to show that the computed derivatives are valid almost everywhere under mild

assumptions. We discuss two numerical case studies, demonstrating that our ap-

proach is superior, both in terms of accuracy as well as computationally, to näıve

methods of computing derivatives that are based on difference quotients.

1Publication History: Initially submitted on 18.06.2018. Accepted for publication on Oper-
ations Research on 23.04.2020.
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2.1 Introduction

In most planning and decision problems some of the relevant parameters are not

known with certainty at the time when decisions are taken. Stochastic optimization

deals with such uncertainties in problems that lend themselves to treatment in an

optimization framework. More specifically, stochastic optimization is concerned with

the solution of optimization problems for which some parameters in the problem

formulation are uncertain (Birge and Louveaux 2011, Shapiro et al. 2014).

Most of stochastic optimization theory is concerned with obtaining optimal val-

ues and optimal decisions in the face of uncertainty. In this paper, we investigate

the less researched question of how to calculate derivatives of optimal values with

respect to the parameters of the problem. We devise a method to determine the sen-

sitivity of the optimal value of a multi-stage stochastic linear optimization problem

(MSLP) with respect to changes in model parameters, i.e., the data of the model.

Our theory enables the decision maker to directly compute sensitivities and extract

useful information about the nature of the solution of a MSLP.

Sensitivities of the optimal value with respect to parameters like costs, prices,

characteristics of technical systems, parameters of the underlying stochastic process,

or the amount of available resources are of interest for at least two reasons. Firstly,

as in deterministic optimization, derivatives can be interpreted as shadow prices of

the resource or parameter in question. Secondly, derivatives provide information on

the inherent risks implied by changes to parameters such as prices, volatilities, and

contract provisions.

There is a large number of papers that use MSLPs to either calculate optimal

operational decisions or the value of an asset or a contractual right. In many of these

applications, sensitivities with respect to some parameters of the underlying problem

are of interest. Recent examples include studies in fields as diverse as production

planning (Zhang et al. 2011, Bollapragada et al. 2015), inventory management (Mar-

dan et al. 2015), supply chain management (Wu 2011, Fan et al. 2017), energy (Khor
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et al. 2008, Lai et al. 2010, Bruno et al. 2016), water resource management (Huang

and Loucks 2000), project planning (Rafiee and Kianfar 2011), asset liability man-

agement (Valladão et al. 2014, Duarte et al. 2017), and mobile computing (Tham

and Cao 2018).

Another prominent example from financial risk management are the so-called

Greeks, i.e., derivatives of option prices or contract values with respect to underlying

parameters of the problem (Hull 2014). For standard cases in option pricing and a

handful of parameters, Greeks can be computed explicitly. However, for the large set

of analytically intractable problems, for example in commodity risk management,

derivatives have to be numerically approximated.

In the finance literature most authors rely on difference quotients to approximate

derivatives for problems that have no analytical solutions such as American options

(see Clewlow and Strickland 2000, Jäckel 2002, Glasserman 2004, Geman 2009).

However, there also exist other methods to approximate derivatives. In particular,

the pathwise method, discussed for example in Glasserman (2004), is interesting in

this context. The ideas are somewhat similar to the ideas presented in this paper,

although in a slightly different setup, which is focused on options pricing.

Taking derivatives of optimal values has a long history in the optimization liter-

ature. In particular, computing sensitivities with respect to parameters of a deter-

ministic optimization problem is one of the main questions in the field of parametric

optimization. In this paper, we build on the extensive literature on linear paramet-

ric optimization (see Gal and Greenberg 1997, for an overview), in particular, when

studying the question of smoothness of the optimal value of linear optimization

problems.

In stochastic optimization, determining sensitivities of optimal values is at the

core of many decomposition methods like the L-shaped method (Van Slyke and Wets

1969, Birge and Louveaux 2011). These approaches determine how the recourse

function of the next period varies with a change in here-and-now decisions, which
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usually appear only in the right-hand side of the next stage’s problem. Hence,

the sensitivities are evaluated with respect to decisions variables in previous stages

and not the data of the problem, which is different to the focus of this paper.

Furthermore, decomposition approaches are usually much more restrictive when it

comes to which parameters of the problem are allowed to vary.

We also mention a stream of literature in stochastic optimization that is con-

cerned with the sensitivity of the optimal value with respect to perturbations in the

distribution of the involved random variables (Dupačová 1987, 1990, Branda and

Dupačová 2012). However, the aim of these efforts is rather specific and mainly

directed at robustifying solutions with respect to errors made in the estimation of

the distributional model for the randomness in the problem.

Our approach differs from the existing literature in the sense that we use clas-

sical envelope theorems for linear programs to prove envelope theorems for MSLPs

and calculate derivatives with respect to arbitrary parameters of the problem. The

proposed approach computes derivatives based on samples from the optimal pol-

icy. We prove the validity of our approach by showing that, under weak regularity

conditions, the optimal value of an MSLP is almost everywhere differentiable.

Although our results are applicable to general MSLPs, we wrote this paper with

Markov decision processes (MDPs) in mind. In particular, we intend to calculate

derivatives for problems solved using a Markovian variant of stochastic dual dynamic

programming (SDDP), called approximate dual dynamic programming (ADDP).

ADDP approximately solves stochastic optimization problems with fully continu-

ous state and action spaces. Note that the classical SDDP algorithm is a special

case of ADDP, which implies that all results in the paper also hold for SDDP. Using

novel asymptotic results for ADDP, we show that, under certain regularity con-

ditions, the sensitivities computed from discrete approximations of the problems

converge to the true sensitivities of the original problem as the approximation of the

continuous randomness by discrete processes gets finer.
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In a numerical study, we show that our method works well for practical problems.

To this end, we set up two case studies: a simple two-stage newsvendor problem

which can be solved analytically, and a multi-stage gas storage optimization problem.

We use the newsvendor problem to test the convergence of our sampled derivatives

to the real ones and the gas storage optimization to demonstrate that the proposed

method scales well for larger problem instances with many decision stages. Further-

more, the gas storage example illustrates the value of our approach in calculating

Greeks in (energy) finance applications. We use a näıve approach based on difference

quotients as a benchmark, and show that our method outperforms this benchmark

both in accuracy as well as computationally.

The paper is structured as follows: In Section 2.2, we give a short review of

classical envelope theorems and discuss the specific case of linear optimization prob-

lems. In particular, we study the question of differentiability and prove that the

optimal value of a linear optimization problem is differentiable almost everywhere,

jointly in all its data. In Section 2.3, we apply these results to derive an envelope

theorem for MSLPs and in Section 2.4 we show how derivatives can be sampled

in SDDP-type algorithms for problems with discrete randomness and demonstrate

that derivatives of discrete approximations of problems with continuous randomness

are asymptotically correct as the approximating discrete process gets finer. Section

2.5 is devoted to a numerical study demonstrating the practical viability and com-

putational tractability of the proposed approach. Section 2.6 concludes the paper

and discusses avenues for further research.

2.2 Envelope Theorems

In this section, we introduce envelope theorems for linear optimization problems,

which will be the basis for computing sensitivities for MSLPs in the next section. In

particular, we investigate when the optimal value of a linear optimization problem

is differentiable and show that non-differentiability is in some sense rare.
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Envelope theorems quantify how much the optimal value of an optimization

problem changes for an incremental change in some of the parameters of the prob-

lem. Results of this type are important tools in microeconomic theory and have

been extensively used to prove central results in comparative statics analysis such

as Shepard’s lemma, Roy’s identity, or Slutsky’s equation relating to questions in

the theory of the firm as well as consumer choice (see Varian 1992). The first state-

ment of the envelope theorem in its modern form arguably appears in Samuelson

(1947). Dynamic envelope theorems in optimal control can, for example, be found

in LaFrance and Barney (1991) and the most general results known to the authors

appeared in Milgrom and Segal (2002).

The most basic form of the envelope theorem concerns maximizing a sufficiently

smooth function f(x, θ) that depends on a parameter θ as well as on a decision

x. Denote by x∗(θ) the optimal decision for a given parameter θ and by V (θ) the

corresponding optimal value. Then clearly,

V ′(θ) =
d

dθ
max
x

f(x, θ) =
d

dθ
f(x∗(θ), θ)

=
∂

∂x
f(x∗(θ), θ)

d

dθ
x∗(θ) +

∂

∂θ
f(x∗(θ), θ) =

∂

∂θ
f(x∗(θ), θ),

where the last equality follows from the first-order condition

∂

∂x
f(x∗(θ), θ) = 0

at the optimal point x∗(θ).

The above shows that the derivative of the optimal value can be computed

knowing only ∂
∂θ
f and the optimal solution x∗(θ). In particular, it is not required

to know d
dθ
x∗(θ), i.e., how the optimal solution changes in θ, which is usually much

harder to calculate. This property makes the envelope theorem extremely useful in

the analysis of optimization problems.

The outlined approach can be extended to constrained optimization problems but
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generally requires smoothness assumptions on the optimal primal and dual solutions.

We base our results on the following classical envelope theorem, which extends the

simple derivation above to the case of constrained optimization by considering the

Lagrangian of the problem.

Theorem 2.1. (Takayama (1985), Theorem 1.F.1.). Let Θ ⊆ R be open and consider

differentiable functions A : Θ → Rm×n, b : Θ → Rm, c : Θ → Rn and a linear

optimization problem of the form

V (θ) =

 maxx 〈c(θ), x〉

s. t. A(θ)x ≤ b(θ).
(2.1)

If, for a given θ ∈ Θ, the optimal primal and dual solutions x∗(θ) and λ∗(θ) are

continuously differentiable in θ, then

V ′(θ) = 〈∇c(θ), x∗(θ)〉+

〈
λ∗(θ),∇b(θ)− d

dθ
A(θ)x∗(θ)

〉
. (2.2)

Note that in the above, we use d
dθ
A(θ) as short-hand for the componentwise

derivative with respect to θ and 〈·, ·〉 as notation for the inner product.

Looking at the formulation of Theorem 2.1, it is obvious that, in the case of linear

optimization problems, the condition on the smoothness of x∗ and λ∗ is restrictive

and therefore the result is, in general, not applicable for all values of θ. More

specifically, it is well known that the solution of linear optimization problems need

not be differentiable in the parameters of the problem. The following problem is a

modification of an example given in Martin (1975), which illustrates this point:

V (θ) =



max
x,y

1
2
θx+ y

s.t. x+ y ≤ 1

x+ θy ≥ 1

x, y ≥ 0.

(2.3)
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Figure 2.1: Value function and typical feasible regions for problem (2.3).

For θ ≥ 0, the optimal solution and optimal value are given by

arg max
(x,y)

V (θ) =



{(0, 1)} , 1 ≤ θ < 2

{(1, 0)} , θ /∈ [1, 2]

{(1− α, α) : α ∈ [0, 1]} , θ = 2

, V (θ) =


1, 1 ≤ θ < 2

θ
2
, θ /∈ [1, 2).

Clearly, the optimal value jumps at θ = 1 and kinks at θ = 2. Figure 2.1 illustrates

the optimal value function as well as typical examples of feasible regions in the three

relevant sections of θ. An example featuring disjoint feasible regions can be found

in Willner (1967).

Hence, for a general linear optimization problem, the optimal value does not even

have to be continuous in the parameters of the problem and therefore the envelope

theorem cannot be used to calculate V ′(θ) for every θ. However, we observe that

there are only finitely many points where θ 7→ V (θ) is not differentiable in the above

example. As we will see below, this observation extends to the general case.

In a linear optimization problem, the issue of differentiability of the optimal value
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is closely related to the notion of uniqueness and non-degeneracy of the solution.

Given an optimal simplex tableau, a (feasible) solution is unique, if none of the

non-basic reduced cost coefficients vanish and it is non-degenerate, if and only if

none of the basic variables vanish. If both conditions are met, differentiability of

the objective follows (see Gal and Greenberg 1997). However, the two conditions

are not necessary for the objective to be differentiable. In particular, in problem

(2.3), we observe that for θ /∈ [1, 2] the solution is degenerate, but the value function

is differentiable with V ′(θ) = 1
2
.

Another more general sufficient condition for smoothness of V at θ is that the

optimal basis remains unchanged in a neighborhood U of θ, i.e., that the set of

binding constraints remains the same for all θ ∈ U . If this is the case, then, in U ,

all entries of the optimal simplex tableau vary smoothly in θ, and, since the optimal

value is a linear function of the entries, so does the optimal value.

Therefore, as a first step, we characterize the points where there are discontinu-

ities or kinks in the value function by characterizing the sets of parameters θ where

the optimal basis of a linear optimization problem of a given dimensionality does not

change. Similar questions have been studied extensively in the literature on para-

metric linear programming (see Courtillot 1962, Willner 1967, Barnett 1968, Dent

et al. 1973, Adler and Monteiro 1992, Ward and Wendell 1990, Gal and Greenberg

1997). However, results in these papers are usually restricted to either variations on

the right-hand side, the objective function, or special variations in the matrix. For

our purposes, a result that allows for simultaneous variation in all parameters of the

problem is required. To the best of our knowledge, such a result does not yet exist.

For further analysis, we find it convenient to re-write problem (2.1) by introduc-

ing slack variables s1, . . . , sm for the inequality constraints, rewriting the constraints

as A(θ)x+ s = b(θ). Defining y = (x, s), we can thus write a new linear optimization
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problem equivalent to (2.1) in standard form as

V (θ) =

 maxy 〈d(θ), y〉

s.t. D(θ)y = b(θ), y ≥ 0,
(2.4)

where d and D are correspondingly updated versions of c and A. Defining vec(D)

to be the row vector that consists of a concatenation of all the rows of D, D =

(d, vec(D), b)> represents all the data of the problem as an element of RN for some

N ∈ N. Furthermore, we define the short-hand [n] = {1, . . . , n}.

As mentioned above, we are interested in the case where all the parameters of the

linear optimization problem can vary simultaneously, i.e., we study how a variation

in D ∈ RN affects the solution. We first prove a result characterizing the points

where the value function of a linear optimization problem is smooth jointly in the

parameters of the problem. The proof follows the idea outlined in Freund (1985)

for the special case of changing only the matrix D along one line. We deal with the

additional complication of arbitrarily changing all elements of D using results from

real algebraic-geometry. To this end, we will require the following definitions.

Definition 2.1. (Semi-algebraic set, Bochnak et al. (2013), Definition 2.1.4). A

semi-algebraic subset of Rn can be written as

s⋃
i=1

ri⋂
j=1

Aij,

where the sets Aij are either of the form {x ∈ Rn : Pij(x) < 0} or {x ∈ Rn : Pij(x) = 0}

for polynomials Pij defined on Rn.

Definition 2.2. (Diffeomorphism, smooth manifold). For A ⊆ Rn and B ⊆ Rm, a

mapping f : A → B is called a smooth diffeomorphism if it is invertible and f as

well as f−1 are smooth. A k-dimensional smooth manifold X ⊆ Rn, is a set such

that for every point x ∈ X there is an open set U ⊆ X and a smooth diffeomorphism

f : U → Rk such that f(U) = Bk, where Bk ⊆ Rk is the open unit ball.
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Lemma 2.1. Let P(D) be a problem of form (2.4) dependent on data D ∈ RN with

a matrix D of dimensions m × n, m < n. Define β ⊆ [n] to be a basis with |β| = m

and the set

Rβ = {D : β is an optimal basis for P(D)} .

Then Rβ is the union of finitely many connected smooth manifolds of varying di-

mensions in RN .

Proof. Proof. For any D, define Dβ as the square matrix resulting from D with the

columns [n] \ β removed. It holds that

Rβ = {D : det(Dβ) 6= 0} ∩
{
D : D−1β b ≥ 0

}
∩
{
D : dβD

−1
β D ≥ d

}
,

where the first condition ensures that x with xβ = D−1β b and x[n]\β = 0 is a primal

basic solution, the second one restricts to D such that β is a primal feasible basis,

while the third set contains the D such that β is dual feasible. The last two conditions

in combination yield that x is primal optimal and, therefore, that β is an optimal

basis for P(D).

Note that D−1β = det(Dβ)−1 adj(Dβ) with adj(A) the adjugate of A, which is

defined as the transpose of the cofactor matrix C(A) of A, i.e., adj(A) = C(A)>.

Note further that if det(Dβ) 6= 0, we can always re-arrange columns of Dβ in such a

way that det(Dβ) > 0. In this case, D−1β b yields a basic solution with correspondingly

permuted elements. We can therefore write

Rβ = {D : det(Dβ) > 0} ∩ {D : adj(Dβ)b ≥ 0} ∩ {D : dβ adj(Dβ)D ≥ ddet(Dβ)} . (2.5)

Let us first investigate the set {D : adj(Dβ)b ≥ 0}. The elements of the adjugate

are determinants that can be written as polynomials in the variables of D. Defining

A(i,:) as the i-th row of a matrix A, it follows that Pi(D) := adj(Dβ)(i,:)b is a polynomial

in the components of b and D, hence, in particular, a polynomial with coefficients

from D ∈ RN .
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It follows that the set {D : Pi(D) ≥ 0, ∀i = 1, . . . ,m} ⊆ RN is a semi-algebraic set.

By the same argument the other two sets in (2.5) are semi-algebraic and therefore

so is Rβ. By Proposition 2.9.10 in Bochnak et al. (2013)

Rβ =

I⋃
i=1

Si,

where I ∈ N and Si are smooth manifolds in RN and there exist diffeomorphisms

hi : (0, 1)ni → Si, where 0 ≤ ni ≤ N for all 1 ≤ i ≤ I. Since the hi are continuous and

(0, 1)ni are connected, Si are connected sets in RN .

The following corollary is an easy consequence of Lemma 2.1 and treats the case

that not all of the data varies but only a subset of the entries of A, b, and c.

Corollary 2.1. Consider a set {k1, . . . , kL} ⊆ [N ] with L ≤ N , D′ = (D′1, . . . ,D′N) ∈

RN , and the following affine L dimensional subspace of RN

X =
{
D = (D1, . . . ,DN) ∈ RN : Dk = D′k, ∀k /∈ {k1, . . . , kL}

}
.

The set of points D ∈ X where there is a basis change in the corresponding linear

optimization problem is the union of finitely many connected smooth manifolds of

varying dimensions in RL.

Finally, we prove a result confirming the intuition that the number of points

where the optimal value of a linear optimization problem is not differentiable is

small as long as the function mapping the parameter θ to the data of the problem

is bicontinuous, i.e., continuous with a continuous inverse.

Theorem 2.2. Let Θ ⊆ R be an open, connected set and consider invertible bi-

continuous functions A : Θ→ Rm×n, b : Θ→ Rm, c : Θ→ Rn defining the data of the
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linear problem

V (θ) =

 maxx 〈c(θ), x〉

s. t. A(θ)x ≤ b(θ).
(2.6)

Then the set of points θ ∈ Θ where V (θ) is not differentiable is finite and therefore

has Lebesgue measure 0 in R. In all other points θ ∈ Θ, θ 7→ V (θ) is smooth.

Proof. Proof. Define D : Θ → RN as D(θ) = (vec(A(θ)), b(θ), c(θ))>. By the first

part of Lemma 2.1, the sets Rβ are the union of finitely many connected sets Si

with 1 ≤ i ≤ I. Since D(Θ) is connected in RN , so are the sets D(Θ) ∩ Si and

Ti = D−1(Si) ⊆ Θ. Since there are finitely many β ⊆ [n], it follows that Θ can be

written as the union of finitely many connected sets. Clearly, the optimal basis for

the linear program with data D(θ) stays constant for all θ ∈ Ti.

