
sensors

Letter

Assessing the Mass Sensitivity for Different Electrode
Materials Commonly Used in Quartz Crystal
Microbalances (QCMs)

Xianhe Huang 1,*, Qiao Chen 1 , Wei Pan 1 , Jianguo Hu 1,2 and Yao Yao 1

1 School of Automation Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; qiaochen@std.uestc.edu.cn(Q.C.); weipan@std.uestc.edu.cn(W.P.);
hujianguo@std.uestc.edu.cn(J.H.); yaoyao428@uestc.edu.cn(Y.Y.)

2 Institut für Informatik VI, Technische Universität München, Schleißheimer Straße 90a,
Garching 85748, Germany

* Correspondence: xianhehuang@uestc.edu.cn; Tel.: +86-137-0807-6881

Received: 6 August 2019; Accepted: 13 September 2019; Published: 14 September 2019
����������
�������

Abstract: Mass sensitivity is vital for quartz crystal microbalance (QCM)-based data analysis. The
mass sensitivity distribution of QCMs may differ greatly depending on the shapes, thicknesses, sizes,
and materials of the metal electrodes. This is not considered by the Sauerbrey equation, and has a
large potential to cause errors in QCM-based data analysis. Many previous works have studied the
effects of shape, thickness, and size of metal electrodes on mass sensitivity. However, it is necessary
to continue to clarify the relationship between the mass sensitivity and the electrode material of the
QCM. In this paper, the results of both theoretical calculation and experimental analysis showed
that the mass sensitivity of QCMs with gold electrodes is higher than that of the QCMs with silver
electrodes, which in turn indicated that the mass sensitivity of QCMs varies with the electrode
material. Meanwhile, the results of this study showed that the mass sensitivity of QCMs with different
electrode materials is not proportional to the density of the electrode materials. This result suggests
that, in order to obtain more accurate results in the practical applications of QCMs, the influence of
electrode material on the mass sensitivity of the QCMs must be considered.
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1. Introduction

The advent of quartz crystal microbalances (QCMs) has allowed intersectional research between
piezoelectric devices and ultra-small mass sensing. QCMs have attracted increasing attention because
of their simplicity, ease of use, low-cost components, and high sensitivity [1,2].

Because QCMs can accurately measure ultra-small masses in real time, they are used by researchers
to study and observe extremely subtle changes in mass. During the past few decades, QCMs have
been used in various technical and research applications, such as the monitoring of surface interaction
processes [3–5], piezoelectric immunosensors [6–8], nanoscale characterization tools [9–12], and various
specific molecule sensors [13,14].

Mass sensitivity is vital for QCM-based data analysis. Sauerbrey put forward the famous Sauerbrey
equation, which describes the mass–frequency relationship of the surface of the QCM [15]:

∆m = −
2 f02

A
(
ρqµq

)1/2
∗ ∆ f = −CQCM ∗ ∆ f (1)
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where ∆m and ∆ f are the mass change and frequency shift, respectively; CQCM is the mass sensitivity
constant; f0 is the fundamental frequency of the QCM; A is the effective area of the QCM; and ρq and
µq are the density and shear modulus of the piezoelectric quartz crystal, respectively.

Obviously, the Sauerbrey equation does not consider the effect of the electrodes. Consequently,
when analyzing data, many early researchers used the same mass sensitivity values for QCMs with the
same fundamental frequency but different electrode materials, e.g., the mass sensitivities of 5 MHz
QCMs with gold and silver electrodes, respectively (labeled as Au-QCMs and Ag-QCMs, respectively)
were both taken as 17.7 ng·cm−2

·Hz−1[16–20]. However, later, researchers gradually realized that the
mass sensitivity of QCMs has a Gaussian distribution, rather than having the same mass sensitivity on
the whole surface of the microbalance. Furthermore, the size and shape of the electrodes affect the
mass sensitivity distribution of a QCM [21–23].

Our previous works [24–27] quantitatively analyzed the effects of the shape, thickness, and size of
electrodes on the mass sensitivity of QCMs, while our latest paper [28] studied the relationship between
the mass sensitivity of the n-electrode surface and the m-electrode surface in an n–m type QCM.

It is worth noting that the cost of a QCM is positively related to the cost of the electrode material,
with the prices of different electrode materials varying greatly. Once QCMs are commercialized and
mass-produced, manufacturers will inevitably coat the surface of QCM electrodes with different
materials (e.g., silver) to reduce the production costs. Accordingly, it is necessary to clarify the
relationship between the mass sensitivity of QCMs and the types of electrode material in order to allow
accurate QCM-based data analysis.

In this paper, taking Au-QCMs and Ag-QCMs as examples, we continue to study whether the
mass sensitivity of QCMs is the same for different electrode materials, and, if it is different, what is the
relationship between the QCM’s mass sensitivity and the density of the electrode material.

