
 

Safety versus triviality on the lattice

Viljami Leino*

Physik Department, Technische Universität München, 85748 Garching, Germany

Tobias Rindlisbacher ,† Kari Rummukainen ,‡ and Kimmo Tuominen§

Department of Physics & Helsinki Institute of Physics, University of Helsinki,
P.O. Box 64, FI-00014 Helsinki, Finland

Francesco Sannino∥

CP3-Origins & Danish IAS, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

(Received 19 September 2019; accepted 20 March 2020; published 10 April 2020)

We present the first numerical study of the ultraviolet dynamics of nonasymptotically free gauge-fermion
theories at large number of matter fields. As test bed theories, we consider non-Abelian SU(2) gauge
theories with 24 and 48 Dirac fermions on the lattice. For these numbers of flavors, asymptotic freedom is
lost, and the theories are governed by a Gaussian fixed point at low energies. In the ultraviolet, they can
develop a physical cutoff and therefore be trivial, or achieve an interacting safe fixed point and therefore be
fundamental at all energy scales. We demonstrate that the gradient flow method can be successfully
implemented and applied to determine the renormalized running coupling when asymptotic freedom is lost.
Additionally, we prove that our analysis is connected to the Gaussian fixed point as our results nicely match
with the perturbative beta function. Intriguingly, we observe that it is hard to achieve large values of the
renormalized coupling on the lattice. This might be an early sign of the existence of a physical cutoff and
imply that a larger number of flavors is needed to achieve the safe fixed point. A more conservative
interpretation of the results is that the current lattice action is unable to explore the deep ultraviolet region
where safety might emerge. Our work constitutes an essential step toward determining the ultraviolet fate of
nonasymptotically free gauge theories.
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I. INTRODUCTION

Asymptotically free theories [1,2] are fundamental
according to Wilson [3,4] since they are well defined from
low to arbitrary high energies. This remarkable property
stems simply from the fact that asymptotically free theories
are obviously conformal (and therefore scale invariant) at
short distances, given that all interaction strengths vanish in
that limit. This is one of the reasons why asymptotic
freedom has played such an important role when building
extensions of the Standard Model (SM). Non-Abelian
gauge-fermion theories, like QCD, with a sufficiently

low number of matter fields are time-honored examples
of asymptotically free gauge theories. These theories
feature a single four-dimensional marginal coupling
induced by the gauge dynamics, and no further interactions
are needed to render the theories asymptotically free.
On the other hand, purely scalar and scalar-fermion

theories are not asymptotically free. Adding elementary
scalars, and upgrading gauge-fermion theories to gauge-
Yukawa systems, one discovers that scalars render the
existence of asymptotic freedom less guaranteed. In par-
ticular, complete asymptotic freedom in all marginal cou-
plings is no longer automatically ensured by requiring a
sufficiently low number of scalar and fermion matter fields.
To determine the asymptotically free conditions on the

low energy values of the accidental couplings that may lead
to complete asymptotic freedom, a one-loop analysis in all
marginal couplings is sufficient. One discovers that the
gauge interactions are essential to tame the unruly behavior
of the accidental couplings provided the latter start running
within a specific region in coupling space at low energies.
Nonasymptotically free theories can belong either to the

trivial or the safe category. Triviality occurs when the
theories develop a physical cutoff and can therefore be
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viewed as low energy effective descriptions of a more
fundamental but typically unknown quantum field theory.
Triviality literally means that the only way to make sense of
these theories as fundamental theories (when trying to
remove the cutoff) is by turning off the interactions. In
truth, it is rather difficult to demonstrate that a theory is
trivial beyond perturbation theory since the couplings
become large in the UV and therefore one can imagine a
nonperturbative UV fixed point to emerge leading to
nonperturbative asymptotic safety. Nevertheless, we can
be confident that certain theories are indeed trivial. Perhaps
the best known example is the four-dimensional λϕ4 theory,
which was studied on the lattice in a series of papers by
Lüscher and Weisz [5–7]. The triviality here was estab-
lished using large order hopping parameter expansion with
perturbative renormalization group evolution, and corrobo-
rated with several lattice Monte Carlo simulations (see,
for example, Refs. [8,9]). Related to our study here, the
triviality versus conformality has also been investigated in
large-Nf QCD with staggered fermions [10].
Analytically, using a-maximization and violation of the

a-theorem, one can also demonstrate that certain non-
asymptotically free supersymmetric gauge-Yukawa theo-
ries such as super QCD with(out) a meson and their
generalizations are trivial once asymptotic freedom is lost
by adding enough super matter fields [11].
We move now to safe theories. These achieve UV

conformality while remaining interacting, meaning that
the interaction strengths freeze in the UV without vanish-
ing. The first four-dimensional safe field theories were
discovered in Ref. [12] within a perturbative study of
gauge-Yukawa theories in the Veneziano limit of a large
number of flavors and colors. This discovery opened the
door to new ways to generalize the Standard Model as
envisioned first in Ref. [13] and then investigated in
Refs. [14–20] with impact in dark matter physics [21,22]
and cosmology [18]. Additionally, it allowed us to use the
large charge [23,24] method to unveil new controllable
conformal field theory (CFT) properties for four-dimen-
sional nonsupersymmetric quantum field theories [25].
Although both safe and free theories share the common

feature of having no cutoff, the respective mechanisms and
dynamics for becoming fundamental field theories are
dramatically different [12]. For example, within perturbation
theory, it is impossible to achieve safety with gauge-fermion
theories [26]. Yukawa interactions and the consequent need
for elementary scalars is an essential ingredient to tame the
UV behavior of these theories. Of course, this is a welcome
discovery given that it provides a pleasing theoretical
justification for the existence of elementary scalars, such
as the Higgs, and Yukawa interactions without the need to
introduce baroque symmetries such as supersymmetry.
Beyond perturbation theory, however, little is known, and
it is therefore worth asking whether scalars are needed to
achieve asymptotic safety.

Interesting hints come from the knowledge of the beta
function for Abelian and non-Abelian gauge-fermion
theories at leading order in 1=Nf [27–30]. This result
suggests, as we shall review below, the potential existence
of short distance conformality [30,31]. However, due to the
fact that the UV zero in the beta function stems from a
logarithmic singularity and more generally that the beta
function is not a physical quantity, careful consistency
checks of these results are crucial [32].
For these reasons, and because it is important to uncover

the phase diagram of four-dimensional quantum field
theories, we initiate here a consistent lattice investigation
of the ultraviolet fate of non-Abelian gauge-fermion theories
at a small number of colors but at a large number of flavors
where asymptotic freedom is lost. These parameters are
currently inaccessible with other methods. Specifically, we
will investigate the SU(2) gauge theory with 24 and 48
massless Dirac flavors. These two numerical values are
substantially larger than the value where asymptotic free-
dom is lost, which is 11, and they are also very roughly
estimated to be close to the region where the 1=Nf squared
corrections become relevant [29,31]. This was taken to be a
sign of where one would expect the UV fixed point to
disappear [31] and the theory develop a cutoff.
To numerically investigate the UV properties of these

