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A B S T R A C T

Lithium-ion batteries are used for both stationary and mobile applications. While in the automotive industry
standard profiles are used to compare the performance and efficiency of competing vehicles, a similar com-
parative metric has not been proposed for stationary battery energy storage systems. Because standard profiles
are missing, the comparable evaluation of different applications with respect to efficiency, long-term behavior
and profitability is very difficult or not possible at all. This work presents a method to create these standard
profiles and the results are available as open data for download. Input profiles including frequency data, industry
load profiles and household load profiles are transformed into storage profiles including storage power and state
of charge using a holistic simulation framework. Various degrees of freedom for the energy management system
as well as for the storage design are implemented and the results are post-processed with a profile analyzer tool
in order to identify six key characteristics, these being: full-equivalent cycles, efficiency, depth of cycles, resting
periods, number of changes of sign and energy throughput between changes of sign. All applications examined in
this paper show unique characteristics which are essential for the design of the storage system. E.g., the numbers
for annual full-equivalent cycles vary from 19 to 282 and the efficiency lies between 83% and 93%. With aid of
this work in conjunction with the open data results, users can test and compare their own cell types, operation
strategies and system topologies with those of the paper. Furthermore, the storage power profiles and state of
charge data can be used as a reference for lifetime and profitability studies for stationary storage systems.

1. Introduction

A high share of renewable energies poses new challenges to the
power grid. Due to decreasing costs of Lithium-Ion Battery (LIB), sta-
tionary Battery Energy Storage Systems (BESSs) are discussed as a vi-
able building block in this context. In Germany, the installed storage
power with batteries increased from 126 MW in 2015 to over 700 MW
in 2018 [1]. Many use cases seem to be of interest for BESSs, as sum-
marized in a report by Eyer and Corey [2]. In particular, the provision
of Frequency Containment Reserve (FCR), Peak Shaving (PS) in the
industry sector and Self-consumption Increase (SCI) in the private
sector are seen as the most prominent applications for BESSs [3,4].
There seems to be consensus, that these applications are the main dri-
vers for the stationary battery storage market. However, if it comes to

quantitative analyses of profitability, efficiency and aging of storage
systems in a singular use case or even across applications, striking
differences in numbers become apparent. In order to make single ap-
plications easier to compare, open-source available reference profiles
for stationary BESS, similar to the widely used Worldwide Harmonized
Light Vehicles Test Procedure (WLTP) for electric vehicles applications,
are suggested herein and may help to assess the performance of BESSs.

1.1. Literature review

The state of the art of LIB based stationary BESSs is reviewed e.g. by
Diouf et al. [5] and Hesse et al. [3]. Both conclude that LIB based
stationary BESSs have advantages in different stationary applications
compared to alternative technologies. A more general overview of
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stationary storage systems, including other storage technologies, is
given by Palizban and Kauhaniemi [6], Resch et al. [4] and Dunn
et al. [7]. All authors highlight the high efficiency of LIB-based BESSs,
but the numbers, due to different definitions, vary from less than 90%
up to 94%. A systematic review of Energy Management System (EMS)
for BESS was published by Weitzel and Glock [8]. The placement in
distribution grids of stationary BESS is summarized in the review of Das
et al. [9]. An example for optimized placement using simultaneous
perturbation stochastic approximation method was published by Car-
pinelli et al. [10].

Regarding the provision of FCR with BESS, a number of papers have
been published in the past. Specifically for several techno-economic
evaluations different approaches exist [11–15]. Münderlein et al. [16]
analyzed a large scale 5 MW and 5 MWh BESS in the FCR market. Apart

from the fact that the focus of the individual authors is different, it is
noticeable that many different numbers exist. For example the authors
in [16] determined 147 Full Equivalent Cycles (FEC) per year, while the
numbers of FECs in [13] varies from 207 to 254 per year.

In the case of SCI, many publications with various objectives exist.
The publications can be split into economic analyses [17–20] and sizing
of the system [21–23]. All authors conclude that a BESS for SCI can be
economically viable, if the Photovoltaic (PV) unit and the storage ca-
pacity are dimensioned correctly. However, a wide variety of input data
and parameters for the storage system (e.g. the efficiency for the LIB
varies from 95% in [21] to 98% in [20]) are used in the publications,
which makes comparability difficult.

For industry PS BESSs with LIB, fewer publications are available, in
contrast to SCI BESSs. Martins et al. [24] present an approach for an

List of Abbreviation

AC Alternating Current
BESS Battery Energy Storage System
C Carbon-Graphite
DC Direct Current
DOC Depth of Cycle
DOF Degrees of Freedom
E-rate Energy Rate
ECM Equivalent Circuit Model
EMS Energy Management System
FCR Frequency Containment Reserve
FEC Full Equivalent Cycles

IDM Intra-Day Market
IP Input Profile
LFP Lithium-Iron-Phosphate
LIB Lithium-Ion Battery
NMC Nickel-Manganese-Cobalt-Oxide
OCV Open Circuit Voltage
PE Power Electronics
PER Power to energy ratio
PS Peak Shaving
PV Photovoltaic
SCI Self-consumption Increase
SimSES Simulation Tool for Stationary Energy Storage Systems
SP Storage Profile

Fig. 1. Graphical overview of this work. The input profiles including frequency data, industry load profiles and household load profiles are transformed into storage
profiles including storage power and state of charge using the simulation framework SimSES. The selection of suitable reference profiles is done with a profile
analyzer tool developed as part of this publication.
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optimal component sizing and the authors also performed an economic
analysis. They showed in a case study that the number of FEC varies
between 1 and 51 per year. Dagdougui et al. [25] show an EMS for a
real world example. They optimized the size of a PS BESS for a uni-
versity campus. It has been found that in this example the economically
optimal storage capacity is 436 kWh. Telaretti and Dusonchet [26]
concucted an economic analysis and compared the use of LIB in PS
applications with three other electrochemical technologies: Lead-acid,
flow based batteries and sodium-sulphur.

Although each author makes different assumptions and sets the
focus differently, the results, some of which are very diverse, indicate
that open data available standards for stationary BESS are desired.

1.2. Scope of this work

This work presents a method to create standard Storage Profile (SP)
including the storage power and the SOC from Input Profile (IP) in-
cluding frequency data, industry load profiles and household load
profiles. The IPs are transformed into SPs by using the holistic simu-
lation framework Simulation Tool for Stationary Energy Storage
Systems (SimSES). Various Degrees of Freedom (DOF) for the EMS and
the system configuration are implemented in SimSES and the results are
post-processed with a newly developed profile analyzer tool in order to
identify some key characteristics, such as efficiency, FEC or Depth of
Cycle (DOC).

