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Abstract
In this paper we consider optimal control of nonlinear time-dependent fluid structure 
interactions. To determine a time-dependent control variable a BFGS algorithm is 
used, whereby gradient information is computed via a dual problem. To solve the 
resulting ill conditioned linear problems occurring in every time step of state and 
dual equation, we develop a highly efficient monolithic solver that is based on an 
approximated Newton scheme for the primal equation and a preconditioned Rich-
ardson iteration for the dual problem. The performance of the presented algorithms 
is tested for one 2d and one 3d example numerically.

Keywords Fluid–structure interactions · Finite elements · Multigrid · Optimal 
control · Parameter estimation

1 Introduction

Fluid–structure interactions are part of various applications ranging from classical 
engineering problems like aeroelasticity or naval design to medical applications, e.g. 
the flow of blood in the heart or in blood vessels. More and more of these applica-
tions are regarded recently in combination with optimal control, shape-optimization, 
and parameter estimation. Especially in hemodynamical applications—in order to 
get a deeper understanding of the development of vascular diseases—patient spe-
cific properties have to be incorporated into the models. For example, in Bertoglio 
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et  al. (2012, 2013, 2014), D’Elia et  al. (2012), Lassila et  al. (2013), Pant et  al. 
(2014), Moireau et al. (2013) patient specific boundary conditions and vessel mate-
rial parameters are determined to simulate arterial blood flow. Similar approaches 
using gradient information have been proposed in D’Elia et  al. (2012), Bertagna 
et al. (2014), Perego et al. (2011) to estimate Young’s modulus of an artery.

As computer tomography (CT) and magnetic resonance imaging (MRI) evolve 
rapidly, already very accurate measurements of the movement of the vessel wall are 
possible nowadays and even averaged flow profiles in blood vessels can be provided, 
see Asner et al. (2016), Bertoglio et al. (2014), Lamata et al. (2014). To incorporate 
the data in the vascular models, it is necessary to improve the available parameter 
estimation and optimal control algorithms for fluid–structure interaction applica-
tions, in particular since only few approaches in the literature take the sensitivity 
information of the full time-dependent nonlinear system into account. For exam-
ple in  Degroote et  al. (2013), Martin et  al. (2005), adjoint equations are derived 
for one-dimensional fluid–structure interaction configurations and in  Richter and 
Wick (2013) for a stationary fluid–structure interaction problem. In contrast, the 
authors of Pant et al. (2014), Bertoglio et al. (2012, 2014), Moireau et al. (2013) use 
a sequential reduced Kalman filter.  Perego et al. (2011) compute sensitivity infor-
mation to estimate the wall stiffness. To reduce the computational time, they solve 
in every time-point an optimal control problem. As the mesh motion is discretized 
via an explicit time-stepping scheme, no sensitivity information of the mesh motion 
equation has to be computed. Similar to the articles Bertoglio et al. (2012, 2014), 
Moireau et al. (2013), the estimated parameters are updated in every time step and 
the forward simulation only runs once.

In this paper we are going to compute gradient information for the full time-
dependent nonlinear system for 3d applications. Thereby, the optimization algorithm 
takes the intrinsic property of fluid–structure interaction, transport over time, into 
account. In addition the here presented approach enables to regard tracking type 
functionals with observation at a singular time-point or on a specific time-interval. 
Furthermore a time-dependent parameter can be reconstructed. This would not be 
possible, if we would use a Kalman filter or would solve an optimization problem 
in every time step as in the literature cited above. The dual problem to compute sen-
sitivities can be derived as in Failer (2017) or as in Failer and Wick (2018), where 
sensitivity information was used for a dual-weighted residual error estimator.

For various applications and a general overview on modeling and discretization 
techniques for fluid–structure interactions we refer to  Bazilevs et al. (2013), Rich-
ter (2017). Mathematically, two challenges come together in fluid–structure interac-
tions: First, fluid–structure interactions are free boundary value problems. The gov-
erning domains for the fluid—we will consider the incompressible Navier–Stokes 
equations—and the solid—we consider hyperelastic materials like the St. Venant 
Kirchhoff model—move and the motion is determined by the coupled dynamics, 
i.e. it is not known a priori. This geometric problem is treated by mapping onto a 
fixed domain, see for example  Donea (1982), such that movement of the bound-
ary is incorporated into the equation and we can derive the dual problem on the 
fixed reference domain. Second, the two problems that are coupled are of differ-
ent type, the parabolic Navier–Stokes equation and the hyperbolic solid problem. 
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On the common and moving interface, both systems are coupled by different condi-
tions. This coupling gives rise to stability problems that can call for small time steps 
or many subiterations. Most prominently this problem shows itself in the so called 
added mass effect  presented in  Causin et  al. (2005). The added mass effect is of 
particular relevance in hemodynamical applications, that are focus of this work, and 
calls according to Hron et al. (2010) for monolithic formulations and strongly cou-
pled discretizations and solution techniques. This property is transmitted to the dual 
problem, such that we have to derive strongly coupled solution techniques for the 
dual problem. To compute dual information, we extend the Newton solver proposed 
for time-dependent fluid–structure interactions in Failer and Richter (2020) to the 
dual problem. Thereby, iterative solvers, preconditioned with geometric multigrid, 
can solve the resulting linear problems in every state and dual time step very robust 
and efficiently.

In Sect. 2 we present the optimal control problem, which is discretized in Sect. 3 
in space and time. For the discretized system we derive optimality conditions. In 
Sect.  4 we discuss modifications for the Newton scheme presented first in Failer 
and Richter (2020) and extend the approach to the dual problem. Finally we test the 
proposed algorithm in Sect.  5 numerically to analyze the behavior of the Newton 
scheme. In addition we take a closer look on the convergence behavior of the itera-
tive solvers.

2  Governing equations

Here, we present the optimal control problem of a tracking type functional subject 
to fluid structure interactions. We use a monolithic formulation for the fluid–struc-
ture interaction model coupling the incompressible Navier–Stokes equations and 
an hyperelastic solid, based on the St. Venant Kirchhoff material. For details we 
refer to Richter (2017). The here presented optimization approach can be directly 
extended to specific material laws used in hemodynamics. As control variable we 
chose exemplarily the mean pressure over time at the outflow boundary. In the fol-
lowing we restrict us to the control space Q = L2(I) , but the here presented opti-
mization algorithm can as well be applied to determine material parameters 
(e.g. Q = ℝ

n ) or space-distributed parameters (e.g. Q = L2(Ω) ) entering the fluid- or 
solid-problem.

On the d-dimensional domain, partitioned in reference configuration 
Ω = F ∪ I ∪ S , where F  is the fluid domain, S the solid domain and I  the fluid 
structure interface, we denote by � the velocity field, split into fluid velocity 
�f ∶= �|F  and solid velocity �s ∶= �|S , and by � the deformation field, again with 
�s ∶= �|S and �f ∶= �|F  . The boundary of the fluid domain Γf ∶= �F⧵I  is split 
into inflow boundary Γin

f
 and wall boundary Γwall

f
 , where we usually assume Dir-

ichlet conditions, ΓD
f
∶= Γin

f
∪ Γwall

f
 , and a possible outflow boundary Γout

f
 , where we 

enforce the do-nothing outflow condition presented in Heywood et al. (1992), and 
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the control boundary Γq . The solid boundary Γs = �S⧵I  is split into Dirichlet part 
ΓD
s
 and a Neumann part ΓN

s
.

