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A major goal in systems biology is a comprehensive description of the entirety of

all complex interactions between different types of biomolecules—also referred to

as the interactome—and how these interactions give rise to higher, cellular and

organism level functions or diseases. Numerous efforts have been undertaken to define

such interactomes experimentally, for example yeast-two-hybrid based protein-protein

interaction networks or ChIP-seq based protein-DNA interactions for individual proteins.

To complement these direct measurements, genome-scale quantitative multi-omics

data (transcriptomics, proteomics, metabolomics, etc.) enable researchers to predict

novel functional interactions between molecular species. Moreover, these data allow

to distinguish relevant functional from non-functional interactions in specific biological

contexts. However, integration of multi-omics data is not straight forward due to

their heterogeneity. Numerous methods for the inference of interaction networks from

homogeneous functional data exist, but with the advent of large-scale paired multi-omics

data a new class of methods for inferring comprehensive networks across different

molecular species began to emerge. Here we review state-of-the-art techniques

for inferring the topology of interaction networks from functional multi-omics data,

encompassing graphical models with multiple node types and quantitative-trait-loci (QTL)

based approaches. In addition, we will discuss Bayesian aspects of network inference,

which allow for leveraging already established biological information such as known

protein-protein or protein-DNA interactions, to guide the inference process.

Keywords: systems biology, genomics, prior information, machine learning, personalized medicine, data

integration, single cell, mixed data

1. INTRODUCTION

Systems biology aims to model complex biological systems by employing a holistic view on all
cellular processes (Ideker et al., 2001). At its heart lies the central dogma of biology (Crick,
1958), i.e., genes encoded in the DNA (genome) are transcribed to mRNAs (transcriptome)
which are translated to proteins (proteome). Additionally, other omic layers like the methylome
(DNA methylation at CpG dinucleotides) and the metabolome (abundance of metabolites) take
part in maintaining biological systems through molecular interaction networks. These lay the
foundation for cellular processes such as gene expression regulation and metabolism. The working
hypothesis of systems biology is that understanding molecular interactions and the regulatory
networks they form is crucial to understand system level properties such as diseases or other
phenotypes (Ideker et al., 2001).
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Therefore, a goal of systems biology is to establish
interactomes: networks of interacting molecules of distinct
cellular omic layers. We define an interactome as a network
consisting of nodes representing individual molecules and
connections between nodes (edges) which reflect (1) physical
(direct) or (2) functional (indirect) interactions between
molecules. To establish physical interactions, experimental
assays systematically interrogating direct interactions
between molecules can be applied. For example, a protein
interactome based on protein-protein interactions (PPIs,
e.g., protein complexes), can be determined by large-scale
yeast-2-hybrid screens (Y2H) or affinity purification followed
by mass-spectrometry (AP-MS) (Brueckner et al., 2009).
Furthermore, genome-wide protein-DNA interactomes can
be constructed by chromatin immunoprecipitation followed
by next-generation sequencing (ChIP-seq) (Johnson et al.,
2007) in order to identify for instance all sites in the genome,
where a particular transcription factor (TF) binds. Similarly,
protein-RNA interactions can be probed using cross-linking
immunoprecipitation (CLIP-seq) (Licatalosi et al., 2008; Van
Nostrand et al., 2016). In addition, DNA-DNA and RNA-
RNA interactomes can be established using Chromosome
Conformation Capture (Hi-C) (Belton et al., 2012) or RAP-RNA
sequencing (Engreitz et al., 2014), respectively.

Indirect functional interactions can be established
experimentally through synthetic genetic array (SGA) screens
(genetic interactions) (Costanzo et al., 2010) or by computational
approaches such as co-regulation (determined from ChIP-seq or
co-expression analyses) or co-evolution (Marcotte et al., 1999;
De Bodt et al., 2006). For instance, if two genes both are always
active in one set of samples and inactive in another set, one
might conclude that the two genes are functionally related, based
on the principle of guilt by association. This hence would allow
to infer a hitherto unknown function of one gene if the function
of the other gene is known.

In contrast to experimental protocols enabling to assess global
omics profiles in arbitrary cellular contexts with relative ease,
physical interaction probing cannot easily be applied to a broad
range of biological contexts due to non-physiological conditions
(e.g., Y2H) or the limited scope of one-to-many interaction
profiling (e.g., AP-MS). Similar to reference genome sequences
which are frequently used to provide a coordinate system for
the analysis of DNA related processes, context-independent
“reference interactomes” can serve as scaffolds to complement
cell type or condition (e.g., disease) dependent analyses and
several resources aim to provide these for numerous organisms
(Table 1). These data set the stage for identifying context
specific functionally relevant interactions and novel analysis
methodologies need to be developed to derive or complement
interactomes using functional genomics data.

Rich functional genomic data across large numbers of
samples and across multiple omics layers per sample have been
accumulated in several large scale projects, paving the way for
a systematic integration of reference interactomes with context
specific multi-omics data (see Box 1, resources listed in Table 1).
These data allow researchers to link static interactomes to disease
(e.g., TCGA in cancer) or tissue specific (e.g., GTEx) contexts

and have already furthered our understanding of e.g., cancer
mechanisms (Manatakis et al., 2018) or tissue specific gene
regulation (Saha et al., 2017).

