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Abstract

Inflammatory gene signatures are currently being explored as predictive biomarkers

for immune checkpoint blockade, and particularly for the treatment of renal cell can-

cers. From a diagnostic point of view, the nCounter analysis platform and targeted

RNA sequencing are emerging alternatives to microarrays and comprehensive trans-

criptome sequencing in assessing formalin-fixed and paraffin-embedded (FFPE) can-

cer samples. So far, no systematic study has analyzed and compared the technical

performance metrics of these two approaches. Filling this gap, we performed a head-

to-head comparison of two commercially available immune gene expression assays,

using clear cell renal cell cancer FFPE specimens. We compared the nCounter system

that utilizes a direct hybridization technology without amplification with an NGS

assay that is based on targeted RNA-sequencing with preamplification. We found

that both platforms displayed high technical reproducibility and accuracy (Pearson

coefficient: ≥0.96, concordance correlation coefficient [CCC]: ≥0.93). A density plot

for normalized expression of shared genes on both platforms showed a comparable

bi-modal distribution and dynamic range. RNA-Seq demonstrated relatively larger
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signaling intensity whereas the nCounter system displayed higher inter-sample vari-

ability. Estimated fold changes for all shared genes showed high correlation

(Spearman coefficient: 0.73). This agreement is even better when only significantly

differentially expressed genes were compared. Composite gene expression profiles,

such as an interferon gamma (IFNg) signature, can be reliably inferred by both assays.

In summary, our study demonstrates that focused transcript read-outs can reliably be

achieved by both technologies and that both approaches achieve comparable results

despite their intrinsic technical differences.
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1 | INTRODUCTION

Renal cell carcinoma (RCC) ranks globally as the sixth most frequent

cancer in men and tenth in women, accounting for 5% and 3% of all

cancer diagnoses, respectively.1 Clear cell renal cell carcinomas

(ccRCC) make up a significant proportion (approx. 70%) of RCCs and

display prolific angiogenesis due HIF-induced vascular endothelial

growth factor (VEGF) overexpression following a loss-of-function

mutation of the von Hippel-Lindau gene.2,3 This molecular feature can

be therapeutically exploited by combinatorial therapy regimens using

tyrosine kinase inhibitors (TKIs) and anti-VEGF antibodies.4,5 In addi-

tion to TKIs, the results of the phase III Checkmate-214 trial led to the

approval of the combination of ipilimumab and nivolumab for patients

with intermediate and poor risk metastatic RCC (mRCC) as first line

treatment in 2018.6 Since anti-VEGF therapy is reported to enhance

the antitumor activity by increasing T-cell infiltration, MHC class-I

expression, and reversing myeloid immunosuppression,7-12 combina-

torial treatment regimens are investigated in several clinical trials. Due

to prolonged progression free survival and overall response rate in

favor for pembrolizumab plus axitinib compared to sunitinib, the first

combination treatment for a VEGFR-inhibitor and anti-PD-1 antibody

was approved in 2019 (Keynote-426 trial) followed shortly by the

approval of avelumab plus axitinib (JAVELIN-Renal 101).13 The posi-

tive results of these trials changed current guidelines making dual

treatment—either tyrosine kinase inhibitor plus immune checkpoint

blockade (ICB) or double ICB—the current first line standard therapy.