two theories, in our lattice analysis, we focus on the
determination of the renormalized running gauge coupling.
This is achieved by implementing the Yang-Mills gradient
flow method at finite volume and with Dirichlet boundary
conditions [33], enabling us to perform lattice simulations
at vanishing fermion mass. We are able to demonstrate that
our simulations are performed in the physical region
connected to the Gaussian fixed point. This is corroborated
by the fact that our results match onto the scheme-
independent two-loop perturbative beta function in the
infrared. We also discover that it is difficult to achieve large
values of the renormalized coupling on the lattice. This
might be interpreted as an early sign of the existence of a
physical cutoff both for 24 and 48 flavors and that a larger
number of flavors would be needed to achieve the safe fixed
point. However, a closer look at the large-Nf predicted UV
behavior of these theories, if applicable, would suggest a
safe fixed point to occur at a much stronger value of the
gauge coupling1 than achievable with the current simula-
tions. This suggests a more conservative interpretation, that
we are not yet able to explore the deep ultraviolet region
where safety might emerge. Nevertheless, we feel that our
work constitutes a necessary stepping stone toward unveil-
ing the ultraviolet fate of nonasymptotically free gauge
theories.
The paper is organized as follows. In Sec. II, we briefly

review the analytical results for (non-)Abelian gauge

1We observe that the leading Nf beta function is scheme
independent.
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theories at leading order in 1=Nf. We compare the large-Nf
beta function with two-loop perturbation theory and discuss
the conformal window 2.0 [31]. It is straightforward to
specialize the results of this section to the case of SU(2)
gauge theory investigated on the lattice. Section III is
constituted by several subsections with the goal to make it
easier for the reader to focus on the relevant aspects of the
lattice setup and results. We begin with an introduction to
the lattice action its features. We then discuss how the
gauge coupling and its running is defined through the
Yang-Mills gradient flow method. Then, we summarize
the lattice results for Nf ¼ 24 and Nf ¼ 48. In Sec. IV, we
offer our conclusions and directions for further studies.

II. CONFORMAL WINDOW 2.0: REVIEW
OF THE ANALYTIC RESULTS

Consider an SUðNcÞ gauge theory with Nf fermions
transforming according to a given representationof thegauge
group. Assume that asymptotic freedom is lost, meaning that
the number of flavors is larger than NAF

f ¼ 11CG=ð4TRÞ,
where the first coefficient of the beta function changes sign.
In the fundamental representation, the relevant group
theory coefficients are CG ¼ Nc, CR ¼ ðN2

c − 1Þ=2Nc and
TR ¼ 1=2. At the one-loop order, the theory is free in the
infrared, i.e., non-Abelian QED, and simultaneously trivial.
As discussed in the Introduction, this means that the theory
has a sensible continuum limit, by sending the Landau pole
induced cutoff to infinity, only if the theory becomes non-
interacting at all energy scales.
At two loops, in a pioneering work, Caswell [26]

demonstrated that the sign of the second coefficient of
the gauge beta function is such that an UV interacting fixed
point, which would imply asymptotic safety, cannot arise
when the number of flavors is just above the value for
which asymptotic freedom is lost. This observation
immediately implies that for gauge-fermion theories trivi-
ality can be replaced by safety only above a new critical
number of flavors. In order to investigate this possibility,
consider the large-Nf limit at fixed number of colors. The
leading order large-Nf beta functions for QED and non-
Abelian gauge theories were constructed in Refs. [27,28],
while a summary of the results and possible investigation
for the existence of UV fixed points appeared first in
Refs. [29,30] with the scaling exponents computed first in
Ref. [12]. Although in this work we will concentrate on
non-Abelian gauge theories, we now briefly comment on
the status of QED. Even though the large-Nf beta function
develops a nontrivial zero, it was demonstrated in Ref. [31]
that at the alleged UV fixed point the fermion mass
anomalous dimension violates the unitarity bound and
hence the UV fixed point is unphysical. At this order in
1=Nf, we conclude that QED is trivial.
For the non-Abelian case, using the conventions of

Refs. [27,29], the standard beta function reads

βðαÞ≡ ∂ ln α
∂ ln μ ¼ −b1

α

π
þ � � � ; α ¼ g2

4π
; ð1Þ

with g the gauge coupling. At large Nf, it is convenient to
work in terms of the normalized coupling A≡ NfTRα=π.
Expanding in 1=Nf, we can write

3

2

βðAÞ
A

¼ 1þ
X∞
i¼1

HiðAÞ
Ni

f
; ð2Þ

where the identity term corresponds to the one-loop result
and constitutes the zeroth order term in the 1=Nf expansion.
If the functions jHiðAÞj were finite, then in the large-Nf

limit, the zeroth order term would prevail, and the Landau
pole would be inevitable. This, however, is not the case due
to the occurrence of a divergences in the HiðAÞ functions.
According to the large-Nf limit, each function HiðAÞ

resums an infinite set of Feynman diagrams at the same
order in Nf with A kept fixed. To make this point explicit,
consider the leading H1ðAÞ term. The nth-loop beta
function coefficients bn for n ≥ 2 are polynomials of order
n − 1 in TRNf:

bn ¼
Xn−1
k¼0

bn;kðTRNfÞk: ð3Þ

The coefficient with the highest power of TRNf will be
bn;n−1, and this is the coefficient contributing to H1ðAÞ at
the nth-loop order. Moreover, it was shown in Ref. [34]
that the bn;n−1 terms are invariant under the scheme
transformations that are independent of Nf (as appropriate
for the large-Nf limit).
Now, the nth-loop beta function will have an interacting

UV fixed point (UVFP) when the following equation has a
physical zero [30]:

b1þ
Xn
k¼2

bkαk−1¼0 whereb1¼
β0
2
¼11CG

6
−
2TRNf

3
: ð4Þ

This expression simplifies at large Nf. Truncating at a
given perturbative order nmax, one finds that the highest-
loop beta function coefficient bnmax

contains just the
highest power of ðTRNfÞnmax−1 multiplied by the coef-
ficient bnmax;nmax−1, as can be seen from Eq. (3). Since this
highest power of ðTRNfÞnmax−1 dominates in the Nf → ∞
limit and since in this limit b1 < 0, the criterion for the
existence of an UV zero in the nmax-loop beta function
becomes [30]

forNf→∞; βðαÞ has anUVFP only if bnmax;nmax−1>0:

In perturbation theory, only the first few coefficients
bn;n−1 are known, but, remarkably, it is possible to resum
the perturbative infinite sum to obtain H1ðAÞ. From the
results in Refs. [27,28],
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H1ðAÞ¼−
11

4

CG

TR
þ
Z

A=3

0

I1ðxÞI2ðxÞdx;

I1ðxÞ¼
ð1þxÞð2x−1Þ2ð2x−3Þ2 sinðπxÞ3Γðx−1Þ2Γð−2xÞ

ðx−2Þπ3

I2ðxÞ¼
CR

TR
þð20−43xþ32x2−14x3þ4x4Þ

4ð2x−1Þð2x−3Þð1−x2Þ
CG

TR
: ð5Þ

By inspecting I1ðxÞ and I2ðxÞ, one notices that the CG term
in I2 has a pole in the integrand at x ¼ 1 (A ¼ 3). This
corresponds to a logarithmic singularity in H1ðAÞ, and will
cause the beta function to have an UV zero already at
this order in the 1=Nf expansion, and by solving
1þH1ðAÞ=Nf ¼ 0, this nontrivial UV fixed point occurs
at [12]