They can further help in interpreting non-coding DNA
sequence variants (single nucleotide polymorphisms, SNPs) from
genome-wide association studies (GWAS). Integration of GWAS
results with interaction data can pinpoint SNPs and their
molecular targets causal to the respective GWAS phenotype (e.g.,
Hosp et al., 2015; Suhre et al., 2017). Additionally, databases like
GTEx allow to interrogate tissue specific functional consequences
of non-coding GWAS SNPs (Albert and Kruglyak, 2015;
Aguet et al., 2017).

As protocols to measure functional genomics data get
further developed, more possibilities to establish context specific
interactomes arise. Single-cell nucleosome, methylation, and
transcription sequencing (scNMT-seq) (Clark et al., 2018), for
example, allows to generate multi-omics profiles of single cells.
This, and single-cell experiments in general, open up promising
new avenues for analyzing regulatory pathways in cellular
systems: For instance, with single-cell data it is now possible to
look at associations between variables in a more conventional
statistical setting with at least as many or more samples (single
cells) as measured variables, which is usually not the case in
typical (bulk) omics studies (see section 2.2). Moreover, single-
cell resolution further allows to extract dynamic properties of
cellular systems on the basis of static snapshot data, making it
possible to for example infer differentiation specific regulatory
networks (Ocone et al., 2015). Single-cell data, however, come
with their own challenges, for instance a high number of missing
values due to low coverage per cell or dropout effects, and
these have to be overcome in order to use them to their
full potential.

Global interaction networks are important assets for
systems biologists, yet their construction is not trivial for
dynamic biological systems and novel methods need to be
developed (Palsson and Zengler, 2010; Huang et al., 2017).
Here we present state-of-the-art methods for inferring
interaction networks from multi-omics data. We will focus
on two inference concepts which we term asynchronous and
synchronous methods: asynchronous methods integrate multi-
omics data in a step-by-step fashion, two omics at a time
while synchronous methods incorporate all data concurrently
(Figure 1). We will describe the inference of homogeneous
and heterogeneous networks, i.e., networks consisting of
a single or multiple node types, respectively, and further
consider integration of prior biological knowledge to guide the
inference process.

2. STATISTICAL BASIS FOR DATA
INTEGRATION

2.1. Pairwise Associations and Graphical
Models
Typically, the basis for all omics analysis is formed by a large
data matrix (or several, in case of multi-omics experiments): For
gene expression data, for instance, the columns would represent
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TABLE 1 | Overview on selected resources for molecular interactions and omics datasets.

Resource Data type Organisms References

STRING P-Pa > 5000 Szklarczyk et al., 2015

BioGrid P-P > 60 Stark et al., 2006

inBio map P-P HS Li et al., 2017

GWAS catalog D-PH HS MacArthur et al., 2017

KEGG multiple > 5000 Kanehisa and Goto, 2000

APID P-P > 400 Alonso-Lopez et al., 2016

doRINA P-R, miR-R HS, MM, DM, CE Blin et al., 2015

REMAP P-D HS Chèneby et al., 2018

IntAct P-Pb multiple Orchard et al., 2014

Pathway Commons multiple multiple Cerami et al., 2011

AGRIS P-D AT Yilmaz et al., 2011

ENCODE G, T, E HS The ENCODE Project Consortium, 2012

modENCODE G, T, E DM, CE Celniker et al., 2009

GTEx G, T HS Carithers et al., 2015

ROADMAP E, T HS Roadmap Epigenomics Consortium, 2015

GEO G, T, E multiple Edgar et al., 2002; Barrett et al., 2013

ARCHS4 T HS, MM Lachmann et al., 2018

The Human Protein Atlas T, P HS Thul et al., 2017

MetaboLights M multiple Haug et al., 2013

TCGA G, T, E HS Weinstein et al., 2013

Data type column depicts either the type of interactions (e.g., protein-protein interaction, P-P) or the type of omics data available in the data collection. Interactions: M, metabolite; P,

protein; D, DNA; R, RNA; PH, phenotype; Organisms: HS, H. sapiens; AT, A. thaliana; MM, M. musculus; DM, D. melanogaster; CE, C. elegans; Omics: G, genomic; E,epigenomic;

T,transcriptomic.
a includes functional interactions.
b focus on P-P, but arbitrary interactions possible.

Box 1 | Glossary.

Multi-omics data A dataset in which for each individual sample at least two different kinds of molecular information (such as genotype, gene expression,

or DNA methylation information) is available.

Partial correlation Measure of (conditional) dependence between (statistical) variables. Two variables are partially correlated, if they are still significantly

correlated after the effect of all other variables in the dataset has been removed from the two target variables via linear regression. For

multivariate normal distributions a partial correlation of zero is equivalent to conditional independence between two variables (Baba

et al., 2004).

Precision matrix In a Gaussian Graphical Model, where the p random variables represented in the nodes follow a multivariate Gaussian distribution, the

precision matrix is the inverse of the covariance matrix. When normalized similarly as the correlation matrix, the entries in the p × p

sized matrix correspond to the partial correlations between the respective variables.

Regularization In a statistical model, the number of variables p, specifically the content of the variable coefficient vector β1...p, determines its complexity.

Regularization can be applied to penalize model complexity. For example, L1 regularization employed in the LASSO pushes variable

coefficients toward zero, effectively performing variable selection and reducing model complexity.

Causal networks Causal networks (also Bayesian networks) are directed acyclic graphs and establish directed dependencies between individual nodes,

i.e., all edges between nodes are effectively arrows representing a direction of effect. For example, in a causal co-expression network

it could be deduced that the expression of a gene changes as a result of a change in another gene, while in an undirected network

this would be reflected as a mere correlation.

individual genes (the variables) and the rows the different
samples, each entry hence reflecting the expression of a certain
gene in a specific sample.

