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Congenital heart disease (CHD) is a significant cause of mortality in infants and adults.

Currently human genomic analysis has identified a number of candidate genes in

these patients. These genes span diverse categories of gene function suggesting

that despite the similarity in cardiac lesion, the underlying pathophysiology may be

different. In fact, patients with similar CHDs can have drastically different outcomes,

including a dramatic decrease in myocardial function. To test these human candidate

genes for their impact on myocardial function, we need efficient animals models of

disease. For this purpose, we paired Xenopus tropicalis with our microangiography

technique, hemoglobin contrast subtraction angiography (HCSA). To demonstrate

the gene-teratogen-physiology relationship, we modeled human cardiomyopathy in

tadpoles. First we depleted the sarcomeric protein myosin heavy chain 6 (myh6)

expression using morpholino oligos. Next, we exposed developing embryos to the

teratogen ethanol and in both conditions showed varying degrees of cardiac dysfunction.

Our results demonstrate that HCSA can distinguish biomechanical phenotypes in

the context of gene dysfunction or teratogen. This approach can be used to

screen numerous candidate CHD genes or suspected teratogens for their effect on

cardiac function.

Keywords: Xenopus tadpole, hemoglobin subtraction angiography, human cardiomyopathy, animal model

cardiovascular system, videomicroscopy

INTRODUCTION

Congenital heart disease (CHD) occurs in ∼8 out of 1,000 live births and effects 1.3 million
newborns per year worldwide (Marelli et al., 2007; van der Linde et al., 2011). Currently the
prevalence of adults with CHD exceeds the pediatric population, shifting the burden of disease
to adulthood, and enlarging the cohort of CHD patients. Despite the early corrective measures
and close, multidisciplinary care, adults with CHD still have a significantly higher mortality rate
(Pierpont et al., 2007). Sudden death and early onset congestive heart failure remains the most
common causes of mortality suggesting that premature myocardial failure may be associated
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with adult CHD (Sabatine et al., 2006; O’Donnell and Nabel,
2011; Kathiresan and Srivastava, 2012). Currently very little is
known about the interactions between the malformed heart and
biomechanical function which ultimately affects life expectancy
and the quality of life.

Human genomics technologies are now enabling genetic
analyses of patients with CHD (Fakhro et al., 2011; Sanders et al.,
2012; Zaidi and Brueckner, 2017; Pierpont et al., 2018). Based
on the diversity of the genes identified in similar phenotypic
patients, we suggest that genetic heterogeneity may explain the
differences seen in patient outcomes. To better understand this
relationship between a candidate gene and the biomechanical
phenotype, we need to develop efficient animal models to
evaluate the effect of candidate CHD genes on cardiac function.
This would be the first step to investigate the functional
variability seen in CHD patients.

Imaging small animal cardiovascular system remains to be
a challenge because of the small heart sizes as well as the
fast heart rates requiring high resolution, high speed imaging.
Cardiac MRI with gating has been used for imaging anesthetized
mice and rat cardiovascular system yet image acquisition time
reaching to hours making it difficult to use for any screening
purposes (Ramirez and Bankson, 2007; Ramirez et al., 2007;
Esparza-Coss et al., 2008). Alternatively micro-CT systems are
designed to provide fast (1–2 s) imaging. Combined with the
cardio-respiratory gating and laborious segmentation, 4D data
sets can be formed tomeasure cardiac function (Yushkevich et al.,
2006; Clark et al., 2013). Both of these modalities have limited
utilization for rapid, high-throughput screening since they
require extensive image processing. As an alternative modality
our group and the others have implemented Optical Coherence
Tomography (OCT) imaging for small animal cardiovascular
imaging (Tearney et al., 1996; Luo et al., 2006; Männer et al.,
2009; Yoo et al., 2011; Wang et al., 2016; Deniz et al., 2017;
Grishina et al., 2017). Principally OCT imaging is similar to the
ultrasound but light is utilized instead of sound and provides
cross-sectional images. With scan rates of ∼100 2D frames/s
and implemented Doppler technology, OCT imaging has been
evolving in functional analysis of cardiovascular system in small
animal models (Davis et al., 2008; Jenkins et al., 2010). The
main disadvantages of OCT are the expense of the commercially
available products and the limitations of Doppler application.
For accurate quantification of blood flow by doppler application
requires high speed systems to prevent phase-wrapping artifacts
and also relies on laminar flow. This is very difficult to obtain
from motile, trabeculated embryonic ventricle, limiting Doppler
OCT application at its current state for accurately quantifying
cardiac ventricle function.