We formulate the coupled fluid–structure interaction problem in a strictly mono-
lithic scheme by mapping the moving fluid domain onto the reference state via the ALE 
map Tf (t) ∶ F → F(t) , constructed by a fluid domain deformation Tf (t) = id + �f (t) . 
In the solid domain, this map Ts(t) = id + �s(t) denotes the Lagrange-Euler map-
ping and as the deformation field � will be defined globally on Ω we simply use the 
notation T(t) = id + �(t) with the deformation gradient � ∶= ∇T and its determinant 
J ∶= det(�).

For given desired states �̃(t) ∈ L2(F) or �̃(t) ∈ L2(S) , we find the global (in fluid 
and solid domain) velocity and deformation fields

the pressure p ∈ L2(F) and the control parameter q ∈ Q satisfying the initial condi-
tion �(0) = �0 and �(0) = �0 , as solution to

and subject to

where the test functions are given in

By �0
s
 we denote the solid’s density, by �D(t) ∈ H1(Ω)d and �D(t) ∈ H1(Ω)d 

extensions of the Dirichlet data into the domain. The Cauchy stress tensor of the 
Navier–Stokes equations in ALE coordinates is given by

with the kinematic viscosity �f  and the density �f  . In the solid we consider the St. 
Venant Kirchhoff material with the second Piola Kirchhoff tensor �s based on the 
Green Lagrange strain tensor �s

and with the shear modulus �s and the Lamé coefficient �s . In (2) we construct the 
ALE extension �f = �|F  by a simple harmonic extension. A detailed discussion and 

�(t) ∈ �D(t) + H1
0
(Ω;ΓD

f
∪ ΓD

s
)d and �(t) ∈ �D(t) + H1

0
(Ω;(�F⧵I) ∪ ΓD

s
)d,

(1)min
q∈Q

J(q, �, �) =
1

2 ∫I

‖� − �̃‖2
F
dt +

1

2 ∫I

‖� − �̃‖2
S
dt +

𝛼
2
‖q‖2

Q

(2)

(
J(�t� + (�−1(� − �t�) ⋅ ∇)�,�

)
F
+ (J�f�

−T ,∇�)F

+ (�0
s
�t�,�)S + (��s,∇�)S = (q,�)Γq

(J�−1 ∶ ∇�T , �)F = 0

(�t� − �,�s)S = 0

(∇�,∇�f )F = 0,

� ∈ H1
0
(Ω;ΓD

f
∪ ΓD

s
)d, � ∈ L2(F), �f ∈ H1

0
(F)d, �s ∈ L2(S)d.

�f (�, p) = −pf I + �f �f (∇��
−1 + �−T∇�T )

�s(�) = 2�s�s + �str(�s)I, �s ∶=
1

2
(�T� − I)
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further literature on the construction of this extension is found in Yirgit et al. (2008), 
Richter (2017). For shorter notation, we denote by U ∶= (�, �, pf ) ∈ X the solution 
variable and with X the corresponding ansatz space and by Φ ∶= (�,�f ,�s, �) ∈ Y  
the test functions and the corresponding test space.

For a control q ∈ L2(I) and the here given tracking-type functional constrained by 
linear-fluid structure interaction, we were able to proof in Failer et al. (2016) exist-
ence of a unique solution and H1(I) regularity of the optimal control. In addition an 
optimality system could be rigorously derived. Due to the missing regularity results 
for the here regarded nonlinear control to state mapping, no further theoretical con-
clusions are possible here.

3  Discretization

In the following we give a description of the discretization of the fluid–structure 
interaction system (2) in space and in time. While there exist many variants and dif-
ferent realizations, our choice of methods is based on the following principles

• Since the FSI system is a constraint in the optimization process we base the dis-
cretization on Galerkin methods in space and time. This helps us to derive the 
discrete optimality system. As far as possible (up to quadrature error) we aim at 
permutability of discretization and optimization.

• Aiming at three dimensional problems we consider methods of reasonable 
approximation error at feasible costs. In space we will use second order finite 
elements and in time a second order time stepping scheme. This approach is sim-
ilar to Hron et al. (2010) or our previous work documented in Richter (2017).

• Since the key component of the linear solver is a geometric multigrid method 
with Vanka type blocking in the smoother we choose equal-order finite elements 
for all unknowns, pressure, velocity and deformation adding stabilization terms 
for the inf-sup condition. This setup allows for efficient linear algebra and local 
blocking of the unknowns that is in favor of strong local couplings taking care of 
all nonlinearities, see also Braack and Richter (2006) for a detailed description 
of the realization in the context of reactive flows.

• The temporal dynamics of fluid–structure interactions is governed by the para-
bolic/hyperbolic character of the coupling. In particular long term simulations 
give rise to stability problems. The Crank–Nicolson shows stability problems 
such that variants will be considered, see Richter and Wick (2015).

3.1  Temporal discretization

In Richter and Wick (2015) and Richter (2017, Section 4.1) many aspects of time 
discretization of monolithic fluid–structure interactions are discussed. It turns out 
that the standard Crank–Nicolson scheme is not sufficiently stable for long time sim-
ulations. Suitable variants are the fractional step theta method or shifted versions 
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of the Crank–Nicolson scheme which we refer to as theta time stepping methods. 
Applied to the ode u� = f (t, u(t)) they take the form

if 0 = t0 < t1 < ⋯ < tN = T  are the discrete time steps with step size kn = tn − tn−1 . 
The choice � =

1

2
+O(k) gives second order convergence and sufficient stabil-

ity  Richter and Wick (2015). Alternative approaches are the fractional step theta 
scheme that consists of three sub steps with specific choices for � and the step size or 
the enrichment of the Crank–Nicolson scheme with occasional Euler steps, see Ran-
nacher (1984).

In the context of optimization problems we aim at permutability of optimization 
and discretization such that Galerkin approaches are of a favor. In Meidner and Richter 
(2014, 2015) we have demonstrated an interpretation of the general theta scheme and 
the fractional step theta scheme as Galerkin method with adapted function spaces: the 
solution is found in the space of continuous and piecewise (on In = (tn−1, tn) ) linear 
functions, the test-space is a space rotated constant functions with jumps at the discrete 
time steps tn , namely

The theta scheme is recovered exactly for linear problems and approximated by a 
suitable quadrature rule for nonlinear problems.

In case of fluid–structure interactions the domain motion term (J�−1�t� ⋅ ∇�,�) 
takes a special role since it couples temporal and spatial differential operators. In Rich-
ter and Wick (2015) various discretizations are analyzed and all found to give results in 
close agreement.

Here, we consider the Galerkin variant of the theta scheme and we approximate all 
temporal integrals by the quadrature rule [see Meidner and Richter (2014)]

The resulting discrete scheme is—up to quadrature error—the standard theta time 
stepping scheme, which we use in our implementation for reasons of efficiency.

For the following we denote by Un ≈ U(tn) the approximation at time tn . Further we 
introduce

and the step tn−1 ↦ tn is given as

un − un−1 = kn�f (tn, un) + kn(1 − �)f (tn−1, un−1),

��||In(t) = 1 +
(6� − 3)(2t − tn−1 − tn)

kn
.

∫
tn

tn−1

f (t)��(t) dt = kn�f (tn) + kn(1 − �)f (tn−1) +O
�
k2
n
‖f‖W2,1([tn−1,tn])

�
.

