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Abstract: In remote sensing, hyperspectral and polarimetric synthetic aperture radar (PolSAR)
images are the two most versatile data sources for a wide range of applications such as land use
land cover classification. However, the fusion of these two data sources receive less attention than
many other, because of their scarce data availability, and relatively challenging fusion task caused
by their distinct imaging geometries. Among the existing fusion methods, including manifold
learning-based, kernel-based, ensemble-based, and matrix factorization, manifold learning is one
of most celebrated techniques for the fusion of heterogeneous data. Therefore, this paper aims
to promote the research in hyperspectral and PolSAR data fusion, by providing a comprehensive
comparison between existing manifold learning-based fusion algorithms. We conducted experiments
on 16 state-of-the-art manifold learning algorithms that embrace two important research questions in
manifold learning-based fusion of hyperspectral and PolSAR data: (1) in which domain should the
data be aligned—the data domain or the manifold domain; and (2) how to make use of existing labeled data
when formulating a graph to represent a manifold—supervised, semi-supervised, or unsupervised.
The performance of the algorithms were evaluated via multiple accuracy metrics of land use land
cover classification over two data sets. Results show that the algorithms based on manifold alignment
generally outperform those based on data alignment (data concatenation). Semi-supervised manifold
alignment fusion algorithms performs the best among all. Experiments using multiple classifiers
show that they outperform the benchmark data alignment-based algorithms by ca. 3% in terms of the
overall classification accuracy.

Keywords: data fusion; generalized graph fusion; hyperspectral image; data alignment; locality
preserving projections; manifold alignment; manifold learning; MAPPER-induced manifold
alignment; polarimetric SAR; manifold alignment; MIMA

1. Introduction

1.1. Related Work

Multi-modal data fusion [1–7] continuously draws attention in the remote sensing community.
The fusion of optical and synthetic aperture radar (SAR) data, two important yet intrinsically different
data sources, has also began to appear frequently in the context of multi-modal data fusion [8–14].
With the rapid development of Earth observation missions, such as the Sentinel-1 [15], Sentinel-2 [16],
and the upcoming EnMAP [17], the availability of both data sources create a huge potential for
Earth-oriented information retrieval. Among all optical data [18–20], hyperspectral data are well
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known for their distinguishing power that originates from their rich spectral information [21–24].
Similarly, polarimetric SAR (PolSAR) data are a popular choice for classification task in the field of SAR
because it can reflect the geometric and the dielectric property of the scatterers [25–29]. It is of great
interest to investigate the fusion of hyperspectral and PolSAR images, especially with the application
to land use land cover classification (LULC).

Few studies attempted to address the challenge of fusing hyperspectral and PolSAR data. Jouan
and Allard [30] proposed a hierarchical fusion strategy for land cover classification using PolSAR and
hyperspectral images. In their work, hyperspectral images are firstly used to distinguish vegetation and
non-vegetation area. The PolSAR data are used to classify the non-vegetation area to man-made objects,
water, or bare soil. Li et al. [31] applied feature level and decision level fusion using hyperspectral
and PolSAR data. They combined the parameters of scattering mechanism of the PolSAR data and
the features of the hyperspectral image to create a concatenation of features. The classification results
of multiple classifiers are then merged using decision fusion. An application of spilled oil detection
was studied by Dabbiru et al. [32] using hyperspectral and PolSAR data. They applied pixel level
concatenation on the data, and employed support vector machine (SVM) as the classifier. Hu et al. [33]
proposed a framework for fusing hyperspectral and PolSAR data based on the segmented objects
that provide spatial information. A two-stream convolutional neural network (CNN) was introduced
in [34] that takes advantage of the feature extraction power of CNN.

Among the existing fusion methods, including manifold learning-based [35,36], kernel-based [37],
ensemble-based [38,39], tensor-based [40,41], and matrix factorization [42], manifold learning is one of
most celebrated techniques. However, although it has been proven as a powerful technique in the field
of data fusion, it is barely studied in the scope of fusing hyperspectral and PolSAR data. Generally,
manifold-based fusion techniques attempt to find a shared latent space where the original data sets can
be fused or aligned. Wang and Mahadevan [35,43–45] proposed several manifold-based techniques
to find the correspondence of data sets which describe the same object from different aspects via the
latent space. A kernel based manifold alignment [46] searches the latent space from a kernel space
of the original data, because the kernel space has a better representation of the data than the original
feature space of the data. In remote sensing, it was introduced in [36,47] that the manifold latent space
is able to align multiple optical data sets and improve the LULC classification. A manifold-based
data alignment technique was introduced in [48] for the fusion of hyperspectral and Lidar data with
application to classification. Besides data fusion, various manifold techniques can be found in remote
sensing field for detection [49], visualization [50], and dimension reduction [51].

1.2. Scope of This Paper

When fusing data with manifold techniques, one technical question is that: in which domain
should the fusion be carried on? We categorized the existing techniques into two types: (1) data
alignment-based approach and (2) manifold alignment-based approach. As shown in the left of Figure 1,
the data alignment approach carries out the fusion in the data domain. As the simplest example,
it fuses the data by concatenation, and carries out a manifold-based dimension reduction. Essentially,
this approach assumes that an intrinsic manifold exists in the concatenated data. Representatives of this
approach are the locality preservation projection (LPP) [52] and the generalized graph fusion (GGF) [48].
On the contrary, the manifold alignment-based approach carries out the fusion on manifolds which
are separately derived from different data sources. This is demonstrated in the right of Figure 1.
The assumption of this approach is that different manifold exists in each data source. Those manifolds
can be aligned in a latent space. Representative algorithms are the manifold alignment (MA) [36] and
the MAPPER-Induced manifold alignment (MIMA) [53].
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Figure 1. Frameworks of manifold learning fusion techniques. Left: the data alignment fusion; Right:
the manifold alignment fusion. The blue arrow indicates the fusion step. The yellow arrow indicates
where the modeling of manifold takes place. The black arrow indicates the feature extraction. Xi: ith
data source; A or W: mathematical modeling of manifolds; Y: fused feature; f: the learned projection. ·̃:
a fusion of certain form.

The other essential research question of manifold-based fusion is: how should the manifold be
extracted? We categorize the existing techniques into three learning strategies in terms of the usage of
labeled data: unsupervised, semi-supervised, and supervised. When modeling a manifold, a general
assumption is that, hidden in the data representation, there exists an underlying lower dimensional
manifold where the data truly distributes [54]. Early studies [54–57] model manifolds by following
a geometric assumption that the Riemannian manifold can be locally approximated by Euclidean
measures. The geometric assumption models the manifold in an unsupervised manner by using
k-nearest-neighbor (kNN). With the presence of labeled data, the manifold can be jointly modeled
by the Riemannian manifold and the labeled data. For example, one can construct the manifold in
a semi-supervised fashion by using both kNN and the labeled data [35,36]. The manifold can also
be modeled in a supervised manner by using only the labeled data. One of the main goals of this
paper is to investigate the impact of these learning strategies on the classification performance on the
fused data.

1.3. Contribution of This Paper

This paper investigates the performance of manifold learning technique on the fusion of
hyperspectral and PolSAR data, based on four state-of-art algorithms, locality preservation
projection (LPP) [52], generalized graph fusion (GGF) [48], manifold alignment (MA) [36,44], and
MAPPER-induced manifold alignment (MIMA) [53]. We implemented 16 variants of the four
algorithms which involve the above-mentioned two alignment approaches and the three manifold
learning strategies. These algorithms were tested on two study areas for a LULC classification task
with five classifiers: one nearest neighbor (1NN) [58], linear SVM (LSVM) [59,60], Gaussian kernel
SVM (KSVM) [59,60], random forest (RF) [61], and canonical correlation forest (CCF) [62]. We avoided
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any deep network classifiers, because the goal of this article is to solely evaluate the performance of
multi-sensory data fusion. In total, 80 classification maps were produced for each study area, based on
which a comprehensive discussion was carried out. The main contributions of this paper are as follows:

• An exhaustive investigation of existing manifold learning techniques. A sufficient number of
manifold techniques and classifiers were tested on the fusion of hyperspectral and PolSAR data in
terms of classification. It provides a reliable demonstration on the performance of the manifold
technique regarding hyperspectral and PolSAR data fusion.

• An objective comparison of the performance of different manifold data fusion algorithms. To avoid
any fortuity, five classifiers were applied for the classification. A grid search was applied to all
tunable hyperparameters of those algorithms. The best classification accuracies are compared.

• A comprehensive analysis of the results. The experiment results were analyzed in regard to two
fusion approaches, three manifold learning strategies, four basic algorithms, and five classifiers.

1.4. Structure of This Paper

The second section recalls the theory of manifold technique and the four selected state-of-art
algorithms. The third section describes the data sets used in the experiments, introduces the experiment
setting, and carries out the discussion. The fourth section concludes the paper. Table 1 also lists the
symbols used in this article for a better understanding of the content of the article.