We previously demonstrated that hemoglobin contrast
subtraction angiography (HCSA) can exploit the wavelength-
sensitive absorption of hemoglobin as a molecular-specific source
of endogenous flow contrast and can be applied to Xenopus
tadpole hearts in a straightforward manner (Deniz et al., 2012)
using an EOS camera. HCSA can quantify changes in the
embryonic cardiac function after perturbation with a calcium
channel blocker. In this brief report, we demonstrate that
Xenopus can be a fast gene-teratogen-function assay and when

coupled with HCSA, can be used to quantify physiological
cardiac phenotypes over a short period of time. Xenopus, as a
model of cardiac development, has a favorable balance between
human modeling and cost/efficiency that is required for high
throughput screening (Warkman and Krieg, 2007; Khokha,
2012). The tadpole cardiovascular system develops within 72 h
and remains optically accessible throughout the early stages of
development. Importantly, during this period of development,
tadpoles can survive with severely malformed hearts since
nutrient and O2 delivery is not dependent on blood circulation.
Here, we capitalized on these advantages to model human
cardiomyopathy in Xenopus in two ways, first by reducing the
expression of the sarcomeric protein myosin heavy chain 6
(MYH6) using morpholino oligonucleotides (MO) and, in a
separate set of experiments, by exposing them to the known
teratogen ethanol (EtOH).

Cardiac muscle myosin consists of two heavy chain subunits,
two light chain subunits, and two regulatory subunits. We used
MYH6 morpholino to block the translation start site of the
mRNA encoding the alpha heavy chain. It has been shown
that mutations in MYH6 gene cause cardiomyopathy both in
humans (Hershberger et al., 2010) and Xenopus suggesting a
well-conserved disease mechanism (Abu-Daya et al., 2009). One
substantial advantage of MOs is that gene dosage can be titrated
based on the amount of MO injected providing fine dosage
control. This is important since most cardiomyopathy patients
are heterozygous (Zaidi and Brueckner, 2017) and therefore gene
dosage may play a critical role.

In parallel to the knockdown approach, we exposed the
developing embryo to EtOH, a known cardiac teratogen, affecting
one in eight pregnant women (Floyd and Sidhu, 2004) and
leading to fetal alcohol syndrome (FAS). Worldwide FAS affects
many children with a prevalence of 23 per 1,000 (Roozen et al.,
2016). Patients with FAS also present with structural birth defects
including cardiac defects (Jones et al., 2010). To investigate the
effects of EtOH on the developing cardiovascular system, studies
in zebrafish found increased heart volumes, decreased thickness
of the ventricular wall, and decreased basal heart rates (Dlugos
and Rabin, 2010). Similarly, in Xenopus embryos exposed to
EtOH, a reduction in trabeculae formation was found (Yelin
et al., 2007). More elaborate work in chick suggested that ethanol-
induced alterations in early cardiac function may potentially
lead to late-stage valve and septal defects (Karunamuni et al.,
2014). Together, EtOH appears to altermyocardial formation and
pump function.

In this report we show that HCSA imaging can detect
changes in embryonic cardiac function using several different
anatomic and physiological metrics, establishing a rapid, non-
destructive, low-cost method to investigate cardiac gene-
function relationship.

MATERIALS AND METHODS

Xenopus Husbandry
Xenopus tropicalis were housed and cared for in our aquatics
facility according to established protocols that were approved
by the Yale Institutional Animal Care and Use Committee
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(IACUC) in accordance with NIH guidelines. Female and
male mature Xenopus tropicalis were obtained from National
Xenopus Resource.

