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Predicting the Orbifold Origin of the MSSM

Erik Parr, Patrick K.S. Vaudrevange,* and Martin Wimmer

MSSM-like string models from the compactification of the heterotic string on
toroidal orbifolds (of the kind 𝕋 6∕P) have distinct phenomenological
properties, like the spectrum of vector-like exotics, the scale of
supersymmetry breaking, and the existence of non-Abelian flavor symmetries.
We show that these characteristics depend crucially on the choice of the
underlying orbifold point group P. In detail, we use boosted decision trees to
predict P from phenomenological properties of MSSM-like orbifold models.
As this works astonishingly well, we can utilize machine learning to predict
the orbifold origin of the MSSM.

1. Introduction

String theory compactified to four-dimensional space-time nat-
urally provides a unified framework for quantum gravity and
gauge interactions with chiral matter. This fact raises the obvi-
ous question whether string theory can incorporate the Standard
Model (SM) of particle physics (or its Minimal Supersymmet-
ric Extension, the MSSM). A definite answer to this question
would be given by an explicit construction of a string compact-
ification that is in agreement with all experimental facts from
particle physics (and, if one is even more ambitious, with all cos-
mological observations). However, due to the enormous num-
ber of four-dimensional string models[1,2] and the computational
complexity[3] a naive search in the string landscape for theMSSM
is very likely to fail. New methods seem to be unavoidable to nar-
row down the string landscape towards realistic particle physics.
In recent years, big data and machine learning (ML) has

entered the field of strings.[4–9] Various tasks have been ad-
dressed, for example, to identify the topological structure of
the string landscape using persistent homology,[10] to predict
the Hodge numbers of complete intersection Calabi-Yau mani-
folds (CICYs) with large h1,1,[11] to find consistent type IIA D6-
brane configurations that yield MSSM-like models using Deep
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Reinforcement Learning,[12] to identify
whether a given CICY is elliptically
fibered or not,[13] to explore the land-
scape of type IIB flux vacua using
genetic algorithms,[14] to find numer-
ical metrics of Calabi-Yau manifolds
by combining conventional curve fit-
ting and techniques from supervised
learning,[15] and to approximate Kähler
metrics for type IIB Calabi-Yau com-
pactifications using generative adversar-
ial networks (GANs).[16] Hence, encour-
aged by these results, techniques from

big data and ML are expected to yield new insights into the
string landscape.
In the context of heterotic orbifolds,[17–19] the Mini-Landscape

of ℤ6-II orbifold models has been a test ground for model
searches: First, individual models have been identified and
analyzed.[20–23] Then, larger scans have been performed.[24–27]

Finally, new methods from ML have been applied to this test
ground, like an autoencoder neural network to automatically
identify fertile islands in the ℤ6-II Mini-Landscape[28] and tech-
niques from contrast data mining to reduce the landscape
by extracting new features of orbifold models that correlate
with their phenomenological property of being MSSM-like.[29]

However, there are in total 138 Abelian orbifolds with  = 1
supersymmetry.[30] So, the heterotic orbifold landscape is much
wider thanℤ6-II. Consequently, how dowe know that we will find
the most promising models in the ℤ6-II region of the landscape?
Actually, can ML algorithms predict the orbifold geometry which
most likely reproduces a certain MSSM-like model? As shown in
this paper using a boosted decision tree, the answer to this ques-
tion seems to be positive.
This paper is organized as follows: Section 2 begins with a brief

review of the Orbifold-Landscape of all known MSSM-like orb-
ifold models constructed so far. In addition, motivated by some
generic properties of these models, we define phenomenological
features that characterize MSSM-like models in general. Then,
in Section 3 we discuss boosted decision trees and present the
resulting predictions for the orbifold origin of the MSSM in Sec-
tion 4. Finally, Section 5 gives conclusions and outlook.

2. Phenomenology of the Orbifold-Landscape

The aim of this paper is to construct a machine learning (ML)
model that predicts the orbifold origin of MSSM-like bottom-
up models. In more detail, motivated by the generic features of
MSSM-like string models in the Orbifold-Landscape, we train an
MLmodel to predict the orbifold point group that has the highest
probability to reproduce a given MSSM-like model, see Figure 1.
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Figure 1. We use a machine learning (ML) model to predict the orbifold
point group P that most likely is able to reproduce in string theory a given
MSSM-like bottom-up model, which we specify by some phenomenologi-
cal features Fi.

To train such anMLmodel, we need a large dataset of MSSM-like
orbifold models based on various different orbifold point groups.
Then, we have to define and compute some phenomenological
features that yield a basic characterization of MSSM-like models.
These features are taken by the ML algorithm as input, while the
output of theML algorithm is the prediction of the corresponding
orbifold point group. Thus, in the following we first discuss our
dataset of MSSM-like orbifold models and, afterwards, we define
our phenomenological features.

2.1. The Dataset of MSSM-Like Orbifold Models

For the analysis we use a large dataset of 126,783 inequivalent
MSSM-like string models originating from the E8 × E8 heterotic
string, compactified on various orbifolds 𝕆 with Abelian point
group P (e.g. in the case without roto-translations, 𝕆 = 𝕋 6∕P,
where P is either ℤN or ℤN × ℤM, see Ref. [30]). This dataset is
obtained as follows: First, we take the MSSM-like orbifold mod-
els from the searches performed in Refs. [26, 27, 29]. Then, we
construct new ℤN × ℤM MSSM-like models using the enhanced
search algorithm based on contrast patterns.[29] Finally, these in-
dividual datasets are merged using the orbifolder[31] resulting in
126,783 inequivalent MSSM-like orbifold models.1 In the first
row of Table A.1 we list the orbifold point groups P that yield
MSSM-like string models and the second row gives the number
of inequivalent models based on the respective point group. Note
that from the point of view of data analysis, our dataset is highly
imbalanced: Some point groups (like ℤ4) give rise to only a few
hundred MSSM-like orbifold models, while others (like ℤ2 × ℤ4)
yield several ten-thousand MSSM-like models. Moreover, since
we only have one MSSM-like orbifold model based on the ℤ7
point group, see Refs. [27, 33], we decide to leave out theℤ7 point
group from our prediction task.
In the following, we analyze our dataset of MSSM-like orbifold

models for their generic phenomenological properties and, by do-
ing so, we identify some universal features ofMSSM-likemodels.

1 The MSSM-like orbifold models can be found as arXiv ancillary files,
see Refs. [29] and [32].

2.2. SM Singlets

MSSM-like orbifold models typically yield (100), i.e. on aver-
age 146, SM singlets s0 with SM charges (1, 1)0 (see the eighth
row in Tables A.1 and A.2). Generically, they are charged under
several hidden U(1) factors and sometimes even under a non-
Abelian hidden sector gauge groupGhidden. The existence of these
SM singlets has several implications: As we will discuss in detail
in Sections 2.3 and 2.7, they can acquire non-vanishing vacuum
expectation values (VEVs) ⟨s0⟩ ≠ 0 without breaking supersym-
metry, i.e. F = D = 0. Moreover, interpreting these SM singlets
as right-handed neutrinos, they can give rise to a seesaw mecha-
nismwith amodel-dependent seesaw scale that is typically some-
what below the string scale.[34] Since, their presence is so generic
in MSSM-like string models from heterotic orbifolds, we include
their number into our feature space.

