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Abstract: This article presents a performance evaluation of a flexible manufacturing system (FMS),
in which the system and its components can have different performance levels ranging from perfect
functioning to total failure. An original multistate transition process for the FMS’s main component,
Computerized Numerical Control (CNC) machine tools, proposed in the current article and treated
as an aging process because of its increasing failure rate is investigated. The Markov reward
approach is utilized to analyze the availability of CNC machine tools and sensitivity analysis of each
non-operational state to the machine’s downtime. To overcome the “state explosion problem” in
the subsequent FMS performance evaluation process, an application of the Lz-transform method is
proposed to determine the performance evaluation and availability of such aging multistate FMS.
An illustrated case is presented to demonstrate the performance evaluation process. The results show
that the suggested methods can be implemented in engineering decision making and construction of
various aging multistate FMS related to demands, availability, and output performance.

Keywords: Lz-transform method; Markov reward approach; aging multistate CNC machine tools;
flexible manufacturing system; availability; output performance

1. Introduction

Fierce competition in the market of the manufacturing sector and various customer preferences
constantly challenge the diversity of manufacturing firms’ products and their resilience to rapid
technological change and to shorten the product life cycle. The flexible manufacturing systems
(FMS) have, therefore, become an inevitable choice for many companies and a research hotspot [1].
Moreover, the concept of Industry 4.0, such as digitalization, Internet of Things (IoT), and cyber
physical systems (CPS) has gained great importance across industries, including manufacturing
recently, which require more digitized systems and network integration via smart systems [2,3].
Therefore, FMS becomes a key topic and plays an important role in the realization of the Industry 4.0
because it can achieve the goals of Industry 4.0 that include a higher level of operational efficiency
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and productivity, as well as a higher level of automatization [4,5]. An FMS is generally defined as an
integrated computer-controlled system with a set of workstations, interconnected by an automated
material handling system (MHS) and which can simultaneously perform several different tasks [6,7].
It is learned from the literature that the workstations (such as CNC machine tools, industrial robots,
washing and measuring machines) are processing stations of FMS, which are involved in performing
operations on the part types [8]. The automated material handling system is used for transferring parts
from one station to another, while the central computer is used for controlling and coordinating the
performance of the workstation and material handling system. As the distinguishing attribute of an
FMS, flexibility is regarded as the ability of a manufacturing system to withstand a certain level of
variations in partial styles without any interruption in the production line [9]. Manufacturing system
flexibility consists of volume flexibility, product flexibility, production flexibility, and delivery flexibility,
etc. There is already significant research on these flexibilities features under a crucial assumption that
elements of the FMS are available at all times.

Rao [10] combined the diagram and matrix methods to rank different FMS alternatives for the
final decision making. Chatterjee and Chakraborty [11] used the six most potential preference-ranking
methods for selecting the best FMS for a given manufacturing organization. Taha and Rostam [12]
proposed a decision support system to select the optimal alternative CNC machine tool to meet
the desired criteria of FMS. Recently, more and more researchers use simulation methods for FMS
performance analysis. Singholi et al. [13] presented a framework based on the Taguchi experimental
design for evaluating the effects of varying levels of machine and routing flexibility on the makespan,
average waiting time (AWT), and average utilization of an FMS. Dosdogru et al. [14] utilized
an integrated genetic algorithm, the Monte Carlo method, to solve the stochastic flexible job
shop-scheduling problem and to measure the impact of routing flexibility on shop performance.
Jain and Raj [15] performed three different approaches to analyze the intensity of performance variables
in an organization and proposed the FMS performance index to intensify the factors, which affect FMS.
In a multistage production system, Gyulai et al. [16] proposed a simulation-based optimization method
that utilizes lower-level shop floor data to calculate robust production plans for final assembly lines
of a flexible, multistage production system. Rybicka, J. et al. [17] demonstrated how discrete event
simulation (DES) can address complexity in an FMS to optimize the production line performance.

However, the reliability and availability of machines play an important role in the actual
performance of FMS. Machine failures cause the greatest impact on the due date and other performance
criteria even if there is the option of rerouting the parts to alternative workstations. Machines are
a major component of FMS, and often it is not possible to handle machine breakdowns as quickly
as the production requirements dictate. In addition, the disturbances caused by these breakdowns
lead to scheduling problems, which decrease the productivity of the entire manufacturing operations.
This issue points out an important need for the consideration of machine reliability in the performance
evaluation process of FMS, especially in light of the increasing complexity of such systems in recent
years. Consequently, many researchers have realized the importance of reliability features of the FMS
and much work has been contributed.

Das et al. [18] proposed an approach that provides a flexible routing which ensures high overall
performance of the cellular manufacturing system (CMS) by minimizing the impact of machine failure
through the provision of alternative process routes in case of any machine failure. Elleuch et al. [19]
proposed a Markov-based model for reducing the severity of breakdowns and improving performances
of the CMS with unreliable machines. Loganathan et al. [20] suggested a methodology for availability
evaluation of manufacturing systems using semi-Markov model, which considers variable failure or
repair rates. Tan and Gershwin [21] proposed a tool for performance evaluation of general Markovian
continuous material flow of two-processing stage production systems with an intermediate finite
buffer. Koulamas [22] developed a semi-Markov model to study the effects of tool failures on the
performance of a flexible manufacturing cell (FMC). Savsar [23] then developed stochastic models
to determine the performance of an FMC under random operational conditions, including random
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failures of cell components (machine tool and robot) in addition to random processing times, random
machine loading and unloading times, and random pallet transfer times. Duan et al. [24] put forward
a reliability modeling and evaluating methodology for a repairable, non-series, multistate FMS with
finite buffers by using an improved vector universal generation function to satisfy the market demands
on capacity and capability of the system. Chen et al. [25] proposed a process performance evaluation
chart to examine the manufacturing performance of bearing connectors, which can also be used for
multiple evaluations of manufacturing performance in other manufacturing industries. Kim and
Hwangbo [26] investigated the innovation process for smart manufacturing in the domain of synthetic
rubber and its vulcanization process, as well as a real-time sensing technology to the realization
of a smart manufacturing environment by building cloud-based infrastructure and models for the
pre-detection of defects. More studies about availability analysis of manufacturing systems can be
found in [27–31].

