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Diffraction at Thick Curved Layers with a Nonuniform Dielectric
Permittivity

Ilya O. Sukharevsky*

Abstract—In this paper, we obtain an asymptotic solution for the problem of electromagnetic
diffraction at a thick curved dielectric layer with a nonuniform dielectric permittivity. We show that, in
the case of thick layers, the main asymptotic approximation already comprises the curvature correction,
verify the results by comparison with a solution obtained with the integral equation method, and offer
to approximate the piecewise constant dielectric permittivity of a stratified layer with a continuous
function.

1. INTRODUCTION

The accurate computation of electromagnetic diffraction at thick dielectric layers is important for
simulation of thick-wall antenna radomes [1–4], dielectric lenses [5], atmospheric propagation [6], and
components of antennas [7, 8]. With the emergence of new manufacturing techniques, the attention of
researchers has recently been drawn to layers with a variable dielectric permittivity [9–12].

It appears that the first theoretical investigation of the problem was undertaken by
Bremmer [13, 14]. Bremmer studied plane-wave diffraction at thick dielectric layers with plane-parallel
boundaries. He found the leading asymptotic term with the WKB-method and obtained the correcting
terms via iterations by assuming that the dielectric constant’s gradient is small.

Subsequently, Primakoff and Keller [15] applied the asymptotic analysis of the fields perturbed by
a curved layer to a scalar problem, and then Keller [16] expanded it to the case of Maxwell’s equations.
Keller considered a homogeneous layer with equidistant boundaries and described the fields with integral
equations derived using Green’s formula. Fixing the free-space wavenumber k0 and expanding all
the functions in the integral equation into power series of the layer thickness, he got the integral
representation of the leading asymptotic term and evaluated it with the stationary-phase method for
a large k0. However, the results obtained in this way describe only the layers whose thickness is much
smaller than the wavelength.

Another approach assuming a priori relations between small parameters associated with the
curvature and the layer thickness was offered for diffraction at thin layers [17, 18] and for layers backed
by a perfectly conducting screen [19]. This approach is based on combining the ray-tracing method
and the small-parameter expansions inside the layer. The same considerations were applied [20, 21] to
scattering by good conductors and Sommerfeld’s model of absorbers [22] and were verified in [23]. The
method proposed here can be considered as the extension of our works [18] and [23].

The treatment of thick layers is mathematically very challenging due to the complex phase structure
of the field inside a curved layer caused by multiple reflections between its boundaries (see [24,25]).

The main goal of this paper is to derive the leading asymptotic term of the problem with a dielectric
permittivity represented by a continuous function and to discuss the limitations of this solution. We
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show that for the inclined incidence of the wave, the leading term of the asymptotic solution already
includes the curvature of boundaries, in contrast with the canonical geometric optics (GO) solution.
We also offer to approximate the piecewise constant dielectric permittivity with a continuous function.
The numerical results are validated in 2D by comparison with the results obtained with the Muller
boundary integral equations (for homogeneous layers) and the volume integral equations (for layers
with a piece-wise constant dielectric permittivity).

2. PROBLEM FORMULATION

A layer G bounded by smooth surfaces S1 and S2 (closed or extending to infinity) and characterized by
complex constants ε = ε(x) and μ = μ(x) is placed in infinite space characterized by constants ε0 = 1,
μ0 = 1. Here and later on we denote by bold script (x,y, ξξξ, etc.) vectors in three-dimensional (3-D)
space. In continuation of [17–25], we use the Gaussian units throughout the paper.

Surface S1 separates G from the region G1 which contains sources that excite time-periodic (e−iωt)
electromagnetic fields (Ei(x), Hi(x)). Surface S2 separates G from region G2.

It is necessary to find the layer-perturbed field (E(x), H(x)) in each region (G1, G, G2).
Let us introduce the curvilinear coordinates (σ1, σ2, n) in the layer and its vicinity, where (σ1, σ2)

are any coordinates on the surface S1, and |n| is the distance from S1, measured along a normal to it
such that n1 > 0 inside the layer G (Fig. 1).

Figure 1. Problem geometry: regions G, G1, G2 and the coordinate system (σ1, σ2, ν).

The equation of the surface S2 in these coordinates has the form:

n = δh(σ1, σ2) = δh(x0), (1)

where x = x0(σ1, σ2) is the vector equation of the surface S1; h is a continuous function (0 < h0 ≤
h(σ1, σ2) ≤ 1); and δ is the maximal distance from S1 to S2 measured along the normal to S1.

In addition to coordinates (σ1, σ2, n), we shall introduce in the layer G the coordinates (σ1, σ2, ν),
where ν is dimensionless:

ν =
n

δh(σ1, σ2)
. (2)

Taking into account Eq. (1), we conclude that within the layer 0 ≤ ν ≤ 1 for any fixed (σ1, σ2), and the
surfaces S1 and S2 are determined by equations ν = 0 and ν = 1.

Let k0 = ω
c be the wave number in G1 and G2, k = k0

√
εμ be the wave number in G †. We

also introduce the parameter κ0 = 1
R0

, where R0 is the characteristic linear dimension, related to
the geometry of the surface S1, the wavefront of the primary wave, and the scale of variation of the
properties of the medium G in directions tangent to S1.
† Imε ≥ 0, Imμ ≥ 0, Imk ≥ 0.
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For example, in the important case of plane-wave diffraction at a homogeneous layer or at a layer,
whose dielectric properties vary only in the normal direction, it is natural to choose κ0 as the largest
value of the main curvatures of S1; in the case of incidence of a cylindrical or a spherical wave onto a
plane-parallel layer, R0 is a distance from the source to S1; and so on.

We assume that throughout the paper that R0 is a maximal curvature radius of S1.
Commonly, a choice of κ0 must be made in such a way that the value κ0 = 0 would correspond to

the passage of a plane wave through a homogeneous or a stratified layer.
Let us assume that

η ≡ κ0/k0 � 1, ξ ≡ κ0δ � 1, (3)

which means that the curvature radius of the layer’s boundary is big compared both to the wavelength
and the layer thickness.

We also assume that the properties of the layer and also of the incident wave vary slowly along S1

(
√|εμ| ∼ 1, 1/(κ0h

0
j ) |∂h/∂σj | ∼ 1, j = 1, 2, with h0

j = ∂x0/∂σj).
In this case the pertubations imposed on the field by the layer G can be estimated by asymptotic

methods. In this problem, which contains simultaneously two small parameters in Eq. (3), it is possible
to speak about a correct asymptotic approach only when the a priori relationships between the orders
of magnitude of small parameters are given. Therefore, an important role must be played by parameter

ζ ≡ ξ/η = k0δ, (4)

which measures the layer thickness in wavelengths.
In our study, we assume the layer to be “thick”, that is

ξ = α/ζ, η = α/ζ2, α ∼ 1. (5)

The thicker layer in terms of wavelengths is, the smaller the parameter ξ is, and thus, the more accurate
the small-parameter expansions are.

Our study is based on certain assumptions about the structure of incident and diffracted fields.
Let us use (Ei,Hi) to denote the incident field of sources and let us assume that it can be represented
in the entire space or, at least, in a certain region containing the layer G, by means of the asymptotic
expansion (k0 → +∞)

Ei(x, k0) ∼ eik0Φ(x)EEE i(x, k0), with EEE i
∼

∞∑
m=0

EEE i
m(x)k−m0 , (6)

where Φ(x) and EEE i
m(x) are at least twice continuously differentiable. Φ(x) satisfies the eikonal equation

|∇Φ(x)| = 1, and the normal unit vector of the incident wave front l̂i = ∇Φ(x) forms at any point
x ∈ S1 an acute angle θ with n̂, the unit normal to S1 (Fig. 1). In each of the regions G1, G and G2

the vector H is represented by expressions analogous to those given for E.