Even though immune checkpoint inhibition and VEGF-targeted ther-

apy have become a standard-of-care for metastatic RCC (mRCC),

potential biomarkers for therapy response and innate and acquired

resistance mechanisms are still being investigated and are not avail-

able in clinical settings yet. A recent study showed that RNA-based

signatures interrogating angiogenesis and specific inflammatory condi-

tions, such as upregulation of interferon-gamma signaling, were asso-

ciated with prolonged progression-free survival under combinatorial

therapy with sunitinib and atezolizumab.14 Pointing in a similar direc-

tion, an exploratory analysis of the JAVELIN 101 trial suggested that

focused gene expression profiling might identify patients who benefit

the most from these novel combinatorial therapies.15 Implementation

of such biomarkers in a routine diagnostic setting requires the use of

specific assays that are able to robustly interrogate formalin-fixed and

paraffin-embedded (FFPE) clear cell renal cell carcinoma (ccRCC) sam-

ples but comparative studies analyzing technical aspects of different

high throughput platforms are lacking. As this information is crucial

for predictive algorithms in the future, we investigated two commer-

cially available immune gene expression assays in a head-to-head

comparison: the nCounter analysis system based Pan Cancer Immune

Profiling Panel (NanoString Technologies, Seattle, WA) that utilizes a

direct hybridization technology without amplification16 and the

Oncomine Immune Response Research Assay (Thermo Scientific, Wal-

tham, MA), which is based on targeted RNA-sequencing with

preamplification.17

2 | MATERIALS AND METHODS

2.1 | Tumor samples

Tumor specimens from patients with clear cell renal cell carcinoma

(ccRCC) were obtained from the NCT Tissue Bank Heidelberg at the

Institute of Pathology Heidelberg (IPH). A total of 34 tumor samples of

14 renal cell carcinoma patients were subjected to gene expression pro-

filing on both platforms. We analyzed 34 samples on both platforms.

Six of these failed RNA-Seq and two nCounter analysis by either not

producing enough read counts or not passing quality control. This led

to 27 evaluable tumor samples on both platforms (Table S1).

2.2 | RNA extraction procedure

FFPE samples of ccRCC patients were stained with hematoxylin and

eosin to identify and mark tumor regions for microdissection and to

estimate tumor cell content. Mean tumor cellularity was 65% (mini-

mum: 30%, maximum: 95%) (Table S1). RNA from 5 μm thick FFPE tis-

sue sections was extracted using the Maxwell extraction system

(Promega, Madison, WI) following the manufacturer's instructions and

quantified by Qubit (Thermo Fisher Scientific, Waltham, MA).
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2.3 | NanoString analysis

Isolated RNA was used for mRNA expression analysis on the

nCounter-based NanoString instrument. RNA of 100 ng of each sam-

ple was hybridized using the Human Pan Cancer Immune Profiling

Panel on the nCounter system (both NanoString Technologies, Seat-

tle, WA), following the manufacturer's recommendations. Absolute

read counts were quantified by the nCounter digital analyzer at the

Institute of Pathology, Heidelberg. The Human Pan Cancer Immune

Profiling Panel is designed to quantitate 730 target genes, 40 house-

keeping genes, and additional positive and negative controls. Target

genes mainly fall into three categories: Immune cell identification, esti-

mation of immune cell function, and identifying tumor-specific anti-

gens. For downstream analysis, absolute read counts of all panel

genes were extracted from the nSolver software (NanoString Technol-

ogies). Target genes were normalized to 40 reference genes and fold

changes and associated statistics were performed with the R-based

NanoStringDiff package.18 Fold change of each gene was calculated

as the ratio of the average gene expression in the male group to that

of the female group. Of note, for studying the effect of RNA input

concentration on nCounter performance, absolute read counts

detected at all RNA inputs were normalized individually by positive

controls alone (technical normalization) and by positive control plus

housekeeping genes.

2.4 | RNA sequencing

Complementary DNA (cDNA) was synthesized using RNA extracted

from tumor samples of renal cell carcinoma patients. RNA of 10 ng

from each sample was reverse transcribed using SuperScript VILO

cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA) at rec-

ommended PCR conditions. Oncomine Immune Response Research

Assay (Thermo Fisher Scientific, Waltham, MA) libraries were pre-

pared using the Ion AmpliSeq targeted sequencing technology

(Thermo Fisher Scientific, Waltham, MA), as per manufacturer's

instructions. The Oncomine panel consists of 395 genes focused on

various immunological mechanisms including T-cell receptors, tumor

infiltration of immune cells, immune checkpoints, and other prominent

immune functions. Complementary DNA was amplified with the

Oncomine primer pool targeting 395 genes. Amplicons were partially

digested using the FuPa Reagent (Thermo Fisher Scientific, Waltham,

MA). Afterwards, adapters were ligated (Ion Xpress Barcode Adapters,

Thermo Fisher Scientific, Waltham, MA). Libraries were finally purified

using AMPure XP magnetic beads (Beckman Coulter, Krefeld, Ger-

many), and quantified using qPCR (Ion Library Quantitation Kit,

Thermo Fisher Scientific, Waltham, MA) on a StepOne Plus qPCR

machine (Thermo Fisher Scientific, Waltham, MA). All libraries were

diluted to a concentration of 100 pM. Eight sample libraries were

pooled together and amplified on Ion Spheres using the Ion Chef sys-

tem (Thermo Fisher Scientific). Barcoded libraries were loaded onto

an Ion 520 chip and sequenced using the Ion S5 XL System. The Tor-

rent Suite software (v5.0.2) and the immuneResponseRNA plugin

(both from Thermo Fisher Scientific) were used to extract absolute

read count data, reads per million (RPM) and associated quality param-

eters. DESeq219 was employed for the normalization of gene read

counts. Fold change of each gene was measured as the ratio of mean

gene expression in the male group to that of female group. The

description of the two workflows is shown in Figure 1.

