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Abstract: Under climate change and increasing water demands, groundwater depletion has become
regional and global threats for water security, which is an indispensable target to achieving sustainable
developments of human society and ecosystems, especially in arid and semiarid regions where
groundwater is a major water source. In this study, groundwater depletion of 2003–2016 over Xinjiang
in China, a typical arid region of Central Asia, is assessed using the gravity recovery and climate
experiment (GRACE) satellite and the global land data assimilation system (GLDAS) datasets. In the
transition of a warm-dry to a warm-wet climate in Xinjiang, increases in precipitation, soil moisture
and snow water equivalent are detected, while GRACE-based groundwater storage anomalies (GWSA)
exhibit significant decreasing trends with rates between-3.61 ± 0.85 mm/a of CSR-GWSA and −3.10 ±
0.91 mm/a of JPL-GWSA. Groundwater depletion is more severe in autumn and winter. The decreases
in GRACE-based GWSA are in a good agreement with the groundwater statistics collected from local
authorities. However, at the same time, groundwater abstraction in Xinjiang doubled, and the water
supplies get more dependent on groundwater. The magnitude of groundwater depletion is about that
of annual groundwater abstraction, suggesting that scientific exploitation of groundwater is the key
to ensure the sustainability of freshwater withdrawals and supplies. Furthermore, GWSA changes
can be well estimated by the partial least square regression (PLSR) method based on inputs of climate
data. Therefore, GRACE observations provide a feasible approach for local policy makers to monitor
and forecast groundwater changes to control groundwater depletion.

Keywords: groundwater variation; terrestrial water storage; GRACE; GLDAS; arid region;
sustainable development

1. Introduction

As a vital source of freshwater, groundwater accounts for more than one third of total water
withdrawals over the globe [1,2]. It plays an important role in agriculture, industry, public supply and
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ecosystems in many parts of the world [3], especially in populous countries (e.g., China and India) and
arid regions lacking adequate alternative water source (e.g., Central Asia, the Middle East and North
Africa) [4]. Groundwater is the primary water source for over two billion people and more than 50% of
irrigation water for global food supply [1]. Therefore, in arid regions highly relied on groundwater, the
assessment of groundwater change is the basis to evaluate the level of water stress [indicator 6.4.2
under the sustainable development goal (SDG) 6] for regional policy makers to ensure sustainable
withdrawals and supply of freshwater to address water scarcity (target 6.4 under SDG 6).

Xinjiang Uygur Autonomous Region (Xinjiang) is a typical arid and semi-arid region in Central
Asia, and the core area of The Belt and Road. The water vapor fluxes are mainly generated in the
North Atlantic and Indian Oceans which are carried by the westerly circulation and by the south Asia
monsoon, respectively [5,6]. The precipitation in Xinjiang has complex variations in space and time,
with more precipitation in mountainous areas and summer [5]. Caused by the complex topography and
arid and semi-arid climate systems, the water resources have uneven spatial and temporal distribution.
Water resources are formed in mountainous areas and dispersion in the plain area, oasis areas and
desert areas over Xinjiang.

In recent decades, the shortage of water resources has become a main constraint in the sustainable
development of the society and ecosystems in this region. The groundwater is a major water resource
and the more and more severe water stress due to depleting groundwater caused by warming
temperature and increasing water demand from growing population and expanding of the agriculture
land has been a threat to water security. Many serious groundwater depletion areas have been detected,
such as Urumqi, Shihezi and Changji cities, and Turpan-Hami Basin [7].

Due to the complex hydrological process and the geological structure over Xinjiang, the
groundwater recharge and enrichment have complex characteristics [7]. Specifically, the natural
groundwater recharge only accounts for 14% of groundwater recharge in the forms of rainfall
infiltration and lateral recharge in piedmont regions, the other 86% recharges are mainly from river
seepage and field infiltration [7]. In some mountainous areas, numerous snow and glacier meltwater
also provide large recharges for the groundwater, such as Tianshan Mountainous (TSM) and Kunlun
Mountainous (KLM). As a result of the high soil porosity and large recharge from the piedmont surface
water, the piedmont alluvial plain areas have more groundwater than other areas, such as the piedmont
alluvial plain areas of the Aksu river with the water table shallower than 3 m [8].

At present, some literatures have been focused on the groundwater changes over some regions of
Xinjiang, such as the groundwater depletion and its impact factors in Tarim Basin (TRB) [9], the water
stable isotope in detecting the spatial characteristics of surface water and groundwater [10] and the
evaluation of groundwater quality in the plain area of Xinjiang [11]. However, the above researches
only investigate the sub-regional groundwater variations using the limited available observation
groundwater wells. Until now, although recent studies discuss the complex hydrological processes
in Xinjiang, they are mainly about climate change and surface water [12–15]. Constrained by the in
situ observations, the spatial and temporal characteristics of the groundwater storage (GWS) changes
over the entire Xinjiang is still unclear. The impacts of the GWSC on water security and sustainable
development in Xinjiang are not studies systematically. Moreover, the relationships between the
hydro-climatic factors (e.g., precipitation, temperature, evaporation, soil moisture (SM) and snow
water equivalent (SWE)) and groundwater are not explored.

With the advantages of continuous spatial and temporal resolutions, the gravity recovery and
climate experiment (GRACE) satellite provides a potential approach to monitor GWSC in regional
scales. To estimate the GWS changes, the SM, SWE and surface water accurately estimated from land
surface models (LSMs)/hydrological models or observations are removed from the terrestrial water
storage (TWS) changes deriving by GRACE. Many studies have successfully used GRACE data and
LSMs data to estimate GWS changes, especially its depletion in many regions, such as India [16],
California’s Central Valley [17] and North China [18]. However, the validation of GWS changes is still
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a challenge in the regions without enough groundwater wells which have been illustrated clearly by
previous researches [19–21].

Therefore, in order to have a better understanding of the complex hydrological processes in
Xinjiang, and to develop a sustainable water resource management strategy between the water use
and water supply, in this study, the groundwater dynamics are investigated based on the GRACE
data and LSM data. It should be noted that the comprehensive validation of the GWS changes are
not discussed due to the unavailable groundwater well observations. Three questions are answered
as follows: (1) What are the spatial and temporal features of groundwater changes? (2) How do the
groundwater changes impact on water security and sustainable development in Xinjiang? (3) Whether
the hydro-climate variables can simulate the groundwater changes in a suitable model? The application
of GRACE observations in monitoring and assessing changes in groundwater resources in this study
provides scientific supports for local policy makers to formulate regional-scale strategies of sustainable
groundwater management to achieving SDG 6 in Xinjiang. This paper is organized as follows.
In Section 2, the study area, datasets and methodologies are introduced. Section 3 provides the major
results of the study. The performances of GRACE-based GWSA and impacts of the hydroclimatic
factors on the groundwater are discussed in Section 4. The conclusion is presented in the last section.

