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Abstract

Up to date, state-of-the-art controllers for flying robots or Unmanned Aerial Vehicles (UAVs)
are not prepared for tasks involving physical interaction, dynamically varying payload, or
coordination with other robotic systems. For example, take-off or landing on a moving
platform, e.g. a ship or a mobile robot, is challenging. The flying robot has to synchronize
its movements to the motion of the platform. An estimate of the latter is uncertain or may
not be available at all. The UAV has to react quickly, which is energy consuming and can
lead to actuator saturation. This gets even worse if the aerial vehicle carries a payload or is
under the influence of wind and turbulences. To ensure safe and robust take-off and landing,
assistance systems for UAVs have been proposed in the literature. However, the available
approaches provide insufficient support for the flying robot, lack a docking interface, do not
take the distributed control system into account, and are only concept studies.
In this work, a robotic assistance system for take-off and landing of flying robots is devel-
oped. The support system is based on a robot manipulator mounted on the landing surface.
It allows to autonomously release or capture a UAV and to perform assisted take-off or
landing. The main contributions of this thesis are the development of suitable dynamics
models and coordinated control approaches for flying robots and robot manipulators, the
realization of an assistance system prototype, and the implementation and evaluation of the
presented controllers in simulations and experiments.
Regarding the realization of the support system, a universal hinge mechanism for the con-
nection between flying robot and robot manipulator is introduced. It leaves the rotational
degrees of freedom of the flying robot open and results in a redundant system. It is shown
that the redundancy allows to fulfill additional objectives, for example to reduce the work-
load of the manipulator. In this case, both systems jointly contribute to the assistance
task, which is especially useful for heavy UAVs. Capturing the flying robot by means of the
robot manipulator requires accurate target tracking. Suitable localization systems and a
sensor fusion algorithm are evaluated and different docking interface designs are discussed.
The developed coordinated controllers consider the different dynamical properties and ac-
tuation principles of flying robots and robot manipulators. In particular, three dynamics
representations are used yielding controllers with varying complexity and performance: the
independent dynamics, the combined dynamics, and the decomposed dynamics of flying
robot and manipulator. To provide safe physical interaction, the well-known concept of
impedance control is utilized. For flying robot control, established control laws are com-
bined with external wrench observers, a novel control allocation procedure, and a novel
adaptive control approach. This results in increased robustness against contact forces, ac-
tuator saturation, and changes in atmosphere or payload while providing more accurate
trajectory tracking, as verified in the experiments. For a quadrocopter with fully symmetric
fixed-pitch propellers, this work shows the first autonomous flight using bidirectional thrust
which drastically increases control authority. This demonstrates the potential of optimized
hardware in a combined assistance system.
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Zusammenfassung

Nach heutigem Stand der Technik sind die Regler von Flugrobotern oder unbemannten Luft-
fahrzeugen (UAVs) nicht für Aufgaben vorbereitet, die physikalische Interaktion, dynamis-
chen Wechsel der Nutzlast oder Koordination mit anderen Robotersystemen beinhalten.
So ist beispielsweise der Start oder die Landung auf einer beweglichen Plattform, wie z.B.
einem Schiff oder einem mobilen Roboter, eine große Herausforderung. Der Flugroboter
muss dabei seine Bewegung mit der Plattform synchronisieren, wobei die Schätzung der
Plattformposition und -lage ungenau oder möglicherweise nicht verfügbar ist. Das UAV
muss zusätzlich schnell reagieren, was energieaufwändig ist und zu einer Sättigung der Ak-
tuatoren führen kann. Die Landung wird noch erschwert, wenn das UAV eine Nutzlast
trägt oder starke Windböen oder Turbulenzen herrschen. Um sicheres Abheben und Lan-
den zu gewährleisten, wurden in der Literatur Assistenzsysteme für UAVs vorgeschlagen.
Diese Ansätze bieten jedoch keine ausreichende Unterstützung für den Flugroboter, verfü-
gen über keine Andockschnittstelle, berücksichtigen das verteilte Regelungssystem nicht und
sind lediglich Konzeptstudien.
In dieser Arbeit wird ein robotisches Assistenzsystem für den Start und die Landung von
Flugrobotern entwickelt. Es basiert auf einem Roboterarm, der auf der Landefläche montiert
ist und einem UAV autonome Hilfestellung bei Start und Landung bietet. Die wesentlichen
Beiträge dieser Arbeit sind die Entwicklung geeigneter Dynamikmodelle und koordinierter
Regelungsansätze für Flugroboter und Roboterarme, die Realisierung eines Prototypen
sowie die Implementierung und Evaluierung der vorgestellten Regelungsansätze in Simu-
lationen und Experimenten.
Hinsichtlich der Realisierung des Assistenzsystems wird ein Kugelgelenk für die Verbindung
zwischen Flugroboter und Roboterarm vorgestellt. Das Gelenk lässt die Rotationsfreiheits-
grade des Flugroboters frei und führt zu einem redundanten Gesamtsystem. Es wird gezeigt,
dass durch die Redundanz zusätzliche Ziele erreicht werden können, z.B. um die Arbeits-
belastung des Roboterarms zu reduzieren. In diesem Fall tragen beide Systeme gemein-
sam zur Erfüllung der Aufgabe bei, was speziell bei schweren UAVs notwendig ist. Das
Einfangen des Flugroboters mit Hilfe des Roboterarms erfordert eine genaue Zielverfol-
gung. Geeignete Lokalisierungssysteme sowie ein Algorithmus zur Sensordatenfusion wer-
den evaluiert und verschiedene Designs von Andockschnittstellen werden diskutiert. Die
entwickelten koordinierten Regler berücksichtigen die unterschiedlichen dynamischen Eigen-
schaften und Antriebsprinzipien von Flugrobotern und Roboterarmen. Insbesondere werden
drei Darstellungen der Dynamik verwendet, die Regler mit unterschiedlicher Komplexität
und Performanz liefern: die unabhängige Dynamik, die kombinierte Dynamik und die zer-
legte Dynamik von Flugroboter und Roboterarm. Um eine sichere physikalische Interaktion
zu gewährleisten, wird das bekannte Konzept der Impedanzregelung verwendet. Für die
Regelung des Flugroboters werden etablierte Regelgesetze mit einem Beobachter für ex-
terne Kräfte und Drehmomente, einem neuen Ansatz zur Zuweisung der Stellgrößen, sowie
einem neuartigen adaptiven Regelungsansatz kombiniert. Das führt zu gesteigerter Robust-

7



Zusammenfassung

heit gegenüber Kontaktkräften, Aktuatorsättigung und Änderungen der Atmosphäre oder
Nutzlast während die Genauigkeit der Trajektorienfolge erhöht wird, wie in den Experi-
menten verifiziert werden konnte. Für einen Quadrokopter mit vollsymmetrischen, starren
Propellern zeigt diese Arbeit den ersten autonomen Flug mit bidirektionalem Schub, welcher
die zur Verfügung stehende Stellgröße drastisch erhöht. Dies zeigt das Potenzial optimierter
Hardware in einem kombinierten Assistenzsystem.
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the context.