2.5 | cDNA synthesis and qRT-PCR

Complementary DNA (cDNA) was synthesized by using SuperScriptIV

VILO Master Mix (Thermo Fisher Scientific, Waltham, MA) as per

manufacturer's instructions. Quantitative polymerase chain reactions

were performed to find out relative gene expression using iTaq Uni-

versal SYBR Green Supermix (Bio-Rad, Dreieich, Germany) on

QuantStudio5 (Applied Biosystems, Thermo Fisher Scientific, Wal-

tham, MA). The primer sequences of the primers used in qRT-PCR are

listed in Table S2. All genes were normalized by PPIA and RPS13

housekeeping genes. The average Ct of two housekeeping genes was

subtracted from Ct values of target genes. After subtraction of house-

keeping genes Ct values of target genes were compared with RNA-

Seq and nCounter normalized read counts for linear correlation

analysis.

2.6 | Statistical analyses

The R software (v.3.5.1; R Core Team, 2018) and GraphPad Prism ver-

sion 7 (GraphPad Software, La Jolla, CA) were utilized for generating

all graphs and correlation analyses. Pearson correlations were calcu-

lated for assessment of the intra-platform reproducibility, effect of

RNA input on nCounter performance, and gene level correlations

between the two methods. Concordance correlation coefficients

(CCCs) were used to assess the precision and accuracy of intra-

platform reproducibility and the effect of RNA concentration on

nCounter.20-22 Signature genes (CD8A, EOMES, PRF1, IFNG, and

CD274) were combined into a single score by first z-score normalizing

genes across all samples, and then averaging z-scores across the genes

in the signature to create a single signature score for each sample.

Besides correlation statistics, inter-platform concordance was also

studied by Bland-Altman plot, using all measurable shared gene fold

changes, that demonstrates the agreement between paired quantita-

tive measurements and is widely regarded as the gold standard.23 This

is based on the statistical concept that displaying the differences

between the pairs of quantitative measurements might offer better

insight into the pattern and the “true” extent of agreement.

The significance of differential gene expression was assessed

using likelihood ratio test for NanoString data (glm.LRT function

implemented in the NanoStringDiff package) and Wald's test for

RNA-Seq data. Subsequently, P values were corrected for multiple

testing using the Benjamini-Hochberg method.24 Lists of differentially

expressed genes were generated controlling the false discovery rate

(FDR) at 5%. Differentially expressed genes detected by one of the
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platforms were considered as confirmed by the other platform when

the raw P value was smaller than .05 (Tables S3 and S4).

3 | RESULTS

3.1 | Reproducibility of nCounter and RNA-Seq
analysis

To examine the technical reproducibility, we assessed a limited set of

samples (n = 3) on both platforms with each three technical replicates.

All possible pairwise correlations were performed. Figures 2 and S1

illustrate scatterplots generated by correlating log2 RPM (reads per

million) values from RNA-Seq and log2 transformed absolute read

count values from nCounter. Both platforms demonstrated very high

intra platform reproducibility (Pearson correlation (r) ≥0.96). Estimated

concordance correlation coefficients for technical replicates (CCCs),

that assert precision and accuracy, reached high levels too, providing

further evidence to support this finding.

3.2 | Effect of RNA input concentration on
nCounter performance

To study the effect of RNA input concentration on the nCounter

performance, we measured gene expression at different amounts

of RNA. Altogether, six concentrations were used: 100, 50, 25,

12.5, 6.25, and 3.125 ng (manufacturer's recommendation is to use

at least 50 ng). The results of two independent runs are presented

as pair plots in Figures 3A and S2A. We found that a high correla-

tion is preserved even at 50, 25 and 12.5 ng when compared to

100 ng, as indicated by Pearson coefficients of at least 0.93; how-

ever, CCC plummeted sharply at 12.5 ng in two instances. More-

over, for all decreasing concentrations (50, 25, 12.5, 6.25,

3.125 ng), we also noticed strong correlation with the 100 ng sam-

ple for all genes having expression levels of 6 or above (log scale)

while lowly expressed genes were barely detected in all diluted

samples. Additionally, histograms and associated density plots

showed gradual compression of bi-modal gene distribution in

response to decreasing RNA input. Together, this illustrates that

the nCounter system may provide reliable results down to RNA

concentration of as low as 25 ng, an important finding since clini-

cal samples are often far from ideal.