Table 1. The notations used in this article.

Notation Explanation

Xi The ith data source
Mi The manifold of the Xi
xp

i The pth instance of the Xi
mi The number of dimensions of the Xi
Ei The labeled subset of the Xi
yp

i The pth instance of the Yi
li The number of dimensions of the Yi
F The filter function in MAPPER
W The weight matrix that models a manifold
D The degree matrix of a graph
·̃ The fusion at certain form
L The loss fuction
dn The dimension of underlying manifold
b The number of bins in MAPPER
λ The eigenvalue of generalized eigenvalue decomposition
K The total number of data sources
Yi The data representation of theMi
xq

i The qth instance of the Xi
ni The number of instances of the Xi
n∗i The number of instances of the Ei, n∗i < ni
yq

i The qth instance of the Yi
f The projection Y = fTX
A The binary matrix that models a manifold
σ The filtering parameter of weight matrix
L The Laplacian matrix of a graph
D The pairwise distance matrix
k The number of local neighbors
µ The weighting of topology structure in MA
c The overlap rate in MAPPER

2. Materials and Methods

In this section, the general concept of the manifold technique is introduced, with the help of
necessary mathematical notations. Meanwhile, the theoretical impact of different learning strategies
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to the fusion result is discussed. Then, the following up sub-sections recall the principles of the
four selected state-of-art manifold fusion techniques, namely LPP [52], GGF [48], MA [36,44], and
MIMA [53]. Pseudo-codes of these four algorithms are listed in the Appendixes A–D, which provides
the technical details.Finally, the data sets and the experiment settings are introduced in detail.

2.1. Manifold Technique, Learning Strategy, and Notations

Let Xi = [x1
i , ..., xp

i , ..., xni
i ] ∈ Rmi×ni be a matrix representing the ith data source, with mi

dimensions by ni instances. For simplicity, the subscript i is omitted in the following content when
only one data source is involved. The mi-dimensional data space is named as the feature space of data
Xi in this paper. The term xp

i denotes the pth instance of the ith data source. Let K denote the total
number of data sources.

A manifoldM is a smooth hyper-surface embedded in a higher dimensional space [56], e.g., the
surface of a sphere is a 2D manifold in a 3D space. The underlying assumption of the manifold
technique is that, for a data X ∈ Rm×n of redundant m dimensions, there exists a low dimensional
intrinsic manifoldM where the data distributes [54,57,63,64]. The goal of a manifold technique is to
pursue a representation, realized by a projection Y = [y1, ..., yp, ..., yn] ∈ Rl×n, l < m of the original
data, of the manifoldM. In order to approximate Y, the bridging property is that the data point yp

on the manifold is locally homeomorphic to its counterpart xp in the feature space [56]. It means that
a data point has identical local structures in its intrinsic manifold and in its feature space. With this
property, a variety of methods [54,55,57,65] extract the local structure of a data [52,66–69] in its feature
space as an estimation to the local structure in its intrinsic manifold, with different locality criterion.
All those methods pursue an optimized projection f which maps data from the feature space to a
representation (Y = fTX) of the intrinsic manifoldM. In terms of the manifold technique for data
fusion [36,44,48], the aim is to find the projection which maps multiple data sources {X1, X2, ..., XK}
into a fused manifold M̃ where the fused data locates.

The centerpiece of the abovementioned algorithms is the modeling of the manifold. Usually,
an intrinsic manifold of the data is modeled by an n× n symmetric binary matrix A that describes the
connection among the data points. A(p, q) = 1 for a confirmed connection between xp

i and xq
i while

A(p, q) = 0 otherwise. A can be generalized to an n× n symmetric weight matrix W. Different from
A, W(p, q) takes a real value in [0, 1], which describes the strength of the connection between xp

i and
xq

i . Essentially, A and W are the adjacency and weight matrix of a graph that captures the topology of
the manifold. As introduced in [52], the manifold structure (A or W) can be defined from different
perspectives. In this paper, we would like to categorize these perspectives based on how the labeled
data is utilized for modeling the manifold, namely the unsupervised learning, supervised learning,
and semi-supervised learning.

• The unsupervised learning takes the original geometric assumption that the manifold and the
original data space share the same local property. Besides the geometric measure, model-based
similarity measurement can also be used to build up the structure of the manifold. The key
point is that the definition of the similarity measurement is capable of revealing the underlying
distribution of the data or the physical information in the data.

• The supervised learning assumes that a given set of labeled data includes sufficient amount
of inter- and intra-class connections among the data points, so that they can well capture the
topology of the manifold. As a result, the underlying manifold is directly defined by the label
information. Thus, the quality of the label has a great impact.

• The semi-supervised learning pursues a manifold where the data distribution partially correlates
to the label information and partially associates to the distribution predefined by a similarity
measurement. This manifold implicitly propagates the label information to the unlabeled data.
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2.2. Locality Preservation Projection (LPP)

LPP aims to find a lower dimensional representation Y of the original data X which reflects
the intrinsic manifoldM. According to the geometric assumption that the intrinsic manifold and
the original data share the same local properties, the lower dimensional representation Y achieved
by LPP preserves the local structure of the original data X. The locality is defined by either the
k-nearest-neighbor or the ε-neighborhoods [52] and is mathematically described in a weight matrix W
as Equation (1).

W(p, q) =

e−
||xp−xq ||2

σ xp and xq are local neighbors

0 xp and xq are not local neighbors
(1)

where σ is a filtering parameter.
LPP pursues an optimized projection f which maps the data X to a lower dimensional

representation Y = fTX. As the local structure of the intrinsic manifold is modeled by Equation (1),
minimizing the objective function expressed by Equation (2) encourages the preservation of the derived
local structure in the intrinsic manifold.

L = ∑
pq
(yp − yq)W(p, q) = ∑

pq
(fTxp − fTxq)W(p, q). (2)

Thus, the optimization is formulated as follow:

min
f

∑
pq
(fTxp − fTxq)W(p, q). (3)

Proven in [52], the solution that minimizes the objective function L(f) is given by the minimum
eigenvalue solution to the generalized eigenvalue problem expressed in Equation (4).

XLXTf = λXDXTf, (4)

where D is the degree matrix; if p = q, D(p, q) = ∑
p=n
p=1 W(p, q), otherwise, D(p, q) = 0; and the L is

the Laplacian matrix, L = D−W.
As brief described above, LPP is originally designed to as a dimension reduction algorithm,

instead of data fusion. However, it is essential to include this algorithm in the scope of this paper,
because (1). When conducting manifold fusion, the dimension reduction is also accomplished as a
side effect. Due to the well-known curse-of-dimensionality [70], classification on selective subset of
dimensions could result in better performance than using the data with all dimensions [71]. LPP can
serve as a baseline algorithm to reduce the dimension of the data; and (2). LPP is essentially a manifold
learning technique. Some data fusion algorithms [48,72] are developed on the idea of data alignment
using the LPP.

2.3. Generalized Graph-Based Fusion (GGF)

GGF is originally proposed to fuse hyperspectral data and LiDAR data for land cover
classification [48]. Its fusion strategy comprises a joint LPP dimension reduction and an additional
constraint that captures the common local structure that exists in all data sources.

Technically, GGF concatenates K data sources (Xi = [x1
i , ..., xp

i , ..., xn
i ] ∈ Rmi×n, i ∈ {1, 2, ..., K})

into a stack (X̃ = [x̃1, ..., x̃p, ..., x̃n] ∈ R(m1+m2+...+mK)×n) which are treated as one data sources in its
high dimensional feature space. Therefore, GGF is essentially a LPP carried out on the data stack X̃,
with an additional constraint. The constraint assumes that the connectivity Ã of the fused intrinsic
manifold M̃ should be a complete subset of the connectivity matrices of the manifoldsMi of the
individual data sources Xi, i ∈ {1, 2, ..., K}. Thus, the assumption is formulated as Equation (5).
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Ã = A1 �A2�, ...,�AK (5)

where � indicates element-wise multiplication.
The manifold constraint Ã is embedded into a n by n pairwise distance matrix D̃ (D̃(p, q) =

||x̃p − x̃q||), which is expressed by Equation (6) where ¬means logical operator negative, and max(·)
means the maximum value of all elements in ‘·’. The distance between any two data points that are
not connected according to Ã is penalized with the maximum distance value of D̃. The final distance
matrix is named as D̃GGF.

D̃GGF = D̃ + (¬Ã)max(D̃) (6)

The weight matrix W̃ of the intrinsic manifold is then as follows.

W̃(p, q) =

{
e−D̃GGF(p,q) xp and xq are local neighbors

0 xp and xq are not local neighbors
(7)

After achieving the weight matrix W̃, similar to the LPP, the optimized projection f is given by
the minimum eigenvalue solution to the generalized eigenvalue problem in Equation (8).