Symbol Dim. Units Description

0 ∗ - Zero vector or matrix of appropriate size
a R

3 m/s2 Vector of linear accelerations
B R

M×N ∗ Control allocation matrix
C R

n×n ∗ Coriolis/centrifugal matrix
c R Ns2/rad2 Rotor thrust coefficient
c R

3 m Workspace center point
D R

m×m Ns/m, Ns/rad Damping matrix
d R

3 m Distance vector from EE to target
E ∗ - Identity matrix of appropriate size
e R

3 - Unit vector
F R

m N Vector of (generalized) forces in task forces
f R

3 N Force vector
G ∗ - Jacobian of process model
g R m/s2 Acceleration of gravity
g R

n Nm Gravity vector in configuration space
H ∗ - Jacobian of measurement model
h R

2N N, Nm Vector of rotor thrust and torques
I R

3×3 kg m2 Inertia tensor of a rigid body
J ∗ - Jacobian matrix
K R

m×m N/m, N/rad Stiffness matrix
k R Nms2/rad2 Rotor torque coefficient
l R m Length of lever arm
M N - Number of generalized forces
M R

n×n kg, kg m2 Inertia matrix
m R kg Mass
m N - Number of DoF of task (or operational) space

15



List of Symbols

N N - Number of rotors
Nn N - Number of rigid bodies
Ns N - Number of subsystems
n N - Number of DoF of configuration (or joint) space
n R

3 - Rotor normal vector or rotation axis
P ∗ - Covariance matrix of the estimate
p R Pa Ambient air pressure
p R

3 m Cartesian position

Q H→ R
4×4 - Quaternion multiplication matrix, Q =

[

q Qq

]

q H - Unit quaternion q =
(

η ǫT
)T

R R m Propeller radius
Rf R J/kg K Ideal gas constant of dry air
R SO(3) - Rotation matrix
r R m Circumcircle radius of multicopter frame
S R

3×3 ∗ Skew-symmetric matrix operator, S(a)b = a×b
SE(3) R

4×4 - Special Euclidean group, set of all poses repre-
sented by a homogeneous transformation matrix

SO(3) R
3×3 - Special orthogonal group, set of all orientations

represented by an orthogonal rotation matrix
s ∗ - Vector of minimal coordinates
T R N Rotor thrust magnitude
T R

3 N Thrust vector in body-fixed frame
TC R

◦C Air temperature in degrees Celsius
TK R K Air temperature in Kelvin
t R s Time
td R s Duration of trajectory segment
u ∗ - Control input
V R - Lyapunov function
v R

3 m/s Vector of linear velocities
W ∗ - Weighting matrix
X ∗ - Covariance matrix of process noise
x ∗ - State vector
Z ∗ - Covariance matrix of measurement noise
z ∗ - Measurement vector
α R - Workload sharing factor
α R

6 m/s, rad/s Virtual control input
β R rad Tilt angle of the (floating) base
Γ R ∗ Cost function
γ R - Gain of adaptation law
δ R - Relative humidity
ε R - Adaptive parameter
θ R rad Pitch angle
κ R m Rotor thrust to torque ratio, κ = τ

T
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Λ R
m×m ∗ Pseudo kinetic energy matrix

λ C - Eigenvalue
λ R - Gain of adaptive controller
µ R

m ∗ Vector of Coriolis/centrifugal terms
ν R m/s2 Signal quantity
ξ R

3 m Cartesian position
π R - Mathematical constant
ρ R kg/m3 Air density
ρ R

3 m Vector from CoG of UAV to EE of manipulator
σ R ∗ Standard deviation
τ ∗ Nm Torque vector
Φ SO(3) - Attitude representation
φ R

n rad Vector of joint angles
ϕ R rad Roll angle
χ R

n → R
m m, rad Forward (or direct) kinematics

Ψ - - Coordinate frame
ψ R rad Yaw (or heading) angle
Ω R rad/s Rotational speed of single rotor
Ω R

N rad/s Vector of rotor speeds
ω R

3 rad/s Angular velocity vector of rigid body
̟ R

N rad2/s2 Vector of squared rotor speeds

Indices

0 Initial value
b (Floating) base
d Desired
e Error
f Final value
g Gravity
i Inertial frame
i Rotor number
j Joint
k Current time step
k Number of rigid body
m Model
o Origin
p Predecessor
r Robot manipulator
u Flying robot (or UAV)

Abbreviations

att Attitude
ax Axis
cf. Confer (compare)
comp Compensation
ctrl Control
e.g. Exempli gratia (for example)
ext External
i.e. Id est (that is)
max Maximum
min Minimum
nsp Nullspace
sat Saturation
sgn Signum (sign)
vs. Versus
w.r.t. with respect to
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"The fact that the great scientist believed in flying

machines was the one thing that encouraged us to

begin our studies."

— Wilbur Wright 1
Introduction

1.1 Motivation

This thesis considers a recently fast-growing class of robotic systems: flying robots, or
so-called unmanned aerial vehicles (UAVs). Due to their ability to fly, they are theoretically
able to operate in an infinitely large three-dimensional space, which is the greatest advantage
compared to wheeled mobile robots or stationary robot manipulators.

Unmanned aerial vehicles are commonly classified in terms of take-off and landing capabili-
ties [1]. As depicted in Figure 1.1, one can distinguish between fixed-wing, vertical take-off
and landing (VTOL), and hybrid UAVs. VTOL UAVs are the primary focus of this work.
They can be further subdivided in helicopters as shown in Figure 1.1b and 1.2a, which
have variable-pitch rotor blades, and multicopters as depicted in Figure 1.2b and 1.2c with
fixed-pitch propellers. The cumulative thrust and therefore the possible payload, but also
the weight of the sum of the components rise with the number of rotors of a multicopter.
The most common multicopters are quadrocopters (four rotors), followed by hexacopters
(six rotors), and octacopters (eight rotors). Due to their small size, multicopters are also
commonly referred to as micro aerial vehicles (MAVs). VTOL UAVs are nowadays widely
used in commercial applications, e.g. for agricultural spraying (Figure 1.2a), aerial photog-
raphy and filming (Figure 1.2b), surveillance and inspection tasks (Figure 1.2c), or search
and rescue (SAR) missions. Another application of flying robots, which is still in its infancy
and has not yet fully arrived in industry, is aerial manipulation [5].

As mentioned before, VTOL UAVs are able to take-off and land vertically. However, take-off
and landing within narrow spaces, for example on a ground vehicle equipped with a small

(a) Fixed-wing UAV [2]. (b) VTOL UAV [3]. (c) Hybrid UAV [4].

Figure 1.1: Three different classes of unmanned aerial vehicles (UAVs).
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(a) Yamaha RMAX helicopter

used for precision agricul-

ture [6].

(b) DJI Inspire quadrocopter

suitable for professional

photography or filming [7].

(c) Intel Falcon 8 octacopter perform-

ing inspection of industrial sites, e.g.

power plants or oil rigs [8].

Figure 1.2: Exemplary VTOL UAVs for different applications.

landing platform, require precise pose estimation. Moreover, the risk of a collision with an
obstacle is high, especially if the surface or the ground vehicle is moving or if wind gusts
occur. It is also possible that a UAV has no autonomous landing functionality, e.g. because
it lacks processing power or dedicated sensors for landing spot detection. Another cause
that prevents autonomous landing is saturation of the flying robot’s actuators, i.e. if heavy
side winds are present or during fast maneuvers. Hence, the aim of this thesis is to facilitate
take-off and landing of flying robots under severe conditions. The basic idea is to use a robot
manipulator to compensate the movements of the landing surface and assist the UAV during
take-off and landing (see Section 1.2). In order to fulfill the task, coordinated control of the
flying robot and the robot manipulator is required and the development and evaluation of
suitable control approaches is the major contribution of this thesis.