Additionally, we sought to study the effect of input RNA amount

on gene read count intensity. To this end, absolute read counts were

normalized separately by positive controls and housekeeping

(HK) genes (Figures 3B and 2B). Further, distribution intensities for

highly (top row; ≥100 read counts) and lowly (bottom row; <100 read

counts) expressed genes were examined separately following normali-

zation. Genes found to be highly and lowly expressed at an initial con-

centration of 100 ng were further monitored for their distribution at

decreasing concentrations. HK-normalized, highly expressed genes

F IGURE 1 Platform comparison of workflows for differential gene expression analysis. The Pan Cancer Immune Profiling panel based on the
nCounter technology was compared with the Oncomine Immune Response Research Assay sequenced by Ion Torrent semiconductor sequencing
technology [Color figure can be viewed at wileyonlinelibrary.com]
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showed consistent gene distribution and median values at RNA

amounts of as low as 12.5 ng, arguing that nCounter might still be able

to detect highly expressed genes even at very low RNA levels. HK-nor-

malized, lowly expressed genes showed a comparable median only at

50 ng of RNA. Below this threshold, median values declined sharply,

emphasizing that nCounter might require at least 50 ng RNA to detect

lowly expressed genes. However, HK-normalization evens out the

effect of input RNA differences on read counts that we wanted also to

determine. Therefore we performed technical normalization with posi-

tive controls only. Following positive control normalization only, highly

expressed genes showed a gradually decreasing median expression,

whereas lowly expressed genes showed a sharp decline of median

gene expression levels even at 50 ng of RNA; beyond that it is plat-

eaued. Taken together, this suggests that nCounter is highly sensitive

to RNA concentrations. However, highly expressed genes may still be

robustly be detected even at as low as 12.5 ng but lowly expressed

genes might require the recommended minimum of 50 ng. Table S5

shows the percentage of genes with at least 100 read counts after

positive control (PC) and housekeeping gene (HK) normalization. This

is also shown in Figures 3 and S2, respectively.

3.3 | Correlating performance metrics of nCounter
and Ion Torrent RNA-Seq techniques

For a technical comparison of the expression patterns obtained by

both platforms, pre-processed, normalized and log2 transformed read

counts of 248 shared genes (ie, genes included in both panels) were

juxtaposed (listed in Table S6). The density plot in Figure S3A shows

the averaged distributions of signal intensities for 27 common sam-

ples with 0.95 confidence intervals. Both panels exhibited a bi-modal

distribution. Inter-sample variability was visibly larger for the

nCounter platform. The dynamic ranges of signal intensities were

comparable, whereas the mode of the distribution (most common sig-

nal intensity) was stronger for RNA-Seq. In keeping with this, the

number of genes with at least 100 normalized read counts in the

27 analyzed samples were found to be higher for RNA-Seq

(Figure S3B).

Further, we sought to investigate the gene-wise correlation

between both platforms. To this end, Pearson correlations for

248 shared genes were calculated (listed in Table S7). We plotted the

histogram for gene level correlation coefficients in Figure 4A. Out of

F IGURE 2 Demonstration of RNA-Seq and nCounter reproducibility. A, Scatter plots are generated using log2 absolute read counts from
three technical replicates of a representative sample analyzed on nCounter. All 730 genes of the nCounter gene panel are included. B, Pairwise
correlations among three technical replicates of a representative sample are estimated by log2 RPM (reads per million) values generated by RNA-
Seq. All 395 genes of the Oncomine panel are included. For both technical platforms associated pairwise Pearson correlations (r) and concordance
correlation coefficients CCCs for technical replicates are given. Read count distributions for each replicate are illustrated by respective histograms
and density plots
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F IGURE 3 Effect of RNA input volume on nCounter performance. A, Scatter plots are generated using log2 absolute reads of 730 genes
detected at different concentrations of RNA in nCounter experiments. Pearson correlations (r) and CCCs indicate correlations for all pairwise
comparisons. B, Effect of RNA input variations on gene read counts and distribution. (First column) Box-plots illustrate distribution of gene read
counts following positive control normalization. Highly (top; ≥100 read counts) and lowly (bottom; <100 read counts) expressed genes are studied
separately. (Second column) Box-plots show read counts distribution of highly (top; ≥100 read counts) and lowly (bottom; <100 read counts)
expressed genes after housekeeping gene normalization. Genes that are found to be highly or lowly expressed at 100 ng of RNA input are further
measured at decreasing concentrations. Each box represents the interquartile range; line inside the box indicates median value. Whiskers
represent minimum and maximum values. Outliers are mentioned above the whiskers
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248 shared genes 226 demonstrated positive correlations, 16 had