Since connected sets in Θ ⊆ R are either points or intervals, the set of points Y

where the basis of D(θ) ⊆ Θ changes is of finite cardinality and thus has Lebesgue

measure zero. Since for every θ ∈ Θ \ Y there is a neighborhood where the basis of

the problem with data D(θ) stays the same, the optimal simplex tableau is a smooth

function of D(θ) and therefore θ 7→ V (θ) is smooth in a neighborhood of θ.

The result above is very much in line with intuition about linear optimization.

It is nevertheless nontrivial, since it shows that under the given natural restrictions

there is no way to find functions, however complicated, such that there is a significant

number of points θ where the optimal value is non-smooth, even if all the data of

the problem varies simultaneously.

In particular, Theorem 2.2 implies that if a point θ ∈ Θ is chosen at random, then

the probability that the function V (θ) is not differentiable at θ has probability zero.

This means that the envelope theorem can be applied almost everywhere and the

set Y , defined in the proof of Theorem 2.2, can be ignored in practical applications.

However, the analysis of points where the objective function is not differentiable

might still be of interest, since the existence and the location of these points may
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reveal structural properties of the problem. In this paper, we focus on the compu-

tation of derivatives at exogenously given points and show in the next section that

points of discontinuity are actually rare in stochastic optimization.

2.3 Envelope Theorems for Multi-Stage Stochas-

tic Programming

In this section, we apply the results from Section 2.2 to prove envelope theorems

for MSLPs. These results yield expressions for derivatives of optimal values which

are independent of the method used to solve the problem. In particular, we argue

that when solving discrete MSLPs as deterministic equivalents, our results can be

directly applied.

Let (Ω,F ,P) be a probability space with a probability measure P, a filtration

F = (F1, . . . ,FT ), and ξ = (ξ1, . . . , ξT ) a random process with ξt : (Ω,Ft) → RMt .

We denote by ξt = (ξ1, . . . , ξt) the history of the random process until period t. Let

further Θ be an open and connected set in R.

We consider a general MSLP with T stages where the relevant data in stage

t depends on the realization of the randomness and on a parameter θ ∈ Θ. The

general form of the problem can be written as

V (θ) =


max

x1,x2,...,xT

E
[∑T

t=1〈ct(θ, ξt), xt(θ, ξt)〉
]

s.t. Wt(θ, ξ
t)xt(θ, ξ

t) + Tt(θ, ξ
t)xt−1(θ, ξt) ≤ ht(θ, ξt), t = 1, 2, ..., T,

(2.7)

where the expectation is with respect to P, the constraints hold almost surely, and

Wt(θ, ξ
t), Tt(θ, ξt), ct(θ, ξt), and ht(θ, ξ

t) are matrices and vectors of fitting dimension.

We define the data of the problem in stage t to be

Dt(θ, ξt) = (vec(Wt(θ, ξ
t)), vec(Tt(θ, ξ

t)), ct(θ, ξ
t), ht(θ, ξ

t)) ∈ RNt

for some Nt ∈ N and consider Dt(θ, ξt) as a function Dt : Θ×RMt → RNt . Note that
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the decisions x1, . . . , xT depend on ξ and are therefore random variables. To avoid

cluttered notation, in the following, we suppress the dependency of Wt, Tt, ct, ht,

and xt on ξt.

We formulate the problem in such a way that xt depends on previous decisions

x1, . . . , xt−1 just by its dependency on xt−1. This property can always be enforced

by augmenting the state space of period t by the variables in x1, . . . , xt−1. It follows

that the problem can be rewritten in its dynamic programming formulation

Vt(xt−1, ξ
t, θ) =


max
xt

〈ct(θ), xt〉+ E [Vt+1(xt, ξ
t+1, θ)|ξt]

s.t. Wt(θ)xt + Tt(θ)xt−1 ≤ ht(θ),
(2.8)

with terminal condition VT+1 ≡ 0 and x0 given. The assumption of VT+1 ≡ 0 is not

essential, and all results still hold, if VT+1 is replaced by a piecewise linear concave

function. For the following, it will be convenient to define so-called post-decision

value functions (see Powell 2011) as

V̄t+1(xt, ξ
t, θ) = E

[
Vt+1(xt, ξ

t+1, θ)|ξt
]
, ∀t ∈ [T ].

In order to avoid pathological cases, we will make the following assumption

throughout the paper.

Assumption 2.1. The problems in (2.8) are feasible and bounded for all xt−1, re-

alizations ξt, and θ ∈ Θ.

Furthermore, to be able to utilize the results of the previous section, we will

make the following blanket smoothness assumption in the rest of the paper.

Assumption 2.2. The function θ 7→ Dt(θ, α) is differentiable, invertible, and bi-

continuous for every α ∈ RMt and every t ∈ [T ].

We start our analysis by applying the results from Section 2.2 to a problem where

the image measure of ξ is made up of finitely many atoms, i.e., where all conditional
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distributions ξt+1|ξt are finitely supported. When dealing with discrete processes ξ,

the expectations of the value functions Vt, which are concave functions of xt, can be

written as a minimum of finitely many affine functions as stated in the lemma below

(for a proof see for example Philpott and Guan 2008, Shapiro 2011, Löhndorf et al.

2013).

Lemma 2.2. If ξ is finitely supported, then, for every realization of ξt and fixed

θ ∈ Θ, xt 7→ V̄t+1(xt, ξ
t, θ) is a concave, piecewise linear function.

For what follows, we assume that, for a given θ, the optimal policy x∗t (θ, ξ
t) is

known.

Theorem 2.3. Consider a problem of the form (2.7) based on a discrete process

ξ = (ξ1, . . . , ξT ) with optimal value V (θ) and optimal policy x∗t . Then for all but

finitely many θ ∈ Θ the derivative of the optimal value exists at θ and can be written

as

V ′(θ) = E

[
T∑
t=1

〈∇ct(θ), x∗t 〉+

〈
λ∗t ,∇ht(θ)−

d

dθ
Tt(θ)x

∗
t−1 −

d

dθ
Wt(θ)x

∗
t

〉]
, (2.9)

where λ∗t = λ∗t (θ, ξ
t) are the optimal dual solutions associated with the constraints in

stage t. In particular, V ′(θ) exists for (Lebesgue) almost all θ ∈ Θ.

Proof. Proof. We start our argument in the last stage T where, for given ξT , θ, and

xT−1, the optimization problem is deterministic and equal to

VT (xT−1, ξ
T , θ) =


max
xT

〈cT (θ), xT 〉

s.t. WT (θ)xT + TT (θ)xT−1 ≤ hT (θ).

By Assumption 2.2, Theorem 2.2 can be applied to the problem above and it follows
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from Theorem 2.1 that for almost all θ

∂

∂θ
VT (xT−1, ξ

T , θ) = 〈∇cT (θ), x∗T 〉+

〈
λ∗T ,∇hT (θ)− d

dθ
TT (θ)xT−1 −

d

dθ
WT (θ)x∗T

〉
(2.10)

for the optimal primal and dual solutions x∗ and λ∗.

By Pollard (2001), Chapter 2, Example 23 and the fact that VT is smooth in a

neighborhood of a point θ where it is differentiable and that the problem is bounded,

we have that

∂

∂θ
E
[
VT (xT−1, ξ

T , θ)
∣∣ξT−1] = E

[
∂

∂θ
VT (xT−1, ξ

T , θ)
∣∣∣ξT−1] . (2.11)

Note that the set of problematic θ, i.e., the points θ ∈ Θ where VT is not smooth

in θ, changes with each realization of ξT . However, since the underlying process is

finitely supported, by Theorem 2.2 there are only finitely many θ where any of the

functions θ 7→ VT (xT−1, ξ
T , θ) are not differentiable.

Theorem 2.1 and Theorem 2.2 apply to the problem defining VT−1(xT−2, ξT−1, θ),

since the post-decision value function is a piecewise linear concave function by

Lemma 2.2 and therefore can be represented in a linear optimization formulation.

Combining (2.10) and (2.11) yields

∂

∂θ
VT−1(xT−2, ξ

T−1, θ) = 〈∇cT−1(θ), x∗T−1〉+ E[〈∇cT (θ), x∗T 〉
∣∣ξT−1]

+

〈
λ∗T−1,∇hT−1(θ)−

d

dθ
TT−1(θ)xT−2 −

d

dθ
WT−1(θ)x

∗
T−1

〉
+ E

[
〈λ∗T ,∇hT (θ)− d

dθ
TT (θ)xT−1 −

d

dθ
WT (θ)x∗T 〉

∣∣∣ξT−1] .
Continuing in this fashion, we arrive at

V ′(θ) = E

[
T∑
t=1

〈∇ct(θ), x∗t 〉+

〈
λ∗t ,∇ht(θ)−

d

dθ
Tt(θ)x

∗
t−1 −

d

dθ
Wt(θ)

〉]
.
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Note that, since there are finitely many stages and in each stage there are finitely

many points θ ∈ Θ where the corresponding value functions are not differentiable,

the union of these points still has finite cardinality and therefore is a Lebesgue null

set.

As mentioned in Section 2.2, the fact that the derivative exists (Lebesgue) almost

surely guarantees that the probability of picking a θ at random where V ′(θ) does not

exist is zero. This implies that this possibility can be ignored in practice. Of course,

this argument is predicated on the tacit assumption of a continuous distribution on

Θ governing the random choice of θ. If the sampling distribution for some reason

would have atoms at the discontinuities of the value function, the situation would

obviously change. This might for example occur if θ is itself the outcome of a higher

level optimization problem, i.e., if the system in question was optimally designed to

solve the stochastic optimization problem.

The derivative in (2.9) can be readily computed, if the stochastic optimization

problem is solved as one large monolithic linear program, via a deterministic equiv-

alent formulation, for example using scenario trees. In this case all primal and dual

solutions for all possible scenarios are known and (2.9) can be easily evaluated.

Next, we investigate the case when ξ has a continuous distribution. Since in

this case the post-decision value functions are no longer piecewise linear, the above

proof does not work. We circumvent this issue by approximating the continuous

problem by discrete problems based on an increasing number independent identically

distributed (i.i.d.) samples from the respective distributions. We then show that the

derivatives of the approximating problems calculated using Theorem 2.3 converge

to the derivatives of the continuous problem.

Theorem 2.4. Let the following conditions hold for a problem of the form (2.7)

with continuously distributed randomness ξ:

1. The feasible set of the problems (2.8) is bounded for all xt−1, all realizations

ξt, and all θ ∈ Θ.
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2. The set Θ is bounded.

3. Dt is Lipschitz for every α with |Dt(θ, α)−Dt(θ′, α)| ≤ Lt(α)|θ−θ′| and E[Lt(α)] =

Lt <∞.

4. For every t there exists an x+
t such that x+

t is in the interior of the feasible set

of the problem Vt(xt−1, ξ
t, θ) for all xt−1, ξt, and θ ∈ Θ.

Then V ′(θ) can be computed by formula (2.9) as in Theorem 2.3 for all but countably

many θ ∈ Θ. In particular, the derivative V ′(θ) exists for (Lebesgue) almost all θ ∈ Θ.

Proof. Proof. Note that (2.10) still holds. For a given θ, the problem in stage (T −1)

can be written as

VT−1(xT−2, ξ
T−1, θ) =


max
xT−1

〈cT−1(θ), xT−1〉+ E[VT (xT−1, ξ
T , θ)|ξT−1]

s.t. WT−1(θ)xT−1 + TT−1(θ)xT−2 ≤ hT−1(θ).

We draw K i.i.d. samples (ξ̂1T , . . . , ξ̂
K
T ) from the conditional distribution PT |ξT−1 of

ξT given ξT−1 and approximate VT−1(xT−2, ξT−1, θ) by

V̂ K
T−1(xT−2, ξ

T−1, θ) =


max
xT−1

〈cT−1(θ), xT−1〉+K−1
∑K

k=1 VT (xT−1, ξ̂
k
T , θ)

s.t. WT−1(θ)xT−1 + TT−1(θ)xT−2 ≤ hT−1(θ),

which, due to Theorem 2.3 has derivative

∂

∂θ
V̂ K
T−1(xT−2, ξ

T−1, θ) = 〈∇cT−1(θ), xK∗T−1〉+K−1
K∑
k=1

〈∇ckT (θ), x∗T 〉

+

〈
λK∗T−1,∇hT−1(θ)−

d

dθ
TT−1(θ)xT−2 −

d

dθ
WT−1(θ)x

K∗
T−1

〉
+K−1

K∑
k=1

〈λ∗T ,∇hkT (θ)− d

dθ
T kT (θ)xK∗T−1 −

d

dθ
W k
T (θ)xk∗T 〉,

where xK∗T−1 and λK∗T−1 are the here-and-now decisions for the sampled problems in

stage T − 1, while xk∗T and λk∗T are the scenario dependent wait-and-see solutions in

stage T .
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Our aim is to show that

∂

∂θ
V̂ K
T−1(xT−2, ξ

T−1, θ)
K→∞−−−−→ ∂

∂θ
VT−1(xT−2, ξ

T−1, θ) (2.12)

almost surely. According to Rudin (1964), Theorem 7.17 it is enough to show

uniform convergence of fK(θ) := ∂
∂θ
V̂ K
T−1(xT−2, ξ

T−1, θ). We start by demonstrating

the uniform convergence of the term

gK(θ) = K−1
K∑
k=1

〈λk∗T (θ),
d

dθ
W k
T (θ)xk∗T (θ)〉. (2.13)

Clearly, by the boundedness of the feasible set (assumption 1), xk∗T are bounded

and, by the uniform Slater condition (assumption 4), λk∗T are bounded. Consequently,

there is a B ∈ R+ that bounds all the primal and dual decisions. Therefore, we have

|gK(θ)− gK(θ′)| ≤ B

K

K∑
k=1

∑
ij

∣∣∣∣ ddθW k
T (θ)ij −

d

dθ
W k
T (θ′)ij

∣∣∣∣ ≤ B

K

K∑
k=1

∑
ij

|θ − θ′|Lkij

K→∞−−−−→ B|θ − θ′|
∑
ij

Lij, P− a.s.,

where P − a.s. indicates almost sure convergence, Lkij is the Lipschitz constant of

d
dθ
W k
T (θ)ij, i.e., of the element in the i-th row and the j-th column of the matrix for

the k-th sample and Lij is its expectation (assumption 3). Note that the almost sure

convergence above is due to an application of the law of large numbers. It follows

that the Lipschitz constants of the term on the left are almost surely uniformly

bounded, i.e., the term is uniformly Lipschitz in K. The uniform Lipschitz property

of the other terms in fK(θ) follows by analogous reasoning.

From the uniform Lipschitz property of fK it follows that fK are equicontinuous.

Now, since Θ is bounded (assumption 2), the Arzelà-Ascoli theorem (see Rudin

1987, Theorem 11.28) establishes the uniform convergence of a subsequence fKm of

fK . Note that by Theorem 2.3 for every m, fKm is differentiable for all but finitely
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many θ ∈ Θ. It follows that all fKm are differentiable everywhere except on an

unchanging countable set of points A ⊆ Θ. Since the fKm also converge uniformly, f

is differentiable for every θ ∈ Θ\A and (2.12) follows. The rest of the proof proceeds

by backward induction in the same manner as the proof of Theorem 2.3.

2.4 Sampling Derivatives

In this section, we discuss SDDP-type decomposition algorithms with an emphasis

on Approximate Dual Dynamic Programming (ADDP), which is based on scenario

lattices as discretizations for Markov processes. We show how ADDP can be used

to approximate a policy for an MSLP with continuous randomness and demonstrate

how the results from Section 2.3 can be used in sampling-based algorithms to sample

derivatives of the objective values, which converges to the true derivatives as the

approximation gets better.

2.4.1 Approximate Dual Dynamic Programming

ADDP solves linear MDPs with relatively complete recourse by iteratively approx-

imating the value functions of the problem (Löhndorf et al. 2013, Löhndorf and

Shapiro 2019) and is an extension of the popular SDDP algorithm (Pereira and

Pinto 1991, Philpott and Guan 2008, Shapiro 2011). In this section, we will review

the basic workings of ADDP and prove some novel results on the convergence of

approximations of problems with continuous random variables by problems that are

formulated using discrete representations of the underlying stochastic process and

are solved using ADDP.

In the following, we will assume ξ to be a Markov process and the data of the

problem ct, Wt, Tt, and ht to only depend on the current value ξt instead of the

entire history ξt until time t. This renders problem (2.7) an MDP. We call ξt the

environmental state of the problem, while xt−1 is called the resource state. Together
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ξt and xt−1 constitute the state of the MDP. Note that the resource state can be

influenced by the decisions in earlier stages while the environmental state evolves

independent of the actions of the decision maker.

This conceptual separation enables us to approximate the value functions in

two steps: First, we search for a good set of representative discrete states for the

environmental state, which we organize in a scenario lattice. Second, we use a

version of SDDP that approximates the value function at each node of the lattice

by a concave, piecewise linear function of the resource state.

A scenario lattice is a graph organized in layers, each associated with a discrete

point in time. A node represents a possible state of the stochastic process, and an

arc represents the possibility of a state transition from one node on a given layer

to a successor node on the next layer. Consequently, arcs only connect nodes in

successive layers. Each arc is associated with a probability weight, and the weights

of all outgoing arcs of a node model the distribution of the process conditional on

that node. In contrast to scenario trees, we do not impose the restriction that every

node in stage t has only one predecessor in stage (t − 1). For this reason, scenario

lattices are sometimes called recombining scenario trees.

The goal of lattice construction is to build approximations of Markov processes

such that the optimal policy for the lattice process yields a close to optimal policy

for the true underlying process. For the purpose of this paper, we use a stochastic

gradient algorithm outlined in Bally and Pagès (2003) to construct scenario lattices

from simulations of the environmental state ξ of the problem. We denote the lattice

process by ξ̃ = (ξ̃1, . . . , ξ̃T ), where the nodes in stage t are denoted by ξ̃tn, n ∈ [Ct]. In

the following, we study the approximation properties of scenario lattices when the

real underlying stochastic process is continuous and is compactly supported.

The method of Bally and Pagès (2003) chooses lattice nodes in order to minimize

the Wasserstein distance between the unconditional distributions of ξt : Ω→ RMt and

ξ̃t : Ω̃ → RMt . Denoting Pt and P̃t as the image measures of ξt and ξ̃t, respectively,
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the Wasserstein distance is defined as the solution of the following optimization

problem (see, for example, Villani 2008)

W2(Pt, P̃t) =



inf
π

 ∫
RMt×R̃Mt

‖ξ − ξ̃‖22 π
(
dξt, dξ̃t

)
1
2

s.t. π(A×RMt) = Pt(A) ∀A ∈ A,

π (RMt ×B) = P̃t(B) ∀B ∈ Ã,

(2.14)

where the infimum is taken over all probability measures π on (RMt × RMt ,A ⊗ Ã)

and A, Ã are the σ-algebras on RMt generated by ξt and ξ̃t, respectively. The

Wasserstein distance can be interpreted as the minimal effort required to move the

probability mass between Pt and P̃t. In what follows, we will write W2(ξt, ξ̃t) instead

of W2(Pt, P̃t), where no confusion can arise.