2.3. Vector-Like Exotics

Beside three (chiral) generations of quarks and leptons, a Higgs-
pair and SM singlets, MSSM-like orbifold models are generically
equipped with vector-like exotics (i.e. matter that is charged un-
der the SM and has a mass-partner transforming in the com-
plex conjugate representation with respect to the SM). All types
of vector-like exotics that appear in the Orbifold-Landscape are
listed in Tables A.1 and A.2 in appendix A. Since they appear
so frequently, we choose the numbers of vector-like exotics of all
kinds as features (except for the vector-like exotics that only ap-
pear in the unique MSSM-like ℤ7 orbifold model).
The MSSM itself is defined without any vector-like exotics be-

side the Higgs-pair. So, what are the phenomenological conse-
quences if vector-like exotics are present? Let us denote a pair of
vector-like exotics by X and X̄ in the following. In many cases,
these exotics can become very massive through terms in the su-
perpotential of the form ⊃ (MPlanck)

1−p (s0)p X X̄ . Here, p ∈ ℕ+
and s0 denotes an MSSM singlet (1, 1)0 that can acquire a large
non-vanishing VEV. This would render the vector-like exotics
X and X̄ massive, with a mass that can be close to the Planck
scale MPlanck depending on the size of ⟨s0⟩ and p ∈ ℕ+. Still,
one can argue that the presence of vector-like exotics might be
a virtue or a problem: On the one hand, new elementary parti-
cles with spin 0 or 1 (called leptoquarks) have been proposed,
especially to address some flavor anomalies, see for example
Refs. [35–38] and references therein. In this scenario, the lep-
toquark has to be light compared to the Planck scale. On the
other hand, the presence of vector-like exotics can affect gauge
coupling unification and it can yield severe cosmological prob-
lems. Thus, we decide to look for “(almost) perfect MSSM-like
models” that have no (or a minimal amount of) vector-like ex-
otics. In summary, our basic features correspond to the num-
bers of all types of vector-like exotics that appear in the Orbifold-
Landscape.
As discussed next, we extend our feature space by some ad-

ditional properties of MSSM-like orbifold models, in order to
obtain a more complex feature space. Moreover, these addi-
tional features give a notion of MSSM-like models that are more
promising from a phenomenological point of view.
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2.4. Heavy Top Quark from Bulk

There is a large hierarchy between the top quark mass and the
quark masses of the first and second generation. In the MSSM,
it is explained by a renormalizable coupling

 ⊃ yij qi ūj hu (1)

in the superpotential  . To first approximation, the matrix of
Yukawa couplings yij has to have rank one in order to define the
large top quark mass.
In string theory, the top Yukawa coupling can be related to the

ten-dimensional gauge coupling constant.[39–42] In more detail,
from a ten-dimensional perspective Equation (1) originates from
a supersymmetric E8 × E8 gauge interaction in ten-dimensions.
Then, compactifying to four dimensions, the coupling Equa-
tion (1) is present if the left-chiral top quark doublet q3, its right-
chiral top quark partner ū3 and the up-type Higgs hu distribute
among the three so-called untwisted sectors Ua, for a = 1, 2, 3,
respectively. Here, the untwisted sector Ua, where a = 1, 2, 3, is
defined by the (complexified) internal component Aa ∼ A2+2a +
iA3+2a of the ten-dimensional E8 × E8 gauge bosons AM, M =
0,… , 9. This mechanism gives an appealing explanation for the
large hierarchy in the up-type quark masses and, hence, we ap-
pend our feature space by a feature “heavy top from bulk”.

2.5. Non-Abelian Flavor Symmetries from Vanishing Wilson Lines

Non-Abelian flavor symmetries of the four-dimensional effective
theory can emerge in heterotic orbifolds from the localization of
certain strings in the extra-dimensions of the orbifold. In more
detail, string interactions are constrained by so-called string se-
lection rules that describe the ability of strings to split, stretch
and join while they propagate on the surface of the orbifold.[43,44]

These constraints can be formulated in terms of Abelian discrete
symmetries.[45] If certain background fields (i.e. Wilson lines[19])
vanish, an additional permutation symmetry of some of the lo-
calized strings can emerge such that the full flavor symmetry
becomes non-Abelian.[20,46] In the heterotic orbifold construc-
tion, there are two main types of non-Abelian flavor groups for
MSSM-like orbifold models[27] (being Δ(54) and D8, where D8
denotes the dihedral group of order 8, sometimes also denoted
byD4). Since non-Abelian flavor symmetries are phenomenolog-
ically appealing[47] and related to a vanishing Wilson line in the
context of heterotic orbifolds, we extend our feature space by the
number of vanishingWilson lines, see also Refs. [26, 27]. In other
words, a non-zero value of the feature “# vanishingWilson lines”
signals the presence of a non-Abelian flavor symmetry.

2.6. Hidden Sector Gaugino Condensation and Supersymmetry
Breaking

Supersymmetry breaking through hidden sector gaugino con-
densation is correlated to the hidden sector gauge group and
its light matter content.[48–51] The E8 × E8 heterotic string is es-
pecially suitable for this mechanism, as it contains, beside the

observable E8 that hosts the MSSM, a hidden E8 factor, which
generically yields supersymmetry breaking at low energies, see
Refs. [26, 52] and also [53, 54].
For each MSSM-like orbifold model, we compute for each

hidden sector non-Abelian gauge group factor Ghidden the chiral
part of the spectrum with respect to SU(3)C × SU(2)L ×U(1)Y ×
Ghidden (assuming that the vector-like part decouples). Then, the
resulting beta-function coefficient is given by b = 3C2 −

∑
r 𝓁(r)

of Ghidden. Here, the summation is performed over chiral mat-
ter transforming in a representation r of Ghidden. Furthermore,
we have C2 = N and 𝓁(N) = 1∕2 for SU(N), while we get C2 =
2(N − 1) and 𝓁(2N) = 1 for SO(2N). Then, the gauge coupling
ghidden(𝜇) of Ghidden depends on the energy scale 𝜇, where b deter-
mines the one-loop RGE, being

𝜕g
𝜕ln𝜇

= −b
g3

16𝜋2
. (2)

After solving this differential equation, one can compute the en-
ergy scale Λ at which the coupling ghidden(𝜇) diverges, i.e. when
1∕ghidden(Λ) → 0. It is given by

Λ = MGUT exp
(
− 16𝜋2

2 b g2(MGUT)

)
, (3)

with MGUT ≈ 3 ⋅ 1016GeV and g2(MGUT) ≈ 1∕2. Furthermore, we
assume in Equation (3) that the gauge coupling constants of
the MSSM coincide at the GUT scale MGUT approximately with
the one of the hidden sector gauge group and we neglect string
threshold corrections.[55–57] Then, at the energy scaleΛ, the gaug-
inos of Ghidden form condensates and, consequently, supersym-
metry is broken spontaneously by a non-vanishing F-term of the
dilaton. Assuming dilaton stabilization by non-perturbative ef-
fects and gravity mediation to the observable sector, the gravitino
mass can be estimated as

m3∕2 ≈ Λ3

M2
Planck

. (4)