A� ¼ 3 − exp

�
−k

Nf

Nc
þ l

�
; ð6Þ

where k ¼ 16TR and l ¼ 18.49 − 5.26CR=CG.
Performing a Taylor expansion of the integrand in Eq. (5)

and integrating term by term, we can obtain the nth-loop
coefficients bn;n−1 and check our criteria above for the
existence of the safe fixed point [34,35]. A preliminary
investigation was performed in Ref. [34] up to 18th-loop
order, where it was also checked that the first four loops
agree with the known perturbative results. It was found that,
even though up to the 12th-loop order the resulting
coefficients are scattered between the positive and negative
values, starting from the 13th-loop order all bn;n−1 are
positive for the fundamental representation, two-index
representations, and symmetric or antisymmetric rank-3
tensors. Unfortunately, the positivity of the coefficients is
insufficient to prove the stability of the series and determine
its radius of convergence. The first complete study of the
analytic properties of the leading nontrivial large-Nf

expansion appeared recently in Ref. [35]. Here, it was
demonstrated that an analysis of the expansion coefficients
to roughly 30 orders is required to establish the radius
of convergence accurately, and to characterize the (loga-
rithmic) nature of the first beta function singularity.
These studies agree with the existence of a singular

structure at leading order in 1=Nf leading to a zero in the
beta function. Although not a proof, see e.g., Ref. [36], it
can be viewed as lending support for the possible existence
of an UV fixed point in these theories. These results have
been confirmed when extended to theories with Yukawa
interactions [37–39] and employed to build realistic
asymptotically safe extensions of the SM [15,17,18,40,41].
Using the results above, we can sketch a complete phase

diagram, as a function of Nc and Nf, for an SUðNcÞ gauge
theory with fermionic matter in a given representation.
A robust feature of this phase diagram is the line where
asymptotic freedom is lost, i.e., NAF

f ¼ 11CG=ð4TRÞ. As is
well known, decreasing Nf slightly below this value, one

achieves the perturbative Banks-Zaks infrared fixed point
(IRFP), that at two loops yields α� ¼ −b1=b2. This analysis
has been extended to the maximum known order in
perturbation theory in Refs. [30,42,43].
As the number of flavors decreases, the IRFP becomes

strongly coupled and at some critical NIRFP
f is lost. The

lower boundary of the conformal window has been esti-
mated analytically in different ways [44–47] and summa-
rized in Ref. [48]. Combining these analytic results
with nonperturbative lattice studies [49–60] defines the
current state of the art. See also the overviews [61,62] and
references therein.
Just above the loss of asymptotic freedom, as already

mentioned, Caswell [26] demonstrated that no perturbative
UVFP can emerge. By continuity, there should be a region
in color-flavor space where the resulting theory is non-
Abelian QED with an unavoidable Landau pole. This is the
unsafe QCD region. The theories in this region are low
energy effective field theories featuring a trivial IRFP. This
means that one can expect the existence of a critical value
of number of flavors NSafe

f above which safety emerges.
This region extends to infinite values of Nf, i.e., the safe
QCD region [31].
For the fundamental representation, the leading 1=Nf

expansion is applicable only for Nc ≲ Nf=10, while for
the adjoint representation, we find Nf ≳ 7 for any Nc.
Following Ref. [31], it is sensible to use these values as a
first rough estimate of the lower boundary of the safe QCD
region. Altogether, these constraints allowed the authors to
draw the corresponding phase diagrams in Ref. [31]. For the
reader’s convenience, we draw in Fig. 1 again the phase
diagrams presented first in Ref. [31] both for the funda-
mental (panel a) and adjoint representations (panel b).
Before specializing to the theories that we will inves-

tigate on the lattice, let us comment also on the safe status
of supersymmetric gauge theories. An UV safe fixed point
can, in principle, flow to either a Gaussian IR fixed point
(noninteracting) or to an interacting IR fixed point. So far,
for the nonsupersymmetric case, we discussed the first class
of theories because it is theoretically and phenomenologi-
cally important to assess whether nonasymptotically free
theories can be UV complete, up to gravity. We provided an
affirmative answer for gauge-Yukawa theories that are
remarkably similar in structure to the Standard Model in
Ref. [12]. The situation for gauge fermions is more
involved, and this is the reason we further investigate it
here via first-principle lattice simulations. Given the above,
the general conditions that must be (nonperturbatively)
abided by nonasymptotically free supersymmetric theories
to achieve safety were put forward in Ref. [11] generalizing
and correcting previous results of Ref. [63]. To make the
story short, at least one chiral superfield must achieve a
large-R charge at the safe fixed point to ensure that the
variation of the a-function between the safe and Gaussian
fixed points is positive as better elucidated in Ref. [64].
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Models of this type were shown to exist in Refs. [63–65].
Another possible way to elude the constraints [11,64] is to
consider UV fixed points flowing to IR interacting fixed
points. Within perturbation theory, nonsupersymmetric
theories of this type were discovered in Ref. [66], and
supersymmetric theories were discovered in Refs. [65,67].
Summarizing the status for supersymmetric safety, we

can say that theories abiding the constraints of Ref. [11]
exist. Nevertheless, specializing Ref. [11] to the case in
which asymptotic freedom is lost (Nf ≥ 3Nc) for super
QCD with(out) a meson [11,63], one can show that these
theories are unsafe for any number of matter fields. This is
in agreement with the 1=Nf studies of the supersymmetric
beta functions [63,68] as explained in Ref. [35]. The
unsafety of super QCD with(out) a meson should be
contrasted with QCD at large number of flavors for which,
as we argued above, safety is possible [31] and QCD with a
meson for which safety is a fact [12].
After the supersymmetric parentheses, it is time to

resume the investigation of the nonsupersymmetric con-
formal window 2.0. What has been reviewed so far clearly
motivates a nonperturbative study of the large number of
flavor dynamics via lattice simulations. Recalling that the
rough estimate for the lower boundary of the safe side of
the conformal window 2.0 requires Nf > 10Nc, it is clear
that to minimize the number of flavors we should use
Nc ¼ 2, with Nf > 20. Therefore, in Fig. 2, we present the
leading Nf beta function for an SU(2) gauge theory with
either 24 or 48 flavors. The large-Nf beta function is shown
by solid curves, while the dotted curves show the five-loop
perturbative beta function. The upper panel is for the Nf ¼
24 case, and the lower for the Nf ¼ 48 one. At leading
order in 1=Nf, the beta functions support the presence of an
UVFP for both flavors. It is instructive to show also the
four- and five-loop perturbative results. These are the two

theories we choose to investigate on the lattice, i.e., an
SU(2) gauge theory with either 24 or 48 flavors trans-
forming according to the fundamental representation of the
underlying gauge group.

III. SAFETY ON THE LATTICE

A. Lattice formulation

In this section, we will define the model we consider and
discuss the methods we use. Our treatment of the general
features will be brief here as more detailed description can
be found in Refs. [49,69]. The model is defined by the
lattice action

S ¼ SGðUÞ þ SFðVÞ þ cSWSSWðVÞ; ð7Þ

where U is the standard SU(2) gauge link matrix, V is
smeared gauge link defined by hypercubic truncated stout
smearing (HEX smearing) [70], SG is the single plaquette
gauge action, and SF is the Wilson fermion action with the
clover term SSW. We set the Sheikholeslami-Wohlert
coefficient cSW ¼ 1, which is a good approximation with
HEX smeared fermions [69].
The coupling constant is measured using the gradient

flow method with Dirichlet boundary conditions [33]. This
method has been used successfully to measure the evolu-
tion of the coupling constant in SU(2) gauge theory with
Nf < 10, motivating its use also here [49,69]. On a lattice
of size L4, we use periodic boundary conditions at the
spatial boundaries. At the temporal boundaries x0 ¼ 0, L,
we use Dirichlet boundary conditions by setting the gauge
link matrices to U ¼ V ¼ 1 and the fermion fields to zero.
These boundary conditions enable simulations at vanishing
fermion mass.
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IR conformal