(3)

AF(U,𝜙) ∶= (J(�−1� ⋅ ∇)�,𝜙)F +
(
𝜌f 𝜈f J(∇��

−1 + �−T∇�T )�−T ,∇𝜙
)
F

AS(U,𝜙) ∶= (��s,∇𝜙)S, AALE(U,𝜓f ) ∶= (∇�,∇𝜓f )F

Ap(U,𝜙) ∶= (Jp�−1,∇𝜙)F, Adiv(U, 𝜉) ∶= (J�−1 ∶ ∇�T , 𝜉)F

FTR(Un,Un−1,𝜙) ∶= ((J̄n�̄
−1(�n − �n−1) ⋅ ∇)�̄n,𝜙)F,
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with J̄n = 1∕2(Jn−1 + Jn) and �̄n = 1∕2(�n−1 + �n) . The divergence equation Adiv 
and the pressure coupling Ap are fully implicit, which can be considered as a post 
processing step, see Meidner and Richter (2015).

If the optimality system is first derived and then discretized using the 
Petrov–Galerkin discretization, we could observe that the control variable has to be 
in the theta dependent test space of the adjoint variable. As this space is very dif-
ficult to interpret the control variable q ∈ Q is approximated by piece-wise constant 
functions qn on every time-interval in the following. An alternative interpretation is 
to actually use the theta dependent test space for the adjoint variable but to approxi-
mate these integrals with the midpoint rule giving

Given the choice � = 1∕2 +O(kn) this gives correct second order convergence. 
Numerical studies comparing both approaches did not result in a different behavior 
of the optimization algorithm.

3.2  Finite elements

Spatial discretization of the primal and adjoint problem is by means of quadratic 
finite elements in all variables on quadrilateral and hexahedral meshes. The interface 
I  is resolved by the mesh such that no additional approximation error appears. To 
cope with the saddle point structure of the flow problem we use the local projection 
method for stabilization (Becker and Braack 2001; Frei 2016; Molnar 2015; Richter 
2017). In the context of optimization problems this scheme has the advantage that 
stabilization and optimization commute, see Braack (2009). Further details on this 
and comparable approaches are found in the literature (Hron et al. 2010; Richter and 
Wick 2010; Richter 2017).

The use of equal order finite elements in all variables has the advantage that one 
set of scalar test functions {�(1)

h
,… ,�(N)

h
} can be chosen for all variables. The dis-

crete solution Uh can then be written as

(4)

(
J̄n(�n − �n−1),𝜙

)
F
− FTR(Un,Un−1,𝜙) + kAp(Un,𝜙) + k𝜃AF(Un,𝜙)

+
(
𝜌0
s
(�n − �n−1),𝜙

)
S
+ k𝜃AS(Un,𝜙)

= −k(1 − 𝜃)AF(Un−1,𝜙) − k(1 − 𝜃)AS(Un−1,𝜙) + k(qn,𝜙)Γq

kAdiv(Un, 𝜉) = 0

kAALE(Un,𝜓f ) = 0(
�n,𝜓s

)
S
− k𝜃

(
�n,𝜓s

)
S
=
(
�n−1,𝜓s

)
+ k(1 − 𝜃)

(
�n−1,𝜓s

)
S
,

∫
tn

tn−1

f (t)��(t) dt = knf (tn− 1

2

) +O
�
kn
��2� − 1��‖f‖W2,1([tn−1,tn])

�
.

Uh(x) =

N∑
i=1

�i�
(i)

h
(x)
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with coefficient vectors �i = (pi, �i, �i) ∈ ℝ
2d+1 and scalar test functions �(i)

h
 . Like-

wise, the resulting matrix entries Aij = A�(Uh)(W
(j)

h
,Φ

(i)

h
) are small but dense local 

matrices of size (2d + 1) × (2d + 1) . All linear algebra routines act on these blocks, 
e.g. inversion of a matrix entry corresponds to the inversion of these blocks A−1

ij
 , 

which results in a better cache efficiency and reduced effort for indirect indexing of 
matrix and vector entries. The effect of this approach is described in  Braack and 
Richter (2006).

3.3  Optimality system and adjoint equation

As gradient based algorithms for parameter estimation are not very 
common in the hemodynamics community, we shortly derive the 
Karush–Kuhn–Tucker system and show how gradient information can thereby be 
extracted. To derive the Karush–Kuhn–Tucker system, we define Lagrange multi-
pliers Zn = (�

p
n, �

v
n
, �

uf
n , �us

n
) ∈ Yh in every time step n = 0,… ,N and get the discrete 

Lagrangian L ∶
(
ℝ

N , (Xh)
N+1, (Yh)

N+1
)
⟼ ℝ:

If the triplet Un = (pn, �n, �n) ∈ Xh is the solution of the discrete fluid–structure 
interaction system of (4) in every time step n = 0,… ,N with the control parameter 
(qn)

N
n=1

 in the boundary condition, the useful identity

(5)

L((qn)
N
n=1

, (Un)
N
n=0

, (Zn)
N
n=0

)

∶=

N−1�
n=1

�
1

2
k‖�n − �̃(tn)‖2F +

1

2
k‖�n − �̃(tn)‖2S + 𝛼

2
kq2

n

�

+
1

4
k‖�0 − �̃(t0)‖2F +

1

4
k‖�0 − �̃(t0)‖2S

+
1

4
k‖�N − �̃(tN)‖2F +

1

4
k‖�N − �̃(tN)‖2S + 𝛼

2
kq2

N

−

N�
n=1

��
𝜌0
s
(�n − �n−1), �

v
n

�
S
+ k𝜃AS(Un, �

v
n
) + k(1 − 𝜃)AS(Un−1, �

v
n
)

+
�
�n, �

us
n

�
S
−
�
�n−1, �

us
n

�
− k𝜃

�
�n, �

us
n

�
S
− k(1 − 𝜃)

�
�n−1, �

us
n

�
S

+ (J̄n(�n − �n−1), �
v
n

�
F
− FTR(Un,Un−1, �

v
n
) + kAp(Un, �

v
n
)

+ k𝜃AF(Un, �
v
n
) + k(1 − 𝜃)AF(Un−1, �

v
n
) − (qn, �

v
n
)Γq

+ kAdiv(Un, �
p
n
) + kAALE(Un, �

uf
n
)
�

+
�
�(0) − �0, �

us
0

�
S
+
�
�(0) − �0, �

v
0

�
F
+
�
�(0) − �0, �

v
0

�
S

(6)j((qn)
N
n=1

) ∶= J((qn)
N
n=1

, (Un(qn))
N
n=0

) = L((qn)
N
n=1

, (Un)
N
n=0

, (Zn)
N
n=0

)
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is true for arbitrary values (Zn) ∈ Yh , n = 0,… ,N . If we denote by 
(�Un)

N
n=0

=
d

dq
(Un)

N
n=0

((�q)N
n=1

) the derivative of the state variable with respect to the 
control, we obtain via the Lagrange functional the representation

of the derivative of the reduced functional. If we choose the Lagrange multiplier 
Zn ∈ Yh for n = N,… , 0 such that the dual problem

is fulfilled, then we can evaluate the derivative of the reduced functional j((qn)Nn=1) 
in an arbitrary direction (�q)N

n=1
 by evaluating

This enables us to apply any gradient based optimization algorithm. We will later 
use a limited memory version of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
update formula [see for example Geiger and Kanzow (2013)] to find a local minima 
of the discretized optimization problem.