Graphs are a common way of describing molecular
interactions in such data, where nodes represent individual
molecules and edges connecting the nodes represent their
interactions. For instance, a graph might display proteins as
nodes and represent protein-protein interactions as edges.
Mathematically, nodes represent random variables (RVs) and

integration methods seek to determine dependencies between
RVs within or across omics types to infer interaction networks.

The simplest approach to construct correlation networks from
multi-omics data is by applying pairwise association measures,
such as linear regression, Pearson’s Correlation Coefficient (PCC)
or Spearman’s Rank Correlation coefficient (SRCC), repeatedly
on all pairs of RVs. Pairs with non-zero correlation coefficients
will be connected by an edge in the graph (Figure 3B). For
example, applying the PCC on the expression data of two genes
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A B E

F
DC

FIGURE 1 | Scheme for integration of reference interactomes with multi-omics data and phenotypes (GWAS) to obtain context specific interactomes. (A) trans-eQTL

allow to investigate e.g., TF binding mechanisms which can be complemented with additional regulatory information such as CpG methylation. (B) Established

associations from (A) between SNP S, TF A, CpG F, and gene B complement reference interactomes. (C) Regulatory (possibly heterogeneous) networks are inferred

from multi-omics data optionally using established biological knowledge as prior information. Integration of e.g., genotypes, expression, and methylation data allows to

investigate regulatory dependencies between different omic layers. (D) Associations identified in (C) complement reference interactomes by adding new regulatory

layers (SNP S, CpG F ), novel genes (gene C) or new links between already existing genes (genes B and E) similar to (B). (E) Reference interactomes are annotated

with SNPs associated with specific disease contexts from GWAS results. (F) The final context-specific interactome enables detailed investigation of disease related

regulatory mechanisms across distinct omic layers.

which have been measured in multiple samples yields gene co-
expression information: one gene is expressed when the other one
is expressed or vice versa (similarly, one gene could be repressed
while the other one is expressed). Furthermore, these measures
are also used in quantitative-trait locus (QTL) based analyses
to identify associations between e.g., SNPs and gene expression,
i.e., to determine the genetic effect of sequence variation on a
quantitative molecular trait. Alternatively, mutual information
(MI) can be employed to detect non-linear relationships (Song
et al., 2012). MI is used in several network inference tools (e.g.,
ARACNE, Margolin et al., 2006; Lachmann et al., 2016), but
refined concepts of correlations like the biweight midcorrelation
(Zhang and Horvath, 2005; Langfelder and Horvath, 2008) have
been shown to outperform MI (Song et al., 2012).

Pairwise approaches applied on omics data yield networks
containing indirect associations due to their inability to
distinguish direct and indirect effects (Schäfer and Strimmer,
2005). This leads to very dense networks (high number of
edges) (Krumsiek et al., 2011) and hence limited interpretability.
Conditional dependencies (partial correlations) associate two
Gaussian variables while accounting for the effect of all
other variables and thereby alleviate this problem: indirect
dependencies between two variables originating from a direct
dependency on a common source variable will no longer result
in an additional connection between the two variables and only

the direct interactions between the common source and each
variable individually will be retained (Figures 2, 3C). As an
example, consider the expression of two genes (node B and C
in Figure 2) that are both regulated by the same transcription
factor (node A in Figure 2). Regulation of a target gene by
the transcription factor introduces a direct dependency between
the expression of the transcription factor and the expression of
the gene. If two genes are regulated by the same transcription
factor, this dependence on a common source variable induces
an indirect dependency between the two genes. This indirect
dependency would introduce an edge in a pairwise correlation
graph (Figure 2A), which would be removed when considering
only conditional dependence measures such as partial correlation
(Figures 2B,D). In contrast, direct dependencies such as the one
between the transcription factor and its target (node A and B
in Figure 2B) are preserved in the partial correlation network
(Figure 2C). This idea is forming the basis of graphical models,
known also as conditional dependence networks (Lauritzen,
1996; Meinshausen and Bühlmann, 2006; Friedman et al.,
2008), where edges only represent the conditional dependencies
between RVs.

In our case we mostly focus on Gaussian Graphical Models
(GGMs) which assume normally distributed variables and have
for instance been used in gene expression studies (Schäfer and
Strimmer, 2005), in metabolomics (Krumsiek et al., 2011) and to
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FIGURE 2 | Illustration of the concept of partial correlation networks. Two networks show the dependency structure between random variables depicted as nodes.

Solid edges in (A) represent high Pearson correlation coefficients between random variables, also shown in the corresponding correlation matrix. Solid edges in (B)

represent non-zero partial correlation coefficients between random variables, also shown in the corresponding partial correlation matrix. Considering partial correlation

compared to Pearson correlation removes the edge between B and C arising from the effect A exhibits on both B and C. Subfigure (C) compares correlation and

partial correlation between A and B given C. Scatter plots show the original data (blue), the residuals (green lines) after regressing both A and B on C, and the relation

between the residuals (orange). Here a clear linear relation between the residuals is observed, which is reflected in a non-zero partial correlation (represented by an

edge) between A and B. Analogously, subfigure (D) compares correlation and partial correlation between B and C given A. Here no clear linear relation between the

residuals is observed, which is reflected in a partial correlation between B and C that is not significantly different from zero. Consequently, there is no edge between B

and C in the partial correlation graph.