Safe QCD

2 3 4 5 6 7
0
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f

IR conformal

Safe Adjoint QCD

FIG. 1. For ease for the reader, we summarize here the phase diagram of SUðNcÞ gauge theories with fermionic matter in the
fundamental (left panel) and adjoint (right panel) representation put forward in Refs. [30,31]. The shaded areas depict the corresponding
conformal windows where the theories develop an IRFP (light red region) or an UVFP (light blue region). The estimate of the lower
boundary of the IRFP conformal window is taken from Ref. [30].
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We run the simulations using the hybrid Monte Carlo
algorithm with the fifth order Omelyan integrator [71,72]
and chronological initial values for the fermion matrix
inversions [73]. The step length is tuned to have an
acceptance rate of the order of 80% or higher. We run
the simulations with bare couplings varying within the
range βL ≡ 4=g20 ∈ ½−1; 6�, and for each value of βL, we
tune the hopping parameter κ to its critical value κcðβLÞ, for
which the absolute value of the PCAC fermion mass [74] is
of the order of 10−4 on a lattice of size 244. The obtained
critical hopping parameter values, κcðβLÞ, are then used for
all used lattice sizes L=a ¼ 12, 18, 24, and 30. A summary
of the simulation parameters and corresponding PCAC
quark masses, as well as the acceptance rates and accu-
mulated statistics for each simulation, is given in the
Tables I and II.
Because we need to use strong coupling in the UV, we

are forced to use small values for βL. We include even
negative values for βL in our study. This is to compensate
for the effective positive βL shift induced by the Wilson
fermions [75,76]. To leading order, this shift is proportional
to the number of flavors and can therefore be substantial at
large Nf. As a consequence, even at the smallest βL ¼ −1
at Nf ¼ 48, the lattice gauge field observables (for exam-
ple, the plaquette) behave as if the effective gauge coupling
remains positive. A qualitatively similar effect has been

observed with staggered fermions [10]. We note that SU(2)
pure gauge lattice theory has a smooth bulk crossover at
g20 ∼ 1.7–1.8, which we do not observe in the large-Nf case
within the range of couplings used.
To define the running coupling, we apply the Yang-Mills

gradient flow method [33,77,78]. This method defines a
flow that smooths the gauge fields, removes UV divergen-
ces, and automatically renormalizes gauge invariant objects
[79]. The method is set up by introducing a fictitious flow
time t and studying the evolution of the flow gauge field
Bμðx; tÞ according to the flow equation

∂tBμ ¼ DνGνμ; ð8Þ

whereGμνðx; tÞ is the field strength of the flow field Bμ and
Dμ ¼ ∂μ þ ½Bμ; ·�. The initial condition is Bμðx; t ¼ 0Þ ¼
AμðxÞ, where Aμ is the original continuum gauge field. In
the lattice formulation, the lattice link variable U replaces
the continuum flow field, which is then evolved using the
tree-level improved Lüscher-Weisz pure gauge action [80].

B. What to expect

The gradient flow equation has the form of a heat
equation, which, in the case of a free gluon field in the
Landau gauge, is for example solved by the heat kernel [81]

FIG. 2. Comparison of the leading order large-Nf beta function (solid curve) and the perturbative beta function at two-loop (dash-
dotted curve), four-loop (dashed curve), and five-loop (dotted curve) orders. The upper panels are for Nf ¼ 24, and the lower ones are
for Nf ¼ 48. The left-hand panels show the beta function as defined in (1) as function of A ¼ NfTRg2=ð4π2Þ, while the right-hand
panels show the beta function as function of g2 and rescaled with an additional factor of g2.
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Hðy − x; tÞ ¼ 1

ð4πtÞd=2 exp
�
−
ðy − xÞ2

4t

�
: ð9Þ

Hence, by evolving a gauge configuration with the gradient
flow for some time t, one performs a Gaussian smearing

with smearing radius σ ¼ ffiffiffiffi
2t

p
, which means that physical

processes at length scales below 2σ ¼ ffiffiffiffi
8t

p
≕ λðtÞ get

effectively integrated out. The scale μðtÞ ¼ 1=λðtÞ can
therefore be interpreted as renormalization scale of gauge
observables measured at flow time t.

TABLE II. The table shows for Nf ¼ 48 for each simulation point the value of βL and κ, as well as the resulting PCAC quark massmq

(in units of 10−4), determined on the L ¼ 24a lattice. Furthermore, the acceptance rates (acc.) of the hybrid Monte Carlo (HMC)
trajectories and the accumulated statistics (stat.), i.e., number of sampled configurations, are shown for each system size.

mqa L ¼ 12a L ¼ 18a L ¼ 24a L ¼ 30a

βL κ ð10−4Þ acc. stat. acc. stat. acc. stat. acc. stat.

−1. 0.129534 2.2(6) 0.85 5k 0.82 5k 0.83 2.1k 0.78 1.5k
−0.5 0.128463 0.1(3) 0.88 5k 0.84 4.4k 0.85 1.9k 0.82 1.1k
−0.4 0.128269 0.5(3) 0.88 5k 0.86 4.9k 0.86 1.9k 0.83 1.1k
−0.3 0.128084 0.4(4) 0.9 4.6k 0.86 4.7k 0.86 1.8k 0.83 1.1k
−0.25 0.127996 −0.6ð3Þ 0.9 4.1k 0.87 4.4k 0.86 1.8k 0.84 1.1k
−0.2 0.127905 0.1(3) 0.9 4.5k 0.87 4.1k 0.88 1.6k 0.87 1.3k
−0.15 0.12782 −0.1ð3Þ 0.9 4.1k 0.88 4.4k 0.88 1.5k 0.86 1.2k
−0.1 0.127737 −0.4ð3Þ 0.91 4.5k 0.89 4.8k 0.9 1.6k 0.84 1.2k
−0.05 0.127651 0.1(3) 0.91 4k 0.88 4.5k 0.89 1.6k 0.87 1.2k
0.001 0.12757 −0.6ð2Þ 0.92 4k 0.88 4.8k 0.83 2.4k 0.88 1k
0.05 0.127487 1.8(3) 0.92 4k 0.89 5.1k 0.82 2.2k 0.9 1k
0.1 0.127413 0.4(2) 0.92 4k 0.89 4.6k 0.83 2.6k 0.87 1k
0.15 0.127344 −1.7ð2Þ 0.93 4k 0.89 5.4k 0.82 2.3k 0.89 1k
0.2 0.127265 0.5(3) 0.94 4k 0.9 5k 0.83 2.1k 0.88 1k
0.25 0.127191 1.5(3) 0.94 4k 0.91 4.7k 0.85 2.4k 0.9 1k
0.3 0.127125 −0.1ð2Þ 0.94 4k 0.91 4.4k 0.86 2.3k 0.9 1k
1. 0.126332 0.5(2) 0.97 4k 0.95 5k 0.92 2k 0.95 1.1k
3. 0.12544 −0.1ð1Þ 0.98 2k 0.99 2.4k 0.97 2k 0.97 1.3k
6. 0.125209 −0.3ð1Þ 0.98 2k 0.98 2.3k 0.98 1.9k 0.98 1.3k

TABLE I. The table shows for Nf ¼ 24 for each of our simulation points the value of βL and κ, as well as the resulting PCAC quark
mass mqa (in units of 10−4), determined on the L ¼ 24a lattice. Furthermore, the acceptance rates (acc.) of the hybrid Monte Carlo
(HMC) trajectories and the accumulated statistics (stat.), i.e., number of sampled configurations, are shown for each system size.

mqa L ¼ 12a L ¼ 18a L ¼ 24a L ¼ 30a

βL κ ð10−4Þ acc. stat. acc. stat. acc. stat. acc. stat.