2. Study Area, Datasets and Methodologies

2.1. Study Area

The study area is located in Northwest China covering more than 1.6 million km2 of 73◦40’~96◦23’ E
and 34◦25’~49◦10’ N (Figure 1). Its complex topography characterizes with mountainous, plain and
basin areas. There are three mountain ranges in Xinjiang, namely, the Altai Mountains (ATM) in the
north, Tianshan Mountains (TSM; the “Water Tower” of Central Asia) in the middle, and the Kunlun
Mountains (KLM) in the south. The Junggar Basin (JGB) and Tarim Basin (TRB) are situated between
the three mountain ranges from north to south. Most of the irrigated areas are distributed in the
piedmont plains and the edges of basins (Figure 1).
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Figure 1. Study area: Xinjiang (XJ) and the locations of the five sub-regions, i.e., Altain Mountainous
(ATM), Junggar Basin (JGB), Tianshan Mountainous (TSM), Tarim Basin (TRB) and Kunlun Mountainous
(KLM). The black line denotes the boundary of the sub-regions. The blue represents the area of irrigation
from groundwater, which are extracted from the Global Map of Irrigation Areas (GMIA) V5.0 of the
Food and Agriculture Organization of the United Nations, AEIGW: Area equipped for irrigation
with groundwater.
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Xinjiang is dominated by an arid and semi-arid climate with very low precipitation and strong
evaporation. The average of annual precipitation is 157 mm, which only accounts for 24.2% of the
average precipitation (i.e., 650 mm) across China [22,23]. In addition, precipitation in this region varies
with high spatial difference and large inner-annual variation (e.g., more precipitation in mountainous
areas than in plain areas; more precipitation in spring and summer than in autumn and winter) [14,24,25].
In the past three decades, Xinjiang experienced a significant warm-wet trend [5,26]. Although Xinjiang’s
climate transited from warm-dry to a warm-wet in the 1980s [15,27], water resources are still limited
and hardly meet the increasing water demand for economy development and population growth in
Xinjiang. As an important and irreplaceable water source for Xinjiang, groundwater plays a key role
for domestic water supplies and agricultural irrigation in oasis [22].

2.2. Datasets

Datasets of a variety of hydrological variables with various spatial resolutions are used in this
study (Table 1). The datasets are interpolated into the 1.0◦ × 1.0◦ spatial resolution by the bilinear
interpolation method. We also collect statistics of water resources from the local authorities to validate
our estimation of groundwater storage anomalies (GWSA). Our analysis is carried out at multiple time
scales from monthly, seasonal to annual. The four seasons are spring [March–May (MAM)], summer
[June–August (JJA)], autumn [September–November (SON)] and winter [December–February (DJF)].
In this study, the monthly anomalies of all variables are relative to the 2004–2009 baseline.

Table 1. Datasets used in this study.

Variable Acronym Period Spatial Resolution Source

Terrestrial Water Storage
Anomalies TWSA 2002.04–2017.01

(monthly) 1◦ × 1◦
Jet Propulsion Laboratory,

California Institute of
Technology https://grace.jpl.

nasa.gov/data/get-data/

Precipitation P 1961–2017
(monthly) 0.5◦ × 0.5◦

China Meteorological
Administration http:

//data.cma.cn/site/index.html

Temperature T 1961–2017
(monthly) 0.5◦ × 0.5◦

China Meteorological
Administration http:

//data.cma.cn/site/index.html

Evaporation E 1980–2016 (daily) 0.25◦ × 0.25◦
Global Land Evaporation
Amsterdam Model V3.1a

https://www.gleam.eu/

Soil Moisture SM 2000–2017
(monthly) 1◦ × 1◦

GLDAS Noah Land Surface
Model L4 2.1 https:

//search.earthdata.nasa.gov/

Snow Water Equivalent SWE 2000–2017
(monthly) 1◦ × 1◦

GLDAS Noah Land Surface
Model L4 2.1 https:

//search.earthdata.nasa.gov/

Observed Groundwater
Recharge OBS-GWR 2003–2015 (annual) Regional average

Xinjiang Water Resources
Bulletin http://www.xjslt.gov.

cn/zwgk/slgb/index.html

Observed Groundwater
Depth GWD 2004–2010

(monthly)
Point (41.79◦ N,

81.62◦ E)

Department of Water
Resources of Xinjiang Uygur

Autonomous Region
http://www.xjslt.gov.cn

2.2.1. GRACE-Based Terrestrial Water Storage Anomalies (TWSA)

The GRACE twin satellites launched in March 2002 are used to measure the Earth’s gravity field
changes and their data is used to investigate changes in water resources over land, ice and oceans [28].
According to the relationship between gravity field changes and mass changes at the Earth’s surface,
the vertically integrated terrestrial water storage changes can be detected by the month-to-month
changes in Earth gravity field over a basin larger than the GRACE spatial resolution [29].

https://grace.jpl.nasa.gov/data/get-data/
https://grace.jpl.nasa.gov/data/get-data/
http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html
https://www.gleam.eu/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
http://www.xjslt.gov.cn/zwgk/slgb/index.html
http://www.xjslt.gov.cn/zwgk/slgb/index.html
http://www.xjslt.gov.cn
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The monthly GRACE Tellus Level-3 products provide the surface mass changes, with most
geophysical corrections applied, to analyze changes in the mass of the Earth’s hydrologic, cryospheric
and oceanographic components. The Release 5 (RL05) of the Centre for Space Research (CSR), the
GeoForschungsZentrum (GFZ), the Jet Propulsion Laboratory (JPL) provides monthly TWSA relative
to the baseline average of 2004–2009.

In order to reduce the discrepancy of the three products, the ensemble mean (EM) is calculated as
the average of CSR, GFZ and JPL. All GRACE datasets are available from April 2002 to January 2017
with the spatial resolution of 1◦ × 1◦ (Table 1). Missing data in the CSR, GFZ, JPL and EM time series
are filled by using linear interpolation of the nearby monthly mean values. Given the availability of
GRACE datasets, the study period of this paper is from 2003 to 2016.

2.2.2. Climate Data

Temperature and precipitation of the surface climate China temperature monthly grid V2.0
dataset and the surface climate China precipitation monthly grid V2.0 dataset are obtained from the
China Meteorological Administration with the spatial resolution of 0.5◦ × 0.5◦ (Table 1). These two
gridded datasets were developed by interpolating observations from 2472 meteorological stations over
China based on the thin plate spline (TPS) interpolation method. After strict quality controlling and
generalized cross validation test, the datasets reasonably describe the spatiotemporal characteristics
of temperature and precipitation, especially in Northwest China [30]. In this study, the temperature
and precipitation datasets of 1961–2016 are applied to analyze the long-term changes in temperature
and precipitation, which helps better understand the relationships of groundwater variations and
climate change.