negative correlations and the associations of the remaining six genes

were not measurable. The mean correlation for all genes was 0.45

with maximum and minimum correlations of 0.98 and −0.25.2, respec-

tively. Furthermore, we analysed the association of the inter-platform

correlation with the biological variance of each of the genes. Scatter

F IGURE 4 Gene-wise
correlation analyses between
both platforms. A, Histogram
displays gene-wise correlations
between nCounter and RNA-Seq.
X-axis shows Pearson
correlations for 248 shared genes
and y-axis represents the
frequency of genes for respective
correlation intervals. Normalized
read counts from both platforms
are used for this correlation. B,C,
Scatterplots display the
association of gene-wise
correlation between both
platforms to SD of gene read
counts
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plots were generated by correlating the SD to respective gene wise

correlation coefficients (Figure 4B, C). Scatter plots showed moderate

association between biological variance and gene correlation. Taken

together, gene-wise correlation analyses showed only moderate levels

of correlation between the two platforms.

Next, to confirm the expression of genes estimated by nCounter

and RNA-Seq, we performed experiments using qRT-PCR (Figure S4).

Six genes (CCL20, FAS, LILRB2, S100A8, CD63, and TGFB1) were ran-

domly selected and pair plots were generated by comparing normal-

ized reads from three platforms. CCL20 and S100A8 showed a high

correlation (Pearson correlation coefficients ≥0.92) among three plat-

forms. However, this was not the case for all genes tested since FAS

and LILRB2 qRT-PCRs show high correlation only with nCounter

(Pearson correlation ~0.7), but not with RNA-Seq. CD63 and TGFB1

had poor correlations among the three methods. Collectively, these

data suggest that secondary confirmation of expression levels of indi-

vidual genes, detected by nCounter and RNA-Seq, may be required.

Next, we sought to determine the concordance between

nCounter and RNA-Seq. To this end, we correlated fold changes of

shared genes (listed in Tables S3 and S4) generated by comparing dif-

ferential gene expression between tumor samples from mal and

female patients. A Spearman coefficient of 0.73 indicated strong cor-

relation between the two platforms (Figure 5). Complementing this

analysis, we also generated a Bland-Altman difference plot that com-

pared the fold changes of the shared genes in both panels (Figure S5).

The mean of differences (bias) is 0.33, indicating that the fold changes

measured by RNA-Seq are slightly higher on average. Ideally, in the

context of high precision of both platforms each dot displayed on the

graph should rest on the X-axis. Still more than 95% of differences lie

within the limits of agreement specified by the SD (bias ±1.96*SD).

To further investigate the inter-platform concordance, we gener-

ated lists of differentially expressed genes from the data of one of the

platforms controlling the FDR at 5% and checked if the differential

gene expression could be confirmed by the other platform

(Tables S3 & S4). In the nCounter analysis, we detected 24 significantly

differential expressed genes, while we detected 9 significantly

expressed genes in the RNA-Seq analysis. Five (21%) of the genes

detected by nCounter could be confirmed by RNA-Seq, five (56%) of

the genes detected by RNA-Seq could be confirmed by nCounter.

Thus, while nCounter was more sensitive in the detection of differen-

tial expression in the study cohort, both platforms were suitable to

identify differential gene expression in cohorts of FFPE ccRCC

samples.

Additionally, as visualized in Figure 6, both platforms and assays

were able to reliably infer the IFNg-signature14 from FFPE ccRCC

samples. Moreover, we also observed a high concordance (P value less

F IGURE 5 Demonstration of inter-platform concordance between nCounter and RNA-Seq. A total of 231 shared genes and their fold
changes are taken into account. Scatter plot shows correlation between log2 fold changes estimated by nCounter and RNA-Seq. Correlation is
quantified by Spearman coefficient (r = 0.73) [Color figure can be viewed at wileyonlinelibrary.com]
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than .015) when comparatively analyzing the expression levels of the

individual genes that contribute to this signature.