2. Theory

The mass sensitivity distribution on the electrode surface is not uniform, but rather has a Gaussian
profile. The maximum mass sensitivity occurs at the center of the electrode, and this maximum mass
sensitivity is referred to as the absolute mass sensitivity [29]. To a certain extent, the absolute mass
sensitivity can reflect the sensitivity of the QCM. The mass sensitivity distribution function S f (r) is as
follows [23,30]:

S f (r) =

∣∣∣A(r)
∣∣∣2

2π
∫
∞

0 r
∣∣∣A(r)

∣∣∣2dr
·C f (2)

where r is the distance from the electrode center, A(r) is the particle displacement amplitude function,
and C f is Sauerbrey’s sensitivity constant.

A(r) is the solution of the following Bessel equation [25,31]:

r2 ∂
2A
∂r2 + r

∂A
∂r

+
k2

i r2

N
A = 0 (3)

where N depends on the material constants of the quartz crystal; k2
i =

(
ω2
−ω2

i

)
/c2, where i = E, U (E

and U represent the fully electroded region and non-electroded region, respectively); c =
√

c66/ρq is
the acoustic wave velocity in the crystal (where c66 is the elastic stiffness constant and ρq is the density
of the quartz); and ωi is the cut-off frequency of the fully electroded region (ωE) and the non-electroded
region (ωU).

Substituting the particle displacement amplitude into Equation (2), the mass sensitivity function
of the QCM and its distribution can be obtained in order to analyze the influence of the electrode
material on the mass sensitivity. Take AT-cut, “plano-plano” 10 MHz QCMs with an electrode diameter
of 4 mm as an example. The theoretical absolute mass sensitivities of an Au-QCM and an Ag-QCM are
3.84 and 3.11 Hz·ng−1, respectively. That is, the mass sensitivity of QCMs vary with different electrode
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materials. Moreover, theoretical numerical results indicate that the mass sensitivity of QCMs is not
proportional to the density of the electrode material.

3. Experiment

The results of theoretical calculation and analysis of QCM mass sensitivity show that the electrode
material influences the mass sensitivity. In order to verify this result, it is necessary to measure the mass
sensitivity of QCMs. However, it is difficult to directly detect the mass sensitivity of QCMs. Therefore,
our previous work [29] proposed the equivalent mass sensitivity model, which takes into account the
Gaussian distributional characteristics of QCM mass sensitivity and the effect of the electrode material
on the mass sensitivity:

∆ f = −C∗QCM × ∆m

where C∗QCM =
1
πr2

d

∫ rd

0
2πrS f (r)dr

 (4)

where rd is the radius of the specified circular region onto which the mass load is attached, and C∗QCM is
the equivalent mass sensitivity. The Sauerbrey equation is only applicable to thin, uniform, and rigid
films. In this paper, thin and uniform mass films are the main subject of study, while discrete particle
films or viscoelastic films are not considered.

The condition of the Sauerbrey equation can be better fulfilled by a method of plating thin,
uniform rigid films onto the surface of QCM electrodes. A change in mass sensitivity can be verified
by comparing the change in QCM frequency before and after the film coating. The present study used
this method of comparing mass sensitivity to indirectly verify that the mass sensitivity of Au-QCMs is
higher than that of Ag-QCMs.

The experiment was performed in a class 10,000 ultra-clean room at Wintron Electronic Co.,
Ltd. (Zhengzhou, China). The temperature and relative humidity of this room were kept constant
at 23 ◦C(±2 ◦C)and 40% (±5%), respectively. For the experiment, the fundamental frequencies of all
20 AT-cut, plano-plano quartz wafers were 10 MHz, and the diameters of the wafers were 8.7 mm.

A schematic diagram of the experimental setup is shown in Figure 1. The 20 QCMs were evenly
divided into two groups, namely an Au-QCM group and an Ag-QCM group, according to their
electrode material.

Two S&A W-5600 base plating systems (Saunders & Associates, LLC, Phoenix, AZ, USA) were
used in this experiment, one for gold plating and the other for silver plating. The thicknesses of the
metal films were monitored using an INFICON SQC-310 deposition controller (East Syracuse, New
York). In all plating processes, the vacuum pressure was less than 5× 10−3 Paand the evaporation rate
of metal was set to 10 Å/s.

In the first plating process, the electrodes of the Au-QCM group were coated with gold, and those
of the Ag-QCM group were coated with silver. The thickness and diameter of all electrodes were
1000 Å and 4 mm, respectively. The resonant frequencies of the QCMs were measured and recorded
as f1.