Evaporation is another major climate variable that influences groundwater changes [31]. The Global
Land Evaporation Amsterdam Model (GLEAM) is a global evaporation model driven by remote
sensing observations [32]. The model is capable of estimating terrestrial evaporation and root-zone
soil moisture based on satellite data. In the model, different components of terrestrial evaporation can
be simulated, such as transpiration, bare soil evaporation, open-water evaporation, interception loss,
and sublimation. Another major advantage of GLEAM is the independent and detailed modelling of
forest interception loss based on Gash’s analytical model [33]. Therefore, evaporation and root-zone
soil moisture from GLEAM have been widely applied in previous studies to investigate changes of
the water cycle [32,34]. In this study, the latest GLEAM v3.1a dataset with the spatial resolution of
0.5◦ × 0.5◦ during 1980–2016 is used to estimate the relationships between the changes in groundwater
and evaporation in Xinjiang (Table 1).

2.2.3. Soil Moisture (SM) and Snow Water Equivalent (SWE)

The Global Land Data Assimilation System (GLDAS) aims to consolidate satellite-and ground
based observational data products to generate optimal fields of land surface states and fluxes
by using advanced land surface modeling and data assimilation techniques (Rodell et al., 2004).
At present, GLDAS consists of simulations of four land surface models (LSMs): Noah, Catchment, the
Community Land Model (CLM), and the Variable Infiltration Capacity (VIC). The GLDAS datasets
have five temporal resolutions from 1 h to 1 month and eight spatial resolutions from 0.1◦ × 0.1◦

to 1.25◦ × 1.25◦ (https://disc.sci.gsfc.nasa.gov/datasets?keywords=GLDAS). Since GLDAS datasets
provide hydrological variables in high spatial and temporal resolutions, they have been widely used in
many previous studies in the field of hydrology (Scanlon et al., 2012; Voss et al., 2013; Mukheriee and
Ramachandran, 2018).

For the regions where TWS is limited to soil water storage, the simplest cases to estimate
groundwater changes in arid and semi-arid environments is to ignore surface waters and snow [20]. If a
dense soil moisture network exists in areas that are larger than several hundred square kilometers as
Illinois or the region of the High Plains aquifer in the United States of America, providing information

https://disc.sci.gsfc.nasa.gov/datasets?keywords=GLDAS
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on the water contained in the soil at several depths, groundwater storage changes can be inferred
removing the anomaly of soil water content to the anomaly of TWS that was derived from GRACE [35].

However, most of the times, such networks do not exist, especially in our study area Xinjiang [36].
Therefore, in this study, the GLDAS model outputs are used in many previous works [18,19,37,38].
The SM and SWE from the latest GLDAS Noah 2.1 dataset with the spatial resolution of 1.0◦ × 1.0◦

are used in this study to estimate the changes in SM and SWE and hence to isolate groundwater
changes from TWSA (Table 1). The SM in this study is the summation of SM in the four soil levels (i.e.,
0 cm–10 cm, 10 cm–40 cm, 40 cm–100 cm and 100 cm–200 cm).

2.3. Methodologies

The GWS will be separated from GRACE-derived TWS changes, other water storage components
of TWS have to be estimated from the GLDAS model [19]. The temporal and spatial variations of the
hydrological and climate variables are analyzed by the linear trend (K). To measure the relationship
between different variables, the correlation coefficient (CC) is applied. The partial least square
regression (PLSR) is used to simulate GWSA by five variables (i.e., PA, TA, EA, SMA, SWEA), and the
accuracy of PLSR is quantified by the coefficient of determination (R2). The details of each methodology
are provided as follows.

2.3.1. Linear Trend (K) and Correlation Coefficient (CC)

The linear trend (K) is derived using the linear least square method based on the Student’s t-test
at the 95% and 99% significance levels (p < 0.05 and p < 0.01), which is used to measure the linear
changes of the hydro-climate variables (e.g., TWS, P, T, E, SM and SWE) in Xinjiang.

The correlation coefficient (CC) is applied to quantify the statistical relationship between two
variables. In this study, CC is computed to measure the relationships between different hydro-climate
variables, such as GWSA derived from the four GRACE datasets (i.e., CSR, GFZ, JPL and EM).

2.3.2. Derivation of GWSA

The vertically integrated TWS change (TWSC) estimated by the GRACE datasets consist of changes
in SM, SWE, surface water reservoir storage (SWRS) and groundwater [37,39,40]. Thus, GWS can be
calculated as the residual of the following disaggregation equation:

GWS = TWS − SM − SWE − SWRS (1)

Xinjiang has very complex hydrological processes, which are caused by the complex topographies
(three mountainous areas: ATM, TSM and KLM; two basins: JGB and TRB) and arid and semi-arid
climate system [23]. The water resources are majorly formed in the mountainous areas. In the plain
areas, frequent transformations (i.e., groundwater recharge and groundwater discharge) occur between
the groundwater and surface water [7,41], which result in the difficult to remove surface water from
the terrestrial water storage.

Moreover, in this arid and semi-arid area, surface water is extremely limited especially in desert
regions, and mostly originates from the melting water of snow cover and glacier in an enclosed
endorheic basin. Statistics also show that the surface water storage has no significant changes from 1984
to 2004 [41]. It can be considered as an invariant constant which cannot change the major result about
the groundwater changes. Therefore, in this study, the SWS is neglected as previous studies [42,43].
Equation (1) can be simplified as:

GWS = TWS − SM − SWE (2)

Therefore, GWSA can be obtained in

GWSA = TWSA − SMA − SWEA (3)
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where SMA and SWEA are the anomalies of SM and SWE, respectively. Although the glacier mass loss
has been observed in mountainous area [44], we only focus on the groundwater variations, and the
glacier is not accounted for the water budget analysis as the previous work [19].

2.3.3. Partial Least Square Regression (PLSR)

It is known that PLSR has the strengths of both the principal component analysis and multiple
linear regression, which can overcome multicollinearity, especially when there are too many explanatory
variables [45,46]. Due to its prominent performance in the multiple variables analysis, it has been
widely used in phenology research in recent years [14,17]. The details of the PLSR procedure can be
obtained in the supplementary information. In this study, the monthly GWSA is simulated by PLSR.
As the incoming water fluxes of precipitation (P) and outgoing fluxes of evaporation (E), the two
variables are considered in the groundwater simulation. Since temperature (T) has strong impacts on
evaporation, and it also has influences on the precipitation changes. Therefore, T is used as one of the
explanatory variables. SM and SWE are two other dependent variables because of their important
roles in deriving groundwater. We aim to develop PLSR models to estimate GWSA for Xinjiang and
the five sub-regions, which are also used to reveal the major influencing variables of the changes in
groundwater. Moreover, the differences of the major influencing variables in the five sub-regions are
also discussed to understand the hydro-climatic mechanisms of groundwater changes in the study
area. The accuracy of the PLSR is measured by the adjusted coefficient of determination R2.