MYH6 Knockdown
In vitro fertilization and microinjections were done as previously
described (del Viso and Khokha, 2012). In order to deplete
myh6, we injected fertilized eggs with either 1 or 2 ng of
MYH6-MOs and the tracer dye Alexa488 (Invitrogen) at one
cell stage. Controls were injected with only tracer dye Alexa488.
The advantage of MOs is that “gene dosage” can be titrated
based on amount of MO injected providing fine dosage control.
We used a translational-blocking start site morpholino oligo
(MO) (Morcos, 2007) to deplete the alpha heavy chain, MYH6
(sequence 5′ AGTCTGCCATCAGGGCATCACCCAT-3′–Gene-
Tools, LLC) which was previously utilized and verified in
Xenopus (Abu-Daya et al., 2009). Embryos were injected at the
one cell stage with borosilicate glass needles. Post-injections,
embryos were incubated in 1/9 Modified Ringer’s solution
supplemented with 50µg/ml of gentamycin at 25◦C. Injections
were confirmed by fluorescent lineage tracing with a Zeiss
Lumar fluorescence stereomicroscope at stage 28 and tadpoles
further raised at until stage 45 (Nieuwkoop—Faber staging. ∼
post-fertilization day 4 at 25◦C Nieuwkoop and Faber, 1994)
for imaging.

EtOH Treatment
We incubated Xenopus embryos in 1% EtOH in 1/9 Modified
Ringer’s solution at 25◦C following mid-blastula stage (stage
9, Nieuwkoop—Faber staging Nieuwkoop and Faber, 1994)
as described previously (Yelin et al., 2007) until stage 45 to
determine the effects on the myocardium using HCSA imaging.
EtOH solution refreshed daily for 4–5 days until tadpoles reached
stage 45.

Imaging and Image Processing
We used a Nikon SMZ800 stereomicroscope equipped with
Canon EOS 5D Mark II digital camera and Sugar CUBE—
LED (4,000 Lumens) with ring illuminator. Image acquisition
setup: Zoom 6.2/Gain: 0/Depth 14 bit/LED 4,000 Lumens.
Fifty RAW images acquired with 0.2 s intervals. High Speed
color movie obtained with Motion Xtra N4-IDT, Inc. N4
Camera. For cardiac functional analysis, we embedded Stage
44–45 (post fertilization day 3 at 28◦C) tadpoles in low melt
agarose and positioned ventral surface exposed to the imaging
plane (Supplemental Figure 1A). First, we obtained a scout
image to record the tadpole stage, tadpole position and overall
development. Next, we imaged the cardiac sac and confirmed
that ventricle borders were clearly delineated. We obtained 50
still images (14-bit frames in RAW format) in the time lapse
mode with a 0.2 s interframe interval using a Canon EOS 5D
Mark II digital camera (Supplemental Figure 1B). Acquiring 50
images effectively captured end-systolic and end-diastolic stages
of the cardiac cycle. Next, we processed the images and calculated
various metrics using our custom image processing and analysis
software. The custom software was developed in Matlab (The
Mathworks, Natick, USA) Version 2012B. The application allows

the user to load a high-bit depth image series in PNG format,
sort, and select images of systole or diastole, segment the outline
of the ventricle and store results as comma-separated value files.
The software is available open-source1.

Matlab Interface
The graphical user interface allows the user to browse
through the acquired images and select the frames
corresponding to the maximal end-systole and end-
diastole (Supplemental Figure 1C—Right Panel). Then on
the selected images the ventricle is manually segmented
(Supplemental Figure 1C—white dots). Using an Otsu-based
thresholding function in MATLAB, we classified pixels into
those that contain hemoglobin and those that do not. Finally,
we quantified the number of hemoglobin-containing pixels
(referred as Hb blush) within a manually segmented ventricle at
the end of systole and diastole (Supplemental Figure 1D).