X̃L̃X̃Tf = λX̃D̃X̃Tf (8)

where D̃ is the degree matrix. If p = q, D̃(p, q) = ∑
p=n
p=1 W̃(p, q), otherwise, D̃(p, q) = 0. L̃ is the

Laplacian matrix, L̃ = D̃− W̃.

2.4. Manifold Alignment (MA)

Manifold alignment [35,36,44] aims to learn a set of projections {f1, ..., fK} that (1) apply to
individual data sources Xi in order to obtain their individual manifolds Mi, and (2) align those
obtained manifolds {M1, ...,MK} to each other.

Designed in [36,44], three properties hold in the fused manifold: (a) data of the same class should
locate close to each other; (b) data of different classes should locate far from one another; and (c) the
intrinsic manifolds of individual data are preserved. These three properties are respectively formulated
by the following three connection matrices Ãs (9), Ãd (10), and Ãg (11).

Ãs =

A1,1
s ... A1,K

s
... ... ...

AK,1
s ... AK,K

s

 (9)

The connection matrix of similarity (9) is computed by the labeled information to pursue
property (a).

Ãd =

A1,1
d ... A1,K

d
... ... ...

AK,1
d ... AK,K

d

 (10)

The connection matrix of dissimilarity is modeled as (10) to accomplish property (b), which is
also computed from the label.

Ãg =

A1,1
g 0 0
0 ... 0
0 0 AK,K

g

 (11)

The connection matrix (11) describes the manifolds of individual data sources by using kNN,
which aims at the property (c). All of the matrices (9)–(11) have the size of (n1 + n2 + ... + nk)× (n1 +

n2 + ... + nk). In each matrix, the superscript i, j, e.g., Ai,j, represents the relationship between the ith
and jth data sources.
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With connection matrices (9)–(11), three terms are formulated as Equations (12)–(14) to preserve
the three properties, respectively.

A =
K

∑
i=1

K

∑
j=1

ni

∑
p=1

nj

∑
q=1
‖fT

i xp
i − fT

j xq
j ‖

2Ãi,j
s (p, q). (12)

Minimizing Equation (12) pulls data of the same class together, which meets property (a).

B =
K

∑
i=1

K

∑
j=1

ni

∑
p=1

nj

∑
q=1
‖fT

i xp
i − fT

j xq
j ‖

2Ãi,j
d (p, q). (13)

Maximizing Equation (13) pushes data of different classes away, which meets property (b).

C =
K

∑
i=1

ni

∑
p=1

ni

∑
q=1
‖fT

i xp
i − fT

i xq
i ‖

2Ãi,i
g (p, q). (14)

Minimizing Equation (14) preserves the geometric structure of individual data sources, which
corresponds to property (c). The terms (12)–(14) jointly construct the objective unction (15):

L(f1, ..., fK) = (A+ C)/B, (15)

and hence an optimization problem (16) can be written as

min
f1,...,fK

L(f1, ..., fK). (16)

Proven in [35], the solution {f1, ..., fK} that minimizing the cost function L(f1, ..., fK) is given by
the smallest non-zero eigenvectors of the generalized eigenvalue decomposition of (17).

X̃(µL̃g + L̃s)X̃Tf = λX̃L̃dX̃Tf, (17)

where

X̃ =

X1 0 ... 0
... ... ... ...
0 ... 0 XK

,

L̃{s,d,g} = Ã{s,d,g} − D̃{s,d,g},

D̃{s,d,g}(p, q) =

{
∑m1+...+mk

q=1 Ã{s,d,g}(p, q) p = q

0 p 6= q
.

The matrices D̃ and L̃ with subscript s, d, and g are the degree matrices and the Laplacian matrices,
respectively.

2.5. MAPPER-Induced Manifold Alignment (MIMA)

MIMA is designed to fuse optical and PolSAR data for the purpose of LULC classification [53].
It follows the framework of MA [36,44] yet introduces a novel constraint term which originates from a
recent field of topological data analysis (TDA). TDA has emerged as a new mathematical sub-field of big
data analysis that aims to derive relevant information from the topological property of a data [73–77].
One TDA tool, named MAPPER [78], has been proven capable of revealing unknown insights in
medical studies, by interpreting topological structures of data sets [79–82]. As a brief introduction,
the MAPPER requires a filter function as an input which projects the data into a parameter space.
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The original data is sorted into overlapping bins guided by the projected parameter. MAPPER carries
out clustering of data points in each of the data bins, respectively. Afterwards, MAPPER models
a graph where a node represents a cluster and an edge links two clusters that share common data
points. Finally, a simplified graph is built up to represent the shape of the data. Such graph is an
approximation of the Reeb graph [83] .

Technically, MIMA pursues the solution {f1, ..., fK} by solving the same generalized eigenvalue
decomposition as in Equation (17), except the the connection matrix of geometry Ãg (Equation (11))
is replace by the MAPPER-derived connection matrix ÃMIMA where Ai,i

MIMA(p, q) = 1 if xp
i and xq

i
belongs to the same cluster or belongs to two separated but linked clusters; Ai,i

MIMA(p, q) = 0 elsewhere.
Comparing to Ãg, ÃMIMA introduces some unique properties that are listed as follows:

• Field knowledge. An expertise knowledge is introduced by the selection of the filter function.
It defines a perspective of viewing the data while deriving the structure.

• A regional-to-global structure. Clustering in each data bin provides a regional structure.
The design of overlapping bins combines the regional structures into a global one. It makes
the derived structure more robust to outliers than the one derived by kNN.

• A data-driven regional structure. A spectral clustering is applied in the step, which is capable of
detecting the number of clusters by the concept of eigen-gap [84]. It allows the derived structure
constraining to the data distribution.

2.6. Data Description

Two sets of real data were used to investigate the manifold learning techniques for the
fusion of hyperspectral and PolSAR data. The two data sets are in city of Berlin, Germany, and
Augsburg, Germany.

2.6.1. The Berlin Data Set

In the Berlin data set, the hyperspectral image is a synthetic spaceborne EnMAP scene synthesized
from airborne HyMap data. It has a size of 817 by 220 pixels, a 30-m ground sampling distance (GSD),
and 244 spectral bands ranging from 400 nm to 2500 nm [85]. The dual-channel PolSAR data is a
VH-VV polarized Sentinel-1 data acquired in interferometric wide swath mode. The Sentinel-1 SLC
data is preprocessed using ESA SNAP toolbox and filtered by a non-local mean filter [86]. The PolSAR
data has a GSD of 13 m and a size of 1723 by 476 pixels. The ground truth is a land use land cover map
derived from Open Street Map (OSM) data [87]. The ground truth labels are spatially separated into a
training data set and a testing data set shown in Figure 2. The details of the training and testing data
sets are summarized in Table 2.

Table 2. Summary of the training data and the testing data for the scene of city Berlin.

Class # of Training Sample # of Testing Sample

Forest 298 52,455
Residential area 756 262,903
Industrial area 296 17,462

Low plants 344 56,683
Soil 428 14,505

Allotment 281 11,322
Commercial area 560 20,909

Water 153 5539
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Forest Residential Industrial Low Plants soil Allotment Commercial Water
area area area

Figure 2. The Berlin data set. From left to right: RGB components of the simulated EnMAP data;
Sentinel-1 dual-Pol data; The training data; The testing data.

2.6.2. The Augsburg Data Set

Similar to the Berlin data set, the hyperspectral image in the Augsburg data set is a synthetic
spaceborne imagery simulated based on an airborne HySpex data. It has a GSD of 30 m, a size of 332
by 485 pixels, and 180 bands ranging from 400 nm to 2500 nm. Same as the Berlin data set, the PolSAR
data is a VH-VV polarized Sentinel-1 image with a GSD of 10 m and a size of 997 by 1456 pixels.
The training data and the testing data are shown in Figure 3 which are spatially separated. The details
of the training and testing data sets are summarized in Table 3.

Table 3. Summary of the training data and the testing data for the scene of city Augsburg.

Class # of Training Sample # of Testing Sample

Forest 200 4100
Residential area 200 4100
Industrial area 200 4100

Low plants 200 4100
Soil - -

Allotment 200 4100
Commercial area 200 4100

Water 200 4100
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Forest Residential Industrial Low Plants Allotment Commercial Water
area area area

Figure 3. The Augsburg data set. From left to right, top to bottom: RGB components of the
hyperspectral image; Sentinel-1 dual-Pol data; The training data; The testing data.