FIGURE 3 | Illustration of the concept of different network inference methods. (A) represents a known pathway structure which should be recovered from functional

data using the different approaches: two transcription factors influencing expression of two target genes which in turn affect the expression of other downstream

genes. (B,C) show correlation based results and their estimated matrices (correlation and partial-correlation, respectively). While using Pearson correlation results in

many indirect associations (shown in red), this is largely amended by using partial correlations. (D) The graphical lasso pushes weaker associations (e.g., between TF1

and gene C) toward zero in the precision matrix and might do so even for real edges which have relatively low evidence in the data (like the edge between TF2 and

target1). (E) When considering prior information, weak associations still have a chance of getting selected if their respective prior (shown in green) supports them.
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discover novel interactions between genotypes and metabolites
(Krumsiek et al., 2012). In GGMs, the network structure is given
by the precision matrix 6−1, the inverse of the covariance matrix
6 (Friedman et al., 2008) (see Box 1). In contrast to correlation
networks, the edges reflect partial correlations (Figure 2) between
RVs and correspond to the non-zero, off-diagonal entries of6−1.
Methods seek to estimate either 6−1 (e.g., GeneNet, Schäfer and
Strimmer, 2005) or only its non-zero elements (e.g., Meinshausen
and Bühlmann, 2006; Friedman et al., 2008).

2.2. Regularization and the Graphical
LASSO
Inference methods working on genomic data typically suffer
from the n << p problem, which occurs when the number of
samples is significantly smaller than the number of variables (a
typical large expression experiment for example might comprise
hundreds of samples and > 20, 000 genes). Specifically, if
n << p, fitting a statistical model is challenging: more variables
than data points yield too many degrees of freedom and an
underdetermined mathematical system, which ultimately poses
a risk of overfitting the model to the measured data (Friedman
et al., 2001). A way to handle this dimensionality burden is
by using regularization (e.g., GeneNet Schäfer and Strimmer,
2005, see Box 1). While GeneNet uses a shrinkage procedure
for estimating 6−1, Meinshausen and Bühlmann apply LASSO
(Least Absolute Shrinkage and Selection Operator) regression
separately for each variable against all others to estimate the
non-zero entries of 6−1 under assumption of a sparse precision
matrix (Meinshausen and Bühlmann, 2006). The underlying idea
is to use L1 regularization (seeBox 1) to constrain the total length
of the estimated parameter vectors (variable coefficients, β =

{β1,β2, . . . βp}) and simultaneously perform variable selection by
implicitly pushing the least important parameters toward zero,
thereby also circumventing the n << p problem introduced
above. This yields a precisionmatrix6−1 in which an entry σij for
two variables (i, j) is non-zero, if either βij (i regressed against j)
or βji or both are non-zero. Ultimately, this procedure exhibits a
similar effect as in the conditional dependence graphs mentioned
above, with relatively more of the weaker dependencies getting
removed (Figure 3D).

However, the above mentioned approach yields only an
approximation of the underlying likelihood. To amend this,
Friedman et al. present the graphical LASSO (gLASSO), which
evaluates the penalized log-likelihood of the multivariate
Gaussian distribution by using a block-wise gradient descent
algorithm (Banerjee et al., 2007; Friedman et al., 2008) and other
works improve upon this idea to achieve e.g., faster convergence
(Hsieh et al., 2013).

An important task when using the above methods is to screen
for optimal values of the L1 penalization parameter, ρ, to select
the ideal graph. The selection of ρ can be done either via cross
validation or by employing the Bayesian Information Criterion
(BIC), where larger values of ρ encourage sparser graphs and
vice versa.

Interestingly, the gLASSO also facilitates the inclusion of
biological prior information [the LASSO L1 regularization can be

interpreted as a Laplace prior on model coefficients (Friedman
et al., 2001)]. By element-wise multiplication of a prior matrix
P with 6−1 in the L1-norm, where P = p × p and p is
the number of variables, distinct weights can be assigned to
encourage or discourage edges (Li and Jackson, 2015). Employing
this possibility and in general utilizing prior information has
the potential to retain edges which would otherwise falsely be
removed (e.g., due to weak representation in the data) if the
respective prior is strong enough (Figure 3E, see also section 2.4).
Such prior knowledge, e.g., that a specific transcription factor is
a known regulator of a gene (Figure 3E), can be extracted from
independent databases such as the ones listed in Table 1.

2.3. Mixed Graphical Models for
Multi-Omics Data Integration
Above mentioned methods assume Gaussian RVs and infer
homogeneous networks, which is not always appropriate in
multi-omics settings due to heterogeneity in the measured data.
This is for example the case when integrating discrete genotype
data with continuous DNA methylation data. This is taken
into account by works building on the Meinshausen-Bühlmann
approach to infer heterogeneous networks frommulti-omics data
using Mixed Graphical Models (MGMs) (Lee and Hastie, 2013)
and identify edges by regressing each continuous or discrete
variable against all others applying either (Gaussian) linear
or (multiclass) logistic regression, respectively. This allows for
example to directly integrate discrete genotype data of specific
sequence variants with DNA methylation readouts and hence to
uncover e.g., the genetic determinants of epigenetic marks. In
contrast to Lee and Hastie who apply a single penalty parameter,
Sedgewick et al. (2016) incorporate group-wise penalties, i.e.,
penalties for continuous-continuous, continuous-discrete and
discrete-discrete edges, to account for different performances
in edge prediction of linear and logistic regressions (Chen
et al., 2014; Sedgewick et al., 2016). To achieve stable model
selection under three distinct penalties, they propose a repeated
subsampling procedure to determine the total instability of the
model (StEPS, Stepwise Edge-specific Penalty Selection). The total
instability reflects the average probability for edges to differ
between two graphs estimated from subsamples of the data for
all values of the penalty parameters. A threshold is applied on the
screened regularization parameters such that the least amount of
regularization is used to achieve a sparse, stable graph (Liu et al.,
2010; Sedgewick et al., 2016).