It follows from Graf and Luschgy (2000), Lemma 3.1 that the problem of finding

an optimal discretization ξ̃t of ξt with a fixed number of nodes Ct in terms of the

Wasserstein distance is equivalent to solving the Ct-center problem, i.e., finding Ct

centers ξ̃tn, n = 1, . . . , Ct that are the atoms of ξ̃t and solve

inf
ξ̃t

W 2
2 (ξ̃t, ξt) = inf

ξ̃t

∫
RMt

min
1≤n≤Ct

||ξ̃tn − ξt||22 Pt(dξt). (2.15)

We define the probability of ξ̃tn given ξ̃t−1,m on the scenario lattice as

P̃t(ξ̃t = ξ̃tn|ξ̃t−1 = ξ̃t−1,m) = Pt

(
arg min
1≤r≤Ct

||ξ̃tr − ξt||22 = n

∣∣∣∣∣ arg min
1≤r≤Ct−1

||ξ̃t−1,r − ξt−1||22 = m

)
.

For the purpose of the next results, we denote by ξ̃Ct
t the optimal approximation

of ξt with Ct centers. We start by proving that with an increasing number of nodes in

the lattice the optimal discretization ξ̃Ct
t converges almost surely to ξt. We show in

the second part of the lemma below that this property carries over to the conditional

distributions at stage t.
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Lemma 2.3. 1. For every realization ξt

ξ̃Ct
t (ξt) := ξ̃Ct

tn∗
Ct→∞−−−−→ ξt, P− a.s., (2.16)

with n∗ = arg min
{
||ξ̃Ct

tn − ξt||2 : n ∈ [Ct]
}
.

2. If all conditional distributions ξt|ξt−1 have finite first moments, the Wasserstein

distances between the conditional distributions ξ̃Ct
t |ξ̃

Ct−1
t−1 and the true condi-

tional distributions vanishes as Ct grows, i.e.,

W2

(
ξ̃Ct
t |ξ̃

Ct−1
t−1 (ξt−1), ξt|ξt−1

)
Ct→∞−−−−→ 0.

Proof. Proof. From Graf and Luschgy (2000), Lemma 6.1 it follows that for the

optimal choice of centers

W2(ξ̃
Ct
t , ξt)

Ct→∞−−−−→ 0. (2.17)

Suppose the first point would not be true, i.e., that there is a ξt, a subsequence

Ctk
k→∞−−−→∞, and an ε > 0 for which

||ξt − ξ̃Ctk
t (ξt)||2 > ε, ∀Ctk.

Define A =
{
a ∈ RMt : ||a− ξt||2 < ε

2

}
and δ = P(A). If δ > 0, then

W2(ξ̃
Ctk
t , ξt) ≥

∫
A

||ξt − ξ̃Ctk
t (ξt)||2 P(dξt) > δ

ε

2
, ∀Ctk ∈ N,

which is in contradiction to (2.17) and therefore proves 1.

To prove the second point note that

W2

(
ξ̃Ct
t |ξ̃

Ct−1
t−1 (ξt−1), ξt|ξt−1

)
≤
∫
||ξt − ξ̃Ct

t (ξt)||2 Pt(dξt|ξt−1). (2.18)
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Additionally, we have that ||ξt − ξ̃Ct
t (ξt)||2 ≤ ||ξt − ξ̃Ct

t1 ||2 and

∫
||ξt − ξ̃Ct

t1 ||2 Pt(dξt|ξt−1) <∞,

since the first moments of the conditional distributions are finite. Hence, using the

first part, the dominated convergence theorem can be applied to show that the right

side of (2.18) converges to zero implying that

W2

(
ξ̃Ct
t |ξ̃

Ct−1
t−1 (ξt−1), ξt|ξt−1

)
Ct→∞−−−−→ 0,

which establishes 2.

Next, we show that if the involved random variables are continuous and have

bounded support, the problem on the scenario lattice converges to the real problem

on the continuous process as we increase the number of nodes in the lattice. Subse-

quently, we will use this result to prove that approximated derivatives of objective

values of stochastic optimization problems converge to the true derivatives as the

approximations get finer.

To this end, we consider a sequence of approximating measures (P̃C1 , . . . , P̃
C
T )C∈N

such that for each P̃Ct the number of atoms Ct(C) of P̃Ct goes to infinity as C → ∞

and the atoms of P̃Ct are chosen such that they minimize the Wasserstein distance

to Pt. Further, we define Ṽ C
t and ¯̃V C

t as the value functions and post-decision value

functions of the approximated problems using (P̃C1 , . . . , P̃
C
T )C∈N for the distributions

of the random parameters. Note that in the following we suppress the dependence

of Ṽ C
t and ¯̃V C

t on the parameter θ to avoid cluttered notation.

Theorem 2.5. Let the support of Pt be contained in a compact set X ⊆ RMt for

all t ∈ [T ] and Pt be absolutely continuous with respect to the Lebesgue measure and

assume that (2.7) has fixed recourse. Then

Ṽ C
t (xt−1, ξ̃

C
t (ξt))

C→∞−−−→ Vt(xt−1, ξt), Pt − a.s., ∀xt−1, ∀t ∈ [T ] (2.19)
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and

¯̃V
C

t (xt, ξ̃
C
t (ξt))

C→∞−−−→ V̄t(xt, ξt), Pt − a.s., ∀xt, ∀t ∈ [T ]. (2.20)

Proof. Proof. We start by showing (2.19) for stage T and then proceed by backward

induction for t = T − 1, . . . , 1 assuming that the statement was already proven for

t+ 1.

For the last stage T

Ṽ C
T (xT−1, ξ̃

C
Tn) = VT (xT−1, ξ̃

C
Tn), ∀n ∈ [CT (C)], ∀xT−1,

since the optimization problems that define the two functions are identical. Be-

cause of Lemma 2.3, ξ̃CT (ξT ) → ξT and since ξ̃CT 7→ ṼT (xT−1, ξ̃
C
T ) is continuous almost

everywhere, we get

Ṽ C
T (xT−1, ξ̃

C
T (ξT ))

C→∞−−−→ VT (xT−1, ξT ), Pt − a.s., ∀xT−1.

The optimization problem that defines Ṽ C
t (xt−1, ξ̃

C
t (ξt)) is

Ṽ C
t (xt−1, ξ̃

C
t (ξt)) =


max
xt

〈c̃Ct , xt〉+ ẼC
[
Ṽ C
t+1(xt, ξ̃

C
t+1)|ξ̃Ct = ξ̃Ct (ξt)

]
s.t. Wtxt + T̃Ct xt−1 ≤ h̃Ct ,

, (2.21)

where ẼC is the expectation with respect to the measure P̃Ct and the data (c̃Ct ,Wt, T̃
C
t , h̃

C
t )

is the data stored on the lattice node closest to ξt.

Because of our assumption of fixed recourse, the value functions Vt+1(xt, ξt+1) are

continuous in ξt+1. The same holds for the approximated value functions ξt+1 7→

Ṽ C
t+1(xt, ξ̃

C
t+1(ξt+1)), since they are almost surely constant. For a fixed ξt, define linear

operators LC : C(X) → R and L0 : C(X) → R on the Banach space of almost
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everywhere continuous functions (C(X), || · ||∞) defined on the compact set X as

LC(f) = ẼC
[
f |ξ̃Ct = ξ̃Ct (ξt)

]
and L0(f) = E [f |ξt] ,

it follows from Lemma 2.3 and Villani (2008), Theorem 6.9 that

LC(f)
C→∞−−−→ L0(f), ∀f ∈ C(X), (2.22)

implying that the LC are pointwise bounded. The uniform boundedness principle

(e.g., Bourbaki et al. 1987, Theorem III.2.1) then implies that the LC are equi-

continuous.

We now write

∣∣∣LC (Ṽ C
t+1(xt, ·)

)
− L0 (Vt+1(xt, ·))

∣∣∣ ≤ ∣∣∣LC (Ṽ C
t+1(xt, ·)

)
− LC (Vt+1(xt, ·))

∣∣∣
+ |LC (Vt+1(xt, ·))− L0(Vt+1(xt, ·))|

C→∞−−−→ 0,

where the first term converges to zero because of the induction hypothesis and

the equi-continuity of {LC}C∈N while the second term vanishes due to (2.22). This

establishes that

¯̃V C
t+1(xt, ξ̃

C
t (ξt))

C→∞−−−→ V̄t+1(xt, ξt), Pt − a.s., ∀xt, ∀t ∈ [T ].

By Lemma 2.3 we therefore have that for every realization of ξt the objective

function of Ṽt(xt−1, ξ̃Ctn(ξt)) converges pointwise to the objective function of Vt(xt−1, ξt)

in xt−1. By the concavity of the objective function in xt−1 this convergence is uniform

on compact subsets of the feasible set (see Rockafellar 1970, Theorem 10.8). From

Proposition 7.30 in Shapiro (2009), it follows that for all xt−1

Ṽ C
t (xt−1, ξ̃

C
t (ξt))

Ct→∞−−−−→ Vt(xt−1, ξt),
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establishing (2.20).

We note that given an approximating scenario lattice, the approximate problem

can be solved by SDDP to obtain value function approximations for every time pe-

riod t and lattice node n. Finite convergence to the true solution of the approximate

problem is shown in (Löhndorf et al. 2013, Löhndorf and Shapiro 2019).

To transfer the solution from the scenario lattice back to a solution on the original

process ξ and obtain a solution for an observed trajectory ξ1, . . . , ξT of the original

process, we compute decisions as follows

x∗t ∈ arg max
xt

{
〈ct, xt〉+ ¯̃V C

t+1,n∗(xt, θ) : Wtxt + Ttx̂
∗
t−1 ≤ ht

}
, (2.23)

whereby n∗ = arg min
{
||ξ̃Ctn − ξt||2 : n ∈ [Ct(C)]

}
. This implies that the problem is

solved with the data Dt(θ, ξt) = (vec(Wt(θ, ξt)), vec(Tt(θ, ξt)), ct(θ, ξt), ht(θ, ξt)) deter-

mined by the sample ξt using the post-decision value function xt 7→ ¯̃V C
t+1,n∗(xt, θ)

from the lattice node ξ̃Ctn∗ that is closest to ξt. We refer to this procedure as “round-

ing to a lattice node”. For use in Algorithm 1 below, we define

St(xt−1, ξt, θ) =
{

(x∗t , λ
∗
t ) : x∗t , λ

∗
t are primal and dual optimal solutions of (2.23)

}
.

Rounding to a lattice node is made possible by the fact that each node contains a

value function which can be used to make decisions for all possible resource states

in t.

2.4.2 An Algorithm to Sample Derivatives

As described in the last section, ADDP solves MSLPs time step by time step for

a specific realization of ξ using the dynamic programming principle (2.23). The

expressions for the derivatives found in Theorem 2.3 and Theorem 2.4, which are

based on primal and dual solutions for all scenarios, therefore cannot be evaluated

directly. Also, evaluating the derivative by solving the deterministic equivalent of a
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discrete MSLP is in most cases computationally intractable due to the large number

of scenarios typically represented in a scenario lattice. However, the approximate

value functions effectively define a policy that can be used to generate samples of

optimal decisions, which can be used to approximate (2.9).

In particular, if the conditions for Theorem 2.3 or Theorem 2.4 are fulfilled

and the true optimal policy of the problem is known, then the derivative V ′(θ)

can be approximated based on an i.i.d. sample (ξ̂kt )t∈[T ],k∈[K] of size K ∈ N from

the process ξ = (ξ1, . . . , ξT ). To that end, denote the resulting data as Dkt =

(vec(W k
t (θ, ξ̂kt )), vec(T kt (θ, ξ̂kt )), ct(θ, ξ̂

k
t ), hkt (θ, ξ̂

k
t )), let x∗tk and λ∗tk be the optimal primal

and dual solution for the corresponding scenarios, and define the sample average

estimator

V̂ ′K(θ) = K−1
K∑
k=1

T∑
t=1

〈∇ckt , x∗tk〉+ λ∗tk

(
∇hkt −

d

dθ
T kt x

∗
t−1,k −

d

dθ
W k
t x
∗
tk

)
, (2.24)

where we suppress the dependency of Wt, Tt, ct and ht on θ to avoid cluttered

notation.

We formalize the preceding discussion in Algorithm 1. Apart from θ ∈ Θ and

an initial resource state x0, the algorithm takes as inputs the optimal policy found

by ADDP in the form of the lattice discretization (ξ̃tn)t∈[T ],n∈[Ct] of the process and

a set of value functions ( ¯̃Vtn)t∈[T ],n∈[Ct] – one per node of the scenario lattice. The

algorithm samples trajectories (ξ̂kt )k∈[K],t∈[T ] of the stochastic process (line 7) starting

from the deterministic root node ξ1 = (W1, T1, c1, h1), which is common to all sampled

scenarios. In particular, the function samplet+1(ξ̂
k
t ) returns a realization ξ̂kt+1 of ξt+1

conditional on ξ̂kt . Subsequently, we solve problem (2.23) by finding the lattice node

closest to the sampled scenario (line 5) and then using the respective post-decision

value function stored at that node to make a decision. Note that, as in (2.23), the

rest of the problem data is determined by ξ̂kt .

In some cases the original process is assumed to be a discrete Markov process.

This is for example the case in some applications of the classical SDDP algorithm or
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Data: K ∈ N, x0, θ, (ξ̃tn)t∈[T ],n∈[Ct], ( ˆ̄Vtn)t∈[T ],n∈[Ct]

Result: V̂ ′K(θ)

1 V̂ ′K(θ)← 0

2 for k ← 1 to K do
3 ξ̂k1 = ξ1 = (W1, T1, c1, h1)

4 for t← 1 to T do
5 Find (x∗tk, λ

∗
tk) ∈ St(x∗t−1,k, ξ̂kt , θ).

6 V̂ ′K(θ)← V̂ ′K(θ) + 1
K

[
〈∇ĉkt , x∗tk〉+ λ∗tk

(
∇ĥkt − d

dθ
T̂ kt x

∗
t−1,k − d

dθ
Ŵ k
t x
∗
tk

)]
7 ξ̂kt+1 = (Ŵ k

t+1, T̂
k
t+1, ĉ

k
t+1, ĥ

k
t+1)← samplet+1(ξ̂

k
t )

8 end

9 end
Algorithm 1: Pseudo-code for the computation of derivatives in ADDP.

if a scenario lattice is directly estimated from data without the intermediary step of

a statistical model that is sampled to generate the lattice (see for example Löhndorf

et al. 2013). In this case, by the results in Theorem 2.3 and by the law of large

numbers, V̂ ′K(θ) converges almost surely to V ′(θ) for (almost) all θ ∈ Θ as K →∞.

Note that in these cases the problems can be represented as deterministic equiv-

alents as discussed in Section 2.3. However, even for medium sized lattices with

more than a few stages the corresponding deterministic equivalents are too large.

Since the approximate value functions found by ADDP converge to the true value

functions of the problem in finitely many iterations (Löhndorf et al. 2013, Löhndorf

and Shapiro 2019), (2.24) can directly be used to approximate derivatives of the

optimal value.

When approximating the continuous process ξ by a scenario lattice ξ̃, we obtain

policies that are optimal for ξ̃, instead of the actual process ξ. Hence, the resulting

derivatives will be an approximation of the real ones, which, if the approximation of

ξ by ξ̃ is good, can be reasonably expected to be sufficiently accurate. We formal-

ize this intuition for the case of compactly supported randomness in the following

theorem showing that the approximated derivatives of the approximated problem(
ˆ̃V
C(r)

K(r)

)′
(θ) converge to the real derivatives of the problem with continuous random-

ness as the number of lattice nodes Ct(C) in every stage of the approximate problem
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and the number samples for the computation of (2.24) go to infinity.

Theorem 2.6. Suppose the conditions of Theorem 2.4 and Theorem 2.5 hold and

define sequences C(r)
r→∞−−−→∞ and K(r)

r→∞−−−→∞. Then

lim
r→∞

(
ˆ̃V
C(r)

K(r)

)′
(θ) = V ′(θ), P− a.s.

Proof. Proof. For a given realization ξ̂1, . . . , ξ̂T of the continuous stochastic process

ξ, we define the rounded problems as in (2.23)

Ṽ
C(r)
t (xt−1, ξ̂t) = max

xt

{
〈ĉt, xt〉+ ¯̃V

C(r)
t+1,n∗(xt) : Ŵtxt + T̂txt−1 ≤ ĥt

}
, (2.25)

with n∗ = arg min
{
||ξ̃C(r)

tn − ξ̃t||2 : n ∈ [Ct(C(r))]
}

and compare their solutions x̃C∗t

with the solutions x∗t of the continuous problem for the sample path.

From Theorem 2.5 we know that

¯̃V
C(r)
t+1 (xt, ξ̃

C(r)
t (ξt))

r→∞−−−→ V̄t+1(xt, ξt), ∀xt, P− a.s.,

which, together with Lemma 2.3, implies that the objective function of Ṽ C(r)
t (xt−1, ξ̃

C(r)
t (ξt))

converges almost surely to the objective function of Vt(xt−1, ξt) as the lattice approxi-

mation gets finer. Since the objective functions are concave they converge uniformly

on compact sets (see Rockafellar 1970, Theorem 10.8).

For the first stage, the constraints of problem (2.25) and V1(x0, ξ1) are the same

and therefore it follows from Proposition 7.30 in Shapiro (2009) that the first stage

solutions x̃C∗1 converge to a first stage solution x∗1.

Proceeding by induction over t, we notice that for a given sample ξ̂1, . . . , ξ̂T the

feasible sets of the problems Ṽ C(r)
t and Vt differ due to the difference in the respec-

tive last stage decisions xt−1 and x̃C∗t−1 resulting in different right hand sides of the

problems. Denote the feasible set of Vt by Ct and the feasible set of Ṽ C(r)
t by C̃rt .

Consider an arbitrary point x with distance ε > 0 to the boundary of Ct. Because of
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Hoffman’s Lemma (see Shapiro et al. 2014), we get that, eventually, x ∈ Ct ∩ C̃rt or

x /∈ Ct ∪ C̃rt , due to the fact that by the induction hypothesis x̃C(r)∗
t−1 converge almost

surely to x∗t−1. Since the complement of the boundary of Ct is dense in RNt , it follows

by Proposition 7.31 in Shapiro (2009) that

〈ct, xt〉+ ¯̃V
C(r)
t+1,k(xt) + 1C̃rt (xt)

epi-converges to

〈ct, xt〉+ V̄t+1,k(xt) + 1Ct(xt)

as r → ∞. Therefore, x̃C∗t converge to an optimal solution x∗t due to Proposition

7.30 in Shapiro (2009).

The realizations of randomness where there is a basis change are the only ones

where the optimal solution x∗t is potentially not unique. This implies that the

solutions converge to a unique solution of the continuous problem almost surely.

An analogous argument shows that the dual solutions λC(r)∗
t converge to the dual

solutions of λ∗t .

Now we can write

∣∣∣∣V ′(θ)− ( ˆ̃V
C(r)

K(r)

)′
(θ)

∣∣∣∣ ≤ |V ′(θ)− (Ṽ C(r))′(θ)|+
∣∣∣∣(Ṽ C(r))′(θ)−

(
ˆ̃V
C(r)

K(r)

)′
(θ)

∣∣∣∣ . (2.26)

The first term on the right side of (2.26) converges to zero by an application of the

dominated convergence theorem, since the primal and dual solutions x̃C(r)∗
t , λ̃C(r)∗

t

converge almost surely to x∗t and λ∗t respectively and the derivatives ∇c, d
dθ
Tt, d

dθ
Wt,

and ∇ht are bounded by our assumption on the compact support of all involved

random variables and the smoothness of the coefficient functions.