2.7. Experiment Setting

We start with a reasonable feature selection and extraction strategy from the original data, since it
is well known that feature selection and extraction promote the classification performance of remote
sensing data. The spectral-spatial feature extraction was employed for the hyperspectral image because
of its excellent performance on classification tasks [88–91]. Specifically, the first four and six principal
components (PCs) which occupy 99% of the variance of the data were extracted from the hyperspectral
images of Berlin and Augsburg, respectively. The morphological profiles with radius of one, two, and
three were employed to extract the spatial information on each PC. Thus, in total, 28 features and
42 features were extracted from the hyperspectral images of Berlin and Augsburg, respectively. For the
feature extraction of Sentinel-1 dual-Pol data, four polarimetric features were extracted. They are the
intensity of the VH channel, the intensity of the VV channel, the coherence of VV and VH, and the
intensity ratio of VV and VH. Since the morphological profile was proven to promote classification
of PolSAR [92,93], it is also used to extract spatial information from the four polarimetric features
with radius equal to one, two, and three. In addition, the local statistics including the mean and
standard deviation were extracted using a sliding window of 11 by 11 pixel on those four polarimetric
features. In total, 36 features were extracted from the dual-Pol SAR data for both data sets of Berlin
and Augsburg, respectively.

To carry out a comprehensive comparison of the fusion algorithms, in total 16 algorithms were
implemented. Listed in Table 4, they are (1) PolSAR data only (POL), (2) hyperspectral image
only (HSI), (3) feature stacking of hyperspectral and PolSAR data (HSI+POL), (4) data alignment
using the original locality preserving projections (LPP) [52], (5) supervised version of LPP (LPP_SU),
(6) semi-supervised version of LPP (LPP_SE), (7) the generalized graph-based fusion (GGF) [48],
(8) supervised version of GGF (GGF_SU), (9) semi-supervised version of GGF (GGF_SE), (10) manifold



Remote Sens. 2019, 11, 681 12 of 28

alignment (MA) [36,44], (11) unsupervised version of MA (MA_UN), (12) supervised version of MA
(MA_SU), (13) MAPPER-Induced manifold alignment with first two principal components as filter
functions (MIMA) [53], (14) unsupervised MIMA (MIMA_UN), (15) MIMA with local density as filter
function (MIMA-D), and (16) unsupervised MIMA with local density as filter function (MIMA-D_UN).

Table 4. Technical summary of the selected algorithms. ’SU’, ’UN’, and ’SE’ represent the learning
strategy of supervised, unsupervised, or semi-supervised, respectively. W and A represent the weight
matrix and the connection matrix, respectively. The hyperparameter set {k, dn, µ, b} indicates the
number of neighbors, the number of dimensions, the topology weighting parameter, and the number
of bins.

Algorithm
Data Learning Strategy Fusion

Manifold
Hyper-

HSI POL SU UN SE Concept Parameter

1 POL - X - - - - - -
2 HSI X - - - - - - -
3 HSI+POL X X - - - Concatenation - -
4 LPP X X - X - data alignment W {k, dn}
5 LPP_SU X X X - - data alignment W {k, dn}
6 LPP_SE X X - - X data alignment W {k, dn}
7 GGF X X - X - data alignment W {k, dn}
8 GGF_SU X X X - - data alignment W {k, dn}
9 GGF_SE X X - - X data alignment W {k, dn}

10 MA X X - - X manifold alignment A {µ, k, dn}
11 MA_UN X X - X - Constrained dimension reduction A {k, dn}
12 MA_SU X X X - - manifold alignment A {dn}
13 MIMA X X - - X manifold alignment A {µ, b, dn}
14 MIMA_UN X X - X - Constrained dimension reduction A {b, dn}
15 MIMA-D X X - - X manifold alignment A {µ, b, dn}
16 MIMA-D_UN X X - X - Constrained dimension reduction A {b, dn}

These manifold algorithms listed in Table 4 are categorized into the two approaches (data
alignment or manifold alignment) mentioned in Section 1.2. LPP and GGF belong to the category of
data alignment which concatenates data as a stack, and applies manifold learning on the stacked data.
MA and MIMA belong to the category of manifold alignment which independently project K data
sources to a latent space where the data are aligned.

The hyperparameters of each algorithm were tuned via a grid search, so that each algorithm
reaches its best performance. The k was set in a range of 10 to 120 with an interval of 10. The number
of dimension dn is set in a range of 5 to 50 with an interval of 5. The topology weighting parameter µ

is set in a range of 0.5 to 3 with an interval of 0.5. The number of bins b is set in a range of 5 to 55 with
an interval of 5.

After the data being fused, five different shallow classifiers were applied to the fused data set in
the classification step. They are: one nearest neighbor (1NN) [58], linear SVM (LSVM) [59,60], Gaussian
kernel SVM (KSVM) [59,60], random forest (RF) [61], and canonical correlation forest (CCF) [62].
The parameter tuning of LSVM is done in a heuristic procedure [60]. LIBSVM [94] is employed for the
implementation of the KSVM. The number of trees was set as 40 for both RF and CCF.

3. Experiment Results

The discussion of experiment result mainly focus on the following three aspects:

• Manifold learning strategy. The experiment result supports the discussion of the impact that
causes by different learning strategies, the unsupervised learning, the supervised learning, and
the semi-supervised learning.

• Data fusion approach. The result supports the discussion of the two fusion approaches, the data
alignment-based and the manifold alignment-based, for the fusion of the hyperspectral image
and PolSAR data.
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• Performance on classification. The experiment result reveals how manifold techniques
perform on fusing hyperspectral images and PolSAR data and how different these manifold
techniques perform.

The classification result is quantitatively evaluated by the class-specific accuracy, the average
accuracy, the overall accuracy, and the kappa coefficient. The class-specific accuracy provides the
percentage of correct predictions for a specific class. The average accuracy is the mean value of
class-specific accuracy. The overall accuracy indicates the percentage of correctness for all predictions.
And kappa coefficient also evaluates the overall correctness, yet is more robust than the overall
accuracy [95].

3.1. Experiment on the Berlin Data Set

As shown in Figure 4 and Table 5, for the data alignment-based fusion algorithms (LPP and GGF),
the unsupervised versions outperform the supervised and the semi-supervised versions. However, for
the manifold alignment-based fusion algorithms (MA, MIMA, and MIMA-D), the semi-supervised
versions have the best performance comparing to the supervised and the unsupervised ones.
Surprisingly, in both type of fusion algorithms, the fully supervised strategy performs the worst.

(a) 1NN (b) LSVM

(c) KSVM (d) RF

(e) CCF (f) All experiments

Figure 4. Comparison of the classification accuracies of different classifiers applied on the Berlin data
set. Each chart is resulted from a corresponding classifier. The right bottom chart demonstrates all the
overall accuracy resulted by applying five classifiers on every fused data achieved from the selected 16
algorithms. The y-axis report the overall accuracy in percentage (%). The ‘SU’, ‘SE’, and ‘UN’, represent
supervised, semi-supervised, and unsupervised, respectively.
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Taking the result of the simple concatenation (HSI+POL in Table 5) as reference, the data
alignment-based fusion algorithms (LPP and GGF) marginally improve the classification accuracy.
Sometimes the performance even drops below the reference accuracy. On the contrary, the manifold
alignment-based fusion algorithms (MA, MIMA, and MIMA-D) have a more consistent improvement
of the classification accuracy by ca. 3%. In fact, MIMA and MIMA-D have a considerable improvement
comparing to LPP, GGF, and MA, especially when RF and CCF are employed as the classifier. This can
be seen in Figure 4. Among all the algorithms, MIMA and MIMA-D have the best overall performance.
Shown in Table 5, their best performance reach over 0.66, 65%, and 79%, for the kappa coefficient, the
average accuracy, and the overall accuracy, respectively. For a visual comparison, Figure 5 plots the
ground truth and the classification maps predicted by the 16 algorithms with CCF.

Ground truth POL HSI HSI+POL LPP LPP_SU LPP_SE GGF GGF_SU

GGF_SE MA MA_UN MA_SU MIMA MIMA_UN MIMA-D MIMA-D_UN

Forest Residential Industrial Low Plants soil Allotment Commercial Water
area area area

Figure 5. Visualization of the classification maps and the ground truth. The 16 classification maps are
provided by applying CCF on fused data of the 16 algorithms, for the Berlin data set. Classification
maps achieved by manifold alignment fusion methods are more accurate than the maps achieved by
data alignment fusion methods.



Remote Sens. 2019, 11, 681 15 of 28

Table 5. Quantitative performance comparison on the Berlin data, in terms of class-specific accuracy, kappa coefficient, average accuracy, overall accuracy, and mean
overall accuracy. The mean overall accuracy is calculated based on the overall accuracies achieved by the five classifiers. The listed indications are achieved after
hyperparameter tunning. The hyperparameters of each algorithm are listed under the name of the algorithm and their values are listed in the table. The kappa
coefficient, average accuracy, and the overall accuracy that larger than 0.66, 65%, and 79% are marked in bold. And the three highest mean overall accuracies are also
marked in bold.