Up to date, different assistance systems have been proposed in the literature. Campos
et al. [9] and Godzdanker et al. [10] developed self-leveling landing platforms as shown in
Figure 1.3a. These stationary platforms are able to compensate e.g. ship motion, but are
limited in their operating range and do not provide any clamping mechanism to fix the VTOL
UAV and prevent it from sliding. In order to increase the operating range of self-leveling
platforms, Conyers et al. [11] have developed a semi-autonomous mobile landing platform
for VTOL UAVs. It is a four-wheeled quadruped robot as shown in Figure 1.3b. However,
the maximum inclination angle remains limited. Enlarging the platform could increase the
possible inclination angle, but would lower its portability because of the larger size and
weight. Another approach is tether-guided landing (see Figure 1.3c), as presented by Oh
et al. [13] as well as by Sandino et al. [12]. A tether offers a much larger operating range,
fixes the UAV to the landing surface, and makes GPS position measurements superfluous
during the landing phase. Though, a device for measuring rope angle and rope force is
needed. Moreover, the tether can only transfer forces in one direction and is therefore not
able to increase the lifting force of the VTOL UAV. In order to control the tension of the
tether, it needs to be pulled manually or by an electric winch. The winch can be either
mounted on the UAV, which is crucial due to payload limitations, or on the ground. In the
latter case, it is unclear how the rope can be conveniently attached to and detached from
the flying vehicle. In order to overcome the limitations of the aforementioned approaches,
robot-assisted take-off and landing of flying robots is proposed in this thesis.
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(a) Self-leveling landing plat-

form presented by Campos

et al. [9]. The lower part is

a parallel robot with three

DoF and pneumatic pris-

matic actuators. It sim-

ulates ship motion and is

used for testing the so-

called active helideck (up-

per part, six DoF and pris-

matic electrical actuators).

(b) Mobile self-leveling lan-

ding platform developed by

Conyers et al. [11]. The

semi-autonomous mobile robot

has four wheels and differential

drive. Each wheel is mounted

on a lever arm that can be

rotated up and down using an

electric linear actuator. Thus,

the platform can be inclined

up to 25 degrees.

(c) Tether-guided landing demon-

strated by Sandino et al. [12].

One end of the rope is attached

to the unmanned helicopter via a

universal hinge mechanism, which

measures rope angle and force.

The other end is connected to a

pulley mounted on the ground. By

pulling or releasing the tether, the

VTOL UAV can land or take-off,

respectively.

Figure 1.3: Three existing approaches for supporting VTOL UAVs during take-off and landing.

1.2 Concept of a robot manipulator as support system

The fundamental idea in this thesis is to use a robot manipulator to assist a flying robot
during take-off and landing. This novel robotic assistance (or support) system consists of
a serial manipulator mounted on the ground (or on a moving or floating vehicle) and a
special docking mechanism. It allows to quickly capture the flying vehicle for landing or to
steadily release it for take-off. Two exemplary scenarios where robot manipulator assistance
for flying robots can be used are depicted in Figure 1.4.

The main purpose of the manipulator is to counteract movements of the landing surface,
also referred to as base motion. So, instead of catching the flying robot, it is also possible
that the manipulator only compensates the base motion and provides a steady landing area
for the flying robot. The base motion may be characterized by its amplitude and frequency.
The geometry, link lengths, and end stops of the manipulator define its workspace and
therefore the amplitude it is able to compensate. On the other hand, the manipulator’s
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(a) Take-off and landing of an unmanned helicopter aboard

a ship, e.g. for polar ice monitoring. Copyright © 2017

IEEE [212].

(b) Deployment of delivery MAVs from

a specially designed truck.

Figure 1.4: Two examples where a robot manipulator can assist a VTOL UAV in order to take-off and

land safely. The vessel (left) or the truck (right) can continue their own tasks while the UAV

takes off or lands. This enables to fulfill the complete mission more efficiently.

actuator dynamics define the maximum attainable frequency. Thus, the requirements for
the manipulator vary depending on the specific application.

A manipulator allows take-off and landing under heavy side wind conditions. Due to under-
actuation, a flying robot needs to tilt opposite to the wind direction in order to counteract
the wind forces. A robot manipulator with at least six degrees of freedom is able to tilt the
docking interface in any desired direction. Hence, it facilitates take-off and landing under
side wind conditions, which are very challenging tasks.

The robot manipulator also enables avoiding the ground effect (see Section 3.2.3 for an
explanation). The latter can potentially lead to instable flight, because of changing rotor
inflow. A manipulator used for take-off and landing directly decreases the energy consump-
tion of the flying robot. This, in turn, increases flight and operating time. Furthermore, the
manipulator can be used to automate maintenance tasks before or after the flight mission,
such as refueling, recharging the batteries, or replacing the payload.

The advantages of robot manipulator assistance for flying robots compared to existing ap-
proaches can be summarized as follows:

• Within the boundaries of its dexterous workspace ([14], p. 102), the robot manipulator
can compensate motions of the surface (or of the moving or floating vehicle) and
counteract side winds, both in all six degrees of freedom.

• The manipulator can support the flying robot (in all six degrees of freedom), such
that its actuator limits are not exceeded and less power is required during take-off and
landing.

• Due to its length, the manipulator enables to avoid the ground effect, and, therefore,
eliminates this uncertainty of the take-off and landing tasks.

• As soon as the flying robot is connected to the manipulator, the pose estimation of
the UAV reduces to an evaluation of the kinematic chain, because the geometry of the
robot manipulator is known and its joint angles are measured.
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• In addition to take-off and landing, the robot manipulator can be used on the ground
for moving the VTOL UAV in and out of a storage rack (or transport box) and for
performing maintenance tasks.

• For helicopters, the possible take-off weight can be increased if a forward velocity is
induced (and maintained during flight). This is due to fact, that the large rotor blades
of helicopters produce lift forces in forward flight.

1.3 Challenges and research questions

There are many open challenges for robotic assistance for flying robots. Instead of a single
vehicle, now two robotic systems are involved and have to be coordinated. The need for
coordinated control of the flying robot and the robot manipulator is illustrated in Table 1.1
based on an example.

It is clear that the desired coordination described on the right of Table 1.1 may be realized
using various control approaches with different properties and varying complexity. Hence,

Table 1.1: Motivation of coordinated control.

Without coordinated control

• The force vectors of flying robot (red)
and of manipulator (blue) potentially
point in opposite directions.

• The manipulator has to counteract
the force of the flying robot.

• Due to the lever arm, the tilt angle of
the flying robot increases, which has
a destabilizing effect.

With coordinated control

• The horizontal components of the
force vectors point in the same direc-
tion.

• The required forces of both systems
are reduced, i.e. both contribute to
the task.

• More energy is available to counter-
act wind or to handle heavier flying
robots.
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Robot arm Flying robot

Communication
channel

Time delay

Time synchronization

Jitter

Landing 
surface

Physical 
interactionTorque control Position control

Aerodynamics

Moving ground

Figure 1.5: Involved components and challenges of a robot manipulator assistance system for flying robots.

different strategies for coordinated control of robot manipulators and unmanned aerial ve-
hicles need to be investigated and evaluated.

Figure 1.5 summarizes other major challenges. Robot manipulators and flying robots have
different dynamics and different actuation principles, which need to be considered for the
coordinated control design. This includes resolution of task redundancy for robot manipu-
lators as well as dedicated control of flying robots, whose rotor forces include uncertainties
because of unmodeled aerodynamics and whose actuated degrees of freedom are less than
six (commonly referred to as underactuation).

Since both robot manipulator and flying robot usually operate independently, they are
equipped with their own control algorithms. They might have accessible interfaces, allow
modifications, or neither of both. If coordinated task control is implemented on the mani-
pulator side as shown in Figure 1.6, the flying robot needs at least to be capable of receiving
commands. Depending on the interface, these commands can be on force, velocity, or pose
level. In general, the manipulator is assumed to be torque-controlled and the UAV is as-
sumed to be attitude- and position-controlled.

External disturbances are present during take-off and landing, e.g. due to wind, base motion,
or physical interaction between flying robot and manipulator. To estimate and counteract
those disturbances, suitable observers are required. If base motion is present, it needs to be
estimated as well. The disturbances may also lead to actuator saturation. Fortunately, it
is possible to distribute the workload considering all actuators of the flying robot and the
manipulator, e.g. using an optimization-based control allocation.