To see that the second term converges to zero almost surely, note that by the

boundedness of the random variables, Hoeffding’s inequality establishes that

P

(∣∣∣∣(Ṽ C(r))′(θ)−
(

ˆ̃V
C(r)

K(r)

)′
(θ)

∣∣∣∣ > K(r)−1/4
)
≤ 2e−γ

√
K(r)
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for some γ > 0. Since
∑

r e
−γ
√
K(r) < ∞, it follows from the Borel-Cantelli lemma

(Billingsley 1986, Theorem 4.3) that

ˆ̃V
C(r)

K(r)

r→∞−−−→ (Ṽ C(r))′(θ), P− a.s.,

which finishes the proof.

Finally, we remark that if the second moment of V ′K(θ) exists and is positive,

then, by the central limit theorem,

√
K

σ
(V̂ ′K(θ)− V ′(θ)) d→ N (0, 1), as K →∞, (2.27)

where
d→ denotes convergence in distribution and σ > 0 is the standard deviation

of V̂ ′K . This allows for the construction of confidence regions around the sampled

derivatives V̂ ′K(θ). The existence of second moments, which is a condition for the

application of the central limit theorem, can, for example, be established by the

boundedness of optimal solutions in combination with ∇θDt ∈ L1(Ω,Ft) for all t ∈ [T ].

These conditions are usually fairly easy to check in real-world examples as will be

demonstrated in Section 2.5.

2.5 Numerical Examples

In this section, we calculate derivatives for optimal values in two examples. As

benchmarks, we use analytical solutions in one of the problems and näıve estimates

for the derivatives, which are based on difference quotients.

More specifically, for a problem with an optimal value V (θ), we calculate the

symmetric difference quotient

V̂ ′DQ(θ) =
V (θ + ε)− V (θ − ε)

2ε
(2.28)
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as an approximation of the derivative. We use the symmetric difference, since it

yields a more stable estimate of the derivative than the one-sided difference quotient.

Nevertheless, the expression (2.28) is susceptible to several distortions. Firstly, for

any given ε > 0, V̂ ′DQ(θ) is only a (biased) approximation of V ′(θ), which gets better as

ε→ 0. Secondly, for small ε, errors in the evaluation of V̂ ′DQ are amplified due to the

numerical instability of the expression, which arises because of the division by the

small number ε. Thirdly, the values of V (θ±ε) are calculated using a sampling-based

algorithm and are therefore random, which introduces another level of inaccuracy.

Dealing with these problems involves finding an ε which represents a good trade-

off between the bias introduced by larger values of ε and the variance introduced by

smaller levels of ε. Unfortunately, there is no exact method to find an optimal trade-

off between these two opposing effects. We choose ε using the step size estimator

ε = ΨS−
2
5

discussed in Section 7.1 of Glasserman (2004) under the name of εC,ii by setting the

unknown constant Ψ to 1. In the above formula n is the number of samples used to

calculate V (θ + ε) and V (θ − ε) by the ADDP lower bound and is set to S = 10, 000

in all our examples. Furthermore, we mitigate the problem of randomness in the

estimate by using the same sample ξ̂ for the evaluation of V (x + ε) and V (x − ε).

As argued in Shapiro et al. (2014), this reduces the variance of the estimate V̂ ′DQ,

provided that the covariance of V (x+ ε) and V (x− ε) is positive, which is obviously

true in our case.

Furthermore, we benchmark our method against the Richardson extrapolation

(RE) formula

V̂ ′RE(θ) =
1

3

(
4
V (θ + ε

2
)− V (θ − ε

2
)

ε
− V (θ + ε)− V (θ − ε)

2ε

)
,

that is an alternative to V̂ ′DQ which sometimes decreases the bias of the näıve differ-
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ence quotient as argued in Glasserman (2004).

All computations presented in this section have been performed with MATLAB

and the stochastic optimization problems have been solved using the MATLAB

interface of QUASAR (see www.quantego.com), which provides an implementation

of ADDP as a JAVA library.

2.5.1 The Newsvendor Problem

We first study a two-stage newsvendor problem, which is a classical example in

stochastic optimization reminiscent of basic procurement and inventory problems.

Although the problem only has two stages, it is still useful to us, since it is one of

the few stochastic optimization problems with a closed-form solution, allowing us

to compare approximated derivatives to the true derivatives of the optimal value.

The problem is set up as follows: The newsvendor decides in the morning how

many newspapers she will purchase from the publisher, not knowing the demand

during the day. She sells the papers to her clients for a known price, and excess

newspapers have to be discarded at the end of the day. The problem is cast as a

two-stage stochastic optimization problem: in the first stage the newsvendor decides

how many papers to order, in the second stage (knowing the demand) she decides

how many papers to sell and how many to discard.

Let xb be the amount of ordered newspapers, xs be the amount of papers sold,

and D be the random demand during the day. Then the problem can be written as

the following two-stage stochastic linear problem

V =



max
xb,xs

−cxb + E[pxs]

s.t. xs ≤ xb, a.s.

xs ≤ D, a.s.

xb ≥ 0,

where p is the sales price and c is the price the newsvendor pays to the publisher.
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The Lagrangian of the problem is

L(xb, xs, λ1, λ2, λ3) = −cxb + λ1xb + E [pxs + λ2(xb − xs) + λ3(D − xs)] . (2.29)

Assuming that D ∼ F , it follows from elementary calculation (see Birge and

Louveaux 2011) that the optimal solution and optimal value of the problem are

x∗b = F−1
(
p− c
p

)
, V = −cx∗b + p

∞∫
−∞

min(x, x∗b) dF (x), (2.30)

respectively.

For our computations, we will use p = 1, c = 0.2 and a normal distribution with

mean µ = 100 and σ = 20 to model the random demand D. For later use, we write

D = µ+σX, where X ∼ N(0, 1). We discretize the continuous demand process into a

scenario lattice with 100 nodes in the second stage using the subgradient method in

Bally and Pagès (2003) for 100,000 iterations. The ADDP algorithm is terminated

after 100 iterations for all the calculations, which yields an average gap of below 1%

between the ADDP upper bound and sampled value of the policy (lower bound)

based on 10,000 samples.

We start by calculating derivatives with respect to the sales price p, which is

an example where θ = p appears in the objective function coefficients. For this

purpose, we use the linear function p 7→ p, which clearly fulfills the requirements of

Theorem 2.3 and Theorem 2.4. Furthermore, the setup of the problem together with

the choice of the normal distribution guarantees the existence of second moments

required to compute confidence intervals. According to these results, we have

V ′(p) =
∂

∂p
L(x∗b , x

∗
s, λ1, λ2, λ3) = E[x∗s],
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Figure 2.2: Derivative of the value function V with respect to sales price p as a function of p
evaluated at 48 equally spaced points between 0.1 and 5. The bold black line is the true derivative.

where x∗s are the optimal sales decisions. We obtain the approximation

V ′(p) = E[x∗s] ≈ K−1
K∑
k=1

x∗ks = V̂ ′K(p)

by drawing K =10,000 demand samples from D ∼ N(µ, σ) and using the optimal

policy found by ADDP in the scenario lattice to calculate optimal solutions x∗ks. Note

that the symbol ≈ signifies that the right hand side of the equation approximates

the left hand side.

Figure 2.2 shows the derivative of the value function with respect to the sales

price. The bold black curves correspond to the true derivative computed using the

analytical solution. The plot on the left illustrates the results using the sampling-

based method, the plot in the middle displays the numerical derivative computed

using the difference quotient method, while the right plot shows the results of the

Richardson extrapolation. The green regions are the confidence intervals around

the respective solutions, which are calculated using (2.27) for V̂ ′K(p) and normal

confidence regions for the difference quotient with standard deviations calculated

from 30 independent evaluations of V̂ ′DQ, each using common random numbers to

compute V̂ ′DQ for the range of displayed θs.

The shape of the derivative with respect to p can be interpreted as follows: As
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the sales price of the newspapers increases, the number of newspapers bought by

the optimal policy increases. The value of this decision at first grows quite quickly,

as the revenue in the second stage grows superlinearly as long as the probability of

ordering too much is still relatively small. Asymptotically, the probability of having

ordered too much goes to 1 while ∂
∂p
x∗b → 0 as p → ∞ and therefore the increase in

objective is dominated by the linear growth of the second stage revenue, which in

turn leads to a constant V ′(p). More specifically, the optimal value converges to

−x∗bc+ pE[D],

with its derivative with respect to p converging to E[D] = 100, i.e., a constant.

The plot shows that all three methods perform reasonably well in capturing

this pattern, but V̂ ′K(p) is most precise in the sense that absolute deviations from

the actual derivative are smaller for the ADDP-based method (0.1542 on average)

than for the method based on the difference quotients (0.5394 on average) and for

the Richardson extrapolation (0.3544 on average). Furthermore, we see that the

confidence bounds for V̂ ′K(p) are narrower than those of V̂ ′DQ(p), indicating that the

sampling-based estimate is more reliable. The Richardson extrapolation performs

worst as it increases the variance of the estimate without any conceivable reduction

in bias.

Turning to the issue of computational cost, we note that the computation of V̂ ′DQ

requires us to solve the problem twice, while the sampling based method in (2.24)

requires only one solution of the stochastic optimization problem. Therefore, we

expect the runtime of the computation of V̂ ′DQ to be roughly twice of the runtime

required to compute V̂ ′K . To obtain a measurement, we recorded the runtimes re-

quired for both estimates for the 48 measurements of V̂ ′DQ and V̂ ′K depicted in Figure

2.2. In line with the above, we find the ratio between the average computation time

of V̂ ′DQ and V̂ ′K to be r = 1.91± 0.21. This confirms that V̂ ′K is computationally supe-

rior to V̂ ′DQ. Since the Richardson extrapolation formula is based in two difference
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Figure 2.3: Derivative of the value function V with respect to σ as a function of σ evaluated at
71 equally spaced points between 5 and 40. The bold black line is the true derivative.

quotients, it requires the solution of four stochastic optimization problems and thus

quadruples the computational effort required to compute V̂ ′K .

Next, we calculate the derivative of the optimal value function with respect to

the standard deviation of the random demand, which is a parameter on the right-

hand side of the constraints of the optimization problem. To that end, we use the

linear function in σ 7→ µ + σX, which fulfills the requirements of Theorem 2.3 and

Theorem 2.4 as well as the conditions on the moments required for (2.27).

Taking the derivative of the Lagrangian with respect to σ yields

V ′(σ) =
∂

∂σ
L(x∗b , x

∗
s, λ
∗
1, λ
∗
2, λ
∗
3) = E[λ∗3X], (2.31)

where λ∗3 is the optimal dual solution corresponding to the constraint xs ≤ D. Hence,

the derivative with respect to σ can be obtained by multiplying λ∗3 with the realiza-

tions X ∼ N(0, 1), which define D. As before, to calculate derivatives, we approxi-

mate

V ′(σ) = E[λ∗3X] ≈ K−1
K∑
k=1

λ∗3tkX
k = V̂ ′K(σ).

The results of the comparison between V̂ ′K(σ), V̂ ′DQ(σ) and V̂ ′RE(σ) is shown in

Figure 2.3. We again use K = 10,000 samples for the estimation of V̂ ′K(σ) and

computed the confidence intervals for V̂ ′DQ(σ) and V̂ ′RE(σ) based on 30 independent



Envelope Theorems for Multi-Stage Linear Stochastic Optimization
2.5. Numerical Examples 67

repetitions of the calculation using common random numbers for sampling within

each repetition.

The derivative is constant and negative with a value of about −0.28. Inspecting

(2.31), we notice that the dual multiplier λ∗3 is either 0, when x∗b > D or equal to p if

x∗b ≤ D. Hence, multiplication with λ∗3 effectively skews the symmetric distribution

of X and results in an overall negative value of the expectation. The fact that

the derivative is constant, follows from (2.30), which implies that the optimal order

quantity is always the same quantile of the demand distribution, i.e., λ∗3 does not

change with increasing volatility and consequently the expectation remains constant.

Looking at Figure 2.3, we see that our method clearly outperforms both bench-

marks in terms of accuracy and variance of the estimator. In particular, the average

absolute errors of V̂ ′K(σ) of 0.0064 compare favorably to 0.0151 for the difference quo-

tient and 0.0228 for the Richardson extrapolation. Lastly, we note that the results

for the difference quotient are slightly upward biased, which is not the case for the

Richardson extrapolation. However, since this comes at the cost of a significantly

increased variance and a higher computational cost, we disregard this method in our

further calculations.

As mentioned above, we solve MSLPs using scenario lattices as discretizations

of the underlying stochastic process but use simulations from the actual process, in

this case from the normal distribution, to calculate the derivatives by rounding to

the nearest lattice node as described in Section 2.4. In the following, to evaluate

the merit of this strategy, we systematically compare the errors (relative to the

true derivatives), when computing V̂ ′K(p) and V̂ ′K(σ) based on simulations from the

lattice and the true process for a varying number of nodes in the lattice and a varying

number of samples used to calculate the derivatives. In particular, we use 50, 100,

200 lattice nodes per stage and 1,000, 10,000, and 100,000 samples to compute

derivatives.

Since the calculated derivatives are subject to random variations, we repeat
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calculations 30 times, each time varying the parameter p from 0.3 to 5 in steps of

0.1 and the parameter σ from 5 to 40 in steps of 1. We repeat this analysis for all

combinations of nodes and number of samples.

We define

∆p,s
lat =

L∑
l=1

|V̂
′s
K,lat(pl)− V ′(pl)|, ∆p,s

proc =

L∑
l=1

|V̂
′s
K,proc(pl)− V ′(pl)|,

where pl are the prices for which the derivatives V̂
′s
K,lat and V̂

′s
K,proc are estimated

based on samples from the lattices and the processes, respectively. We report the

differences in average errors, i.e.,

∆p =
1

30

30∑
s=1

∆p,s
lat −∆p,s

proc

and test whether these quantities are significantly different from 0 using unpaired

two-sample t-tests. The values for ∆σ are computed in an analogous fashion.

Furthermore, we report the frequency F lat,proc with which the true derivative of

the optimal value is outside the symmetric 98% confidence bounds in (2.27) around

the estimates ∆p,s
lat,proc and ∆σ,s

lat,proc. Deviations from the expected 2% violations

occur for two reasons: Firstly, we solve an approximate (discrete) problem, which

introduces a bias to the estimates. Secondly, when sampling from the lattice the

samples do not come from the true distribution but from an approximation. By

sampling from the actual normal distribution, we can avoid the second source of

distortion.

The results of the analysis are reported in Table 2.1. Inspecting the outcomes

for ∆p,σ, we see that the numbers are mostly positive, implying that the errors are

larger when sampling from the scenario lattice. The only exception are two values

for 50 and 100 nodes and 1,000 samples, which are the cases where the variance of

the estimates is the highest, due to the relatively small number of samples. Corre-

spondingly, we note that these two values are not significantly different from 0. As
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the number of samples increases the estimates from the process perform markedly

better and differences are significant at least at the 5% level and unambiguously at

the 0.1% level for estimates based on 100,000 samples. We conclude that the bias in

the estimates can be consistently reduced when sampling from the true underlying

stochastic process by rounding to the next lattice node as described in (2.23).

Turning our attention to the violations F lat,proc in the two right panels of Table

2.1, we observe that both F lat and F proc are decreasing in the number of nodes.

Having more nodes improves the quality of the approximation by the scenario lat-

tice and thereby reduces the bias between the true and the approximated solution,

bringing F closer to its correct value of 2%. Furthermore, we observe that F in-

creases in the number of samples used to calculate the derivatives. The reason for

this is that confidence bands get narrower when the number of samples increases,

and the discretization bias is therefore more often detected. Comparing the values

for lattices and the process, we notice that, as expected, confidence intervals for

the estimates based on the samples from the process are more accurate than those

computed from lattice samples.

We also note that for both lattice- and process-based estimates, the absolute

difference between the analytical derivative and the sampled derivative reduces with

increasing sample size and with an increased number of nodes in the scenario lat-

tice, both of which improve the approximation for obvious reasons. Results of this

analysis are available upon request.

Summarizing, we remark that, if possible, it is preferable to sample from the

true underlying process instead of from the discretization used to solve the stochas-

tic optimization problem. We view the possibility to do so as a major advantage of

SDDP-type solution methods, which yield policies that can be evaluated for arbi-

trary stochastic processes by rounding.
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Nodes ∆p,σ 100 × F lat 100 × F proc

Samples 1k 10k 100k 1k 10k 100k 1k 10k 100k

Price
50 -0.1238 0.2953∗ 0.5875∗∗∗ 2.8 7.3 21.7 2.6 6.1 17.6
100 -0.2516 0.2904∗ 0.7348∗∗∗ 2.3 4.7 16.7 2.7 3.9 8.5
200 0.1843 0.4501∗∗∗ 1.1861∗∗∗ 2.2 3.5 15.8 1.9 2.4 4.4

Std
50 0.0177 0.0725∗∗∗ 0.0821∗∗∗ 5.7 14.9 55.0 5.3 8.5 42.6
100 0.0216 0.0362∗∗∗ 0.0568∗∗∗ 5.3 8.9 40.7 4.6 6.3 22.6
200 0.0135 0.0099∗ 0.0261∗∗∗ 4.9 5.8 19.9 5.0 5.3 9.0

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2.1: Comparison of average absolute errors for derivatives with respect to sales price and
standard deviation of demand when sampling from the scenario lattice and the process in the first
panel. Percentage violations of the confidence bounds in panel 2 and 3.

2.5.2 Gas Storage

In this section, we study the problem of gas storage pricing and operation on the

spot market for natural gas hosted on the National Balancing Point (NBP) in the

United Kingdom. The aim is to compute the value of owning a storage plant for one

year based on optimal operational and trading strategies, which capitalize on the

yearly seasonality of gas prices as well as on statistical arbitrage from short-term

fluctuations in prices.

We formulate the problem as the following MSLP with random spot prices for

gas Pt in stage t

V =



max
xbt ,x

s
t ,lt

∑T

t=1E
[
Pt(x

s
t − xbt)

]
s.t. lt = lt−1 + ηxbt − η−1xst , t = 2, ..., T

lt ≤ C, t = 1, ..., T

xbt , x
s
t , lt ≥ 0, t = 1, ...T ,

,

where xst and xbt correspond to withdrawn and injected (sold and bought) quantities

in stage t, respectively, lt denotes the storage level, and all the constraints are

required to hold almost surely. Furthermore, we assume that the storage has a

maximal storage capacity of C and an efficiency factor η ∈ [0, 1]. For the purpose of

our computations, we use C = 1 and η = 1, if not stated otherwise.
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We model the stochastic gas spot prices as a geometric Ornstein-Uhlenbeck pro-

cess (see Schwartz 1997), with time-dependent mean reversion levels µt given by the

following stochastic differential equation

dPs = κ
(
µs − log(Ps)

)
Psds+ σPsdWs,

µs = A sin(2πs+ φ),

where time is normalized in such a way that one year corresponds to a time difference

of 1. Note that the model captures yearly seasonalities in the gas price by mean

reversion to the trigonometric function µs, where A is the amplitude and φ the phase

of the function, while the periodicity is fixed to one year.

As is common in pricing, we work with the risk-neutral measure by adding a

constant market price of risk λ to the deterministic trend (see Schwartz 1997), i.e.,

dPs = κ
(
µs − log(Ps)− λ

)
Psds+ σPsdW

∗
s , (2.32)

where dW ∗
t is the increment of the Brownian motion under the equivalent martin-

gale measure. Solving (2.32) using Itō’s Lemma, we find that Ps is log-normally

distributed with

Ps = P0 exp

[
e−κs + κ

∫ s

0

eκ(t−s)µ∗tdt+ σ

∫ s

0

eκ(t−s)dW ∗
t

]
,

where µ∗t = µt − σ2

2κ
− λ. The arbitrage-free futures prices implied by the model are

given by

log(Fs) = E0[Ps] = E0[ log(Ps)] + 2−1 Var0(log(Ps))

= log(P0)e
−κs + κ

∫ s

0

eκ(x−s)µ∗sdx+
σ2

4κ

(
1− e−2sκ

)
= log(P0)e

−κs +
κA

4π2 + κ2

(
−2π

(
cos(2πs+ φ)− e−κs cos(φ)

)
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Figure 2.4: Fit of the price model (2.32) to the actual futures curve (left) and a plot of 10,000 paths
from the calibrated process (right) in weekly resolution for one year with the red line representing
the average price.