Fig. 1 shows the scope of this paper in detail. The simulation fra-
mework, as well as the results, including SPs and the SOCs, are made
available as open-source. The results are available in one second re-
solution and may facilitate the comparison of the same applications
among each other in the future. As an example, own system config-
urations or developed EMS can be compared with the numbers of this
paper. Furthermore, the open-source available data can be used as a
reference for lifetime and profitability studies for LIBs.

1.3. Paper structure

Section 2 gives an overview of the origin of the IPs and the pre-
processing of the raw data sets. Section 3 describes the simulation tool
SimSES with various DOFs and the developed EMS. In the remaining
part of the paper, the SPs are analyzed (Section 4) and the choice of the
reference profiles (Section 5) is described. Section 6 gives an outlook to
future work and concludes this paper.

2. Profile data and preparation

In this chapter, the database of household load profiles, industry
load profiles and frequency data is explained (Section 2.1). Herein, the
data sources and time frames are described. The processing of this data
is covered in Section 2.2. Subsequently, the normalization of the pro-
files is illustrated, which is required for comparison of data
(Section 2.3). Finally, Section 2.4 covers the clustering of profiles.

2.1. Data basis

The creation of reference load and storage profiles demands a da-
tabase that is sufficiently detailed to represent the specific type of
profile. As described in Section 1, this paper considers three different

applications of storage systems: SCI in the private sector, PS in the in-
dustry sector and the provision of FCR. These three applications require
specific data with specific resolution which is displayed in Table 1.

Firstly, high resolution frequency data is required to investigate the
storage application of FCR [27]. This one second resolution data for the
years 2013 until 2017, that can be measured at every socket within the
synchronous grid of Continental Europe, is provided by the transmis-
sion system operator 50hertz Transmission GmbH [27]. Exemplary data
of the year 2017 is shown in Fig. A.12.

The analysis of the performance of SCI requires household load
profiles and photovoltaic generation profiles. Therefore, 74 load pro-
files published by the HTW Berlin are used [28]. Moreover, one pho-
tovoltaic profile measured at TU Munich which was already published
in several previous papers [17,19,29] was used. These profiles also have
a resolution of one second. To perform PS with a storage system, in-
dustry load profiles are needed. Therefore, 36 annual industry profiles
with a resolution of 15 min are gathered within the EffSkalBatt pro-
ject2Frequency data, household load profiles and industry load profiles
work as IPs for SimSES (see Fig. 1) which will be explained in Section 3.

2.2. Data processing

The gathered data of frequency, load and photovoltaic profiles is
processed before using them within the simulations. The frequency data
for performing FCR with a BESS contains some doubtful values
( < 49 Hz or > 51 Hz). All such values were replaced by linear
interpolation of frequencies before and after. As the raw industry load
profiles used for PS have a resolution of 15 min, this data is transformed
into profiles with a resolution of one second. For this reason, the fol-
lowing procedure is applied to create second-based profiles: First, the
15-min points are interpolated linearly to create points based on min-
utes. Then random numbers are build, which replace each interpolated
value. Each random number lies within the coefficient of variation of
0.25 of the normal distribution with a mean of the interpolated value.
Afterwards, the minute-based values are interpolated linearly again to
reach a second-based load profile.

This procedure only estimates the high-resolution load profile.
Possible load peaks that just appear for a few seconds are not taken into
account. Those short peaks are crucial when regarding battery lifetime
and safety [30,31]. Within the application of PS the presented proce-
dure to reach second-based load profiles is sufficient, as the storage
system only has to provide the required energy when peaks appear as
long as the storage’s power is sufficient. The required energy can also be
extracted from the 15-min load profile. Moreover, the yearly industry
load profiles are chopped to match a Monday to Sunday pattern.

2.3. Normalization

After the aforementioned data pre-processing, the industry profiles
are normalized, which is necessary for a comparison of profiles. The
industry profiles are normalized to their maximum value within the
year. Thus, the maximal value of each profile is one and the minimal

Table 1
Storage applications, the data basis, the required data and the data resulution used in this work.

Application: FCR SCI PS

Database 5 years of Frequency Data 74 yearly load profiles & one PV generation profile 36 yearly industry load profiles
Data resolution (raw data) 1 s 1 s 15 min
Data resolution (simulation) 1 s 1 s 1 s

2 EffSkalBatt Project: Efficient scalable system technology for stationary sto-
rage systems. Research project funded by the Federal Ministry for Economic
Affairs and Energy (BMWi) with grant number 03ET6148 (http://www.ee-
s.ei.tum.de/en/research/effskalbatt/).
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value is zero. This normalization method on each highest peak might
differentiate profiles that are similar except for their highest peaks. If
only those load profiles were compared, this method would not be
appropriate. However, regarding the application of peak shaving,
which concentrates on the highest peaks, those profiles are very dif-
ferent. With this method of normalization users can compare their own
profiles with the published ones and add their profiles to the simula-
tion. The raw data of household load profiles is already normalized to
each maximal value.

2.4. Clustering

Prior to the creation of reference profiles from the pre-processed
data, a clustering of the different groups of profiles is considered. This is
due to the fact that, for example, the industry profiles do not all have
homogeneous curves. Thus, similar profiles are clustered into groups.
The clustering is performed using the simulation platform MATLAB®
and the clustering algorithm k-means with euclidean distances as
measure of dissimilarity [32]. The k-means algorithm was chosen, as it
appears to be the most prominent one when comparing electric load
profiles [33–35]. Other possible clustering methods would have been
the hierarchical clustering or self-organizing maps, as published in [36]
and [37].

When comparing the household load profiles to each other, they
appear very homogeneous. The average value of each yearly household
load varies between 0.6% and 4.4% of its yearly maximum value. In
addition, the mean absolute deviations of the profiles’ offsets lie be-
tween 0.8 and 3.6 percentage points. In contrast to that, the industry
load profiles show bigger variations. The mean load of each profile lies
between 30% and 75% of the profile’s yearly maximum. Thus, the in-
dustry profiles’ offsets are substantially higher than the households’
ones due to their increased base load. The industry loads’ mean absolute
deviations vary between 0.8 and 23 percentage points.