Although the aforementioned studies have been undertaken, there are very few studies,
which consider the influence of production setup activities on availability, and products’ output
performance of FMS. Moreover, the procedure for overcoming the “state explosion problem” in the
performance evaluation process of FMS has not been found. Therefore, a system-level FMS performance
evaluation method based on the Markov reward approach and Lz-transform method is proposed
in the current article to analyze the output performance of different products and availability of the
whole FMS, which includes various aging multistate CNC machine tools and non-always available
MHS. Section 2 makes a brief introduction of the Markov reward approach and Lz-transform method.
An original multistate transition process of CNC machine tools that considers the production flexibility
and the performance evaluation procedures of an FMS is presented in Section 3. Numerical results are
shown and discussed in Section 4. Finally, concluding remarks and the application of the proposed
method are presented.

2. Brief Description of the Lz-Transform Method and Markov Reward Approach

The Lz-transform and Markov reward approach have been proven to be a successful and efficient
application to the reliability and availability assessment and performance evaluation of complex
multistate systems. As an example, we can point to the application to water cooling systems for
magnetic resonance inspection [32], multiphase multimotor traction electric drives for an icebreaking
ship [33], and many other complex systems [34,35]. Therefore, implementing these methods to explore
the performance of FMS, based on reliability features, which consider system flexibility, production
setup, aging machines, and multistate problem, is of interest and significant. Consequently, a brief
introduction of these two methods is given in the section.

2.1. Lz-Transform Method

The Lz-transform method is implemented for the performance evaluation for an FMS aging system
in the current article. Lisnianski [36] introduced the method where one can find detailed content and
mathematical proofs. A brief introduction comes in the following paragraphs.

A discrete-state continuous-time (DSCT) Markov process X(t) ∈ {x1, x2, . . . , xK}, which has K
possible states and the performance level associated with any state i is xi, i = 1, 2, . . . , K. The Markov
process is completely defined by the set of possible states x = {x1, x2, . . . , xK}, the transition intensities
matrix depend on time A =

[
ai j

]
, i, j = 1, 2, . . . , K and by the initial states probability distribution given

by p0 =
{
p10 = Pr

{
X(0) = x1

}
, . . . , pK0 = Pr

{
X(0) = xK

}}
. Therefore, according to [37], the Lz-transform

of a DSCT Markov process X(t) is defined by the following expression:

Lz
{
X(t)

}
=

K∑
i=1

pi(t)zgi , (1)
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where pi(t) is the probability that the process is in state i at time instant t ≥ 0 for a given initial states
probability distribution p0, gi is the performance level of state i, and z is a complex variable.

Without losing generality, we consider any element e in a multistate system (MSS) can have ke

different states corresponding to different performances, represented by the set ge =
{
ge1, . . . , geke

}
,

where gei is the performance rate of element e in the state i, i ∈ {1, 2, . . . , ke}, and e ∈ {1, 2, . . . , n}, where
n is the number of elements in the MSS.

The first step of Lz-transform is to build a Markov model of the stochastic process for each
multistate element in the MSS. Based on this model, the state probabilities pei = Pr

{
Ge(t) = gei

}
,

i ∈ {1, 2, . . . , ke} for every MSS’s element can be obtained as a solution of the corresponding system
of differential equations under the given initial conditions. These probabilities define the output
stochastic process Ge(t) for each element e in the MSS. Then, the individual Lz-transform for each
element e can be found as

Lz
{
Ge(t)

}
=

∑ke

i=1
pei(t)zgei , e = {1, 2, . . . , n}. (2)

Then the next step is based on the previously determined Lz-transform for each element e and
system structure function f , given by G(t) = f (G1(t), G2(t), . . . , Gn(t)), where the Lz-transform of the
output stochastic process for the entire MSS should be defined. Using the Ushakov’s operator Ω f [38]
over all Lz-transforms of individual elements, one can obtain the resulting Lz-transform Lz

{
G(t)

}
associated with output performance stochastic process G(t) of the entire MSS:

Lz
{
G(t)

}
= Ω f

{
Lz[G1(t)], Lz[G2(t)], . . . , Lz[Gn(t)]

}
. (3)

The resulting Lz-transform is associated with output performance stochastic process for the
entire MSS:

Lz
{
G(t)

}
=

K∑
k=1

pk(t)zgk , (4)

and many performance measures of MSS can be easily derived from the resulting Lz-transform. For
example, the mean instantaneous performance calculated in the following form:

E(t) =
∑

gk≥0
pk(t)gk. (5)

2.2. Markov Reward Approach

CNC machine tools with various and powerful functions are the main components of FMS and
consist of many different assembles. When the failure of CNC machine tools occurs due to one (or a
few) assembly(s) or component(s) failing, the subsequent action is minimal repair, which means that
the failed system is returned back to a working state that “as bad as old” after the repair [39]. In such a
situation, the failure pattern of CNC machine tools can be described by the non-homogeneous Poisson
process (NHPP). Based on this, the Markov reward approach that incorporates the time-varying failure
rate of aging components is utilized for general reliability measures evaluation. The brief introduction
is as follows, and more details and interesting examples can be found in [40].