Thus, the feature “hidden sector beta-function”, specified by the
coefficient b, gives a rough estimate of the scale of supersymme-
try breaking.
In our MSSM-like orbifold models, the distribution of Λ is

given in Figure 2 for all point groups and in Figure 3 for ℤ6-II
only. We are interested in the case of supersymmetry breaking
around (at least) the TeV scale. A very rough estimate gives the
constraint Λ ≳ 1013±1 GeV,[52] which translates to b ≳ 15.
As a remark, the beta-function coefficient b is closely related to

the number of unbroken rootsNur, i.e. the number of roots from
the hidden E8 factor that survives the orbifold projection condi-
tions. Interestingly, the contrast patterns developed in Ref. [29]
showed that large values ofNur correlate with a higher production
rate of MSSM-like orbifold models. Moreover, there are many
MSSM-like orbifoldmodels with large values ofNur that are (prac-
tically) inaccessible by traditional search algorithms and were un-
covered recently in Ref. [29].
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Figure 2. Hidden sector gaugino condensation scaleΛ forMSSM-like orb-
ifold models based on all point groups. Note that there are a few models
with even smaller Λ (and models with b = 0 are excluded). Moreover, the
peak at Λ = 105 GeV consists mainly of MSSM-like orbifold models with
point groups ℤ2 × ℤ4 and ℤ4 × ℤ4 (each contributing ≈ 19, 000 models).
For these models, the scale of supersymmetry breaking is far too low.

Figure 3. Hidden sector gaugino condensation scaleΛ forMSSM-like orb-
ifoldmodels based on theℤ6-II (1,1) orbifold geometry (models with b = 0
are excluded), see [52].

2.7. Anomalous U(1)

99% of the MSSM-like orbifold models have an additional
U(1)anom gauge factor beside hypercharge that appears to be
anomalous, where the anomaly is canceled by a universal
Green–Schwarz mechanism.[58] This induces a Fayet–Iliopoulos
D-term (FI-term), which sets the scale for a Froggatt–Nielsen-
like mechanism,[59] where some SM singlets s0 develop non-
vanishing VEVs ⟨s0⟩ in order to satisfy Danom = 0. Consequently,
these VEVs spontaneously break the additional U(1) factors, gen-
erate masses of the lighter quarks and leptons, and decouple (at
least some of) the vector-like exotics, see Section 2.3. Hence, the
existence of an “anomalous U(1)” is a good feature that charac-
terizes promising orbifold models.

2.8. Comments on Our Feature Space

This concludes our feature space. Let us remark that our dataset
of 126,783 inequivalent MSSM-like orbifold models corresponds

to a set of 106,027 inequivalent feature vectors, which we call 𝔻.
The main reason for the decrease from 126,783 to 106,027 is as-
sociated to the hidden sector: In order to distinguish between in-
equivalent MSSM-like orbifold models, the observable and the
hidden sector are taken into account.[31] On the other hand, the
feature vector is supposed to characterize only the properties of a
givenmodel with respect to theMSSM. Thus, models with differ-
ent hidden sectors can yield the same feature vector. Taking this
into account, our features give a good measure to distinguish be-
tween inequivalent phenomenological properties of MSSM-like
orbifold models.

3. Boosted Decision Tree

A boosted decision tree is built up by an ensemble of single de-
cision trees. Each decision tree is a so-called weak learner: on its
own, it typically yields a poor performance. However, a weighted
majority vote of many weak learners tends to perform much bet-
ter.
In more detail, the idea of boosting is that one combines the

predictions of many weak learners (e.g. decision trees) to get a
more powerful estimator. This is achieved by a successive train-
ing of many weak learners, where the misclassified training data
of the previous weak learner is weighted with a higher value for
the next weak learner in order to enforce him to classify these
data points correctly (and the weights of the data that has been
classified correctly are decreased accordingly). In our case, this
procedure is repeated 1,500 times. Finally, we combine the in-
dividual decision trees to a much more powerful estimator: the
boosted decision tree. For further details on boosting, see for ex-
ample Ref. [60].

3.1. How to Measure the Performance of ML Models for
Imbalanced Datasets

The performance of a predictive ML model can be measured by
the accuracy that is defined by the number of correct predictions
divided by the total number of all predictions.However, for an im-
balanced dataset, as the one we have in our case, this normal ac-
curacymeasurement can bemisled in the followingway: Assume
a classification task with two classes A and B, where the class A
builds the majority of the dataset with 99% of all instances. Any
prediction method can now achieve an accuracy of 99% simply
by predicting class A always, but never class B.
In order to avoid such a behavior, there exist several metrics

for imbalanced classification tasks. The one we are using is based
on three types of predictions involving the point group Pi, i.e. for
each point group Pi we define

# of true positives: TPi :=
|||{X ∈ 𝔻 | Ycorrect(X ) = Pi and

Ypredicted(X) = Pi}
|||,

# of false positives: FPi :=
|||{X ∈ 𝔻 | Ycorrect(X ) = Pj but

Ypredicted(X) = Pi}
|||,

Fortschr. Phys. 2020, 68, 2000032 2000032 (4 of 13) © 2020 The Authors. Fortschritte der Physik published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

# of false negatives: FNi :=
|||{X ∈ 𝔻 | Ycorrect(X) = Pi but

Ypredicted(X) = Pj}
|||.

Here, the indices i ≠ j label the 14 different orbifold point groups
Pi, X is a feature vector from our dataset 𝔻, and Ycorrect(X)
(Ypredicted(X )) label the correct (predicted) point group of X , re-
spectively. Counting for each point group Pi the numbers TPi,
FPi and FNi allows us to define three different metrics,

precision: pi :=
TPi

TPi + FPi
, (5a)

recall: ri :=
TPi

TPi + FNi
, (5b)

f1-score: f1i := 2
pi ri
pi + ri

. (5c)

Finally, one can define the “f1-macro” as the average of the f1-
scores for all point groups. Then, to deal with our highly imbal-
anced data, we use the f1-macro to measure the performance of
our ML model.
Let us briefly illustrate the benefit of using the f1-macro on

the example from the beginning of this section. In this case, we
have f1A ≈ 1 and f1B = 0 (for the extreme case of predicting al-
waysA and neverB, the precision value ofB is actually undefined.
However, one can easily rewrite the f1-score directly in terms of
TPB = FPB = 0 and FNB ≠ 0 in order to see that f1B = 0). Conse-
quently, the f1-macro is given by 1∕2(f1A + f1B) ≈ 0.5, which rates
the naive classification as insufficient.

3.2. Training of the ML Model

We start by splitting our dataset 𝔻 and the corresponding target
values Ycorrect, i.e. the orbifold point groups Pi, of our 106,027
feature vectors into 80% training and 20% test data. The test
set 𝕋 is held back for the evaluation of the trained ML model.
On the other hand, the training set is used to perform a grid
search for the optimal hyperparameters, i.e. each set of hyper-
parameters in the grid is used to train an ML model using 5-fold
cross-validation (CV). Then, the best ML model is chosen based
on the f1-macro. In more detail, the module GridSearchCV

from the scikit-learn library[61] is utilized for hyperparame-
ter search and the LightGBM implementation[62] for boosted
decision trees.
After an extensive hyperparameter search, it turns out that the

following hyperparameters give the best f1-macro performance:

• class_weight=‘balanced’: The argument “balanced”
weights the 14 classes of orbifold point groups inversely pro-
portional to their frequency of occurrence in the input dataset
at the beginning of the training. In detail, the dominant
classes (like ℤ2 × ℤ4 and ℤ4 × ℤ4) get weights smaller than 1
and the small classes (like ℤ4) get weights larger than 1.