Measurements
Based on hemoglobin pixel counts and the total ventricular
area delineated by manual segmentation, we estimated the total
ventricular end-diastolic area (tEDA), the total ventricular end-
systolic area (tESA), percent change in the total ventricular
area (1%tA= 100∗(tEDA-tESA)/tEDA), end-diastolic blood area
(EDBA), end-systolic blood area (ESBA), the stroke area (SA =

EDBA-ESBA), and ejection fraction (EF = 100∗SA/EDBA). We
also derived a “myocardial fraction” metric where we estimated
the myocardial area and referred to that as the myocardial mass
index (MMI). To derive MMI, we assumed that during peak
systole, where the myocardium is at its maximal contraction,
most of the blood is ejected minimizing this confounding
volume. We then subtracted the end-systolic blood area from the
total ventricular end-systolic area assuming that the remainder of
the segmented area would be a rough estimate of the myocardial
mass at maximal contraction.

Dye Injection
Tadpole raised and positioned in 1% agar as described above.
Using microinjector (Harvard Apparatus PLI-100 Pico-Injector
Microinjection System) Brilliant Blue FCF (Sigma-Aldrich) dye
injected to the cardinal vein. Movie obtained with Redlake/IDT
Y4 Lite grayscale camera.

Statistics
For comparison we utilized the Mann-Whitney test (non-
parametric and not paired) and used a scatter plot with the
bar showing the median and 95% confidence interval. We also
included before-after graph including standard error of themean.
All significant differences between groups indicated in the figure
legends. Significance was determined when the p-value is lower
than 0.05.

1http://mhealthgroup.net/software (Note to editors and reviewers: the software

will be made available upon publication of the manuscript).
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FIGURE 1 | Physiological quantification of embryo heart function in MYH6 morphants. For this experiment 29 control, 39 morphants-−1 ng morpholino injected and

13 morphants-−2 ng morpholino injected analyzed. Measurements derived from manual segmentation include surface area at the end of diastole and systole and

(Continued)
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FIGURE 1 | the change in ventricle area. (A) Before-after graph presented with extra columns pointing mean with SEM in red. Green line between means flattens as

change in surface area diminishes with increasing MO dose. (B,C) As the MO dose is increased, the change in ventricle area is reduced, and the ventricle sizes are

smaller. (D) Measurements derived from HCSA application include Hb blush at the end of diastole and systole and the change in blush area. Before-after graph

presented with extra columns pointing mean with SEM in red. Green line between means flattens as change in blush area diminishes with increasing MO dose. (E,F)

Following HCSA application, Hb blush is quantified at the end of diastole and systole. Ejection Fraction is derived from these measurments. Morphants demonstrated

a dose dependent diminished ejection fraction and (G) stroke area. (H) Myocardial mass index estimates the amount of cardiac mass within the manually segmented

heart. Myocardial mass index is affected in 2 ng morphants but remains within normal limits in 1 ng morphants. SEM, standard error of the mean; Hb Blush,

Hemoglobin-containing pixels; tEDA, total end-diastolic area; tESA, total end-systolic area; 1tA, change in total area; EDBA, end diastolic blood area; ESBA,

end-systolic blood area; EF, ejection fraction; MMI, myocardiac mass index; HCSA, Hb contrast subtraction angiography. ****p < 0.0001, **p < 0.01, and *p < 0.05.