As a consequence, the industry load profiles are clustered into three
different groups while the household load profiles remain in one group.
The number of three is chosen because three is the best compromise
between differentiation and effort.

Cluster 1 and 3 have an average load of 70% to 80% during the day
and a base load of 20 to 30% at night but are shifted by a few hours.
During the weekend, Cluster 1 exhibits the typical nightly base load
while the load of Cluster 3 only sees the base load on Saturdays. In
comparison, Cluster 2 does not have a typical day vs. night load profile.
During working days the load varies between 50% and 100% and on
weekends between 35% and 70%.

3. Simulation framework for stationary energy storage systems

To generate battery profiles and SPs from the IPs in Section 2 the
software SimSES was used. SimSES is a modular object-oriented simu-
lation tool, which was initiated by Naumann and Truong [38] and is
now being further developed by the authors. The software allows the
flexible usage of components, such as the power electronic or battery
cell, of a BESS. The software code is programmed in MATLAB®, but will
be converted to Python in the future and made available completely
open-source. The current open-source version, including the simulation
scripts for this publication and a link to the code of SimSES can be
found online3. In this chapter the structure of SimSES (Section 3.1), the
developed operation strategies (Sections 3.2–3.4) as well as the com-
ponents used (Section 3.5) will be described.

3.1. Simulation structure

In SimSES the battery is implemented as a single-cell Equivalent

Circuit Model (ECM). The terminal voltage UT of each cell is calculated
from the Open Circuit Voltage (OCV) and the voltage drop (over-
voltage) ΔU across the series resistance Ri, due to the current I (Eq. 1).
The OCV is a function of the SOC. The series resistance Ri is dependent
on the current direction sign sgn(I), the temperature T and the SOC.

= =U U U U I·R (SOC, sgn(I), T)T OCV OCV i (1)

The Power Electronics (PE) efficiency is modeled as a function
which relies on the absolute output power |PStorage|, the rated power
PRated and the current direction sgn(I) (Eq. 2). Fixed PE efficiency values
or other functions, for example based on own investigations, can be
modeled in SimSES as well. Beside the Direct Current (DC)/Alternating
Current (AC) link, the PE can also include a transformer model.

= f (|P |,P , sgn(I))SPE torage Rated (2)

The core of SimSES is the EMS, which allows to simulate various
tasks for a stationary BESS. As described in Section 1, the focus of this
work is on the single-use applications FCR, SCI and PS.

3.2. Frequency containment reserve

The EMS for providing FCR in SimSES was developed according to
the German regulatory framework [39,40]. The requested charging and
discharging power PStorage,set is proportional to the frequency deviation
Δf and is dependent on the prequalified power PPQ, which has a
minimum of 1 MW (Eq. 3). Below 49.8 Hz or above 50.2 Hz PStorage,set is
set to ± PPQ.

=
= > +
= <

t P
t P

P ( ) · for | f| 0.2 Hz
P ( ) for f 0.2 Hz
P (t) P for f 0.2 Hz

PQ
f t

Hz

PQ

Storage,set
( )

0.2

Storage,set

Storage,set PQ (3)

If the SOC falls below a predefined lower limit (SOClow) or it exceeds
an upper limit (SOChigh) the BESS in these simulations charges or dis-
charges by trading energy on the electricity market, in particular the
Intra-Day Market (IDM) [14]. Due to the current legal interpretation
(May 9, 2019) [41], a BESS in the FCR market has to ensure that at all
times the full prequalified power PPQ can be provided for 15 min as long
as the frequency f is in normal progression. The normal progression
means that the frequency deviation Δf is continuously less than 50 mHz
or none of the following criteria is met:

• |Δf| > 200 mHz
• |Δf| > 100 mHz for more than 5 min
• |Δf| > 50 mHz for more than 15 min

The SOC limits also depend on the prequalified power PPQ and the
storage capacity EBESS, and are calculated according to Eq. 4.

= =SOC
E 0.25 h·P

E
SOC

0.25 h·P
Ehigh

BESS PQ

BESS
low

PQ

BESS (4)

To reach these limits as infrequently as possible, the efficiency must
be taken into account and therefore the SOC setpoint is above 50%
(Eq. 5). The mean efficiency ηmean is calculated at the beginning of the
simulations and is dependent on the efficiency of the battery and PE.

=
+

= +SOC 0.5·
(1 )
(1 )

SOC 50% SOCOffset
mean
2

mean
2 Set Offset

(5)

Additionally to the SOC setpoint shift, the regulatory framework in
Germany allows three different DOFs:

• Frequency dead band: In the frequency range between 49.99 Hz and
50.01 Hz, the output power of the BESS can be set to 0 MW and must
not follow the frequency derivation according to Eq. 3.

• Overfulfillment: It is allowed to overfulfill the requested power
3 http://www.ees.ei.tum.de/simses/

D. Kucevic, et al. Journal of Energy Storage 28 (2020) 101077

4

http://www.ees.ei.tum.de/simses/


(Eq. 3) by 20 %.
• Slope: The requested FCR power (Eq. 3) must be provided within

30 s or earlier. Therefore, the slope of the provided FCR power can
be adjusted within the time interval of 30 s allowing to control the
charging or discharging rate.

In SimSES all DOF are only used, if the requested power either
brings the SOC closer to optimum again or at least not further away. All
degrees of freedom as well as the SOC limits, depending on the pre-
qualified power PPQ, are shown schematically in Fig. 2.

3.3. Residential photovoltaic battery storage system

In SimSES two different operation strategies for the SCI of BESS are
implemented: Greedy and an extension of feed-in damping based on Zeh
and Witzmann [29].
Greedy

The EMS for the greedy algorithm works with a simple comparison
between the generation of the PV power system PPV and the con-
sumption by the household Pload at each timestep. Whenever a solar
surplus occurs (PPV > Pload), the BESS is charged and vice versa (Eq. 6).
This conventional strategy is shown in Fig. 3 (top). These summer days
show that the BESS is fully charged at around 9AM, which causes a
rapid rise of the power fed into the grid. Another disadvantage of this
strategy is the high charging power, which may lead to a faster decrease
of the LIB capacity due to an increase of lithium plating as described
in [30].