Algorithm Parameter Classifiers Forest Residential Area Industrial Area Low Plants Soil Allotment Commercial Area Water KAPPA AA OA Mean OA

POL -

1NN 40.64 57.67 25.14 32.94 56.88 32.19 30.37 33.85 0.2927 38.71 48.92

56.76
LSVM 33.02 77.92 13.85 36.46 72.6 40.64 32.23 37.68 0.4012 43.05 60.94
KSVM 34.36 69.94 20.38 30.61 68.27 38.62 32.79 42.82 0.3566 42.23 55.76

RF 35.61 72.3 25.63 28.66 66.38 43.9 37.87 45.39 0.3789 44.47 57.61
CCF 37.96 76.87 24.87 30.69 64.72 38.82 36.88 41.34 0.4035 44.02 60.56

HSI -

1NN 68.78 63.87 30.01 57.58 90.73 55.76 32.86 73.89 0.4599 59.18 61.64

70.14
LSVM 69.2 82.5 18.55 65.7 79.06 53.59 44.77 72.81 0.585 60.77 73.48
KSVM 72.58 78.68 35.43 63.74 74.18 56.87 31.58 74.29 0.5625 60.92 71.34

RF 66.65 79.64 30.25 57.44 75.33 47.77 35.17 78.1 0.5437 58.79 70.21
CCF 71 81.86 31.54 68.95 81.36 53.47 38.35 74.81 0.597 62.67 74.03

HSI+POL -

1NN 64.83 69.7 32.89 65.27 83.81 54.77 34.59 63.51 0.4975 58.67 65.44

73.73
LSVM 66.57 86.24 30.48 75.3 79.61 53.52 40.12 76.11 0.6329 63.49 76.93
KSVM 67.27 80.93 41.78 64.02 72.37 57.58 33 74.6 0.5764 61.44 72.36

RF 63.46 84.99 37.79 74.38 82.72 56.26 40.61 82.09 0.6266 65.29 76.26
CCF 71.51 86.27 34.05 72.03 83.24 56.3 44.33 77.7 0.6445 65.68 77.67

{60, 15} 1NN 69.53 69.07 34.56 66.09 80.27 57.51 32.18 64.56 0.5009 59.22 65.65

74.18
{20, 30} LSVM 70.1 87.05 32.52 70.97 79.26 58.88 36.48 72.61 0.6354 63.48 77.27

LPP {30, 25} KSVM 71.19 85.77 41.43 70.95 82.36 53.97 30.77 72.68 0.6297 63.64 76.69
{k, dn} {10, 20} RF 56.2 85.87 28.9 69.28 76 49.9 38.64 67.07 0.5874 58.98 74.25

{10, 15} CCF 68.41 86.68 34.35 71.96 80.07 54.07 37.54 75.93 0.6325 63.63 77.04

{10} 1NN 63.86 67.04 34.79 71.42 79.06 54.39 28.17 72.32 0.4817 58.88 64.25

71.26
{30} LSVM 64.41 81.51 34.12 70.1 81.56 56.74 29.1 71.38 0.578 61.11 72.9

LPP_SU {50} KSVM 67.06 81.6 43.96 72.17 82.34 57.81 25.04 69.69 0.5908 62.46 73.77
{dn} {25} RF 64.71 80.89 30.98 65.55 72.26 55.27 32.9 69.36 0.5596 58.99 71.67

{25} CCF 64.25 81.99 33.72 74.47 75.59 55.89 33.77 69.76 0.5883 61.18 73.7

{80, 10} 1NN 68.22 72.17 38.92 73.21 73.43 58.09 30.65 74.02 0.5327 61.09 68.26

73.52
{120, 40} LSVM 64.68 85.37 38.15 74.36 79.63 59.18 29.75 77.41 0.6194 63.57 76.04

LPP_SE {120, 40} KSVM 69.02 81.93 41.67 70.74 77 59.76 30.77 76.17 0.6001 63.38 74.15
{k, dn} {120, 30} RF 66.96 83.15 29.66 72.12 66.45 56.39 34.17 74 0.5919 60.36 74.03

{120, 25} CCF 64.86 85.09 34.63 71.85 66.83 56.05 34.33 75.05 0.6044 61.09 75.12

{20, 30} 1NN 69.28 71.37 36.65 66.54 83.51 56.94 31.34 63.82 0.5186 59.93 67.17

75.31
{90, 30} LSVM 68.11 88.76 34.14 76.11 79.29 54.93 36.54 75.14 0.655 64.13 78.7

GGF {20, 30} KSVM 72.18 84.64 37.08 70.29 81.88 57.25 34.49 74.44 0.6254 64.03 76.15
{k, dn} {10, 20} RF 68.97 86.55 29.13 70.39 81.23 49.45 41.85 62.88 0.6242 61.31 76.58

{10, 25} CCF 70.53 87.51 31.29 76.34 70.86 51.95 42.06 67.95 0.6448 62.31 77.98
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Table 5. Cont.

Algorithm Parameter Classifiers Forest Residential Area Industrial Area Low Plants Soil Allotment Commercial Area Water KAPPA AA OA Mean OA

{10} 1NN 65.57 69.99 37.73 68.89 80.13 51.96 28.71 76.62 0.5013 59.95 66.05

71.59
{50} LSVM 63.6 82.87 36.49 69.8 82.34 56.58 29.62 76.22 0.5906 62.19 73.77

GGF_SU {50} KSVM 69.99 80.63 46.43 60.43 77.21 53.92 25.15 78.77 0.5695 61.57 71.98
{dn} {50} RF 62.01 81.42 32.09 67.3 74.08 53.3 38.83 65.17 0.5678 59.28 72.17

{40} CCF 65.54 83.4 31.38 70.58 72.26 51.15 37.02 68.24 0.5906 59.95 74

{10, 15} 1NN 66.96 70.63 36.07 69.65 80.62 55.65 29.49 76.35 0.5119 60.68 66.77

72.40
{120, 45} LSVM 63.06 83.52 37.69 73.01 81.94 55.48 29.11 79.87 0.6007 62.96 74.54

GGF_SE {40, 40} KSVM 70.19 82.26 41.52 67.92 80.35 54.38 31.22 82.51 0.5988 63.79 74.19
{k, dn} {20, 40} RF 65.27 80.56 34.49 67.01 75.85 54.57 38.72 66.98 0.5716 60.43 72.21

{70, 30} CCF 60.15 83.94 35.07 74.18 74.3 51.22 35.51 68.64 0.5942 60.37 74.29

{2, 90, 10} 1NN 69.83 73.8 38 75.68 69.64 60.09 29.41 72.27 0.5474 61.09 69.54

76.40
{2.5, 20, 25} LSVM 65.49 86.97 37.63 79.08 80.06 55.63 34.46 73.37 0.6445 64.09 77.77

MA {2.5, 90, 35} KSVM 69.38 85.81 37.49 78.3 80.54 55.42 33.29 73.21 0.6405 64.18 77.39
{µ, k, dn} {2, 10, 50} RF 64.5 90.08 30.25 77.68 65.58 49.41 36.85 67.95 0.644 60.29 78.45

{2, 10, 20} CCF 66.66 89.12 33.05 79.51 68.95 54.91 39.47 71.01 0.6557 62.84 78.89

{120, 15} 1NN 68.46 69.61 32.87 72.87 78.51 54.88 34.76 67.95 0.5159 59.99 66.68

75.13
{90, 30} LSVM 66.86 87.58 35.97 77.55 78.59 55.44 36.3 76.15 0.649 64.3 78.1

MA_UN {40, 50} KSVM 70.55 85.61 36.23 74.18 79.83 57.57 35.55 73.14 0.6346 64.08 76.97
{k, dn} {100, 30} RF 58.91 87.37 26.35 69.77 80.7 53.14 41.94 60.71 0.6079 59.86 75.74

{30, 30} CCF 67 88.05 33.05 74.11 81.85 55 41.91 70.52 0.6467 63.94 78.14

{5} 1NN 69.88 71.34 34.87 68.69 71.01 57.88 32.38 73.52 0.5199 59.94 67.21

75
{50} LSVM 67.56 86.73 38.76 79.67 77.21 56.87 32.27 75.45 0.6457 64.31 77.85

MA_SU {50} KSVM 71.6 83.96 35.72 75.92 61.57 59.59 37.1 72.65 0.6204 62.26 75.84
{dn} {50} RF 60.53 87.82 33.22 77.13 70.16 52.42 38.82 63.66 0.6242 60.47 76.94

{50} CCF 64.09 88.37 30.57 76.73 62.56 51.86 36.99 59.9 0.6257 58.89 77.14

{1, 15, 5} 1NN 69.91 70.2 33.39 69.63 61.94 53.49 35.07 68.62 0.5055 57.78 66.26

76.22
{1, 15, 15} LSVM 67.76 84.97 36.22 78.36 79.08 57.74 38 70.25 0.6328 64.05 76.85

MIMA {1, 15, 15} KSVM 71.06 84.24 41.01 76.11 69.87 55.82 32.97 68.97 0.6233 62.51 76.11
{µ, b, dn} {1.5, 25, 40} RF 65.1 90.31 32.54 80 82.77 50.79 35.08 71.01 0.6642 63.45 79.6

