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a b s t r a c t

Modeling covariance structure based on genetic similarity between pairs of relatives plays an important
role in evolutionary, quantitative and statistical genetics. Historically, genetic similarity between
individuals has been quantified from pedigrees via the probability that randomly chosen homologous
alleles between individuals are identical by descent (IBD). At present, however, many genetic analyses
rely on molecular markers, with realized measures of genomic similarity replacing IBD-based expected
similarities. Animal and plant breeders, for example, now employ marker-based genomic relationship
matrices between individuals in prediction models and in estimation of genome-based heritability
coefficients. Phenotypes convey information about genetic similarity as well. For instance, if phenotypic
values are at least partially the result of the action of quantitative trait loci, one would expect
the former to inform about the latter, as in genome-wide association studies. Statistically, a non-
trivial conditional distribution of unknown genetic similarities, given phenotypes, is to be expected. A
Bayesian formalism is presented here that applies to whole-genome regression methods where some
genetic similarity matrix, e.g., a genomic relationship matrix, can be defined. Our Bayesian approach,
based on phenotypes and markers, converts prior (markers only) expected similarity into trait-specific
posterior similarity. A simulation illustrates situations under which effective Bayesian learning from
phenotypes occurs. Pinus and wheat data sets were used to demonstrate applicability of the concept
in practice. The methodology applies to a wide class of Bayesian linear regression models, it extends
to the multiple-trait domain, and can also be used to develop phenotype-guided similarity kernels in
prediction problems.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Assessing genetic or genomic similarity among species or indi-
viduals is a central topic in evolutionary and quantitative genetics
(Lynch and Walsh, 1998; Walsh and Lynch, 2018). Sethuraman
(2018) reviewed areas where estimation of genetic relatedness is
important, including paternity and maternity assignments, foren-
sic, association and linkage studies, and inference and prediction
in quantitative genetics.

Until recently, many quantitative-trait analyses such as es-
timation of genetic variances and covariances and prediction
of unobservable genotypic values (e.g., breeding values in ani-
mal and plant breeding), have relied on modeling covariances
based on pedigree-based genetic relatedness between relatives;
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such covariances enter into the dispersion structure of mixed ef-
fects and Bayesian models. Historically, agricultural breeders have
quantified genetic similarity by the probability that randomly
chosen homologous alleles are identical by descent (IBD) in a
pair of individuals. These probabilities are used to form Sewall
Wright’s numerator relationship matrix (A), which is propor-
tional to the covariance matrix between additive genetic values
of individuals. Eventually, elements of A enter into quantitative
genetic models via the notion of covariances between relatives
(Kempthorne, 1954). The calculations of IBD probabilities are
deterministic and rely on the notion of a conceptual ancestral
population from which descendants evolve in the absence of
selection and mutation, following some equilibrium laws.

The advent of massive genomic data, e.g., DNA sequences, has
changed the classical paradigm. Realized measures of genomic
similarity have been developed and applied to estimation of ge-
nomic variances (genomic heritability) and covariances (genomic
correlations), and for predicting genome-derived breeding values
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(Bernardo, 1994; Nejati-Javaremi et al., 1997; Visscher et al.,
2006; Van Raden, 2008; Hayes et al., 2009; de los Campos et al.,
2011, 2013, 2015; Gianola et al., 2015; Lehermeier et al., 2017).
For instance, a method known as “genomic best linear unbiased
prediction” (GBLUP) uses a genome-based similarity matrix (the
“genomic relationship matrix”, G) among individuals to predict
genomic breeding values (e.g., Van Raden, 2008. In GBLUP, G
replaces the A used in pedigree-based prediction models, and
the method has become a gold standard in dairy cattle breeding
(García-Ruiz et al., 2016; Wiggans et al., 2017). Fernando et al.
(2017) present a discussion of important differences between A
and genome-based similarity matrices.

The most widely used G (Van Raden, 2008; GVR hereinafter) is
built from genotype codes (e.g., 0, 1, 2 for bb, Bb and BB individu-
als, respectively, with B being the reference allele) deviated from
their means and observed at p single nucleotide polymorphism
(SNP) loci in each of n individuals. Typically, the genotype scoring
encodes additive genetic effects. With X denoting an observed
matrix of mean-deviated marker scores, then the n×n matrix GVR
is proportional to XX′. Under Hardy–Weinberg equilibrium and
in the absence of selection or mutation, the expected value of GVR
(after some normalization) is A, the pedigree-based similarity ma-
trix (Habier et al., 2007; Gianola et al., 2009). GVR weights all SNPs
alike and does not exploit linkage disequilibrium (LD) information
beyond what is conveyed by colinearity among columns of X. To
see this point, note that the i, jth element of GVR is proportional
to
∑p

k=1xikxjk, where xik and xjk are the scores at locus k for
individuals i and j. An alternative similarity matrix could take
the more general form XWX′ for some p × p weight matrix W
constructed such that LD or effect-size based differential weights
enter into G; in GVR, W is actually an n×n identity matrix. Speed
et al. (2012) proposed a genomic relationship matrix that exploits
LD information .

Importantly, GVR also ignores information that phenotypes
may convey about genetic similarities. A central dogma of quan-
titative genetics is that genetic similarity generates covariance
among relatives, so phenotypic similarities (after accounting for
environmental sources of variation) are expected to reflect simi-
larity due to allele sharing at quantitative trait loci (QTL) affecting
a trait in question. Conversely, phenotypic similarity should be
expected to inform about genetic (genomic) similarity. Further, if
distinct QTL affect different traits, similarities on genotypic values
for feed or nutrient consumption, say, should differ from geno-
typic similarities due to resistance to disease. Use of trait-specific
similarity may be useful for enhancing prediction of complex
traits in animal and plant breeding and in personalized medicine
(de los Campos et al., 2011). Hence, GVR is not necessarily the best
prescription for all traits.

Thompson (1975) is representative of approaches that employ
likelihood-based inference of kinship relationships from genetic
data. Bravington et al. (2016) and Wang et al. (2017) pointed out
that existing measures of kinship did not exploit information such
as order along a chromosome (linkage or LD), and addressed esti-
mation of genetic similarities using formal statistical procedures
such as the Day-Williams method (Day-Williams et al., 2011).
Making use of estimation theory is clearly a step forward towards
ascertaining molecular kinship, as properties of estimators can
be examined in a well-defined theoretical framework. However,
neither Bravington et al. (2016) nor Wang et al. (2017) incorpo-
rated phenotypic information into their models, perhaps because
in many areas (e.g., evolutionary biology) the relevant phenotypes
are not easily available. On the other hand, animal breeders have
attempted to incorporate phenotypic values into calculations of
trait-specific genomic similarity. Zhang et al. (2010) used a two-
stage approach to obtain a trait-specific genomic relationship
matrix. In the first stage, Bayesian multiple-regression methods

produce estimates of substitution effects at the SNP loci. In the
second stage, weights computed from the effect size estimates are
used to form a genomic relationship matrix that is a weighted av-
erage of identity-by-state matrices computed for each SNP locus.
The actual weight assigned to a given marker was the ‘‘estimated
genetic variance at that locus’’, obtained using estimates of allelic
frequency and of substitution effects. The expressions used to
represent ‘‘estimated genetic variance’’ cannot be always justified
as formal metrics for such parameter. In particular, one represen-
tation assumed Hardy–Weinberg and linkage equilibrium among
markers; the latter assumption is manifestly violated in plant and
animal breeding data.