RESULTS

HCSA Imaging Can Detect Cardiac
Dysfunction in the Setting of Sarcomere
Perturbation
We first analyzed cardiac function in MYH6 morphant group.
We analyzedHCSA images from 29 control embryos, 39 embryos
injected with 1 ng MYH6 morpholino, and 13 embryos injected
with 2 ng MYH6 morpholino. Overall, the 2 ng-morphant hearts
were smaller in size as ascertained using total ventricular end-
diastolic area (tEDA) (Figures 1A,B), whereas 1 ng-morphants
had similar end diastolic area but slightly larger end systolic
area when compared to the controls. The percent change in
the ventricle area during contraction (1%tA) was significantly
reduced in both morphants suggesting myocardial dysfunction
(Figure 1C). We derived these measurements with manual
segmentation as described in methods. Then we applied HCSA,
where we were able to quantify end-diastolic and end-systolic Hb
blush (EDBA: end-diastolic blood area; ESBA: end-systolic blood
area), which is a surrogate for blood area. In end-diastole, due
to their overall smaller cardiac size, 2 ng morphants filled with
less blood whereas 1 ng morphants, given their normal cardiac
size, filled with a similar amount of blood when compared to
the controls (Figures 1D,E). Importantly, at the end of systole,
they both showed a significant failure in emptying the ventricle
leading to an increase in end systolic blood area (Figures 1D,E).
Therefore, the ejection fraction and the stroke area diminished,
so we concluded that the magnitude of the dysfunction was worse
in 2 ng morphants (Figures 1F,G). Then we estimated MMI
at maximal ventricular contraction. As shown in Figure 1H, 1
ng myh6 morphants did not have a significant reduction in
myocardial mass in contrast to 2 ng morphants where MMI was
significantly reduced. In conclusion, 2 ng morphants showed
both structural loss of myocardium size and functional loss of
contractility. Nevertheless, even without a change in MMI in 1
ngmyh6morphants, HCSA imaging could still delineate changes
in myocardial function.

Next we analyzed the ethanol exposed tadpoles. In the ethanol
group, we analyzed HCSA images from 30 control and 30
exposed tadpoles. Grossly dysmorphic embryos were excluded.
In this group, ventricles were smaller than the control group
(Figures 2A,B) and the change in ventricle area was diminished
(Figure 2C), suggesting that EtOH exposed ventricle can‘t
shorten appropriately. Aslo ESBA, a surrogate for blood volume
at the end of systole, was significantly higher than controls
(Figures 2D,E) which is also likely due to the reduced ability to

generate adequate ventricular force, shown as reduced ejection
fraction and stroke area (Figures 2F,G). Therefore, together these
tadpoles had slightly smaller looking ventricles with reduced
myocardial pump function. Furthermore, “myocardial fraction”
in systole shows a significant reduction suggesting a loss of
myocardial mass (Figure 2H).

DISCUSSION

The incidence of CHD is staggering: ∼1% of live births
and 10% of aborted fetuses have CHD worldwide (Bernier
et al., 2010; van der Linde et al., 2011; Jorgensen et al.,
2014). New genomics technologies are enabling genetic analyses
of CHD patients and identifying sequence variations in
patients with CHD (Fakhro et al., 2011; Zaidi et al., 2013;
Glessner et al., 2014; Homsy et al., 2015; McKean et al.,
2016; Priest et al., 2016; Jin et al., 2017; Hoang et al.,
2018; Manheimer et al., 2018). Genes identified in genomic
studies are many but their role in cardiac development
and function is uncertain; therefore, functional assays must
be relatively rapid and inexpensive. We have previously
shown that Xenopus tropicalis with the CRISPR/Cas9 system
enables the analysis of hundreds of different genes in cardiac
development (Deniz et al., 2018) and in this brief report we
demonstrate that HSCA imaging can be used to screen for
types of CHDs that present with sarcomeric dysfunction, for
example cardiomyopathies.

The advantage of our HCSA method is that we can
quantitate different metrics across multiple embryos to identify
statistically significant differences between groups rather than
relying on a qualitative assessment of function. In myh6
morphants with increasing doses of morpholino we showed
worsening cardiac function, yet 1 ng morphants didn’t show
differences in EDA, EDBA, and MMI suggesting that even
subtle changes in sarcomeric function can be demonstrated
with HCSA imaging. Similarly EtOH treated hearts were
smaller overall and failed to eject adequate blood, again
suggesting sarcomeric dysfunction that was easily quantified with
HCSA imaging.

As a major advantage HCSA imaging is non-destructive,
reproducible, faster, and most importantly non-lethal to the
tadpole enabling multiple viewing session at various stages.
This is important in analyzing numerous candidate genes.
Fluoroscopy-based angiography requires microinjection
in tadpoles, is fatal preventing subsequent imaging, and
is difficult to reproduce limiting its utility for screening

Frontiers in Physiology | www.frontiersin.org 5 September 2019 | Volume 10 | Article 1197

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Deniz et al. Phenotyping Xenopus Embryonic Heart Pathophysiology

FIGURE 2 | Physiological quantification of embryo heart function in EtOH treated tadpoles. For this experiment 30 controls and 30 EtOH exposed tadpoles analyzed.