Howard [41] proposed a Markov reward model in 1960, which was widely used in various
theoretical and practical studies [42,43]. The core idea of Markov reward model is as follows:
a continuous-time Markov chain with M different states and a transition matrix between states is
a =

[
ai j

]
, i, j = 1, 2, . . . , M. It is assumed that if the process stays in any state i during the time unit,

a certain amount of reward rii is achieved. Similarly, it is also assumed that each time the process transits
from state i to state j an additional amount of reward ri j is achieved. The rewards may also be negative
when it characterizes a loss or penalty. Consequently, for such processes, it is crucial to determine a
reward matrix r =

[
ri j

]
, i, j = 1, 2, . . . , M in additional to a transition intensity matrix. Then, many
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important reliability indexes can be determined by comprehensively applying and calculating these
two matrices during the operation of the system.

Let Vi(t) be the expected total reward accumulated up to time t, given the initial state of the
process as time instant t = 0 is in state i. Howard differential equations with time-varying transition
intensities ai j should be solved under specified initial conditions to find the total expected rewards.

dVi(t)
dt

= rii +
M∑

j = 1
j , i

ai jri j +
M∑

j=1

ai jV j(t), i, j = 1, 2, . . . , M. (6)

In the most common case, the MSS begins to accumulate reward after time instant t = 0, thus,
the initial conditions are

Vi(0) = 0, i = 1, 2, . . . , M. (7)

For instance, if the state M with the highest performance level is defined as the initial state,
the value VM(t) should be found as a solution of system (6).

It was shown in [44] that many reliability measures for aging or non-aging MSS can be found by
the determination of rewards in a corresponding reward matrix. Therefore, the construction rules of
the reward matrix for each reliability measures are the most critical, which will be demonstrated while
calculating relevant indicators.

3. Multistate Model of the Flexible Manufacturing System

CNC machine tools as the fundamental and crucial equipment for most manufacturing systems
have been chosen as the element of the workstation of FMS in the current paper. The storage system,
such as an intermediate buffer, is not considered in this article since the trend of FMS is to reduce
or even cancel the cache area [45]. An FMS is capable of manufacturing various kinds of product
families through CNC machine tools, which are loaded and unloaded by robots [46]. Therefore, the
first step in the multistate modeling of FMS is to establish a multistate model of CNC machine tools.
Moreover, a novel multistate CNC machine tool model is presented in the current paper.

3.1. Multistate Model of CNC Machine Tools

A typical state transition process of CNC machine tools was presented by the authors in [47],
which argued that CNC machine tools were a binary-state system, working and failure state, and the
transition between states is caused by faults in different subsystems. This is a binary state transition
description of the CNC machine tools that cannot be implemented directly in the current paper because
it lacks consideration of the impact of product types on system status. Therefore, to demonstrate the
production flexibility of CNC machine tools and the performance influence caused by production
setup activities, we assume one product can be processed on machine tool A or B if the corresponding
settings are prepared. From the practically technological restrictions, there exists a limitation on time
of usage of each task and necessity to change one task to another, so the setup states are required
for changing processes. That is, one product capable of being manufactured on two machine tools
A or B, EA and EB are appointed to A and B for the corresponding process, SAB and SBA are built
for the changing processes between A and B. Note that, EA and EB are binary state systems during
the manufacturing period. Thus, the product manufacturing process on CNC machine tools can be
extended to a multistate system (MSS) when considering production flexibility. The state transition
process of the example in Figure 1 shown as follows:



Appl. Sci. 2019, 9, 4153 6 of 20

Appl. Sci. 2019, 9, x 6 of 19 

 
Figure 1. State transition diagram of CNC machine tools A and B. 

where, 𝑖 = 1, … ,6: the number of the state of CNC machine tools,  g , 𝑖 = 1, … ,6: the corresponding performance of each state, g , g : the performance of CNC machine tools A and B to manufacture, respectively, 𝐴 , 𝐵 : working state of machine tools A and B, respectively, 𝐴 , 𝐵 : failure state of machine tools A and B, respectively, 𝑆 : the setup state for machine tool B, 𝑆 : the setup state for machine tool A, 𝜆 𝑡 , 𝜆 𝑡 : failure rates of the machine tools A and B, which not only indicate the availability of the 
machine tool is task-based, but the aging characteristic, 𝜇: repair rate of the machine tools, 𝜏 , 𝜏 : the corresponding transition intensities from working state to setup state, which are random 
variables and calculated through the total setup times per year, ∆ , ∆ : the transition intensities from setup to working state, which is the reverse of the mean time 
to setup. 