In another approach (Wang et al., 2012), the weights of Zhang
et al. (2010) were applied iteratively. In each iteration, GBLUP
was used to estimate genomic breeding values, with estimates
of SNP effects obtained indirectly as in Strandén and Garrick
(2009). In a subsequent iteration, an idea suggested by Van Raden
et al. (2009) was used to form a weighted G matrix where the
contribution from each locus was weighted by the ‘‘estimated
variance at that locus’’. Sun et al. (2012) described a method that
is identical to that of Wang et al. (2012) except in the weights
used for computing G. Sun et al. (2012) derived weights from an
EM algorithm (Dempster et al., 1977) that presumably converged
to produce the joint posterior mode of SNP effects under the
Bayes A model of Meuwissen et al. (2001). In the context of
genome-wide association studies, Liu et al. (2016) described an
iteration between fixed and random effects models which would
lead to some phenotype-informed similarity matrix. Karaman
et al. (2018) proposed an ad-hoc multiple-trait method that used
a Bayes A-type (Bayes AS) procedure hybridized with a GBLUP
approach. All these approaches, although intuitively appealing,
are heuristic so it is difficult to characterize their properties from
a formal statistical perspective.

We present a Bayesian single-stage method for inferring ge-
nomic similarities among individuals that uses both marker and
phenotypic information. Since the Bayesian model can be solved
by sampling from the joint posterior distribution of a similarity
matrix, uncertainty can be characterized fully and precisely in the
framework of a well-established theory. Our method is adapted
to several different Bayesian regression models and is illustrated
employing simulation and with analyses of Pinus and wheat data
sets. It is also shown how the concept can be adapted to pre-
diction in a training–testing setting, and multiple-trait extensions
are suggested.

2. Genomic similarity (relationship) matrices

2.1. Linear regression connecting markers to phenotypes

Let X =
{
xij
}
be an n×p (n = number of individuals; p = num-

ber of markers) observed matrix of centered molecular scores
used as covariates in the linear regression model

y = Xβ + e, (1)

where y (phenotypes) and e ∼ N
(
0, Iσ 2

e

)
(model residuals, where

σ 2
e is a variance parameter) are n-dimensional vectors, and β is

a p × 1 vector of regression coefficients; typically n < p. Assume
that nuisance location effects have been eliminated. One way of
dealing with the lack of likelihood identification caused by n < p
is to adopt a Bayesian position and assign some prior distribu-
tion to the vector of regression coefficients (Meuwissen et al.,
2001). For instance, Bayes A uses a t−distribution as prior, the
Bayesian Lasso (BL) adopts a conditional double exponential prior,
and Bayes R assigns a mixture of four normal distributions with
known variance. These methods were reviewed and discussed by,
e.g., de los Campos et al. (2013) and Gianola (2009, 2013).
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2.2. Definition of genomic similarity matrices

2.2.1. General considerations
The notion of a genetic similarity matrix is motivated here. In

a pedigree-based model, if g is a vector of additive effects of n
individuals, their covariance matrix (Henderson, 1976) is

Var (g|A) = Aσ 2
a , (2)

where A, defined earlier, is a similarity matrix satisfying

A =
Var (g|A)

σ 2
a

, (3)

and σ 2
a is the additive genetic variance.

The most widely used form of genome-based similarity matrix
(n × n) is denoted generically as G ∝ XX′. Such G appears
naturally if regression coefficients in (1) are treated as random
variables. Assume β ∼ F (0,Bσ 2

β ), where F is some prior distribu-
tion with covariance matrix Bσ 2

β and σ 2
β is a variance parameter.

From (1), with g = Xβ and B = I it follows that

Var (g|X) = XX′σ 2
β , (4)

so consistently with (3) an a priori genomic similarity matrix can
be defined as

G =
XX′σ 2

β

σ 2
g

, (5)

where σ 2
g is the genomic variance encoded by the model. The

distribution of g depends on F .
As an example, suppose the method of inference is best lin-

ear unbiased prediction (BLUP). Here, σ 2
β is a known variance

parameter representing the variability of marker effects over
conceptual repeated sampling. The estimates of β obtained with
BLUP are numerically identical (at the same level of regulariza-
tion) to those from ridge-regression so the procedure is often
called ‘‘ridge-regression BLUP’’ (RRBLUP). The two needed vari-
ance components in BLUP, σ 2

β and σ 2
e , can be inferred using

Bayesian or likelihood-based methods, and then kept fixed in the
BLUP computations as if they were true values. Van Raden (2008)
defined as ‘‘genomic relationship’’ matrix

GVR=
XX′∑p

j=12qj(1 − qj)
=

XX′

pH
, (6)

where qj is the frequency of a reference allele at marker locus j
and H is average heterozygosity, taken over markers. Observe that
only X informs about similarity in GVR. The connection between
σ 2

β and σ 2
g in BLUP can be deduced readily. The regression model

in scalar form is gi =
∑p

j=1xijβj. If it is assumed that all xij (marker
genotypes) and βj (regression coefficients) are independently dis-
tributed random variables with null means, unconditionally with
respect to the x′

ijs and β ′

j s, the genomic variance in GBLUP can be
defined as

σ 2
g = Var

⎛⎝ p∑
j=1

xijβj

⎞⎠ =

p∑
j=1

E
(
x2ijβ

2
j

)
=

p∑
j=1

E
(
x2ij
)
E
(
β2
j

)
=

p∑
j=1

2qj(1 − qj)σ 2
β = pHσ 2

β . (7)

assuming Hardy–Weinberg equilibrium holds at each locus; inde-
pendence of xij from any xij′ implies linkage equilibrium. This rep-
resentation of genomic variance holds for any regression model,
but the specific form of σ 2

β depends on the prior adopted for
marker effects. Here, Var(g|X) = XX′σ 2

β = GVRσ
2
g .

It is instructive to contrast (7) with the classical formula for
additive genetic variance (VA) in a model with a finite (K , say)
number of QTL under linkage equilibrium. Here

VA =

K∑
k=1

2qk(1 − qk)α2
k , (8)

where qk is allelic frequency at QTL k and α2
k is a fixed substitution

effect, for k = 1, 2, . . . , K (Falconer and Mackay, 1996; Lynch
and Walsh, 1998). There are important conceptual differences
between σ 2

g and VA (e.g., de los Campos et al., 2015). In particular,
additive genetic variance stems from randomness of genotypes
and fixed effects at QTL, whereas σ 2

β (variance of marker effects
distribution, with perhaps even none of the markers being a QTL)
and σ 2

g (genomic variance) stem from a model where marker
substitution effects are random in frequentist or Bayesian senses.
In the latter case, σ 2

β is a metric for prior Bayesian uncertainty
(Gianola et al., 2009; Gianola, 2013) that appears as a hyper-
parameter in a GBLUP model. Note that GVR derives from a single
realization of X, an observable matrix. On the other hand, in
classical quantitative genetics X is viewed as varying at random
according to a distribution reflecting equilibrium or disequilib-
rium laws, typically the latter in artificial breeding. Hence, GVR
would be a random matrix as well; in the absence of selection
and mutation and under Hardy–Weinberg equilibrium, it can be
shown (e.g., Habier et al., 2007) that E (GVR) = A.

2.2.2. Trait-specific (effects based) similarity matrices
Write model (1) as g =

∑p
j=1Xjβj where Xj is the jth column

of X. The notion of a trait-specific similarity matrix is introduced
by defining

G (β) =

p∑
j=1

Xj

(
β2
j∑p

j=1β
2
j

)
X′

j = XD (β)X′, (9)

where D (β) is an unknown p × p diagonal matrix with typical

element
β2
j∑p

j=1β
2
j
; j = 1, 2, . . . , p, whose values range between

0 and 1. If βj = 0, locus j does not contribute to trait-specific
similarity. Further, loci with stronger (positive or negative) ef-
fects contribute more towards similarity than loci with weak ef-
fects. Note that, if marked effects are independent and identically
distributed, for any prior distribution

E

[
β2
j∑p

j=1β
2
j
|X

]
≈

E
(
β2
j

)
E
(∑p

j=1β
2
j

) =
1
p
. (10)

As it will be seen throughout the paper, this definition produces
an expected prior similarity that is proportional to common,
marker derived, measures of similarity. Subsequently, Bayesian
learning incorporates phenotypic information, producing mea-
sures of posterior similarity.