3. Result

3.1. Hydro-Climate Changes over Xinjiang

Since Xinjiang has very complex hydrological processes caused by the complex topography and
arid and semi-arid climate [23], it is necessary to analyze the hydro-climate changes firstly which
not only display the hydro-climate variations but also help to better understand the groundwater
changes. Therefore, in this section, the temperature, precipitation, evaporation, SM, SWE and TWSA
over Xinjiang are explored.

In the past 56 years (1961–2016), Xinjiang has been experiencing warming temperature and
increasing precipitation (Figure 2A,B and Table S1). Significant positive trends of seasonal and
annual temperature and precipitation are detected during both 1961–2016 and 1980–2016. The annual
temperature increases with rates of 0.029 ± 0.007 ◦C/a in 1961–2016 and 0.038 ± 0.013 ◦C/a in 1980–2016,
and the annual precipitation increases with rates of 0.81 ± 0.28 mm/a in 1961–2016 and 1.01 ± 0.58 mm/a
in 1980–2016 (Table S1). In the last decade (2003–2016), the temperature and precipitation increases by
0.022 ◦C/a and 2.3 mm/a, respectively, although the trends are not statistically significant.

In 1980–2016, the annual evaporation exhibits a significant positive trend with the rate of
0.60 ± 0.42 mm/a (Figure 2C, p < 0.01). The trend of the annual evaporation in 2003–2016 is 1.55 mm/a,
which is more than double of that in 1980–2016, but the trend is insignificant. For monthly and seasonal
evaporation, positive trends are found in the two periods, except in DJF (Table S1).

SM increases considerably in 2003–2016, as a result of the increase in precipitation (Figure 3A,
Table S1). In particular, the monthly SM significantly increases with the rate of 0.15 ± 0.02 mm/a
(p < 0.01). For the seasonal variations, SM has the largest positive trend in SON (k = 2.26 ± 1.35 mm/a)
followed by JJA and MAM. Annual SM also shows a significant positive trend with the value of
1.82 ± 0.93 mm/a. For the SWE, only JJA and SON show weak positive trends (Table S1). The monthly
SWE, other two seasonal SWE and annual SWE have weak negative trends.
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Figure 3. Monthly Soil Moisture Anomalies (SMA), Snow Water Equivalent Anomalies (SWEA) (A) and
Terrestrial Water Storage Anomalies (TWSA) (B) over Xinjiang during 2003–2016.

All the GRACE datasets (e.g., CSR, GFZ, JPL and EM) show negative trends in TWSA in monthly,
seasonal and annual scales (Table S2). The trends are statistically significant in most of the cases.
The negative trends of monthly TWSA are between−0.21± 0.07 mm/a (from CSR) and−0.16± 0.08 mm/a
(from JPL) (Figure 3B). Except TWSA of JJA, SON and DJF derived from JPL, all other seasonal TWSA
are detected with significant negative trends (Table S2). In the four datasets, annual TWSA has negative
trends between −3.70 ± 1.14 mm/a (from GFZ) and −1.74 mm/a (from JPL).



Remote Sens. 2019, 11, 1908 9 of 21

3.2. Linear Trends of GWSA in 2003–2016

Based on the above analysis of changes in hydro-climatic variables, in this section, the temporal
changes of GWSA are analyzed at monthly, seasonal and annual scales. The GWSA based on
the TWSA of CSR, GFZ, JPL and EM, are denoted as CSR-TWSA, GFZ-TWSA, JPL-TWSA and
EM-TWSA, respectively.

The monthly GWSA derived from the four GRACE datasets show significant decreasing trends at
the 99% significance level (p < 0.01) with the rates between −0.27 ± 0.06 mm/a and −0.31 ± 0.06 mm/a,
which clearly indicates groundwater depletion in Xinjiang during 2003–2016 (Figure 4 and Table 2).
For the intra-annual changes of GWSA, the anomalies of April to August are positive, while those in
other months are negative (Figure 5A). The average of GWSA decreases month-to-month from August
to October, and then increases till April. A similar month-to-month variation is founded in the linear
trends (k) of the monthly GWSA (Figure 5B). GWSA in all the months have negative trends with the
most considerable decreases in September and October.

Table 2. Change rates of gravity recovery and climate experiment (GRACE)-based GWSA at different
timescales (mm/month for monthly scale, mm/a for seasonal and annual scales) during 2003–2016.
** denotes the trend is significant at the 95% or 99% confidence level. ± values are the 5% and 95%
significance intervals.

Timescale CSR-GWSA GFZ-GWSA JPL-GWSA EM-GWSA

Monthly −0.31 ** ± 0.06 −0.28 ** ± 0.06 −0.27 ** ± 0.06 −0.29 ** ± 0.05
MAM −3.24 ** ± 1.27 −2.59 ** ± 2.02 −3.83 ** ± 1.78 −3.22 ** ± 1.35

JJA −2.96 ** ± 1.05 −2.96 ** ± 1.51 −2.70 ** ± 1.61 −2.88 ** ± 0.84
SON −4.32 ** ± 2.21 −4.39 ** ± 1.85 −3.27 ** ± 1.26 −3.99 ** ± 1.25
DJF −4.61 ** ± 1.71 −3.06 ** ± 1.97 −2.99 ** ± 2.19 −3.55 ** ± 1.57

Annual −3.61 ** ± 0.85 −3.28 ** ± 1.04 −3.10 ** ± 0.91 −3.33 ** ± 0.74

For the seasonal GWSA, significant decreasing trends are founded at the 99% significance level
(Table 2). Compared to other seasons, the GWSA in JJA depletes the most moderate with rates of
−2.96 ± 1.05 mm/a, −2.96 ± 1.51 mm/a, −2.70 ± 1.61 mm/a and −2.88 ± 0.84 mm/a from CFR-GWSA,
GFZ-GWSA, JPL-GWSA and EM-GWSA, respectively, because the significant increases in precipitation
mitigate the depletion. The GWSA in SON and DJF decreases the most, except JPL-GWSA (Table 2).
The annual GWSA also exhibits significant negative trends between −3.61 ± 0.85 mm/a (from CSR) and
−3.10 ± 0.91 mm/a (from JPL) (Table 2).
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3.3. Spatial Features of the Linear Trends of GWSA

The spatial features of the linear trends of GWSA in monthly, seasonal and annual scales are
evaluated in this section. Since the JJA precipitation accounts for most of the annual precipitation, and
most of water resources are used in JJA in Xinjiang [6], in this section, only the spatial features of the
JJA are provided.