+ κ
(
sin(2πs+ φ)− e−κs sin(φ)

))
−
(
σ2

κ
+ λ

)
(1− e−κs) +

σ2

4κ

(
1− e−2κs

)
,

(2.33)

where E0 and Var0 are the expectation and the variance under the risk-neutral

measure.

We calibrate the parameters of the model by fitting the implied futures prices

(2.33) to an observed monthly future price curve for delivery at NBP in April 2018

to March 2019 from the 29th of March of 2018.2 More specifically, we minimize the

absolute difference between observed and implied prices with the function multistart

from the MATLAB global optimization toolbox using the spot price on the 29th of

March as P0.

The calibration results in parameter values of

(κ,A, σ, λ, φ) = (0.189, 4.993, 0.199,−3.407, 5.203).

The fit of the model to the observed futures curve seems satisfactory for our purposes

2Data source:
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and is depicted in Figure 2.4 on the left and a plot of 10,000 simulations from the

fitted process can be found in the right panel of the same figure.

For our computations, we discretize (2.32) to weekly time steps and assume a

planning horizon from April 2018 to March 2019 (52 weeks) with the deterministic

state being the 29.03.2018. The resulting lattice is built using 100, 000 simulations

from the process and 100 nodes per non-terminal stage. This results in a rather

large stochastic optimization problem with 53 stages. The ADDP algorithm was

terminated after 100 iterations for all the calculations, which yields an average gap

of below 1% between the ADDP upper bound and sampled value of the policy (lower

bound) based on 10, 000 samples.

As a first exercise, we consider the derivative of the optimal value with respect

to the amplitude A of the seasonal variation, i.e., we calculate the sensitivity of

the value of the gas storage with respect to the magnitude of the summer/winter

spread in gas prices. To this end, we calculate the derivative of the Lagrangian of

the problem with respect to A arriving at

V ′(A) = E

[
T∑
t=1

(xs∗t − xb∗t )
∂

∂A
Pt

]
≈ K−1

K∑
k=1

T∑
t=1

(xs∗kt − xb∗kt)
∂

∂A
Pt = V̂ ′K(A),

with xb∗kt and xs∗kt the optimal buy and sell decisions in scenario k and

∂

∂A
Pt = κPt

∫ t

0

eκ(s−t)sin(2πs+ φ)ds

=
κPt

4π2 + κ2

(
−2π

(
cos(2πt+ φ)− e−κt cos(φ)

)
+ κ

(
sin(2πt+ φ)− e−κt sin(φ)

))
.

Clearly, all the conditions for Theorem 2.4 are fulfilled in this example due to the

smoothness of the involved functions and the distributional assumptions in (2.32).

In Figure 2.5, we compare V̂ ′K(A) using K =10,000 samples with the estimates

V̂ ′DQ(A). Since A is the amplitude of the time-dependent mean reversion level µt,

it influences the value of the storage in two ways: Firstly, an increase in A makes

statistical arbitrage based on price spreads between summer and winter more prof-
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Figure 2.5: Comparing ∂V
∂A calculated via sampling (left) and via the difference quotient method

(right).

itable. Secondly, an increase in A increases the potential for arbitrage trades: for a

low A, only a few weeks can be traded profitably, while the efficiency losses cannot

be recovered for the rest of the weeks. As A increases, this effect diminishes and the

optimal policy trades more. Both effects in combination result in the positive and

increasing derivative that can be observed in Figure 2.5.

Although, unlike in the newsvendor example, we do not have an analytic solution

as reference, it seems obvious that V̂ ′K(A) captures the true shape of V ′(A) better than

V̂ ′DQ(A) as the latter violates monotonicity and shows significant local variability,

which is unlikely to be a feature of the actual derivative. This is also reflected in the

wider confidence bounds for the estimate based on the difference quotient, which

are again based on 30 independent evaluations using common random numbers as

in the newsvendor example.

Furthermore, we note that V̂ ′DQ(A) is consistently upwards biased. While the

bias could be corrected with a smaller ε (see discussion above), this would lead to

an even higher variance of the estimate. This shows that there is no choice of ε that

leads to a result which is comparable in quality to V̂ ′K(A) both in terms of bias and

variance.

Finally, we calculate the derivative with respect to the flow efficiency factor η.
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Figure 2.6: Comparing ∂V
∂η calculated via sampling (left) and via the difference quotient method

(right).

Taking the derivative of the Lagrangian of the problem with respect to η yields

V ′(η) = E

[
T∑
t=1

λ∗t (x
b∗
t +

1

η2
xs∗t )

]
≈ K−1

K∑
k=1

T∑
t=1

λ∗kt

(
xb∗kt +

1

η2
xs∗kt

)
= V̂ ′K(η),

where λ∗t are the optimal dual solutions assigned to the storage balance equations.

Note that the above derivative is the derivative with respect to a parameter in the

matrix, i.e., the left-hand side of the constraints. As above, we use K =10,000 to

estimate V̂ ′K(η) and 30 independent evaluations using common random numbers to

compute the confidence bands for V̂ ′DQ(η).

The results of the analysis are depicted in Figure 2.6. Up to an efficiency of

around 87%, the losses from using the storage outweigh the potential gains that

can be made by arbitraging on time spreads in the prices. Therefore, the optimal

value as well as the derivative of the optimal value are 0. As η increases beyond

this threshold, the storage starts expanding its operation to capitalize on more and

more time spreads which get increasingly profitable. This explains the steep rise

in V ′(η) in the region from 0.87 to 0.9. Once all possible time spreads are used by

the optimal policy, further increases in η yield a more or less constant increase in

V (η). The comparison of the two methods to compute derivatives points to the same

conclusion as the previous result. V̂ ′DQ(η) is biased and at the same time has a higher
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variance than V̂ ′K(η), which leads to the conclusion that V̂ ′K(η) is clearly superior.

2.6 Conclusion

In this paper, we propose a method to calculate derivatives of value functions of

MSLPs at points where these functions are differentiable. We base our results on

classical envelope theorems and use some novel findings on the smoothness of the

optimal values of linear optimization problems to establish that the value functions

in question are differentiable almost everywhere. We use the latter property of

differentiability almost everywhere to establish that the derivatives computed with

our method are valid with probability one. To apply these results to SDDP-type

decomposition methods for Markovian problems, we propose a discretization method

based on scenario lattices. We show that, under certain regularity conditions, the

sensitivities computed from discrete approximations of the problems converge to

the true sensitivities of the original problem as the approximation of the continuous

randomness gets finer.

The simple two-stage newsvendor example in Section 2.5 demonstrates that our

method clearly outperforms a näıve computation of the derivative via the difference

quotient in terms of average errors, the variance of the estimates, and the required

computation time. These findings extend to the more elaborate gas storage opti-

mization example in Section 2.5.2, which shows that the method works well on large

problems with many stages.

Another interesting take-away of our numerical analysis is that the estimates

improve when we use the real stochastic process instead of the scenario lattice to

generate samples in Algorithm 1. In particular, we observe that the former esti-

mates lead to significantly smaller errors on average and to more reliable confidence

intervals.

This paper opens some avenues for further research. In particular, it would be

interesting to use the results from Section 2.2 to study second derivatives as well



Envelope Theorems for Multi-Stage Linear Stochastic Optimization
2.6. Conclusion 77

as mixed derivatives of MSLPs based on existing second-order envelope theorems.

This could prove useful in the context of financial risk management, which is often

based on Greeks that represent second derivatives of option values. A prominent

example is gamma, which is the second derivative of the value of a contingent claim

with respect to the value of the underlying.

Furthermore, it would be interesting to apply the methods developed in the

paper to practical problems. In particular, pricing and hedging problems in finance,

where there is no analytical solution for the value of certain contracts, might be a

rewarding topic for further study.



Chapter 3

Economies of Scope for Electricity

Storage and Variable Renewables

written in collaboration with Prof. Dr. David Wozabal1

In this paper, we investigate whether and under which conditions jointly owning

a variable renewable source of electricity (VRES) and an electricity storage gener-

ates economies of scope in competitive electricity markets. Using a simple stochastic

optimization model that assumes frictionless markets, we analytically show that no

economic benefit arises from combining the two assets. This finding is in contradic-

tion to large parts of the literature, which claim that it is in the economic interest

of owners of VRES to additionally own electricity storage. We also identify cir-

cumstances where our argument does not hold and the combination of storage and

VRES could theoretically make economic sense on the level of individual agents. In

the last part of the paper, we demonstrate in a numerical case study of the German

market that even in cases where our theoretical results do not hold, tying together

storage and VRES may produce suboptimal results.

1Publication History: Initially submitted to IEEE Transactions on Power Systems on
26.11.2019. Under review for a second round of revisions as of 12.05.2020.
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3.1 Introduction

The increasing share of variable renewable sources of electricity (VRES) such as wind

and solar power has brought about a considerable change to electricity systems in

many countries. One challenge accompanying this change are unforeseen and costly

imbalances created by VRES, which, in the worst case, could even threaten grid

stability. Electricity storage offers the flexibility to mitigate these problems and

stabilize electricity systems, potentially generating welfare gains for the respective

societies (Kondoh et al. 2000).

Many authors take this logic one step further and postulate that owners of VRES

can generate economies of scope from owning electricity storage, i.e., that the above

argument extends from the system level to the portfolio level of individual agents

(Zhao et al. 2015). One prevailing justification of this idea is that a storage would

serve as a buffer, assisting the VRES to adjust its outputs in order to honor its

commitments to the market thereby avoiding balancing costs (Garcia-Gonzalez et al.

2008). Another common argument for joint ownership is based on the fact that

owners of variable production cannot adapt their production to take advantage of

fluctuating market prices (Bathurst and Strbac 2003, Castronuovo and Peças Lopes

2004). A tethered storage could thus help to sell electricity when prices are high

instead of at random times when the VRES produces.

Although the above arguments are widely accepted, little structured thought has

been given to whether and under which circumstances joint planning of storage and

VRES constitutes an optimal use of the storage asset. The aim of this paper is to

fill this gap and provide the community with tools for a principled analysis as to

when there are economics of scope for joint ownership and operation of storage and

VRES.

We focus on competitive markets and price-taking agents that have no market

power. Apart from this being by far the most common setting in the literature on

economics of scope of energy storage and VRES, this choice is motivated by the fact
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that while all of renewable production combined frequently influences power prices,

owners of single VRES plants are typically small players that are unlikely to be able

to exert market power. Furthermore, we restrict our analysis to the profits of single

players, i.e., we do not contribute to the literature on welfare implications of storage

as for example in Schill and Kemfert (2011), Sioshansi (2014). However, we think

that our results inform such a discussion.

In Section 3.2, we review the literature and categorize papers that claim that

there are economic advantages of joint ownership and operation for single agents. In

Section 3.3, we argue that in a broad range of circumstances there is no advantage in

joint ownership. In particular, using a simple, yet quite general model, we show that

if the storage unit has full access to all markets, markets are liquid, and the balancing

market is accessible until imbalances of the VRES are known, there is provably

no benefit from combining VRES with storage. In Section 3.4, we highlight that

in certain circumstances such as market illiquidity and certain regulatory regimes

restricting the market access of storage, the theoretical arguments in Section 3.3

cannot be applied and economies of scope are theoretically possible. Finally, in

Section 3.5, we use a numerical example comparing the joint operation of a battery

and a wind farm with separate operation of the two assets on the German spot and

reserve markets to demonstrate that, even in settings where the absence of economies

of scope cannot be formally proven, it is often suboptimal to tie the operation of

a storage unit to a VRES. Section 3.6 concludes the paper and argues that the

results of the paper provide a blueprint for a more careful consideration of potential

economies of scope from combining energy storage with VRES.

3.2 Literature Survey

There is a large body of recent literature investigating the merits of combining

VRES with electricity storage. The settings in these papers vary from optimally de-

signing island systems without any grid connection (Ntomaris and Bakirtzis 2016,
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Papaefthymiou et al. 2010, Alimisis and Hatziargyriou 2013, Mason 2015) to deter-

mining the socially optimal amount of storage for a given economy (Dong et al. 2017,

Pflaum et al. 2017, Ghofrani et al. 2013, Kocaman and Modi 2017), and also includes

a large stream of literature that focuses on the gains that individual agents can make

by the combination of these assets. In this section, we compile a reasonably large

collection of papers that fall in the last category and demonstrate that the premise

that jointly owning and operating VRES and storage can yield significant economies

of scope for the owners of the assets is common and often goes unchallenged.

Since there are literally hundreds of papers on this topic, we do not claim our

selection to be even close to complete. Instead, in order to demonstrate the perva-

siveness of the idea of economies of scope, we select papers that give a representative

sample of the different modeling choices, are published in leading journals, and have

a good impact in terms of citations.

The selected papers can be found in Table 3.1. All listed papers claim economies

of scope for the joint operation of storage and renewables which are either based on

ad-hoc and often unrealistic assumptions or operate in settings where, according to

the results in this paper, there should be no advantage of joint planning.

We have categorized these papers according to the type of optimization problem

they address, what markets they consider, the risk preferences of the decision maker,

and whether the authors explicitly compare the advantage of joint planning with

separately planning storage and VRES.

More specifically, all systems consist of a VRES, in most cases a wind farm,

and a storage capable of providing assistance to or store curtailed production from

the VRES. Most models feature a day-ahead auction and a settlement phase where

all imbalances resulting from erroneous forecasts of the production from VRES are

cleared. The structure of this settlement phase varies from market to market. Addi-

tionally, some papers consider the bidding problem on multiple markets, notably on

intraday or real-time markets, where each market participant can make adjustments
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Table 3.1: Survey of papers.

ID System Method Market Risk Comparison

Banshwar et al. (2019) VPP (RES,PHS) Det. NLP DA,SR neutral

Crespo-Vazquez et al. (2018) W,S 2s Stoch. convex DA,ID,BM (RT) neutral WO / WA

Garcia-Gonzalez et al. (2008) W,PHS 2s Stoch. MILP DA neutral US / CS

Jiang et al. (2012) W,PHS 2s Rob. MILP DA neutral

Wang et al. (2013) W,PHS,Th. 2s Stoch. MILP DA,S neutral

Ding et al. (2015) W,S 3s rol. Stoch. MIP DA,ID neutral US / CS

Ding et al. (2016b) W,S 2s Stoch. LP DA,S averse US / CS

Ding et al. (2017) W,S 2s Stoch. MILP DA,S neutral

Sioshansi and Denholm (2010) CSP,TES Det. MILP DA neutral WO / WA*

Khodayar and Shahidehpour (2013) W,PHS 2s Stoch. MILP DA,S neutral US / CS

Shu and Jirutitijaroen (2014) W,CAES MS,LP DA (ERCOT) neutral WO / WA

Liu et al. (2015) W,Hydro Interval MILP DA,ID averse US / CS

Khodayar et al. (2013) W,PHS Det. MIP DA,S neutral WO / WA

Attarha et al. (2018) W,CAES Det. MILP, 2s Rob. MILP DA (ERCOT) neutral US / CS

Varkani et al. (2011) W,PHS 2s Stoch. MINLP DA,S,BM (SR,RR) neutral US / CS

Malakar et al. (2014) W,PHS Stoch. MILP DA (IND) neutral

Oskouei and Yazdankhah (2015) W,PV,PHS 2s Stoch. LP DA neutral

Bayón et al. (2016) W,PHS Other DA neutral WO / WA

Al-Swaiti et al. (2017) W,PHS,Th. 2s Stoch. MILP DA,S,BM averse US / CS

Moradi et al. (2017) W,UWCAES Dynamic MINLP DA,S neutral WO / US / CS

Mauch et al. (2012) W,CAES Stoch. NLP DA neutral WO / WA

Jaramillo Duque et al. (2011) W,PHS Det. LP DA,S neutral US / CS

Tan et al. (2014) W,S,DR 2s Stoch. MINLP Regulated DA,S neutral WO / WA

Parastegari et al. (2015) W,PV,PHS,S 2s Stoch. MIP DA,BM (SR,NSR) neutral US / CS

Ding et al. (2012) W,PHS Det. MIQCP, Stoch. Ch. constr. Regulated DA neutral

Moghaddam et al. (2013) W,CHS 2s Stoch. MILP DA,S averse CS w/ IPW

Murage and Anderson (2014) W,PHS 2s Stoch. LP PPA (KEN) neutral WO / WA

Liu et al. (2015) W,Hydro 2s Stoch. MINLP DA,RT averse US / CS

Ghasemi et al. (2016) W,EVs 2s Stoch. MINLP DA neutral US / CS

Yıldıran and Kayahan (2018) W,PHS 2s Stoch. MILP DA,S averse

Su et al. (2019) W,PHS 2s Stoch. MILP Regulated DA neutral CS w/ IPW

Sun et al. (2019) W,PV,PHS Other DA,ID,S neutral US / CS

Bathurst and Strbac (2003) W,S Det. MILP DA,S neutral CS w/ IPW

Ghofrani et al. (2014) W,EVs 2s Stoch. NLP RT neutral

Thatte et al. (2013) W,S Rob. LP DA,S averse Rob. / Stoch.

Márquez Angarita and Garcia Usaola (2007) W,Hydro 2s Stoch. MIP DA,mult. Auctions neutral US / CS

Castronuovo and Peças Lopes (2004) W,PHS Det. LP Regulated Market neutral WO / WA

System W = wind power, S = storage, PHS = pumped-hydro storage, (UW)CAES = (underwater) compressed-air energy storage, Th. = ther-

mal/conventional, VPP = virtual power plant, RES = renewable energy source, CSP = concentrated solar power, TES = thermal energy storage, PV

= photovoltaic, DR = demand response, EV = electric vehicle, Method 2s = 2 stage, MS = multi-stage, LP = linear program, NLP = non-linear program,

MIP = mixed-integer program, MILP = mixed-integer linear program, MINLP = mixed-integer non-linear program, MIQCP = mixed-integer quadratically-

contrained program, Stoch. = stochastic, Rob. = robust, Det. = deterministic, Ch. constr. = chance constrained, Market DA = day-ahead market, S =

Imbalance Settlement, ID = intraday market, (N)SR = (non-)spinning reserve market, RR = regulation reserve, BM = balancing market, RT = real-time

market, BC = bilateral contract, IND = Indian market, KEN = Kenyan market, ERCOT = electric reliability council of Texas, Risk Preference neutral

= risk-neutral (expected profits), averse = risk-averse (CVaR), Comparison WO = wind-only, WA = wind assisted, US = uncoordinated system, CS =

coordinated system, w/ IPW = with increasing penalty weights, * = intermittent source alone v.s. joint system

to their day-ahead market bids close to delivery. Other papers include operation on

the balancing markets.

As can be seen from column 4 of the table, most authors use two-stage stochastic

(mixed-integer) linear programming approaches, which are very similar to the model

we propose in Section 3.3. A minority of papers either use multistage stochastic

optimization or deterministic models. Finally, some papers address uncertainty

using robust and interval optimization.
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Most papers employ risk-neutral strategies where the objective function is either

the expected profit or the expected cost as indicated in column 5 of the table.