• learning_rate=0.2

• min_child_samples=8: The minimal number of samples
per child node, where the default value is 20. This is benefi-
cial since there are nodes with a small number of samples.

• min_child_weight=0.01: A regularization measure to stop
splitting a node if its purity is high.

• n_estimators=1500: The number of individual decision
trees.

• num_leaves=50: The maximum number of leaf nodes for
each decision tree.

To evaluate the predictive power of the final ML model with opti-
mized hyperparameters, we use the test set 𝕋 . The results of this
evaluation will be discussed in Section 3.3.
In addition to a boosted decision tree (i.e. LightGBM), we also

tried various alternative classification algorithms. To be specific:
k-nearest-neighbors, linear and quadratic discriminant analysis,
logistic regression, random forest, support vector machines, and
fully connected neural networks with softmax classification.2

Non of those alternative ML models individually performed on
the level of LightGBM. Only XGBoost,[64] a different implemen-
tation of boosted decision trees, yields comparable results. In ad-
dition, we build an ensemble of these different estimators, where
the prediction of the ensemble is a weighted linear combination
of the predictions of each individual estimator. However only a
combination of LightGBM with different neural network archi-
tectures shows a slight improvement, where the f1-macro in-
creases from 0.856 for LightGBM as a single classifier to 0.867
for the ensemble. Since this improvement is small and our main
results do not change, we decide to keep things simple and use
LightGBM as a single estimator only. In addition, the usage of
LightGBM as a single estimator allows us to read out and inter-
pret the inner structure of the boosted decision tree by visualizing
the feature importance, see Figure 4.

3.3. Performance of the ML Model

Next, we analyze the performance of our trained ML model on
the test set 𝕋 . This is quantified in a classification report, see
Table 1. We see that for all orbifold point groups (even for the
minority classes like ℤ4 and ℤ6-I) the f1-score is very high. In
addition, we also state the confusion matrix in Table 2. These
results indicate that our boosted decision tree is well balanced.
It is intriguing how well our ML model can predict the orbifold
point group using only the spectrum of vector-like exotics and
some additional phenomenologically appealing features. Note
also that the MSSM-like orbifold models from the training set
are only unique among a certain orbifold point group. In some
cases, MSSM-like orbifold models from different point groups
yield similar (or even identical) feature vectors. Then, the classi-
fier has to decide to which orbifold point group this part of the
feature space consists more likely. This introduces some intrin-
sic uncertainty to our ML model and some misclassifications are
unavoidable.

2 The implementations from scikit-learn[61] are used for the non-neural
network algorithms, whereas the Keras API[63] is used for the neu-
ral networks.
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Figure 4. The importance of the features (defined in Section 2) for the classification task performed by our boosted decision tree: For each decision tree
of the ensemble of trees, we count the number how often each feature was used in the nodes of the tree. Then, for each feature we take the average over
all trees. Finally, we give the numbers as percentage and rank the features accordingly. As a result, the feature “# SM singlets” turns out to be used in
30% of the nodes and is the most important feature for our boosted decision tree.

Table 1. Classification report of our boosted decision tree, evaluated on
the test set 𝕋 ⊂ 𝔻 of 21,206 feature vectors of MSSM-like orbifold mod-
els, see Equation (5) for definitions. The f1-macro (i.e. the average of f1-
scores) is 0.86. The support for each point group Pi is defined as |{X ∈
𝕋 | Ycorrect(X) = Pi}|. The best performance is achieved forMSSM-like orb-
ifold models with point groups ℤ3 × ℤ3, ℤ4 × ℤ4 and ℤ2 × ℤ4.

Point group Precision Recall f1-score

Pi pi ri f1i Support

ℤ4 0.85 0.85 0.85 33

ℤ6-I 0.88 0.88 0.88 8

ℤ6-II 0.82 0.75 0.79 305

ℤ8-I 0.75 0.78 0.76 125

ℤ8-II 0.86 0.84 0.85 444

ℤ12-I 0.95 0.90 0.92 232

ℤ12-II 0.69 0.68 0.69 82

ℤ2 × ℤ2 0.88 0.83 0.85 255

ℤ2 × ℤ4 0.97 0.98 0.98 8,155

ℤ2 × ℤ6-I 0.84 0.59 0.69 211

ℤ3 × ℤ3 0.99 1.00 0.99 483

ℤ3 × ℤ6 0.87 0.88 0.87 1,019

ℤ4 × ℤ4 0.98 0.98 0.98 9,113

ℤ6 × ℤ6 0.93 0.96 0.94 741

average 0.88 0.85 0.86 21,206

4. Predicting the Stringy Origin of the MSSM

After we have shown that the predictions of our classifier are rea-
sonable for the given feature vectors of MSSM-like orbifold mod-

els, the next step is to extrapolate from these results towards the
MSSM: we give a feature vector without any vector-like exotics
to the ML algorithm in order to identify its most likely origin
from orbifold compactifications. Extrapolations with ML models
are in general rather difficult: we try to make a prediction for a
feature vector that is different to the data from 𝔻. However, since
we use additional features beside the numbers of vector-like ex-
otics (like the number of SM singlets and the hidden sector beta-
function coefficient, see Section 2), the prediction for the MSSM
also includes non-trivial features that are embedded in the orb-
ifold dataset. In other words, the feature vector of the MSSM gets
closer to the feature vectors of our MSSM-like orbifold models by
using these additional features. Moreover, our experience with
regularized decision trees (see Ref. [29]) indicates that they are
suitable for extrapolations: In general, each decision tree divides
up the feature space into smaller subspaces and assigns a pre-
diction (i.e. an orbifold point group) to each subspace. However,
a decision tree necessarily leaves subspaces of infinite volume
at the boundary of the training set. Since the feature vector of
the MSSM is outside the region of feature vectors of MSSM-like
orbifold models, the MSSM will lie in one of these infinite sub-
spaces, but still gets a meaningful prediction assigned. Then, an
ensemble of decision trees gives an additional regularization that
improves the generalization to a wider range in feature space. In
this way, boosted decision trees can be used to get meaningful
predictions, even for extrapolations.
In detail, in order to predict the orbifold origin of the MSSM,

we generate a feature vector for each value of the hidden sector
beta-function coefficient b ∈ {0,… , 36} (i.e. between the mini-
mal andmaximal value of b in our dataset𝔻) and for each number
of StandardModel singlets: # SM singlets∈ {20,… , 350}. In this

Fortschr. Phys. 2020, 68, 2000032 2000032 (6 of 13) © 2020 The Authors. Fortschritte der Physik published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

Table 2. Confusion matrix of our boosted decision tree, evaluated on the test set 𝕋 ⊂ 𝔻 of 21,206 feature vectors of MSSM-like orbifold models.