To effectively coordinate and fulfill the task, state information needs to be exchanged and
commands need to be sent and received. This requires a dedicated high bandwidth and low
latency communication channel. It is reasonable to assume that the computing capacity of a
ground control station is much higher compared to the on-board control computer of a flying
robot. Thus, a distributed but centralized1 control architecture is assumed. That means

1The most relevant terms describing the control system architecture are defined in Appendix A1.
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Communication

channel

Flying

robot

controller

Robot

manipulator

controller

commands

states

commands

states

Figure 1.6: Communication channel with information directions.

that task control is implemented on the ground station which also controls the manipulator.
This results in the communication channel depicted in Figure 1.6. The transmission of data
inevitably involves a time delay. In order to process received data in a meaningful way and
to account for time delay, all messages require timestamps and the clocks of ground station
and flight control computer have to be synchronized.

Due to sensor noise and time delay, the required pose estimates of base, robot manipulator,
and flying robot are subject to uncertainties. These need to be accounted for, e.g. by fusing
multiple available state estimates in a suitable filter or by using a docking interface which
is robust by design.

In conclusion, the problem of coordinated control of robot-assisted take-off and landing of
flying robots raises the following research questions:

Q1 How can the dynamics of the robotic support system, composed of a flying robot and
a manipulator on a moving base, be modeled?

Q2 How can the flying robot and the robot manipulator on a moving base be controlled
in a coordinated fashion?

Q3 How can both flying robot and robot manipulator contribute to a successful realization
of the assistance task?

Q4 How can the relative distance between manipulator and flying robot be measured
accurately in order to realize robust take-off and landing?

Q5 How do the coordinated control approaches perform in simulations and real world
experiments with different VTOL UAVs?

These major research questions are addressed in this thesis. The main contributions are
summarized next.

1.4 Contributions and overview

The control and interaction of a flying robot with a ground based robot manipulator have
not been studied extensively up to now. In this thesis, robot manipulator assistance for
flying robots is considered. The focus lies on model-based controller design for coordinated
control of the two subsystems. Specifically, independent control, uni- and bilaterally coupled
control, as well as combined control (with workload sharing or optimal control allocation)
are considered.
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State-of-the-art visual inertial state estimation methods are used, enabling autonomous
robot-assisted take-off and landing of VTOL UAVs, without the need for external localization
(or motion capture) systems. Special emphasis is also put on robust control design and
allocation for flying robots. Besides the control strategy, a universal hinge (or ball joint)
between robot manipulator and flying robot is proposed. It allows the flying robot to control
its orientation independently of the manipulator’s end-effector. Hence, the flying robot is
able to contribute to the take-off and landing task, which increases reliability and reduces
the overall energy consumption. Suitable mechanical docking mechanisms are discussed
as well. A computer vision approach is proposed to measure the relative distance between
flying robot and manipulator. A suitable multi-marker tracking algorithm is presented and a
Kalman filter is designed. The approach combines different sensor measurements, considers
transmission time delays, and provides robustness against occlusions.

In summary, the main contributions of this work are the following:

· Derivation of a combined model of robot manipulator and flying robot and different
model decompositions.

· Independent dynamics modeling of flying robots, introduction of bidirectional thrust,
and generalized control allocation for multicopters under actuator saturation.

· Development of a novel adaptive control approach to overcome the uncertainty of the
rotor thrust. It is applied to flying robots as well as to robot manipulators.

· Controller designs considering separate models of flying robot and manipulator, in-
cluding state space control based on a linearized flying robot model, backstepping
control based on nonlinear flying robot model, and robot manipulator control with
base motion compensation.

· Controller designs considering the combined model of flying robot and manipulator,
including task space control and heuristic or optimization-based distribution of the
workload between UAV and manipulator.

· Implementation of a visual tracking algorithm for multiple fiducial markers and a
Kalman filter to robustly estimate the distance between manipulator and flying robot
even in the presence of occlusions and time delay.

· Presentation of a visual servo controller for the manipulator, including virtual workspace
boundaries, for in-flight capturing of a flying robot.

· Development of a vision-based quadrocopter (with bidirectional thrust capabilities)
and of a robot-assisted take-off and landing demonstrator based on a DLR Light
Weight Robot (LWR).

· Evaluation of all control approaches in simulation, with and without base motion, and
experiments with different multicopters and the LWR.

An overview of the control-related topics contained in this work is given in Table 1.2. The
remainder of this work is structured as follows: In Chapter 2, fundamentals of rigid body
dynamics modeling are presented. The considered robotic systems and the different phases of
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Table 1.2: Thesis structure overview in terms of covered control-related topics.

1 Introduction

2 Preliminaries

Rigid body dynamics of combined system
Generalized task space control

3 Modeling and control of flying robots

Rigid body, propulsion, ground effect, and atmosphere models
Generalized position and attitude control
Multicopter control allocation under saturation
Adaptive control for increased robustness

4 Controller designs using separate

models

Linear state space control
Nonlinear backstepping control
Active thrust vector control
Task space control with base motion
compensation

5 Controller designs using com-

bined model

Task space control based on combined
and decomposed model
Heuristic workload sharing
Optimal control allocation
Adaptive combined control

6 In-flight capturing of a flying robot

Tracking algorithm for multiple fiducial markers
Kalman filter design for sensor fusion under time delay
Visual servo control of robot manipulator

7 Conclusion

take-off and landing are introduced, the dynamic model of the combined system is presented,
and generalized task space control is discussed briefly.

Chapter 3 is devoted to independent modeling and robust control of flying robots. A ge-
neralized control allocation procedure with saturation handling and an adaptive control
approach are presented.

The separated dynamics of a flying robot attached to a manipulator via a ball joint are
considered in Chapter 4. Based on a linearized model of the flying robot, different linear
controllers and a stability citerion for the attitude controller of the UAV are derived. Then,
the nonlinear dynamics of the flying robot are used to design a backstepping position and
attitude controller. Both the linear and the nonlinear controllers are included in a genera-
lized task space controller for the robot manipulator in order to realized coordinated take-off
and landing of the flying robot by means of the manipulator. The task space controller is
then extended to account for estimated base motion. It is evaluated in a simulation study
using realistic ship motion.

The combined dynamics of the flying robot connected to the robot manipulator via a ball
joint are considered in Chapter 5. Task space controllers for the combined model and
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for the decomposed model are presented. The latter allows for heuristic workload sharing
between flying robot and manipulator. Based on task space control of the combined system,
the control allocation problem for flying robot and manipulator is formulated as a quadratic
optimization problem. The unconstrained problem is solved analytically and the constrained
problem is solved numerically. The adaptive control approach presented in Chapter 3 is
extended to the combined system to account for the uncertainty of the thrust of flying
robots.

In-flight capturing of a flying robot using a robot manipulator is addressed in Chapter 6. A
visual tracking approach for multiple fiducial markers attached to the UAV and a Kalman
filter for estimating the relative distance between flying robot and manipulator based on
distributed sensor measurements are presented. The estimated distance is used to realize
Cartesian impedance visual servo control of the robot manipulator. Different mechanical
docking interfaces are also discussed briefly. Finally, the thesis is summarized and all pre-
sented control approaches are compared in Chapter 7.

This thesis is based on the author’s published international and peer-reviewed papers [213,
212, 214, 215] and articles [208, 209]. Their content is included in several chapters as shown
in Table 1.3. The table also provides brief explanations and illustrations of the topics covered
in the different chapters. A comprehensive list of the author’s publications can be found at
the end of this thesis.
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Table 1.3: Summary of the topics covered in this thesis.

Topics Chapters Own references

Introduction and modeling
of a robot manipulator as
support system for flying
robots

1, 2 CCTA2017 [212]

Independent modeling and
robust control of a flying
robot

3
IROS2018 [215]
RA-L2020 [209]

Controller designs for
take-off and landing con-
sidering separate models

4
CDC2015 [213]
RA-L2016 [208]
CCTA2017 [212]

Controller designs for
take-off and landing con-
sidering combined model

5 IROS2017 [214]

Visual tracking and captur-
ing of a flying robot by
means of the manipulator

6
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"The enchanting charms of this sublime science

reveal only to those who have the courage to go

deeply into it."