3. DIFFERENTIAL OPERATORS

Let (σ1, σ2, n) be orthogonal coordinates on surface S1, read along the lines of the principal curvatures.
A position vector of any point (σ1, σ2, n) in the neighborhood of S1 is

x = x0(σ1, σ2) + nn̂(σ1, σ2), (7)

where x0(σ1, σ2) is a point on S1, and n̂(σ1, σ2) is a normal unit to S1 directed to S2.
Since

∂n̂
∂σj

= κj
∂x0

∂σj
, (j = 1, 2), (8)

where κ1 and κ2 are the principal curvatures, we see that

∂x
∂σj

= (1 + κjn)
∂x0

∂σj
, (j = 1, 2), (9)
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and the Lamé coefficients are

hj(σ1, σ2, n) = (1 + κjn)h0
j (σ1, σ2), h0

j =
∣∣∣∣∂x0

∂σj

∣∣∣∣ , (j = 1, 2). (10)

Now let us introduce a differential operator

D =
1
h1

ê1
∂

∂σ1
+

1
h2

ê2
∂

∂σ2
, (11)

where ej are tangential unit vectors to coordinate lines σ1 and σ2. Coordinates (ê1, ê2, n̂) have right-
handed orientation. Evidently,

∇ = D + n̂
∂

∂n
. (12)

It can easily be checked that the operator D possesses the following properties:

(n̂ · D) = 0, (13)

(D · n̂) =
κ1

1 + κ1n
+

κ2

1 + κ2n
, (14)

D× n̂ = 0. (15)

Suppose that A�(σ1, σ2, n) is some tangential smooth vector field

A� = A1(σ1, σ2, n)ê1 +A2(σ1, σ2, n)ê2.

Then, by straightforward calculations, we get

n̂× (D ×A�) = −
∑
j=1,2

κj

1 + κjn
Aj êj = −(κ)A�, (16)

where (κ) is the operator defined in the basis (ê1, ê2) by the matrix

(κ) =

⎛⎝ κ1

1 + κ1n
0

0
κ2

1 + κ2n

⎞⎠ . (17)

In the sequel from now on, we use the following notation

A⊥ = n̂× A, A� = A⊥ × n̂, AN = (n̂ · A) (18)

for any, not necessarily tangential vector field A. Obviously, A� is a tangential component of the vector
A, and AN is its normal projection. Likewise,

D⊥ = n̂× D.

By definition, we set

(κ⊥) =

⎛⎝ κ2

1 + κ2n
0

0
κ1

1 + κ1n

⎞⎠ . (19)

Then the following relations hold:
n̂ × (κ)A� = (κ⊥)A⊥, (20)

D⊥ ·A� = −D · A⊥.‡ (21)

Formulas (11) and (12) represent the operator ∇ in the coordinates (σ1, σ2, n).
Note now that

D = −n̂× (n̂×∇) (22)

and define the unit normal to S2 at the point (σ1, σ2, δh(σ1, σ2)) by n̂′ = n̂′(σ1, σ2). Suppose that the
operator

D′ = −n̂′ × (n̂′ ×∇), (23)
‡ Let us prove, for instance, (21):
D⊥ ·M� = (n̂×D) · (M⊥ × n̂) = −M⊥[(n̂×D)× n̂]+ [n̂× (n̂×D)] ·M⊥ = (M⊥ · n̂)(D · n̂)−D ·M⊥ = −D ·M⊥, since M⊥ · n̂ = 0.
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is associated with the surface S2 in the same way as D with S1. Then, as in Eq. (12),

∇ = D′ + n̂′ ∂
∂n′

, (24)

where ∂
∂n′ means differentiation in the direction n̂′.

Since on the surface S2 x = x0(σ) + δh(σ)n̂, we get

n̂′ =

∂x
∂σ1

× ∂x
∂σ2∣∣∣∣ ∂x∂σ1

× ∂x
∂σ2

∣∣∣∣ =
n̂− δDh√
1 + δ2|Dh|2 .

Hence
n̂′ = n̂ − δDh+ o(δ) (25)

and, consequently,

∂

∂n′
≡ (n̂′ · ∇) =

∂

∂n
− δ(Dh · D) + o(δ), (26)

D′ ≡ ∇− n̂′ ∂
∂n′

= D + δ

[
D(h)

∂

∂n
+ n̂(Dh · D)

]
+ o(δ). (27)

After the change of variable ξ = κ0δ, we obtain

n̂′ = n̂ − ξD0h+ o(ξ), (28)
∂

∂n′
=

∂

∂n
− ξ(D0h · D) + o(ξ), (29)

D′ = D + ξ

[
D0(h)

∂

∂n
+ n̂(D0h · D)

]
+ o(ξ), (30)

with D0 = 1
κ0

D|ν=0.
For h(σ) ≡ const, trivially, n̂′ ≡ n̂ and D′ ≡ D.

4. MAXWELL’S EQUATIONS IN A LAYER AND ITS NEIGHBORHOOD

We denote by (E,H) the field induced in a layer by an incident wave. From Maxwell’s equation

ik0μH = ∇× E, (31)
−ik0εE = ∇× H, (32)

using the representation in Eq. (12) of ∇, Eq. (15), and the obvious relation ∂n̂/∂n = 0, we derive

ik0μH = (D + n̂∂/∂n) × (E� + n̂EN ) = (n̂ × ∂E�/∂n) + (D× E�) − (n̂× D)EN , (33)

where EN = (n̂ ·E).
Taking the vector product of n̂ and both sides of Eq. (33), and using Eq. (16), we obtain

ik0μH⊥ = − [∂/∂n + (κ)]E� + DEN .

In the same manner, Eq. (32) yields the equation

−ik0εE⊥ = − [∂/∂n + (κ)]H� + DHN .

Taking the vector product n̂× one more time and using Eq. (20), we get

ik0εE� = − [∂/∂n + (κ⊥)]H⊥ + D⊥HN .

Now we form the termwise scalar product of Eqs. (31) and (32) with n̂ and see that

ik0μHN = (n̂ ×D) · (E� + n̂EN ) = D⊥ · E� + n̂ · [D × (n̂EN )] = D⊥ ·E�; (34)

ik0εEN = −D⊥ ·H� = D ·H⊥ (35)



6 Sukharevsky

Eq. (34) is true, since n̂ · [D × (n̂EN )] = [n̂ · (D × n̂)]EN + n̂ · [DEN × n̂], and both summands here
vanish (the first one by Eq. (15)). To derive Eq. (35), we take into account of Eq. (21).

Finally, we obtain the following system of equations:

ik0μH⊥ = − [∂/∂n + (κ)]E� + DEN , (36)

ik0εE� = −[∂/∂n + (κ⊥)]H⊥ + D⊥HN , (37)

ik0μHN = D⊥ · E�, (38)

ik0εEN = D · H⊥. (39)

The system of equations (36)–(39) is equivalent to the set (31) by derivation. At the same time, it is
well suited to the specific character of diffraction problems considered.

Let us point out two facts related to the system (36)–(39). First, substituting EN and HN expressed
by Eqs. (38) and (39) into Eqs. (36) and (37), we arrive at the autonomous set of equations with respect
to the vectors E� and H⊥. Secondly, the system (36)–(39) describes not only the field in the layer, but
also, if to set ε = μ = 1, the field in the regions G1 and G2, at least in the neighborhood of G. We will
use the latter fact in Section 6.1 to derive the boundary conditions in a special form.

Let the field at a point (σ, ν) inside the layer have the form

E = EEE eik0Φ0(σ), H = HHH eik0Φ0(σ), (40)

with Φ0(σ) = Φ(σ, 0).§
Let us introduce the following notation:

EEE � = u, HHH ⊥ = v; ∇Φ(σ, n) = l̂i = l̂i(σ, n);

l̂i(σ, 0) · n̂(σ) = cos θ, θ = θ(σ); l̂i(σ, 0) · êj(σ) = cosαj(σ);

DΦ0 =
∑
j=1,2

êj
1 + κjn

cosαj ≡ l�(σ, n),

D⊥Φ0 ≡ l⊥(σ, n); l⊥(σ, 0) = l⊥(σ, n).