=P P PStorage PV load (6)

Feed-in damping
In order to reduce the maximum power fed into the grid, a nearly

constant BESS charging power PStorage, Ch during the whole daytime is
calculated by the EMS. Reducing the maximum feed-in power allows for
a higher self-consumption rate, if the maximum feed-in power is limited
by the distribution grid operator as described in [19]. If a surplus
(PPV > Pload) occurs, the charging power PStorage,Ch is calculated by
dividing the remaining battery capacity EBESS,re by the predicted re-
maining time tre, until the load is higher than the PV generation, and
the mean efficiency ηmean of the BESS (Eq. 7).

In this work, a perfect foresight for the duration of PV generation is
assumed. If there is a higher consumption by the household than

generation by the PV power system, the BESS is discharged. Fig. 3
(bottom) displays this operation strategy. In contrast to the greedy al-
gorithm, the charging power is constant during the whole first day. The
second day shows a more cloudy day. The remaining time tre at this day
is smaller than in day 1, so according to Eq. 7 the charging power
PStorage,ch is higher. In addition, the second day also shows that after the
PV generation surpasses load again ( >P P 0PV load ), the remaining
time tre is recalculated. In this case, the storage can be charged with the
full power, due to the short remaining time tre.

= >P
E

t ·
for P PStorage,ch

BESS,re

re mean
PV load

(7)

3.4. Peak shaving storage system

Motivated by a tariff system consisting of an energy and a power
related component, the storage application PS has the goal to minimize
the maximum power peak value within a defined accounting period.
Particularly large electricity consumers (annual demand > 100 MWh
(in Germany)) can reduce the peak power provided by the power grid,
which directly results in reduced operating expenses in form of reduced
grid charges [42].

In order to reduce the power at the point of common coupling, the
excess demand has to be covered by another power providing unit, such
as a BESS. The BESS is used to decouple the supply and demand over a
specified time. To maximize the benefit of the application, it is im-
portant that the dimensioning of the storage system is the best possible
match for the power demand curve. Similar to other publica-
tions [43–45], a two-step approach of a linear programming algorithm
and SimSES is applied.

First, a pre-processing linear optimization algorithm is used to
minimize the power value for the peak shaving threshold PSthreshold,
while it complies with the necessary constraints, such as meeting the
power demand, and satisfying the energy and power specifications of
the BESS. Depending on the shape of the load profile, the resulting
value of the power threshold varies. Secondly, the resulting peak
shaving threshold is used as an input parameter for the operation
strategy within SimSES. This operation strategy works as follows: as
soon as the power at the point of common coupling (from the grid) is
above the specified threshold, the additionally required power is pro-
vided by the BESS, as illustrated in Fig. 4. In addition, the BESS will

Fig. 2. Degrees of freedom and the SOC limits, depending on the prequalified power PPQ. The top left subfigure shows the frequency dead band and the possible
overfulfillment. The two subplots on the right show the slope and the bottom left subfigure shows the SOC limits.
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recharge if the power value is below the previously determined optimal
peak shaving threshold. This ensures that the charging of the storage
system does not cause the exceedance of the threshold.

Through a close coordination of the two simulation tools in the
chosen two-stage approach, both a near optimal PS threshold is found
and simultaneously, the detailed technical specifications of the BESS
are simulated via SimSES.

3.5. Simulation parameters

The battery cell used in all simulations was a LIB with a Lithium-
Iron-Phosphate (LFP) cathode and a Carbon-Graphite(C) anode [46]. It
is worth to mention, that other LIB types are also implemented in the
simulation tool but the LFP:C cell is a promising battery chemistry for
stationary applications, because of its characteristics such as high
thermal stability, long cycle as well as calendar lifetime [3,47,48]. The
parameterization of the ECM for the simulated LFP:C cell was carried
out by Naumann [49].

To analyze the effects of cell selection, another cell with a Nickel-
Manganese-Cobalt-Oxide (NMC) cathode and a C anode [50] was also
simulated in the FCR application. The characterization of this cell is
based on the work of Schuster [51]. The self-discharge and the tem-
perature dependency of the cell is neglected in this work. Table 2
summarizes the parameters of these battery cells.

The PE is implemented as a function, which shows a high efficiency

above 10% of the rated power PRated (Eq. 8). Exemplary values used for
a high efficiency PE are k = 0.0345; p0 = 0.0072, according to Notton
et al. [52]. Here ηPE is independent of the direction of the power flow
and no hysteresis is implemented. The maximum efficiency is observed
at 0.46 · PRated with an efficiency ηPE = 96.9%.

=
+ + ( )p k·

PE

|P |
P

|P |
P 0

|P |
P

2

Storage

Rated

Storage

Rated

Storage

Rated (8)

Fig. 3. Operation Strategies (top=-
greedy, bottom=feed-in damping) for the
Residential Photovoltaic Battery Storage
System. The shaded yellow area shows
the generation of the PV power system,
the blue line shows the load of the
household and the gray line shows the
storage power (positve=charging). (For
interpretation of the references to color
in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 4. Exemplary week of an industry
load profile and its optimized PS
threshold PSthreshold following the PS
operating strategy. The power above
the threshold is provided by a sta-
tionary BESS. The solid blue line shows
the industry load profile with the PS
BESS. The associated SOC is illustrated
at the subplot at the bottom. (For in-
terpretation of the references to color
in this figure legend, the reader is re-
ferred to the web version of this ar-
ticle.)

Table 2
Parameters of the simulated Lithium-ion cells. Celltype 1 is a Lithium-ion bat-
tery with a Lithium-Iron-Phosphate (LFP) cathode and a Carbon-Graphite (C)
anode. Celltype 2 is a Lithium-ion battery with a Nickel-Manganese-Cobalt
(NMC) and a Carbon-Graphite (C) anode.

Parameter Unit Cell 1 [46] Cell 2 [50]

Cell Identification - US26650FTC1 IHR18650A
Manufacturer - Murata E-ONE Moli Energy Corp.
Chemistry - LFP:C NMC:C
Capacity mAh 2850 1950
Max. Charge Current A 2.85 2
Max. Discharge Current A 20 4
Nominal Voltage V 3.2 3.7
Voltage Range V 2 - 3.6 3 - 4.2
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Frequency Containment Reserve
As already shown by others [3,13,14], a BESS in the FCR market is

mostly in part-load operation. In order to achieve a high part-load ef-
ficiency, we minimized the inverter losses by modularization of the PE-
unit into three identical smaller units based on the work of Schimpe
et al. [53]. At 80% power of the rated power of PE unit 1, PE unit 2
starts to work. At 80% power of the rated power of PE unit 1 and PE
unit 2, PE unit 3 starts to work. There is no hysteresis included in the
simulations, which means that the switch-off values are equal to the
switch-on values. According to the modeled PE efficiency, the average
efficiency of this PE combination is 96%. This PE combination, together
with the simulated LIB ( = 96LIB %), results in an SOC shift, according
to Eq. 5, of 54%.