— Johann Carl Friedrich Gauss 2
Preliminaries

This chapter lays the groundwork for all subsequent chapters of this thesis. The two consid-
ered robotic systems are introduced by means of examples developed at the DLR Institute
of Robotics and Mechatronics: two vision-based multicopters (Section 2.1) and the light
weight robot manipulator (Section 2.2). In order to deal with the complexity of robot ma-
nipulator assistance for flying robots, take-off and landing tasks are separated into multiple
phases in Section 2.3. In addition, the two assistance strategies, full and partial clamping,
are introduced and discussed.

The focus of this thesis is the model-based and coordinated control of a robot manipulator
and a flying robot. Hence, suitable dynamics models are required, which are presented in
detail in Section 2.4. This includes a summary of the considered attitude representations
in Section 2.4.1. In Section 2.4.2, a synthetic and projection-based dynamics modeling
approach is introduced. It allows to combine the rigid body models of flying robot, robot
manipulator, and floating base, for instance during the phases where the flying robot is
attached to the manipulator. The complete rigid body dynamics, referred to as combined
system model, are derived and different realizations, e.g. the floating or fixed base case and
the planar case, are treated in Section 2.4.3. Then, the well-known task space formulation is
presented in Section 2.4.4. In Section 2.5, state-of-the-art control approaches for redundant
and distributed robotic systems are summarized. Finally, different established task space
controllers are introduced briefly in Section 2.6.

2.1 Overview of vision-based flying robots

As pointed out in the introduction, different types of flying robots exist, while in this work
vertical take-off and landing unmanned aerial vehicles (VTOL UAVs) are considered. One
example is the hexacopter Ardea [217, 210] developed at the DLR Institute of Robotics
and Mechatronics and depicted in Figure 2.1. In general, the main components of a VTOL
UAV are its frame or fuselage, the electrical components, e.g. sensors and on-board com-
puting hardware, and the mechanical propulsion components, such as servos, motors, and
propellers. The combination of motors and propellers is commonly referred to as the rotor
system which generates the lift required for the vehicle to fly. Details regarding the dy-
namics and the propulsion system can be found in Section 3.2. The energy required by the
propulsion system, computing hardware, and sensors is supplied by the on-board battery.
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Figure 2.1: Components of the vision-based autonomous hexacopter Ardea developed at the DLR Institute

of Robotics and Mechatronics.

In terms of control, sensors are required to measure the actual states of the vehicle. The
inertial measurement unit (IMU) provides linear accelerations and angular velocities, which
are used to compute an estimate of the orientation. For outdoor operation, GPS is usually
used to acquire a position measurement. However, Ardea is intented for indoor operation
where GPS is not available. Hence, Ardea solely uses a wide-angle multi-camera system for
pose estimation [217]. The stereo camera images are processed in an FPGA implementation
of the Semi-Global Matching (SGM) algorithm [15]. The visual odometry (VO) [217] is
implemented using the Robot Operating System (ROS) on an Intel NUC with Quadcore i7
processor (3GHz). It computes an estimate of the camera motion based on the perceived
images (8Hz) which are fused with IMU measurements (200Hz) using a Kalman filter [16,
17] to generate a pose estimate at 50Hz. The vision-based approach enables the flying robot
to operate outdoors as well as indoors.

The on-board flight control computer is a BeagleBone Black (1GHz) running Ubuntu Linux
with a custom real-time patch. Communication between Ardea and ground station is es-
tablished via 5GHz WLAN. To enable manual control, a commercial Spektrum 2.4GHz
remote control system is used. What distinguishes Ardea from common flying robots is
that closed-loop motor speed control is implemented directly on the electronic speed con-
trollers (ESCs). The ESCs receive rotor speed commands and provide motor telemetry via
a CAN bus. The attitude control loop runs at 200Hz and the position control loop at 50Hz.
For mission control a RAFCON [18] state machine is used. The hardware setup of Ardea is
depicted in Figure 2.2a. System identification of Ardea and the deployed control methods
are treated in detail in [19].

Another flying robot developed entirely from scratch within the scope of this thesis is the
quadrocopter Sparrow [215, 209] shown in Figure 2.2b (top). It uses the same flight control
code base and custom middleware as Ardea. It is equipped with a Raspberry Pi 3B+ running
Raspbian Linux with real-time patch, a commercial Navio2 autopilot hat, ESCs with custom
rotor telemetry, and the off-the-shelf Intel RealSense Tracking Camera T265. The latter
provides a pose estimate at 200Hz. In addition to Ardea and Sparrow, the quadrocopter
AR.Drone 2.0 (Figure 2.2b, bottom) is used for the experiments presented in this thesis. It
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Figure 2.2: Overview of the hardware used on Ardea (left) and quadrocopters Sparrow (top right) and

AR.Drone 2.0 (bottom right).

is a consumer product and uses optical flow from a single downward facing camera together
with its IMU for linear velocity estimation and control. For programming the AR.Drone,
a Software Development Kit (SDK) is provided by the manufacturer Parrot. Details and
novel concepts regarding position and attitude control of flying robots are presented in
Chapter 3.

2.2 Overview of the DLR Light Weight Robot

Robot-assisted take-off and landing of a flying robot is realized by means of a robot mani-
pulator as shown in Figure 2.3 (a). The latter is composed of multiple rigid links connected
to each other by (revolute or prismatic) joints that allow motions of the links. Encoders
in the joints provide the relative positions of neighbouring links. For revolute (or rotary)
joints these are the so-called joint angles. Some other common terms require introduction,
since they will be used throughout this work: Tools mounted at the last link of the robot
manipulator are referred to as end-effectors. In terms of control, one is usually interested in
the position or motion of the tool center point (TCP). Some state-of-the-art robot manipu-
lators, for example the DLR Light Weight Robot (LWR) [20, 21], are equipped with torque
sensors in every joint. The joint torque measurements can be used to estimate external
forces (supplementary to a force/torque sensor at the end-effector) and for torque control
[22], which in turn enables other control techniques such as impedance control [23]. The
torque-controlled LWR 4+ shown in Figure 2.3 (a) is used in this thesis. It has seven de-
grees-of-freedom (DoF) and its geometrical parameters as well as the considered coordinate
frame convention are illustrated in Figure 2.3 (b) and Appendix A2. Each joint includes a
flexible harmonic drive gear and the joint position is controlled at 3 kHz. Position, force,
and impedance control of the end-effector are realized at 1 kHz [21].
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Figure 2.3: Manipulator LWR 4+ used in this thesis (a) with link lengths and coordinate frames (b) and

workspace visualization (c).

Table 2.1: LWR 4+ specifications.

Robot manipulator name Light Weight Robot (LWR) 4+

Weight (excl. base and control computer) 16 kg

Payload 7 kg

Repeatability (ISO 9283) ±0.05mm

Work envelope 1.7m3

Axis Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7

Range ±170.0◦ ±120.0◦ ±170.0◦ ±120.0◦ ±170.0◦ ±130.0◦ ±170.0◦
Max.

speed ±112.5◦/s ±112.5◦/s ±112.5◦/s ±112.5◦/s ±180.0◦/s ±112.5◦/s ±112.5◦/s
Max.

torque 165.0Nm 165.0Nm 70.0Nm 70.0Nm 70.0Nm 30.0Nm 30.0Nm

For the purpose of this thesis, the LWR serves as an exemplary robot manipulator. It is
designed for safe human-robot interaction [218], due to the compliant control of the end-effec-
tor. However, because of the latter, it is also perfectly suitable for physical interaction tasks,
such as robotic take-off and landing assistance for flying robots. The dexterous workspace
([24], p. 85), i.e. the space of admissible end-effector positions and orientations, of the LWR
is limited (cf. Figure 2.3 (c)). It is studied in detail using a manipulability (or capability)
measure and reachability maps in [25]. Regarding take-off and landing assistance for flying
robots, the workspace of the LWR will not allow to compensate large ship motion. However,
the control approaches presented in this work are directly applicable to robot manipulators
with sufficiently large workspace. For the capturing task, i.e. catching a flying robot midair,
the maximum end-effector velocity is also of interest. It depends on the maximum joint
velocities (see Table 2.1) and the current configuration of the manipulator. A further anal-
ysis of the attainable end-effector velocities in the workspace is provided in Chapter 6. For
cooperative landing of a heavy flying robot, the maximum joint torques, listed in Table 2.1,
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2.3 The different phases of take-off and landing

are of major concern, since they define the maximum payload. They are considered for
optimal distribution of the control effort between robot manipulator and flying robot in
Chapter 5.