Obviously, l�(σ, 0) = li�(σ, 0) and l⊥(σ, 0) = li⊥(σ, 0).
Substituting Eq. (40) into Eqs. (36)–(39), we get

ik0μv = − [∂/∂n + (κ)]u + (D + ik0l�)EN , (41)

ik0εu = − [∂/∂n + (κ⊥)]v + (D⊥ + ik0l⊥)HN , (42)

ik0μHN = (D⊥ + ik0l⊥) · u, (43)

ik0εEN = (D + ik0l�) · v. (44)

Eliminating EN and HN from Eqs. (41) and (42), and changing a variable n to ν, we obtain a
system of two equations for u(σ, ν) and v(σ, ν) in the layer (0 ≤ ν ≤ 1) with functions ε = ε(ν, σ) and
μ = μ(ν, σ) ⎧⎪⎪⎨⎪⎪⎩

1
iζμh

∂u
∂ν

= −v +
1
εμ
εZ�(

1
ε
Z� · v) +

iη

μ
(κ)u,

1
iζεh

∂v
∂ν

= −u +
1
εμ
μZ⊥(

1
μ
Z⊥ · u) +

iη

ε
(κ⊥)v,

(45)

where (κ) = 1
κ0

(κ), (κ⊥) = 1
κ0

(κ⊥), and

Z� = l� + 1/(ik0)D, Z⊥ = l⊥ + 1/(ik0)D⊥. (46)

§ Φ(σ, n) is the phase function of the incident wave, see Eq. (6). Thus, the phase function inside the layer differs from the GO phase,
as it does not take into account the wave refraction. This distinction does not lead to an error, since the amplitude functions EEE and
HHH will compensate for the refraction of initial wavefront after the exact boundary conditions are satisfied.
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5. ASYMPTOTIC EXPANSIONS OF THE FIELD INSIDE A LAYER

In the case of thin layers, vector functions u and v are smooth and nonoscillatory. For this reason, the
role of the phase function is played by the phase function of the incident wave Φ(x) at a given point
on surface S1, and the phase incursion, induced by the passage of a wave through a layer, is taken into
account automatically in calculating the amplitude vectors u and v.

If however we have thick layers (ζ 
 1), the vectors u and v become highly oscillating due to the
multiple internal reflections between S1 and S2. Moreover, the bigger characteristic parameter kδ is,
the higher is the frequency of oscillations.

For this reason, we seek the vector functions u and v in the form of the following asymptotic
expansions:

⇒
W=

∞∑
p=0

⇒
Wp e

iζΛp(σ,ν), with
⇒
Wp∼

∞∑
m=0

⇒
Wpm (σ, ν)

ζm
, (47)

where
⇒
W=

(u
v

)
,

⇒
Wp=

(
up

vp

)
, and Λp are some functions of variables σ and ν. Below we establish the

form of these functions and show the way to efficiently find the vectors up and vp (p = 0, 1, 2, . . . ) up
to an arbitrary asymptotic order. The form of expansions in Eq. (47) is justified by solutions of the
canonical problems, in particular, [26].

The expansion in Eq. (47) means that for any given ε > 0, there exists a natural number N = N(ε)
such that for ζ → ∞, uniformly with respect to ζ, holds∣∣∣∣∣∣⇒W −

N∑
p=0

eiΛp(σ,ν)
⇒

Wp

∣∣∣∣∣∣ < ε. (48)

Substituting Eq. (47) in Eq. (45), we get a system of equations with respect to up and vp
∂up
∂ν

+ iζλpup + ξh(κ)up = −iμhζvp +
iζh

ε
Y�pvp, (49)

∂vp
∂ν

+ iζλpvp + ξh(κ⊥)vp = −iεhζup +
iζh

μ
Y⊥pup, (50)

where
λp =

∂Λp
∂ν

; (51)

Y�pvp = εe−iζΛpZ�
{

1
ε
Z�(eiζΛpvp)

}
,

Y⊥pup = μe−iζΛpZ⊥
{

1
μ
Z⊥(eiζΛpup)

}
.

(52)

The expressions Y�pvp and Y⊥pup can be written as formal series with respect to the small parameter
ξ = α

ζ , i.e.,

Y�pvp =
∞∑
m=0

αmY(m)
�p vp
ζm

, Y⊥pup =
∞∑
m=0

αmY(m)
⊥p up
ζm

, (53)

where Y(0)
�p, Y(1)

�p, Y(0)
⊥p, Y(1)

⊥p, . . . are certain known matrix operators on 2D vectors. For instance,

Y(0)
�pvp = (li� · vp)li�, (54)

Y(1)
�pvp = (sp · vp)li� + (li� · vp)sp, (55)

where sp = D0Λp − hν(κ)0li�, (κ)0 = (κ)|n=0, and D0 = 1
κ0

D|n=0. A derivation of Y(m)
�p and Y(m)

⊥p for
m = 0 and m = 1 is given in Section A.2.
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On the basis of these expansions and expansions of operators (κ) and (κ⊥) (see Appendix), we can
write the system of Equations (49) and (50) as follows

∂
⇒

Wp

∂ν
= ζLp

⇒
Wp +Bp0

⇒
Wp +

1
ζ
Bp1

⇒
Wp + . . . , (56)

where Lp = (Ap − iλpI), Ap, Bp0, Bp1, . . . are four-dimensional matrix operators; I is a unit four-
dimensional matrix; I(2×2) is a 2D unit matrix, and

Ap = −ih

⎛⎜⎝ 0 μI(2×2) − 1
ε
Y(0)

�p

εI(2×2) − 1
μ
Y(0)

⊥p 0

⎞⎟⎠ , (57)

Bp0 = iαh

⎛⎜⎝ 0
1
ε
Y(1)

�p
1
μ
Y(1)

⊥p 0

⎞⎟⎠ . (58)

5.1. Operator T(α,β) and Matrix Operators in Terms of It

Let us consider a matrix operator acting on vectors tangential to S1 according to the formula

T(α, β)a = αa + βli�(li�a), α, β = const. (59)

Evidently, for any values of parameters α and β, the operator T(α, β) applied to any vector tangential
to S1 is also a vector tangential to S1.

It is important to note the following properties of the operator T(α, β) easily deducible from its
definition:

∀a ∈ R
3, ∀α, β ∈ R,

1. T(kα, kβ)a = kT(α, β)a, k = const; (60)
2. {T(α1, β1) + T(α2, β2)} a = T(α1 + α2, β1 + β2)a; (61)
3. T(α1, β1)T(α2, β2)a = (62)

T(α1α2;α1β2 + β1α2 + sin2 θβ1β2)a; (63)

4.
∂

∂x
T(α(x);β(x))a = T

(
∂α

∂x
;
∂β

∂x

)
a + T(α, β)

∂a
∂x

; (64)

5. T−1(α, β)a = T
(

1
α

;− β

α(α+ β sin2 θ)

)
a; (65)

6. T(α, β)a = αa, if θ = 0. (66)

Matrix operators Ap and Lp take, on account of Eq. (59), the form

Ap = −ih

⎛⎜⎜⎝ 0 μT
(

1;− 1
εμ

)
εT
(
ρ;

1
εμ

)
0

⎞⎟⎟⎠ , ‖ (67)

Lp
⇒
Wp= (Ap − iλpI)

⇒
Wp= −i

⎛⎜⎝λpup + μhT(1;− 1
εμ

)vp

εhT(ρ;
1
εμ

)up + λpvp

⎞⎟⎠ . (68)

Using the operator T allows us to write all the derivations in the vector basis (e1, e2) in a compact
form. This has however one more important advantage over the method of [24, 25], where the leading
‖ It bears mentioning that T(ρ, 1

εμ
) = T⊥(1,− 1

εμ
), where T⊥ is defined by analogy with the operator T as follows: ∀a ∈ R

3, ∀α, β ∈
R, T⊥(α, β)a = αa + βli⊥(li⊥ · a).
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term of the asymptotic expansion was deduced on the basis (llli�, lll
i
⊥). The formulas of [25] obviously

lead in the case of normal incidence to an indeterminate form 0/0 to be analyzed apart. The property
in Eq. (66) of the operator T(a, b) allows us to neglect the case when b has an indeterminate form at
θ = 0. As can be shown by straightforward calculations, the resulting solution in this case is a limit at
θ → 0. We present thus a unified solution for all values of the incident angle.