−0.3 0.131578 8.3(4) 0.88 5k 0.78 5k 0.83 4k 0.86 2.6k
−0.25 0.131354 9.5(5) 0.89 5k 0.78 5k 0.84 4k 0.88 2.6k
−0.2 0.131139 9.1(5) 0.89 5k 0.8 5k 0.84 4k 0.87 2.6k
−0.15 0.13093 8.1(5) 0.9 5k 0.8 5k 0.84 4k 0.88 2.6k
−0.1 0.130725 7.0(4) 0.9 5k 0.82 5k 0.86 4k 0.88 2.7k
−0.05 0.130519 5.3(6) 0.91 5k 0.82 5k 0.85 4k 0.9 2.6k
0.001 0.130322 0.1(4) 0.93 10k 0.84 4.9k 0.73 4k 0.89 2.7k
0.05 0.130129 1.2(4) 0.94 10k 0.84 4.8k 0.73 4.3k 0.9 2.3k
0.1 0.129944 −0.7ð4Þ 0.94 10k 0.86 4.6k 0.74 4.2k 0.92 2.4k
0.15 0.129758 −0.3ð4Þ 0.94 10k 0.86 4.5k 0.74 4.1k 0.91 2.7k
0.2 0.129579 −0.7ð4Þ 0.94 10k 0.86 4.5k 0.77 3.8k 0.92 2.5k
0.25 0.129403 0.3(3) 0.94 10k 0.86 4.4k 0.78 4.1k 0.92 2.4k
0.3 0.129232 0.7(3) 0.95 10k 0.87 4.4k 0.78 4k 0.92 2.4k
1. 0.127336 −0.1ð3Þ 0.97 10k 0.94 4.4k 0.85 4k 0.96 2.4k
3. 0.125525 −0.1ð1Þ 0.99 10k 0.98 5k 0.98 4k 0.98 2k
4. 0.125355 1.0(1) 0.99 10k 0.98 5k 0.96 4k 0.99 2.7k
6. 0.125224 −0.2ð1Þ 0.99 10k 0.98 5k 0.95 4k 0.99 3k
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The nonperturbative renormalized coupling at scale μ
[81] is then defined via energy measurement as

g2GFðμÞ ¼ N −1t2hEðtÞijt¼1=ð8μ2Þ; ð10Þ

where N is a normalization factor that has been calculated
in Ref. [82] to match the MS coupling at tree level and the
gauge field energy density E is measured only on the
central time slice of the lattice: x0 ¼ L=2.
On the lattice, the finite lattice spacing a (which is a

function of the bare lattice parameters βL and κ) and the
finite system size L ¼ Na (with N being the number of
lattice sites in each direction) restrict the renormalization
scales, accessible with the gradient flow, to the range
1=L < μðtÞ < 1=a. Per construction, the flow always starts
on the UV side of this interval and evolves the gauge field
toward the IR. At the lattice scale 1=a, the lattice theory
deviates strongly from its continuum counterpart, and the
gradient flow smearing scale λðtÞ ¼ ffiffiffiffi

8t
p

should therefore
reach at least two to three lattice spacings before the
renormalized coupling (or any other observable of the
lattice gauge field) at flow time t can be expected to behave
like the corresponding continuum quantity.
One can now ask how the lattice gradient flow coupling

g2GFðλðtÞ; βLÞ should behave, as function of the flow scale
λðtÞ, if the theory possesses an interacting UV fixed point.
Before addressing this question for the lattice, let us recall
how the running continuum coupling g2ðλ=λ0; g20Þ, i.e., the
solution to the differential equation (1) with μ ¼ 1=λ,
behaves as function of increasing λ=λ0 > 0 for different
choices of the initial condition or reference coupling g20 ¼
gð1; g20Þ at reference scale λ0, if there is an interacting UV
fixed point at coupling g2 ¼ g2cr. The behavior is illustrated
schematically in Fig. 3: the fixed point is unstable, and
therefore, for increasing λ=λ0 > 1, the running coupling
gðλ=λ0; g20Þ will:
(a) decrease, if g20 < g2cr;
(b) remain constant, if g20 ¼ g2cr; and
(c) increase, if g20 > g2cr.
The qualitatively distinct behavior of the running coupling
on the two sides of the UV fixed point implies a drastic
change in the long-distance behavior of the system when
the reference coupling g20 crosses the critical value g2cr.
We note that if g20 is much smaller than g2cr the behavior of

the running coupling for g2ðλ=λ0; g20Þ < g2cr can be almost
indistinguishable from a Landau pole type behavior.
The coupling constant evolution curves demonstrating
an UV fixed point shown in Fig. 3 have been obtained
by integrating the perturbative four-loop beta function at
Nf ¼ 48, which indeed has a zero at g2cr ≈ 6.8 (dashed
curve in lower panels of Fig. 2). The Landau pole curve
has been obtained from the corresponding one-loop
beta function. While we naturally cannot expect purely
perturbative results to be reliable, these curves give us

qualitatively plausible scenarios for the coupling constant
evolution. We can conclude that it can be difficult to
distinguish between UV fixed point and Landau pole
behaviors by looking at the behavior of the running
coupling for g20 ≪ g2cr.
Switching now to the lattice, we can think of the lattice

scale a as defining a reference length scale λ0 for the
corresponding continuum theory. The gradient flow scale
λðtÞ, given in lattice units, then corresponds to the ratio of
scales λ=λ0, and we can for λ=λ0 ≫ 2 identify the running
continuum coupling g2ðλ=λ0; g20Þ with the lattice gradient
flow coupling g2GFðλðtÞ; βLÞ. As already mentioned above,
for λ=λ0 ≤ 2, discretization effects are strong. Therefore,
the lattice gradient flow coupling cannot be expected to
behave like the running coupling of the continuum theory
in this regime,2 which means that the relation between the
bare inverse lattice coupling βL and the corresponding
continuum coupling g20 ¼ gðλ=λ0 ¼ 1; g20Þ cannot be read
off from the value of g2GFðλðtÞ; βLÞ at flow scale λðtÞ ¼ a.
In order to verify the existence of an interacting UV fixed

point via lattice simulations, one has to find a value of βL,
for which a ¼ λ0 is sufficiently small, so that the corre-
sponding g20 is larger than g

2
cr. One should then observe, that

the gradient flow coupling increases with increasing flow

g0
2 <<< gcr

2 g0
2 << gcr

2

g0
2 < gcr

2

g0
2 = gcr

2g0
2 > gcr

2

g0
2 >> gcr

2

with Landau pole

0 1 2 3 4 5 6 7 8

0

5

10

/ 0

g2
(

/
0
,

g 02
)

FIG. 3. A cartoon of the running coupling g2ðλ=λ0; g20Þ as a
function of increasing (relative) renormalization length scale λ=λ0
in the presence of an interacting UV fixed point, located at
g2 ¼ g2cr, for different choices of the initial coupling g20 ¼
g2ð1; g20Þ and corresponding reference scale λ0. Given the fixed
point at g2cr, the running coupling gðλ=λ0; g20Þ as a function of
increasing λ=λ0 ≥ 1 will decrease if g20 < g2cr, remain constant if
g20 ¼ g2cr, and increase if g20 > g2cr. The fixed point is repelling, so
that one can only flow away from it. If g20 is much smaller than g2cr,
the UVFP and Landau pole running couplings are almost
indistinguishable for g2ðλ=λ0; g20Þ < g2cr.