In every update step we first have to solve for the solution Un of the state equation 
(4) for n = 0,… ,N and then compute the dual problem (7) for n = N,… , 0 . Thereby, 
the dual problem for n = N − 1,… , 1 consists of three equations with the test function 
Φ ∈ Xh . Due to derivatives with respect to the velocity variable vn , we obtain:

j�((qn)
N
n=1

)((�q)N
n=1

) = L�
q
((qn)

N
n=1

, (Un)
N
n=0

, (Zn)
N
n=0

)((�q)N
n=1

)

+ L�
U
((qn)

N
n=1

, (Un)
N
n=0

, (Zn)
N
n=0

)(�U)N
n=0

)

(7)
d

dUn

L((qn)
N
n=1

, (Un)
N
n=0

, (Zn)
N
n=0

)(Φ) = 0 ∀Φ ∈ Xh for n = N,… , 0,

(8)j�((qn)
N
n=1

))((�q)N
n=1

) = L�
q
((qn)

N
n=1

), (Un)
N
n=0

, (Zn)
N
n=0

)((�q)N
n=1

).

(9)

(
𝜌0
s
𝜙, �v

n

)
S
+ k𝜃

d

dvn
AS(Un, �

v
n
)(𝜙) − k𝜃

(
𝜙, �us

n

)
S
+ (J̄n𝜙, �

v
n

)
F

−
d

dvn
FTR(Un,Un−1, �

v
n
)(𝜙) + k𝜃

d

dvn
AF(Un, �

v
n
)(𝜙) + k

d

dvn
Adiv(Un, �

p
n
)(𝜙)
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s
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)
S
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(
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v
n+1

)
F

+
d
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Due to derivatives of the Lagrangian with respect to the displacement un , we obtain:

Finally due to derivatives of the Lagrangian with respect to the pressure variable pn , 
we obtain:

The first and last step of the discrete dual problem have a slightly different structure, 
but can be derived in a similar way. Since the monolithic formulation is a Petrov 
Galerkin formulation with different trial and test spaces, the adjoint coupling condi-
tions differ from the primal ones. In the primal problem the solid displacement field 
enters as Dirichlet condition on the interface for the ALE extension problem. In the 
adjoint problem the shape derivatives of the adjoint ALE equation are coupled with 
the adjoint solid problem via a global test function which corresponds to a Neu-
mann condition. As �uf  fulfills zero Dirichlet conditions on the interface, this corre-
sponds to a back coupling of the shape derivatives into the adjoint solid problem via 
residuum terms. Similar to the primal problem the adjoint velocity �v has to match 
on the interface and in addition an “adjoint dynamic” coupling condition is hidden 
in the test function � . Therefore, block preconditioners suggested in the literature 
cannot be directly applied to the adjoint problem, but have to be adapted to the new 
structure.

3.4  Short notation for state and dual equation

Short notation of the state equation Key to the efficiency of the multigrid approach 
demonstrated in  Failer and Richter (2020) is a condensation of the deformation 
unknown �n from the solid problem. The last equation in (4) gives a relation for the 
new deformation at time tn

(10)

k𝜃
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dun
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d
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n

)

F

−
d

dun
FTR(Un,Un−1, �

v
n
)(𝜓)

+ k
d

dun
Ap(Un, �

v
n
)(𝜓) + k𝜃

d

dun
AF(Un, �

v
n
)(𝜓)

+ k
d

dun
Adiv(Un, �

p
n
)(𝜓) + k

d

dun
AALE(Un, �

uf
n
)(𝜓)

= −k(1 − 𝜃)
d

dun
AS(Un, �

v
n+1

)(𝜓) + (𝜓 , �us
n+1

)

−

(
d

dun
(J̄n+1)(𝜙)(�n+1 − �n), �

v
n+1

)

F

+
d

dun
FTR(Un+1,Un, �

v
n+1

)(𝜓)

− k(1 − 𝜃)
d

dun
AF(Un, �

v
n+1

)(𝜓) + k(�n − �̃(tn),𝜓)S.

(11)k
d

dpn
Ap(Un, �

v
n
)(�) = 0.
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and we will use this representation to eliminate the unknown deformation and base 
the solid stresses purely on the last time step and the unknown velocity, i.e. by 
expressing the deformation gradient as

Removing the solid deformation from the momentum equation will help to reduce 
the algebraic systems in Sect. 4. A similar technique within an Eulerian formulation 
and using a characteristics method is presented in Pironneau (2016, 2019).

For each time step tn−1 ↦ tn we introduce the following short notation for the 
system of algebraic equations that is based on the splitting of the solution into 
unknowns acting in the fluid domain (�f , �f ) , on the interface (�i, �i) and those on 
the solid (�s, �s) . The pressure variable p acts in the fluid and on the interface.

D describes the divergence equation which acts in the fluid domain and on the inter-
face, M the two momentum equations, acting in the fluid domain, on the interface 
and in the solid domain (which is indicated by a corresponding index), E describes 
the ALE extension in the fluid domain and U is the relation between solid velocity 
and solid deformation, acting on the interface degrees of freedom and in the solid. 
Note that Mi and Ms , the term describing the momentum equations, do not directly 
depend on the solid deformation �s as we base the deformation gradient on the 
velocity, see (13).

Short notation dual equation We aim at applying a similar reduction scheme to 
the adjoint problem. Here, there is no direct counterpart to  (12). Instead, we first 
introduce the new variable �̃us

n
 such that

Thereby we can substitute all terms in (9), (10) and (11) which depend on �us
n

 by the 
new variable �̃us

n
 , such as

(12)�n = �n−1 + k��n + k(1 − �)�n−1 in S

(13)
�n = �(�n) =̂�(�n−1, �n−1;�n)

= I + ∇
(
�n−1 + k��n + k(1 − �)�n−1

)
in S.

(14)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
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f (p, �f , �f , �i, �i)

M
i(p, �f , �f , �i, �i, �s)

M
s(p, �i, �i, �s)

E(�f , �i)

U
i(�i, �i, �s, �s)

U
s(�i, �i, �s, �s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶A(U)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B1

B2

B3

B4
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B7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⏟⏟⏟
=∶B

(15)
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𝜓 , �̃us
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)
S
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(
𝜓 , �us

n

)
S
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d

dun
AS(Un, �

v
n
)(𝜓).

(16)−𝜃k
(
𝜙, �us
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)
S
= −𝜃k

(
𝜙, �̃us

n

)
S
+ (𝜃k)2

d

dun
AS(Un, �

v
n
)(𝜙)
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in (9). Now the adjoint terms M�i
 and M�s

 resulting from derivatives of the momen-
tum equation with respect to the displacement variable do not depend on the adjoint 
velocity variable �v anymore which will enable later to decouple the problem in 
three well conditioned subproblems. Furthermore the “adjoint dynamic“ coupling 
conditions now corresponds to equivalents of adjoint boundary forces on the inter-
face as in the state equation.

For each time step tn+1 ↦ tn we introduce again a short notation for the system of 
algebraic equations that is based on the splitting of the adjoint solution into 
unknowns acting in the fluid domain (�v

f
, �

uf

f
) , on the interface (�v

i
, �̃us

i
) and those on 

the solid (�v
s
, �̃us

s
) . The adjoint pressure variable zp acts in the fluid and on the 

interface.