5.2. Phases of Partial Waves

Using Eq. (47) and equating the coefficients of the same powers of ζ in Eq. (56), we obtain a system for
the determination of the leading asymptotic term

Lp
⇒
Wp0 = 0, (69)

Lp
⇒
Wp1 =

∂
⇒
Wp0

∂ν
− Bp0

⇒
Wp0, (70)

and so on.
Obviously, the necessary and sufficient condition for a nontrivial solution of Eq. (69) is that

quantities iλp are the eigenvalues of operator Ap. From the characteristic equation det |Ap− iλpI| = 0,
we obtain two solutions

λ±p = ±h√εμρ (71)

where ρ = 1− sin2 θ
εμ . Hence, in virtue of Eq. (51), we obtain two families of phase functions, respectively,

Λ±
p (σ, ν) = ±h(σ)

ν∫
0

√
εμρdν + l±p (σ), (72)

where l±p (σ) are some functions independent of ν.
In the sequel, we use the following notation interchangeably:

Λ+
p ≡ Λ2p, (p = 0, 1, . . .), Λ−

p ≡ Λ2p−1 (p = 1, 2, . . .). (73)

The constants l±p (σ) in Eq. (72) can be determined, if Λp are subject to the physically justified conditions,
such as

Λ+
0 |ν=0 = 0, Λ−

1 |ν=1 = Λ+
0 |ν=1, Λ+

1 |ν=0 = Λ−
1 |ν=0, etc.,

that is a continuous joining of phases of partial waves. From these conditions, we get

Λ±
p = ±h(σ)

ν∫
0

√
εμρdν + 2ph(σ)

1∫
0

√
εμρdν (74)

or, on account of Eq. (73),

Λ2p = h(σ)

ν∫
0

√
εμρdν + 2ph(σ)

1∫
0

√
εμρdν, (p = 0, 1, . . .),

Λ2p−1 = h(σ)

1∫
ν

√
εμρdν + (2p − 1)h(σ)

1∫
0

√
εμρdν, (p = 1, 2, . . .).

(75)

For the sake of preciseness, it bears mentioning that Λ±
p defined by Eq. (74) are not the true phase

functions, rather their asymptotic approximations, which is quite natural considering that a layer is
slightly curved.

The functions Λ+
p and Λ−

p and the expansion in Eq. (47) can be interpreted in terms of GO. Let a
ray arrive at some point M0 on the surface S1 under an incidence angle θ and a refracted ray arrive at
a point M1 on the surface S2 (Fig. 2). We denote by θ1 a refractive angle and by N0 where a normal
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Figure 2. On the internal reflections inside a thick layer and a construction of the phase function.

to S1 crosses the surface S2. Now let us replace the layer G with a fictitious layer, whose plane-parallel
boundaries S′

1 and S′
2 are constructed as follows. The plane S′

2 goes through the point N0 and is
perpendicular to the reflected ray M0M1. The plane S′

1 goes through a point M0 and is parallel to S′
2.

Now let us calculate the distance M0M
′
0. Obviously, M0M

′
0 = δ cos θ1, and, by Snell’s law,

sin θ =
√
εμ sin θ1, hence cos θ1 =

√
1 − sin2 θ

εμ =
√
ρ. Therefore, M0M

′
0 = δh

√
εμρ.

By construction of the layer boundaries, a ray travels inside our fictitious layer from the point M0

to the point M ′
0, then from M ′

0 to M0, and so on; i.e., with each reflection from a boundary, the phase
incursion is M0M

′
0, which corresponds to the structure of formulas (75).

Therefore, ζΛ+
p can be interpreted as an increment in phase as a result of an even number of internal

reflections from S2, then from S1, and so on, and ζΛ−
p is an increment produced by an odd number of

such reflections.
The point to be emphasized is that the form of the phase functions in Eq. (75) is not initially

imposed according to the geometrical consideration, but is deduced so that the geometric construction
described above is just their illustrative interpretation.

Now we turn to the derivation of boundary conditions in a form appropriate for our purpose.

6. BOUNDARY CONDITIONS

6.1. Boundary Conditions in a Special Form

To get the boundary conditions on S1, we write the equation for the field in the region G1, then pass
to the limit to the surface S1 and, finally, equate the tangential components of the fields in the layer
G and the region G1. In Equations (36)–(39), we set ε = μ = 1 and interpret E, H as the field in the
region G1:

E = Ei + Er, H = Hi + Hr,

where Ei = EEE ieik0Φ, Hi = HHH ieik0Φ, Er = EEE reik0Ψ, Hr = HHH reik0Ψ.
Equation (36), after the limit passage from G1 to S1, generates the following boundary relation on

S1: ¶

ik0(HHH i
⊥ + HHH r

⊥) = − ∂

∂n
(EEE i

� + EEE r
�) − ik0

∂Φ
∂n

(EEE i
� − EEE r

�)

− (κ)(EEE i
� + EEE r

�) + ik0DΦ(E i
N + E r

N ) + D(E i
N + E r

N ).
(76)

Since on the surface S1

HHH i
⊥ + HHH r

⊥ = HHH ⊥ ≡ v, EEE i
� + EEE r

� = EEE � ≡ u, E i
N + E r

N = εEN , (77)

the relation in Eq. (76), with the aid of Eq. (44), takes the form

P0u−Qv|S1
= 2ui cos θ +

1
ik0

∂(ui + ur)
∂n

, (78)

¶ We take into account that Φ = Ψ, ∂Φ/∂n = −∂Ψ/∂n, and DΦ = DΨ on S1.
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where P0, Q are operators P0u = ∂Φ
∂nu − 1

ik0
(κ)u, Qv = v − Z�(Z� · v), with ui = EEE i

�, ur = EEE r
�, and

Z� defined by Eq. (46).
In the same way, we find the condition on S2:

P ′
1u

′ −Q′v′∣∣
S2

=
1
ik0

∂(ut)′

∂n′
eik0(Φ−Φ0), (79)

where u′ = EEE �′ , v′ = HHH ⊥′ , (ut)′ = EEE t
�′ , Φ = Φ(σ, δh), Φ0 = Φ(σ, 0), P ′

1u
′ = − ∂Φ

∂n′u′ − 1
ik0

(κ)′u′,
Q′v′ = v′ − Z�′(Z�′ · v′), Z�′ = l�′ + 1

ik0
D′.

The primes in �′, ⊥′, n′, (κ)′, etc., indicate that the corresponding operations or quantities
are associated with the surface S2. If the surfaces S2 and S1 are equidistant, the primes can be omitted.

Taking into account that η = κ0/k0 and ∂Φ/∂n = cos θ, we write the boundary conditions in the
following form:

P0u−Qv = 2ui cos θ − iη

κ0

∂(ui + ur)
∂n

, (80)

P ′
1u

′ −Q′v′ = − iη

κ0

∂(ut)′

∂n′
eik0(Φ−Φ0), (81)

where P0u = cos θu + iη(κ)u, P ′
1u

′ = − ∂Φ
∂n′u′ + iη(κ)′u′, and ∂Φ/∂n′ can be deduced from Eq. (29).

If functions ε(x), μ(x) are continuous in G, and the set of boundary conditions can be combined
only from equalities in Eqs. (80), (81). If on the line n = const at least one of these function has
a discontinuity, then E� and H� must be continuous on this line. Therefore, we get an additional
boundary condition u+ = u−, v+ = v−, where indices “+” and “−” mean the limiting values on the
discontinuity line from both sides.

Let us note that we used Eq. (36) to derive equalities Eqs. (80) and (81). Alternatively, we could
have derived the equivalent boundary conditions from Eq. (37).

The set of Equations (41)–(44) with the boundary conditions (80)–(81) is the starting point in our
analysis of and solution to the diffraction problem.

As we show in Appendix B, the boundary conditions for the leading asymptotic term are given by
the following relations on S1:

cos θu+
00 − T(1;−1)v+

00 = 2ui cos θ, (82)
cos θ(u+

p0 + u−
p0) − T(1;−1)(v+

p0 + v−
p0) = 0, p ≥ 1, (83)

and on S2:
cos θu2p+ 1

2
,0 + T(1;−1)v2p+ 1

2
,0 = 0, (p = 0, 1, 2, . . . ). (84)

where v2p+ 1
2

= v+
p + v−

p+1, u2p+ 1
2

= u+
p + u−

p+1.