Once β is assigned a prior distribution F , a prior distribution
is automatically induced for G (β). If F is such that marker effects
are independent and identically distributed with variance σ 2

β , the
prior expectation of G (β) is, approximately

E [G (β) |X] ≈ Xdiag

{
σ 2

β

pσ 2
β

}
X′

=
XX′

p
= HGVR, (11)

where H is average heterozygosity, as defined earlier. Hence,
prior similarity is proportional to the similarity conveyed by Van
Raden’s genomic relationship matrix, i.e., a priori all markers
contribute to expected similarity.

If Bayesian learning for β takes place, it must also occur
for G (β), producing a posterior distribution of similarities
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[G (β) |X, y]. Using definition (9), the posterior expectation of the
similarity matrix is

E [G (β) |X, y] =

p∑
j=1

XjE

(
β2
j∑p

j=1β
2
j
|y

)
X′

j = XE [D (β) |y]X′. (12)

Approximately,

E

(
β2
j∑p

j=1β
2
j
|y

)
≈

E
(
β2
j |y
)∑p

j=1E
(
β2
j |y
)

=
E2
(
βj|y

)
+ Var

(
βj|y

)∑p
j=1

[
E2
(
βj|y

)
+ Var

(
βj|y

)] ; j = 1, 2, . . . , p.

(13)

Provided the model holds and assuming likelihood-identified pa-
rameters, standard asymptotic Bayesian theory (Sorensen and
Gianola, 2002) indicates that as n → ∞, then E2

(
βj|y

)
→ β2

j
and Var

(
βj|y

)
→ 0; in the limit the jth diagonal element of D (β)

goes to dj =
β2
j∑p

j=1β
2
j
, which is the ‘‘true’’ contribution of locus j

towards similarity. In finite samples, if two markers are inferred
at the same level of precision, the one with stronger effects will
be assigned more weight.

The extent of Bayesian learning stemming from markers and
phenotypes, relative to the information conveyed from markers
only, can be evaluated by computing Frobenius distances (dist)
between random draws from the prior and posterior distributions
of G (β) or D (β). For instance, the Frobenius distance between
pairs of samples of G (β) is

dist(s) =

√
tr
[
XD

(
β(s,prior)

)
X′ − XD

(
β(s,post)

)
X′
]2

;

s = 1, 2, . . . , S. (14)

The S samples can be used to estimate the distribution of dist .
The effects-based notion of similarity proposed holds for any

member of the Bayesian alphabet (Gianola et al., 2009; Gianola,
2013), i.e., irrespective of the prior adopted. Further, the use of
MCMC samples permits a full characterization of the posterior
distribution of dist since any of its features can be estimated
directly from the draws.

2.3. Implementation-specific similarity matrices

In contrast to the generic effect-size matrix defined in (9),
measures of similarity can be constructed based on specific fea-
tures of members of the Bayesian alphabet referred to previously.
Here, we present the main ideas focusing on Bayes A (Meuwissen
et al., 2001); specific details pertaining to some other members
of the Bayesian alphabet (Gianola et al., 2009) are given in the
Appendix

2.3.1. Bayes A
Bayes A is a linear regression model with a two-stage hier-

archical prior assigned to marker effects. The model assumes: (1)
βj|σ

2
βj

∼ N
(
0, σ 2

βj

)
and (2) σ 2

βj|νβ , S2β ∼ IID(νβS2βχ−2
β ) for each j =

1, 2, . . . , p; IID means ‘‘independent and identically distributed’’.
The first stage poses a marker-specific variance σ 2

βj
and the sec-

ond stage assumes that all such variances follow the same scale
inverted chi-square distribution on νβ degrees of freedom and
with scale parameter S2β; both νβ and S2β are hyper-parameters.
Gianola et al. (2009) pointed out that the unconditional prior
distribution assigned to each of the marker effects is actually
βj|νβ , S2β ∼ tνβ

(0, S2β ), j = 1, 2, . . . , p; that is, all markers are

assumed, a priori, to follow the same t−distribution with variance
σ 2

β = S2β
νβ

νβ − 2
. Meuwissen et al. (2001) interpreted the meaning

of σ 2
βj

incorrectly and attempted to connect such parameter to
some region-specific genetic variance. In fact, markers are ho-
moscedastic, as the same t-distribution is assigned throughout;
the incorrect interpretation reappears in the literature (e.g., Zhang
et al., 2010).

In Bayes A the covariance matrix of marker effects is
Var

(
β|νβ , S2β

)
= IS2β

νβ

νβ − 2
, where I is a p × p identity matrix.

Hence, the vector of genomic breeding values g = Xβ has as
mean vector and covariance matrix of the prior distribution

g|νβ , S2β ∼

(
0,XX′S2β

νβ

νβ − 2

)
. (15)

The unknown prior distribution of each element of g is that of
a linear combination of independent t-random variables (Fisher,
1935; Sukhatme, 1938; Walker and Saw, 1978). It follows that the
‘‘prior genomic relationship matrix’’ in Bayes A has the same form
as (6), but the genomic variance here is

σ 2
g =

p∑
j=1

2qj(1 − qj)S2β
νβ

νβ − 2
. (16)

Interpretation of σ 2
g in Bayes A cannot be disassociated from

the hyper-parameters intervening in the distribution of marker
effects; given σ 2

g , an increase in νβ must be compensated by a
decrease in S2β .

Since βj|σ
2
βj

∼ N
(
0, σ 2

βj

)
, then

β|VBA ∼ N (0,VBA) , (17)

where VBA = diag
{
σ 2

βj

}
is an unknown matrix. Hence, g =

Xβ|X, VBA ∼ N
(
0,XVBAX′

)
. An unobserved similarity matrix in

Bayes A, can be defined following (4) and (6) as

GBA = XDBAX′, (18)

where

DBA = diag

{
σ 2

βj∑p
j=1σ

2
βj

}
. (19)

A priori, E
(
σ 2

βj
|νβ , S2β

)
=

νβS2β
νβ − 2

for any j, so

E
(
GBA|νβ , S2β

)
≈

HXX′

pH
= HGVR, (20)

i.e., the prior expectation is the same as that of the effect-size
based similarity given in (11).

A posterior distribution can be defined for GBA as well. The
Bayes A method allows for some (but limited) Bayesian learning
about the σ 2

βj
parameters and, therefore, about DBA and GBA.

Bayes A is implemented with MCMC using a Gibbs sampler
(e.g., Meuwissen et al., 2001; Pérez and de los Campos, 2014).
In the sampler, draws are made from the conditional poste-
rior distributions

[
σ 2

βj
|ELSE

]
where ELSE denotes all other pa-

rameters, hyper-parameters and data. For Bayes A, σ 2
βj
|ELSE ∼(

β2
j + νβS2β

)
χ−2
1+νβ

, j = 1, 2, . . . , p. Note that only 1 degree of

freedom is gained over the prior, thus posing an upper limit to the
learning that can be attained for each σ 2

βj
, with the same holding

for DBA (Gianola et al., 2009). If S draws are available from the
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posterior distributions of each of the σ 2
βj
parameters, the posterior

distribution of GBA can be estimated from the MCMC samples

G(s)
BA = XD(s)

BAX
′
; s = 1, 2, . . . , S. (21)

The posterior expectation of the distribution is estimated as
GBA =

∑S
s=1G

(s)
BA/S, and the posterior variance of the similarity be-

tween individuals i and j can be assessed as
∑S

s=1

(
G(s)
BA,ij − GBA,ij

)2
/S. Frobenius distances between draws from the prior and pos-
terior distributions of DBA can be used to quantify the extent of
Bayesian learning about similarity stemming from use of pheno-
types over and above what is learned from markers only.