In this work the BESS capacity EBESS is set to 1.6 MWh with a
maximum power of 1.6 MW. The prequalified power PPQ is 1.12 MW,
which results in a Power to Energy Ratio (PER) of 0.7. Thus, the
available IDM power is 30% of the total BESS power. The losses of a
transformer model for a potential integration to higher grid voltage
levels, which would be necessary having a 1.6 MW / 1.6 MWh storage,
are neglected.

Residential Photovoltaic Battery Energy Storage System
To ensure comparability, the simulations are carried out with a

fixed annual household load Eload,a of 5,000 kWh, which rounded cor-
responds to the mean of the IP. According to the work of Weniger et al.
[21] and Hoppmann et al. [54], the PV system and the BESS can be
operated economically in the ratio 1:1:1. An annual household load
Eload,a of 5,000 kWh leads to a PV peak power of 5 kWp and a BESS
capacity EBESS of 5 kWh.

Peak Shaving Storage System
For the PS application, 36 anonymized annual load profiles from

commercial electricity consumers are utilized. In order to generate
comprehensive standardized profiles, all normalized load curves are
scaled to a peak power of 100 kW (see Section 2.3). The BESS is
characterized by a nominal energy content of 100 kWh. We assume that
100% of the nominal storage energy and a rated power of 40 kW for the
system’s PE unit (consisting of a single inverter) can be used to operate
the application.

Table 3 summarizes the parameter set for each simulation in
SimSES. Other components, such as

• a transformer model for a potential integration to higher grid vol-
tage levels,

• a cell-to-cell connection resistance,
• a battery management system,
• a thermal model for each cell as well as a thermal model for the

whole storage system,
• an aging model of the battery cell as well as all other subcomponets,

were neglected in this paper, but can be modeled in principle in
SimSES.

4. Storage profile analyzer tool

One goal of this work is finding reference SPs for the different sto-
rage applications. Therefore, groups of SPs were created using the
software SimSES. In this chapter, a storage profile analyzer tool is
presented which aims to extract the reference SP for each of the groups.
The idea and the reasons for the analyzer tool are described in
Section 4.1. Afterwards, the different characteristics are explained in
Section 4.2. Finally, the determination of reference profiles from the
characteristics is described in Section 4.3. Moreover, Appendix B pro-
vides some further analysis of the SPs including the distribution of the
energy rate (E-rate). The E-rate at each timestep i is defined according
to Eq. 9.

=E
P
Erate,i
Storage,i

BESS (9)

4.1. Reasons for the storage profile analyzer tool

The extraction of a reference SP can be done in different kind of
ways. Taking the mean SP by calculating the mean of all the SPs for the
different applications is one option. This would lead to a smoothing of
the profiles. Distinctive peaks would be neglected and the profiles
would not be representative anymore. A more viable approach is the
selection of one SP as reference SP for each application. Here, a median
profile has to be found which represents the group of profiles. This
selection is done using the storage profile analyzer tool. The tool takes
the load of the storage and SOC data as input variables and outputs the
characteristics described in the following subsection.

4.2. Extracted characteristics from profiles

To better analyze and compare the storage load profiles, six char-
acteristics were defined which are distinctive for the profiles of the
different applications. Those six characteristics aim to represent the
differences within the storage applications.

1. Number of full equivalent cycles (FEC)
The total number of cycles FECyear within the year is calculated by

dividing the positive energy throughput Eyear
pos by the storage capacity

EBESS (Eq. 10). The FECyear varies between the applications and affects
the aging of the battery [30].

=FEC
E
Eyear

year
pos

BESS (10)

2. Efficiency (ηBEES)
The efficiency of the analyzed storage ηBEES is calculated by

counting the yearly energy that is extracted from the storage system
Eyear

neg divided by the energy that is stored in the storage system Eyear
pos . The

SOC at the beginning of the year and at the end of the year is taken into
account as well (Eq. 11). This characteristic displays the losses in the
storage system while operating in the specific application. For the
calculation of the efficiency the surrounding temperature and the
thermal management are not taken into account.

=
|E |

E [SOC SOC ]·EBEES
year
neg

year
pos

end start BESS (11)

3. Cycle depth in discharge direction (DOCdis)
The average DOC in discharge direction is calculated by using the

SOC data of the current profile. This characteristic describes how deep
the battery is discharged before recharging it. A higher DOC may lead
to a higher cyclic aging of the battery [55]. To enable a comparison
between the applications (different capacities) the DOC is measured in
percentage of the total battery capacity. In SimSES a half-cycle detector

Table 3
Summary of the parameters for the simulation of the three applications with
SimSES.

Application: FCR SCI PS

Battery LFP:CNMC:C LFP:C LFP:C
Storage Capacity 1.6 MWh 5 kWh 100 kWh
Max. Power 1.6 MW 5 kW 40 kW
PE mode modular single unit single unit single unit
PV Power - 5 kWp -
Operation Strategy 15 min criteria greedy feed-in

damp
simple

PER 0.7 - -
IDM Power 0.48 MW - -
PS-Limit - - variable 62 - 92%
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is implemented. The beginning of the half-cycle is a change from
charging respectively resting to discharging. Analogously the end is at
every change from discharging to charging or if the BESS reaches an
SOC of 0%. Then the DOC is calculated by subtracting the SOC at the
beginning and the SOC at the end of the half-cycle (see Eq. 12). Taking
only the change from discharging to charging leads to a dependency of
the DOC on the resolution. Many small changes of load might outweigh
larger trends.

=DOC SOC SOCdis cycle,start cycle,end (12)

4. Number of changes of sign (nswapsign)
Depending on the storage application, the SP might change from

charging to discharging and vice versa very often or just a few times per
day. Those changes of signs activate the power electronics. When
analyzing experimental SPs the user of the storage profile analyzer tool
would have to define a threshold value to prevent faults of noise when
the SP is close to zero. As the simulated SPs do not show the noise, a
threshold value is not necessary.