7. ASYMPTOTIC SOLUTION OF THE PROBLEM

7.1. The Main Asymptotic Approximation

Because λp possesses two values λ±p = ±h√εμρ, using Eqs. (69) and (70), we arrive at two systems of

equations for the determination of the leading asymptotic term of the bivector
⇒
W

L±
p

⇒
W

±
p0 = 0, (85)

L±
p

⇒
W

±
p1 =

∂
⇒
W

±
p0

∂ν
−Bp0

⇒
W

±
p0, (86)

where the operator Lp is described by Eq (68).

Systems of Eqs. (85) and (86) determine two families of bivectors
⇒
W

±
p0=

(
u±

p0

v±
p0

)
, where

⇒
W

+

p0 and

⇒
W

−
p0 are forward and backward waves, respectively.
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As a preliminary, from the second equation of the system (85)

−iεhT
(
ρ;

1
εμ

)
u±
p0 − iλ±p v±

p0 = 0, (87)

we express v±
p0 in terms of u±

p0.

v±
p0 = − εh

λ±p
T
(
ρ;

1
εμ

)
u±
p0 = ∓Ω

ρ
T
(
ρ;

1
εμ

)
u±
p0, (88)

where Ω =
√

ερ
μ .

Now we proceed to find u±
p0. As we show in Section A.4, the equation L±

p

⇒
W=

⇒
f , with

⇒
f=

{
f1
f2

}
,

is solvable only if

f1 =
μh

λp
T
(

1;− 1
εμ

)
f2. (89)

Thus, we apply the condition (89) to the right-hand side of Eq. (86) and get

∂u±
p0

∂ν
− iαh

ε
Y(1)

�pv
±
p0 =

μh

λ±p
T
(

1;− 1
εμ

)[
∂v±

p0

∂ν
− iαh

μ
Y(1)

⊥pu
±
p0

]
. (90)

Using Eq. (88), we write the equality in Eq. (90) as follows

∂u±
p0

∂ν
− μh

λ±p
T
(

1;− 1
εμ

)
∂v±

p0

∂ν
= − iαh

2

λ±p

[
Y(1)

�pT
(
ρ;

1
εμ

)
+ T

(
1;− 1

εμ

)
Y(1)

⊥p

]
u±
p0. (91)

Taking into account the qualities of the operator T and the form of the operators Y(1)
�p and Y(1)

⊥p, it is
not hard to show (see Section A5, Eq. (A13)) that for any tangential vector a, holds[

Y(1)
�pT

(
ρ;

1
εμ

)
+ T

(
1;− 1

εμ

)
Y(1)

⊥p

]
a = 2

(
li� · sp

)
a. (92)

Therefore, Eq. (91) takes the form

∂u±
p0

∂ν
− μh

λ±p
T
(

1;− 1
εμ

)
∂v±

p0

∂ν
= −2iαh2

λ±p

(
li� · s±p

)
u±
p0. (93)

Equation (93) is obtained from the consistency condition of the system (85) and is obviously not

sufficient to find u±
p0. To eliminate the term

∂v±
p0

∂ν from Eq. (93), we differentiate the first equation of
the system (85) by the convention in Eq. (64) and get

u±
p0 = −μh

λ±p
T
(

1;− 1
εμ

)
v±
p0. (94)

Taking into account of Eq. (60), we obtain

−μh
λ±p

T
(

1;− 1
εμ

)
∂v±

p0

∂ν
=
∂u±

p0

∂ν
+ hT

(
∂

∂ν

μ

λ±p
;− ∂

∂ν

1
ελ±p

)
v±
p0, (95)

or, by Eq. (88),

−μh
λ±p

T
(

1;− 1
εμ

)
∂v±

p0

∂ν
=
∂u±

p0

∂ν
− εh2

λ±p
T
(
∂

∂ν

μ

λ±p
;− ∂

∂ν

1
ελ±p

)
T
(
ρ;

1
εμ

)
u±
p0. (96)

Recasting the superposition of operators T by the rule in Eq. (63) and substituting the resulting
expression to Eq. (93), we get finally the equation for finding u±

p0

2
∂u±

p0

∂ν
= T(a, b)u±

p0, (97)
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where

a = −∂ ln Ω
∂ν

− 2
iαh2

λ±p
(li� · s±p ), b = −1

ρ

∂

∂ν

1
εμ
.+

Seeking the solution of this equation in the form u±
p0 = A±

p w, we arrive at the equation

2
∂A±

p

∂ν
w + 2A±

p

∂w
∂ν

= T(aA±
p ; bA±

p )w. (99)

We set 2∂A
±
p

∂ν = aA±
p , then A±

p can be written up to a constant in the form

A+
p (ν) =

1√
Ω
e
−iαh

ν∫
0

(li�·s+p ) dν√
εμρ
,

A−
p (ν) =

1√
Ω
e
−iαh

1∫
ν

(li�·s−p ) dν√
εμρ
.

(100)

From Eq. (99), we obtain the equation for determination of w

2
∂w
∂ν

= bli�(li� · w). (101)

Decomposing w in the vector basis (τ̂̂τ̂τ , τ̂̂τ̂τ⊥): w = wτ τ̂̂τ̂τ + wτ⊥ τ̂̂τ̂τ⊥, and taking into account that

|li�| = |li⊥| = sin θ and τ̂̂τ̂τ = li�
|li�| , we get from Eq. (101) two equations

∂wτ
∂ν

=
b sin2 θ

2
wτ ,

∂wτ⊥
∂ν

= 0. (102)

whose solutions are wτ = cτB
±
p (ν) and wτ⊥ = cτ⊥ , with cτ = const, cτ⊥ = const, and

B+
p (ν) = e

sin2 θ
2

ν∫
0

∂
∂ν

(
1

εμ

)
dν
ρ
, B−

p (ν) = e
sin2 θ

2

1∫
ν

∂
∂ν

(
1

εμ

)
dν
ρ
. (103)

Consequently,

w = B±
p (C±

p0 · τ̂̂τ̂τ)τ̂̂τ̂τ + (C±
p0 · τ̂̂τ̂τ⊥)τ̂̂τ̂τ⊥ = B±

p (C±
p0 · τ̂̂τ̂τ)τ̂̂τ̂τ + C±

p0 − (C±
p0 · τ̂̂τ̂τ)τ̂̂τ̂τ = T

(
1;
B±
p − 1
sin2 θ

)
C±
p0, (104)

where C±
p0 is some constant vector.

Thus, we can write finally the solution of Eq. (97) in the form

u±
p0 = A±

p T

(
1;
B±
p − 1
sin2 θ

)
C±
p0, (105)

where functions A±
p (ν) and B±

p (ν) are determined by Eqs. (100) and (103). The vector vp0 can be
expressed by Eq. (88).

It is easy to see that B+(0) ≡ B−(1) ≡ 1, and B+(1) ≡ B−(0), and B±
p can be easily derived in a

closed form.

+ Let us derive, for instance, b. Using (71) and the quality of the operator T (63), we get

b=
εh2

λ±p

[
1

εμ

∂

∂ν

(
μ

λ±p

)
− ∂

∂ν

(
1

ελ±p

)]
=
εh2

λ±p

[
1

ε

∂

∂ν

1

λ±p
+

1

εμλ±p

∂μ

∂ν
− 1

ε

∂

∂ν

1

λ±p
− 1

λ±p

∂

∂ν

1

ε

]
=

1

ρ

(
1

εμ2

∂μ

∂ν
− 1

μ

∂

∂ν

1

ε

)
=−1

ρ

∂

∂ν

1

εμ
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7.2. Determination of C±
p0

The vectors C±
p0 can be determined from the boundary conditions for the leading asymptotic term of

Eqs. (B21), (B22), and (B35) on S1 (ν = 0)

cos θu+
00(0) − T(1;−1)v+

00 = 2ui0 cos θ, (p = 0), (106)

cos θ[u+
p0(0) + u−

p0(0)] − T(1;−1)[v+
p0(0) + v−

p0(0)] = 0, (p = 1, 2, . . .), (107)

and on S2 (ν = 1), for p = 0, 1, 2, . . .

cos θ[u+
p0(1) + u−

p+1,0(1)] − T(1;−1)[v+
p0(1) + v−

p+1,0(1)] = 0. (108)

From Eq. (105), follows u+
00

∣∣
ν=0

= 1√
Ω(0)