An alternative to the gLASSO are tree based methods. A
random forest model (Breiman, 2001; Hapfelmeier and Ulm,
2013) is built for each variable, using all other variables as
predictors, and interactions are inferred by ranking variables
according to their importance in explaining the selected variable
similar to Meinshausen and Bühlmann (2006). Absence of any
distributional assumptions (Huynh-Thu et al., 2010) and their
ability to discover non-linear interactions and deal with large
variable numbers harbors potential for use in multi-omics or
in general mixed settings. Similar to the penalty parameter in
the gLASSO, the number of edges to select from the individual
models has to be optimized (Huynh-Thu et al., 2010; Fellinghauer
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TABLE 2 | List of network inference methods discussed in this review for which implementations are available.

Method Concept Mixed data Priors Directed References

GeneNet shrinkage/pcor No No No Schäfer and Strimmer, 2005

ARACNE(-AP) Mutual information No No No Margolin et al., 2006; Lachmann et al., 2016

GENIE3 RF Potentiallya No No Huynh-Thu et al., 2010

GRNBoostb RF Potentiallya No No Aibar et al., 2017

gLASSO LASSO No No No Friedman et al., 2008

wgLasso LASSO No No No Li and Jackson, 2015

pLasso LASSO No No No Wang et al., 2013

iRafNet RF Yes Yes No Petralia et al., 2015

GRaFo RF/stability selection Yes No No Fellinghauer et al., 2013

causalMGM RF/StEPS Yes No Yes Sedgewick et al., 2018

bdgraph MCMC yes Yes No Mohammadi and Wit, 2015; Mohammadi et al., 2015

Column concept describes the underlying statistical concept. Additional columns indicate applicability of methods to heterogeneous data types (mixed data) as well as possibility for

prior incorporation (priors) or directed graph inference (directed). pcor, partial correlation; RF, random forest; StEPS, Stepwise Edge-specific Penalty Selection; MCMC, Markov Chain

Monte Carlo.
a not specifically tarted to or evaluated with respect to this aspect.
b developed in single-cell context.

et al., 2013), which can be achieved e.g. via Stability Selection
(Meinshausen and Bühlmann, 2010) to control the number of
false positive edges (Fellinghauer et al., 2013). Recent extensions
further allow prior integration via weights included in the
variable ranking (e.g., iRafNet, Petralia et al., 2015) or application
to large single-cell datasets [e.g., GRNBoost, an extension to
GENIE3 (Huynh-Thu et al., 2010) used in the SCENIC workflow
(Aibar et al., 2017)].

2.4. Bayesian Treatment of Network
Inference
A Bayesian approach for GGM estimation and prior
incorporation is proposed by Mohammadi and Wit
(Mohammadi and Wit, 2015). They estimate 6−1 (the
precision matrix, see Box 1) using a Markov-Chain-Monte-
Carlo (MCMC) procedure. In brief, their approach samples from

the large space of 2
p∗(p−1)

2 possible graph configurations (where p
is the number of nodes/variables) and seeks the one best fitting
the data and corresponding prior information. Their method
bdgraph facilitates inclusion of edge-wise priors and extension
to graphical copula models (Dobra and Lenkoski, 2011) allows
integration of mixed data-types (Mohammadi et al., 2015). In
contrast to MGMs, the copula is a semi-parametric approach
which does not explicitly model different types of distributions
but transfers non-normal variables to a Gaussian space before
inferring the network.

While above approaches yield undirected associations and
hence the direction of effect cannot be determined from the
association, probabilistic Bayesian networks (BN) can be used to
establish directed causal networks, e.g. indicating that expression
of gene B changes as a result of an expression change of gene A
(Zhu et al., 2004). BNs identify the best network by evaluating a
likelihood together with prior information (Friedman et al., 2000)
for numerous network structures (e.g., via MCMC sampling Zhu
et al., 2007; Tasaki et al., 2015), which also allows integration of

prior assumptions to guide the reconstruction (Zhu et al., 2007).
However, BNs on their own cannot always reliably infer causality
and additional evidence, e.g., from genetic data, are needed
to infer edge directions, similar to Mendelian Randomization
strategies (Zhu et al., 2004, 2007).

3. HETEROGENEOUS INTERACTOMES
USING ASYNCHRONOUS INTEGRATION

A simple way to integrate multiple omics data is to analyze pairs
of data and integrate results in a step-wise fashion. Genotypes
(e.g., SNPs) form the basis of inter-individual variation on
the cellular level (Ritchie et al., 2015) and are therefore
at the heart of many asynchronous methods. To decipher
their mechanism of action, GWAS-SNPs are associated with
quantitative molecular traits (quantitative trait loci, QTLs), using
for example linear regression models to estimate their effects
on mRNA expression (eQTLs), protein abundance (pQTL),
DNA methylation (meQTLs), or metabolite levels (mQTLs).
Of particular value for investigating regulatory interactions are
trans-QTL hotspots: A SNP on one chromosome is associated
with numerous traits such as gene expression levels of genes
on different chromosomes. In order to explain the genome-wide
changes a QTL hotspot variant induces in a cell it is necessary
to understand the regulatory relationships giving rise to the
observed trans associations.