2In fact, as we use in our simulations the clover Wilson
fermion action with HEX smeared gauge links (meaning that the
elementary cells on which the action is defined have a linear size
of at least 2a instead of just a), g2GFðλðtÞ; βLÞ and g2ðλ=λ0; g20Þwill
even start to agree only for λðtÞ ¼ λ=λ0 ≳ 4.

VILJAMI LEINO et al. PHYS. REV. D 101, 074508 (2020)

074508-8



scale λðtÞ, whereas for g20 < g2cr, one will always flow
toward the trivial IR fixed point. In addition, one should
also observe a phase transition associated to the afore-
mentioned change of the long-distance behavior of the
system when g20 crosses g2cr. For a theory which is IR—
instead of UV—free, the dependency of the lattice spacing
a on the bare lattice parameter βL is unfortunately not
necessarily such that a can become arbitrarily small, and it
might therefore not be possible for a ¼ λ0 to reach values
for which g20 ≥ g2cr.
The discovery of an interacting UV fixed point on the

lattice in thisway is possible only if the true, nonperturbative
beta function is such that the discussion in connection with
Fig. 3 applies. As discussed above, the four-loop beta
function from Fig. 2 was used to model the UV fixed point
behavior in Fig. 3. This four-loop beta function is smooth
everywhere, and its slope in the neighborhood of the UV
fixed point ismoderate.However, if the nonperturbative beta
function behaves more like the leading order large-Nf beta
function (red curve in lower panels of Fig. 2), the situation is
significantly more complicated, as the UV fixed point arises
due to a singularity as β → −∞. This abrupt change makes
the running coupling for g20 < g2cr look even more as if there
is a Landau pole at λ=λ0 ≤ 1 (cf. Fig. 4), and because of the
singularity right after the UV fixed point, the behavior of the
running coupling for g20 > g2cr is unknown.
The slope of the beta function at the fixed point was

computed in Ref. [12] and linked to the anomalous
dimension of glueballs in Ref. [32]. The divergent slope
can either lead to violation of unitarity or be interpreted as
the physical decoupling of glueballs at the fixed point if the
fixed point persists. A glueball decoupling is in line with
the physical mechanism for the existence of a fixed point
which is enforced by the fermion dynamics. A more
conservative viewpoint is that the consistent inclusion of
subleading 1=Nf terms will smooth out the singular
structure. It is worth noting that the comparison with the
large-Nf beta function is relevant also away from the fixed
point since it contains all the leading Nf orders in α. As we
explained earlier the series in αNf is convergent, and the
coefficients are scheme independent. One should therefore
observe a better agreement of the large-Nf beta function
with 48 flavors than with 24 away from the singularity.

C. Results: Nf = 24 and Nf = 48

In Figs. 5 and 6, we show examples of the gradient flow
running coupling g2GFðλ; βLÞ at Nf ¼ 24 and 48, as func-
tions of the gradient flow length scale λ ¼ ffiffiffiffi

8t
p

. The
measurements are done on lattices of different sizes L4,
with L=a ¼ 12, 18, 24, 30, and at different values of the
bare inverse lattice coupling βL.
These figures show that the measurements of g2GF are

dominated by lattice artifacts both at too small and at too
large flow scales, λ≲ 3a and λ≳ 0.3L, respectively. When

the flow scale is of the order of lattice spacing or
smaller, large artifacts can be expected, and indeed, from
the definition of the gradient flow coupling, Eq. (10),
we see that g2GF → 0 as λ → 0 (t → 0). This causes the
characteristic “peak” at small λ in Figs. 5 and 6, as g2GF
develops toward more continuumlike behavior. The use of
the HEX smeared clover fermions also increases the range
of interaction terms of the lattice action to approximately
3–4a, which may also affect the flow at small λ.
Apart from these UV cutoff effects, the gradient flow is

also affected by IR cutoff effects due to the finite lattice
size. In our case, these seem to be particularly strong, as can
be seen by comparing the curves for different system sizes
in the individual panels of Figs. 5 and 6: the flow scales at
which the g2GF for different system sizes start do deviate
marks the scale at which IR cutoff effects start to dominate
in the smaller of the two systems. This seems here to
happen already at scales around λ≳ 0.3L almost inde-
pendently of the bare inverse lattice coupling βL.
Due to the strong finite size and finite volume effects, the

range of flow scales λ, for which the lattice gradient flow

g0
2 = 1.g0

2 = 2.5

g0
2 = gcr

2 –10–7

1 loop

0 1 2 3 4 5 6 7 8

0

2

4

6

8

/ 0

g2
(

/
0
,

g 02
)

FIG. 4. The running coupling g2ðλ=λ0; g20Þ for the leading order
large-Nf beta function from Eq. (2) with Nf ¼ 48 (cf. lower
panels of Fig. 2) as a function of increasing (relative) renorma-
lizaion length scale λ=λ0 for different choices of initial coupling
g20 ¼ g2ð1; g20Þ and corresponding reference scale λ0. The red,
horizontal dotted line indicates the location of the UV fixed point,
g2cr ¼ 4.9348022…. In contrast to the four-loop Nf ¼ 48 beta
function used for the discussion in Fig. 3, which had a moderate
slope at the fixed point, the slope of the leading order large-Nf

beta function at the fixed point g2cr is very steep. This makes it
almost impossible to draw the line of constant running coupling,
that would start at g20 ¼ g2cr and remain there. Consequently, the
running coupling for g20 < g2cr looks even more as if there is a
Landau pole at λ=λ0 ≤ 1, as can be seen by comparing for
example the g20 ¼ 1 curve with the corresponding one-loop result
(dashed line), which has a Landau pole at λ=λ0 ¼ slp ≈ 0.041.
The leading order large-Nf running coupling matches the one-
loop curve almost perfectly up to g2cr, where it suddenly stops. As
this beta function ends right after the UV fixed point in a
singularity at −∞, we do not have any information about the
behavior of the running coupling above g2cr.
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coupling g2GFðλ; βLÞ can be expected to behave like the
running coupling g2ðλ=λ0; g20Þ of the continuum theory, is
approximately given by λ ∈ ½3a; 0.25L�, where the lower
bound of 3a is somewhat optimistic. This renders the
smallest lattices L ≤ 18 of very limited use.
We can optimize the gradient flow coupling by adding a

shift τ to the flow time [83]:

g2GFðλ; βLÞ ¼ N −1t2hEðtþ τÞijt¼λ2=8: ð11Þ

The effect of τ vanishes in the continuum limit (if it exists),
and it can be tuned to get rid of mostOða2Þ lattice artifacts.
Due to the very large finite size artifacts, we cannot use the

method used in Refs. [49,83] to optimize τ. However, as it
turns out that the gradient flow coupling obtained by our
simulations are quite small, we can expect the scheme
independent perturbative two-loop beta function to be a
very accurate approximation to the true beta function at
large enough flow time (cf. Fig. 2). For each βL, we tune τ
by matching the largest volume L ¼ 30a gradient flow
coupling to the two-loop perturbative coupling over the
interval λ ∈ ½3a; 5a�. We then use this value for τ for
smaller volumes L=a ¼ 12, 18, 24. Examples for (11) at
optimal τðβLÞ are shown in Fig. 7 (Nf ¼ 24) and Fig. 8
(Nf ¼ 48) for two different values of βL, together with the
corresponding two-loop running coupling.
In Fig. 9, we show the step scaling function