C+
00, therefore, using Eq. (88), we obtain from Eq. (106) the

equation for finding C+
00

cos θC+
00 +

εh

λ+
p
T(1;−1)T

(
ρ0;

1
ε0μ0

)
C+

00 = 2ui0
√

Ω0 cos θ, (109)

where Ω0 = Ω(0), ρ0 = ρ(0).
The superposition of operators T in the left-hand part of Eq. (109) can be recast by Eq. (63):

cos θC+
00 +

Ω0

ρ0
T
{
ρ0;

1
ε0μ0

− 1
}

C+
00 = 2ui0

√
Ω0 cos θ, (110)

that is,

T
{

Ω0 + cos θ;
Ω0

ρ0

(
1

ε0μ0
− 1
)}

C+
00 = 2ui0

√
Ω0 cos θ. (111)

By applying the operator T−1 defined by Eq. (65) to the right and left sides of Eq. (111), we get

C+
00 = 2cos θT{α0(0), β0(0)}ui0, (112)

where

α0(ν) =

√
Ω(ν)

Ω(ν) + cos θ
, β0(ν) = −

α0(ν)
(

1
ε(ν)μ(ν)

− 1
)

(
ρ(ν)
Ω(ν)

+ cos θ
)

cos θ
. (113)

Likewise, from Eqs. (108) and (107), we deduce a recurrent formula to find C±
p0 (p = 1, 2, . . . ).

C−
p+1,0 = T{a+

p (1), b+p (1)}C+
p0, (p = 0, 1, 2, . . . ), (114)

C+
p0 = T{a−p (0), b−p (0)}C−

p0, (p = 1, 2, . . . ), (115)

where

a±p (ν) = α0(ν)α±
p (ν), (116)

b±p (ν) = −α0(ν)β±p (ν) + β0(ν)α±
p (ν) − β0(ν)β±p (ν) sin2 θ, (117)

α±
p (ν) = A±

p (ν)(Ω − cos θ), (118)

β±p (ν) = A±
p

[
cos θ

B±
p − 1
sin2 θ

− Ω
ρ

(
B±
p − ρ

sin2 θ
−B±

p

)]
, (119)

α0(ν) and β0(ν) are determined by Eq. (113).
From a physics perspective, C−

00 ≡ 0, meanwhile C+
00 is given by Eq. (112). Then, the cyclic use of

Eqs. (114) and (115) allows all the successive values of C±
p0 to be found for any p.
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8. APPROXIMATION OF THE STRATIFIED MEDIUM WITH A CONTINUOUS
FUNCTION

In our consideration, ε and μ are assumed to be continuous. It allows us not to introduce additional
boundary conditions at the medium interfaces. For the stratified media, one can use certain continuous
approximation of the dielectric permittivity. Let

ε(ν) =

⎧⎨⎩
ε1, 0 ≤ ν ≤ ν1 − Δ,
εk, νk−1 + Δ ≤ ν ≤ ν1 − Δ, k > 1,
Pk(ν), νk − Δ ≤ ν ≤ νk + Δ, k ≥ 1

(120)

where νk ≡ const are interfaces between mediums with εk and εk+1, and

P (ν) = εk(1 − t)2(1 + 2t) + εk+1t
2(3 − 2t), (121)

with t = (ν − νk + Δ)/2Δ.
Such parametrization is smooth; the derivative ε′(ν) is continuous; ε′(νk ± Δ) ≡ 0 for any k. By

decreasing the value of Δ, we may approximate the piece-wise constant dielectric permittivity as close,
as we wish (see Fig. 3(b)).

9. NUMERICAL VERIFICATION OF THE METHOD

For the illustration and verification of the method proposed, consider the following canonical 2D
problem. Let a tapered plane E-polarized wave with ui = Eiz = cos πA2 be incident on a circular
dielectric layer, as in Fig. 3(a). We compute only the transmitted field without taking into account
secondary reflections from S1 to the region G1

� with the aid of formulas (105), (114)–(115) (red line
in Figs. 3–8) and compare the field value at the surface S2 with the numerical solutions of integral
equations (green line). For a stratified layer, as in Fig. 9(c), we employ the volume integral equation,
and same as in [23], the Müller boundary integral equations for homogeneous layers (ε1 = ε2 = ε3,
Figs. 4–8). The oscillations in the exact numerical solution curves are hard to track with our method,
since they are caused not solely by multiple reflections from S1, but also by the waveguiding effect and
the diffraction from wedges, which is not taken into account by our asymptotic theory. Still, in all the
cases considered, the “asymptotic” curve represents an envelope of the highly-oscillating curves. As it
can be seen from plots, the level of oscillations decreases for bigger sizes of the dielectric layer and for
smaller values of dielectric permittivity. These oscillations almost vanish, if to introduce small losses to
the dielectric permittivity, as in Fig. 8.

(b)(a) (c)

Figure 3. The geometry of a canonical problem (a), and approximation of the piecewise constant ε
(ε1 = 1.5, ε2 = 4, and ε3 = 2.5; ν1 = 0.33 and ν2 = 0.66) by a continuous function with Δ = 0.02 (green
line) and Δ = 0.08 (red line) (b), and the field magnitude on S2 for a circular layer with R0 = 5λ,
δ = 0.45λ, and ε1 = 3, ε2 = 4 and ε3 = 5: asymptotic (red line) and integral equation solutions (green
line).

� These reflections are negligible in this particular problem.



16 Sukharevsky

The relation between the curvature of the layer and its thickness can be efficiently controlled by
the parameter α, as it is shown in Fig. 7.

Summarizing the calculations, we may say that the asymptotic technique offered in this paper
provides valid results for dielectric permittivities up to ε ∼ 10 and for the layer thickness from 0.5λ to
10λ and more.

(b)(a) (c)

Figure 4. The field magnitude on S2 for a circular layer with ε = 2, and (a) R = 5λ and δ = 0.892λ
(ζ = 5.6, ξ = 0.178), (b) R = 30λ and δ = 2.185λ (ζ = 13.729, ξ = 0.073), and (c) R = 60λ and
δ = 3.09λ (ζ = 19.42, ξ = 0.052): asymptotic solution (red line) vs. integral equations (green line). In
all the cases considered α = 1.

(b)(a) (c)

Figure 5. Same, as in Fig. 4, but for ε = 6.

(b)(a) (c)

Figure 6. Same, as in Fig. 4, but for ε = 10.
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(b)(a) (c)

Figure 7. The field magnitude on S2 for a circular layer with ε = 4, R = 60λ, and (a) δ = 3.09λ
(ζ = 19.42, ξ = 0.052; α = 1), (b) δ = 1.545λ (ζ = 9.708, ξ = 0.026; α = 0.25), and (c) δ = 6.18λ
(ζ = 38.83, ξ = 0.103; α = 4): asymptotic solution (red line) vs. integral equations (green line).

(b)(a) (c)

Figure 8. Same, as in Fig. 7 (a), but for (a) ε = 2 + 0.01i, (b) ε = 2 + 0.1i, and (c) ε = 2 + 0.5i.
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APPENDIX A. DERIVATION OF FORMAL ASYMPTOTIC EXPANSIONS OF
OPERATORS

A.1. Matrix Operator (κ) and Operator D

Operators (κ) and D given by Eqs. (17) and (11) take, by transition to the dimensionless coordinate
ν = n

δh(σ1,σ2) , the following view:

(κ) =

⎛⎝ κ1

1 + κ1νhξ
0

0
κ2

1 + κ2νhξ

⎞⎠ , (A1)

D =

⎛⎜⎝
1

1 + κ1νhξ
0

0
1

1 + κ2νhξ

⎞⎟⎠D|ν=0, (A2)
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where κj = κj/κ0 for j = 1, 2. Then, (κ) and (κ⊥) can be expanded in series with respect to the small
parameter ξ

(κ) =
1
κ0

(κ) = (κ)0 − νhξ[(κ)0]2 + . . . (A3)

D =
{
1 − (κ)0νhξ + +o(ξ)

}
D|ν=0. (A4)

with (κ)0 = (κ)|n=0 and (κ⊥)0 = (κ⊥)|n=0.
Since l� = DΦ0 = DΦ(σ, 0) = li�(σ, 0), then, on account of Eq. (A4), we obtain

l� = li� − νhξ̃li� + o(ξ), (A5)

where l̃i� = (κ)0li�.