The state transition process of CNC machine tools with production flexibility includes two 
setup states, 𝑆  and 𝑆 , which represent one of the states in which the machine tools in the FMS 
could be in the actual production process. Obviously, only in the 𝐴  and 𝐵  states is the machine 
tool in normal working condition (designated as 1), and the rest 𝐴 , 𝐵 , 𝑆 , 𝑆  are idle (designated 
as 0). Therefore, the state transition intensity matrix 𝒂 of the CNC machine tools obtained as 
follows: 

𝒂 =
⎣⎢⎢
⎢⎢⎡
− 𝜆 𝑡 + 𝜏 𝜆 𝑡 𝜏 0 0 0𝜇 −𝜇 0 0 0 00 0 −Δ Δ 0 00 0 0 − 𝜆 𝑡 + 𝜏 𝜆 𝑡 𝜏0 0 0 𝜇 −𝜇 0Δ 0 0 0 0 −Δ ⎦⎥⎥

⎥⎥⎤. 

Figure 1. State transition diagram of CNC machine tools A and B.

where,

i = 1, . . . , 6: the number of the state of CNC machine tools,
gi, i = 1, . . . , 6: the corresponding performance of each state,
gA, gB: the performance of CNC machine tools A and B to manufacture, respectively,
A1, B1: working state of machine tools A and B, respectively,
A2, B2: failure state of machine tools A and B, respectively,
SAB: the setup state for machine tool B,
SBA: the setup state for machine tool A,
λA(t), λB(t): failure rates of the machine tools A and B, which not only indicate the availability of the
machine tool is task-based, but the aging characteristic,
µ: repair rate of the machine tools,
τAB, τBA: the corresponding transition intensities from working state to setup state, which are random
variables and calculated through the total setup times per year,
∆AB, ∆BA: the transition intensities from setup to working state, which is the reverse of the mean time
to setup.

The state transition process of CNC machine tools with production flexibility includes two setup
states, SAB and SBA, which represent one of the states in which the machine tools in the FMS could
be in the actual production process. Obviously, only in the A1 and B1 states is the machine tool in
normal working condition (designated as 1), and the rest A2, B2, SAB, SBA are idle (designated as 0).
Therefore, the state transition intensity matrix a of the CNC machine tools obtained as follows:

a =



−(λA(t) + τAB) λA(t) τAB 0 0 0
µ −µ 0 0 0 0
0 0 −∆AB ∆AB 0 0
0 0 0 −(λB(t) + τBA) λB(t) τBA
0 0 0 µ −µ 0

∆BA 0 0 0 0 −∆BA


.
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Based on the Markov reward approach, to assess the average instantaneous availability Ai(t) of
the CNC machine tools, it is necessary to build the reward matrix r, and the corresponding rewards in
r can be determined in the following manner:

1. All rewards that indicate acceptable states are defined as 1;
2. The rewards associated with all unacceptable states should be zeroed, as well as the rewards

associated with all transitions.

Thus, the reward matrix r of the CNC machine tools depicted in Figure 1 is

r =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Then, the system of differential equations for cumulative reward calculation can be obtained
according to system (6).

dV1(t)
dt = 1 + λA(t)V2(t) + τABV3(t) − (λA(t) + τAB)V1(t)

dV2(t)
dt = µV1(t) − µV2(t)

dV3(t)
dt = ∆ABV4(t) − ∆ABV3(t)

dV4(t)
dt = 1 + λB(t)V5(t) + τBAV6(t) − (λB(t) + τBA)V4(t)

dV5(t)
dt = µV4(t) − µV5(t)

dV6(t)
dt = ∆BAV1(t) − ∆BAV6(t)

. (8)

The mean reward Vi(t) accumulated during interval [0, t] defines a time that the CNC machine
tools will be in the set of acceptable states in the case where state i is the initial state. This reward should
be calculated as a solution of system (8). After solving system (8) and determining Vi(t), the CNC
machine tools average instantaneous availability Ai(t) can be found for every i = 1, 2, . . . , M.

Ai(t) = Vi(t)/t. (9)

The usage of the Markov reward approach to assess the average instantaneous availability and
failure criticality importance will be presented in Section 4.1.

3.2. Multistate Model of a Flexible Manufacturing System

In this section, an analytical model of a flexible manufacturing system, as shown in Figure 2,
is discussed. We modeled the system as a discrete state continuous-time Markov process based on the
Lz-transform. Then the exact solution of this model was derived to analyze the system performance.
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3.2.1. System Description

The FMS considered in this paper, depicted in Figure 2, consists of three steps to manufacture
the required product. Two types of CNC machine tools are used to finish the production task at the
first and second stations, which indicates that machines at different stations have different failure
mechanisms. The specific running process of FMS is three identical and independent working machines,
each consisting of two machine tools A and B at the first station to complete the first task of processing.
Then the semi-finished products are transported by the MHS, which is considered as a binary-state
assembly, to Station 2; finally, two other machines independent CNC machine tools located at Station 2
then process the semi-finished products to obtain the required product. Therefore, the CNC machine
tools at each station work essentially in parallel, and each machine tool follows the state transitions
process shown in Figure 1. Regarding the whole FMS, which is a serial structure, it is assumed
that a synchronization rule exists in the machines at the two stations for completing the products
manufacturing process, i.e.,

• Machine synchronization rule: it is required that corresponding machine tools exist for performing
A-related operations at two Stations, and the MHS can normally transport the semi-finished
products; the same requirement for B-related operations exist.