Measurements derived from manual segmentation includes surface area at the end of diastole and systole and the change in ventricle area. (A) Before-after graph

(Continued)
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FIGURE 2 | presented with extra columns pointing mean with SEM in red. Green line between means flattens as change in surface area diminishes in EtOH group.

(B,C) Ventricles of the ethanol exposed tadpoles were slightly smaller in size but had diminished change in the ventricle area. Following HCSA application, Hb blush

quantified at the end of diastole and systole. Ejection fraction is derived from these measurements. (D) Before-after graph presented with extra columns pointing

mean with SEM in red. Green line between means flattens as change in blush area diminishes in EtOH group. (E,F) Ethanol exposed tadpoles had less blood at the

end of diastole and blood is not propelled efficiently leading an increase in end systolic Hb blush, diminished ejection fraction, and diminished (G) stroke area. (H)

Myocardial Mass Index. In ethanol exposed tadpoles myocardial mass is diminished. SEM, standard error of the mean; Hb Blush, Hemoglobin-containing pixels;

tEDA, total end-diastolic area; tESA, total end-systolic area; 1tA, change in total area; EDBA, end diastolic blood area; ESBA, end-systolic blood area; EF, ejection

fraction; MMI, myocardiac mass index; HCSA, Hb contrast subtraction angiography. ****p < 0.0001, ***p < 0.001, and **p < 0.01.

purposes (Movie 1). As the high-speed color cameras
(>250 fps) are more available and cheaper, more detailed
functional analysis including simultaneous assessment for
cardiac and peripheral vasculature structures will be more
feasible (Movie 2) providing structural details comparable to
angiography images.

Clinical cardiology has demonstrated that imaging modalities
(e.g., echocardiography and cardiac angiography) are essential
to identify abnormal heart structures and heart function
(Cua and Feltes, 2012; Roest and de Roos, 2012). Current
advances in optical imaging are enabling comprehensive, high-
resolution cardiac imaging in small animal models, which
facilitates studying gene-phenotype and teratogen-phenotype
relationships (Choma et al., 2010). Xenopus is ideal for these
studies given the ease of in vivo optical access to the cardiac
structures as well as the optimal balance between human
modeling and cost/efficiency (Warkman and Krieg, 2007). In
this report we showed the effects of a human cardiomyopathy
gene (MYH6) and a known teratogen, EtOH (known to cause
Fetal Alcohol Syndrome) on early cardiac development using
HCSA imaging. Broadly our results support the utility of HCSA
imaging, when paired with Xenopus, to screen the impact
of novel candidate CHD genes or potential teratogens on
cardiac function.
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Supplemental Figure 1 | Experimental and quantitative analysis workflow. (A)

For myh6 experiments, one cell Xenopus embryos are injected with either MOs

and the tracer dye (Alexa488) or only the tracer dye (control group). In ethanol

exposure experiments, we incubated post-midblastula stage embryos in1% EtOH.

On day five, NF Stage 44 tadpoles are embedded in low melt agarose (1%) for

non-pharmacological immobilization to facilitate imaging. (B) Scout Image and

Magnified Images acquired. (C) Custom software interface. Right panel allows the

user navigate through the acquired images and adjust the brightness and the

contrast. Once maximal end-diastolic and maximal-end-systolic frames are

identified, the ventricle is manually segmented. (D) Images processed and Hb

blush is quantified within the segmented area using the HCSA software interface.

IVF, in vitro fertilization; lta, left truncus arteriosus; rta, right truncus arteriosus; v,

ventricle; oft, out flow tract; Hb, hemoglobin.

Movie 1 | Grayscale movie demonstrating injection of Brilliant Blue dye via cardinal

tail vein and tracking of flow from the venous system sequentially to the atrium,

ventricle, and outflow tract that eventually propagates to the systemic circulation.

Movie 2 | High speed (250 fps—color) color movie and processed HCSA movie.
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