For instance, trans-eQTLs can be used to analyze the
consequences of disease associated SNPs on gene expression as
was done by Võsa et al. (2018) (Figure 1). Here, the authors
established trans-eQTLs at 3,853 unique SNPs associated to
6,298 unique genes in a large meta-analysis of whole blood
data and describe the molecular effects of trans associated SNPs.
Probing trans-eQTL loci for TFs encoded at the trans-acting
locus and at the same time affected in gene expression locally by
the variant along with ChIP-seq derived TF-DNA binding sites
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(TFBS) lead to an estimated 17.4% of trans-eQTLs whose effects
could be explained by direct TF-target interactions. Similarly,
for longrange-eQTL (same chromosome, distance ≥100 kb)
they infer enhancer-promoter interactions and confirm physical
DNA-DNA contacts using capture Hi-C data (Javierre et al.,
2016). Following their approach, the authors were able to
implicate for example circadian clock related genes with height
as a complex trait, a hitherto unsuspected connection.

Bonder et al. interrogated GWAS-SNPs with regard to their
impact on DNAmethylation and gene expression in whole blood
(Bonder et al., 2017). To analyze the influence of methylation
on gene expression, they established associations between
methylation and expression levels (expression quantitative trait
methylation, eQTM) in addition to eQTLs and meQTLs (see
Figure 1A). By integrating trans-meQTLs with eQTMs and TFBS
from ChIP-seq data, they found disease loci to induce changes
in gene expression networks via altered DNA binding of TFs
(protein-DNA interactions) and DNA methylation changes (see
Figure 1B). In their work, they extracted a novel gene network
for a locus associated with ulcerative colitis (SNP rs3774937).
They showed how this locus, residing in the first intron of
the NFKB1 gene, influences the expression of NFKB1, which
in turn affects the methylation at distal CpG sites and further
leads to a change in expression of genes close to those sites.
Thereby, the authors established the molecular and regulatory
interactions between NFKB1, methylation levels at the associated
CpG sites and expression levels of the neighboring genes to
generate hypotheses about molecular mechanisms underlying
disease associations identified in GWAS (see Figure 1E).

Reference interactomes or de-novo gene co-expression
networks allow a holistic view on the regulatory context of QTLs
(Figure 1C). For example, after establishing trans-pQTLs for
GWAS-SNPs, Suhre et al. (2017) connected trans associated traits
by building PPI networks from a targeted protein expression
assay (Gold et al., 2010) using GeneNet (Schäfer and Strimmer,
2005). They further joined pQTLs and their PPI network by
adding genotype-protein edges for all identified pQTLs and
contextualized their networks with disease information obtained
from GWAS variants. Following this approach, the authors for
instance gained novel insights into the molecular mechanisms
involved in Alzheimer’s disease (AD) by inferring a hitherto
unknown link between a major AD risk variant (rs4420638) and
splicing related proteins. They propose that a potential mediator
of the effect of rs4420638 on a splicing regulator (SNRPF) could
be of pharmaceutical interest in order to decrease amyloid
precursor protein levels, potentially improving understanding
and treatment of AD (Suhre et al., 2017).

4. SYNCHRONOUS NETWORK INFERENCE
FROM OMICS DATA

While e.g., Bartel et al. (2015) inferred a transcriptome-
metabolome network by step-wise application of the SRCC
on all pairs of transcripts and metabolites, recovering known
and unknown interactions, using all available data in a single
integration step (synchronously) has the potential to boost

inference performance by recognizing complementary regulatory
information of other variables or omic layers (Petralia et al.,
2015). To capture these effects and to make use of established
knowledge (e.g., reference interactomes), graphical models often
are preferred to pairwise approaches, specifically their extensions
for heterogeneous network inference and prior inclusion. In
the next three sections we will briefly present applications
of synchronous inference methods, covering homogeneous
and heterogeneous network inference, as well as prior based
inference approaches.

4.1. Homogeneous Network
Reconstruction
Krumsiek et al. (2011) used a large metabolite dataset on which
they applied a GGM based approach to infer de-novo metabolite
reaction networks (see Figure 1C). Although only in a single-
omics setting, they were able to demonstrate the added benefit
of using network based inference as compared to pairwise
approaches: by comparing their inferred network to known
metabolic reactions as a reference interactome (e.g., from KEGG,
see Table 1), they were able to propose additional associations
(Figure 1D) between lipid metabolites which had so far only
indirectly been associated in the reference.

With the advance of single-cell experiments, recent studies
seek to make use of their favorable statistical properties (e.g.,
large sample sizes) in association analyses. Specifically, single-
cell protocols have been proposed to assess multiple regulatory
layers in individual cells (e.g., scNMT-seq Clark et al., 2018,
sciCAR Cao et al., 2018, or scCAT-seq Liu et al., 2019). However,
these data come with their own challenges such as dropout
effects, large number of missing values and technical variation,
which have to be overcome to use them to their full potential
(Colomé-Tatché and Theis, 2018).