There are six states for each CNC machine tool and total 63
× 2 × 62 = 15, 552 states

for the FMS if the straightforward Markov method is utilized to evaluate the performance.
However, the Lz-transform method can easily overcome this “states explosion problem” and efficiently
finish the performance evaluation.
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3.2.2. Station 1

Using the state-transitions diagram (Figure 1) in accordance with the Markov method, and the
parameters designated as λS1

A (t), λS1
B (t), τS1

AB, τS1
BA, µS1, ∆S1

AB, ∆S1
BA, we build the following system of

differential equations for CNC machine tool m, m = 1, 2, 3 at Station 1:

dpS1
m1(t)
dt = −

(
λS1

A (t) + τS1
AB

)
pS1

m1(t) + µS1pS1
m2(t) + ∆S1

BApS1
m6(t)

dpS1
m2(t)
dt = λS1

A (t)pS1
m1(t) − µ

S1pS1
m2(t)

dpS1
m3(t)
dt = τS1

ABpS1
m1(t) − ∆S1

ABpS1
m3(t)

dpS1
m4(t)
dt = −

(
λS1

B (t) + τS1
BA

)
pS1

m4(t) + ∆S1
ABpS1

m3(t) + µS1pS1
m5(t)

dpS1
m5(t)
dt = λS1

B (t)pS1
m4(t) − µ

S1pS1
m5(t)

dpS1
m6(t)
dt = τS1

BApS1
m4(t) − ∆S1

BApS1
m6(t)

. (10)

Initial conditions are pS1
m1(0) = 1, pS1

m2(0) = pS1
m3(0) = pS1

m4(0) = pS1
m5(0) = pS1

m5(0) = 0;
or pS1

m4(0) = 1, pS1
m1(0) = pS1

m2(0) = pS1
m3(0) = pS1

m5(0) = pS1
m5(0) = 0. The reason for the two initial

conditions is that it is reasonable to start producing any kind of product at the beginning of
the production process. The difference between the two initial conditions can be analyzed by
productivity comparison.

A numerical solution for probabilities pS1
mi(t), m = 1, 2, 3, i = 1, 2, 3, 4, 5, 6 can be calculated

for this system of differential equations using MATLAB®. Therefore, for one CNC machine tool at
Station 1, we can obtain the following output performance stochastic process:

gS1
m =

{
gS1

m1, gS1
m2, gS1

m3, gS1
m4, gS1

m5, gS1
m6

}
pS1

m (t) =
{
pS1

m1(t), pS1
m2(t), pS1

m3(t), pS1
m4(t), pS1

m5(t), pS1
m6(t)

} , m = 1, 2, 3. (11)

Having the sets gS1
m , pS1

m (t), m = 1, 2, 3, one can define for a CNC machine tool the Lz-transform
associated with the machine output performance stochastic process.

Lz
{
gS1

m (t)
}
= pS1

m1(t)z
gS1

m1 + pS1
m2(t)z

gS1
m2 + pS1

m3(t)z
gS1

m3 + pS1
m4(t)z

gS1
m4 + pS1

m5(t)z
gS1

m5+

pS1
m6(t)z

gS1
m6 , m = 1, 2, 3.

(12)

As CNC machine tools work in parallel at Station 1, the Lz-transform associated with Station 1 is

Lz
{
GS1(t)

}
= Ω f par

(
Lz

{
gS1

1 (t)
}
, Lz

{
gS1

2 (t)
}
, Lz

{
gS1

3 (t)
})

. (13)

3.2.3. Material Handling System (MHS)

The devices work in the MHS are regarded as a whole system, for which the state-transitions
diagram is shown in Figure 3, where 1 indicates the working state of the device while 0 means failure
state. Then using Figure 3 in accordance with the Markov method, we build the following system of
differential equations for MHS:

dpMHS
1 (t)

dt = −λMHSpMHS
1 (t) + µMHSpMHS

2 (t)

dpMHS
2 (t)

dt = λMHSpMHS
1 (t) − µMHSpMHS

2 (t)
, (14)



Appl. Sci. 2019, 9, 4153 10 of 20

where λMHS is the failure rate of the MHS and µMHS is the corresponding repair rate. Initial conditions
are pMHS

1 (0) = 1, pMHS
2 (0) = 0.
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A numerical solution for probabilities pMHS
i (t), i = 1, 2 can be calculated for this system of

differential equations using MATLAB®. Therefore, for the MHS, we can obtain the following output
performance stochastic process: 

gMHS =
{
gMHS

1 , gMHS
2

}
pMHS(t) =

{
pMHS

1 (t), pMHS
2 (t)

} . (15)

Having the sets gMHS, pMHS(t), one can define the Lz-transform, associated with the MHS output
performance stochastic process.

Lz
{
GMHS(t)

}
= pMHS

1 (t)zgMHS
1 + pMHS

2 (t)zgMHS
2 . (16)

3.2.4. Station 2

Obviously, the Lz-transform associated with Station 2 could be constructed in a similar way
to Station 1. Note that, the difference in the construction of the Lz-transform associated with
Station 2 is that the parameters of CNC machine tools at Station 2 are different from that at Station 1.
Here, the parameters defined as λS2

A (t), λS2
B (t), τS2

AB, τS2
BA, µS2, ∆S2

AB, ∆S2
BA. Therefore, for one CNC

machine tool at Station 2 we can obtain the following output performance stochastic process by the
similar method using at Station 1:

gS2
m =

{
gS2

m1, gS2
m2, gS2

m3, gS2
m4, gS2

m5, gS2
m6

}
pS2

m (t) =
{
pS2

m1(t), pS2
m2(t), pS2

m3(t), pS2
m4(t), pS2

m5(t), pS2
m6(t)

} , m = 1, 2. (17)

Having the sets gS2
m , pS2

m (t), m = 1, 2 one can define for a CNC machine tool Lz-transform
associated with the machine output performance stochastic process.