However, a stream of literature explores risk-averse strategies using the Value-at-

risk and the Conditional Value-at-risk (CVaR).

The last column of Table 3.1 highlights whether a paper performs an explicit

comparison between jointly planning VRES and storage and planning separately or

whether only the performance of the VRES operating alone is compared with the

joint setup.

Finally, the issue of how imbalances are resolved plays a significant role. In reg-

ulated markets as well as in some deregulated markets any deviation in production

is penalized with a constant fine (Garcia-Gonzalez et al. 2008, Ding et al. 2012,

Moghaddam et al. 2013, Liu et al. 2015, Ghasemi et al. 2016). In these cases, it

is common for the imbalance price to be set as a fixed surcharge of the electricity

price.

In contrast, deregulated markets often set mechanisms where wind farm bidders

are remunerated for their production surplus and charged for any deficit. In Mauch

et al. (2012), Parastegari et al. (2015), Su et al. (2019), Ghofrani et al. (2014),

Márquez Angarita and Garcia Usaola (2007), imbalance prices are set as functions

of the electricity market price with overproduction remunerated at a lower price than

what is charged for balancing shortages. Papers that deal with two-price imbalance

settlement schemes such as the Spanish market consider these prices as another

uncertain input (Sánchez de la Nieta et al. 2013, Al-Awami and El-Sharkawi 2011,

Sánchez de la Nieta et al. 2015, 2016, Gomes et al. 2017). Another popular rule

for imbalance prices is that both surplus and deficit imbalances are resolved at the

same price. This is for example the case of the German spot market (Ding et al.

2016b, Khodayar and Shahidehpour 2013).

Generally speaking, papers that claim economies of scope for the combination of

storage and VRES fall into at least one of the four following categories:
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1. Papers that either only study the joint operation of storage and VRES or

compare joint operation with owning only VRES, e.g., Crespo-Vazquez et al.

(2018), Sioshansi and Denholm (2010), Khodayar et al. (2013) (see last column

of Table 3.1). In these papers, no comparison of joint and separate planning

is conducted and therefore the questions of whether the proposed use of the

storage is optimal is not investigated at all.

2. Another very common feature is that storage is not allowed to participate on

the market where imbalance costs arise, i.e., the storage is allowed to avoid

imbalances for the VRES but not to participate in the balancing market where

the flexibility of the storage could be sold to other market participants instead.

This also includes the cases where authors introduce non-market based penal-

ties for the deviation from the schedule of the VRES, e.g., Bayón et al. (2016),

Tan et al. (2014), Castronuovo and Peças Lopes (2004).

3. In many papers where there is a explicit comparison between joint and separate

planning the economic benefit of joint planning and therefore the economies

of scope are found to be rather small and, in many cases, is most probably

statistically insignificant, e.g., Khodayar and Shahidehpour (2013), Liu et al.

(2015), Sánchez de la Nieta et al. (2015).

4. Finally, a rather small fraction of papers investigate situations where the ar-

guments presented in the next section are not applicable and there might be

economies of scope from combining electricity storage with VRES. Examples

are papers that deal with a two-price imbalancing scheme as discussed above,

e.g., Mauch et al. (2012), Parastegari et al. (2015), Su et al. (2019).

Note that all the papers listed in Table 3.1 fall in at least one of the categories 1 – 3.



Economies of Scope for Electricity Storage and Variable Renewables
3.3. A simple multi-stage model 85

3.3 A simple multi-stage model

Electricity storage generates economies of scope for the owners of VRES, if the

additional profits they can generate from owning a storage exceed the profits that

can be earned by an agent that only owns the storage. If storage would complement

VRES in this way, then owners of VRES would be in an especially good position to

build up storage capacity.

In this section, we investigate this claim and outline a simple stochastic opti-

mization model that captures the essence of our argument and mirrors the most

important aspects of a majority of the papers mentioned in the last section. Sub-

sequently, we use the model to discuss the perceived advantages of joint operation

of a storage unit and a VRES and show that, for many cases, these benefits do not

exist.

3.3.1 Setting and Notation

Without loss of generality, we restrict planning to one day of operation and trading

on electricity markets using a VRES and a storage. Trading takes place on a day-

ahead market one day ahead of delivery and a real-time balancing market which

trades up to (or close to) delivery. Correspondingly, we set up the planning problem

in several stages. In the first stage, decisions on the bids on the day-ahead market

are taken, while in the subsequent stages, real-time trading takes place.

Due to varying market designs all over the world, we do not specify the exact

nature of the real-time balancing market. In our model, the crucial property of these

markets is that they provide a price for electricity at a time when there is no (or

very little) uncertainty about the production of the renewable asset. Candidates

for such markets are real-time markets as implemented in many US systems (Ela

et al. 2014) or intraday markets which trade close to delivery. Alternatively, one can

think of the price on the real-time balancing market as the price of deviations from

scheduled production such as the reBAP in Germany.
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In the following, we denote by t = 0, . . . , T the number of decision stages in

our model, where t = 0 represents the time of spot market bidding and the later

time periods correspond to delivery periods for electricity on the considered day.

Depending on the resolution of the markets, typically T ∈ {24, 48, 96}. To avoid

conversion factors between stock and flow variables in our models, we assume an

hourly resolution in this section, i.e., T = 24. Furthermore, we denote the day-

ahead and real-time prices for period t by pDt and pRt , respectively. We assume that

all markets are sufficiently liquid such that the owner of the plants is a price taker,

there is no bid-ask spread, and the real-time price is symmetric, i.e., independent

of whether electricity is bought or sold. In our models, we consider an idealized

storage with perfect efficiency, no degradation, and no self-discharge. Relaxations

of this assumption are discussed at the end of this section and in Section 3.4.

In order to model the information structure of the problem, we use a general

probability space (Ω,F) and a filtration F0 ⊆ F1 ⊆ · · · ⊆ FT ⊆ F with F0 = {∅,Ω}

and assume the day-ahead prices pDt to be known to the decision maker at the start

of planning, i.e., pDt / F0, where / denotes measurability of a variable with respect

to a sigma algebra. We furthermore assume that pRt / Ft.

The storage level in period t is modeled by lt and is bounded above by the storage

capacity l̄ > 0. Changes in lt at time t are due to injections it ≥ 0 or withdrawals

wt ≥ 0. The random production gt of the intermittent asset in period t does not

incur any cost and cannot be controlled by the owner. We assume that gt becomes

known at the same time the real-time market for delivery in t trades, i.e., gt / Ft.

We denote by sDt and sRt the day-ahead and real-time trades of the storage unit and

by rDt and rRt the corresponding trades of the VRES. Of course, if both assets are

owned and operated by the same party, the bids can be added up for all practical

purposes. However, to conceptualize the notion of separate and joint planning, we

treat the trading decisions separately.

In the following, we describe the nature of the benefits that are often ascribed
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to the joint planning of storage and VRES in our setting. In the next section, we

introduce a model that combines both of the perceived advantages of joint planning

in one model.

Many authors stress that storage can be used to store production of VRES in

order to sell it when prices are highest (Bathurst and Strbac 2003, Castronuovo

and Peças Lopes 2004). In order to conceptualize this notion, it is easiest to ignore

uncertainty and only consider the day-ahead market. The general thrust of the

argument is not impacted by this assumption.

If the intermittent source of electricity trades alone, then its owner earns

V1 =

T∑
t=1

gtp
D
t .

Note that in the above it is implicitly assumed that rDt = gt, which is possible, since

gt is deterministic.

If there is a storage unit, then the owner of the assets can effectively sell the

production of the intermittent asset in the most profitable hours. This can be

accomplished by solving the following deterministic optimization problem

V2 =



max
sD,rD,l,w,i

∑T

t=1(s
D
t + rDt )pDt

s.t lt = lt−1 + it − wt, ∀t ∈ [T ]

wt − it = sDt + rDt − gt, ∀t ∈ [T ]

0 ≤ lt ≤ l̄, rDt , sDt , it, wt ≥ 0, ∀t ∈ [T ]

for a fixed initial storage level l0 ≥ 0 and [T ] = {1, . . . , T}. Clearly, V1 ≤ V2 and the

difference between the two values is due to the shift in the sales of electricity to

times when prices are high.

The second perceived advantage of joint planning concerns balancing of unfore-

seen surpluses or shortages generated by intermittent production. More specifically,

it is usually assumed that pRt � pDt in case of shortage and pRt � pDt in case of
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overproduction. This is the case if there are separate real-time prices for buying and

selling and can be argued even for a symmetric price if the surplus/shortage of the

producer is highly correlated with the surplus/shortage of the overall system. This

is a realistic assumption in systems with large capacities of VRES of the same kind.

To demonstrate the advantage of storage in this setting, we consider random

real-time prices and a fixed day-ahead schedule rDt , which was already decided on.

The expected revenue of a producer that has to balance her day-ahead market bids

on the real-time balancing market can be written as

V3 = E

[
T∑
t=1

rDt p
D
t + (gt − rDt )pRt

]
.

Note that the VRES has to clear the imbalance (gt − rDt ) on the real-time market

for the real time price pRt . For example, if gt < rDt , then the VRES has to procure

electricity to cover the shortage.

If the producer owns a storage, she can avoid potentially costly balancing on the

real-time market by using the storage and solve the following problem

V4 =



max
l,w,i

∑T

t=1E [rDt p
D
t + (gt − rDt − it + wt)p

R
t ]

s.t lt = lt−1 + it − wt, ∀t ∈ [T ]

0 ≤ lt ≤ l̄, rDt , sDt , it, wt ≥ 0, ∀t ∈ [T ]

it, wt, lt / Ft, ∀t ∈ [T ]

wt ≤ gt − rt, it ≤ rDt − gT , ∀t ∈ [T ],

where the last two sets of constraints ensure that the storage operation is tied to the

surplus/deficit production of the renewable asset. Clearly, V4 ≥ V3, i.e., the storage

generates additional revenue for the owner of the VRES.

Note that in both examples above the storage plant does not have full market

access and only trades with the energy that it gets via internal transfer from the

VRES. In the next section we will relax this assumption.
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3.3.2 Joint versus Separate Planning

In this section, we introduce two notions of planning: joint planning of the two

assets, which allows for the internal transfer of energy between the VRES and the

storage, and separate planning, which determines how much the two assets can earn

when planned separately.

The joint planning model captures both the advantages of combining a storage

with VRES that were discussed in the last section and additionally gives the storage

full market access, i.e., the ability to not only store energy produced from VRES

but also directly trade energy on the market. Consequently, the storage generates

economies of scope for owners of VRES if and only if the profit from joint planning

exceeds that from planning the two assets separately.

Defining the value of stored energy at the end of the day as V (lT ), we can write

the joint bidding problem as

max
sD,sR,rD,rR,l,w,i

∑T

t=1(s
D
t + rDt )pDt

+E [(sRt + rRt )pRt ] + E[V (lT )]

s.t lt = lt−1 + it − wt

wt − it = sDt + sRt + (rDt + rRt − gt)

0 ≤ lt ≤ l̄, it, wt ≥ 0

it, wt, r
R
t , s

R
t , lt / Ft,

(V J)

where all the constraints hold for all t ∈ [T ] and with probability 1. Note that

in the above problem trading decisions are not sign restricted, i.e., the decision

maker is allowed to engage in speculative trading. Furthermore, the setup makes

it possible to transfer energy directly from intermittent production to the storage

unit. In particular, if (rDt + rRt − gt) 6= 0, i.e., the intermittent plant generates an

imbalance, then the storage unit has to deal with it, either by adapting its trades

or by injections/withdrawals.

Next we consider the problem of separately planning the two assets. We can
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enforce separate planning, by disallowing internal transfers between intermittent

production and the storage unit, i.e., impose the constraint (rDt +rRt −gt) = 0. Clearly,

the constraint ensures that the two problems decouple, since the objective function

is separable in the decision variables for two assets and there are no constraints that

involve variables for both assets. More specifically, we have



max
sD,sR,l,w,i

∑T

t=1 s
D
t p

D
t + E [sRt p

R
t ] + E[V (lT )]

s.t. lt = lt−1 + it − wt

wt − it = sDt + sRt

0 ≤ lt ≤ l̄, it, wt ≥ 0

it, wt, s
R
t , lt / Ft



+


max
rD,rR

∑T

t=1 r
D
t p

D
t + E [rRt p

R
t ]

s.t rDt + rRt − gt = 0

rRt / Ft


, (V S)

where the first problem is the problem of optimizing the storage alone while the

second problem is the problem for the VRES. Again, all constraints in both problems

hold for all t ∈ [T ] and with probability 1.

We are now in a position to prove the following proposition.

Proposition 3.1. There are optimal solutions for V J and V S that yield identical

profits with probability 1.

Proof. Let xJ = (sD, rD, sR, rR, l, i, w) be an optimal decision for (V J). Clearly, the

decision

xS = (sD, rD, sR + (rDt + rRt − gt), rR − (rDt + rRt − gt), l, i, w)

fulfills the constraints of separate planning and is therefore feasible for (V S). Since

the term (rDt +rRt −gt) is added and subtracted in the objective function, the objective

value does not change. This establishes that (V S) yields profits at least as high as

(V J). The other direction is trivial, since (V S) has one more constraint and therefore
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a smaller feasible set than (V J) and the same objective function.

The following corollary is an immediate consequence of Proposition 3.1.

Corollary 3.1. V S = V J , i.e., the joint and separate planning yield the same profits

for the planner.

Note that the above result holds even if some of the simplifying assumptions in

the models above are dropped. In particular, the following modifications do not

change the results:

1. By Proposition 3.1, the profits of (V J) and (V S) the same with probability

1. Therefore, replacing the risk-neutral optimization by a risk-averse decision

maker will not change the result in Corollary 3.1.

2. In most day-ahead markets, bidders can submit complex price-dependent bid-

ding functions and bidders do not know the clearing price at the time of

bidding. However, a generalization of this kind would not change the results.

3. Note that similar to the last point, it is not required to know the prices on

the real-time market at the time a decision on the quantities to be traded is

taken.

4. Clearly, since storage operation is the same for xS and xJ in the proof of

Proposition 3.1, a more detailed modeling of the technical characteristics of

the storage such as storage losses, content-dependent efficiency, or random

inflows, will not make a difference.

5. The nature or degree of uncertainty about gt and pRt has no effect on the

validity of Corollary 3.1.
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3.4 Asymmetric Prices, Market Power, Informa-

tion, and Regulatory Barriers

In this section, we present cases where the equality between separate and joint

planning, established in Proposition 3.1, does not hold and joint planning may be

more profitable. In particular, we discuss how asymmetries in prices in the real-

time balancing market, caused by market design, market power, illiquidity, or grid

fees may lead to a violation of Proposition 3.1. Furthermore, we will describe cases

in which a storage unit cannot participate in markets where the VRES trades its

energy or settles its imbalances.

3.4.1 Asymmetric Prices

Proposition 3.1 assumes that the prices pDt and pRt at which energy is traded are the

same regardless of whether energy is sold or bought. In the case where prices for

buying and selling are different, the proof for revenue equivalence between separate

and joint planning fails. In this case, the imbalance generated by the intermittent

source is settled at a different price than the imbalance that the storage creates.

Hence, the internal transfer of energy is no longer revenue-equivalent to the transfer

via the market.

This is, in particular, the case if the settlement of imbalances follows a two-price

system where positive and negative balancing energy are differently priced (Ding

et al. 2016a, Dı́az et al. 2019, Akbari et al. 2019, Heredia et al. 2018, Sánchez de la

Nieta et al. 2013, Al-Awami and El-Sharkawi 2011, Sánchez de la Nieta et al. 2015,

2016, Gomes et al. 2017).

Furthermore, asymmetric prices might also arise from bid-ask spreads in contin-

uous trading on illiquid intraday markets. Volumes traded in European intraday

markets are a fraction of the volumes traded on the day-ahead markets, which may

lead to significant bid-ask spreads (Balardy 2018, European Energy Exchange 2019).
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Lastly, grid fees can be a source of asymmetric prices as well. In some markets,

operating and maintenance costs of the electricity grid are charged to electricity

consumers but not to producers. If storage is treated as an electricity consumer

while charging, it follows that it has to pay grid fees in addition to the market price

when buying electricity. The ability to transact internally, instead of via the market,

would thus benefit joint systems, as no grid fees would have to be paid.

In summary, conditions that would lead to an asymmetry between buy and sell

prices may make joint planning more profitable than separate planning.

3.4.2 Market Power and Strategic Bidding

Until now we have assumed that firms are price takers, i.e., that pRt and pDt are

independent of bidding decisions. If this assumption is violated the firms have mar-

ket power and can strategically influence prices in their favor. The ability to profit

from gaming the market in this way increases with the capacities of the respective

firms. Hence, if players have market power, controlling more assets and therefore

more capacities can be an advantage that potentially makes joint planning more

profitable than separate planning (Barbry et al. 2019).

3.4.3 Balancing Markets

There are market designs for electricity markets which do not contain a real-time

balancing market that clears continuously, making it impossible for the storage to

trade at the same time at which the imbalances of the VRES realize. A prominent

example for such settings are balancing markets where the right to participate in the

market is auctioned significantly before imbalances realize. These market designs

are common in Europe (ENTSO-E 2018).

In such settings, it is not possible to construct an equivalent separate planning

solution as is done in the proof of Proposition 3.1, since the storage unit cannot

trade on the real-time balancing market at the time the imbalances become known,
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and therefore cannot exactly match the imbalance profile of the VRES. Hence, a

strict proof of the equivalence between the two modes of planning is not possible.

3.4.4 Regulatory & Technical Issues

In Proposition 3.1, it is assumed that storage units can participate directly in all

markets. If, however, the storage is prevented from participating in the market,

either on the basis of legal or technical reasons, then the role of the storage in

joint systems is limited to merely assisting the intermittent source in its operations.

The concept of separate planning would lose its meaning, as no independent bid-

ding of the storage would be allowed. Examples of entry barriers are restrictions

based on minimum technological requirements such as capacity or sustained power

input/output over a specified period of time as is the case in some balancing markets

(Netzregelverbund 2019b).

3.5 A numerical example

In the last section, we argued that there are realistic circumstances where the rea-

soning presented in Section 3.3 does not apply and joint planning might potentially

generate economies of scope. In this section, we present a numerical example to

substantiate that, even if the assumptions of our model are violated, it is plausibly

better to sell the flexibility of a storage device on the market, instead of tying it to

the balancing of one particular asset.

To make this point, we compare the revenues generated by the joint planning of

a wind farm and a storage unit when trading on the day-ahead (DA) and intraday

(ID) market in Germany with the revenues generated by separately planning the

assets, whereby the storage participates in the market for secondary control reserve

(SRL).

Note that the two models in this section are not related in the way joint and sep-
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arate planning are related in Section 3.3. In particular, the separate planning model

is not a restriction of the joint planning model. Instead, the joint planning model

can be seen as the optimization after the owner of the assets decided on balancing

the VRES with her storage. Bidding on the market for secondary control reserve

implies that capacities can no longer be used for balancing the production of the

wind park as the capacities always have to be available for the transmission system

operator (TSO). This effectively prohibits the joint planner from participating in

the market for secondary control reserve and forces her to the spot market.

We measure the economic performance of both systems on the 365 days from

01.01.2019 to 31.12.2019 and assume that the storage has 1 MWh of storage capacity

and a maximum power input/output of 2 MW, while the wind farm has a capacity

of 1 MW.