Aibar et al. (2017) for example proposed the single-cell
regulatory network inference and clustering (SCENIC) workflow
to map gene regulatory networks in single-cell data and identify
stable cell states of individual cells based on common regulatory
subnetworks. The authors seek to overcome general limitations
of single-cell data by integrating cis-regulatory sequence analysis
with single-cell gene expression data and provide an extension
to GENIE3 (Huynh-Thu et al., 2010), GRNBoost, which scales
favorably with respect to computation time in large (single-
cell) datasets.

In another study, Pliner et al. used a gLASSO based
approach (CICERO) to identify co-accessibility regions from
single-cell ATAC-seq data (Pliner et al., 2018). Those regions
represent distal regulatory elements that interact with DNA
regulatory elements at the promoters of the respective target
genes. Comparison of their results with physical interactions
measured using promoter-capture Hi-C (Cairns et al., 2016)
showed a strong overlap, suggesting physical interactions
between the co-accessibility regions detected through their
network inference approach. Similar regulatory inference can be
performed based on scCAT-seq as the authors demonstrated by
example of inferring regulatory relationships between accessible
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chromatin regions and expression of putative target genes
(Liu et al., 2019).

4.2. Inference of Heterogeneous Networks
Saha et al. (2017) used GTEx gene expression data to infer
transcriptome-wide (TWNs) and tissue-specific (TSN) networks
using GGMs (Hsieh et al., 2013). Using RNA-seq data, the
authors define a heterogeneous network containing total
expression (TE) or isoform ratio (IR) nodes, enabling the
investigation of splicing control mechanisms e.g., by observing
TE-IR edges indicating potential splicing regulators. They
further constructed different L1 penalties for distinct edge
types (TE-TE, TE-IR, or IR-IR) to encode prior assumptions
for their occurrence (similar to Sedgewick et al., 2016).
With their strategy, the authors were able to recover
known (e.g., RBM14, PPP1R10) and propose novel (e.g.,
TMEM160) splicing regulators across different tissues as
well as pinpoint tissue-specific regulators such as TTC36 in
breast-mammary tissue which could be essential to unravel
disease related regulatory mechanisms. For example, they
identified MAGHO and MAB21L1 as hub genes (i.e., strongly
connected genes) in brain-caudate and artery-aorta specific
TSNs, respectively. Both genes have been found to play an
important role in tissue-specific transcription regulation and
are known to be crucial for the development of their TSN’s
respective organs.

Due to the relatively novel idea of using multi-omics data for
heterogeneous network inference, MGM applications are mostly
limited to proof of concept studies with simulated data (Lee and
Hastie, 2013; Haslbeck and Waldorp, 2016). Although MGMs
have been shown to perform well, further investigations are
needed to demonstrate their usefulness in real-world contexts.

An interesting line of work in this direction is the
inclusion of phenotype information. The tree based method
proposed in Fellinghauer et al. (2013) (graphical random forests,
GRaFo), for example, was used in a multi-omics study by
Zierer et al. to evaluate age related disease comorbidities
(Zierer et al., 2016) and their dependencies on molecular
traits from transcriptomics, metabolomics, epigenomics, and
glycomics. Here, the authors established a heterogeneous
network and identified for example urate as a key factor
linking metabolic syndrome phenotypes to renal function and
body composition.

Another line of work with respect to the application of
graphical models in disease contexts is given by Mohammadi
et al. (2015). In their study of Dupuytren disease (a disease
affecting finger contractures), the authors apply their extended
bdgraph approach to model indicators and severity of the
disease together with 13 different potential risk factors. Although
Mohammadi and colleagues did not use omics data in their
case study, they demonstrate the possibilities of heterogeneous
network inference to elucidate disease pathogenesis: They
affirmed a possible genetic risk for the disease as well as identify
key phenotypic factors, such as age and alcohol consumption,
which have a direct impact on the severity of Dupuytren disease.
They further found that the severity of the disease is correlated
for individual fingers and proposed to perform surgical measures

simultaneously for both the ring and the middle finger as an
improved therapy as compared to treating them independently.

4.3. Leveraging Biological Prior Knowledge
for Network Reconstruction
Given the broad availability of reference interactomes, a
significant amount of work focused on using them to improve
network reconstruction. These works guide network inference
by setting weights on specific edges, e.g. generated by combining
reference interactomes with omics data (Figures 1B,D).

Wang et al. (pLasso) and Li and Jackson (wgLasso) use
reference interactomes in an adjusted LASSO and gLASSO
context (Wang et al., 2013; Li and Jackson, 2015). Wang et al.
(2013) extracted interaction networks from KEGG and the
Pathway Commons database (see Table 1) to define distinct
penalties for prior and non-prior edges, i.e., nodes linked
or not linked in the reference network, respectively. Li and
Jackson (2015) showed that using priors in wgLasso outperforms
the regular gLASSO on simulated data as well as real-world
gene expression data from Arabidopsis thaliana compared to a
reference of annotated gene pathways (Lee et al., 2010) in terms
of the Matthew’s Correlation Coefficient (MCC).

MGM based methodologies have also been extended to
incorporate prior information. For example, Manatakis et al.
(2018) proposed prior incorporation Mixed Graphical Models
(piMGM), an extension to CausalMGM (Sedgewick et al., 2016,
2018). piMGM independently applies CausalMGM for a set of
regularization parameters on a random partition of samples and
assembles the final graph by aggregating all generated models.
Thismethod encourages specific network edges via incorporation
of pathway knowledge similar to pLasso and wgLasso. They
evaluated their approach via breast cancer subtype prediction
in TCGA RNA-seq and cancer subtype data with priors derived
from KEGG pathways and were able to recover known pathways
(e.g., the Notch signaling pathway) as well as determine the parts
of the pathways most important to breast cancer subtyping. In
addition, they affirmed a possible role of other pathways, such as
the insulin signaling pathway or T cell receptor signaling, as an
important part in determining cancer subtypes.