3. Learning similarity from multiple-trait models

Similarity matrices can also be learned from multiple-trait
analyses. For example, consider a two-trait Bayes A regression,
e.g., a joint analysis of stature (trait 1) and body weight (trait 2)
in a group of subjects, and assume that both traits are measured
in each of n individuals. A bivariate Bayes A model poses the
hierarchy

(1)
[
βj1
βj2

]
|Bj ∼ N

([
0
0

]
,Bj =

[
Bj11 Bj12
Bj21 Bj22

])
; j = 1, 2, . . . , p,

(22)

and

(2) Bj|Ω, ν ∼ IW (Ω, ν) ; j = 1, 2, . . . , p, (23)

Above, Bj is a 2 × 2 marker-specific covariance matrix and IW
denotes an inverted Wishart distribution with known Ω =

{
Ωij
}

(scale matrix) and ν (degrees of freedom) parameters. All Bj
matrices are independent and identically distributed, a priori, so
the bivariate Bayes A model assigns the same IW distribution to
each of the p matrices Bj. The marginal prior distribution of the
vector of marker effects is bivariate t , with null mean vector and
covariance matrix Ω

ν

ν − 2
. Sorting individuals within traits, let

g1 = Xβ1 and g2 = Xβ2 where β1 is the p × 1 vector of marker
effects on trait 1, and so on. The model is[
y1
y2

]
=

[
g1
g2

]
+

[
e1
e2

]
= (I ⊗ X)

[
β1
β2

]
+

[
e1
e2

]
, (24)

where I is an n × n identity matrix, ⊗ is the Kronecker product
and the e′s are model residuals. The genetic variance–covariance
matrix of genomic values is therefore

Var
([

g1
g2

]
|Ω, ν

)
= (I ⊗ X) Var

([
β1
β2

]
|Ω, ν

) (
I ⊗ X′

)
= (I ⊗ X)

(
Ω

ν

ν − 2
⊗ I
) (

I ⊗ X′
)

=
ν

ν − 2

[
Ω11XX′ Ω12XX′

Ω21XX′ Ω22XX′

]
. (25)

Hence, trait-specific genomic variances in the bivariate Bayes A
model are

σ 2
gt = Ωtt

ν

ν − 2
pH; t = 1, 2, (26)

and the genomic covariance is

σgtt′ = Ωtt ′
ν

ν − 2
pH; t ̸= t ′. (27)

As in (18), an unknown (normalized) similarity matrix can be
defined for trait t as

GBAt = XDBAtX
′
; t = 1, 2. (28)

where DBAt = diag
{
Bjtt/

∑p
j=1Bjtt

}
, t = 1, 2, is a diagonal matrix

of order p. Hence, a priori

E
(
GBAi |Hyp

)
≈ X

⎡⎢⎣ Ω11
ν

ν − 2

pΩ11
ν

ν − 2

⎤⎥⎦X′
= HGVR (29)

In a Gibbs sampling context, it can be shown that Bj|ELSE is an
inverse Wishart distribution. The sampler provides draws from
the posterior distribution of Bj for each marker, thus leading to
draws from the posterior distributions of DBAt and of GBAt . The
two n× n blocks, GBA1 and GBA2 represent the similarity matrices
for each of the two traits in the bivariate analysis. Given S samples
from the posterior distributions of GBA1 and GBA2 the posterior
distribution of the Frobenius distance between the two similarity
matrices can be estimated as

dist(s)1−2 =

√
tr
(
G[s]
BA1

− G[s]
BA2

)2
; s = 1, 2, . . . , S. (30)

If the distribution of the Frobenius distance between GBA1 and
GBA2 is away from 0, such finding would support the view that
trait-specific similarity matrices are required.

Bayes B and Bayes Cπ (see Appendix for a description of
the basics of these methods) can be adapted to the multiple
trait case following Cheng et al. (2018). Likewise, a multiple-trait
Bayesian Lasso (MBL) that assumes a conditional multivariate
Laplace distribution for marker effects can be considered as well.
As in Gianola and Fernando (2018), ordering the p × 1 vectors of
marker effects (βi) within trait, the conditional prior for bivariate
marker effects is[
β1
β2

]
|Σ, v2 ∼ N (0,Σ ⊗ Dv) , (31)

where Dv=
{
v2
j

}
is a p × p diagonal matrix of unknown weights,

each distributed as Gamma
(
1,

1
8

)
, a priori, and Σ is the scale

matrix of a bivariate Laplace distribution. Hence,

g =

[
Xβ1
Xβ2

]
|Σ, v2 ∼ N

(
0,Σ ⊗ XDvX′

)
. (32)

As shown in Gianola and Fernando (2018) the diagonal elements
of Dv have unrecognizable conditional posterior distributions and
a Metropolis–Hastings algorithm was suggested by these au-
thors for drawing samples. Gianola and Fernando (2018) give

Gamma(v2
j |
T + 1

2
,
1
8
) as prior distribution for the weights; T =

number of traits. The similarity matrix in MBL can be defined as

GBL = XDMBLX′, (33)

where DMBL = diag
(
v2
j /
∑p

j=1v
2
j

)
. Note that there is a single

similarity matrix for the MBL model, as v2
j takes the same value

across traits. A priori, for T = 2

E (GBL|Hyp) ≈
XX′

p
=HGVR. (34)

As before, the extent of Bayesian learning can be evaluated by
comparing the prior and posterior distribution of GBL in (33).

4. Simulation

4.1. Setting

A genome consisting of 10 chromosomes, each of length one
Morgan and containing 2000 SNP loci per chromosome, was
simulated using the XSim package developed in the Julia pro-
gramming language environment (Cheng et al., 2015). Random
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mating was practiced in a population of size n = 100 for one-
hundred generations to generate linkage disequilibrium between
loci. Thereafter, the population was expanded to n = 500, 2000
or 4000 to produce increasingly large training samples and to
evaluate the extent of Bayesian learning as a function of size
of the sample. One hundred loci were randomly drawn from
across the genome and designated as QTL; substitution effects
for the QTL were simulated from a standard normal distribution.
Phenotypic values were generated as

y = Qα + e, (35)

where Q is the matrix of the QTL genotypes and α is a fixed
vector of ‘‘true’’ substitution effects. The residuals in vector e
were sampled independently from a normal distribution with
null mean and variance σ 2

e chosen to generate a trait with a
heritability of 0.5.

The 20,000 simulated SNP genotypes (including the 100 des-
ignated as QTL) and the phenotypes from the training samples
were used in Bayes Cπ analyses (Habier et al., 2011), with the
proportion of loci with null substitution effects π treated as
unknown and assigned a uniform prior. For the Bayes Cπ model
we constructed an effect-size based similarity matrix as defined
in (9). The Julia package JWAS (Cheng et al., 2016) was used to
draw 60,000 Gibbs samples of model unknowns for each BayesCπ

analysis, and every 20th posterior sample of the vector of effects,
β , was saved for inference; hence, 3000 samples were employed
for inference on genomic similarity.