A.2. Operators Z� and Y�

From Eq. (A4), we get
1
ik0

D = −i{ηD0 − (κ)0νhξηD0 + . . .
}
, (A6)

where D0 = 1
κ0

D|ν=0. We assume the following relations between the orders of magnitude of small
parameters of the problem: ζ = α/ξ(α ∼ 1) (ξ = α/ζ, η = α/ζ2). Taking into account Eqs. (A5)
and (A6), we may write the operator Z� = l� + 1

ik0
D in the form of power series in inverse orders of

parameter ζ

Z� ∼ li� − νh

ζ
l̃i�. (A7)

Applying 1
εZ� to a harmonics eiΛpζvp and rearranging the terms, we get

1
ε
Z�(eiΛpζvp) ∼ 1

ε
eiΛpζ

{
(li� · vp) +

1
ζ
(sp · vp)

}
, (A8)

where sp = D0Λp − hν l̃i�. Let us now apply the operator ε(e−iΛpζ)Z� to the expression obtained and
separate the terms of expansion with ζ0:

(li� · vp)li�,
and with ζ−1:

(sp · vp)li� + (li� · vp)D0Λp − νh

ζ
l̃i�(li� · vp) = (sp · vp)li� + (li� · vp)sp. (A9)

Therefore, rearranging the associated terms, we may write the coefficients in Eqs. (54) and (55) of
the asymptotic series for Y�pvp.

A.3. Operators (κ⊥), D⊥, l⊥, Z⊥, and Y⊥p
These operators can be obtained from formulas (A1)–(A7) by the following replacements:

(κ) → (κ⊥), (κ)0 → (κ⊥)0, l� → l⊥, li� → li⊥,

D → D⊥, D0 → D0
⊥ =

1
κ0

D⊥|ν=0,

sp → sp⊥ = D0
⊥Λp − hν(κ⊥)0li⊥.
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A.4. Relation between Operators T and L±
p .

Let the operator L±
p be defined by the formula

L±
p

(
u
v

)
=

(
−iλ±p u− ihμv + ih/εli�(li� · v)

−iλ±p v − ihεu + ih/μli⊥(li⊥ · u)

)
, (A10)

with λ±p = ±h√εμρ. Then, the equation L±
p

(
u
v

)
=
(
f1
f2

)
is solvable only if

μh

λ±p
T
(

1;− 1
εμ

)
f2 = f1. (A11)

Indeed,

μh

λ±p
T
(

1;− 1
εμ

)
f2 = −iμhv − iμεh2

λ±p
u +

ih2

λ±p
li⊥(li⊥ · u) +

ih

ε
li�(li� · v) +

ih2

λ±p
li�(li� · u)

= −iμhv +
ih

ε
li�(li� · v) +

ih2

λ±p
(|li�|2 − με)u. (A12)

Since ρ = 1 − sin2 θ
εμ and |li�| = sin θ, we obtain, by Eq. (71), the equality in Eq. (A11).

A.5. Relation between Operators Y(1)
�p, Y(1)

⊥p, and T

Let us show that

Υa ≡
[
T
(

1;− 1
εμ

)
Y(1)

⊥p + Y(1)
�pT⊥

(
1;− 1

εμ

)]
a = 2(li� · sp)a, (A13)

Here Y(1)
�p and Y(1)

⊥p are defined by Eq. (55), sp = D0Λp − hν(κ)0li�, and the operator T⊥(α, β)a =

αa + βli⊥(li⊥ · a). It bears mentioning that T⊥
(
1;− 1

εμ

)
= T

(
ρ, 1

εμ

)
.

Consider each term in Eq. (A13) separately:

T
(

1;− 1
εμ

)
Y(1)

⊥p = li⊥(sp⊥ · a) + sp⊥(li⊥ · a) − 1
εμ

li�(li� · sp⊥)(li⊥ · a); (A14)

Y(1)
�pT

(
ρ;

1
εμ

)
= li�

[
ρ (sp · a) +

1
εμ

(
sp · li�

) (
li� · a)]+ sp

[
ρ
(
li� · a)+

sin2 θ

εμ
(li� cot a)

]
. (A15)

We represent then vectors sp, sp⊥, and a in Eqs. (A14)–(A15) in the basis (τ̂̂τ̂τ , τ̂̂τ̂τ⊥), where τ̂̂τ̂τ = li�
|li�| :

sp = s1τ̂̂τ̂τ + s2τ̂̂τ̂τ⊥, sp⊥ = −s2τ̂̂τ̂τ + s1τ̂̂τ̂τ⊥, a = a1τ̂̂τ̂τ + a2τ̂̂τ̂τ⊥. (A16)

Now, by adding Eqs. (A14) and (A15), we get

Υa = sin θτ̂̂τ̂τ⊥(−a1s2 + a2s1) + (−s2τ̂̂τ̂τ + s1τ̂̂τ̂τ⊥) sin θa2 +
sin3 θ

εμ
s2a2τ̂̂τ̂τ

+ sin θ
[
ρ(a1s1 + a2s2) +

1
εμ

sin2 θs1a1

]
τ̂̂τ̂τ + (s1τ̂̂τ̂τ + s2τ̂̂τ̂τ⊥)

[
ρ sin θa1 +

sin3 θ

εμ
a1

]
= 2s1 sin θa = 2(li� · sp)a. (A17)
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APPENDIX B. BOUNDARY CONDITION

B.1. Boundary Condition on S1

The boundary conditions on S1 and S2 in Eqs. (80), (81) contain ∂ur

∂n

∣∣
S1

and ∂ut

∂n

∣∣∣
S2

. Now we show that

the limiting values of these normal derivatives are of order ζ. For this purpose, we derive them in the
main asymptotic approximation.

We have assumed above that the field within the layer has the form Eq. (47)

u(σ, ν, ζ) =
∞∑
p=0

eiζΛpup(σ, ν, ζ).

Here, the functions Λ2p and Λ2p−1 are determined by Eq. (75); moreover, they possess the following
values:

on S1 (ν = 0) Λ2p(σ, 0) = Λ2p−1(σ, 0) = 2phM ,

on S2 (ν = 1) Λ2p(σ, 1) = Λ2p+1(σ, 1) = (2p + 1)hM , with M =
1∫
0

√
εμρdν.

Bearing this in mind, we can write the expressions for u(σ, ν, ζ) at ν = 0 and at ν = 1 as

u(σ, ν, ζ)|ν=0 = ui|ν=0 +
∞∑
p=1

e2ipζhM(u+
p + u−

p )|ν=0, (B1)

u(σ, ν, ζ)|ν=1 =
∞∑
p=0

ei(2p+1)ζhM (u+
p + u−

p+1)|ν=1. (B2)

The functions v(σ, ν, ζ) have the identical structure on boundaries.
The field in G1 can be represented as a sum ũi + ũr, where ũi is the incident wave and

ũr = eik0Ψ(x)ur(x, ζ) is the reflected wave which meet the boundary condition at ν = 0

ũi + ũr = ũ. (B3)

Due to Eqs. (6), (47), and (B3), it is logical to search ũr(x) in the form

ũr = eik0Ψ(x)
∞∑
p=0

eiζψp(σ,n)urp(x, ζ) ≡ eik0Ψ(x)ur, (B4)

where k0Ψ(x) is a GO phase of a wave reflected from S1
� possessing the well-known properties

Ψ(x)|S1 = Φ(σ),
∂Ψ
∂n

∣∣∣∣
S1

= −∂Φ
∂n

, (B5)

and the functions ψp meet the conditions

ψp|S1 = 2phM. (B6)

For the evaluation of ur in the boundary conditions, we need to know the value of the derivative
∂ψp

∂n on S1. Therefore, we must define the functions ψp at least in the vicinity of S1.
The function Ψ + δψp plays a role of a phase function of ũr in Eq. (B4), and thus, must satisfy the

eikonal equation
|∇(Ψ + δψp)|2 = 1, (B7)

whence
(̂lr + δ∇ψp)2 = 1, (B8)

where l̂r = ∇Ψ is a normal unit of the reflected wave. From Eq. (B8), we obtain

2δ(̂lr · ∇ψp) + o(δ) = 0,
� Here, we do not take into account multiple reflections of an incident wave from S1 in the region G1 assuming that they are negligible.
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or, within small limits of the order o(δ),