About 70% of areas in Xinjiang have significant negative trends in the monthly GWSA, and about
20% have significant positive trends (Figure 6). The trends of other areas are insignificant. The spatial
distributions of the linear trends in GWSA derived from the four datasets are very similar with negative
centers (k ≤ −0.9 mm/month) in the northeastern part of Xinjiang (Hami Basin), and positive centers in
eastern KLM (k ≥ 0.3 mm/month) (Figure 6). Most of the areas in Xinjiang show decreasing trends
in GWSA.
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Compared with the monthly GWSA, the areas with significant trends of GWSA in JJA are obviously
smaller, especially for areas with significant negative trends (difference value from 17% to 22%) (Figure
S1). The negative centers (k ≤ −30 mm/a) and positive centers (k ≥ 10 mm/a) of linear trends of GWSA
in JJA still appear in the same regions as monthly GWSA. Most areas of KLM, northwestern TSM and
western and eastern TRB have insignificant changes from Figure S1. For the other three seasons, the
areas with significant positive/negative trends equivalent to those of GWSA in JJA (not shown). Areas
with significant positive trends in MAM and JJA are larger than those of SON and DJF.

For the annual GWSA, more than 50% of the areas have significant negative trends and about 15%
of the areas have significant positive trends (Figure S2). The spatial distributions of the annual trends
in GWSA derived from the four GRACE datasets are basically the same (Figure S2). The annual GWSA
decreases by more than 20 mm/a in eastern JGB and parts of eastern Xinjiang, indicating a serious
groundwater depletion in these areas. The GWSA in the southeastern part of Xinjiang, i.e., the western
KLM, increases by more than 50 mm/a, showing the increase of groundwater.

3.4. Changes of GWSA in the Five Sub-Regions

According to the above results and the CC values of the four GWSA datasets in Table 3, EM-GWSA
agrees well with GFZ-GWSA, JPL-GWSA and EM-GWSA. Especially, compared to GWSA derived from
other GRACE datasets, the CC values of annual EM-GWSA are generally the highest and larger than 0.9.
Therefore, in the following sections, only the EM-GWSA is applied to detect the groundwater variations.
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Table 3. Correlation coefficients (CC) of CSR-GWSA, GFZ-GWSA, JPL-GWSA, and EM-GWSA at
monthly, seasonal and annual scales in 2003–2016. All CC values are significant at the 99% confidence
level using the Student’s t-test.

Time Scale Dataset CSR-GWSA GFZ-GWSA JPL-GWSA EM-GWSA

Monthly

CSR-GWSA 1.00
GFZ-GWSA 0.76 1.00
JPL-GWSA 0.69 0.63 1.00
EM-GWSA 0.91 0.90 0.87 1.00

MAM

CSR-GWSA 1.00
GFZ-GWSA 0.74 1.00
JPL-GWSA 0.88 0.63 1.00
EM-GWSA 0.96 0.86 0.93 1.00

JJA

CSR-GWSA 1.00
GFZ-GWSA 0.83 1.00
JPL-GWSA 0.53 0.55 1.00
EM-GWSA 0.90 0.91 0.80 1.00

SON

CSR-GWSA 1.00
GFZ-GWSA 0.84 1.00
JPL-GWSA 0.63 0.73 1.00
EM-GWSA 0.93 0.95 0.83 1.00

DJF

CSR-GWSA 1.00
GFZ-GWSA 0.92 1.00
JPL-GWSA 0.72 0.59 1.00
EM-GWSA 0.97 0.92 0.84 1.00

Annual

CSR-GWSA 1.00
GFZ-GWSA 0.94 1.00
JPL-GWSA 0.92 0.84 1.00
EM-GWSA 0.99 0.96 0.95 1.00

For the four seasons, negative trends of the GWSA are statistically significant at 95% or 99%
confidence level over ATM, JGB, TSM and TRB, and KLM has positive trends. In practicality, JGB has
the largest groundwater decrease in MAM with the rate of −1.27 mm/a, followed by ATM, TRB and
TSM with the rates of −0.24 mm/a, −0.23 mm/a and −0.20 mm/a. KLM has the significantly increased
annual groundwater (0.20 mm/a, p < 0.05). In JJA and SON, the largest depletion rates also appear
in JGB (−1.09 mm/a for JJA and −1.18 mm/a), and are followed by TSM and ATM which have the
comparable deplete rates (Table 4). For DJF, JGB still has the largest groundwater depletion, and the
depletion rate in ATM is larger than TSM and TRB.

Table 4. Linear trends (mm/a) of seasonal and annual EM-GWSA over five sub-regions [i.e., Altain
Mountainous (ATM), Junggar Basin (JGB), Tianshan Mountainous (TSM), Tarim Basin (TRB) and Kunlun
Mountainous (KLM)] in 2003–2016, * and ** significant at the 95% and 99% confidence level, respectively.

Sub-Regions MAM JJA SON DJF ANN

ATM −0.24 * −0.27 ** −0.38 ** −0.32 * −3.84 **
JGB −1.27 ** −1.09 ** −1.18 ** −1.20 ** −15.27 **
TSM −0.20 * −0.30 * −0.40 ** −0.21 * −3.74 **
TRB −0.23 ** −0.19 ** −0.21 ** −0.26 ** −2.93 **
KLM 0.20 * 0.24 * 0.08 0.14 2.2 *

The depletion rates of the annual GWSA are−15.27 mm/a,−3.84 mm/a,−3.74 mm/a and−2.93 mm/a
for JGB, ATM, TSM and TRB, respectively, and which are significant at the 99% confidence level.
The positive trend of the annual GWSA in KLM indicates the increasing of groundwater which is
mainly resulted from the recharge of SM and SWE due to the warming temperature and increasing
precipitation [5,26].
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With the most human activities than the other four sub-regions, JGB also has the largest
groundwater depletion through the whole year which are caused by the climate change and dramatic
human activities (e.g., groundwater irrigation and groundwater withdrawal for domestic use) [7].
For TSM, the large groundwater depletion appears in JJA and SON, which may be caused by the
dramatic groundwater withdrawal and utilization.

3.5. Comparison of the Groundwater between the Irrigation Areas and No-Irrigation Areas

In many parts of the world, it has been reported that agricultural irrigation can cause
over-exploitation of groundwater, resulting in reduction in GWS [39,47,48]. Therefore, in the study
area, the impacts of the agricultural irrigation on groundwater are discussed. Irrigated areas shown in
Figure 1 are extracted from the global map of irrigation areas (GMIA) V5.0 of the Food and Agriculture
Organization of the United Nations (http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm).
A grid that covers the irrigated areas is defined as an irrigated grid, otherwise it is a non-irrigated
grid. Based on this definition, 107 irrigated grids and 66 non-irrigated grids are identified (Figure 7).
The annual GWSA of the irrigated grids are compared with the averaged GWSA of their surrounding
non-irrigated grids based on the Student’s t test at the 95% significance level. The irrigated grids
without any surrounding non-irrigated grids are excluded in the comparison. GWSA in 35% of the
irrigated grids (red grids in Figure 7) are significantly different from their surrounding non-irrigated
grids, implying that agricultural irrigation exerts considerable impacts on GWSA. The averaged
groundwater depletion rates of these irrigated grids are 6.44 mm/a, while those of their surrounding
non-irrigated grids are 5.15 m/a, indicating that the agricultural irrigation exacerbates groundwater
depletion. These grids are mainly located in the conjunction regions of TRB, TSM and KLM, which
is in line with the results of previous studies [7]. Therefore, without effective and sustainable water
management, the groundwater depletion is expected to become more serious, causing greater threats to
the sustainable development of the society and ecosystems, especially for the regions already detected
with serious over-exploration regions (e.g., Turpan-Hami Basin and edge of the TRM).
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GWSA from their surrounding non-irrigated grids, and the black dots represent their differences are
insignificant. The blue areas are irrigated areas.