{2, 25, 20} CCF 70.86 88.06 36.54 80.42 76.88 57.21 39.61 73.21 0.667 65.35 79.36

{10, 20} 1NN 72.57 68.39 35.96 70.18 79.27 62.58 30.73 67.41 0.513 60.89 66.25

75.85
{10, 35} LSVM 68.21 88.59 36.62 74.6 80.79 55.87 29.86 76.08 0.6495 63.83 78.29

MIMA_UN {10, 35} KSVM 71.78 87.1 36.85 73.13 82.31 58.05 31.79 73.14 0.6449 64.27 77.81
{b, dn} {55, 30} RF 67.92 88.44 27.36 77.22 81.32 50.9 35 61.04 0.6417 61.15 78.08

{30, 20} CCF 71.06 88.19 29.72 77.55 79.81 55.71 39.99 69.67 0.658 63.96 78.86

{1.5, 30 ,15} 1NN 71.31 72.3 35.31 74.51 76.66 57.37 33.48 71.84 0.5423 61.6 68.92

76.75
{1.5, 45, 20} LSVM 67.59 86.85 36.8 81.07 78.3 56.4 38.97 75.88 0.6549 65.23 78.38

MIMA-D {2.5, 55, 30} KSVM 70.01 85.33 36.79 78.84 78.52 56.83 36.44 76.08 0.6425 64.86 77.37
{µ, b, dn} {1, 30, 30} RF 67.02 89.85 33.09 80.46 83.21 50.61 37.95 74.27 0.6698 64.56 79.81

{1, 45, 30} CCF 68.91 89.18 34.79 78.63 75.48 51.74 39.85 69.45 0.6628 63.5 79.28

{55, 15} 1NN 72.57 68.39 35.96 70.18 79.27 62.58 30.73 67.41 0.513 60.89 66.25

75.52
{55, 25} LSVM 68.21 88.59 36.62 74.6 80.79 55.87 29.86 76.08 0.6495 63.83 78.29

MIMA-D_UN {40, 20} KSVM 71.78 87.1 36.85 73.13 82.31 58.05 31.79 73.14 0.6449 64.27 77.81
{b, dn} {45, 30} RF 67.92 88.44 27.36 77.22 81.32 50.9 35 61.04 0.6417 61.15 78.08

{45, 25} CCF 71.06 88.19 29.72 77.55 79.81 55.71 39.99 69.67 0.658 63.96 78.86
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3.2. Experiment on Augsburg Data Set

The findings of the Augsburg data set are consistent with that of the Berlin data set. For the data
alignment-based fusion algorithms, the unsupervised learning strategy works the best among the
three learning strategies. For the manifold alignment-based fusion algorithms, the semi-supervised
learning strategy performs the best. Comparing the results to that of simple concatenation (HSI+POL),
the data alignment-based fusion (LPP and GGF) barely has any improvement, while the manifold
alignment fusion has a 2% improvement comparing to the LPP and GGF. These findings can be seen
in Figure 6, and Table 6. Among all the algorithms, combining MIMA or MIMA-D with RF or CCF
provide the best classification performance. Their kappa coefficient, the average accuracy, and the
overall accuracy, reach 0.56, 62.5%, and 62.5% respectively. A visual comparison of the results is shown
in Figure 7. Similar to Figure 5, the classification maps were predicted by CCF.

(a) 1NN (b) LSVM

(c) KSVM (d) RF

(e) CCF (f) All experiments

Figure 6. Comparison of the classification accuracies of different classifiers applying on the Augsburg
data set. Each chart is resulted from a corresponding classifier. The right bottom chart demonstrates all
the overall accuracy resulted by applying five classifiers on the fused data achieved from each of the 16
algorithms. The y-axis is the overall accuracy in percentage (%). The ’SU’, ’SE’, and ’UN’, represent
supervision, semi-supervision, and un-supervision, respectively.
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Table 6. Quantitative performance comparison on the Augsburg data, in terms of class-specific accuracy, kappa coefficient, average accuracy, overall accuracy, and
mean overall accuracy. The mean overall accuracy is calculated based on the overall accuracies achieved by the five classifiers. The listed indications are achieved
after hyperparameter tunning. The hyperparameters of each algorithm are listed under the name of the algorithm and their values are listed in the table. The kappa
coefficient, average accuracy, and the overall accuracy that larger than 0.56, 62.5%, and 62.5% are marked in bold. And the three highest mean overall accuracies are
also marked in bold.

Algorithm Parameter Classifiers Forest Residential Area Industrial Area Low Plants Allotment Commercial Area Water KAPPA AA OA Mean OA

1NN 64 35.88 38.8 55.02 22.54 38.9 18.66 0.2897 39.11 39.11

48.21
LSVM 86.93 46.44 39.15 73.17 25.37 44.29 21.8 0.3952 48.16 48.16

POL - KSVM 86.51 64.49 31.41 81.98 22.39 41.98 19.12 0.4131 49.7 49.7
RF 81.88 63.44 47.76 88.46 28.88 38.71 14.63 0.4396 51.97 51.97

CCF 82.29 61.85 47.8 88.37 30.34 38.07 16.1 0.4414 52.12 52.12

1NN 27.9 52.49 61.1 78.2 60.66 24.9 55.24 0.4341 51.5 51.5

51.33
LSVM 25.44 50.22 75.93 67.46 38.32 15.15 57.93 0.3841 47.21 47.21

HSI - KSVM 31.2 65.2 70.71 86.37 55.98 20.8 54.63 0.4748 54.98 54.98
RF 25.59 58.29 70.29 84.34 40.41 15.98 52.98 0.4131 49.7 49.7

CCF 27.29 64.56 75.71 84.68 48.29 16.54 55.66 0.4546 53.25 53.25

1NN 34.76 58.17 55.93 84.56 57.73 34.9 54.88 0.4682 54.42 54.42

56.71
LSVM 31 65.95 73.29 83.85 36.9 25.07 42.85 0.4315 51.28 51.28

HSI+POL - KSVM 40.59 67.83 67.07 92.59 45.24 27.1 55.78 0.4937 56.6 56.6
RF 61.27 73.88 70.1 94.98 47.51 25.63 59.17 0.5542 61.79 61.79

CCF 46.07 75.63 78.05 95.51 58.07 18.49 44.22 0.5267 59.44 59.44

{10, 40} 1NN 44.9 60.61 53.29 86.56 61.37 34.76 56.32 0.4963 56.83 56.83

57.42
{20, 20} LSVM 28.17 64.93 76.63 81.54 38.27 17.88 53.93 0.4356 51.62 51.62

LPP {40, 50} KSVM 40.98 67.98 73.49 92.32 45.49 22.68 53.66 0.4943 56.66 56.66
{k, dn} {10, 30} RF 73.66 66.15 65.8 89.54 51.24 25.78 55.17 0.5456 61.05 61.05

{10, 35} CCF 59.63 70.71 72.8 92.2 51.9 22.78 56.51 0.5442 60.93 60.93

{5} 1NN 31.93 55.83 56.95 78.51 49.07 33.98 42.76 0.415 49.86 49.86

52.97
{10} LSVM 40.85 63.1 63.29 87.46 49.17 32.61 36.05 0.4542 53.22 53.22

LPP_SU {40} KSVM 54.24 63.93 66.32 87.2 45.05 28.49 29.41 0.4577 53.52 53.52
{dn} {35} RF 44.46 60.93 62.78 90.07 44.15 30.95 41.88 0.4587 53.6 53.6

{35} CCF 52.07 62.15 64.66 90.17 44.24 28.88 40.51 0.4711 54.67 54.67

{20, 45} 1NN 49.76 59.15 53 85.05 60.98 40.05 55.15 0.5052 57.59 57.59

56.06
{10, 10} LSVM 43.49 65.51 77.22 85.07 40.76 20.8 41.05 0.4565 53.41 53.41

LPP_SE {120, 35} KSVM 37.66 71.27 75.22 93.22 48.44 20.54 45.49 0.4864 55.98 55.98
{k, dn} {30, 15} RF 27.17 63.22 72.2 91.78 54.46 26.54 55.66 0.485 55.86 55.86

{80, 40} CCF 47.2 66.46 73.22 90.93 56.07 23.27 45.17 0.5039 57.47 57.47

{20, 50} 1NN 41.37 57.22 49.68 82.63 61.61 38.2 56.32 0.4784 55.29 55.29

55.81
{30, 15} LSVM 29.17 63.76 74.83 82.12 36.54 19.71 56.71 0.438 51.83 51.83

GGF {20, 15} KSVM 34.51 69.22 73.71 92.34 45.32 23.9 59.61 0.4977 56.94 56.94
{k, dn} {40, 45} RF 60.22 65.61 61.29 89.73 46.46 31.78 56.56 0.5194 58.81 58.81

{40, 35} CCF 47.9 70.9 72.22 92.44 43.34 23.05 55 0.5081 57.84 57.84
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Table 6. Cont.