Predicted orbifold point group

ℤ4 ℤ6-I ℤ6-II ℤ8-I ℤ8-II ℤ12-I ℤ12-II ℤ2 × ℤ2 ℤ2 × ℤ4 ℤ2 × ℤ6-I ℤ3 × ℤ3 ℤ3 × ℤ6 ℤ4 × ℤ4 ℤ6 × ℤ6

Correct orbifold
point group

ℤ4 28 0 0 1 0 0 0 0 4 0 0 0 0 0

ℤ6-I 0 7 0 0 0 0 0 0 0 0 0 0 1 0

ℤ6-II 0 0 229 0 14 0 4 0 55 2 1 0 0 0

ℤ8-I 1 0 0 97 1 2 0 0 0 0 0 1 23 0

ℤ8-II 0 0 15 0 375 0 10 2 41 0 0 0 1 0

ℤ12-I 0 0 0 4 0 209 0 0 0 0 2 0 17 0

ℤ12-II 0 0 4 0 10 0 56 0 12 0 0 0 0 0

ℤ2 × ℤ2 0 0 0 0 2 0 0 212 41 0 0 0 0 0

ℤ2 × ℤ4 3 0 24 4 31 1 7 27 8,004 21 0 5 26 2

ℤ2 × ℤ6-I 0 0 2 1 3 1 3 0 69 124 0 2 4 2

ℤ3 × ℤ3 0 0 0 0 0 2 0 0 0 0 481 0 0 0

ℤ3 × ℤ6 0 0 1 0 2 0 0 0 0 0 0 899 93 24

ℤ4 × ℤ4 1 1 3 22 0 5 1 0 21 1 0 116 8,914 28

ℤ6 × ℤ6 0 0 0 0 0 0 0 0 0 0 0 16 12 713

Figure 5. Stringy origin of the MSSM with “heavy top from bulk” but without a non-Abelian flavor symmetry. The colors are associated to point groups
as follows: blue for ℤ2 × ℤ4, orange for ℤ4 × ℤ4 and black for ℤ8-I. In yellow, we highlight 20 MSSM-like orbifold models that have no vector-like exotics
beside some Higgs-pairs, see Section 4.1. See also Figure 6 for additional cases and further details.

way, we obtain 37 ⋅ 331 feature vectors that we give to our trained
ensemble of decision trees in order to obtain a prediction for
each of them. We can illustrate the results in a two–dimensional
plot, where different colors correspond to different orbifold point
groups and the transparency of the color indicates the degree of
accuracy of the corresponding prediction, see Figure 5 and the
caption of Figure 6 for further details.
Furthermore, we turn on and off the properties of non-Abelian

flavor symmetries (corresponding to the “# vanishing Wilson
lines”) as well as “heavy top from bulk”. In this way, we obtain
three additional cases and we display for each case the predic-
tions of the 37 ⋅ 331 feature vectors in Figure 6. It turns out that
in general the predictions are dominated by two classes: ℤ2 × ℤ4
and ℤ4 × ℤ4. Interestingly, these classes build up the majority of
MSSM-like orbifold models with 55,429 and 48,812 MSSM-like
models, respectively, and they achieve the highest f1-scores, see
Table 1. In addition, for MSSMs without a heavy top from the
bulk, the ℤ2 × ℤ2 orbifold point group (with 1,711 MSSM-like
models) occupies a large fraction of the prediction area, especially
in cases with less than≈ 80 SM singlets, see Figures 6(c) and 6(d).
Finally, for MSSMs without a heavy top from the bulk and with-
out non-Abelian flavor symmetries, several orbifold point groups
become relevant in distinct areas of Figure 6(d): for MSSMs with
90 to 115 SM singlets the ℤ8-I point group appears, while for
MSSMswith large b and≈ 90 or 140 SM singlets the point groups

ℤ12-I or ℤ6-I get predicted, respectively. Moreover, MSSMs with
many (≈ 300) SM singlets are predicted to originate from orb-
ifolds with ℤ3 × ℤ6 or ℤ6 × ℤ6 point groups for b ≲ 5 or 5 ≲ b ≲
10, respectively.

4.1. An Almost Perfect MSSM-Like Orbifold Model

In this section, we present an explicit “almost perfect” MSSM-
like orbifold model, based on the point group ℤ2 × ℤ4 (i.e. the
orbifold geometry is labeled ℤ2 × ℤ4 (2, 4) in the nomencla-
ture of Ref. [30]; also see Ref. [65] for string model building
based on the ℤ2 × ℤ4 orbifold). In this case, the six-torus is non-
factorizable and both rotational generators of the orbifold are
roto-translations, defined as(
𝜃, 1
2

(
e1 + e2 + e6

))
and

(
𝜔, 1

2

(
e1 + e2 + e6

))
, (6)

where 𝜃2 = 𝜔4 = 𝟙. The ℤ2 × ℤ4 shift vectors associated to 𝜃 and
𝜔 are chosen as

V1 =
(
0, 0, 0, 0, 1

2
, 1
2
, 3
2
, 3
2

)(
0, 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 2
)
, (7a)

V2 =
(
− 1

4
, 1
4
, 1
4
, 1,−1, 0,−1, 1

4

)(
− 3

4
, 0, 0, 0, 0, 0, 1

2
,− 3

4

)
, (7b)
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Figure 6. Predicted origin of the MSSM for four different cases (a) - (d) depending on the features “heavy top from bulk”, see Section 2.4 and “non-
Abelian flavor symmetry”, see Section 2.5: in each case, the x-axis corresponds to the number of SM singlets (i.e. right-handed neutrinos), while the
y-axis gives the beta-function coefficient b that sets the scale of supersymmetry breaking via hidden sector gaugino condensation.
The colors are associated to point groups as follows:
(i) blue: ℤ2 × ℤ4,
(ii) orange: ℤ4 × ℤ4,
(iii) turquoise: ℤ2 × ℤ2.
Black indicates a different point group than the three dominant ones. The transparency 𝛼 := p(1st) − 3

4
p(2nd) of each pixel indicates the difference

between the highest and the second highest probabilities of the predictions, p(1st) and p(2nd), respectively. Note that
∑

i p(Pi) = 1. Hence, the color gets
very transparent if p(1st) ≈ p(2nd).
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Table 3. Massless matter spectrum of an “almost perfect” MSSM-like
orbifold model originating from the ℤ2 × ℤ4 (2, 4) orbifold geometry.
The four-dimensional gauge group is SU(3)flavor × SU(3)C × SU(2)L ×
SU(5)hidden × U(1)Y × U(1)6. The untwisted sectors Ua, a = 1, 2, 3, are de-
fined in Section 2.4, while T(1,3) denotes the 𝜃 𝜔

3 twisted sector. There are
three generations of quarks and leptons, three Higgs-pairs but no addi-
tional vector-like exotics charged under the SM. SU(3)flavor is a gauged
flavor symmetry, where f 0i are so-called flavons: SM singlets charged as
triplets under SU(3)flavor.