Since genotypes and their effects are known in the simulation,
true genomic similarity at the QTL level could be computed, and
this was done for illustrative purposes for the first 100 individuals
from each of the three population sizes. Using (9) the ‘‘true’’
genomic similarity matrix employed for these individuals was

GQ = QcD (α)Q′

c, (36)

where Qc is the matrix of centered QTL genotype scores for the
100 individuals at the 100 QTL and α were the true (simulated)
QTL effect sizes. For each of the 3000 MCMC posterior samples, a
similarity matrix was computed from marker effects and marker
genotypes of the 100 individuals as

G
[
β(s)]

= XD(s)
β X′

; s = 1, 2, . . . , 3000. (37)

Similarly, 3000 samples from the prior distribution of β were
used to produce draws from the prior distribution of G (β)

The Frobenius distance between GQ and each of the G
[
β(s)

]
3000 matrices drawn from either the prior or posterior distribu-
tions of G was calculated as

d(s)
=

√
tr(GQ − G

[
β(s)

]
)2. (38)

Bayesian learning on similarity was evaluated by comparing the
prior and posterior distributions of the Frobenius distances away
from GQ . An overlap of distributions would indicate that phe-
notypes do not inform about similarity between individuals be-
yond what is conveyed by marker data only. Conversely, when
phenotypes inform about similarity beyond markers, distances
between GQ and posterior similarities should be shorter than
those between GQ and prior similarities.

4.2. Results

Fig. 1 shows overlap between posterior and prior distributions
of Frobenius distances when training data set size was 500, but
draws from the posterior distribution were closer to GQ than
prior draws. As the size of the training data set increased to 2000
(Fig. 2) and 4000 (Fig. 3) the overlap between posterior and prior
distributions disappeared. Frobenius distances based on posterior

Fig. 1. Distribution of Frobenius distances away from true relatedness at the
QTL level of similarity matrices drawn from prior and posterior distributions.
Simulated data; n = 500.

Fig. 2. Distribution of Frobenius distances away from true relatedness at the
QTL level of similarity matrices drawn from prior and posterior distributions.
Simulated data; n = 2000.

draws were closer to similarity at the QTL level than those based
on samples from the prior; further, the posterior distribution of
distances was sharper than the prior distribution. Note, however,
that even though the QTL were in the marker panel, learning
was still imperfect, as 0 was not assigned appreciable probability.
In the limit, as n tends to infinity, the posterior distribution of
G (β) is expected to converge to GQ , the genetic similarity at
the QTL level, since QTL genotypes are included in the marker
panel. The results corroborate, at least for Bayes Cπ , that when a
training data set has sufficient size, the phenotypic data provide
information beyond markers on trait-specific genetic similarities
between individuals.

5. Pinus taeda data

The Loblolly (Pinus taeda) data described in Cheng et al. (2018)
was employed to test if Bayesian learning could be attained in a
real data set. After edits, there were n = 807 individuals with p =

4828 SNP markers with phenotypic measurements on Rust bin
scores (presence or absence) and Rust gall volume, two disease
traits; see Cheng et al. (2018) for additional information on these
two disease traits.

A bivariate Bayes Cπ method was used as in Cheng et al.
(2018); these authors assumed bivariate normality for the sam-
pling model. The MCMC scheme had a burn-in period of 10,000
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Fig. 3. Distribution of Frobenius distances away from true relatedness at the
QTL level of similarity matrices drawn from prior and posterior distributions.
Simulated data; n = 4000.

Fig. 4. Distribution of Frobenius distances between similarity matrices drawn
from prior and posterior distributions. Pinus data; gall volumes.

iterations, with an additional 100,000 samples drawn from the
posterior distribution, and sub-sampled every 50th round such
that sample size for inference was 2000. Further, 2000 samples
were drawn from the prior distribution of the similarity matrices.
Frobenius distances between GVR and prior or posterior draws
of the similarity matrices were calculated, leading to the distri-
butions shown in Figs. 4 and 5, for Rust gall volume and Rust
bin, respectively. The distributions had practically no overlap,
indicating that use of phenotypic information did modify knowl-
edge about similarity from what was conveyed by markers only.
Note that the posterior distributions of the Frobenius distance
away from GVR were similar between traits. As shown in Fig. 6,
Frobenius distances varied concomitantly for the two traits. Fig. 7
displays the distribution of the Frobenius distance between the
similarity matrices for the two traits. Since there was no apprecia-
ble probability mass near zero, the analysis supports the view that
trait-specific similarities differed. Hence, GVR is not necessarily a
suitable prescription for all traits.

6. Wheat data

A wheat yield data set in the R package BGLR (Pérez and
de los Campos, 2014) was used to evaluate specific aspects of
our methodology. Crossa et al. (2010), Gianola et al. (2011), Long
et al. (2011) and Gianola et al. (2016) have characterized this

Fig. 5. Distribution of Frobenius distances between similarity matrices drawn
from prior and posterior distributions. Pinus data; rust bin.

Fig. 6. Scatter plot of Frobenius distances away from the prior of posterior
similarity matrices for rust bin vs. gall volume: Pinus data.

Fig. 7. Distribution of difference in Frobenius distances between rust bin and
gall volume specific similarity matrices: Pinus data.

data set extensively in several studies of genome-enabled predic-
tion procedures. Briefly, there are 599 wheat inbred lines, each
genotyped with 1279 DArT (Diversity Array Technology) markers
and each planted in four environments. Sample size is n = 599
and p = 1279 is the number of markers. The DArT markers are
binary (0, 1) and denote presence or absence of an allele at a
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Fig. 8. Scatter plot of samples of Frobenius distances of G(β) away from the genomic relationship matrix GVR for a bivariate Bayesian Lasso of wheat grain yield in
environments 1 (X-axis) and 2 (Y-axis). The green line is the fitted regression line of Lasso samples for yield 2 on yield 1. Vertical and horizontal blue lines give
the corresponding Frobenius distances for a bivariate GBLUP analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

marker locus in a given line. Grain yields in environments 1 and
2 were employed to compare outcomes between analyses based
on bivariate GBLUP and the bivariate Bayesian Lasso (Gianola
and Fernando, 2018). In the bivariate model, yields in the two
environments are treated as distinct traits, conceptually. This type
of data structure arises in dairy cattle-breeding (milk production
of daughters of bulls in different countries treated as different
traits) and in multi-environment situations in plant breeding.

Using the wheat data, we constructed similarity matrices de-
rived from bivariate GBLUP and bivariate Lasso analyses. For
GBLUP, the estimates of variance and covariance components
were obtained via a maximum likelihood procedure; the bivariate
Lasso model was implemented with a Gibbs/Metropolis–Hastings
procedure based on six parallel chains leading to 12,000 samples
post-convergence to the joint posterior distribution (Gianola and
Fernando, 2018). The picture was similar to that obtained with
the Pinus data set. Fig. 8 displays a scatter plot of 5000 randomly
chosen posterior samples of Frobenius distances away from GVR
for wheat yield 1 and wheat yield 2. Clearly, the posterior samples
of distances for the two traits were very weakly correlated; the
green straight line depicts the fitted values of a linear regres-
sion of distances for trait 2 on trait 1 with a slope of 0.13 and
R2

= 0.01. The horizontal and vertical lines give the Frobenius
distances between G

(̂
β
)
and GVR, where β̂ is the BLUP of marker

effects for either trait 1 or trait 2. The location of the bivariate
distribution of Lasso samples for the two traits was far from the
centroid defined by the intersection of the distances between
G
(
β̂1
)
and GVR, and G

(
β̂2
)
and GVR, where the subscript denotes

the trait. Hence, Fig. 8 corroborates that phenotypes inform about
trait-specific similarity.