3.6. Increasing Groundwater Abstraction and Groundwater Depletion: A Challenge of SDG

During 2003–2016, the population of Xinjiang increased from 19.33 million to 23.98 million with
the rate of 0.3 million/a (Table 5). The cultivated land area of Xinjiang increased rapidly from 34,399
km2 in 2003 to 62,323 km2 in 2016. At the same time, the agricultural water use decreased from

http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm
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1.23 m3/m2 in 2003 to 0.89 m3/m2 in 2016, suggesting the efficiency of the agricultural water use
increased by 38%. However, with the population growth and expansion of the cultivated land, the
total water use increased from 49.44 billion m3 to 57.72 billion m3 in 2003–2015. Compared to the rise
of total water use, groundwater abstraction increased by a much faster rate, which doubled from 5.3
billion m3 to 11.9 billion m3 in 2003–2015, causing the proportion of the groundwater abstraction to
total water use to also double from 10.73% to 20.69%. On the other hand, the groundwater recharge
decreased consistently from 60.36 billion m3 to 53.64 billion m3 (Table 5). Hence, the ratio of the
groundwater abstraction to the groundwater recharge tripled from 8.78% in 2003 to 22.26% in 2015.
This shows that the water use in Xinjiang became more groundwater-dependent, and the groundwater
resources were being increasingly abstracted, causing groundwater over-exploitation. According to
the annual GRACE-based GWSA, the groundwater depletion rates range between 3.61 ± 0.85 mm/a
(from CSR-GWSA) and 3.10 ± 0.91 mm/a (from JPL-GWSA) in 2003–2016 (Table 2), and therefore
between 6.0 ± 1.4 billion m3/a and 5.1 ± 1.5 billion m3/a in volume given the area of Xinjiang (i.e.,
1.7 million km2), the magnitude of which is equivalent to the groundwater abstraction in Xinjiang,
suggesting that the groundwater abstraction is the major reason of the groundwater depletion. With the
consistent increases in population and cultivated land area, the groundwater abstraction is expected to
continuously increase, resulting in accelerated depletion of groundwater resources without sustainable
planning and management of groundwater utilization. The decrease in GWS intensifies the conflicts of
water demands and supplies in Xinjiang which will be a major obstacle to achieve the SDG in this
region. Therefore, a sustainable and constructive water management is urgently needed to cope with
the present and future challenges of the water crisis. In this connection, GRACE observations provide
an accurate, effective and cost-effective approach for policy makers to monitor groundwater changes,
which is the basis to formulate sustainable water management.

Table 5. Population, cultivated land area, agricultural water use, groundwater abstraction, groundwater
recharge, total water use, groundwater abstract/groundwater resources, and groundwater abstract/total
water use over Xinjiang during 2003–2016.

Year Population
(Million)

Cultivated
Land Area
(1000 km2)

Agricultural
Water Use

(m3/m2)

Groundwater
Abstraction
(billion m3)

Groundwater
Recharge

(billion m3)

Total Water
Use (billion

m3)

Groundwater
Utilization/

Groundwater
Resources (%)

Groundwater
Abstraction/
Total Water

Use (%)

2003 19.33 34.40 1.23 5.3 60.43 49.44 8.78 10.73
2004 19.63 34.25 1.11 5.8 50.26 49.64 11.44 11.59
2005 20.10 30.67 1.00 5.9 56.26 50.83 10.42 11.54
2006 20.50 38.28 0.96 5.9 55.41 51.37 10.64 11.47
2007 20.95 34.32 0.96 6.8 51.41 51.77 13.18 13.09
2008 21.31 45.37 0.91 8.0 51.85 52.82 15.40 15.12
2009 21.59 47.72 0.94 9.0 47.09 53.09 19.10 16.94
2010 21.85 47.59 0.92 9.5 62.43 53.51 15.24 17.78
2011 22.09 49.84 0.81 9.8 53.98 52.35 18.11 18.67
2012 22.33 51.37 0.96 11.1 55.70 59.01 19.91 18.79
2013 22.64 52.12 0.93 11.0 56.13 58.81 19.67 18.77
2014 22.98 59.95 0.93 13.1 44.39 58.18 29.59 22.58
2015 23.60 61.26 0.89 11.9 53.63 57.72 22.26 20.69
2016 23.98 62.32 - - - -

3.7. Estimation of Monthly GWSA Based on PLSR

According to the above results and the CC values of the four GWSA datasets in Table 6, EM-GWSA
agrees well with GFZ-GWSA, JPL-GWSA and EM-GWSA. Especially, compared to GWSA derived
from the other GRACE datasets, the CC values of the annual EM-GWSA are generally the highest and
larger than 0.9. Therefore, in this section, only the EM-GWSA dataset is used to develop the PLSR
model. The dependent variables were selected as P, T, E, SM and SWE. The analysis in this section is
conducted at a monthly scale over Xinjiang and the five sub-regions.
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Table 6. Regression coefficients of the monthly EM-GWSA as the function of precipitation anomalies
(PA), temperature anomalies (TA), evaporation anomalies (EA), SMA and SWEA by the partial least
squares regression (PLSR) method over the six regions in 2003-2016.

Regression
Coefficient XJ ATM JGB TSM TRB KLM

a0 −4.68 −5.13 −47.82 −1.97 −2.65 6.86
a1 −0.51 −0.23 −1.04 −0.31 0.26 0.01
a2 −0.92 −1.99 −1.92 −1.25 0.16 −0.75
a3 2.47 2.01 4.12 1.25 0.93 1.58
a4 −0.98 −0.65 0.04 −1.57 −1.67 0.09
a5 −0.15 −0.32 −0.57 −0.87 −0.77 0.18

Since the dependent variables are significantly related with GWSA, the PLSR method with the
five dependent variables are used to estimate the monthly GWSA. The PLSR function is as follows:

y = a0 + a1x1 + a2x2 + a3x3 + a4x1 + a5x5 (4)

where ai (i = 0, 1, · · · 5) are regression coefficients, x j ( j = 1, · · · 5) are PA, TA, EA, SMA and SWEA,
respectively, and y is GWSA. Then, Equation (4) has the following form

GWSA = a0 + a1PA + a2TA + a3EA + a4SMA + a5SWEA (5)

All the regression coefficients are provided in Table 6. Table 6 indicates that the five sub-regions
are with the positive influences of EA and the negative influences of SWEA.