Sector # Irrep Labels

U1 1 (3; 3, 2; 1) 1
6

qi

1 (1; 1, 2; 1)
− 1
2

𝓁i or hd

2 (1; 1, 1; 1)0 s0i
U2 1 (3̄; 1, 2; 1)

− 1
2

𝓁i or hd

1 (3; 1, 2; 1) 1
2

hu

U3 1 (3; 3̄, 1; 1)
− 2
3

ūi

1 (1; 3̄, 1; 1) 1
3

d̄i

1 (3; 1, 1; 1)1 ēi
2 (1; 1, 1; 5̄)0 s0i
1 (1; 1, 1; 1)0 s0i

T(1,3) 22 (1; 1, 1; 1)0 s0i
2 (1; 3̄, 1; 1) 1

3

d̄i

2 (1; 1, 2; 1)
− 1
2

𝓁i or hd

10 (3̄; 1, 1; 1)0 f 0i
2 (1; 1, 1; 5)0 s0i

respectively. Furthermore, the non-trivial Wilson linesWi associ-
ated to the six independent directions ei of the compact orbifold
space read

W3 =
(
− 1

4
, 1
4
, 5
4
,− 5

4
, 5
4
, 5
4
,− 5

4
,− 5

4

)

×
(
− 3

4
,− 5

4
,− 1

4
,− 1

4
, 1
4
, 5
4
, 9
4
, 3
4

)
, (8a)

W5 = (0, 0, 0, 0, 0, 0, 0, 0)
(
3
2
,− 1

2
,−1, 2, 0,− 3

2
, 1, 1

2

)
, (8b)

while W3 = W4 = W6 and W1 = W2 = (016) are fixed due to ge-
ometric constraints. These shifts and Wilson lines act on the
E8 × E8 gauge degrees of freedom. Using the orbifolder,[31] the
resulting four-dimensional gauge group reads

SU(3)flavor × SU(3)C × SU(2)L × SU(5)hidden ×U(1)Y ×U(1)6, (9)

where SU(3)flavor is a gauged SU(3) flavor symmetry and one of
the U(1)’s appears anomalous. Gauge symmetry breaking is non-
local in this model, i.e. it is associated to a non-trivial fundamen-
tal group of the orbifold with a Wilson line that breaks an in-
termediate SU(5) GUT to the SM. Consequently, there exist sta-
ble winding strings (with masses related to the compactification
scale) which can contribute to the dark matter relic density.[66] Fi-
nally, the massless matter spectrum is given in Table 3. From the
point of view of theMSSM, thismodel contains exactly three gen-

erations of quarks and leptons, three Higgs-pairs (hu, hd) and in
total 75 SM singlets, but no additional (vector-like) exotics. Im-
portantly, there are ten flavons f 0 that transform as triplets of
SU(3)flavor (contributing 10 × 3 = 30 SM singlets from the point
of view of the SM). Their VEVs will be important to explain quark
and leptonmasses andmixings, see Section 2.7. Concerning hid-
den sector gaugino condensation, we analyze the chiral spectrum
with respect to the hidden sector gauge group factor SU(5)hidden:
Themassless spectrum contains two 5-plets and two 5̄-plets. They
can decouple without breaking the SM or SU(5)hidden. Hence,
there is no light matter charged under SU(5)hidden that enters the
beta-function coefficient and we obtain b = 15.
In total, we have identified 20 almost perfect MSSM-like orb-

ifoldmodels, see the arXiv ancillary files.[32] All of them are based
on the point groupℤ2 × ℤ4, one from the (1, 6) orbifold geometry
and 19 from the (2, 4) orbifold geometry. These 20 almost perfect
MSSM-like orbifold models are very similar from the point of
view of the massless matter spectrum:

• there is a gauged SU(3)flavor flavor symmetry,
• all quark doublets (q), up-type quarks (ū), electrons (ē) and up-
type Higgses (hu) are triplets of SU(3)flavor and live in the bulk
of the orbifold,

• one down-type quark (d̄) is a singlet of SU(3)flavor and lives in
the bulk of the orbifold,

• two down-type quarks (d̄) and some lepton doublets are local-
ized either in the T(1,3) or in the T(0,2) twisted sector.

We marked these 20 almost perfect MSSM-like orbifold models
as yellow points in Figure 5.
However, it is important to note that a detailed phenomeno-

logical study of these models is not possible at the moment. The
reason is a missing understanding of the R-symmetries for these
orbifold geometries. Even though R-symmetries are in general
verywell understood in heterotic orbifold compactifications,[67–69]

there are two exceptions for orbifolds with ℤ2 × ℤ4 point group,
being the (1, 6) and (2, 4) orbifold geometries.[70] Hence, in order
to analyze the phenomenological properties of our almost per-
fectMSSM-like orbifoldmodels inmore detail, theR-symmetries
have to be re-analyzed for these orbifolds.
Finally, note that in our prediction task theℤ2 × ℤ4 point group

is one of the dominant classes (with 48,812 MSSM-like orbifold
models in total; however, the (1, 6) and (2, 4) orbifold geometries
of this point group lead to only 82 and 320 MSSM-like orbifold
models, respectively). Since the almost perfect models are based
on the ℤ2 × ℤ4 point group, it is reasonable that our ML model
predicts ℤ2 × ℤ4 as the orbifold origin of the MSSM for a wide
range in feature space.

5. Conclusions and Outlook

In conclusion, in this paper we show that the huge number
of possible string models in the heterotic orbifold landscape
gets subdivided into several sub-landscapes, each with their own
distinct phenomenological properties. These properties include
most prominently the appearance of various types of vector-like
exotics (see Tables A.1 and A.2), the number of SM singlets, the
existence of non-Abelian flavor symmetries, and the hidden sec-
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tor beta function relevant for supersymmetry breaking via gaug-
ino condensation, among others.
In detail, we demonstrate that the choice of the point group P

that underlies an orbifold geometry leaves a particular imprint,
for example, on the particle spectrum of vector-like exotics for
MSSM-like orbifold models. This imprint can be exploited in or-
der to predict with high certainty the most likely point group that
is able to reproduce a specific MSSM-like particle spectrum, see
Table 1. In more detail, this is achieved using a machine learning
(ML) algorithm known as “boosted decision tree” that is partic-
ularly suitable for our classification task. We train and test our
boosted decision tree on the largest known set of 126,783 dis-
tinct MSSM-like orbifold models. Then, we dissect our trained
ensemble of decision trees in order to identify the most impor-
tant phenomenological properties used by the decision trees to
classify the point group of a given MSSM-like particle spectrum,
see Figure 4.
After training and evaluating our ML model, we apply our

boosted decision tree to the MSSM in order to predict the stringy
origin of the MSSM. For this task, we assume that supersym-
metry is broken in the MSSM by hidden sector gaugino con-
densation, and we extend the MSSM by a large number of SM
singlets (i.e. right-handed neutrinos). Then, we vary over (i) the
beta-function coefficient b of the hidden sector gauge group and
(ii) the number of SM singlets, and predict in each case the most
probable stringy origin of the MSSM. The result is shown in Fig-
ure 5. In a nutshell, we find that for up to ≈ 140 SM singlets and

all ranges of b, orbifolds with ℤ2 × ℤ4 point group seem to be
the most promising orbifold compactifications of the heterotic
string to yield the MSSM. For an even larger number of SM sin-
glets, the boosted decision tree predicts orbifolds with ℤ4 × ℤ4
point group. As one can see in Figure 6 these predictions depend
on a few additional phenomenological features that are inspired
by the MSSM-like orbifold models of our dataset. Varying these
features (in addition to b and the number of SM singlets) yields
further promising point groups, like ℤ2 × ℤ2 and in small cor-
ners of the parameter space also ℤ6-II, ℤ8-I and ℤ3 × ℤ6. Hence,
we suggest to focus heterotic orbifold model building on one of
these most promising orbifold geometries.
Furthermore, we present the first “almost perfect” MSSM-

like orbifold models, see Table 3 for one example. These orb-
ifold models, which were unknown in the literature, have ex-
actly three generations of quarks and leptons, either three or five
Higgs-pairs, but no additional vector-like exotics. They originate
from the ℤ2 × ℤ4 (1,6) and (2,4) orbifold geometries. These orb-
ifolds are equipped with non-local GUT breaking,[30] relevant for
stringy dark matter.[66] However, since R-symmetries are not un-
der control just for these twoℤ2 × ℤ4 orbifold geometries,[70] our
findings should encourage to continue the efforts of Refs. [67–69]
to study the R-symmetries for these special orbifold geometries.