Σðu; s; L; cÞ ¼ g2GF;sLðcsL; βLÞjβL∶g2GF;LðcL;βLÞ¼u; ð12Þ

which tells us how the coupling constant evolves when the
length scale where it is evaluated changes from cL to scL.
In the following, we use c ¼ 0.22; i.e., the gradient flow
time is fixed so that

ffiffiffiffi
8t

p ¼ 0.22L. We are forced to use a
relatively small value for c (in comparison with conven-
tional c ¼ 0.4…0.5, used in Ref. [49], for example) in
order to avoid excessive finite volume effects. The step
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FIG. 5. The gradient flow couplings for Nf ¼ 24, measured at
different values of the bare inverse lattice coupling βL, as
functions of the flow scale λ ¼ ffiffiffiffi

8t
p

(where t is the flow time
in lattice units).
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FIG. 6. The gradient flow couplings for Nf ¼ 48, measured at
different values of the bare inverse lattice coupling βL, as
functions of the flow scale λ ¼ ffiffiffiffi

8t
p

(where t is the flow time
in lattice units).

FIG. 7. The gradient flow coupling for Nf ¼ 24 and bare
inverse lattice coupling βL ¼ −0.3 (upper panel) and βL ¼ 6
(lower panel) as functions of the flow scale λ after optimization of
the parameter τðβLÞ. The value of g20 ¼ gðλ=λ0 ¼ 1; g20Þ, stated in
the panel, can be used as a definition of an effective lattice-scale
coupling for the lattice theory.
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scaling is particularly well suited for doing a continuum
extrapolation (if it exists) of the running coupling. For a
conventional extrapolation, one would, however, need a set
of lattice sizes A ¼ fL1;…; Lng, from which one can form
several pairs ðL0; LÞ that correspond to the same ratio
L0=L ¼ s. The lattice volumes available to us do not allow
this. Furthermore, very large lattice artifacts at smaller
volumes would make the extrapolation unreliable.
What we can do instead is compare the step scaling

function for different s directly with the corresponding two-
loop results in Fig. 9. The agreement is reasonable, except
for s ¼ 1=2, which involves the smallest system size
L ¼ 12 for which the finite size and finite volume effects
are particularly strong.
A more transparent comparison of data from pairs of

system size ðL0; LÞwith different s ¼ L0=L can be obtained
with the discrete beta function

βðsÞL ðu;L;cÞ¼−
g2GF;sLðscL;βLÞ−u

logðs2Þ
����
βL∶g2GF;LðcL;βLÞ¼u

; ð13Þ

which approaches the conventional beta function in the
limits s → 0 or g2 → 0. Because g2GF is small, this is a good
approximation of the true beta function. The results are
shown in Fig. 10 for c ¼ 0.22 and s ¼ 3=2 ¼ 18=12,
s ¼ 2 ¼ 24=12, and s ¼ 30=18 ¼ 5=3. For comparison,
the corresponding results for the discrete beta function,
evaluated with the two-loop running coupling, are shown as

well. As we can observe, the lattice result approaches the
two-loop result as the volume increases.
From the results above, we see that the measured

gradient flow couplings are very small in the region where
we can trust the measurements, at most g2GF < 1.75. The
couplings grow as the distance is reduced (λ decreased),
until lattice artifacts take over at λ≲ 3a. In order to reach
strong couplings, we use small values for the inverse bare
coupling βL (even negative, as discussed in Sec. III A).
However, it turns out that if βL is small enough, the gradient
flow coupling becomes almost independent of its value.
This behavior is compatible with the Landau-pole-like
behavior, as we will discuss in Sec. III C 1 below.

FIG. 8. As in Fig. 7 but for Nf ¼ 48.
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FIG. 9. Nf ¼ 24 (left) and Nf ¼ 48 (right) step
scaling Σðu; s; L; cÞ=u as functions of u, with Σðu; s; L; cÞ ¼
g2GFðscL; βLÞjβL∶g2GFðcL;βLÞ¼u defined in terms of the gradient flow

coupling g2GFðcL; βLÞ. The latter can be interpreted as a non-
perturbative definition of the renormalized coupling at scale
λ ¼ cLa. For fixed c and βL, the ratio of the gradient flow
couplings obtained with system sizes L and L0 ¼ sL, i.e.,
g2GFðcL0; βLÞ=g2GFðcL; βLÞ, can then be identified with the ratio
of renormalized couplings g2ðλ0Þ=g2ðλÞ at scales λ0 and λ, where
λ0=λ ¼ s. The dashed lines show the corresponding perturbative
two-loop results.
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FIG. 10. Nf ¼ 24 (left) and Nf ¼ 48 (right) discrete beta

function βðsÞL ðu;L;cÞ¼−ðg2GF;sLðscL;βLÞ−g2GF;LðcL;βLÞÞ=logðs2Þ
as functions of u ¼ g2GFðcL; βLÞ. The dashed lines show the
corresponding perturbative two-loop results.
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1. Effective g20 I

As we saw above, the gradient flow coupling makes sense
onlywhen the flow scale is large enough, i.e. larger than about
3a. Nevertheless, it is of interest to relate g2GF to some lattice
ultraviolet scale effective coupling. The inverse of βL ¼ 4=g20
does not make much sense, because it can be negative.
Here, we use the value of the plaquette (trace of the 1 × 1

Wilson loop) as a proxy; it is an UV quantity on the lattice,
and its expectation value is readily measurable. To convert
the plaquette values to effective couplings, we use an
“inverse Monte Carlo” procedure: we perform new simu-
lations using a pure gauge SU(2) lattice theory with Wilson
plaquette action [i.e., using only SGðUÞ in Eq. (7)] and tune
the pure gauge inverse coupling βPGL so that the plaquette
expectation value matches that of the original theory. The
effective bare coupling is obtained by inversion

g20;eff ¼ 4=βPGL : ð14Þ

This quantity is positive for all of our lattices. Because
the plaquette expectation value is, in practice, independent
of the volume, g20;eff is only a function of βL and Nf. It
increases monotonically as βL is decreased. At our smallest
βL values, −0.3 (Nf ¼ 24) and −1.0 (Nf ¼ 48), it reaches
maximum values of about 6 and 5.3, respectively.
In Fig. 11, we plot the gradient flow couplings g2GF,

measured at fixed flow scale λ ¼ 4a, against g20;eff . The
gradient flow coupling is almost independent of the
volume, excluding L=a ¼ 12, where flow scale 4a is large
enough so that finite volume effects become important. We
shall ignore L=a ¼ 12 in the following.