Lz
{
gS2

m (t)
}
= pS2

m1(t)z
gS2

m1 + pS2
m2(t)z

gS2
m2 + pS2

m3(t)z
gS2

m3 + pS2
m4(t)z

gS2
m4 + pS2

m5(t)z
gS2

m5 + pS2
m6(t)z

gS2
m6 . (18)
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As CNC machine tools are work in parallel at Station 2, the Lz-transform associated with the
Station 2 is

Lz
{
GS2(t)

}
= Ω f par

(
Lz

{
gS2

1 (t)
}
, Lz

{
gS2

2 (t)
})

. (19)

4. Illustrated Case

To demonstrate details about the efficiency and functionality of the proposed method and model
in analyzing of the performance of flexible manufacturing systems, a case is illustrated in this section
based on the FMS that is depicted in the above section. The parameters for calculating are shown in
Table 1.

Table 1. The related parameters for equipment at each station.

λA λB λMHS µ τAB τBA ∆AB ∆BA gA gB gMHS

Station 1 λS1
A (t) = 2.2

1200

(
t

1200

)1.2
λS1

B (t) = 1.8
1000

(
t

1000

)0.8 1
4

2
500

3
500

1
5

1
6 6 5

MHS λMHS = 0.0002 1
2 20

Station 2 λS2
A (t) = 2.7

1500

(
t

1500

)1.7
λS2

B (t) = 2.1
1300

(
t

1300

)1.1 1
3

2
500

3
500

1
3

1
4 12 10

Note, the total operating time of the FMS is 5000 h per year, and the materials for production are
saturated. The failure process of CNC machine tools follows the Weibull distribution, which has been
widely utilized in the reliability evaluation of that system. The failure of the MHS occurs randomly and
obeys the exponential distribution; there is no relation with the product type as well. The repair rates
of all machines are set as constants, which are the reciprocal of the mean time to repair, respectively.
The meaning and calculation of τAB, τBA and ∆AB, ∆BA are as described in Section 3.1. However, note
that the machine tools at both stations need to be changed simultaneously when the setup preparation
is required for any product. Thus, τAB and τBA take the same value for the machines at two stations.
Finally, gA and gB represent the performance level of each machine, working normally for one hour.
In accordance with the setting parameters, one can perform performance analysis on the CNC machine
tools and FMS, including the setup state.

4.1. Performance Analysis of Multistate CNC Machine Tools

Taking a CNC machine tool at Station 1 as an example, the performance of this system
can be evaluated through the Markov reward approach. According to the cumulative reward
differential Equation (8) and the formula for CNC machine tools’ average instantaneous availability
(9), the availability calculation of the machine is presented in Figure 4.
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In Figure 4, system availability performed better when the state A1 was the initial state than that
with B1 in the early phase of the year, which can be used as a basis for developing a production plan to
avoid the additional downtime losses.

Afterward, it is significant to compare the contribution of each failure state (the setup state
also regarded as a failure) to the system downtime, which helps optimize the production cost.
Therefore, the failure criticality importance (FCI) [48,49] is introduced to calculate the percentage of
each failure state to the system downtime. The FCI can be obtained as follows:

IFCI( j; t) =

(
number o f system f ailures,

caused by subsystem j in [0, t]

)
(number o f system f ailures in [0, t])

, (20)

where IFCI( j; t) is the failure criticality importance of the jth failure state in [0, t]. Subsequently, the key
is to evaluate the number of system failures and the number of the system entrance of each down state,
which can be obtained through the Markov reward approach. In this case, the mean accumulated
reward Vi(t) obtained by solving (6) provides the mean number of entrances into the failure state in
the time interval [0, t]. The reward matrix formulated under the following rules:

1. All rewards that indicate an acceptable state transfer to an unacceptable state are defined as 1;
2. The other awards in the matrix are defined as 0.

Then, the reward matrixes for the number of the system entrance of each down state are:

rA2
FCI =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, rSAB

FCI =



0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

rB2
FCI =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0


, rSAB

FCI =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


.

Therefore, the reward should be found first as a solution of system (6) based on these matrixes
and the system state transition intensity matrix a. The FCI of each failure state can then be calculated
by Equation (21); the results shown in Figure 5:
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For the CNC machine tools at Station 1, the main cause of early system downtime was the setup
states, and the effects of the two-setup states were always consistent, but the impacts continued to
decrease as the system operated longer. Simultaneously, the contributions from the system’s failures
kept increasing, which is in line with the aging characteristics of the machines.

4.2. Performance Analysis of Multistate FMS

In this subsection, the performance of FMS can be obtained by using the Lz-transform method in
which the states’ probabilities of CNC machine tools at Station 1, 2 and that of devices in the MHS are
calculated by system (10) and (14) under the designed initial state, respectively.

Thus, in accordance with Equation (12) and parameters shown in Table 1, the Lz-transform for
all three identical CNC machine tools at Station 1 have the same rewritten form (21). From here for
simplification we substitute pmi with pi.