5. Length of resting periods (trest)
As the BESS is not used continuously over time, the length of resting

periods represent another characteristic. During those times, the BESS
is neither charged nor discharged. Here, the average value of resting
period length in minutes is calculated. Depending on the application the
length of those resting periods may vary significantly. This character-
istic is chosen because auxiliary users can be turned off and other ap-
plications can be performed during long resting periods.

6. Energy between changes of sign (Eswapsign)
Another chosen characteristic is the energy that is charged or dis-

charged between changes of signs, respectively. The amount of the
energy is normalized to the battery’s capacity and thus comparable
between the different applications with different capacities. Here
charged and discharged energy are calculated separately.

4.3. Determination of reference profiles

The storage profile analyzer tool extracts the different character-
istics from each of the profiles of the specific group of SPs. For each
application the characteristics can then be displayed in boxplots to vi-
sualize the spread and show the median values.

To determine each reference profile the percentage error δ of each
profile’s characteristic to the median characteristic is calculated
(Eq. 13). This is done by subtracting the median of the characteristic K̃ j

from the profile’s characteristic Kj, dividing the difference by the
median of the characteristic and multiply the result with 100. Here, i is
the number of the profile and j the number of the characteristic.

Afterwards, the root mean square percentage error (RMSPE) is
identified for each profile (Eq. 14). This is done by taking the sum of the
absolute percentage errors, dividing it by six (six characteristics),
squaring it and extracting the root. This way all characteristics are
weighted equally.

=
K K̃

K̃
·100i,j

i,j j

j (13)

= =RMSPE
| |

6
i j

i
j 1
6

,
2

(14)

The reference profile is then chosen as the profile which has the
minimum root mean squared percentage error. Thus, this profile re-
presents the group of profiles, while maintaining its variations and
peculiarities.

5. Results and discussion

The storage profile analyzer tool outputs characteristics and re-
ference SPs which will be compared and discussed in this section. First,
the characteristics of the different applications (FCR, SCI, PS) are dis-
played in Section 5.1. Here, a comparison is done within each

Fig. 5. Characteristics of a BESS providing FCR. The left box in each plot shows a BESS with one PE unit and a LFP:C cell. The center one in each plot shows a BESS
with three modular PE units and a LFP:C cell and the right box in each plot shows a BESS with three modular PE units and a NMC:C cell.
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application between power electronics and battery technology (FCR),
operation strategies (SCI) and the three PS clusters. Afterwards, the
characteristics of the reference SPs for different applications are com-
pared to each other and thus differences in usage and load are ex-
plained (Section 5.2). Finally, exemplary days and weeks of the re-
ference SP are shown and discussed (Section 5.3).

5.1. Characteristics of storage profiles of different applications

As described in Section 3, the simulated storage applications are
FCR, SCI and PS. For each group of SPs performing one application, the
different characteristics can be displayed in boxplots. These boxplots
show the spread of the characteristics of a storage system performing
the specific application. Each boxplot is created by using the char-
acteristics of all the SPs. That means that for FCR five SPs, for SCI
74 SPs and for PS 36 SPs were used. Each profile contributes to each
boxplot with one value. Those are the yearly number of FEC, the effi-
ciency (ηEES) over the year, the average DOC in discharge direction, the
average length of resting periods (trest), the average changes of sign per
day (nswapsign) and the average energy between changes of signs
(Eswapsign). Each boxplot contains a red line which represents the
median value. Moreover, the blue boxes display the 25th and the 75th

percentiles, while the black whiskers correspond to a maximal absolute
value of 2.7 times the standard deviation. The red crosses which are
displayed above and underneath the boxplots show outlier outside of
the box and whiskers. In addition, the red dot in each boxplot shows the
value of the reference profile’s characteristic (see Section 4.3). The
average distance between the median value and the reference value is
2 %. The distributions of SOC, DOC in discharge direction and E-rate for
all profiles and for the reference profiles of each application can be
found in the appendix (Figs. B.21–B.28).

Fig. 5 displays the SPs characteristics of a BESS providing FCR. The
PE units were varied as one differentiation while using the same battery
technology (LFP:C). First of all, one PE unit was used (each left box-
plot). Then a modular PE device was applied (each center boxplot). In
addition to that, as a third boxplot, the LIB technology was varied as

described in Section 3.5. Here also a modular PE device was used with a
NMC:C LIB.

The first characteristic (Fig. 5 (a)) is the number of FEC within the
year. Using only one PE unit leads to an increased number of FEC
within the year compared to modular PE units. The high number of
yearly cycles ( > 240 FEC in all simulations), in combination with a
small DOC (Fig. 5 (c)) requires a BESS, which has a high cycle stability
in the middle SOC range (see also Appendix B.21–B.23).

The efficiency (Fig. 5 (b)) can be significantly increased when using
modular PE units or at least having a PE with a high part-load effi-
ciency. Furthermore, there are almost no long resting periods
(Fig. 5 (d)) and the number of sign changes (Fig. 5 (e)) is higher
compared to the other applications under test. Therefore, the PE must
have a high control speed to meet these requirements. The positive
energy of changes of sign (Fig. 5 (f)) is a little smaller when having
modular PE compared to only one device. The variation of the cell
shows hardly any influence - underlining, that choosing a suitable PE
design is key for improving the system’s efficiency. It is worth to
mention here, that battery aging was not modeled.

Fig. 6 displays the SP characteristics of a SCI BESS. The order of the
six boxplot-types is the same as described before. Only the ranges of the
y-axes are different as a comparison within the SCI BESS is done at this
point. Here, each diagram contains one boxplot for the greedy operation
strategy and one for the feed-in damping strategy (see Section 3.3). The
smoothing of the load at feed-in damping strategy leads to a smaller
number of FEC (Fig. 6 (a)), a smaller DOC (Fig. 6 (c)), a higher length of
resting periods (Fig. 6 (d)) and a smaller amount of charged energy
between sign changes (Fig. 6 (f)) compared to the greedy algorithm. The
efficiency of the SCI BESS with feed-in damping algorithm is lower than
with greedy algorithm (Fig. 6 (b)). This is due to the fact that the feed-in
damping storage system is more often in the partial-load range where
the PE has a lower efficiency.

While the lower efficiency is a disadvantage, the feed-in damping
algorithm also leads to smaller Es-rate and lower rest times of high SOC
compared to greedy algorithm (Appendix B.24 and B.25). Those two
properties are advantages of the feed-in damping algorithm as longer

Fig. 6. Characteristics of an SCI performing BESS. The left box in each plot shows a SCI with greedy algorithm. The right box in each plot shows a SCI with the feed-in
damping algorithm.
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periods of high SOC may lead to an increased calendar aging [56].
Home storage system manufacturers should take these findings into
consideration and try to avoid simple rule based strategies (greedy).
Moreover, both algorithms lead to the same number of changes of signs
per day (Fig. 6 (e)), as only the time of changes vary.