Mp describes the adjoint divergence equation which acts in the fluid domain and on 
the interface, M� and M� the derivatives of the momentum equation with respect 
to the velocity and displacement variable, acting in the fluid domain, on the inter-
face and in the solid domain (which is indicated by a corresponding index) and E� 
describes the adjoint ALE extension in the fluid domain and U� and U� result from 
the relation between solid velocity and solid deformation, which act on the interface 
degrees of freedom and in the solid.

4  Solution of the algebraic systems

In  Failer and Richter (2020), we have derived an efficient approximated Newton 
scheme for the forward fluid–structure interaction problem. We briefly outline the 
main steps and then focus on transferring these ideas to the dual equations. The gen-
eral idea is described by the following two steps 

1. In the Jacobian, we omit the derivatives of the Navier–Stokes equations with 
respect to the fluid domain deformation, which results in an approximated Newton 
scheme. In Richter (2017, chapter 5) it is documented that this approximation will 
slightly increase the iteration counts of the Newton scheme. On the other hand, 
the overall computational time is nevertheless reduced, since assembly times 
for these neglected terms are especially high. Since the Newton residual is not 
changed, the resulting nonlinear solver is of an approximated Newton type.

(17)

⎛
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f
, �v

i
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(�
uf

f
)

D�i
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f
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i
, �v

s
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i
, �̃us

s
)

D�i
(�p) +M�i

(�v
f
, �v

i
) + E�i

(�
uf

f
) + U�i

(�̃us
i
, �̃us

s
)

M�s
(�v

i
, �v

s
) + U�s

(�̃us
i
, �̃us

s
)

U�s
(�̃us

i
, �̃us

s
)

⎞
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���������������������������������������������������������������������������
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2. We use the discretization of the relation �t� = � between solid deformation and 
solid velocity, namely �n+1 = �n + �k�n+1 + (1 − �)k�n to reformulate the solid’s 
deformation gradient based on the velocity instead of the deformation. This step 
has been explained in the previous section.

These two steps, the first one being an approximation, while the second is an equiva-
lence transformation, allow to reduce the number of couplings in the Jacobian in such 
a way that each linear step falls apart into three successive linear systems. The first 
one describes the coupled momentum equation for fluid- and solid-velocity, the sec-
ond realizes the solid’s velocity-deformation relation and the third one stands for the 
ALE extension. We finally note that the approximations only involve the Jacobian. The 
residual of the systems is not altered such that we still solve the original problem and 
compute the exact discrete gradient.

Then, in Sect.  4.2 we describe the extension of this solution mechanism to the 
adjoint system. Two major differences occur: first, the adjoint system is linear, such 
that we realize the solver in the framework of a preconditioned Richardson iteration. 
The preconditioner takes the place of the approximated Jacobian. Second, the adjoint 
interface coupling conditions differ from the primal conditions as outlined in the last 
paragraph of Sect. 3.3. This will call for a modification of the condensation procedure 
introduced as second reduction step in the primal solver.

4.1  Solution of the primal problem

In each time step of the forward problem we must solve a nonlinear problem. We 
employ an approximated Newton scheme

where �(l) is a line search parameter, U(0) an initial guess. By A�(U) we denote the 
Jacobian, by Ã�

(U) an approximation. As outlined in  Failer and Richter (2020) 
the Jacobian is modified in two essential steps: first, in the Navier–Stokes prob-
lem, we skip the derivatives with respect to the ALE discretization. These terms 
are computationally expensive and they further introduce the only couplings from 
the fluid problem to the deformation unknowns. In Richter (2017, chapter 5) it has 
been shown that while this approximation does slightly worsen Newton’s conver-
gence rate, the overall efficiency is nevertheless increased, as the number of addi-
tional Newton steps is very small in comparison to the savings in assembly time. 
Second, we employ the reduction step outlines in Sect. 3.4, which is a static conden-
sation of the deformation unknowns from the solid’s momentum equation. Taken 
together, both steps completely remove all deformation couplings from the com-
bined fluid–solid momentum equation and the Jacobian takes the form

(18)Ã
�
(U(l))W (l) = B −A(U(l)), U(l+1) ∶= U(l) + 𝜔(l)

⋅W (l),



 L. Failer, T. Richter 

1 3

This reduced linear system decomposes into three sub-steps. First, the coupled 
momentum equation, living in fluid and solid domain and acting on pressure and 
velocity,

second, the update equation for the deformation on the interface and within the solid 
domain,

which is a finite element discretization of the zero-order equation 
�n = �n+1 + k(1 − �)�n−1 + k��n . This update can be performed by one algebraic 
vector-addition. Finally it remains to solve for the ALE extension equation

one simple equation, usually either a vector Laplacian or a linear elasticity problem, 
see Richter (2017, Section 5.2.5).

4.2  Dual

Due to the unsymmetrical structure of the fluid–structure interaction model the 
block collocation and coupling of the blocks in the transposed Jacobian A�(U)T in 
the dual problem differs to the Jacobian of the primal problem. This stays in strong 
relation to the adjoint coupling conditions, see Sect. 3.3. Hence, block precondition-
ers developed for the state problem can not be applied in a black box way to the 
linear systems arising in the dual problem, but have to be adjusted. Furthermore, the 
dual system is linear such that the approximated Newton scheme must be replaced 
by a different concept. We start by indicating the full system matrix of the dual 
problem

(19)

⎛
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given as the transposed of the primal Jacobian, AD = A�(U)T , see Failer and Richter 
(2020).

For solving the dual problem we want to mimic the primal approach: first, 
approximate the system matrix by neglecting couplings, second, use the static 
condensation as described in Sect. 3.4 in (15). As the problem is linear, a direct 
modification of the system matrix would alter the dual solution. Instead, we 
approximate the solution by a preconditioned Richardson iteration with an inex-
act matrix Ã�

D
≈ A�(U)T as preconditioner (approximated by a geometric multi-

grid solver)

where Z(l) = {�p, �v
f
, �v

i
, �v

s
, �

uf

f
, �̃us

i
, �̃us

s
} and the update in every Richardson iteration 

is given by W (l) = {𝛿�p, 𝛿�v
f
, 𝛿�v

i
, 𝛿�v

s
, 𝛿�uf

f
, 𝛿�̃us

i
, 𝛿�̃us

s
} . The residual is computed 

based on the full Jacobian A�(U)T (including the ALE derivatives) such that we still 
converge to the original adjoint problem. Since we never assemble the complete Jac-
obian A�(U) in the primal solver, the adjoint residual Bd − A�(U)TZ(l−1) can be estab-
lished in a matrix free setting.

Then, similar to the described approach in case of the primal system, we neglect 
the ALE terms (shaded entries). Finally, we reorder to reach the preconditioned 
iteration

with the preconditioner ÃD that decomposes into three separate steps. First, the 
equation for the adjoint mesh deformation variable

(23)
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(24)Z(0) = 0, Ã�
D
W (l) = B

d − A�(U)TZ(l−1), Z(l) = Z(l−1) +W (l),
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Usually a symmetric extension operator Ef
�f

 can be chosen. This avoids re-assembly 
of this matrix and possible preparations for the linear solver. See Richter (2017, Sec-
tion 5.3.5) for different efficient options for extension operators. Second, the update 
for the adjoint solid deformation,

which only involves inversion of the mass matrix and finally the update for the 
adjoint velocity and adjoint pressure

The numbering of the right hand side �d
1
,… , �d

7
 is according to (23). As we do not 

modify the residuum, the derivatives with respect to the ALE transformation 
M�f

(�v
f
, �v

i
) and M�i

(�v
f
, �v

i
) still enter into �3 and �5 . Hence the resulting problem in 

Eq. (26) corresponds to a linear elasticity problem on the fluid domain with an artifi-
cial forcing term in the right hand side and zero Dirichlet data on the interface. In 
Equation (27) the shape derivatives of the the ALE transformation enter via Resid-
uum terms M�i

(�v
f
, �v

i
) on the interface. These terms contain the adjoint geometric 

coupling condition. An explicit update by one vector-addition as for the correspond-
ing primal equation is not possible. The “adjoint kinematic” and “adjoint dynamic” 
coupling conditions are fully incorporated in (28), similar as for the state equation, 
and thereby these coupling conditions are fully resolved in every Richardson 
iteration.