As mentioned earlier, the pure gauge system undergoes
a smooth crossover to a lattice bulk phase around
g20;eff ≈ 1.7–1.8. This artifact, not present in our simulations
with fermions, does not invalidate the use of g20;eff as proxy
for the coupling at the lattice cutoff scale, but the functional
dependency of the gradient flow running coupling on g20;eff
can start to deviate from the expected behavior when g20;eff
enters the bulk region, i.e., when g20;eff > 1.7–1.8. This is
shown by vertical lines in Fig. 11. Nevertheless, the
excellent match of the lattice measurements with the
perturbative curve indicates that the effect is small.
We observe the following behavior: as g20;eff → 0, the

ratio g2GF=g
2
0;eff → 1, as dictated by universality at weak

coupling. On the other hand, as g20;eff grows, g
2
GF seems to

approach a constant. This is characteristic behavior for an
UV Landau pole; as the UV scale approaches the Landau
pole, the UV scale coupling diverges. Because g2GF is
evaluated at length scales which are by a constant factor
larger than the UV length scale, the value of g2GF will
instead approach a constant value.
The couplings g20;eff and g2GF have been obtained using

different schemas, and thus their values cannot be com-
pared without matching. Nevertheless, we obtain a reason-
able fit of the data in Fig. 11 with the two-loop perturbative
running coupling g2ðλ=λ0; g20Þ by identifying g20 ≡ g20;eff and
g2ðλ=λ0; g20Þ≡ g2GFðλ=a; g20;effÞ. A good qualitative agree-
ment is obtained with the matching coefficients λ0 ¼ a=9
for Nf ¼ 24 and λ0 ¼ a=18 for Nf ¼ 48. This implies that
the effective lattice coupling g20;eff corresponds to a refer-
ence scale, which is about 9, respectively 18, times smaller
than the lattice scale a. The fit is compatible with the
existence of the Landau pole, because the two-loop beta
function also features one. However, we naturally cannot
exclude the existence of an UVFP at stronger UV coupling
than reached here.
The possible existence of the Landau pole gives a natural

explanation for the small value of the gradient flow
coupling, the lattice UV length scale is approximately a,
whereas the gradient flow coupling g2GF is evaluated at
length scale 3a or larger. Thus, in terms of energy, g2GF is
evaluated at scale μGF < μLP=3, where μLP is the scale
where Landau pole appears. This gives ample room for the
coupling to decrease. The actual value of the coupling
depends on the details of the scheme.

2. Effective g20 II

Another possibility to define an effective coupling for
the lattice theory comes as a side product of the method we
used to determine the optimal value of the τ parameter in the
definition (11) of the improved gradient flow coupling, i.e.,

g2GFðλ; βL; τÞ ¼
t2hEðtþ τÞi
N ðtþ τÞ

����
t¼λ2=8

: ð15Þ

FIG. 11. The relation between the gradient flow coupling
g2GFðL; βL; cÞ at flow scale λ ¼ cL ¼ 4a and the effective bare
coupling g20;effðβLÞ at Nf ¼ 24 (left) and Nf ¼ 48 (right). The
dashed line is the perturbative (pert.) two-loop result, where the
continuum couplings g20 and g2ðλ=λ0; g20Þ are, respectively,
identified with the g20;eff and g2GFðλ=a; g20;effÞ from the lattice.
The g20;eff ¼ g2GF line is shown with dots, and the vertical dashed
line indicates the value of g20;eff above which the pure gauge
system is in the lattice bulk phase.
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The procedure is as follows. From the lattice data for
the gradient flow coupling g2GFðλ; βLÞ ¼ g2GFðλ; βL; 0Þ as
function of flow scale λ, we produce data pairs ðλi; g2GF;iÞ,
i ¼ 1; 2;…, with g2GF;i ¼ g2GFðλi; βLÞ and λi ∈ ½3; 5�. Then,
using that

g2GFðλ; βL; τÞ ¼
λ4

ðλ2 þ 8τÞ2 g
2
GF

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 8τ

p
; βL

	
; ð16Þ

we form the corresponding pairs for the τ-shifted gradient
flow coupling (15):

ðλiðτÞ; g2GF;iðτÞÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2i − 8τ
q

;
ðλ2i − 8τÞ2

λ4i
g2GF;i

�
: ð17Þ

We then use the solution to the differential equation (1) in the
form

λptðg2; g20; λ0Þ ¼ λ0 exp

�
−
Z

g2

g2
0

du
uβðuÞ

�
; ð18Þ

with g2βðg2Þ being the perturbative two-loop beta function,
shown in Fig. 2, and minimize

χ2ðτÞ ¼
X
i

ðλiðτÞ − λptðg2GF;iðτÞ; g20ðτÞ; λ0ðτÞÞÞ2 ð19Þ

with respect to τ, where ðλ0ðτÞ; g2GF;0ðτÞÞ is given by the pair
in (17) for which the corresponding original λi, i ¼ 1; 2;…,
is closest to the middle of the fitting interval λ ∈ ½3; 5�.
After having determined in this way the optimal τ, one

also has fixed the values ðλ0; g20Þ ¼ ðλ0ðτÞ; g2GF;0ðτÞÞ, for
which (18) has within the given fit interval the best overlap
with the τ-shifted lattice data. Solving now

λptðg2; g20; λ0Þ ¼ 1 ð20Þ
for g2, one obtains an effective coupling for the lattice theory
at the cutoff scale a, which we call g20;eff2ðβLÞ. In Figs. 7 and
8, thevalue of g20;eff2ðβLÞ can be read off from the value of the
perturbative two-loop curve (dashed line) at λ ¼ 1.
From the derivation of the effective coupling g20;eff2ðβLÞ,

it is not a big surprise that one finds in Fig. 12 excellent
agreement between lattice data and two-loop result, when
plotting the gradient flow coupling at fixed flow scale λ
(in lattice units) as function of g20;eff2ðβLÞ, identifying the
perturbative g2ðλ=λ0; g20Þ and g2GFðλ; βLÞ, with λ0 ≡ a and
g20 ≡ g20;eff2ðβLÞ.

IV. CONCLUSIONS

The UV behavior of gauge-fermion theories as a function
of the number of matter fields poses a fundamental problem
on our understanding of quantum field theory, both
perturbatively and nonperturbatively. Recent theoretical
developments suggest that at inifinite number of flavors
an interacting UV fixed point could exist making these
theories asymptotically safe.
In this paper, we have discussed in detail the categoriza-

tion of gauge-fermion theories based on their possible UV
behaviors. Then, we described our computational setting to
investigate the renormalization group evolution of SU(2)
gauge theory with 24 or 48 Dirac fermions. Finally, we
presented the results of our first pioneering analysis.
We found that with the methodologies developed in our

past work, the nonperturbative computations can be suc-
cessfully carried out. We have demonstrated that our results
match well with perturbation theory. On the other hand, we
were unable to reach lattices where strong renormalized
couplings could be controllably obtained. We used the
gradient flow procedure to determine the renormalized
coupling on the lattice. By construction, gradient flow
coupling can be evaluated at length scales which are at
least a few lattice spacings. This leaves room for a Landau
pole or otherwise large couplings to exist at shorter distances
(in the lattice ultraviolet limit). We observed indications of
this behavior by defining an effective lattice ultraviolet
coupling. The observed behavior is compatible with the
existence of a Landau pole, but we cannot exclude an

FIG. 12. The relation between g2GF and effective lattice coupling
g20;eff2ðβLÞ at Nf ¼ 24 (left) and Nf ¼ 48 (right), evaluated at
flow scale λ ¼ cL ¼ 4a (upper panels) and 6a (lower panels).
The dashed line is the perturbative (pert.) two-loop result, where
the continuum couplings g20 and g2ðλ=λ0; g20Þ are, respectively,
identified with the g20;eff and g

2
GFðλ=a; g20;eff2Þ from the lattice. The

g20;eff2 ¼ g2GF line is shown with dots.
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ultraviolet fixed point at even stronger couplings
than reached here. Consequently, the true continuum
behavior of these theories in the deep ultraviolet remain
undetermined.
Nevertheless, our study provides an important milestone

toward establishing the ultaviolet fate of gauge-fermion
theories when asymptotic freedom is lost. The results
further motivate investigations of gauge theories at a very
large number of fermion fields.
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