Lz
{
gS1

m (t)
}
= pS1

1 (t)z6 + pS1
4 (t)z5 +

(
pS1

2 (t) + pS1
3 (t) + pS1

5 (t) + pS1
6 (t)

)
z0. (21)

We will use ΛS1 to denote
(
pS1

2 (t) + pS1
3 (t) + pS1

5 (t) + pS1
6 (t)

)
. Consequently, the mean

instantaneous performance of one CNC machine tool at Station 1 can be easily derived from the
modified Lz-transform in the following form:

E(t) =
∑

gS1
i ≥0

pS1
i (t)gS1

i , i = 1, . . . , 6. (22)

Output performance that is manufactured by the CNC machine tools at Station 1 is depicted in
Figure 6.
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Using Equation (13) and the rewritten Lz-transform for one CNC machine tool at Station 1, one can
obtain the Lz-transform, associated with the whole of Station 1 as

Lz
{
GS1(t)

}
= Ω f par

(
Lz

{
gS1

1 (t)
}
, Lz

{
gS1

2 (t)
}
, Lz

{
gS1

3 (t)
})

= PS1
1 (t)z18 + PS1

2 (t)z17 + PS1
3 (t)z16 + PS1

4 (t)z15 + PS1
5 (t)z12

+PS1
6 (t)z11 + PS1

7 (t)z10 + PS1
8 (t)z6 + PS1

9 (t)z5 + PS1
10(t)z

0.

(23)

The meaning of notations are

PS1
1 (t) = pS1

1 (t)pS1
1 (t)pS1

1 (t);

PS1
2 (t) = 3pS1

1 (t)pS1
1 (t)pS1

4 (t);

PS1
3 (t) = 3pS1

1 (t)pS1
4 (t)pS1

4 (t);

PS1
4 (t) = pS1

4 (t)pS1
4 (t)pS1

4 (t);

PS1
5 (t) = 3pS1

1 (t)pS1
1 (t)ΛS1;

PS1
6 (t) = 6pS1

1 (t)pS1
4 (t)ΛS1;

PS1
7 (t) = 3pS1

4 (t)pS1
4 (t)ΛS1;

PS1
8 (t) = 3pS1

1 (t)ΛS1ΛS1;

PS1
9 (t) = 3pS1

4 (t)ΛS1ΛS1;

PS1
10(t) = ΛS1ΛS1ΛS1.

Similarly, the Lz-transform for the two identical CNC machine tools at Station 2 have the same
rewritten form as

Lz
{
gS2

q (t)
}
= pS2

1 (t)z12 + pS2
4 (t)z10 + ΛS2z0, q = 1, 2, (24)

where ΛS2 represents the
(
pS2

2 (t) + pS2
3 (t) + pS2

5 (t) + pS2
6 (t)

)
. Therefore, the Lz-transform associated

with the whole of Station 2 can be derived from Equation (19) as

Lz
{
GS2(t)

}
= Ω f par

(
Lz

{
gS2

1 (t)
}
, Lz

{
gS2

2 (t)
})

= PS2
1 (t)z24 + PS2

2 (t)z22 + PS2
3 (t)z20 + PS2

4 (t)z12 + PS2
5 (t)z10

+PS2
6 (t)z0.

(25)
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The notations represent:
PS2

1 (t) = pS2
1 (t)pS2

1 (t);

PS2
2 (t) = 2pS2

1 (t)pS2
4 (t);

PS2
3 (t) = pS2

4 (t)pS2
4 (t);

PS2
4 (t) = 2pS2

1 (t)ΛS2;

PS2
5 (t) = 2pS2

4 (t)ΛS2;

PS2
6 (t) = ΛS2ΛS2.

Based on Equation (19), the Lz-transform associated with the whole system can be obtained as

Lz
{
GFMS(t)

}
= Ω f ser

(
Lz

{
GS1(t)

}
, Lz

{
GMHS(t)

}
, Lz

{
GS2(t)

})
= Ω f ser

(
PS1

1 (t)z18 + PS1
2 (t)z17 + PS1

3 (t)z16 + PS1
4 (t)z15 + PS1

5 (t)z12

+PS1
6 (t)z11 + PS1

7 (t)z10 + PS1
8 (t)z6 + PS1

9 (t)z5

+PS1
10(t)z

0, pMHS
1 (t)z20 + pMHS

2 (t)z0, PS2
1 (t)z24 + PS2

2 (t)z22

+PS2
3 (t)z20 + PS2

4 (t)z12 + PS2
5 (t)z10 + PS2

6 (t)z0).

(26)

Due to the FMS possessing the characteristic of providing multiple products or services, it is
necessary to carry out the performance analysis based on product or service type. Thus, based on the
synchronization rule, Equation (26), and simple algebra, where the powers of z are found as minimum
values of the powers of the corresponding terms, the Lz-transform associated with the FMS can be
obtained as

Lz
{
GFMS(t)

}
= PFMS

1 (t)z18 + PFMS
2 (t)z17 + PFMS

3 (t)z16 + PFMS
4 (t)z15 + PFMS

5 (t)z12

+PFMS
6 (t)z11 + PFMS

7 (t)z10 + PFMS
8 (t)z6 + PFMS

9 (t)z5 + PFMS
10 (t)z0,

(27)

where:
PFMS

1 (t) = PS1
1 (t)pMHS

1 (t)PS2
1 (t);

PFMS
2 (t) = PS1

2 (t)pMHS
1 (t)PS2

2 (t);

PFMS
3 (t) = PS1

3 (t)pMHS
1 (t)PS2

3 (t);

PFMS
4 (t) = PS1

4 (t)pMHS
1 (t)PS2

5 (t);

PFMS
5 (t) = PS1

5 (t)pMHS
1 (t)

(
PS2

1 (t) + PS2
2 (t) + PS2

4 (t)
)
;

PFMS
6 (t) = PS1

6 (t)pMHS
1 (t)PS2

2 (t);