Since optimal bidding for both cases involves the solution of complicated stochas-

tic optimization problems, we compute a lower bound on the revenues from separate

planning and an upper bound for the revenues from joint bidding. Clearly, if the

lower bound for separate planning exceeds the upper bounds for joint planning we

can conclude that the former is more profitable. The code used to produce the

numerical results in this section is available in a public GitHub repository.2

3.5.1 Strategies

We define the upper bound on the profit of joint planning by assuming that the

wind park bids its generation forecasts on the day-ahead market. The storage unit

trades on the day-ahead and intraday markets using perfect foresight of prices on

2See https://github.com/davidwozabal/TPWRS-00218-2020

https://github.com/davidwozabal/TPWRS-00218-2020
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both markets generating profits by optimizing over l, w, i, sD, sR

max 1
4

∑T

t=1 s
D
t p

D
t + 1

4

∑T

t=1 s
R
t p

R
t

s.t. lt = lt−1 + 1
4
(it − wt), ∀t ∈ [T ]

wt − it = sDt + sRt , ∀t ∈ [T ]

sDt = sD
4b t−1

4 c+1
, ∀t ∈ [T ]

ī ≤ sR, sDt ≤ w̄, ∀t ∈ [T ]

0 ≤ lα(d) + 1
4

∑α(d)+v

t=α(d) s
D
t ≤ l̄, ∀d ∈ [D], ∀v ∈ [95]

0 ≤ lt ≤ l̄, ∀t ∈ [T ]

0 ≤ it ≤ ī, 0 ≤ wt ≤ w̄, ∀t ∈ [T ],

where T = 4 × 8760 = 35040 is the number of 15-minute intervals in the planning

period and all prices are known to the planner at the time of planning. Note that the

third constraint enforces that day-ahead bids are the same for all quarter hours in

one hour, since 4b t−1
4
c+1 is the index of the first quarter hour of which t is a part of.

The fourth and the fifth constraint enforce that the trading strategy is asset backed,

i.e., that trades are not (entirely) motivated by arbitrage gains between the intraday

and the day-ahead markets. Furthermore, we assume that the storage balances all

imbalances of the wind farm thereby avoiding balancing payments without limiting

the storage’s power or energy capacity, i.e., restricting the optimization above. For

this reason and since we use perfect foresight in the planning, the computed profits

are upper bounds for the profits that can be obtained by the two assets on the spot

market. Note that especially the assumption of perfect foresight generates revenues

that far exceed what a storage owner can hope for under realistic circumstances

when trading on the spot market.

Next, we discuss the lower bound on profits from bidding on the market for

secondary control reserve. Secondary control reserve in Germany is procured in

daily auctions. A bid for a specific tender consists of a capacity, a direction (up or

down regulation), and two prices: a capacity price and an energy price. The TSO
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auctions a fixed amount of capacity and accepts bids in the order of their capacity

price until the desired capacity is covered. If there is a requirement for up or down

regulation, the TSO asks those accepted bidders who bid the best energy prices

to produce/consume electricity. The remuneration of capacity payments as well as

energy payments is conducted in a pay-as-bid fashion (Consentec 2014).

To compute the lower bound on separate operation, we assume that the wind

farm bids its forecasts, and that deviations from the bids are accounted for using

reBAP prices. reBAP prices are the settlement prices that have to be paid in

Germany for deviations from a pre-registered schedule of production or consumption

of electricity.

The storage unit uses a suboptimal non-anticipative policy to bid on all available

secondary markets for control reserve for up and down regulation. It offers 1 MW

capacity on the market for positive as well as negative reserve for all auctions in

the planning period. The capacity and energy bids are chosen as quantiles of the

distribution of bids from the power and energy prices of the respective auction on

the previous day. We use the median prices for the capacity bids and the 1% and

99% quantiles for the positive and negative power prices, respectively.

We reserve the remaining 1 MW power capacity to balance the storage on the

intraday market. In particular, if required, 5 minutes before delivery of every 15-

minute product on the intraday market, we place a bid that guarantees that the

storage neither runs empty nor overflows in the following 20 minutes, even if the

TSO calls off energy at the maximum rate. In this way, we guarantee that the

storage can always fulfill the commitments to the TSO resulting from its bids on

the balancing market.

3.5.2 Setup & Results

For the calculations, we use day-ahead prices and quarter-hourly intraday index

prices published by the European Energy Exchange (EEX) (European Energy Ex-
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change 2019). We use wind forecasts W exp
t and actual production W obs

t from Ten-

neT, consisting of quarter-hourly aggregate forecast and production from all wind

power plants in the TSO’s control area. Quarter-hourly imbalance prices, reBAP,

were obtained from the German market regulator website, regelleistung.net (Net-

zregelverbund 2019a).

Clearly, the forecast error for aggregate production is lower than for a single wind

turbine. The mean average error (MAE) of the wind forecast as a percentage of the

average capacity factor for the TenneT zone is 11.96%. In Holttinen et al. (2013),

the wind forecast errors for individual turbines range from 52% to 56% of MAE

as a percentage of produced power. Therefore, to simulate an upper bound for the

imbalances of a single wind turbine, we scale up the deviations between forecasts and

production in the TenneT area by a factor of 5 in our calculations. The imbalance

costs generated by a wind farm with capacity of 1MW are thus estimated by

Vimb = 5×

(
1

4

T∑
t=1

W obs
t −W exp

t

Pcap
pRt

)
,

where Pcap = 27422 MW is the total installed wind power capacity in the TenneT

control area during the period of study (WindGuard 2019) and pRt is the reBAP.

Note that the denominator 4 converts between power measured in MW and energy

measured in MWh for 15-minute periods and the pre-multiplication with 5 is due

to the above mentioned scaling of the deviations on the level of the grid zone to

the level of the individual plant. The resulting imbalance costs sum up to Vimb =

e9,685.

Table 3.2 displays the results of the experiment. We observe that the upper

bound for joint planning is lower than the lower bound for separate planning, demon-

strating that it is preferable to use the storage to bid on the secondary control reserve

market rather than pair it with a VRES with the goal of reducing imbalance costs.

Turning our attention to the results from separate planning, we notice that

the largest revenue comes from positive balancing energy deployment. This is in
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Table 3.2: Profits for both strategies rounded to unit Euros

Spot Upper Bound DA + ID Reserve Lower Bound SRL + ID

Day-ahead Trading 1,533 Positive Capacity 22,447
Intraday Trading 86,392 Negative Capacity 24,910
Avoided Balancing 9,685 Positive Power 145,668

Negative Power -47,591
Intraday Trading -42,226

Total Profit 97,608 Total Profit 103,208

large part due to the strategy of bidding the first percentile and ensuring that

the storage is frequently called. In contrast, negative energy creates a significant

cost, which is expected since we are bidding the 99% quantile of the previous day’s

energy bids. The cost of the intraday bidding strategy of maintaining the storage

state of charge, e42,226, is rather high. However, in aggregate, the strategy still

outperforms the upper bound based on joint planning by more than e5,000. Note

that since especially the upper bound on the profits from spot trading is quite loose,

the actual difference under realistic circumstances likely substantially exceeds this

figure.

This example illustrates that, although there are settings where Proposition 3.1

may not hold, in many of these situations it is plausible that the storage owner is still

better off not committing itself to balancing a specific VRES, but rather operating

independently in the market, which is most profitable for the storage.

3.6 Conclusion

In a time where storage technologies are looked at as a means to regulate our energy

needs and to meet our climate goals, it is our intention to provide a framework

for a more careful and principled study of the economics of scope arising from the

combination of an energy storage with VRES.

More specifically, we pose the question whether joint planning of a VRES and
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an electricity storage is always the best use of these assets.

We show how in a simple setting, where bidding is made first on a day-ahead

market and then corrected on a real-time balancing market, there is no advantage in

joint planning. The situation becomes less clear when there are price asymmetries,

market power, entry barriers restricting access to the markets, or when the storage

unit participates in an auction-type balancing market.

We make the case, by way of a numerical example, that there are good economic

arguments against operationally tying a storage to VRES. Instead, it seems more

profitable to let the storage participate independently in the most lucrative markets.

Our results thus show that policy makers cannot count on owners of VRES to

build up significant storage capacities and thereby themselves provide the flexibility

required to tackle imbalances created by their intermittent production.



Chapter 4

Optimal Battery Duration on the

German Secondary Control

Reserve

In this paper, we investigate the effect of the energy-to-power ratio on the profits

of a storage unit operating optimally and exclusively on the German secondary

control reserve market. With data ranging from August 2018 to July 2019, we

solve a deterministic rolling-window mixed integer bilinear optimization problem,

where optimal bidding decisions are taken for every 4-hour period auction in the

year. We obtain a curve detailing the aggregate profits in the year as a function

of battery duration (energy-to-power ratio). Profits converge to a saturation level

with increasing duration. We calculate this saturation level, which we define as

the theoretical maximum profit potential a storage unit operating at a given power

level output can hope to achieve in this market in the time range of analysis. At

a duration level of 4 hours, which is a customary energy-to-power ratio for battery

storage power stations, an optimal rolling-window policy will secure 97.5% of the

profits potential. 99% is achieved at a duration of 8 hours, and 99.8% at 12 hours.

Duration levels above 13 hours yield no further increase in profits, independently

101



102
Essays on Stochastic Optimization with Applications to Energy Storage Valuation
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from the power volume bid in the market.

4.1 Introduction

The share of energy storage in our power markets is expected to increase signifi-

cantly in the coming years (Mackenzie 2019). In particular, energy storage systems

with adequate time response seem well-suited to provide balancing power in control

reserve markets, as they can both supply and consume power when needed (Kocer

et al. 2019, Medina et al. 2014). The intended use of storage in wholesale power

markets brings about a few challenges for the private storage unit owner. Questions

such as whether a storage unit can be profitable and honor its commitments while

trading exclusively on the control reserve markets, or what the right size, power

output and time responsiveness of the storage unit should be in order to operate

effectively in these markets are relevant to agents looking to invest in energy storage

(Nasrolahpour et al. 2016).

In this paper, we are interested in the latter question, more specifically we shall

focus on determining the optimal relationship between the maximum energy capacity

of a storage unit and its maximum power output when operating on the German

secondary control reserve. This metric is referred to in the literature by one of several

terms, such as energy-to-power ratio (E2P) or duration (Denholm et al. 2019, Fuchs

et al. 2012). We shall use these terms interchangeably throughout this paper.

In contrast to the spot market, where successful bidders are scheduled to provide

or consume a predetermined volume of power during a particular time slot of the

following day, operation on balancing markets requires the market participant to

reserve capacity and provide power when needed, without knowing whether and

how often they will be called (Consentec 2014). This poses a challenge to storage

operations, because the storage unit must be large enough to accommodate the

amount of power bid in the market. This limitation in feasible power bids can be

mitigated to a certain extent, by allowing the storage unit to procure or dispatch
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energy externally, such as via the intraday spot market, in such a way so as to ensure

the storage unit will always be able to honor its commitment to the balancing market,

either by providing energy without fully depleting, or by storing energy without ever

becoming full.

However, in this setting, storage unit capacity and power must be partitioned

from the start (Netzregelverbund 2019b), meaning that the storage unit will have less

capacity volume to bid on the control reserve. The storage unit cannot dynamically

share its capacity and volume among the control reserve and other markets.

In this paper, we will be focusing on the saturation of profits that comes with an

increasing energy-to-power ratio (E2P). We will not allow a partition of the storage

capacities or power outputs across markets, but will consider the exclusive operation

of a storage unit on the German secondary control reserve (SCR). The insights we

gain from this analysis are unaffected by this restriction. Furthermore, we shall

characterize this saturation curve of profits as a function of E2P and notice that it

is independent of the storage power level.

In Section 4.2, we present a brief literature survey and expose the main con-

tribution of this study. In Section 4.3, we describe a rolling-window deterministic

model to bid optimally on the German secondary control reserve. In Section 4.4, we

present a parametric sweep approach to solve the optimization problem. We show

our results in Section 4.5 regarding duration, and finally summarize our conclusions.

4.2 Contribution

There have been many studies involving the use of storage intended for grid-based

systems. These have ranged from literature surveys reviewing the state of the art of

a collection of storage technologies and their best-use applications (see for example

Aneke and Wang 2016, for an overview), to profitability studies considering the

installation cost of storage of different power and capacity levels (US Department

of Energy 2019). In Hesse et al. (2017), the authors conduct a review of lithium-ion
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stationary battery systems and their applications to the grid. Staffell and Rustomji

(2016) investigate the sources of revenue available to energy storage in the energy

markets and ancillary services, and outline the obstacles and issues faced in each.

Many studies considering the operation of storage on balancing markets or an-

cillary services have focused on the primary control reserve (PCR). These studies

target the optimal dimensioning and sizing of a storage unit intended for the PCR,

by way of finding the minimum capacity required to honor the technical requirements

of the grid (Oudalov et al. 2007), or by factoring in installation costs and minimum

degradation of the battery over its lifetime (Engels et al. 2019). In Oudalov et al.

(2007), the authors cite for their setting on the PCR an optimal storage capacity to

be 0.62 hours multiplied by the nominal power rating. In Engels et al. (2019), while

looking at the German PCR, a 1.6 MW power capacity with a a 1.6 MWh storage

capacity is found to offer the best net present value.

Fewer studies have considered the operation of storage on the secondary control

reserve. Zeh et al. (2015) describe a storage operating on the German SCR as it was

before the change in the delivery periods to 4-hour blocks, and allows the storage

to assist a solar photovoltaic generation source and participate in other markets.

With the current study, we offer a description of the optimal bidding problem

on the SCR given the market structure as of the 2018 change (Consentec 2020). We

present a deterministic bilinear formulation of the storage bidding problem on the

SCR. We also perform a sensitivity analysis of the optimal profit performance as

a function of the energy-to-power ratio of the battery. The results on this study

inform the literature on the adequate size and power of storage for the SCR.

4.3 A simple rolling-window model

In this section, we outline the underlying optimization problem of bidding energy

prices with a storage unit on the German secondary control reserve (SCR).
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4.3.1 The German Secondary Control Reserve

The SCR is structured as a pay-as-bid auction, where market participants bid to

provide positive and negative balancing energy for a period of four hours. All auc-

tions take place on the day before their respective period of delivery (Consentec

2014), and positive and negative balancing power are treated as distinct products,

each having their own auction. In the SCR, market participants place bids for a

volume of offered power (in MW), a price to provide power capacity (in currency

per MW), and a price to actually dispatch balancing power (in currency per MWh)

when called upon to do so by the grid operator. Throughout the paper, we shall

refer to these as capacity volume, capacity price and dispatched energy price respec-

tively. Additionally, we shall call the volume that is actually traded as dispatched

volume.

4.3.2 Mixed-Integer Bilinear Problem Formulation

The inherent optimization problem a market participant entering the SCR faces can

be modelled as a mixed-integer bilinear program. The market participant wishes

to maximize his profits, which consist of revenue streams for provided capacity

and dispatched power. Each of these revenue streams are modelled as bilinear

product terms, where price and volume are both decision variables to optimize for.

Furthermore, binary variables are required to model the effect of whether the bidder

will be called upon to provide dispatched energy over the course of the four-hour

period, as well as whether the capacity bid is accepted by the grid operator.

We will assume that the storage unit owner places bids to provide both positive

and negative balancing energy, and does not participate in any other market nor has

any other means of charging or discharging his storage unit other than via the SCR.

For a single auction period, the deterministic optimization problem where time is
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discretized in finite time units of one second is described by:

max P+
capV

+
cap + P−capV

−
cap + P+

∑T

t=1 V
+
t + P−

∑T

t=1 V
−
t

s.t. st = st−1 + α(V −t − V +
t ), ∀t ∈ [T ]

0 ≤ st ≤ SMax, ∀t ∈ [T ]

P j
cap ≤ P j

cap ≤ P cut,j
cap

0 ≤ V j
cap ≤ V̄ j

cap P j ≤ P j ≤ P cut,j
t

V j
t = min(V j

cap, D
j
t )

 ∨
P cut,j

t < P j ≤ P̄ j

V j
t = 0




∨



P cut,j
cap < P j

cap ≤ P̄ j
cap

V j
cap = 0

P j = 0

V j
t = 0


∀t ∈ [T ], j = {+,−}

.

(4.1)

The objective function consists of the four terms already mentioned, which en-

compass revenues from capacity bids and from dispatched energy for both positive

and negative balancing energy, j = {+,−} respectively.

The set of constraints include balance continuity constraints for the storage level

st, which dictate that the storage level at any given time t must be equal to the

storage level in the previous time period (t − 1) plus any amounts injected V −t to

or withdrawn V +
t from the storage unit during the time period t. α is a constant

conversion unit factor to equate the storage level (in units of MWh) and the trans-

acted power (in units of MW). For a finite time resolution of one second, α is equal

to 1 over 3600, as there are 3600 seconds per hour. Furthermore, the storage level

is bounded at all times by zero when empty, and by its maximum capacity SMax.

Likewise, the capacity volume bid V j
cap is bounded by an upper-bound, V̄ j

cap, which

can be thought of as the maximum input/output power of the storage unit. Without

loss of generality, we assume the storage unit to have a 100% efficiency.

There are then two levels of integer decision-making to be taken for each product.

Firstly, depending on the capacity price bid chosen, the storage unit may or may

not be selected by the grid operator to provide capacity in this four-hour period.
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If the capacity price bid is greater than the last price to be accepted, the storage

unit is not accepted, and all volumes - capacity and dispatched volume alike - are

set to zero, the storage unit does not participate and the profits are zero. If the

capacity price bid is within the selected price range, then there comes a second layer

of integer decision-making, which occurs for every time period t. Again, whether the

storage unit is called upon to dispatch balancing energy depends on the dispatch

energy price bid P j and on the volume demand Dj
t at each second. For each second,

we can calculate a dispatch cutoff price P cut,j
t , which is the last price to be selected

to dispatch balancing energy as a function of the auction supply curve and its

intersection with the demand volume. If the energy bid is below the cutoff price for

time t, the storage unit is called to dispatch energy. If not, the volume traded at time

t is zero. When the storage is called, the volume traded is the minimum between

the demand volume at time t , Dj
t , and the bidden capacity volume V j

cap. The former

is only ever selected if the aggregate volume is low, the price bid is the lowest in

the auction order book and therefore the storage unit is the first or among the first

units to be called upon to dispatch. Otherwise, the unit must always provide its

bidden capacity volume. Lastly, P j
cap, P̄

j
cap, P

j, P̄ j are soft lower and upper bounds

for capacity and energy price bids.

4.3.3 Problem Relaxation

As we are dealing with a deterministic problem, all the data concerning capacity

bids is known, which in particular means that it is known what the highest price

to be accepted is for each auction, so unless there is a reason to not take part in

the auction, the optimal decision for capacity price will always be the highest price

to be accepted. Unless there is a scenario where no price level that would lead

to being accepted in the capacity auction guarantees a positive profit, it is always

preferable to have a capacity bid accepted. Even if the energy price bid is too high

for the storage unit to ever be called, the storage unit will still generate a revenue
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for providing capacity.

Therefore, we shall focus exclusively on the decision-making part of the problem

having to do with the selection of the dispatched energy price and volumes. We shall

assume that the storage unit owner’s capacity bid is always accepted, and that the

capacity volume bid is equal to the storage maximum power throughput. This helps

us further simplify the problem and remove one layer of integer decision-making as

now only two possible cases remain per time period t, which are the cases where the

storage unit is called or is not called to dispatch balancing energy. The simplified

optimization problem then becomes:

max
∑T

t=1w
+
t +

∑T

t=1w
−
t

s.t. st = st−1 + α(V −t − V +
t ), ∀t ∈ [T ]

0 ≤ st ≤ SMax, ∀t ∈ [T ]
P j ≤ P j ≤ P cut,j

t

V j
t = min(V j

cap, D
j
t )

wjt = P j min(V j
cap, D

j
t )

 ∨

P cut,j
t < P j ≤ P̄ j

V j
t = 0

wjt = 0


∀t ∈ [T ], j = {+,−}

(4.2)

This will be the problem we shall focus on in the next sections.