Algorithm Parameter Classifiers Forest Residential Area Industrial Area Low Plants Allotment Commercial Area Water KAPPA AA OA Mean OA

{5} 1NN 31.93 55.83 56.95 78.51 49.07 33.98 42.76 0.415 49.86 49.86

53.36
{10} LSVM 40.85 63.15 63.29 87.46 49.2 32.61 36.05 0.4543 53.23 53.23

GGF_SU {35} KSVM 51.17 64.07 65.46 86.78 44.37 30.9 31.49 0.4571 53.46 53.46
{dn} {45} RF 44.93 61.05 60.15 89.93 42.88 32.68 45.02 0.4611 53.8 53.8

{45} CCF 51.2 62.61 66.93 90.24 46.78 28.76 48.59 0.4918 56.44 56.44

{120, 10} 1NN 44.8 58.17 63.32 84.54 56.05 32.95 46.83 0.4778 55.24 55.24

56.19
{20, 30} LSVM 53.02 66.54 66.95 84.61 47.27 29.41 31.88 0.4661 54.24 54.24

GGF_SE {10, 50} KSVM 67.54 68.24 66.8 87.12 41.32 23.98 24.41 0.4657 54.2 54.2
{k, dn} {90, 15} RF 42.88 64.9 68.07 92.56 56.68 26.63 56.54 0.5138 58.32 58.32

{120, 40} CCF 47 65.83 67.88 92.51 57.29 27.07 55.15 0.5212 58.96 58.96

{2, 70, 35} 1NN 30.88 58.68 61.39 82.05 77.27 27.78 54.02 0.4868 56.01 56.01

57.52
{2.5, 60, 35} LSVM 26.22 66.63 78.2 72.44 42.9 16.1 55.27 0.4296 51.11 51.11

MA {2, 70, 25} KSVM 31.44 69.54 78.8 93 59.05 17.73 53.76 0.5055 57.62 57.62
{µ, k, dn} {1, 110, 45} RF 75.34 72.15 64.66 91.61 48.88 30.12 43.24 0.5433 60.86 60.86

{1, 110, 45} CCF 65.85 73.24 72.61 93.61 55 23.8 50.05 0.557 62.02 62.02

{100, 25} 1NN 31.61 56.85 57.29 80.71 73.98 26.61 54.83 0.4698 54.55 54.55

56.54
{100, 30} LSVM 26.51 67.12 76.8 73.78 41.07 15.71 55.83 0.428 50.98 50.98

MA_UN {100, 20} KSVM 32.56 68.2 74 89.29 58.63 18.88 55.32 0.4948 56.7 56.7
{k, dn} {20, 25} RF 75.15 67.93 63.17 87.93 44.29 31 50.83 0.5338 60.04 60.04

{20, 40} CCF 75.27 69.07 60.95 89.83 50.07 32.41 45.56 0.5386 60.45 60.45

{50} 1NN 26.71 52.78 61.15 80.22 69.93 26.07 54.46 0.4522 53.05 53.05

54.53
{50} LSVM 25.2 57.2 77.56 70.29 36.85 16.68 53.76 0.3959 48.22 48.22

MA_SU {50} KSVM 28.68 60.68 74.83 87.9 56.2 17.46 50.39 0.4602 53.74 53.74
{dn} {50} RF 49.76 67.1 67.12 91.9 47.27 28.85 54.32 0.5105 58.05 58.05

{45} CCF 64.07 69.12 66.78 92.41 52.39 27.63 44.63 0.5284 59.58 59.58

{2.5, 35, 35} 1NN 27.68 57.07 62.56 81.39 72.17 26.46 55.51 0.4714 54.69 54.69

58.01
{3, 25, 5} LSVM 23.61 71.93 78.63 79.98 44.29 13.76 54.51 0.4445 52.39 52.39

MIMA {1.5, 35, 15} KSVM 34.15 68.12 72.9 92.27 53.51 22.07 59.34 0.5039 57.48 57.48
{µ, b, dn} {0.5, 40, 35} RF 66.22 76.88 65.51 92.8 47.78 26.27 59.02 0.5575 62.07 62.07

{0.5, 55, 40} CCF 76.78 77.49 65.12 92.73 50 28.78 53.15 0.5734 63.44 63.44

{5, 35} 1NN 34.34 55.24 54.85 80.76 71.41 28.44 53.39 0.4641 54.06 54.06

56.56
{10, 50} LSVM 28.39 67.78 76.05 74.17 40.73 19.22 53.02 0.4323 51.34 51.34

MIMA_UN {5, 30} KSVM 31.9 68.12 74.78 90.78 59.44 20.1 57.9 0.505 57.57 57.57
{b, dn} {20, 30} RF 58.95 66.54 71.76 89.68 51.68 25.24 42.68 0.5109 58.08 58.08

{15, 45} CCF 83.71 67.61 68.07 89.73 57.98 27.68 37.37 0.5536 61.74 61.74

{3, 50, 35} 1NN 28.76 57.63 62.68 80.22 74.83 24.98 55.49 0.4743 54.94 54.94

56.5
{3, 40, 15} LSVM 25.27 67.44 78.46 73.29 39.85 15.41 52.17 0.4198 50.27 50.27

MIMA-D {3, 40, 15} KSVM 33.12 68.95 70.41 92.8 55.8 20.05 60.59 0.5029 57.39 57.39
{µ, b, dn} {3, 35, 30} RF 52.54 72.27 73.56 92.24 49.83 24.29 47.71 0.5207 58.92 58.92

{2.5, 30, 40} CCF 55.51 73.66 72.98 92.85 53.61 24.05 54.22 0.5448 60.98 60.98

{20, 30} 1NN 34.93 56.02 56.54 80.46 75.29 26.39 54.41 0.4734 54.86 54.86

60.29
{55, 5} LSVM 87.22 55.24 48 57.41 36.2 41.95 54.41 0.4674 54.35 54.35

MIMA-D_UN {15, 30} KSVM 35.27 67.93 77.54 91.83 66.56 17.37 54.73 0.5187 58.75 58.75
{b, dn} {20, 50} RF 82.95 65.17 58.12 88.41 54.32 34.05 56.63 0.5661 62.81 62.81

{20, 30} CCF 78.54 72.29 65.85 92.63 49.88 26.68 53.56 0.5657 62.78 62.78
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Figure 7. Visualization of the achieved classification maps and the ground truth. The 16 classification
maps are provided by applying CCF on fused data of the 16 algorithms, for the Augsburg data set.
Classification maps achieved by manifold alignment fusion methods are more accurate than the maps
achieved by data alignment fusion methods, especially MIMA based methods.

4. Discussion

4.1. The Setting of the Training and Testing Samples

As shown in Figures 2 and 3, the training and testing samples are spatially separated as a
standard machine learning practice. However, the distribution of training samples of the Berlin and
the Augsburg data set are slightly different. For each class of the Berlin data set, the training data are
block-wisely scattered over the whole area. For the Augsburg data set, the training data only covers
on the western part of the area. There is no sample from the eastern half of the site where the testing
data distribute. Both scenarios are common in remote sensing applications. The latter one is naturally
more challenging. This is why the overall accuracy of the Augsburg data set fluctuates around 56%,
while it is around 76% for the Berlin data set.

4.2. The Data Alignment Fusion

An unsupervised data alignment-based fusion in this article pursues an intrinsic manifold of a
concatenation of the hyperspectral and PolSAR data. Intuitively, making use of the additional label
information in the manifold learning (semi-supervision) should be improve the classification accuracy.
However, we observed the exact opposite in our experiments. We believe it is due to the misalignment
of image pixels of optical and SAR images caused by their distinct imaging geometry. This pixel
misalignment leads to extra difficulty in learning a joint manifold. Adding one more manifold defined
by the misaligned label will only lead to destructive effects. Therefore, the data alignment-based fusion
algorithm is not competent for fusing hyperspectral and PolSAR data with the resolution similar to
our dataset. This finding should also be able to generalized to high resolution optical and SAR data,
although we have not conducted any experiment.

4.3. The Manifold Alignment Fusion

Different to the data alignment-based fusion, the semi-supervised manifold alignment-based
fusion outperforms the unsupervised manifold alignment fusion. This fusion concept is able to
introduce the advantage of label information while pursuing the intrinsic manifold. The reason is that
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this fusion concept models the manifold of individual data sources independently which suits the
fact that hyperspectral and PolSAR data are severely dissimilar in geometry and content. The label
information is merged into the two manifolds in a way that the two manifolds are separately link to
the label and are then aligned to each other by the label. In such manner, the advantage of label data
appears on the classification results. Comparing to the data alignment-based fusion, the manifold
alignment-based fusion introduces considerable improvements to the classification accuracy, which
shows its competence for the fusion of hyperspectral and PolSAR data.