Figure 8 displays the comparison between the EM-GWSA and the GWSA estimated by PLSR
(PLS-GWSA) over Xinjiang and the five sub-regions. In Xinjiang, the PLS-GWSA is in good agreement
with the EM-GWSA with the adjusted R2 = 0.48. The PLS-GWSA underestimates both the maximum
and minimum of EM-GWSA before 2007. However, PLS-GWSA overestimates EM-GWSA in 2007–2009
(Figure 8A). The performances of the PLS-GWSA vary in the five sub-regions with the best performance
in TSM (adjusted R2 = 0.72) (Figure 8D) and the worst in JGB (adjusted R2 = 0.14) (Figure 8C).
The adjusted R2 of PLSR in TRM and ATM are 0.44 and 0.62, respectively. In KLM, the PLSR has
the adjusted R2 = 0.19. An obvious underestimation in 2003–2007 also can be detected in ATM
and JGB. In general, the PLSR shows acceptable performance in estimating changes in GWSA,
suggesting its potential to be used for policy makers to evaluate and forecast regional groundwater
changes, which is crucial to achieving sustainable water management in arid regions without sufficient
ground-based monitoring.

Moreover, to have a comparison with the above PLSR result (involving five variables defined as
Case 1), the other two cases are:

Case 2: Three variables PA, TA, EA used in the PLSR simulation;
Case 3: Two variables SMA and SWEA involved in the PLSR simulation.
The accuracies of the three cases are quantified by the adjusted R2 of the PLSR in Table 7. Obviously,

Case 1 has the largest adjusted R2 values than Case 2 and Case 3 because it contains more variables
than the other cases. Case 2 has the larger adjusted R2 values than Case 3 over XJ, ATM, JGB, and
KLM which indicates that precipitation, temperature, and evaporation have larger contributions to
groundwater variations than SM and SWE. In TSM and TRB, Case 3 has a higher accuracy than Case 2
with the adjusted R2 values of 0.59 and 0.49, respectively.
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Table 7. Adjusted R2 results of the PLSR over six regions: Xinjiang (XJ) and the locations of the five
sub-regions, i.e., Altain Mountainous (ATM), Junggar Basin (JGB), Tianshan Mountainous (TSM), Tarim
Basin (TRB) and Kunlun Mountainous (KLM) at the three cases.

XJ ATM JGB TSM TRB KLM

Case 1 0.48 0.44 0.14 0.72 0.62 0.19
Case 2 0.25 0.24 0.15 0.06 0.05 0.19
Case 3 0.11 0.08 0.01 0.59 0.49 0.03

Table 7 shows that when the five variables: P, T, E, SM, and SWE are considered in the PLSR, the
accuracy of PLSR is the highest. However, as indicted by the reviewer, the EM-GWSA is derived by
SMA and SWEA, which result in higher accuracy when SM and SWE are included in PLSR. If SM and
SWE are not included as in Case 2, the accuracy of PLSR decreases. Generally, more variables included
in PLSR will achieve a higher accuracy of groundwater as possible.
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4. Discussion

The validation of the GRACE results against the groundwater observations is very important in the
groundwater analysis. However, there are very limited groundwater observations in this region [36].
Even though there may be some observations, it is very difficult to access the data as constrained
by the related data policy. We have tried our best to collect the observational data. Therefore, we
have to use the available data to discuss the performances of the hydrological components used in
the derivations of GWSA. Moreover, the errors analysis of SM and SWE have been discussed using
five different GLDAS models: GLDAS 1 CLM, GLDAS 1 Mosaic, GLDAS 1 VIC, GLDAS 1 Noah 2.7
and GLDAS 2.1 Noah 3.3. Additionally, the uncertainties of GWSA are explored from five different
GWSA datasets derived from the five GLDAS models and EM-GRACE data (See Supplementary Text
S1). The result shows that the GWSA based on the GRACE datasets can capture the groundwater
variations of the observed groundwater well.

Controlled by the complex topography and arid and semiarid climate conditions, Xinjiang has
very complex hydrological processes and spatial distributions of water resources [7]. Specifically, the
mountainous areas are the runoff generation areas, and the mountainous precipitation contributes to
more than 95% water resources, while the plain areas have only limited precipitation and almost no
surface runoff which are the water dissipation areas. On the other hand, extensive groundwater is
distributed over the piedmont plain areas, such as the northwestern part of ATM, the western part of
TSM and KLM. In the piedmont plain areas of the arid low and middle mountainous, there is only
limited surface runoff and few groundwater resources, such as the southeastern part of ATM and the
eastern part of TSM and KLM [7].

To understand the impacts of the hydroclimatic factors on the groundwater in Xinjiang, the
relationships between the annual EM-GWSA and PA, TA, EA, SMSA, and SWEA are evaluated by the
CC values (Table 8). In 2003–2016, precipitation and temperature increased which caused the increases
in evaporation, SM, and SWE over Xinjiang (Table S1). In Xinjiang, the groundwater has significantly
positive correlations with precipitation, temperature and evaporation at the 99% confidence level,
which indicates that the increased precipitation can increase evaporation, SMS and SWE and has
positive impacts on groundwater (Table 8). For the five subregions, positive correlations between the
groundwater and PA, TA and EA, SMSA are detected. Especially, the positive correlations between the
groundwater and P, T, E are significant at the 95% and 99% levels over JGB, TRB and KLM. KLM, PA,
TA, EA and SMSA have significant positive correlations with groundwater (p < 0.01), which indicates
that the increased precipitation has large contributions to the increases in groundwater [5]. Since the
hydrological processes are very complex in Xinjiang, more comprehensive analyses of the spatial
differences in the hydrological processes related to groundwater changes should be conducted in
future studies.

Table 8. Correlation coefficients (CC) between annual EM-GWSA and other annual hydroclimatic
variables (PA, TA, EA, SMSA, SWESA) over six regions in 2003–2016, ** and * indicate significance at
99% and 95% confidence levels, respectively.