4.3  Solution of the linear problems

In each step of the Newton iteration for solving the state equation and in each step 
of the Richardson iteration in the case of the adjoint system, we must approximate 
three individual linear systems of equations. The mesh-update problems are usu-
ally of elliptic type, the vector Laplacian or a linear elasticity problem. Here, stand-
ard geometric multigrid solvers are highly efficient. Problem  (27) and the primal 
counterpart correspond to zero order equations. Multigrid solvers or the CG method 
converge with optimal efficiency. It remains to approximate the coupled momen-
tum equations, given by  (28) in the dual case. Here, we are lacking any desirable 
structure. The matrices are not symmetric, they feature a saddle-point structure 
and involve different scaling of the fluid- and solid-problem. We approximate these 
equations by a GMRES iteration that is preconditioned with a geometric multigrid 
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solver. Within the multigrid iteration we employ a smoother of Vanka type, where 
we invert local patches exactly. These patches correspond to all degrees of freedom 
of one element (within the fluid) and to a union of 2d elements (within the solid). 
For the sake of simplicity (in terms of implementational effort) we use this highly 
robust solver also for the other two problems, despite their simpler character. For 
details we refer to Failer and Richter (2020).

4.4  Algorithm

To get an overview how the final optimization routine works we summarized all the 
intermediate steps in the following algorithm:

5  Numerical results

5.1  Problem configuration 2d

We modify the well known FSI Benchmark from Hron and Turek (2006) by adding 
an additional boundary Γq as in Fig. 1. The material parameters are chosen as for 
the FSI 1 Benchmark. In the solid the Lame parameters with � = 2.0 × 106 kg/ms2 
and � = 0.5 × 106 kg/ms2 and a fluid viscosity �f = 0.001m2∕s are chosen. The 
solid and fluid densities are given by �s = 1000.0 kg/m3 and �f = 1000.0 kg/m3 . The 
inflow velocity is increased slowly during the time interval I = [0, 2] as for the insta-
tionary FSI 2 and FSI 3 benchmark.
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In the first example, we would like to determine the pressure profile q(t) ∈ L2(I) 
at the control boundary Γq on the time interval I = [0, 6] , leading to the displace-
ment profile over time

in y-direction in the area Ωobs = {0.525 ≤ x ≤ 0.6, 0.19 ≤ y ≤ 0.21} at the tip of the 
flag (see Fig. 1). To do so, we minimize the functional

constrained by the fluid–structure interaction problem. We discretize the system as 
presented in Sect. 3 in time using a shifted Crank–Nicolson time stepping scheme 
with time step size k = 0.01 and � = 0.5 + 2k and quadrilateral meshes with varying 
mesh size, see Table 1. The control variable is chosen to be piece-wise constant on 
every time interval ( dim(Q) = 600 ). The Tikhonov regularization parameter is set to 
� = 1.0 × 10−17.

5.2  Problem configuration 3d

In the second example we regard a pressure wave in straight cylinder as presented 
in Gerbeau and Vidrascu (2003). The cylinder has the length 5 cm and a radius of 
0.5 cm . The cylinder is surrounded by an elastic structure with constant thickness 
h = 0.1 cm . The elastic structure is clamped at the inflow boundary and the outflow 
domain is fixed in x-direction and free to move in y- and z-direction. At the inlet 
we describe a pressure step function pin = 1.33 × 104 g cm−1 s = 10mmHg for 
t ≤ 0.003 s , afterwards we set the pressure to zero. In the solid the Lame param-
eters with � = 1.73 × 106g/cms2 and � = 1.15 × 106 g/cms2 and a fluid viscosity 

(29)ũ(t) =

{
0 t < 2 s

0.01 ⋅ sin(2𝜋t) t ≥ 2 s

(30)min
q∈L2(I)

J(q, �) =
1

2 ∫
6

0

‖�y − ũ‖2
ΩObs

dt +
𝛼
2 ∫

6

0

q(t)2 dt

Γq

Γ in
f

Γf

Γf

Γf

F Γ out
fI

Γs

A = (0.6, 0.2)

B = (0.5625, 0.2)S

Fig. 1  Geometry for flow around cylinder with elastic beam. The blue region denotes the observation 
domain Ωobs . (Color figure online)
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�f = 0.03 cm2∕s are chosen. The solid and fluid densities are given by �s = 1.2 g∕cm3 
and �f = 1.0 g/cm3 . We plotted the solution at t = 0.006 s in Fig. 2.

If only a do-nothing condition is described with constant pressure at the outflow 
boundary, then pressure waves are going to be reflected at the outflow boundary. If 
the pressure along the outflow boundary is chosen appropriate the pressure wave 
will leave the cylindrical domain without any reflection such that the system will be 
at rest after some time. To determine the corresponding pressure profile q(t) ∈ L2(I) 
on the time interval I = [0, 0.04] , we minimize the kinetic energy in the fluid domain 
for t > 0.03 s . Hence we minimize the functional

constrained by the fluid–structure interaction problem. In time we use, as already 
in the previous example, a shifted Crank–Nicolson time stepping scheme with time 
step size k = 0.0001 and � = 0.5 + 2k and hexahedral  meshes with varying mesh 
size, see Table 1. Only at the time points t = 0 and t = 0.003 , we use for four steps a 
time step-size of k = 0.00005 with � = 1.0 . Thereby, no artificial effects occur due 
to the jump in the pressure at the inflow boundary. The Tikhonov regularization 
parameter is set to � = 1.0 × 10−8 . 

5.3  Optimization algorithm

Given the computed gradient information using Formula (8), we apply a BFGS 
algorithm implemented in the optimization library RoDoBo (Becker et  al. 2020b) 
to solve the optimization problem. We use a limited memory version as presented 
e.g. in Geiger and Kanzow (2013) such that there is no need to assemble and store 
the BFGS update matrix. To guarantee that the update matrix keeps symmetric and 

(31)min
q∈L2(I)

J(q, �) =
1

2 ∫
0.04

0.03

‖�‖2
F
dt +

�
2 ∫

0.04

0

q(t)2 dt

Fig. 2  Velocity field of the pressure wave at t = 0.006 s on the deformed domain (amplified by a factor 
10)



 L. Failer, T. Richter 

1 3

positive definite a Powell-Wolfe step size control should be used. As this step size 
criteria is in most cases very conservative, we only check if we have descend in 
the functional value. Control constraints could be added in the optimization algo-
rithm via projection of the update in every optimization step. In this paper we only 
regard unconstrained examples. Fast convergence of the BFGS algorithm only can 
be expected close to the optimal solution. Hence, we take advantage of the mesh 
hierarchy, which is used in the geometric multigrid algorithm, and first solve the 
optimization problem on a coarse grid to have a good initial guess on finer meshes. 
As the computation time rises for 3d examples on finer meshes very fast, we can 
save a lot of computation time using this approach. In the following we reduce the 
norm of the gradient by a factor of 10−1 in every optimization loop and then refine 
the mesh and restart the optimization with the control from the coarser mesh. To 
compute the gradient, we have to solve the state and dual problem for all time steps. 
The state solutions are stored on the hard disc and loaded during the computation of 
the dual problem if necessary. Thereby, only the current state and adjoint solutions 
have to be held in the memory.