4 | DISCUSSION

Until now, there are only a few studies that employed either the

nCounter-based Pan Cancer Immune Profiling panel (NanoString

Technologies)25-27 or the Ion Torrent semiconductor RNA-Seq based

Oncomine Immune Response Research Assay (Thermo Fisher Scien-

tific)28,29 in a few cancer entities including melanoma and head and

neck cancer. To the best of our knowledge, our study is the first to

compare these two technical platforms and to validate their perfor-

mance using real-world FFPE clear cell RCC cases.

The major findings from the current study can be condensed into

four aspects:

First, when read counts from three technical replicates were cor-

related, high intra-platform reproducibility (Pearson correlation of

over 97%) was demonstrated, which is in line with previous

reports.16,30,31 High intra-platform reproducibility is considered crucial

since it drastically reduces the number of technical control replicates

needed, thereby enhances sample throughput and reduces costs.

Additionally, concordance correlation coefficients (CCCs) revealed

high accuracy and precision of both platforms.

Second, characteristics of overall expression and gene-wise corre-

lations on both platforms were inspected by density plot and gene

level correlation coefficients, respectively. Density plots disclosed a

comparable bi-modal distribution that separated expressed from non-

expressed genes. Besides possibly biological lower abundance of tran-

scripts, degradation of RNA in FFPE samples might have also contrib-

uted to this phenomenon. Additionally, we observed a comparable

dynamic range of both platforms, which might be an indicator of com-

parable sensitivity. However, we found the mode of RNA-Seq to be

greater, which might be predominantly due to PCR-based target

amplification prior to sequencing.

Third, we correlated gene expression levels obtained by qRT-

PCR, nCounter, and RNA-Seq at the individual sample level. Compara-

tive analyses showed heterogeneous results, which is in line with

observations by others.16,32-34 We tried to mitigate qRT-PCR variance

by comparing only normalized values. Out of six genes tested, only

CCL20 and S100A8 showed a high correlation. This might be due to

apparently higher biological variance found for these two genes. Of

note, whereas according to our experience nCounter based RNA pro-

filing requires at least 50 ng of input RNA, RNA-Seq can work with

F IGURE 6 Scatterplots representing IFNg signature scores (first panel) and the expression of the individual corresponding genes. The x-axis
displays the signature score or z-normalized expression of nCounter, the y-axis depicts corresponding values of RNA-Seq. The linear regression

with corresponding smoothed confidence interval, P values and R2 are added [Color figure can be viewed at wileyonlinelibrary.com]
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lower amounts of RNA (10 ng) and is therefore ideally suited for FFPE

tissues with very limited RNA quantities.

Finally, we evaluated inter-platform concordance by correlating

fold changes of all shared genes. Similar to previous studies, we first

examined the cross-platform concordance between nCounter and

RNA-Seq by correlation statistics.35,36 However, correlation studies

assess only linear associations between variables but not the differ-

ences, which in the present study were indispensable since we com-

pared gene fold changes but not absolute read counts. In addition,

correlation coefficients were computed assuming that expression

values are not influenced by any measurement errors or sample qual-

ity, thus leading to a possible bias. To overcome this limitation, in the

current study, we employed Bland-Altman difference plot,37,38 which

revealed high agreement between nCounter and RNA-Seq. In the

analysis, nCounter (24 detected genes) was more sensitive than RNA-

Seq (nine detected genes) in the detection of differential expression.

This is possibly a consequence of the additional amplification steps

inherent to the latter approach leading to larger variance of the mea-

sured expression levels and lower significance of the detected gene

expression changes. Further studies in larger cohorts are warranted to

confirm this observation. Besides, in order to really assess the concor-

dance of the two technologies and protocols, samples were analyzed

on both platforms in several runs on different days. Consequently, the

agreement that is reflected in gene fold changes also includes possible

technical and sample preparation variations. Of note, we compared

the normalized data; thus, the level of agreement observed here might

also partially be attributed to the normalization per se, besides inher-

ent differences in the detection ability of both platforms. This being

said, comparing un-normalized raw read counts could also lead to

poor concordance because of potential batch effects in experiments

and possible input variations, which could undervalue the “true” con-

cordance. Additionally, we analyzed how well and reliably the IFNg

signature reported by McDermott et al14 can be read out from FFPE

material using these two assays. The signature score displayed high

concordance between the two the platforms suggesting that both

assays could be used in routine diagnostics and clinical trials for this

purpose.

In summary, we show that both platform and assays can be used

for RNA profiling of FFPE clear cell renal cell cancer samples including

the detection of an IFNg signature. The study also indicates that each

technology has inherent advantages and disadvantages, which need

to be considered prior to clinical implementation and testing of pre-

dictive biomarkers.
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