The SP characteristics of a BESS in the PS application are displayed
in Fig. 7. The order of the diagrams is the same but the range of y-axes is
different. The three box plots in each diagram contain the SP char-
acteristics of the three clusters of IP (see 2.4). In contrast to the other
two applications (FCR and SCI) the spread of the characteristics within
each group is higher. The DOC, for example, varies between 2% and
10% for cluster 2. Thus, the storage’s load varies significantly de-
pending on the industry IP. Only cluster 3 shows relatively consistent
characteristics in all diagrams.

5.2. Comparison of characteristics of reference storage profiles

After the analysis of the characteristics of each application’s SPs, a
comparison between application SPs is done in this subsection.
Therefore, the six characteristics of each reference profile are displayed
in spider diagrams with the same ranges to enhance comparability
(Fig. 8). For the application of FCR the reference profiles’ character-
istics of one PE unit and a modular PE device are displayed (top). The
modular PE with an NMC:C cell is not displayed as its characteristics are
almost similar to the LFP:C ones (see Fig. 5). For SCI the reference
characteristics of the two algorithms are shown (middle) and the PS
characteristics are displayed for the three clusters (bottom).

FCR leads to a relatively high number of cycles ( > 240 FEC) and
small average DOCs of 0.2%. Moreover, the average resting period
length is small ( < 10 s) and the average number of changes of sign is
relatively high (600 per day). This is due to the fact, that the grid fre-
quency fluctuates around 50 Hz and the storage system reacts quickly
on frequency changes by charging or discharging the battery (see
Fig. A.12). The efficiency of the storage system performing FCR with
modular PE is relatively high (93%). Using only one PE device leads to a
reduced efficiency of 83%. This is because of the low converter

efficiency in part-load operation.
Operating the storage system for SCI leads to similar number of

cycles within the year as the application of FCR. Compared to the
modular PE FCR application, the efficiency is lower (approx. 85%). The
average DOC is higher when performing SCI than when performing FCR
(0.9% to 0.75%). The average length of resting periods is much higher
when operating as a SCI BESS than when performing FCR (38 to 65
min). During winter nights, for example, the storage rests for several
hours, which increases the average resting period length. Moreover, the
changes of signs per day are much lower than the characteristic of FCR.
170 changes of signs per day on average still appear to be high for a SCI
BESS. This is due to the fact, that during charging of the storage system
by photovoltaic energy, a short increase of load or a decrease of gen-
eration (e.g. clouds) can lead to a change of sign.

Performing PS as an application leads to a much smaller number of
cycles (FEC < 30) and changes of sign (nswapsign < 4 per day)
compared to FCR or SCI. In contrast to that, the average DOC is higher
than the other applications reference characteristics (2% to 5%). The
average length of resting periods is in the same range as the SCI char-
acteristics (20 to 65 min). Thus, it is in resting mode for a longer period
of time, it does not switch between charging and discharging very often
and it is discharged relatively deep, when a discharge cycle is initiated.
The storage’s efficiency when performing PS is between 86% and 89%.
The small number of FEC, in addition to the long average length of
resting periods suggests potential benefits of application stacking
(multi-use) for this application. However, this requires a sufficient
power load forecast.

5.3. Reference storage profiles of different applications

After the analysis of the SP characteristics and the comparison be-
tween the different storage applications, exemplary weeks of the re-
ference profiles are shown in this Section. As described in Section 2, the
FCR reference profile and the SCI reference profile exist for a whole
year. The PS reference profile is for 51 weeks starting with a Monday.
Appendix A shows all complete reference profiles. All reference SPs as

Fig. 7. Characteristics of a BESS in a PS application. The left box in each plot shows the characteristics for IP cluster 1. The box in the center for IP cluster 2 and the
right one for IP cluster 3.

D. Kucevic, et al. Journal of Energy Storage 28 (2020) 101077

10



well as the SOC at each timestep are available online free of charge, and
are hosted on the servers of TU Munich [57].

As an example, the 25th week of the reference profile of the FCR
application with modular PE and LFP:C battery technology is displayed
in Fig. 9. The diagram’s y-axis shows that the maximum power in this
week is around 1.1 MW. IP for this resulting reference profile was the
second year frequency profile [27] (year 2014, see Section 2.1). The
profile shows a high fluctuation, which results in small DOCs, a lot of
changes of sign and very short resting periods (see Section 5.2). To

enable a greater degree of clarity, the profiles of FCR with one PE
module and with NMC:C cell (modular PE) are not displayed within the
diagram. These two show a similar course with high fluctuation.

Fig. 10 depicts the 25th week of the reference profiles of the two SCI
BESS with greedy and feed-in damping algorithm. Input profile for those
two resulting reference profiles was the 28th household load profile
from the 74 HTW-Berlin load profiles [28] (see Section 2.1). As this
week falls in June, the storage system gets charged by the PV genera-
tion during the day. In the evening and during the night it gets dis-
charged until the battery is empty (e.g. Thursday night). The differences
in the two operating strategies were explained in Section 3.3. The feed-
in damping profile shows the typical limitation of the energy feed into
the grid, which leads to lower Es-rate for the BESS.

Fig. 8. Spider diagrams of the six characteristics of each reference profile (a:
FCR, b: SCI and c: PS).

Fig. 9. Reference Storage Profile of a BESS providing FCR. Exemplary week in
June.

Fig. 10. Reference Storage Profile of a BESS performing SCI. Exemplary week in
June.

Fig. 11. Reference Storage Profile of a BESS in a PS application. Exemplary
week in June. (a: Cluster 1, b: Cluster 2 and c: Cluster 3).
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The reference profiles (exemplary week 25) of the three clusters of
PS application are shown in Fig. 11 (a: Cluster 1, b: Cluster 2, c:
Cluster 3). Here, the maximal storage power was chosen as 40 kW (see
Section 3.5). As described in the previous section, the PS BESS has the
fewest number of cycles and changes of signs per day. The reference SPs
confirm these numbers. Moreover, the relatively long resting periods
and the differences between the three clusters are visible as well. The PS
threshold values for the three clusters are set to 66 kW, 83 kW and
80 kW according to the pre-processing optimization in Section 3.4.