2.3 The different phases of take-off and landing

Robot-assisted take-off and landing of flying robots (or UAVs) can be subdivided into multi-
ple tasks or phases, during which different influences become dominant and different assump-
tions hold. For each phase, a suitable control approach is required. First, one can obviously
distinguish between start (or take-off) and landing (or touch-down). Second, the start and
landing maneuvers can each be divided in three phases shown in Figure 2.4, Figure 2.5, and
Table 2.2.

Table 2.2: Short description of the phases of robot-assisted take-off and landing.

Robot-assisted take-off Robot-assisted landing

T1) Coordinated take-off L1) Flying robot approach
T2) Release to flight L2) Capture in flight
T3) Flying robot departure L3) Coordinated touch-down

During both phase T1 and L3, the flying robot is attached to the end-effector of the robot
manipulator. If, as discussed below, the actuators of the flying robot are active in T1 and
L3, coordinated control of flying robot and manipulator may be required, depending on the
payload capabilities of the manipulator and the weight and kinetic energy of the UAV. In
phase T2 and L2 the transition from rigid connection to free flight and vice versa takes
place. Hence, in T2 a switch from coordinated to independent flying robot control and in

T3

T2

T1

L1

L2

L3

Figure 2.4: Graphical visualization of the different phases of robot-assisted take-off and landing. Copyright

© 2017 IEEE [212].
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Flying robot departure Flying robot approach

Flying robot release Flying robot capturing

Coordinated take-off Coordinated landing

T3

T2

T1 L3

L2

L1

Figure 2.5: Transitions between the different phases of robot-assisted take-off and landing.

L2 a switch from independent flying robot to coordinated control is performed. In both
phase T3 and L1, the flying robot and the robot manipulator can be treated completely
independently.

Phase L2 is especially challenging, since it requires precise tracking of the relative pose
between flying robot and manipulator as well as a robust docking mechanism. The design
of the latter is crucial, since it should also compensate for inaccuracies in the pose estimation.
Phases T1 and L3 are interesting in terms of control, because of the physical (and possibly
rigid) connection between flying robot and manipulator. It depends on the payload capacity
of the manipulator and on the actual docking mechanism, whether the flying robot needs
or is able to use its actuators, i.e. the rotors, or if they are turned off while it is attached
to the robot manipulator. Note that also the inertial forces matter for movements with
acceleration. If the flying robot is actively controlled while connected to the robot, take-off
and landing become a cooperative task for robot manipulator and flying robot. The latter
requires an understanding of the actuation principles and the control systems of both flying
robots and robot manipulators, as well as the development and study of a dedicated control
architecture for the complete system consisting of flying robot, robot manipulator, and
moving base. Hence, in this work, the following two cases of robotic take-off and landing
assistance are distinguished:

• Fully clamped :
The flying robot is rigidly connected to the robot manipulator, such that all its DoF
relative to the TCP are locked.

• Translationally clamped / rotationally free:
The flying robot is connected to the ground robot via a universal hinge (or ball joint),
which leaves the rotational DoF relative to the TCP open.

In both cases, the connection can be opened and closed, e.g. by using a gripper or an electro
magnet, so that the flying robot can be released for take-off and recaptured for landing.
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2.4 Robotic support system dynamics

Table 2.3: Advantages (⊕) and disadvantages (⊖) of full and partial clamping.

Full clamping Partial clamping

⊕ safe, once UAV is fixed and inactive ⊕ retains UAV attitude dynamics
⊕ no special UAV control needed ⊕ allows higher UAV weight
⊖ restricted to dynamics of manipulator ⊖ coordinated control needed
⊖ limited by payload capacity of robot ⊖ more sensitive to wind disturbances

Table 2.4: Summary of major building blocks for robot-assisted take-off and landing of flying robots.

Take-off phases Landing phases

T1

- surface motion estimation
- take-off trajectory
- clamping mechanism
- coordinated control or
- high payload robot manipulator

L1
- approach trajectory
- UAV flight control

T2

- surface motion estimation
- releasable clamping mechanism
- compliant release handling
- release detection
- controller switch

L2

- surface motion estimation
- relative pose estimation
- capturing mechanism
- compliant contact handling
- capturing detection
- controller switch

T3
- departure trajectory
- UAV flight control

L3

- surface motion estimation
- landing trajectory
- clamping mechanism
- coordinated control or
- high payload robot manipulator

Forces and torques of a flying robot are coupled. If the flying robot turns of its rotors,
only the fully clamped case can be realized. In the partially clamped case, the flying robots
actuators are active and the aim of the robot manipulator is to support during take-off and
landing. Active control of the flying robot can range from hover or gravity compensation
to trajectory following. As shown in Table 2.3, the two cases have different advantages and
disadvantages. From the control point of view, the partially clamped case is more interesting
and, therefore, primarily studied in this thesis.

In summary, the modules and building blocks listed in Table 2.4 are required during the
different phases introduced in this section.

2.4 Robotic support system dynamics

In this section, the modeling of rigid multibody dynamics is presented briefly. As soon as
the flying robot is connected to the end-effector of the manipulator, the dynamics become
coupled. Hence, the aim of this section is to develop a model of the combined system
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consisting of robot manipulator and flying robot. Furthermore, suitable simplifications are
derived, such that less model knowledge is required and the complexity of the controller
design is reduced.

First, attitude representations and attitude kinematics are concisely reviewed. Then, a
synthetic modeling procedure, the Projection Equation approach, is presented briefly. The
equations of the combined system model are introduced, from which special cases, such
as floating base robot manipulator system, large floating base manipulator system, fixed
base system, and planar motion model can be derived. Using a representative example
consisting of two rigid bodies, important properties of the combined model are highlighted
and simplifications are discussed.

2.4.1 Attitude representations

Here, the three widely used representations for describing the attitude of robotic systems
are presented briefly: rotation matrices, Euler angles, and quaternions. Their properties are
compared in Table 2.5. An attitude representation is minimal, if the number of parameters is
equal to the number of rotational DoF of the system, i.e. 3. Minimal attitude representations
do not allow to globally define continuous control laws and, hence, are not global and limited
to local attitude maneuvers [26]. The attitude representation is not singularity-free, if areas
exist where a jump in the coordinates occurs and where the velocity goes to infinity. And
it is unique, if the space of rotations SO(3) (defined below in (2.1)) is covered only once.

Table 2.5: Important properties of attitude representations.

Attitude representation Minimal? Singularity-free? Global? Unique?

Euler angles ✓ ✗ ✗ ✗

Rodrigues parameters ✓ ✗ ✗ ✗

Angle-axis ✗ ✗ ✓ ✗

Quaternions ✗ ✓ ✓ ✗

Rotation matrix ✗ ✓ ✓ ✓

Rotation matrices

Rotation matrices R ∈ SO(3) are an established attitude representation [27]. The special
orthogonal group SO(3) is defined as

SO(3) = {R|R ∈ R
3×3,RTR = E, detR = 1}, (2.1)

for a right-handed coordinate system and with an identity matrix E ∈ R
3×3 [26]. A vector

iv ∈ R
3 specified in frame i is transformed to frame b via

bv = Rbi
iv. (2.2)

For rotation matrices R, it always holds that RT = R−1, where R−1 represents the inverse
rotation. Therefore, it follows

iv = R−1
bi

bv = RT
bi
bv = Rib

bv. (2.3)
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Rotation matrix time derivative

Consider the angular velocity vector bωib =
(
bωx

bωy
bωz

)T

ib
of a frame b relative to a

frame i expressed in frame b. Then the time derivative of the rotation matrix is given by
([28], p. 258)

Ṙbi = −S(bωib)Rbi (2.4)

exists, where

S(ω) =






0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




 , (2.5)

is the skew-symmetric matrix representation of the cross product S(·) : R3 → R
3×3 s. t.