4.4 Parametric Sweep

In the following, we shall describe the method to solve problem (4.2).

4.4.1 Traditional solvers approach

We can solve problem (4.2) through the use of a solver capable of solving mixed-

integer linear programs. Commercially-available solvers such as Gurobi, CPLEX or

FICO Xpress are perfectly suited for this. However, as we are solving a problem that

for every auction considers 14400 time periods, which is the number of seconds in four

hours, this considerably slows down the performance of the algorithm and increases
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the runtime of the program. As we would like to solve the optimization problem not

just for one auction but for all four-hour periods in a year, which essentially involves

solving the problem 2190 times in sequential order, another method must be found

for this to be a time-feasible approach.

4.4.2 Parametric Sweep Method

Instead of using a solver, we solve the problem by performing a parametric sweep

over the price range for positive and negative balancing energy. Having access to the

auction supply curve and demand volume, we evaluate the combinations of feasible

price levels for positive and negative balancing energy, constrained by storage level

bounds, and select the combination leading to the highest profits. This method not

only solves the problem much faster than solving with a solver, but also provides

more information on the problem, most notably on the feasible set.

Exemplifying our approach, we select the range of bidden prices in the auctions

for positive and negative balancing energy corresponding to the same four-hour pe-

riod, and evaluate how the storage level of the battery would change over the course

of the period as it is called to dispatch in result of the price level bids. After tracking

the storage level for all price combination pairs of positive and negative balancing

energy over time, we keep the combinations for which the storage boundary con-

straints are not violated. This constitutes the feasible set of prices. From among

this set, we select the combination with the highest profits, which is our optimal

solution.

We then solve the problem sequentially for each four-hour period in the year,

in which the initial storage level of problem k is equal to the last storage level of

problem (k − 1) to preserve continuity. This is a myopic strategy, as it computes

the optimal policy for each four-hour period, with no knowledge of what the future

auctions will be like.
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4.4.3 Runtime comparison between methods

To illustrate the differences in runtime between solving the optimization problem

with a solver and solving it with the parametric sweep method, consider the follow-

ing. Using a Dell Latitude E5450 laptop running Windows 10 with a fifth generation

Core i5 CPU and 8 GB of RAM, the optimization using the Gurobi solver took

around 90 minutes to solve problem (4.2), which corresponds to a single auction

period of four hours. By comparison, the same machine using the parametric sweep

method took 50 minutes to compute the optimal policy for an entire year’s worth

of data, i.e. 2190 auction periods.

4.5 Optimal battery duration for the SCR

The E2P ratio represents the amount of time a battery may last while providing its

maximum power at a constant rate from full to empty. As an example, an 8 MWh

battery with peak input/output power of 2 MW has a duration of 4 hours.

The purpose of this study consists in determining the E2P value beyond which

a battery operating exclusively on the SCR, optimizing its price bids on a 4-hour

rolling window for one year in the terms defined in Section 4.3, would no longer

generate more profits. This is relevant to determine what capacity and input/output

power a storage station project destined to operate in the SCR should have. More

precisely, knowing this limit value for E2P sets an upper bound on the maximum size

a battery intended for trading on the SCR should have. Any battery capacity larger

than this limit value, with respect to its power output, will not generate any more

profits under this strategy. Furthermore, we will show that for usual volume bids

in the SCR, ranging from 1 MW to 100 MW, the profits as a function of duration

show the same saturation point when normalized for power.



Optimal Battery Duration on the German Secondary Control Reserve
4.5. Optimal battery duration for the SCR 111

4.5.1 Case Study

We shall consider auction and volume demand data from the German SCR market

ranging from the 1st of August 2018 to the 31st of July 2019. The public auc-

tion and volume demand data were acquired from the German regulator website,

regelleistung.net.

Using the parametric sweep method to solve the deterministic rolling-window

optimization model, we compute the annual profits a storage unit would have had

during this period, and repeat this exercise for increasing values of battery capacity

for a given power bid. In particular, we shall be interested in the E2P ratio between

capacity and power, and how annual profits vary with varying duration.

Figure 4.1 describes the annual profits as a function of duration, for a battery

with maximum input/output power of 1 MW. This maximum is the same for both

positive and negative balancing energy.

Figure 4.1: Annual Profits saturate with increasing Duration. The dotted orange line corresponds
to the maximum profits potential, reached with a duration of 13 hours and beyond.

We see that for increasing battery size, the annual profits increase. This is
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intuitive as the feasible set of price levels to bid on increase, which means better

solutions can be found. Additionally, we see that annual profits saturate as the size

increases, reaching a limit profit value of 88467 EUR. No matter how much larger a

battery is with respect to its power output, the profits to be gained are capped by

this amount. This can be interpreted by the fact that from a certain point onwards,

the maximum capacity constraint no longer is binding, and the issue that restricts

the storage unit from making more profits is the maximum power output.

This result leads us to make the following proposition concerning battery oper-

ations on the SCR.

The profits a battery operating exclusively and optimally on the SCR at a given

power volume converge to a limit cap with increasing duration.

Storage operation constraints limit the phase space of price bids available to the

storage owner. In particular, a higher capacity translates into a relaxation of the

boundary constraints restraining the battery storage level at any given time. This

allows the storage owner to access lower price regions, thereby guaranteeing that

the storage unit is called more often.

At some point, one may imagine an extreme case where the capacity of the

storage unit is so large that its capacity size is no longer a factor in determining

the price bids. To illustrate this, one could take the case where the storage owner

bids the lowest price in the auction for positive balancing energy, and the market

is continuously asking for positive energy during that 4-hour period. This would

mean that the battery would be required to discharge continuously at bidden vol-

ume for four hours. The storage capacity boundary constraint would no longer be

binding. In contrast, if the battery size is not large enough or its initial state is

not high, then the lowest price level would not be available to the storage owner

as it would violate storage boundary constraints. Instead, the power volume bid,

which is kept constant by assumption, would become the limiting factor to attaining

higher profits. Therefore, the optimal performance with perfect foresight of storage
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units with increasing duration sharing the same power bid increase monotonically

and eventually converge.

4.5.2 Independence from power level bids

We shall see in the following that this saturation of profits is independent of the

maximum power output selected in the customary range of power levels transacted

on the SCR, i.e. which falls between power bids from as low as 1 MW to bids as

high as 100 MW.

We repeated this exercise for increasing power levels. A summary can be found

in Figure 4.2. Figure 4.2 describes annual profits as a function of duration, for

different power levels ranging from 1 MW to 100 MW. The profits are normalized

Figure 4.2: Increasing Power Levels in customary range do not alter the outcome.

with respect to their limit level. We see that for increasing power levels, the profits

curve behaves the same way with respect to duration. This leads us to conclude

that no matter the maximum power output of the battery, with an optimal trading
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policy, not only do profits saturate to a given level, but the ratio of profits to this

limit cap is well defined. In this light, we observe that around 97.5% of the profits

to be had on the SCR, under a deterministic rolling-window optimal policy over

the course of one year, with a battery of a given maximum power output, can be

achieved with a duration of 4 hours. Furthermore, the duration level beyond which

profits saturate is reached at 13 hours for nearly all power volumes. A detailed

breakdown of these results can be found in Table 4.1.

Table 4.1: Profits as a percentage of saturation profits per power volume

1 MW 2 MW 3 MW 4 MW 5 MW 6 MW 10 MW 15 MW 20 MW 25 MW 50 MW 100 MW

1 h 86.3% 86.1% 86.0% 86.0% 86.3% 85.6% 87.6% 86.4% 86.3% 86.6% 87.0% 86.8%
2 h 95.2% 94.6% 94.4% 94.6% 94.7% 94.7% 94.3% 94.1% 93.4% 93.5% 93.5% 92.9%
3 h 97.3% 97.1% 97.1% 97.0% 97.1% 96.7% 97.0% 96.7% 96.4% 96.5% 96.1% 95.7%
4 h 98.0% 97.8% 97.7% 97.9% 97.8% 97.7% 97.5% 97.4% 97.1% 97.2% 97.0% 96.9%
5 h 98.7% 98.4% 98.5% 98.6% 98.6% 98.4% 98.4% 98.2% 97.9% 98.1% 97.9% 97.8%
6 h 98.9% 98.8% 98.8% 98.8% 98.8% 98.7% 98.8% 98.5% 98.4% 98.4% 98.3% 98.1%
8 h 99.3% 99.2% 99.2% 99.2% 99.2% 99.2% 99.2% 98.9% 98.9% 98.9% 98.8% 98.8%

10 h 99.4% 99.3% 99.4% 99.4% 99.4% 99.3% 99.4% 99.3% 99.3% 99.3% 99.1% 99.2%
12 h 99.9% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8%
13 h 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9% 100.0%
14 h 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
15 h 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
20 h 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
30 h 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
50 h 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

4.6 Conclusion

Battery storage stations are dimensioned according to the purpose that they are

intended for. E2P ratios in actual energy storage projects range from the fraction

of the hour, e.g. 6 minutes, to several days, e.g. 120 hours (DOE 2020). Energy

storage projects that have both the power output and size and satisfy the fast

time-response required to participate in the SCR typically consist of lithium-ion

batteries, and these projects have E2P ratios that do not usually go beyond four

hours (International Electrotechnical Commission 2011).

In this paper, we set an upper-bound on the energy capacity a storage unit should

have with respect to its maximum power throughput when operating on the German

secondary control reserve. From this value onward, an increase in duration will not
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lead to higher profits. We have shown that this upper bound does not depend on

the power volume bid, as doesn’t the curve of relative profits with respect to this

upper bound. These insights inform the market agent looking to invest in storage

technologies with the purpose to trade on the SCR what dimensions a storage unit

should have when it comes to energy capacity and to power, as well as what profit

potential such a storage unit offers.

These results are obtained for a bidding optimization problem that is both deter-

ministic and myopic. Nevertheless, the addition of uncertainty, or a more complete

description of storage unit operations, such as the inclusion of storage efficiency,

does not alter the insights described in this paper regarding the saturation of profits

with increasing duration.



Chapter 5

Conclusion

Electricity markets across the world have changed considerably in the past two

decades. The deregulation of markets in Europe was a first step towards a change

in market design, which led to the opening of the markets to competition. This

was further accentuated by the transition towards a greener generation mix. The

development of renewable energy sources in the electricity grid, particularly the ever

increasing shares of wind and solar energy, introduced variability in the electricity

supply. The variability of supply brought challenges to the sector, that producers,

consumers and grid system operators must contend with.

This doctoral thesis is a collection of works revolving around two answers to the

challenges brought about by the variability of renewables sources in the grid.

The first is methodological in nature, and consists of the use of stochastic opti-

mization applied to electricity markets. This framework, which deals with the task

of taking best decisions under uncertainty, is adept at quantifying the variability of

wind and solar production, and factoring them in to allow market participants and

system operators to adopt policies aiming to maximize profits from bidding in the

market, or minimize operating costs while meeting demand.

The second answer to address the variability of renewables is the development

of storage technologies intended for the grid. Storage has a role to play in bringing

stability to the grid. In being able to balance supply and demand, grid-based storage
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is expected to grow considerably in the next few years and become a larger presence

in electricity markets around the world.

The research presented in this thesis concerns optimization methods on the one

hand, and the valuation of storage on the other. The work was split among them

in the following way: the first paper included in this thesis concerns itself with the

former, interesting itself in the topic of parametric sensitivity analysis in multistage

stochastic linear optimization problems. The second and third papers are in the

camp of the latter, offering insights into the use of storage in electricity markets,

from a market participant’s perspective.

The first essay developed a theoretical foundation and a methodology with which

to calculate derivatives of the value function of a multistage stochastic linear program

with respect to inherent parameters of the problem.

One main contribution of this essay was to extend the literature on envelope

theorems to a setting of multistage stochastic optimization. The essay lays out the

conditions under which the value function is differentiable in the parameter of study,

and in turn characterizes the set of parameter points where it is not. This set is

shown to be finite and have Lebesgue measure 0, thereby allowing the statement that

the value function of a multistage linear problem is differentiable almost everywhere.

The second main contribution of this essay was to develop a sampling method

with which to calculate these derivatives. The argument uses the property of differ-

entiability almost everywhere to justify that the derivatives are valid with probability

one. The method can be employed to perform sensitivity analysis in a practical set-

ting, where the computed derivatives are sensitivity indicators that can be used to

gauge the status of a particular problem. We mentioned that the so-called financial

Greeks were the initial motivation for this study, and referenced their importance as

indicators that traders rely on to make decisions. In this spirit, this method stands

as a useful general tool with many potential practical applications, in Finance and

otherwise.
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There a few paths forward to further build on what was studied here. From a

methodological perspective, this study would be nicely complemented by additional

analyses on the viability to compute higher-order derivatives in multistage stochastic

linear problems. From a practical perspective, it would be interesting to see the

development of an application where a sensitivity indicator could be as relevant in

its respective field to inform decisions as the Financial Greeks are in derivatives

trading.

The second essay established a framework with which to study the economic

benefits of the combined operations of energy storage with an intermittent renewable

source such as wind or solar.

It defines a strict contrast between joint and separate planning, and underlines

the difference between a storage that can independently and directly participate

in the markets, and one that can merely assist the variable renewable source in

balancing its deviations in production. In particular, the essay describes that in

a setting in which bidding is made on a spot market consisting of a day-ahead

market and an intraday market, where an initial bid is made on the former and an

adjustment is made on the latter to compensate for deviations observed between

actual and planned production, there is no economic advantage in pairing a storage

unit with a variable renewable source in joint planning.

This is admittedly a statement that will be seen as controversial in the commu-

nity, as it goes against the widespread and often unquestioned belief that there is

inherent value to be found in joint planning on an individual scale, either to reduce

internal imbalances, to stabilize production output or to couple production with

market price development.

The essay lays out exceptions to this statement of equality of profits in joint

and separate planning. Price asymmetries to buyer and seller disrupt the statement

of strict equality, either in the form of two-price imbalance settlement schemes, in

illiquid markets with a bid-ask spread, or in systems charging grid fees to consumers
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but not to producers. The equality of profits cannot be guaranteed in real-time

balancing markets where there is no continuous adjustment, particularly in auctions

where scheduling rules are determined before the period of delivery. The comparison

between joint and separate planning loses its validity in markets where there are

entry barriers restricting the direct participation of storage, as the storage would

not generate any profits on its own.

It is nevertheless a point worth making, and stands as the main contribution of

the essay, which is to offer a methodology with which to analyze the actual benefits

of joint planning, and determine the settings in which there is no advantage.

The third essay in this thesis analyzed the earnings potential of a storage unit

taking part in the German secondary control reserve. It focused on the concept of

duration in a storage unit, and established an upper limit on the profit potential of

a storage unit as a function of its duration.

Solving a deterministic mixed-integer bilinear optimization problem by way of

a parametric sweep method, the essay determined an upper bound on the profits

a storage unit would have had with an optimal policy on the German secondary

control reserve during the one-year period between August 2018 and July 2019. It

establishes that profits under these conditions saturate and converge to a maximum

value as the storage has higher duration values.

The main contributions of this study were two-fold. First, it offers a description

of the problem of optimal bidding with a storage unit on the German secondary

control reserve, which is inherently a bilinear optimization problem, and proposes a

practical method to solve this problem. Second, it offers insights on the dimensioning

of a storage unit, namely that the duration of a storage unit determines the earnings

potential on the secondary control reserve and that a storage unit with a duration of

13 hours, which stands at just slightly above three times the 4-hour auction period

of delivery in this market, will already reach the maximum potential profits to be

had. A larger storage unit will not have higher potential profits.



120
Essays on Stochastic Optimization with Applications to Energy Storage Valuation
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These insights tell the story of what happens when a storage unit operates opti-

mally with perfect information. There are ways to build upon what is discussed in

this essay. It would be interesting to see how this upper bound changes when the

problem is no longer deterministic. Having a stochastic formulation of this problem

would enhance this study by giving a more realistic upper bound to inform investors

and decision makers. Furthermore, this study focused on an exclusive operation on

the secondary control reserve. A study allowing the storage unit to additionally bid

on a real-time market to manage its storage levels, such as in the numerical example

of the second essay, would contribute to expanding the combination of feasible price

bids accessible to the storage unit, which is likely to improve the potential profits

curve.
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J. Dupačová. Stability and sensitivity-analysis for stochastic programming. Annals of

Operations Research, 27(1):115–142, 1990.

E. Ela, M. Milligan, A. Bloom, A. Botterud, A. Townsend, and T. Levin. Evolution of



Bibliography 125

wholesale electricity market design with increasing levels of renewable generation.

Technical Report NREL/TP-5D00-61765, NREL Publications Database, September

2014.

Jonas Engels, Bert Claessens, and Geert Deconinck. Techno-economic analysis and opti-

mal control of battery storage for frequency control services, applied to the german

market. Applied Energy, 242:1036 – 1049, 2019. ISSN 0306-2619. . URL .

ENTSO-E, 2018. Available at https://www.entsoe.eu/.

European Energy Exchange, 2019. EEX, Available at https://www.epexspot.com/en/.

European Parliament. Understanding electricity markets in the EU. Technical report, EU,

2016.

Y. Fan, F. Schwartz, S. Voß, and D.L. Woodruff. Stochastic programming for flexible

global supply chain planning. Flexible Services and Manufacturing Journal, 29(3):

601–633, Dec 2017. Supply Chain Management.

Fraunhofer ISE, 2020. Available at https://www.energy-charts.de/.

R. Freund. Postoptimal analysis of a linear program under simultaneous changes in matrix

coefficients. In R. W. Cottle, editor, Mathematical Programming Essays in Honor of

George B. Dantzig Part I, pages 1–13. Springer, Berlin, Heidelberg, 1985.

G. Fuchs, B. Lunz, M. Leuthold, and D.U. Saur. Technology overview on electricity stor-

age. Technical report, Institute for Power Electronics and Electrical Drives (ISEA),

June 2012.

T. Gal and H.J. Greenberg. Advances in sensitivity analysis and parametric programming.

International series in operations research & management science. Kluwer Academic

Publishers, Boston, 1997.

J. Garcia-Gonzalez, R. M. R. de la Muela, L. M. Santos, and A. M. Gonzalez. Stochastic

joint optimization of wind generation and pumped-storage units in an electricity

market. IEEE Transactions on Power Systems, 23(2):460–468, May 2008. .

H. Geman. Commodities and Commodity Derivatives: Modeling and Pricing for Agricul-

turals, Metals and Energy. The Wiley Finance Series. Wiley, 2009.

A. Ghasemi, S.S. Mortazavi, and E. Mashhour. Hourly demand response and battery



126
Essays on Stochastic Optimization with Applications to Energy Storage Valuation
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Gonçalo de Almeida Terça

to benchmark practice-based heuristics for natural gas storage valuation. Operations

Research, 58(3):564–582, 2010.

Y. Liu, C. Jiang, J. Shen, and J. Hu. Coordination of hydro units with wind power

generation using interval optimization. IEEE Transactions on Sustainable Energy, 6

(2):443–453, April 2015. .

Y. Liu, C. Jiang, J. Shen, J. Hu, and Y. Luo. Coordination of hydro units with wind

power generation based on raroc. Renewable Energy, 80:783 – 792, 2015.
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