7. FBLUP

All members of the Bayesian alphabet are self-contained from
a predictive point of view. For instance, if regression coefficients
β in the standard Bayesian linear model g = XTrnβ are unknown
and inferred from a training set, then in a testing set with known
genotypes XTst the mean of the predictive distribution is XTstβ .
Here, β is the posterior expectation in the training set. On the
other hand, our procedures allow to learn similarity matrices
in testing sets with genotypes but without phenotypes. Such
trait-specific similarity could be exploited further in a GBLUP
context while producing prediction machines that are different
from GBLUP. To illustrate the basic concept, let X =

[
X′

Trn X′

Tst

]′
and define

Gall =

[
GTrn,Trn GTrn,Tst

GTst,Trn GTst,Tst

]
=

[
XTrnDX′

Trn XTrnDX′

Tst

XTstDX′

Trn XTstDX′

Tst

]
, (39)

Above, D is p × p and learned from training data only and the
training process assigns differential weights to SNPs; let D be the
posterior expectation of D obtained from the training process.
A pseudo-BLUP (FBLUP, F stands for ‘‘fake’’) procedure could be
used to produce predictions of genetic values in the testing set as

ĝF ,Tst = XTstDX′

Trn

(
XTrnDX′

Trn

)−1
gTrn (40)

where gTrn is the posterior expectation obtained from the
Bayesian analysis of the training set. Note that gTrn and D derive
from training set data only, e.g., from fitting Bayes Cπ , R or any
other variable selection method, while ĝF ,Tst is based on a BLUP
logic. FBLUP has not been evaluated empirically yet, but the idea
is intriguing, as it represents a ‘‘hybrid’’ between some Bayesian
approach and BLUP with, perhaps, predictive synergy. FBLUP is
not a linear procedure since neither D nor gTrn are linear functions
of the phenotypes.

The focus here is introducing the methodology, as opposed
to conducting an exhaustive evaluation of its behavior as a way
of generating novel prediction machines. Nevertheless, we com-
pared the predictive ability of univariate GBLUP with that of
univariate FBLUP using the data for wheat yield 1 and a training–
testing set layout reconstructed at random 1000 times. In each
training–testing instance, the training and testing sets had sizes
nTrn = 450 and nTst = 149, respectively. In FBLUP, GVR was
replaced by G

(̂
β1
)
where β̂1 represents the univariate BLUP es-

timates of marker effects on wheat yield 1 obtained from the
appropriate training set, then used to form predictions evalu-
ated against the appropriate testing sets. Fig. 9 displays, training
(for GBLUP) and testing (GBLUP and FBLUP) correlations and
mean-squared errors. As usual, training set correlations (between
fitted values and targets) were larger than the corresponding
predictive correlations; likewise, training mean-squared errors
were smaller than the mean squared errors of prediction. The
commonly negative relationship between fitting and predictive
abilities was observed as well: the better the model fitted to the
training data, the worse its predictions were. No clear differences
in favor of FBLUP over GBLUP were noted. For instance, the me-
dian predictive correlations for GBLUP were 0.523 and 0.491 for
traits 1 and 2, respectively; for FBLUP the corresponding median
correlations were 0.518 and 0.486, respectively. Differences in
predictive mean square errors were small as well. Since FBLUP
can be used in conjunction with any method in which markers
are learned, the term actually defines a new family of prediction
machines.
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Fig. 9. Training and testing mean-squared errors (MSE) and predictive correlations (R) of GBLUP and FBLUP in 1000 random reconstructions of a training-testing
layout in the what data set.

8. Discussion

Genomic relationship matrices (e.g., Van Raden, 2008) are
a central part of GBLUP, arguably the prediction method most
widely used in animal and plant improvement programs. In
GBLUP, some G such as GVR replaces the pedigree-based kinship
matrix A used in classical BLUP. Van Raden’s GVR is based entirely
on markers that are assigned the same weight, disregarding the
possibility that some genomic region may be more important
than others in trait determination. Also, linkage disequilibrium
relationships among markers (beyond what is encoded by the
columns of the genotype matrix X) are not exploited in GVR.
Bravington et al. (2016) assumed linkage equilibrium in kinship
estimation in the context of mark-recapture studies. On the
other hand, LD information was incorporated into a marker-based
similarity suggested by Speed et al. (2012).

The construction of trait-specific G′s has been considered in
previous research although not formally addressed as an estima-
tion problem. Several studies, e.g., Zhang et al. (2010) and Wang
et al. (2012), used information on phenotypes in the construction
of G to produce trait-specific similarity (kernel) matrices. Fan
et al. (2016) suggested an algorithm that iterates between fixed
effects and random effects models that can be used to arrive
at trait-informed relationship matrices. Although these methods
have intuitive appeal, a cohesive theoretical foundation lacked.
Here, we propose a formal Bayesian approach and implement it
in an MCMC framework. The point of departure is to regard a
similarity matrix G as an unknown parameter and define it as
G = XDX′ where D is a diagonal matrix involving unknown
quantities. For example, we let G (β) be a function of unknown
effect sizes, define a prior density p (G (β) |X,Hyp) and arrive at
a posterior density p (G (β) |X, y,Hyp). The unknown similarity
matrix can be inferred from MCMC draws from the posterior.
The extent of Bayesian learning is assessed from the samples of
Frobenius distances between matrices drawn from the prior and
posterior distributions of G (β) . It is important to note that the
proposed method does not use information additional to what is
conveyed by the regression model. Rather, it creates a connection
between phenotypes and similarity which is ignored when the
latter is inferred from markers only. Specifically, G (β) is treated

as an unknown (non-linear) function of β, so given a posterior
distribution of the vector of regression coefficients, a posterior
distribution of the similarity matrix is induced automatically. The
basic idea applies to all members of the Bayesian alphabet, such
as, e.g., Bayes A, B, C, Cπ , R and L, since obtaining realizations of
β is common to all such methods.

Using simulation, it was found that Bayesian learning on
similarity does takes place and that the prior and posterior
distributions of G (β) become increasingly distinct as sample size
grows. A Pinus data set employed together with Bayes Cπ pro-
vided proof-of-concept. The distribution of Frobenius distances
away from GVR of prior and posterior samples suggested that
phenotypes conveyed information on similarities beyond what is
provided frommarkers, these holding for the two traits evaluated.
Furthermore, there was evidence that the marker-phenotype
informed similarity matrices differed between the two disease
traits. A similar picture emerged from the analyses carried out
with the wheat data set.

The Bayesian approach provides information about the uncer-
tainty of similarities between any pair of individuals as it is easy
to estimate the posterior distribution of any element of G (β).
Such variability is expressed conditionally on X and y and it mea-
sures statistical uncertainty on similarity, but it is not comparable
to the metrics presented by Hill and Weir (2011). These authors
assumed conceptual repeated sampling of genotypes from a pop-
ulation. The distinction with the Bayesian interpretation is crucial,
as some of the genome-enabled prediction literature is unclear
with respect to what is fixed and what is random in marker-
based models. Genetic variability and covariability is defined in
quantitative genetics using the notion that allelic substitution
effects are fixed and genotypes are random (Gianola et al., 2009;
de los Campos et al., 2015; Gianola et al., 2015), as in Fisher’s
(2018) model. On the other hand, the Bayesian approach regards
substitution effects as random and marker genotypes as fixed. In
our paper, we treat X as a fixed matrix and the randomness in
G = XD (β)X′ derives from Bayesian uncertainty on D (β) which,
in turn, depends on the uncertainty on model parameters.