4.4. The Filter Function of MIMA

As introduced in Section 2.5, the filter function of MIMA introduces an expertise knowledge
while deriving the manifold structure of data. MIMA and MIMA-D in this paper employed PCA and a
density estimation as the filter function, respectively. The principal components are frequently used
in classification. It is proven to be effective [82,96]. The density function is an important property for
classification or clustering tasks [97,98]. However, from the experiment in this paper, it is inconclusive
which choice is more suitable to serve as the filter function.

5. Conclusions and Outlook

This paper compares 16 variants of four state-of-the-art multi-sensory data fusion algorithms
based on manifold learning. The comparison was done via a rigorous evaluation of the performance of
the 16 algorithms on land use land cover classification on two sets of spaceborne hyperspectral images
and PolSAR data. To carry out an objective comparison, the hyperparameters of the 16 algorithms
were optimized via a grid search. Five different shallow classifiers were applied on the data sets fused
by the 16 algorithms. We avoided any deep network classifiers, because the goal of this article is to
solely evaluate the performance of multi-sensory data fusion algorithms. The experiments conclude
that (1) data alignment-based (data concatenation) manifold techniques are less competent for the
fusion of hyperspectral images and PolSAR data, or in general optical and SAR images fusion, because
a concatenation of the two data sets with distinct imaging geometries causes difficulty even destructive
effects when optimizing the target manifold; On the contrary, manifold alignment-based techniques are
more competent for the task of optical and SAR images fusion, because the manifolds of the two data
are separatly modeled and aligned; (2) Among the manifold alignment-based manifold techniques,
semi-supervised methods are able to effectively make use of both the structure of data and the existing
label information; (3) the MIMA algorithm cooperating with the CCF classifier provides the best
classification accuracy among all the algorithms.

Based on our current research, our future research directions can include:

• In the current algorithms, the learned manifold is specific to the very input data sets. We would
like to study the generalization of such manifold on data sets of the same sensors. Eventually, we
aim at big data processing where one common manifold can be applied to all the data sets of the
same type.

• Graph CNN has been an emerging filed in deep lerning. It is also of great interest to combine it
with the traditional manifold learning techniques described in this article.

• Because of the data availability of spaceborne hyperspectral and PolSAR data, they have not been
extensively applied to real world problems. We would like to address more real world applications
especially those for social good using those two types of data, for example, contributing to the
monitoring of Unite Nation’s sustainable development goals.
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Appendix A. Pseudo-Code of LPP

Algorithm A1: LPP(X,k,σ)
Input:

X: the data source X = [x1, ..., xp, ..., xn] ∈ Rm×n with n instances and m dimensions
k: the number of local neighbors
σ: the filtering parameter

Output:
Y: the representation of data X on the intrinsic manifoldM.
f: the projection maps data X to Y

1 construct the n by n weight matrix with Equation (1)
2 construct the degree matrix D
3 construct the Laplacian matrix L = D−W
4 solve the generalized eigenvalue decomposition XLXTf = λXDXTf
5 construct Y: Y = fTX
6 Return Y and f

Appendix B. Pseudo-Code of GGF

Algorithm A2: GGF(X1,X2,k,σ)
Input:

X1: the data source X1 ∈ Rm1×n with n instances and m1 dimensions
X2: the data source X2 ∈ Rm2×n with n instances and m2 dimensions
k: the number of local neighbors
σ: the filtering parameter

Output:
Ỹ: the fused data.
f: the projection maps data X̃ to Ỹ

1 stacking data sources on the feature dimension: X̃ =

[
X1

X2

]
= [x̃1, ..., x̃p, ..., x̃n] ∈ R(m1+m2)×n

2 construct binary matrices Ai(i ∈ {1, 2}) to model manifolds of Xi:

Ai(p, q) =

{
1 xp

i is one of the k nearest neighbor to xq
i

0 otherwise

3 construct a fused binary matrix Ã(p, q) = A1(p, q) ∗A2(p, q)
4 calculate a n by n pairwise distance matrix D̃
5 construct a GGF pairwise distance matrix D̃GGF as Equation (6)
6 calculate the n by n weight matrix: W̃ as Equation (7)
7 calculate the degree matrix D̃
8 calculate the Laplacian matrix L̃ = D̃− W̃
9 solve the generalized eigenvalue decomposition X̃L̃X̃Tf = λX̃D̃X̃Tf

10 calculate Ỹ = fTX̃
11 Return Ỹ and f

www.so2sat.eu
www.sipeo.bgu.tum.de
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Appendix C. Pseudo-Code of MA

Algorithm A3: MA(X1,X2,E1,E2,k)
Input:

X1: the data source X1 ∈ Rm1×n1 with n1 instances and m1 dimensions
X2: the data source X2 ∈ Rm2×n2 with n2 instances and m2 dimensions
E1: E1 ∈ R1×n∗1 with n∗1 < n1, labels for the first n∗1 instances of X1

E2: E2 ∈ R1×n∗2 with n∗2 < n2, labels for the first n∗2 instances of X2

k: the number of local neighbors
Output:

Ỹ1: the projected data of X1.
Ỹ2: the projected data of X2.
f1: the projection maps data X1 to Ỹ1

f2: the projection maps data X2 to Ỹ2

1 construct (n1 + n2) by (n1 + n2) binary matrices Ãs (Equation (9)) and Ãd (Equation (10))
using E1 and E2

2 construct (n1 + n2) by (n1 + n2) binary matrix Ãg (Equation (11)) using k-nearest-neighbor
with the given k

3 construct degree matrices D̃s, D̃d, and D̃g with Ãs, Ãd, and Ãg, respectively
4 construct Laplacian matrices L̃s, L̃d, and L̃g as instructed in Equation (17)
5 organize the data matrix X̃ as instructed in Equation (17)
6 solve the generalized eigenvalue decomposition X̃(µL̃g + L̃s)X̃Tf = λX̃L̃dX̃Tf so that f1 and f2

are achieved, f =

[
f1

f2

]
.

7 calculate Ỹ1 = fT
1 X1 and Ỹ2 = fT

2 X2

8 Return Ỹ1, Ỹ2, f1, f2

Appendix D. Pseudo-Code of MIMA

Algorithm A4: MIMA-MAPPER(X,b,c,F)
Input:

X: the data source X ∈ Rm×n with n instances and m dimensions
b: the number of data bins
c: the overlapping rate
F: the filtering function

Output:
AMIMA: the connection matrix

1 calculate the parameter space XF
2 divide XF into b intervals with c% overlap of adjacent intervals
3 divide data X into b bins corresponding to intervals achieved in 2
4 for (each data bin):
5 Spectral clustering
6 end for

7 Construct topological matrix AMIMA(p, q) =


1, if p and q in the same cluster;

1, if p and q in the linked clusters;

0, otherwise.

8 Return AMIMA
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Algorithm A5: MIMA(X1,X2,E1,E2,k)
Input:

X1: the data source X1 ∈ Rm1×n1 with n1 instances and m1 dimensions
X2: the data source X2 ∈ Rm2×n2 with n2 instances and m2 dimensions
E1: E1 ∈ R1×n∗1 with n∗1 < n1, labels for the first n∗1 instances of X1

E2: E2 ∈ R1×n∗2 with n∗2 < n2, labels for the first n∗2 instances of X2

k: the number of local neighbors
Output:

Ỹ1: the projected data of X1.
Ỹ2: the projected data of X2.
f1: the projection maps data X1 to Ỹ1

f2: the projection maps data X2 to Ỹ2

1 construct (n1 + n2) by (n1 + n2) binary matrices Ãs (Equation (9)) and Ãd (Equation (10))
using E1 and E2

2 for(i=1:2)
3 Ai,i

MIMA = MIMA-MAPPER(Xi,b,c)
4 end

5 construct matrix ÃMIMA =

A1,1
MIMA 0 0

0 ... 0
0 0 AK,K

MIMA


6 construct degree matrices D̃s, D̃d, and D̃MIMA with Ãs, Ãd, and ÃMIMA, respectively
7 construct Laplacian matrices L̃s, L̃d, and L̃MIMA as instructed in Equation (17)
8 organize the data matrix X̃ as instructed in Equation (17)
9 solve the generalized eigenvalue decomposition X̃(µL̃g + L̃s)X̃Tf = λX̃L̃MIMAX̃Tf so that f1

and f2 are achieved, f =

[
f1

f2

]
10 calculate Ỹ1 = fT

1 X1 and Ỹ2 = fT
2 X2

11 Return Ỹ1, Ỹ2, f1, f2
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