S(a)b = a× b for every a ∈ R
3 and b ∈ R

3. Therefore, bωib is obtained from

S(bωib) = −ṘbiR
−1
bi = RbiṘ

−1
bi (2.6)

by extracting the corresponding element of bωib from S(bωib) with the operation bωib =

S(bωib)
∨, where (·)∨ denotes the vee map [29]

(·)∨ : SO(3)→ R
3. (2.7)

Operation (2.7) can be considered the inverse of operation S(·).

For completeness, the angle-axis representation and the Rodrigues parameters are also men-
tioned here (see Table 2.5).

Angle-axis representation

Given a rotation matrix R =






r11 r12 r13
r21 r22 r23
r31 r32 r33




, a rotation may be defined via an angle

ϕ = arcccos
(
r11 + r22 + r33 − 1

2

)

(2.8)

Figure 2.6: Rotation with angle ϕ about the rotation axis n.
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and an axis (see Figure 2.6)

n =
1

2 sin(ϕ)






r32 − r23
r13 − r31
r21 − r12




 , (2.9)

which is obviously singular for ϕ = nπ with n ∈ Z [27].

(Unmodified) Rodrigues parameters

The Rodrigues parameters are defined as

r =
(

r1 r2 r3

)T
= ϕn, (2.10)

where ϕ is the rotation angle and n ∈ R
3 is the so-called Euler axis [27]. The representation

is minimal, because only three parameters are required, but singular at ϕ = nπ with n ∈ Z

and not unique, because the axis is not uniquely defined if ϕ = 0 [27].

Euler angles

Euler’s rotation theorem states that, in three-dimensional space, any displacement of a rigid
body can be decomposed into three successive rotations about three axes x, y, and z with
three rotation angles ϕ, θ, and ψ [28]. From the 27 possible sequences of rotations about
the three axes x, y, and z, only twelve satisfy the constraint that no two consecutive axes
are equal [27, 30]. For aerospace applications the z,y’,x” - convention is applied. First, a
rotation ψ about the z-axis, then a rotation θ about the new y’-axis and finally a rotation ϕ
about the new x”-axis is performed. ψ is referred to as yaw, θ as pitch and ϕ as roll angle.

A rotation from a frame b to a frame i can be represented by

Rbi(ψ, θ, ϕ) = Rx(ϕ)Ry(θ)Rz(ψ) =

=






1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)











cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)











cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1






=






c(ψ)c(θ) s(ψ)c(θ) −s(θ)
c(ψ)s(θ)s(ϕ)− s(ψ)c(ϕ) s(ψ)s(θ)s(ϕ) + c(ψ)c(ϕ) c(θ)s(ϕ)

c(ψ)s(θ)c(ϕ) + s(ψ)c(ϕ) s(ψ)s(θ)c(ϕ)− c(ψ)s(ϕ) c(θ)c(ϕ)




 , (2.11)

with c(·) = cos(·) and s(·) = sin(·).
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Euler angle time derivative

The angular velocity vector bωib can be written using Euler angles via (2.6) as

bωib = Rx(ϕ)Ry(θ)






0

0

ψ̇




+Rx(ϕ)






0

θ̇

0




+






ϕ̇

0

0






=






1 0 − sin(θ)

0 cos(ϕ) sin(ϕ) cos(θ)

0 − sin(ϕ) cos(ϕ) cos(θ)











ϕ̇

θ̇

ψ̇




 . (2.12)

Solving for the time derivatives of the Euler angles, yields





ϕ̇

θ̇

ψ̇




 =

1

cos(θ)






cos(θ) sin(ϕ) sin(θ) cos(ϕ) sin(θ)

0 cos(ϕ) cos(θ) − sin(ϕ) cos(θ)

0 sin(ϕ) cos(ϕ)











bωx
bωy
bωz






ib

. (2.13)

For θ = ±(2k + 1)π2 with k ∈ N0 the matrix in (2.13) is singular, i.e. no solution exists.

Quaternions

Another way to represent the attitude of a rigid body is to use quaternions. A quaternion
q is defined as [27, 28]

q =

(

η

ǫ

)

, (2.14)

with the one-dimensional scalar part

η = cos
(ϕ

2

)

(2.15)

and the three-dimensional vector part

ǫ =






ǫ1
ǫ2
ǫ3




 = sin

(ϕ

2

)

n, (2.16)

where n ∈ R
3 is the rotation axis and ϕ ∈ R is the rotation angle, as depicted in Fig-

ure 2.6. Using four values for parametrizing a rotation in R
3 leads to a non-minimal attitude

parametrization. Hence, a constraint has to be introduced. The constraint for the absolute
value of the quaternion

||q|| =
√

qTq =
√

η2 + ǫ21 + ǫ22 + ǫ23 (2.17)

is
qTq = ||n|| sin2

(ϕ

2

)

+ cos2
(ϕ

2

)

= 1. (2.18)

Quaternions with ‖q‖ = 1 are called unit quaternions. Note that only the rotation axis n

has to be normalized to obtain a unit quaternion. Since only unit quaternions are used in
this work, they are from now on simply referred to as quaternions. Assume the quaternion q

represents the rotation from a frame b to a frame i. In this context, the question how to

41



Chapter 2 Preliminaries

describe sequences of rotations arises. A quaternion q can be converted to a rotation matrix
R using the Euler-Rodrigues formula

Rbi(n, ϕ) = cos(ϕ)E + (1− cos(ϕ))nnT + sin(ϕ)S(n). (2.19)

Inserting the definitions (2.15) and (2.16) in (2.19) yields the conversion formula

Rbi(q) =
(
η2 − ǫT ǫ

)
E + 2ǫǫT + 2ηS(ǫ). (2.20)

Note that Rbi(q) and q describe the same rotation and the inverse rotation q−1 analog to
Rib is therefore given by

q−1 = [η − ǫ1 − ǫ2 − ǫ3]T . (2.21)

The rotation matrix for two subsequently executed rotations q and q′ can be written as

R(q′′) = R(q)R(q′), (2.22)

with
q′′ = Q(q)q′ = q ⊗ q′ = U(q′)q. (2.23)

The matrices Q and U are found by inserting (2.20) in (2.22) and reorganising the result
according to (2.23). One obtains

Q(q) =








η −ǫ1 −ǫ2 −ǫ3
ǫ1 η −ǫ3 ǫ2
ǫ2 ǫ3 η −ǫ1
ǫ3 −ǫ2 ǫ1 η







=

[

η −ǫT
ǫ ηE + S(ǫ)

]

, U(q′) =

[

η′ −ǫ′T
ǫ′ η′E − S(ǫ′)

]

.

(2.24)
The matrices Q and U in (2.24) define the quaternion multiplication denoted by ⊗ in (2.23).
Note that the multiplication of two unit quaternions yields again a unit quaternion and that
the quaternion multiplication is non-commutative, i.e. q′ ⊗ q 6= q ⊗ q′.

Quaternion time derivative

The time derivative of a quaternion q, denoted by q̇, can be calculated from the angular
velocity vector bωib using ([28], p. 265)

q̇ =
1

2
Qq(q)

bωib =
1

2








−ǫ1 −ǫ2 −ǫ3
η −ǫ3 ǫ2
ǫ3 η −ǫ1
−ǫ2 ǫ1 η













bωx
bωy
bωz






bi

=
1

2

[

−ǫT
ηE + S(ǫ)

]

bωib. (2.25)

Note that Q−1 = QT , because ‖q‖ = 1, and that Qq(q) is equal to the matrix Q(q) in
(2.24) without its first column.