Bayes Cπ was used for the Pinus data and a different method
would have surely produced a different posterior difference of
Frobenius distances away from GVR, perhaps overlapping from
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the one produces by Bayes Cπ , perhaps not. As noted earlier,
similarities based on the Bayesian Lasso applied to wheat grain
yield differed from those based on a genomic similarity matrix
derived from BLUP point estimates of marker effects. Bayesian
learning about G is entirely dependent on how much is learned
about β, which is a function of the trait-environment-method
combination examined. For methods 1 and 2, say, and with an
orthonormal regression model (X′X = I) the squared Frobenius
distance between the corresponding similarity matrices is

d2 (G1,G2) = tr
[(

XD (β1)X′
− XD (β2)X′

)2]
= tr [D (β1) − D (β2)]2 ,

where β1 is the vector of marker effects for method 1, D (β1) =

diag
(

β2
1j∑p

j=1β2
1j

)
and similarly for method 2. Clearly, differences in

similarity matrices depend on how marker effects are inferred by
various methods, a question that is entirely context dependent.
If a formal model comparison favors method 1, say, one could
state that G1 provides a better inference of G than G2. However, if
G1 is used in a prediction machine that performs better than one
based on G2, this finding does necessarily imply that the inference
of similarity based on 2 is better than the one based on 1. The
constellation of complex traits (and the number of members of
the Bayesian alphabet and of prediction methods) is enormous
and it does not seem sensible to offer general prescriptions,
especially from a prediction perspective.

Successful application of the concepts developed in this paper
depends on the availability of a reliable MCMC implementation.
For suitable inference, evidence must indicate that there has not
been failure in reaching the target distribution and that sampling
has been intensive enough, such that Monte Carlo error does not
swamp statistical signals. If the prior distribution is a mixture,
for example, so is the posterior (Albert, 2009), but detecting and
attaining convergence (or lack thereof) with high-dimensional
models is a challenge. With p markers and a four-component
mixture, as in Bayes R, the joint posterior has 3p parameters so
at least 3p states must be visited, as there are three ‘‘free’’ indica-
tor variables per marker. Rajaratnam and Sparks (2015) studied
‘‘convergence complexity’’ in n ≪ p situations and derived
formulae that can be used to calculate the minimum amount of
sampling required before reaching the equilibrium distribution.
Calculations using such formulae (not shown here) suggest that
convergence may be computationally difficult to attain when all
polymorphic nucleotides available in a DNA sequence are used
as covariates in a model, so much more sampling may be re-
quired than what is often done in practice. Conceivably, burn-in
periods of at least half a million iterations may be needed. Our
calculations support observations made by Celeux et al. (2000)
on difficulties encountered in convergence of Bayesian mixture
(variable selection) models. Inference must be done with caution
when high-dimensional data are encountered, especially if sam-
pling is not intensive enough. The approaches presented here do
not escape from such pitfalls.
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Appendix. Similarity matrices for some members of the
Bayesian alphabet

A.0.1. Bayes L
The Bayesian Lasso (Bayes L) assigns the same conditional dou-

ble exponential distribution, with parameter λ, as prior to each
of the regression coefficients; marker effects are assumed (given
λ) independently distributed a priori. Bayes L can be parame-
terized and implemented in various manners (Park and Casella,
2008; Kärkkäinen and Sillänpää, 2012). Here, we adopt the scale-
mixture of normals developed by Gómez-Sánchez-Manzano et al.
(2007) and used by Gianola and Fernando (2018) in a multiple-
trait generalization of Bayes L. The multi-trait Bayes L implemen-
tation in Gianola and Fernando (2018) reduces to a univariate
Bayes L model when the number of traits is 1.

The hierarchy is: (1) βj|σ
2
βj
, λ ∼ N

(
0, σ 2

βj
λ

)
, and (2) σ 2

βj
∼

Gamma
(
1,

1
8

)
for all j = 1, 2, . . . , p. Then

g = Xβ|X, σ 2
β , λ ∼ N

(
0, λXVBLX′

)
, (41)

where VBL = diag
{
σ 2

βj

}
and σ 2

β =

(
σ 2

β1
, σ 2

β2
, . . . , σ 2

βp

)
. The

structure of the problem is as in Bayes A. The variance of a marker
effect (the prior expectation is zero) is

Var
(
βj|λ

)
= Eσ2

βj
Var

(
βj|σ

2
βj
, λ

)
=

λ

8
= σ 2

β ∀j, (42)

because E
(
σ 2

βj

)
=

1
8

for all j, from properties of a Gamma(1,
1
8
)

distribution. Hence, the genomic variance in the Bayesian Lasso
(given λ) is

σ 2
g =

λ

8

p∑
j=1

2qj(1 − qj). (43)

Given some estimate of σ 2
g and of allelic frequencies at marker

loci, λ can be assessed using (43).
A similarity matrix can be defined from the hierarchical rep-

resentation of Bayes L model. Let DBL = diag
{
σ 2

βj
/
∑p

j=1σ
2
βj

}
, and

GBL = XDBLX′. (44)

The prior expectation of GBL is approximately

E (GBL|Hyp) ≈
1
p
XX′

= HGVR, (45)

similar to (20) in Bayes A.
With S samples obtained from the prior and posterior distri-

butions of GBL, the distribution of the Frobenius distance can be
estimated by forming the draws

dist(s)BL =

√
tr
(
XD(posterior,s)

BL X′ − XD(prior,s)
BL X′

)2
; s = 1, 2, . . . , S.

(46)

Sampling from the prior is straightforward since σ 2
βj

∼ Gamma(
1,

1
8

)
.

A.0.2. Bayes B and Bayes Cπ
Bayes B (Meuwissen et al., 2001) and Bayes C and Cπ (Ha-

bier et al., 2011) pose a two-component mixture model as prior
distribution. All marker effects follow the same prior distribution
and are regarded as independently distributed, a priori. In Bayes
B, the first component consists of a null effect with known prior
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probability π . The second component assigns a t−distribution
to each marker effect, with parameters as in Bayes A and with
probability 1 − π . Bayes C also assumes known π but differs
from Bayes B in that, for the second component, a multivariate
t−distribution with null mean is assigned as joint prior to the
non-null effects; the scale matrix in Bayes C is IS2β and the degrees
of freedom are as in Bayes B. A subtle but important difference, is
that in Bayes B effects are independent a priori, but this is not so
for Bayes C. In the latter, marker effects are uncorrelated but not
independent, a priori. Finally, Bayes Cπ has an additional layer
in the hierarchy, with a prior distribution assigned to π . In what
follows, we take Bayes B as prototype, as the treatment in Bayes
C is similar.

Using properties of mixtures (e.g., Gianola et al., 2006), the
marginal prior distribution of a marker effect in Bayes B has mean
zero and variance σ 2

β = (1 − π) S2β
νβ

νβ − 2
. If hyper-parameter

values were set as in Bayes A, the prior variance would be smaller
in Bayes B because of the strong assumption that a fraction π

of the markers has a null prior variance. The vector of genomic
values in Bayes B has mean and covariance matrix

g = Xβ|π, S2β , νβ∼

[
0,XX′ (1 − π) S2β

νβ

νβ − 2

]
; (47)

the distribution of g is unknown and cannot be written in closed
form. The Bayes B genomic variance is structured as

σ 2
g = (1 − π) S2β

νβ

νβ − 2

p∑
j=1

2qj(1 − qj) = pH (1 − π) S2β
νβ

νβ − 2

(48)

The original formulation of Bayes B (Meuwissen et al., 2001)
uses an implementation based on variance parameters. Given
σ 2

β1
, σ 2

β2
, . . . , σ 2

βp
(see hierarchical model for Bayes A) a marker

effect has variance σ 2
βj

with probability 1− π , or variance 0 with
probability π . Put

DBB = diag
(
Ij
)
; GBB = XDBBX′ (49)

where Ij takes the value
σ 2

βj∑p
j=1σ

2
βj

(j = 1, 2, . . . , p) with prior

probability 1 − π or 0 with probability π . The Bayes B MCMC
sampler produces an indicator of whether 0 or the realized (nor-
malized) value of σ 2