Petralia et al. (2015) applied iRafNet on test data from two
“Dialogue for Reverse Engineering Assessments and Methods”
(DREAM4/5) challenges (Greenfield et al., 2010; Marbach
et al., 2012) and used prior information obtained from time-
series gene expression and knockout data in addition to
PPIs to infer regulatory networks. They demonstrate improved
performance as compared to GENIE3 (which does not utilize
prior information) in terms of Area Under the receiver operator
characteristic Curve (AUC) and Area Under the Precision Recall
Curve (AUPRC) (Petralia et al., 2015). However, as for GENIE3,
this approach has not yet been applied to mixed data types.

Finally, Zhu et al. (2008) derived directed yeast regulatory
networks with a BN approach. Using a modified MCMC strategy
(Friedman et al., 2000; Zhu et al., 2004), they inferred a causal
consensus network from 1,000 sampled networks (edges present
in ≥ 30% of the networks) and determined edge directions
by including PPI, TFBS, and eQTL information as priors. They
used gene knockout data to demonstrate the predictive power
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of their network in determining the downstream effects of
systematic changes in the biological system. Their study lead
to the prediction of novel gene interactions, complementing
existing yeast PPI databases, as well as pinpointing novel causal
drivers of yeast eQTL hotspots. Strikingly, they were able to
confirm their computationally derived interaction predictions by
using previous experimental findings and hence showcase the
predictive power of their approach. For instance, they identified
AMN1, a gene implicated in yeast daughter cell separation,
as a causal transcriptional regulator based on one of their
eQTL hotspots, a discovery made in experimental screens by
Yvert et al. (2003).

5. CONCLUSION

To understand disease causing molecular processes, systems
biology studies seek to establish molecular interaction networks
or interactomes. Numerous methods have been developed for
contextualizing reference interactomes from large databases and
to pinpoint interactions important in disease with the help of
multi-omics data.

While many studies perform step-wise data integration,
relatively few studies follow synchronous integration strategies
for constructing homogeneous or heterogeneous networks,
which could exploit omics data to their full potential and
therefore are representing promising tools to unravel complex
cellular processes.

Methods previously used for constructing homogeneous
networks (e.g., GENIE3, Huynh-Thu et al., 2010, for gene
expression data) could be applied to multi-omics data to
infer heterogeneous networks, however, additional evaluation
and benchmarks are required. Yet, as the top performer in
two DREAM challenges (DREAM4/5, Greenfield et al., 2010;
Marbach et al., 2012), GENIE3 and, more generally, tree
based methods represent a promising basis for multi-omics
network inference.

Most recent methods implement variations of the graphical
LASSO to predict conditional dependence networks from
experimental data (Meinshausen and Bühlmann, 2006;
Friedman et al., 2008). Additionally, methods like wgLasso,
piMGM, iRafNet, and bdgraph can utilize prior knowledge
to guide the inference process. With these methods, large
public databases containing massive multi-omics data represent
important assets for network inference and to contextualize
reference interactomes.

To date only few studies make use of these independent data
(e.g., Li and Jackson, 2015; Sedgewick et al., 2018) and current
methods such as iRafNet and piMGM) need to be adjusted and
applied to new biological contexts to make full use of their
potential. An interesting challenge with respect to including
prior information in computational models, for example, is to
make the plethora of available biological data accessible to such

methods, i.e., to create data driven priors not only relying on
available PPI databases but making use of further data such
as available chromatin conformation data, DNA accessibility or
other biological knowledge.

Moreover, novel experimental protocols such as scNMT-
seq (single-cell nucleosome, methylation and transcription
sequencing) (Clark et al., 2018), sciCAR (Cao et al., 2018),
or scCAT-seq (Liu et al., 2019) allow for simultaneously
probing multiple molecular layers in hundreds of individual
cells. Such new methods, and in general the development
of single-cell techniques, pave exciting new avenues for the
analysis of cell-type specific networks and initial studies show
promising results (Moignard et al., 2015; Aibar et al., 2017;
Pliner et al., 2018). Nevertheless, methods have to be further
adapted to be able to cope with single-cell contexts, e.g., to
take into account dropout effects and differing noise properties
(Colomé-Tatché and Theis, 2018).

In addition to the methods discussed above, protocols
to directly measure interacting molecules from biological
samples are steadily improving. More reliable experimental
protocols to e.g., measure protein-metabolite interactions
(Piazza et al., 2018) or to establish genome-wide protein-RNA
interactions (Van Nostrand et al., 2016) could improve reference
interactome quality, in turn alleviating reconstruction of context-
specific interactomes.

Finally, other strategies for network based integration of
molecular data such as methods implementing network diffusion
(e.g., Dimitrakopoulos et al., 2018) or network embedding (e.g.,
Perozzi et al., 2017) could be used to complement network
inference efforts and have in fact been shown to improve the
predictive performance of biomedical networks (Su et al., 2018).
Indeed, some methods (e.g., by Kuchaiev et al., 2009) can
even be used to refine (de-noise) reference interactomes and
predict novel interactions (not part of this review). However,
most such methods rely heavily on established molecular
networks, making initial network creation a crucial step for their
successful application.
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