In every Newton step a GMRES iterative solver preconditioned with a geomet-
ric multigrid solver provided by the FEM software library Gascoigne (Becker et al. 
2020a) is used. All linear systems are solved up to a relative accuracy of 10−4 . In 
every time step the initial Newton residuum is reduced by a factor of 10−6 . We use 
the same tolerances for the state and dual problem. The matrices are only reassem-
bled, if the nonlinear convergence rate falls below � = 0.05 as in Failer and Richter 
(2020). In every dual step, the matrices are assembled at least once at the beginning 
of every Richardson iteration.

5.4  Numerical results 2d example

In Fig. 3 we plot the value of the regularized functional j(q) and the norm of the gra-
dient ‖j�(q)‖ in every optimization step. The optimization algorithm is started with 
qn = 0 for n = 1,… ,N . The computed optimal control is given in Fig. 4. The func-
tional value reduces in every optimization step and the gradient can be reduced by 
a factor of 10−3 after less then 40 optimization cycles (see Fig. 3). In addition we 

Table 1  Spatial degrees of freedom for 2d and 3d configuration on every refinement level. In 3d the 
mesh on level 4 and 5 are locally refined along the interface. In time we use a uniform partitioning. In 3d, 
we add 4 initial backward Euler steps with reduced step size for smoothing at times t = 0 s and t = 0.03 s 
each

Mesh level 2 3 4 5 6

Spatial dofs 2d time steps 5540 21,320 83,600 331,040 1,317,440
N = 600 uniform time steps (Crank–Nicolson)

Spatial dofs 3d time steps 43,904 336,224 894,656 3,122,560 –
N = 400 uniform time steps (Crank–Nicolson) plus 8 (backward Euler)



1 3

A Newton multigrid framework for optimal control of fluid–…

plotted the optimal solution for the 2d example on the finest mesh at the point B in 
the center of the observation domain Ωobs and compare the solution to the reference 
solution in Fig.  4. Only around the kink of the desired state a mismatch between 
desired state and optimized solution can be seen.

To evaluate our approach to solve the optimization algorithm first on coarser 
grids and then to refine systematically, we restarted the optimization algorithm 
directly on meshlevel 5. A similar behavior in functional and gradient to the pre-
vious approach can be observed in Fig. 3. To reduce the gradient to a tolerance of 
10−12 only 20 optimization loops are required. But since about 14000 s of compu-
tational time are needed to solve one cycle of the state and the adjoint system for 
all time steps on meshlevel 5, but only less then 4000 s on the coarser meshlevel 
4 (even less time on still coarser grids), systematical refinement of the mesh is 

Functional j(q) Gradient ‖j′(q)‖

0 10 20 30 4010−9

10−8

10−7

10−6 meshlevel 2
meshlevel 3
meshlevel 4
meshlevel 5
meshlevel 5

0 10 20 30 4010−13

10−12

10−11

10−10

10−9

10−8

meshlevel 2
meshlevel 3
meshlevel 4
meshlevel 5
meshlevel 5

Fig. 3  2d example: functional value plotted over optimization steps (left), norm of the gradient plotted 
over optimization steps (right)

Optimal control qopt(t) Optimal solution uy(B)

0 2 4 6

−1,000

0

1,000

0 2 4 6

-0.01

0

0.01

Fig. 4  2d example: optimal control qopt plotted over time (left) and optimal solution and reference solu-
tion in the point B plotted over time (right)
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much more efficient. The computations were performed on a Intel(R) Xeon(R) 
Gold 6150 CPU @ 2.70GHz with 18 threads. We parallelized the assembling of 
matrix and the Vanka smoother as well as the matrix vector multiplication via 
OpenMP, see Failer and Richter (2020).

5.5  Numerical results 3d example

For the 3d example we used the same optimization algorithm as in the 2d case. 
We can see in Fig.  5 that using the optimized pressure profile at the outflow 
boundary about 98.9% of the kinetic energy after t > 0.03s now leaves the cyl-
inder. The jumps in the gradient after every refinement step indicate that a more 
accurate computation on the coarse grid would not result in better starting values 
on the finer meshes. The norm of the gradient could be reduced from 1.15 × 10−4 
to 3.68 × 10−7 in 23 optimization steps, whereby only 9 optimization cycles were 
necessary on the computationally costly fine grid on meshlevel 4.

To compare the controlled solution with the uncontrolled solution, we com-
puted in addition the solution on a cylinder with length 10 cm . As the reflection 
on the outflow boundary occurs later the pressure and flow values in the center 
at x = 5 cm can be seen as reference values for optimal non reflective boundary 
conditions for t < 0.02 s . As we only control the pressure on the fluid domain, 
reflections on the solid boundary can still occur. Furthermore we can observe that 
the pressure is not constant along the virtual outflow boundary at x = 5 cm for the 
long cylinder. Thus, we can not expect the reference solution to fully match the 
optimized solution. Nevertheless, we can see in Fig. 6 that pressure and outflow 
profiles of the controlled solution are very close to the reference values at the 
outflow boundary. In addition the kinetic energy in the fluid domain has a similar 
decay behavior. After the time point t = 0.025 s the kinetic energy in the left half 
of the long cylinder rises again due to the reflection of the pressure wave at the 

Functional j(q) Gradient ‖j′(q)‖

0 10 2010−2

10−1

100
meshlevel 2
meshlevel 3
meshlevel 4

0 10 2010−7

10−6

10−5

10−4
meshlevel 2
meshlevel 3
meshlevel 4

Fig. 5  3d example: functional value plotted over optimization steps (left), norm of the gradient plotted 
over optimization steps (right)
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outflow boundary at x = 10 cm . This explains the different behavior of pressure 
and outflow after t = 0.025 s.

5.6  Test of the Newton scheme, of the Richardson iteration and of the iterative 
linear solver

How to evaluate the performance of the quasi Newton scheme or of the itera-
tive linear solver is not so obvious. Due to the changing control in every optimi-
zation cycle and the nonlinear character of the problem, the condition numbers 
of the matrices occurring in the linear subproblems will vary in every time step 
and optimization cycle. Hence, we first compute only one optimization step with 
q = 0 on various meshlevels to analyze the h-dependence of our solution algo-
rithm. Thereby, we compare the mean number of Newton/Richardson iterations 
and GMRES steps per time step on every meshlevel. Afterwards, we compute 
mean values in every optimization loop to analyze how the performance can vary 
during the optimization procedure.

wofltuOdiulFygrenEciteniK

0 0.01 0.02 0.03 0.04
0

200

400

600
long cylinder
uncontrolled
controlled

0 0.01 0.02 0.03 0.04

−20

0

20

40
long cylinder
uncontrolled
controlled

Pressure

0 0.01 0.02 0.03 0.04

−5

0

5

10
long cylinder
uncontrolled
controlled

Fig. 6  Kinetic energy in the fluid domain F  as well as outflow and mean pressure plotted over time at Γq 
for q = 0 , qopt and for a long cylinder
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In Tables 2 and 3 we present the mean number of Newton/Richardson itera-
tions and Matrix assemblies per time step for the 2d and 3d examples. In addi-
tion we present the mean number of GMRES steps needed per Newton/Rich-
ardson iteration to solve the linear subproblems (22), (21) and (20) and (26), 