In the second plating process, the 10 QCMs in the Au-QCM group were divided into two
subgroups, A and B, and the 10 QCMs in the Ag-QCM group were divided into two subgroups, C and
D. In subgroup A, the electrodes of the five QCMs were coated with gold film, while in subgroup B,
the electrodes of the five QCMs were coated with silver film. In subgroup C, the electrodes of five
QCMs were coated with gold film, while in subgroup D, the electrodes of the five QCMs were coated
with silver film. The diameter and thickness of all films in the second plating process were 1 mm and
500 Å, respectively. The resonant frequencies of QCMs were measured and recorded as f2.
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Figure 1. Schematic diagram of the experimental setup. Figure 1. Schematic diagram of the experimental setup.

4. Results and Discussion

An S&A250B-1 network analyzer (Saunders & Associates, LLC, Phoenix, AZ, USA) was used
to measure the frequencies of all 20 QCMs. All frequencies were recorded in air, and the results are
shown in Table 1. In this experiment, the frequency shifts because of changes in temperature and
humidity were almost negligible compared to the change in frequency caused by the mass change of
the QCM surface.

Table 1. Results of the quartz crystal microbalance (QCM) plating experiments.

Groups f1(Hz) f2(Hz) ∆f(Hz) ∆f(Hz) δ(Hz) ∆m(ng) ∆fe(Hz) Es

Au-QCM

A

9,961,970 9,959,360 2610

2662 69.79 757.91 2759 3.52%
9,963,680 9,960,970 2710
9,963,990 9,961,360 2630
9,962,450 9,959,850 2600
9,963,490 9,960,730 2760

B

9,962,620 9,961,290 1330

1368 50.20 412.33 1501 8.86%
9,962,550 9,961,220 1330
9,962,080 9,960,730 1350
9,962,740 9,961,290 1450
9,963,580 9,962,200 1380

Ag-QCM

C

10,000,940 9,998,460 2480

2428 70.90 757.91 2251 7.86%
10,002,010 9,999,590 2420
10,001,480 9,998,960 2520
9,999,510 9,997,140 2370
9,997,960 9,995,610 2350

D

10,001,480 10,000,270 1210

1222 19.24 412.33 1225 0.02%
10,001,300 10,000,080 1220
10,001,650 10,000,450 1200
9,999,620 9,998,390 1230
9,995,910 9,994,660 1250
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The frequency shift, ∆ f = f1 − f2, is caused by the mass change in the second plating process.
∆ f and δ are the average value and the standard deviation of the frequency shift in each subgroup,
respectively. The mass of the gold and silver films, ∆m, can be theoretically obtained from the density
and volume of the films; here, the masses of the gold film and silver film were 757.91 and 412.33
ng, respectively. According to Equation (4), in this experiment, the equivalent mass sensitivities
of the Au-QCMs and Ag-QCMs within the electrode central diameter of 1 mm were 3.64 and 2.97
Hz·ng−1, respectively.

The theoretical frequency shift, ∆ fe, was calculated according to the corresponding equivalent
mass sensitivity and ∆m. Es is the deviation between ∆ f and ∆ fe. The low standard deviation, δ, which
was obtained for each subgroup, showed that the experimental system and environment were stable,
and therefore showed that the experimental results are valid.

As can be seen from Table 1, the absolute values of the differences between the theoretical and
experimental mass sensitivities of the Au-QCMs and Ag-QCMs were all less than 8.86%. Therefore,
the experimental data can be considered to be in accordance with the theoretical results.

For subgroups A and C, the frequency shifts were different, while the mass changes caused by
the second plating process were equal; the same was true for subgroups B and D. When a higher
frequency shift is caused by the same mass change, it reflects a higher mass sensitivity. Thus, the mass
sensitivity of the Au-QCMs is higher than that of the Ag-QCMs, which was consistent with theoretical
calculations. That is, the electrode materials influenced the frequency–mass relationships of the QCMs,
even though the Sauerbrey equation does not consider such an influence.

Additionally, the mass sensitivity of the Au-QCMs is about 1.1 times that of the Ag-QCMs, which
is not proportional to the ratio between the densities of gold and silver. That is, the difference in the
mass sensitivities of QCMs with different electrode materials is not proportional to the difference in the
densities of the electrode materials. Our following work will investigate the deeper reason for the
difference in mass sensitivity between QCMs with different electrode materials.

5. Conclusions

In this paper, the results of both theoretical calculation and experiment showed that the mass
sensitivity of Au-QCMs is higher than that of Ag-QCMs, which indicated that the mass sensitivity
of QCMs varies with the electrode material. Furthermore, the results showed that the difference in
mass sensitivity of QCMs with different electrode materials is not proportional to the difference in the
density of the electrode material. This result suggests that, in order to obtain more accurate results in
practical applications of QCMs, the influence of electrode material on the mass sensitivity of the QCM
must be considered.
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