Appendix: Vector-Like Exotics in the
Orbifold-Landscape

Table A.1. Percentage of MSSM-like orbifold models with certain types of vector-like exotics. Hypercharge is normalized such that (3, 2)1∕6 is a left-chiral
quark-doublet. The row “# MSSM” lists the number of inequivalent MSSM-like orbifold models in our dataset. A complex representation has to be
amended by its complex conjugate, e.g. (3, 2)1∕6 stands for (3, 2)1∕6 ⊕ (3̄, 2)−1∕6.

ℤ4 ℤ6-I ℤ6-II ℤ7 ℤ8-I ℤ8-II ℤ12-I ℤ12-II ℤ2 × ℤ2 ℤ2 × ℤ4 ℤ2 × ℤ6-I ℤ3 × ℤ3 ℤ3 × ℤ6 ℤ4 × ℤ4 ℤ6 × ℤ6

# MSSM 212 62 1,870 1 865 2,844 1,250 435 1,711 55,429 1,095 3,337 5,153 48,812 3,707

(3, 2)1∕6 1.89% 0% 31.60% 0% 4.05% 25.00% 4.00% 24.14% 8.53% 14.04% 31.60% 14.59% 19.04% 15.31% 39.60%

(3̄, 1)−2∕3 50.47% 0% 28.66% 0% 5.55% 44.13% 3.28% 35.63% 8.36% 14.35% 22.92% 18.91% 18.84% 14.93% 29.92%

(3̄, 1)1∕3 100% 100% 99.95% 100% 99.54% 100% 100% 100% 100% 98.19% 99.73% 94.76% 99.83% 99.03% 99.00%

(1, 2)−1∕2 96.23% 35.48% 92.19% 100% 93.99% 94.94% 78.96% 91.72% 92.17% 92.20% 96.26% 90.62% 99.20% 95.07% 95.50%

(1, 1)1 1.89% 0% 28.66% 0% 5.55% 44.09% 3.28% 35.63% 8.36% 14.36% 22.92% 11.30% 18.92% 14.98% 29.92%

(1, 1)0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

(3, 2)−1∕2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.06% 0% 0% 0%

(3, 2)1∕2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.18% 0% 0% 0%

(3, 2)−1∕3 0% 0% 0% 0% 0.23% 1.05% 0.24% 0% 0% 2.27% 0.09% 0% 0.43% 0.53% 0.32%

(3, 2)−1∕6 0% 0% 0% 0% 0% 0% 0.64% 0% 0% 0% 0% 7.19% 0.02% 0% 0%

(3, 2)−1∕12 2.83% 0% 0% 0% 0% 0% 0% 0% 0% 0.00% 0% 0% 0% 0.00% 0%

(3, 1)0 0% 0% 6.84% 0% 0% 0% 25.12% 0% 0% 0% 0% 85.77% 9.99% 0% 0.35%

(3, 1)−1∕2 0% 0% 0% 0% 0% 0% 1.12% 0% 0% 0% 0% 0% 0.06% 0% 0%

(3, 1)1∕2 0% 0% 0% 0% 0% 0% 0.80% 0% 0% 0% 0% 0% 0.04% 0% 0%

(3, 1)−2∕3 0% 0% 0% 0% 0% 0% 0.32% 0% 0% 0% 0% 5.60% 0.06% 0% 0%

(3, 1)1∕3 0% 0% 4.71% 0% 0% 0% 18.72% 0% 0% 0% 0% 73.24% 6.85% 0% 0.27%

(3, 1)−5∕6 0% 0% 2.89% 0% 0% 0.74% 0% 0% 0% 0.12% 0% 0% 0.62% 0.44% 0.76%

(3, 1)−1∕6 0% 0% 0.21% 0% 0% 0% 4.32% 0% 0% 0% 0% 0% 0.45% 0% 0%

(3, 1)1∕6 67.45% 93.55% 66.47% 0% 87.63% 74.30% 69.20% 66.90% 85.21% 90.85% 86.58% 0% 84.84% 95.75% 98.17%

(Continued)
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Table A.1. Continued.

ℤ4 ℤ6-I ℤ6-II ℤ7 ℤ8-I ℤ8-II ℤ12-I ℤ12-II ℤ2 × ℤ2 ℤ2 × ℤ4 ℤ2 × ℤ6-I ℤ3 × ℤ3 ℤ3 × ℤ6 ℤ4 × ℤ4 ℤ6 × ℤ6

# MSSM 212 62 1,870 1 865 2,844 1,250 435 1,711 55,429 1,095 3,337 5,153 48,812 3,707

(3, 1)−7∕12 2.83% 0% 0% 0% 0% 0% 0.32% 0% 0% 0% 0% 0% 0% 0.01% 0%

(3, 1)−1∕12 41.04% 0% 0% 0% 0.23% 0.56% 1.76% 0% 0% 0.08% 0% 0% 0% 0.13% 0%

(3, 1)5∕12 4.72% 0% 0% 0% 0% 0.14% 0.80% 0% 0% 0.03% 0% 0% 0% 0.06% 0%

(3, 1)2∕21 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(3, 1)5∕21 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(1, 2)0 82.55% 100% 85.94% 0% 99.31% 93.95% 76.32% 90.34% 84.57% 96.49% 98.17% 0% 89.93% 99.26% 99.57%

(1, 2)1∕3 0% 0% 0.43% 0% 0% 0% 4.72% 0% 0% 0% 0% 0% 0.66% 0% 0%

(1, 2)2∕3 0% 0% 0% 0% 0% 0% 0.80% 0% 0% 0% 0% 0% 0.02% 0% 0%

(1, 2)1∕4 41.98% 0% 0% 0% 0.23% 0.70% 2.40% 0% 0% 0.08% 0% 0% 0% 0.14% 0%

(1, 2)3∕4 2.83% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(1, 2)1∕6 0% 0% 8.98% 0% 0% 0% 26.72% 0% 0% 0% 0% 96.55% 10.58% 0% 0.35%

(1, 2)5∕6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.21% 0% 0% 0%

(1, 2)1∕14 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(1, 2)5∕14 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(1, 1)1∕2 100% 100% 92.09% 0% 100% 100% 76.96% 100% 95.79% 99.16% 99.36% 0% 90.28% 99.99% 99.65%

(1, 1)1∕3 0% 0% 8.98% 0% 0% 0% 29.20% 0% 0% 0% 0% 99.52% 10.58% 0% 0.35%

(1, 1)2∕3 0% 0% 8.98% 0% 0% 0% 28.72% 0% 0% 0% 0% 95.62% 10.58% 0% 0.35%

(1, 1)1∕4 52.36% 0% 0% 0% 0.23% 0.95% 3.20% 0% 0% 0.19% 0% 0% 0% 0.17% 0%

(1, 1)3∕4 42.92% 0% 0% 0% 0.23% 0.42% 1.92% 0% 0% 0.12% 0% 0% 0% 0.14% 0%

(1, 1)1∕6 0% 0% 1.07% 0% 0% 0% 6.32% 0% 0% 0% 0% 0% 0.85% 0% 0%

(1, 1)5∕6 0% 0% 0% 0% 0% 0% 1.12% 0% 0% 0% 0% 0% 0.04% 0% 0%

(1, 1)1∕7 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(1, 1)2∕7 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(1, 1)3∕7 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(1, 1)4∕7 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.2. Average numbers of vector-like exotics for MSSM-like orbifold models. Hypercharge is normalized such that (3, 2)1∕6 is a left-chiral quark-
doublet. The row “# MSSM” lists the number of inequivalent MSSM-like orbifold models in our dataset. A complex representation has to be amended
by its complex conjugate, e.g. (3, 2)1∕6 stands for (3, 2)1∕6 ⊕ (3̄, 2)−1∕6.