Table 2  Average number of Newton/Richardson iterations, average number of matrix assemblies per 
time step and average number of GMRES steps for solving the three subproblems in the first optimiza-
tion step. Top: 2d example state,  (20) is the coupled momentum equation,  (21) the coupling between 
solid velocity and deformation and  (22) the fluid deformation extension. Bottom: 2d example dual, 
where  (26) is the adjoint extension equation,  (27) the adjoint solid velocity-deformation coupling 
and (28) the adjoint coupled momentum equation

Mesh level Newton-steps Matrix-
assemblies

GMRES (20) 
(momentum)

GMRES (21) 
(deformation)

GMRES (22) 
(extension)

3 3.75 0.28 7.19 1.26 3.77
4 3.60 0.87 8.34 1.27 3.82
5 3.91 1.07 9.52 1.25 3.77
6 4.33 1.54 10.61 1.31 3.98

Mesh level Richardson-steps Matrix-
assemblies

GMRES (26) 
(extension)

GMRES (27) 
(deformation)

GMRES (28) 
(momentum)

3 3.09 1.20 4.38 1.32 7.88
4 3.50 1.43 4.80 1.28 8.68
5 3.64 1.48 5.86 1.27 9.54
6 3.69 1.52 6.63 1.27 11.17

Table 3  Average number of Newton/Richardson iterations, average number of matrix assemblies per 
time step and average number of GMRES steps for solving the three subproblems in the first optimiza-
tion step. Top: 3d example state,  (20) is the coupled momentum equation,  (21) the coupling between 
solid velocity and deformation and  (22) the fluid deformation extension. Bottom: 3d example dual, 
where  (26) is the adjoint extension equation,  (27) the adjoint solid velocity-deformation coupling 
and (28) the adjoint coupled momentum equation

Mesh level Newton-steps Matrix-
assemblies

GMRES (20) 
(momentum)

GMRES (21) 
(deformation)

GMRES (22) 
(extension)

2 4.21 0.09 6.82 1.46 2.47
3 3.35 0.80 7.04 1.95 2.60
4 3.46 0.52 7.47 1.91 2.57
5 3.70 0.48 7.34 1.83 2.55

Mesh level Richardson-steps Matrix-
assemblies

GMRES (26) 
(extension)

GMRES (27) 
(deformation)

GMRES (28) 
(momentum)

2 2.99 1.00 2.71 1.35 6.74
3 3.00 1.00 3.30 1.59 7.03
4 2.90 1.00 3.32 1.47 7.06
5 2.39 1.00 3.63 1.51 7.01
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(27) and (28). We can observe that the number of Newton/Richardson iterations 
per time step ranges between 3 and 4 for state and dual problem. The coupled 
momentum equation remains the most complex problem with the highest num-
ber of steps required. Equations (21) and (27) belong to the discretization of the 
velocity deformation coupling dtu = v within the solid domain. This corresponds 
to the inversion of the mass matrix which explains the very low iteration counts. 
The results for the state equation are similar to the values in Failer and Richter 
(2020), where we already could observe for different examples that neglecting 
the ALE derivatives only has minor influences on the behavior of the Newton 
scheme. In Failer and Richter (2020) a more detailed analysis of the smoother in 
the geometric multigrid algorithm can be found.

As the dual equation is linear with respect to the adjoint variable, we would 
have expected to need only one Richardson iteration per time step. However, 
since we neglected terms occurring due to the ALE transformation, we loose 
the optimal convergence and need about 3 Richardson iterations per time step. 
On the other hand, the matrices occurring in cascade of subproblems in the dual 
system have the same condition number as the matrices in the state equation. 
Only by this approximation and splitting, iterative solvers can successfully be 
applied to solve the linear problems. The number of GMRES steps in the dual 
subproblems in Tables 2 and 3 are rather small and close to the values for the 
state problem. As (28) and (20) are still fully coupled problems of fluid and elas-
tic solid, most of the computational time is spent in solving these two subprob-
lems. The least number of GMRES steps is needed to invert the mass matrix in 
(21) and (27). In all subproblems the number of GMRES steps only increases 
slightly under mesh refinement.

In Fig.  7 we show the mean number of GMRES steps per Newton step in 
every timestep and the number of Newton steps per timestep. For the given 
examples the values only vary slightly over time. Therefore the mean values in 
Tables 2 and 3 represent the overall behavior very well.

To understand how the performance of the solution algorithm in the case of 
the 2d example varies during the optimization loop, we show in Fig. 8 the aver-
age number of Newton steps per time step and the average number of GMRES 
steps per Newton step for each optimization step. The computation was started 
with q = 0 on meshlevel 5. No further mesh was applied.

The dependency on the time step size of the presented quasi Newton scheme 
for the state equation was already analyzed in Failer and Richter (2020). Therein, 
we could observe an increasing Newton iteration count for larger time steps, in 
particular for very large time steps. A similar behavior can be expected for the 
dual problem. While the presented solution approach can be regarded as highly 
efficient and appropriate for optimal control of nonstationary fluid–structure 
interactions, stationary or quasi stationary applications will call for alternative 
approaches like the geometric multigrid solver presented by Aulisa et al. (2018).

In Failer and Richter (2020) more details regarding the computational time 
and savings due to parallelization can be found. As we have to evaluate state and 
adjoint variables, as well as additional terms due to linearization in every dual 
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Fig. 7  Performance in first optimization loop on mesh level 5 in 2d (left) and on mesh level 4 in 3d 
(right). Mean GMRES steps per linear solve of (20) and (28) plotted over time steps and number of New-
ton steps plotted over time steps
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Fig. 8  Performance in every optimization loop on mesh level 5 in 2d. Left: mean GMRES steps per lin-
ear solve of (20) and (28) plotted over optimization steps . Right: mean Newton steps per time step plot-
ted over optimization steps
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step, the computational time to assemble the matrix and to compute the Newton 
residuum is slightly larger for the dual equation then for the state equation.

6  Summary

We extended the Newton multigrid framework for monolithic fluid–structure inter-
actions in ALE coordinates presented in Failer and Richter (2020) to the dual system 
of fluid–structure interaction problems. The solver is based on replacing the adjoint 
solid deformation by a new variable and on skipping the ALE derivatives within the 
adjoint Navier–Stokes equations. As we do not modify the residuum, state and dual 
solution in each time step still converge to the exact discrete solution. The adjoint 
coupling conditions incorporated in the monolithic formulation are still fulfilled. As 
we compute correct gradient information, we see fast convergence in our optimiza-
tion algorithm. The coupled system is better conditioned (as compared to mono-
lithic Jacobians) which allows to use very simple multigrid smoothers that are easy 
to parallelize. Only this makes gradient based algorithm feasible and efficient for 
3d fluid–structure interaction applications, where memory consumption prevents the 
use of direct solvers.

It would be straightforward to combine the presented algorithm with dual-
weighted residual error estimators for mesh and time step refinement. Instead of 
global refinement of the mesh after every optimization loop the error estimators 
indicate where to refine the mesh locally. The sensitivity information from the opti-
mization algorithm can be directly used to evaluate the error estimators.
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