βj
is placed on position j along the diagonal of

DBB. In Bayes Cπ , the mixing proportion varies at random because
π is unknown. A priori, in Bayes B

E (GBB|X, π) ≈ X
[

(1 − π)

p

]
X′

= (1 − π)HGVR. (50)

Given S samples from each of the prior and posterior distributions
of DBB, Frobenius distances can be compared as discussed pre-
viously. The posterior distribution of GBB can be estimated from
posterior samples

G(s)
BB = XD(s)

BBX
′
; s = 1, 2, . . . , S. (51)

Bayes B can also be implemented as in a standard two-
components mixture model where assignment to one of the two
components of the distribution pertains to an effect and not
to a variance. Use is made of data augmentation by including
binary (0, 1) indicator variables δ =

(
δ1, δ2, . . . , δp

)′ denoting
the component of the mixture responsible for the effect of a
marker covariate on phenotypes. The scheme produces metrics
for variable selection based on the posterior distribution of the

δ′s. Given δ, the linear regression model (assuming no intercept)
for datum i is

yi =

p∑
j=1

δjxijβj + ei =

p∑
j=1

x∗

ijβj + ei, (52)

or, in matrix notation

y = X∆β + e = X∗β + e, (53)

where ∆ = diag(δj) and X∗
= X∆. Conditionally on ∆,

g = X∗β|∆,σ 2
β ∼

(
0,X∆2X′σ 2

β

)
, (54)

where σ 2
β = S2β

νβ

νβ − 2
(1 − π); note that ∆2

= ∆. Using (48) an

unknown similarity matrix is

GBB (∆) = Xdiag

{
δj∑p
j=1δj

}
X′. (55)

Since ∆ is unknown, GBB (∆) is a random matrix. If
δj ∼ Bernoulli (π), j = 1, 2, . . . , p its prior expectation is

E [GBB (∆) |X, π ] =
XX′

p
= HGVR. (56)

Now, ∆ in (53) and in (55) has a posterior distribution ∆|y that
can be estimated from draws ∆(1),∆(2), . . . ,∆(S) obtained in an
MCMC scheme. Thus, samples from the posterior distribution of
GBB (∆) can be formed as

G(s)
BB (∆) = X∆(s)X′

=

p∑
j=1

δ
(s)
j XjX′

j =

p∑
j=1

G(s)
BB,j (57)

which shows clearly how variable selection affects similarity;
G(s)
BB,j is the contribution to similarity made by locus j in sample s.

The posterior expectation of GBB,j (∆) is estimated as

Ê (GBB (∆) |y) =
1
S

S∑
s=1

p∑
j=1

G(s)
BB,j =

p∑
j=1

δjXjX′

j, (58)

where δj is the estimated posterior expectation of δj, also an
estimate of the probability of ‘‘inclusion’’ in the model. Since the
prior probability of inclusion is 0 < π < 1, the averaging process
results in that all markers contribute to similarity, but to different
degrees, as

Ê (∆|y) =
1
S

S∑
s=1

∆(s). (59)

The difference between similarity matrices drawn from their
prior and posterior distributions is driven by the difference be-
tween the prior and posterior distributions of ∆. In Bayes B,
π is taken as a known hyper-parameter, so draws from the
prior distribution of ∆ can be obtained by drawing each of its
elements from δj ∼ Bernoulli (π). In Bayes Cπ the draws from the
prior distribution can be obtained from composition sampling:
(1) draw π from its prior distribution (e.g., a uniform prior) and
(2) conditionally on the realization π∗, draw δj ∼ Bernoulli (π∗),
repeating the two steps for each marker. The draws from the pos-
terior distribution of ∆ follow directly from the MCMC algorithm;
prior and posterior distributions can be compared by examining
the distribution of Frobenius distances.

It is important to emphasize that (51) and (55) define two
distinct similarity matrices. The prior and posterior distributions
of (51) depend on the σ 2

βj
parameters, on which limited Bayesian

learning takes place (Gianola et al., 2009). The second matrix
involves the δj indicators, which enable learning about π in Bayes
Cπ .
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A.0.3. Bayes R
Erbe et al. (2012) proposed a four-component mixture distri-

bution as prior for each of the markers entering into the linear
regression model and the procedure was termed Bayes R. The
prior for the effect of marker j is

βj|π1, π2, π3, π4,Hyp ∼ π1N1 + π2N2 + π3N3 + π4N4;

j = 1, 2, . . . , p, (60)

where Ni (i = 1, 2, 3, 4) denotes a normal distribution with null
mean and variance σ 2

i , π = {πi} is the vector of probabilities
of membership. In Bayes R the hyper-parameters in Hyp include
the variances of the four normal distributions, which are set
arbitrarily. Actually, component 1 has null mean and variance
in Bayes R so it represents a point-mass with probability π1,
producing a ‘‘spike and slab’’ model. In turn, the probabilities of
membership π are assigned a four-dimensional Dirichlet prior
distribution with hyper-parameters α = (1, 1, 1, 1)′, resulting in
a uniform prior. Hence,

Var
(
βj|π,Hyp

)
=

4∑
i=1

πiσ
2
i , (61)

recalling that σ 2
1 = 0. Because of the nullity of the means of the

component distributions, averaging over the Dirichlet distribu-
tion yields

Var
(
βj|Hyp

)
= Eπ

[
Var

(
βj|Hyp

)]
=

1
4

4∑
i=1

σ 2
i = σ 2

β ∨ j, (62)

so the variance of the marginal prior distribution of a marker
effect is an unweighted average of the variances of the mixture
components. For Bayes R,

g = Xβ|Hyp ∼
(
0,XX′σ 2

β

)
, (63)

and the genomic variance takes the form

σ 2
g =

p∑
j=1

2qj(1 − qj)σ 2
β . (64)

As in any mixture model, the joint posterior can be aug-
mented with indicator variables. In Bayes R, a 4 × 1 vector
ϕj= (ϕ1, ϕ2, ϕ3, ϕ4)

′, points to the distribution ‘‘responsible’’ for
marker effect j; e.g., if marker j has a null effect, then ϕj =

(1, 0, 0, 0)′. From the point of view of learning a similarity matrix
informed by phenotypes, what matters is whether a given marker
has a null effect or not. Hence, one can define a binary indicator
taking the value 1 if the marker has an effect (ϕj1 = 0) and 0
otherwise, i.e., if either ϕj2, ϕj3 or ϕj4 take the value 1; let the
binary indicator be γj (j = 1, 2, . . . , p). A similarity matrix for
Bayes R would be

GBR (Γ ) = X′Γ X, (65)

where Γ = diag
(
γj/
∑p

j=1γj
)
. A priori,

E [GBR (Γ ) |Hyp] ≈ X′diag
(

π1

pπ1

)
X =HGVR, (66)

where π1 is the prior probability of a marker having a null
effect on the trait. The MCMC sampler produces draws from the
posterior distribution of each ϕj (and therefore, of each γj). The
mean of the posterior distribution of GBR (Γ ) is estimated as

ĜBR (Γ ) =
1
S

S∑
s=1

X′Γ (s)X; s = 1, 2, . . . , S. (67)

At any round of the MCMC γ
(s)
j = 0 if ϕ

(s)
j1 = 1, or γ

(s)
j = 1

otherwise; j = 1, 2, . . . , p. The difference between the prior and

posterior distributions of Γ informs how much phenotypes affect
similarity between individuals over and above markers. Equiva-
lently, one can examine the distribution of Frobenius distances
between pairs of matrices drawn from the prior and posterior
distributions of GBR (Γ ).
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