Study Area PA TA EA SMA SWEA

XJ 0.26 ** 0.31 ** 0.44 ** −0.32 ** −0.10
ATM 0.11 0.29 ** 0.46 ** −0.19 * −0.25 **
JGB 0.15 * 0.20* 0.36 ** 0.07 −0.11
TSM 0.03 0.10 0.15 −0.75 ** −0.10
TRB 0.17 * 0.26 ** 0.19 * −0.67 ** −0.10
KLM 0.28 ** 0.29 ** 0.42 ** 0.21 ** −0.03

5. Conclusions

In this study, groundwater changes are comprehensively analyzed over the typical arid region of
Central Asia: Xinjiang and its five sub-regions during the period of 2003–2016. GWSA is derived from
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four GRACE datasets according to the components of TWSA. A machine learning method PLSR is
used to estimate GWSA. Moreover, the performance of the GWSA is evaluated against observations
at the whole region and basin scales. The challenges of the groundwater depletion and increasing
abstraction of the groundwater in Xinjiang are discussed. The major conclusions are as follows.

(1) In the transition of a warm-dry to a warm-wet climate in Xinjiang, increases in temperature,
precipitation, actual evaporation, soil moisture, and snow water equivalent are detected in recent
years. Nevertheless, GWSA decreases significantly across Xinjiang at various time scales (i.e.,
monthly, seasonal and annual). Among the four seasons, the fall (SON) and winter (DJF) have
more severe groundwater depletion than spring (MAM) and summer (DJF). The change rates of
the annual GWSA are between −3.61 ± 0.85 mm/a and −3.10 ± 0.91 mm/a in depth, or between 6.0
± 1.4 billion m3/a and 5.1 ± 1.5 billion m3/a in volume. Among the five sub-regions, the annual
GWSA in JGB decreases by the fastest rate of 15.27 mm/a, and the annual GWSA in KLM has a
positive trend of 2.2 mm/a. The increased groundwater is mainly detected in the southeast KLM
which may be caused by the increased precipitation.

(2) The comparison with groundwater statistics from local authorities shows that the GRACE
observations are a reliable tool to estimate GWS changes, which provide reliable and cost-effective
scientific reference for local policy makers to formulate actions for sustainable groundwater
management to achieve SDG. In 2003–2016, the groundwater abstraction in Xinjiang doubles, the
proportion of groundwater abstraction to the total water use also doubles from 10.73% to 20.69%,
suggesting that the water security in Xinjiang gets more dependent on groundwater resources.
At the same time, GRACE-based GWSA in Xinjiang decreases, and the ratio of the groundwater
abstraction to the groundwater recharge triples from 8.78% to 22.26%, which intensifies the water
conflicts in Xinjiang. The magnitude of the decreasing trend of GRACE-based GWSA is about
that of the annual groundwater abstraction, demonstrating that the groundwater abstraction is
one of the major reasons of the groundwater depletion.

(3) The PLSR model developed by GRACE-based GWSA and dependent variables (i.e., PA, TA,
EA, SMA, and SWEA) shows an acceptable performance in estimating monthly GWSA. The R2

of PLS-GWSA and CSR-GWSA reaches 0.80 in TRB. The PLSR model based on GRACE-based
GWSA can be potentially used for forecasting groundwater changes with inputs of predicted
PA, TA, EA, SMA, and SWEA. The forecast of the groundwater changes can provide a scientific
support for the achievement of SDG-6.

However, the GRACE-based GWS changes estimation still contains large uncertainties caused by
the errors in GRACE-derived TWS changes (e.g., correlated errors in the original GRACE products and
the coarse resolution of GRACE) and non-groundwater storage changes from models (e.g., uncertainties
in soil moisture) [19,20]. Another challenge is the limited groundwater well observations in Xinjiang,
which is still an unsolved problem in validating the GRACE-based GWS changes. In the future works
of groundwater changes over Xinjiang, new datasets: GRACE follow-on and interferometry synthetic
aperture radar (InSAR) data, and more groundwater wells (if available fortunately) should be involved
which can give access to high resolution and quantitative groundwater changes. Moreover, the future
changes of groundwater in Xinjiang may be predicted based on the hydro-climate variable data from
regional climate models and hydrological models by the statistical models (e.g., PLSR).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/16/1908/s1,
Text S1 Procedure of PLSR; Text S2 Discussion on the accuracy of the derivation of GWSA based on GRACE;
Figure S1. Spatial distributions of the linear trends (mm/month) of the JJA GWSA during 2003-2016. The cross
signs denote the trends are significant at the 95% significance level.; Figure S2. Same as Figure S1 but for annual
GWSA.; Figure S3: Spatial distribution of linear trends of monthly SM derived from CLM, Mosaic, VIC, Noah
2.7 and Noah 3.3 over Xinjiang during 2003-2016. The cross signs denote the trends are significant at the 95%
significance level. Figure S4: The multi-model average of the linear trends of monthly SM derived from CLM,
Mosaic, VIC, Noah 2.7 and Noah 3.3 over Xinjiang during 2003-2016 (A), and the corresponding STD (standard
deviation) indicating the uncertainty of SM (B).; Figure S5: Spatial distribution of linear trends of monthly SWE
derived from CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 over Xinjiang during 2003-2016. The cross signs denote

http://www.mdpi.com/2072-4292/11/16/1908/s1


Remote Sens. 2019, 11, 1908 19 of 21

the trends are significant at the 95% significance level.; Figure S6: Averaging the five linear trends of monthly SWE
derived from GLDAS 1 (i.e. CLM, Mosaic, VIC and Noah 2.7) and GLDAS 2.1 (i.e. Noah 3.3) over Xinjiang during
2003-2016 (A), and the corresponding STD (standard deviation) indicating the uncertainty (or error) of SM (B).;
Figure S7: Spatial distribution of linear trends of monthly GWSA derived from CLM, Mosaic, VIC, Noah 2.7 and
Noah 3.3 over Xinjiang during 2003-2016, and the monthly TWSA data is from EM-TWSA. The cross signs denote
the trends are significant at the 95% significance level.; Figure S8: Averaging the five linear trends of monthly
GWSA derived from GLDAS 1 (i.e. CLM, Mosaic, VIC and Noah 2.7) and GLDAS 2.1 (i.e. Noah 3.3) over Xinjiang
during 2003-2016 (A), and the corresponding STD (standard deviation) indicating the uncertainty (or error) of
GWSA (B). The monthly TWSA data is from EM-TWSA.; Figure S9. Comparison between observed groundwater
depth (GWD) and EM-GWSA in Kaidu-Konqi River basin during 2004-2010.; Figure S10. Comparisons between
observed groundwater recharge (OBS-GWR) and EM-GWSA (A), and between total water use and EM-GWSA (B)
in Xinjiang during 2003-2015.; Table S1. Linear trends of climate variables at monthly, seasonal and annual scales
during 1961-2016. * and ** denote the trend is significant at the 95% or 99% significance level. ± values are the 5%
and 95% confidence intervals.; Table S2. Change rates of TWSA derived from GRACE at different time scales
(mm/month for monthly scale, mm/a for seasonal and annual scales) during 2003-2016. * and ** denote the trend is
significant at the 95% or 99% significance level. ± values are the 5% and 95% confidence intervals.
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