6. Conclusion and outlook

In this paper we presented a method to create standard profiles for
stationary battery energy storage systems, the results of which are
available as open data for download. Input profiles including frequency
data, industry load profiles and household load profiles are pre-pro-
cessed using a normalization and clustering method. These input pro-
files are then transformed into storage profiles including the storage
power and the state of charge using a holistic simulation framework
(SimSES). This modular object-oriented tool was used to analyze three
standard applications for stationary battery energy storage systems in
detail and an energy management system was programmed for the
different applications: (i) The energy management system for providing
frequency containment reserve in SimSES was developed according to
the German regulatory framework and various degrees of freedom; the
efficiency was taken into account to minimize the intra-day market
transactions. Moreover, a modular power electronics topology was
used. (ii) In addition to a simple greedy algorithm, a feed-in damping
algorithm has been implemented for a residential battery energy sto-
rage system, which charges the storage system at a low E-rate over the
whole day. (iii) A two-step approach with a linear programming algo-
rithm and SimSES was applied for an industrial peak shaving battery
energy storage systems to minimize the maximum power peak value.

The results have been post-processed using a storage profile ana-
lyzer tool in order to figure out six key characteristics of the different
applications. These characteristics are essential for the design of a
stationary battery energy storage system. For example, for a battery
energy storage system providing frequency containment reserve, the
number of full equivalent cycles varies from 4 to 310 and the efficiency

from 81% to 97%. Additional simulations done with SimSES for one
year showed a degradation from 4% (frequency containment reserve) to
7% (peak shaving).

The open data available results, including storage power as well as
state of charge for all reference storage profiles, with a resolution of
one second can be used for comparison with other self-developed en-
ergy management systems. Furthermore other system topologies or self-
developed power electronic models can be simulated with SimSES and
the simulation-outcome can be assessed against the numbers presented
in this paper. Scientists are encouraged to conduct aging studies or
battery management system tests using the platform SimSES and data
provided herein.

In order to compare both different cell chemistries as well as storage
technologies, future work could focus in more detail on battery de-
gradation. Future applications for stationary battery energy storage
systems could be: buffer-storage system to reduce the peak power at
(fast-)charging stations, uninterruptible power supply or island grids.
As soon as the first data sets are available, it might be worthwhile to
analyze these use cases more precisely.
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Appendix A. Input and reference profiles

Fig. A.12 shows the frequency data (IP) of the whole year 2017 (top) and of one exemplary day (185) of year 2017 (bottom). The Figs. A.13–A.20
show the complete reference profiles. The FCR reference profile and the SCI reference profile are for a whole year. The PS reference profile are for
51 weeks starting with a Monday. All reference SP as well as the SOC at each timestep can be downloaded in a MATLAB R2019a® data format (mat)
or hierarchical data format (hdf5) from the servers of TU Munich [57].
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Fig. A.12. Sample sections of frequency data of the whole year 2017 (top) and of one exemplary day (185) of year 2017 (bottom).

Fig. A.13. Yearly reference profile of a simulated BESS with one PE unit and a LFP:C cell providing FCR.

Fig. A.14. Yearly reference profile of a simulated BESS with three modular PE units and a LFP:C cell providing FCR.
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Fig. A.15. Yearly reference profile of a simulated BESS with three modular PE units and a NMC:C cell providing FCR.

Fig. A.16. Yearly reference profile of a BESS for SCI with one PE unit and a LFP:C cell with the greedy algorithm.

Fig. A.17. Yearly reference profile of a BESS for SCI with one PE unit and a LFP:C cell with the feed-in damping algorithm.

Fig. A.18. Yearly reference profile of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 1.
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Appendix B. Further analysis with SimSES

B1. Frequency containment reserve

Figs. B.21, B.22 and B.23 shows additional analysis for the simulations of a BESS providing FCR. The left-hand plots (a, d) show the distribution of
the SOC, the middle one (b, e) show the distribution of the DOC and the right-hand plots (c, f) show the distribution of the E-rate. The three plots at
the top (a-c) at each figure show the mean results of all 5 simulations. The three plots at the bottom (d-f) show at each figure the result for the
reference profile. All plots have a logarithmic y-axis.

B2. Residential photovoltaic battery storage system

Figs. B.24 and B.25 shows additional analysis for the simulations of a SCI BESS. The left-hand plots (a, d) show the distribution of the SOC, the
middle one (b, e) show the distribution of the DOC and the right-hand plots (c, f) show the distribution of the E-rate. The three plots at the top (a-c) at
each figure show the mean results of all 74 simulations. The three plots at the bottom (d-f) show at each figure the result for the reference profile. All
plots have a logarithmic y-axis.

B3. Peak shaving storage system

Figs. B.26, B.27 and B.28 shows additional analysis for the simulations of a BESS in the application of PS. The left-hand plots show the dis-
tribution of the SOC, the middle one (b, e) show the distribution of the DOC and the right-hand plots (c, f) show the distribution of the E-rate. The
three plots at the top (a-c) at each figure show the mean results of all simulations in the respective cluster. The three plots at the bottom (d-f) show at
each figure the result for the reference profile in the respective cluster. All plots have a logarithmic y-axis.

Fig. A.19. Yearly reference profile of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 2.

Fig. A.20. Yearly reference profile of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 3.
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Fig. B.21. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with one PE unit and a LFP:C cell providing FCR. The three plots at the top
(a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile.

Fig. B.22. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with three modular PE units and a NMC:C cell providing FCR. The three
plots at the top (a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile.
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Fig. B.23. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with three modular PE units and a LFP:C cell providing FCR. The three
plots at the top (a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile.

Fig. B.24. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a SCI BESS with one PE unit and a LFP:C cell with the greedy algorithm. The three plots at the
top (a-c) show the mean results of all 74 simulations. The three plots at the bottom (d-f) show the result for the reference profile.
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Fig. B.26. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 1. The three plots
at the top (a-c) show the mean results of all simulations in cluster 1. The three plots at the bottom (d-f) show the result for the reference profile in cluster 1.

Fig. B.25. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a SCI BESS with one PE unit and a LFP:C cell with the feed-in damping algorithm. The three
plots at the top (a-c) show the mean results of all 74 simulations. The three plots at the bottom (d-f) show the result for the reference profile.
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Supplementary material associated with this article can be found, in the online version, at 10.1016/j.est.2019.101077
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