PFMS
7 (t) = PS1

7 (t)pMHS
1 (t)

(
PS2

2 (t) + PS2
3 (t) + PS2

5 (t)
)
;

PFMS
8 (t) = PS1

8 (t)pMHS
1 (t)

(
PS2

1 (t) + PS2
2 (t) + PS2

4 (t)
)
;

PFMS
9 (t) = PS1

9 (t)pMHS
1 (t)

(
PS2

2 (t) + PS2
3 (t) + PS2

5 (t)
)
;

PFMS
10 (t) = 1−

∑9
i=1 PFMS

i (t).
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The mean instantaneous output performance of product per unit time manufactured by the FMS
can be derived according to Equation (5) as

E(t) = 18PFMS
1 (t) +15PFMS

4 (t) + 12
(
PFMS

2 (t) + PFMS
5 (t)

)
+ 10

(
PFMS

3 (t) + PFMS
7 (t)

)
+6

(
PFMS

3 (t) + PFMS
6 (t) + PFMS

8 (t)
)

+5
(
PFMS

2 (t) + PFMS
6 (t) + PFMS

9 (t)
)
.

(28)

The productivity calculations of product made by the FMS are presented in Figure 7.
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The evaluation process and results indicate that the random setup commands had a significant
impact on the performance of the FMS. How to predict and design optimal production plans based on
the proposed methods for satisfying the demand will be an interesting research topic.

4.3. Availability Analysis of the FMS

The availability of an FMS can be defined as the ability of the manufacturing system
to meet production demands in accordance with specified conditions and time interval [16].
Therefore, the availability of FMS depends on the relation between the output performance and
the desired level of this performance-demand, which is determined outside the system. In a general
case, demand W(t) is also a random process that can take discrete values from the set w = {w1, . . . , wM}.
The desired relation between the system performance and the demand at any time instant t can be
expressed by the acceptability function Φ(G(t), W(t)). The acceptable system states correspond to
Φ(G(t), W(t)) ≥ 0 and the unacceptable states correspond to Φ(G(t), W(t)) < 0. The last inequality
defines the MSS failure criterion. In many practical cases, the MSS performance should be equal to or
exceed the demand. Therefore, in such cases, the acceptability function takes the following form:

Φ(G(t), W(t)) = G(t) −W(t), (29)

and the criterion of state acceptability can be expressed as

Φ(G(t), W(t)) = G(t) −W(t) ≥ 0. (30)

In the FMS, without loss of generality, we assume that the required demand level is constant
W(t) ≡ w and all system states with performance greater than or equal to w corresponds to the set
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of acceptable states, and all system states with performance lower than w correspond to the set of
unacceptable states.

Then combined with Equation (4), the instantaneous availability A(t) of the FMS is the probability
that the FMS at instant t > 0 is in one of the acceptable states.

A(t) =
∑

gk≥w
pk(t). (31)

Consequently, the system of equations of the instantaneous availability of the FMS in different
demand is expressed as follows: 

A1(t) = PFMS
1 (t), w1 = 18

A2(t) =
∑3

i=1 PFMS
i (t), w2 = 16

A3(t) =
∑4

i=1 PFMS
i (t), w3 = 12

A4(t) =
∑4

i=1 PFMS
i (t), w4 = 10

, (32)

and the instantaneous availability of the FMS in different demand shown as follows:
As shown in Figure 8, the instantaneous availability of the FMS for different demands can be

obtained according to the Lz-transform method, which helps the manufacturers to design the best
production plan in line with customer’s order requirements. It should be noted that the availability
results are calculated under the constraints that setup changes occur randomly and the machine
synchronization rule. Consequently, the Lz-transform can not only be used to evaluate the output of
products manufactured by FMS but also to evaluate the system availability effectively in accordance
with the changes in product demand.
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5. Conclusions

The setup preparation activities existing in the actual production of CNC machine tools were
included to establish a novel multistate transitions process of CNC machine tools in the current paper,
which easily demonstrated the production flexibility of the machines as well as the FMS. The following
availability and FCI assessment of failure states conducted by the Markov reward approach based
on the new model are given. Availability results are helpful to decision making about selecting the
initial processing product for the CNC machine tools. Moreover, in the early operation phase of
machine tools, the FCI analysis results show that the random setup command contributes more to the
system downtime than the failures occurring in the system. Therefore, it is irrational to change settings
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frequently in the early stages of the machine’s life cycle, which could greatly reduce the equipment
utilization ratio.

An FMS demonstration case built in this paper was based on the new CNC machine tools multistate
transitions process. Then the Lz-transform was introduced to the evaluation of output performance
and availability for the multistate FMS. The calculation process demonstrated that the Lz-transform is
well formalized and suitable for application in performance analysis of an FMS. Moreover, the method
allows a dramatic increase in computation efficiency in comparison with the straightforward Markov
method that otherwise would have required the building of and solution for a model with “states
explosion”. The instantaneous availability of the FMS for different order demands can be obtained
according to the proposed method, which helps the manufacturers to design the best production plan
in line with customers’ order requirements.

Future work concerning the FMS should be more practical by relaxing the assumption that the
production setup activities occur randomly while more consideration should be given to the actual
production scheduling. Extending the research based on the proposed methodology to estimate the
impact of the setups and intermediate buffer on the performance of FMS is of interest. Additionally,
the optimal maintenance planning study of FMS is significant, which should combine the system
availability constraint and customer demand.
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