ℤ4 ℤ6-I ℤ6-II ℤ7 ℤ8-I ℤ8-II ℤ12-I ℤ12-II ℤ2 × ℤ2 ℤ2 × ℤ4 ℤ2 × ℤ6-I ℤ3 × ℤ3 ℤ3 × ℤ6 ℤ4 × ℤ4 ℤ6 × ℤ6

# MSSM 212 62 1,870 1 865 2,844 1,250 435 1,711 55,429 1,095 3,337 5,153 48,812 3,707

(3, 2)1∕6 0.04 0 0.48 0 0.05 0.31 0.09 0.46 0.09 0.19 0.51 0.17 0.23 0.18 0.46

(3̄, 1)−2∕3 0.52 0 0.41 0 0.08 0.49 0.06 0.71 0.09 0.21 0.35 0.23 0.23 0.18 0.36

(3̄, 1)1∕3 3.52 3.52 5.22 4.00 4.41 4.36 4.21 7.58 7.31 5.66 7.96 3.64 6.57 5.72 6.25

(1, 2)−1∕2 2.64 1.68 4.03 3.00 3.41 3.06 2.92 4.28 3.34 3.97 5.23 2.86 5.83 4.46 5.50

(1, 1)1 0.04 0 0.41 0 0.08 0.49 0.06 0.71 0.09 0.21 0.35 0.15 0.23 0.18 0.36

(1, 1)0 67.37 136.58 106.06 32.00 108.74 89.78 85.99 101.78 122.54 132.64 139.59 106.48 177.56 166.38 186.95

(3, 2)−1∕2 0 0 0 0 0 0 0 0 0 0 0 0.00 0 0 0

(3, 2)1∕2 0 0 0 0 0 0 0 0 0 0 0 0.00 0 0 0

(3, 2)−1∕3 0 0 0 0 0.00 0.01 0.00 0 0 0.03 0.00 0 0.01 0.01 0.00

(3, 2)−1∕6 0 0 0 0 0 0 0.01 0 0 0 0 0.08 0.00 0 0

(3, 2)−1∕12 0.03 0 0 0 0 0 0 0 0 0.00 0 0 0 0.00 0

(3, 1)0 0 0 0.19 0 0 0 0.69 0 0 0 0 3.32 0.36 0 0.01

(3, 1)−1∕2 0 0 0 0 0 0 0.01 0 0 0 0 0 0.00 0 0

(3, 1)1∕2 0 0 0 0 0 0 0.01 0 0 0 0 0 0.00 0 0

(3, 1)−2∕3 0 0 0 0 0 0 0.00 0 0 0 0 0.06 0.00 0 0

(Continued)
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Table A.2. Continued.

ℤ4 ℤ6-I ℤ6-II ℤ7 ℤ8-I ℤ8-II ℤ12-I ℤ12-II ℤ2 × ℤ2 ℤ2 × ℤ4 ℤ2 × ℤ6-I ℤ3 × ℤ3 ℤ3 × ℤ6 ℤ4 × ℤ4 ℤ6 × ℤ6

# MSSM 212 62 1,870 1 865 2,844 1,250 435 1,711 55,429 1,095 3,337 5,153 48,812 3,707

(3, 1)1∕3 0 0 0.13 0 0 0 0.36 0 0 0 0 1.95 0.14 0 0.01

(3, 1)−5∕6 0 0 0.04 0 0 0.01 0 0 0 0.00 0 0 0.01 0.01 0.01

(3, 1)−1∕6 0 0 0.00 0 0 0 0.06 0 0 0 0 0 0.01 0 0

(3, 1)1∕6 1.99 3.29 2.38 0 3.14 2.55 2.00 1.69 3.83 4.59 4.87 0 3.47 5.37 6.57

(3, 1)−7∕12 0.03 0 0 0 0 0 0.00 0 0 0 0 0 0 0.00 0

(3, 1)−1∕12 1.10 0 0 0 0.00 0.01 0.04 0 0 0.00 0 0 0 0.00 0

(3, 1)5∕12 0.08 0 0 0 0 0.00 0.01 0 0 0.00 0 0 0 0.00 0

(3, 1)2∕21 0 0 0 3.00 0 0 0 0 0 0 0 0 0 0 0

(3, 1)5∕21 0 0 0 4.00 0 0 0 0 0 0 0 0 0 0 0

(1, 2)0 7.78 8.58 7.99 0 9.49 8.23 5.84 6.10 7.62 13.58 14.25 0 10.97 15.88 19.27

(1, 2)1∕3 0 0 0.01 0 0 0 0.08 0 0 0 0 0 0.01 0 0

(1, 2)2∕3 0 0 0 0 0 0 0.01 0 0 0 0 0 0.00 0 0

(1, 2)1∕4 1.19 0 0 0 0.00 0.02 0.07 0 0 0.00 0 0 0 0.01 0

(1, 2)3∕4 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2)1∕6 0 0 0.44 0 0 0 1.18 0 0 0 0 7.75 0.81 0 0.02

(1, 2)5∕6 0 0 0 0 0 0 0 0 0 0 0 0.00 0 0 0

(1, 2)1∕14 0 0 0 5.00 0 0 0 0 0 0 0 0 0 0 0

(1, 2)5∕14 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0

(1, 1)1∕2 18.79 23.81 14.60 0 23.19 20.92 12.45 13.59 18.80 29.37 29.20 0 25.33 37.34 41.21

(1, 1)1∕3 0 0 3.14 0 0 0 7.72 0 0 0 0 42.99 5.22 0 0.23

(1, 1)2∕3 0 0 0.43 0 0 0 1.25 0 0 0 0 8.30 0.84 0 0.03

(1, 1)1∕4 14.90 0 0 0 0.07 0.17 0.68 0 0 0.03 0 0 0 0.10 0

(1, 1)3∕4 1.18 0 0 0 0.00 0.01 0.04 0 0 0.00 0 0 0 0.01 0

(1, 1)1∕6 0 0 0.13 0 0 0 0.63 0 0 0 0 0 0.17 0 0

(1, 1)5∕6 0 0 0 0 0 0 0.01 0 0 0 0 0 0.00 0 0

(1, 1)1∕7 0 0 0 22.00 0 0 0 0 0 0 0 0 0 0 0

(1, 1)2∕7 0 0 0 16.00 0 0 0 0 0 0 0 0 0 0 0

(1, 1)3∕7 0 0 0 11.00 0 0 0 0 0 0 0 0 0 0 0

(1, 1)4∕7 0 0 0 9.00 0 0 0 0 0 0 0 0 0 0 0
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