(̂lr · ∇ψp) = 0, (B9)
in other notation

∂ψp

∂̂lr
= 0. (B10)

Taking into account Eq. (12) and the formal expansion of the operator D (A4), we get from Eq. (B9)

l̂r
(

κ0D0 + n̂
∂

∂n

)
ψp = 0, (B11)

where D0 = 1
κ0

D|ν=0. Since (̂lr · n) = − cos θ, we can rewrite (B11) as

κ0(̂lr ·D0)ψp − cos θ
∂ψp
∂n

= 0, (B12)

Thus, we conclude that in the main asymptotic approximation, i.e., with an accuracy to o(δ)
∂ψp
∂n

∣∣∣∣
S1

=
κ0

cos θ
(̂lr ·D0)ψp

∣∣∣
S1

, (B13)

Because the operator D0 is tangential, and l̂r is distinct from l̂i only in its normal component
(̂lr = l̂i− 2n̂(̂li · n̂)), we can replace ψp by its boundary value in Eq. (B6), and l̂r by l̂i. Then Eq. (B13)
takes the form

∂ψp
∂n

∣∣∣∣
S1

=
2κ0p

cos θ

(̂
li · tM

)
, (B14)

where tM = D0(hM).
Specifically, when a layer has plane-parallel boundaries (and hence h(σ) ≡ 1, and M(σ) ≡ const),

and an incident wave is plane, we obtain from Eqs. (B10) and (B6)
ψp(x) = const,

which conforms with the structure of a reflected wave, as the asymptotic terms urp do not comprise
oscillating components in this particular case.

From the boundary condition (B3), we obtain a sequence of boundary relations for up and urp on
S1

ui + ur0 = u0, (B15)
urp = u+

p + u−
p , p ≥ 1. (B16)

From Eqs. (B4) and (B14), we have at ν = 0

∂ur

∂n

∣∣∣∣
S1

= iζ

∞∑
p=1

2κ0p

cos θ
(
li� · tM) eiζ2phMurp(σ, 0) + o(1), ζ → ∞, (B17)

or taking into account Eqs. (B16) and (5),

1
ik0

∂ur

∂n

∣∣∣∣
S1

=
2α

ζ cos θ
(
li� · tM) ∞∑

p=1

pe2ipζMh
(
u+
p + u−

p

)
+ o

(
1
ζ

)
. (B18)

We have, thus, proven that the leading asymptotic term of 1
ik0

∂ur

∂n

∣∣∣
S1

is of order 1
ζ .

From the boundary condition on S1 in Eq. (80), by using Eq. (B18), we derive the boundary
conditions for functions up and vp in the form

cos θu+
0 + iη(κ)u+

0 − v+
0 + Y�0v+

0 = 2ui cos θ +
η

iκ0

∂ui

∂n
, p = 0, (B19)

cos θ(u+
p + u−

p ) + iη(κ)(u+
p + u−

p ) − (v+
p + v−

p ) +

(Y+
�pv

+
p + Y−

�pv
−
p ) =

2αp
ζ cos θ

[(
li� · tM) (u+

p + u−
p

)
+ o

(
1
ζ

)]
, p ≥ 1. (B20)
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The operator Y±
�p is defined by Eq. (53).

Substituting now the expansions of vectors u±
p0 and v±

p0, and the operator Y±
�p into Eqs. (B19) and

(B20) and equating the corresponding coefficients of these series, we determine the boundary conditions
on S1 for the leading asymptotic term:

cos θu+
00 − T(1;−1)v+

00 = 2ui cos θ, (B21)
cos θ(u+

p0 + u−
p0) − T(1;−1)(v+

p0 + v−
p0) = 0, p ≥ 1. (B22)

B.2. Boundary Condition on S2

Now we determine the boundary conditions on S2 with the aid of relations between vectors and operators
associated with surfaces S1 and S2. Same as above, we use the prime notation to specify vectors and
operators associated with the surface S2.

With the aid of Eqs. (28)–(30), (43), (44), and (A5), it is easy to write the vectors u′ = EEE −n̂′(EEE ·n̂),
v′ = n̂′ ×HHH , D′Φ0|S2 and D′Φ0|S2 , and the derivative ∂Φ

∂n′
∣∣
S2

in the following form:

u′ = u + ξ

[
1
ε
t(li� · v) + n̂(t · u)

]
+ o(ξ), (B23)

v′ = v + ξ

[
1
μ
t⊥(li⊥ · u) + n̂(t · v)

]
+ o(ξ), (B24)

D′Φ0|S2 = li� + ξ[n̂(t · li�) − h̃li�] + o(ξ), (B25)

D′Φ|S2 = li� + ξ[t cos θ + n̂(t · li�)] + o(ξ), (B26)

∂Φ
∂n′

∣∣∣∣
S2

= cos θ + ξ

[
−(t · l̂i) +

h

κ0

(
n · ∂̂l

i

∂n

)]
+ o(ξ), (B27)

where l̃i� = (κ)0li�, t = D0h, and t⊥ = D0
⊥h.

Now we may pass to the derivation of the boundary condition on S2. We continuously adjoin on
S2 the vector functions u′ and v′. Obviously,

u′eik0Φ0 = (ut)′eik0Φ, (B28)

u′ = (ut)′eik0(Φ−Φ0). (B29)

We recall that Φ is the phase of field on S1, and Φ0 is the phase of field inside the layer.
In the boundary condition (81), we take into account only the terms of order 1

ζ and obtain

v′+
∂Φ
∂n′

u′−D′Φ0(D′Φ0v)− η

iκ0
D′Φ0(D′ ·v)− η

iκ0
D′(D′Φ0v′) = − η

iκ0

∂(ut)′

∂n′
eik0(Φ−Φ0)+o

(
1
ζ

)
. (B30)

To draw a conclusion, we need to know the structure of ∂(ut)′/∂n′
∣∣
S2

and, hence, the structure of
the fields u′, v′, and (ut)′.

In much the same way as in the derivation of the boundary condition on S1, we conclude that the
field (ut)′ in the region G2 (at least in the neighborhood of S2) has the form

(ut)′ =
∞∑
p=0

eiζϕp(ut)′p. (B31)

With the aid of the condition (B29) and the expansion in Eq. (B2), it is easy to see that the functions
ϕp must be connected to phase functions of the field inside the layer via a relation

ζϕp + k0(Φ − Φ0) = (2p+ 1)ζhM,

that is,
δϕp + (Φ − Φ0) = (2p + 1)δhM.



Progress In Electromagnetics Research B, Vol. 83, 2019 23

However, Φ − Φ0 = δh cos θ + o(δ), hence

ϕp + h cos θ = (2p + 1)hM + o(δ). (B32)

Like in the derivation of the boundary condition on S1 for the functions ψp, it can be shown that

∂ϕp
∂n′

∣∣∣∣
S2

= − κ0

cos θ
(li� ·D0ϕp) +O

(
1
ζ

)
, (B33)

where ϕp is determined by Eq. (B32).
Substituting Eqs. (B2) and (B31) into Eq. (B30), we deduce now the boundary condition on S2:

v′
2p+ 1

2

+
∂Φ
∂n′

u′
2p+ 1

2

− D′Φ0(D′Φ0v2p+ 1
2
) − ξ(2p+ 1)(tMv2p+ 1

2
)D′Φ0 −

ξ

κ0
(2p + 1)D′(hM)(D′Φ0v2p+ 1

2
) = − ξ

κ0

∂ϕp
∂n′

u′
2p+ 1

2
+ o(ξ),

(B34)

where v′
2p+ 1

2

= v′+
p + v′−

p+1, u′
2p+ 1

2

= u′+
p + u′−

p+1.

Using Eqs. (B23), (B24), and (47), we derive from Eq. (B34) the boundary condition on S2 for the
leading asymptotic term

cos θu2p+ 1
2
,0 + T(1;−1)v2p+ 1

2
,0 = 0, (p = 0, 1, 2, . . . ). (B35)
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