The elements η, ǫ1, ǫ2, ǫ3 of the quaternion q are the so-called Euler parameters, which
form the connection between all discussed attitude representations. It can be seen from
the definition (2.14) - (2.16) and from Figure 2.6 that the quaternions q and -q represent
the same rotation, therefore q is not unique. Nevertheless, quaternions are advantageous
compared to rotation matrices, due to the compact form of (2.25) and because only four
parameters are used instead of nine, and to Euler angles, which are kinematically singular
since the transformation from their time derivative to the angular velocity vector is not
globally defined (see (2.13) and [26]).
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2.4.2 Synthetic dynamics modeling

A generic rigid multibody modeling approach is chosen to derive the equations of motion
of the combined system. In the considered procedure, the so-called Projection Equation
[31], every calculation step is implicitly already carried out as far as possible, thus, only
problem specific quantities need to be inserted. It allows to conveniently combine single
rigid bodies to subsystems which are then combined to obtain the final multibody system.
Alternative approaches are for instance the Lagrange formulation ([24], p. 247), the iterative
Newton-Euler dynamics ([14], p. 168), or the closed-form computation of the dynamics
matrices [32] based on [33, 34]. An implementation of the latter approach is readily available
at the DLR Institute of Robotics and Mechatronics and, therefore, used in the simulations
presented in Chapter 5. A formal comparison of the different approaches can be found in
[31]. The Projection Equation method is the last one in the triangle of methods shown in
[31] on page 74, and hence, the approach with minimum modeling effort. The following
introduction to the Projection Equation is based on [31, 35] and the brief summary in the
author’s paper [214].

Projection modeling approach

Using the Projection Equation approach ([31], p. 70), the equations of motion of a rigid
multibody system composed of Ns subsystems (cf. Figure 2.7) are derived symbolically in

flying robot u

robot arm r

combined system

moving base b

Figure 2.7: Illustration of the modeling approach. The combined system is composed of Ns = 3 subsys-

tems, each consisting of Nn, n ∈ {1, 2, 3}, single rigid-bodies. Note that a floating base with six

DoF is considered in this work, whereas the wheeled base is a special non-holonomic case. As

in [36], the robot manipulator is treated as an extension of the kinematics of the floating base.

In addition, the flying robot is attached via a ball joint and adds three DoF to the kinematic

chain.
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Ψi

Ψk

Ck

ṙck

vok

Ok

ωok

ωrk

Figure 2.8: Rigid body k with center of mass Ck, inertial frame Ψi, and reference frame Ψk with origin

Ok. Note that the rigid body can translate and rotate relative to the moving reference frame.

the following. Consider a single rigid body k as depicted in Figure 2.8 and let Ok be the
origin of a chosen reference frame. The minimal velocities of body k are collected in a vector
as

ẏk =
(

vTo ωTo ṙTc ωTr

)T

k
, (2.26)

where vok is the absolute velocity of Ok, ωok is the absolute angular velocity of body k (i.e.
w.r.t. the inertial frame i), ṙck is the translational velocity of the center of mass Ck and ωrk

is the relative rotational velocity w.r.t. Ok, respectively. The equations of motion of a single
body k are described using the inertia matrices Mk, the Coriolis/centrifugal matrices Ck,
and the generalized force vectors Qk as

Mkÿk +Ckẏk = Qext,k +Qctrl,k
︸ ︷︷ ︸

Qk

, (2.27)

for which Mk and Ck can be derived as ([31] p. 80)

Mk =








mE mS(rTc ) mE 0

mS(rc) Io mS(rc) Ic

mE mS(rTc ) mE 0

0 Ic 0 Ic








k

(2.28)

and

Ck =








mS(ωo) mS(ωo)S(r
T
c ) 2mS(ωo) 0

mS(rc)S(ωo) S(ωo)I
o + İc 2mS(rc)S(ωo) S(ωo)I

c + İc

mS(ωo) mS(ωo)S(r
T
c ) 2mS(ωo) 0

0 S(ωo)I
c + İc 0 S(ωo)I

c + İc








k

. (2.29)

Therein, mk is the mass of the rigid body k, rck is the vector from Ok to Ck expressed in the
reference frame k (see Figure 2.8), and E ∈ R

3×3 is an identity matrix. The inertia of body
k w.r.t. Ck and w.r.t. Ok, both expressed in the reference frame k, are denoted with Ick and
Iok , respectively. Note that Iok = Ick +mkS(rck)S(rck)

T according to the Huygens-Steiner
theorem ([31] p. 80). The general force vector Qk is divided into external forces Qext,k and
control inputs Qctrl,k.
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r01

r12
r23

O0

k = 1

p = 0

k = 2

p = 1 k = 3,
p = 2

ω01

ω12

ω23

Figure 2.9: Exemplary kinematic chain.

Assembly of the multibody system is performed in two steps. The subsystems (each con-

sisting of Nn rigid bodies) are constructed using the Jacobians Jk =
∂ẏk
∂ẏn

, which map single
rigid body velocities ẏk to subsystem velocities ẏn:

Mn =

Nn∑

k=1

J
T
kMkJk, (2.30)

Cn =

Nn∑

k=1

J
T
k

(

CkJk +MkJ̇k

)

, (2.31)

Qn =

Nn∑

k=1

J
T
kQk. (2.32)

The kinematic chain (illustrated in Figure 2.9) is described by

ẏk = Tkpẏp + Jkṡk, (2.33)

where ẏp is the minimal velocity of the predecessing element, i.e. p = k − 1, and sk is the
vector of minimal state coordinates of the rigid body k. If only rotational relative motions
are considered, e.g. for a robot with only rotating and twisting joints, the transformation
matrices Tkp are given by ([35], p. 57)

Tkp =






Rkp RkpS(r
T
pk) RkpS(r

T
pk)eax

0 Rkp Rkpeax

0 0 0




 , (2.34)

wherein Rkp is a rotation matrix that transforms a vector given in predecessor frame p to
successor frame k, rpk is the distance vector from Op to Ok expressed in frame p, and eax

is a unit vector defining the axis of rotation. Finally, the multibody dynamics are obtained
as ([31], p. 92)






JT1 · · · JT1 T
T
Ns,1

. . .
...

JTNs






︸ ︷︷ ︸

JTtri






M1ÿ1 +C1ẏ1 −Q1
...

MN ÿNs +CNs ẏNs −QNs




 = 0, (2.35)
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which leads to the minimal representation

Ms̈+Cṡ−Q = 0, (2.36)

with s being the vector of minimal state coordinates of the combined multibody system
and

M = JTtri






M1

. . .
MNs




Jtri, (2.37)

C = JTtri






C1

. . .
CNs




Jtri + JTtri






M1

. . .
MNs




 J̇tri (2.38)

Q = JTtri

(

QT
1 · · · QT

Ns

)T
. (2.39)

This procedure projects the generalized forces in the direction of unconstrained motion [31].

Special case: A single rigid body

The combined system of floating base, manipulator, and flying robot is of course a multibody
system. The flying robot alone is usually described using a single rigid body. If the reference
point O coincides with the center of mass C, it holds that rc = 0, ṙc = 0, and ωr = 0.
Here, the index k is dropped for the sake of brevity. The fundamental matrices (2.28) and
(2.29) then reduce to

M =

[

mE 0

0 Io

]

, C =

[

mS(ωo) 0

0 S(ωo)I
o

]

, (2.40)

where the (.) notation is omitted, because no further projection is required. Evaluating

(2.36) with ṡ =
(

vTo ωTo

)T
yields the well-known Newton-Euler equations, which describe

the rotational and the translational dynamics of a single rigid body. They can concisely be
written in the body-fixed reference frame as

[

mE 0

0 Io

](

v̇o

ω̇o

)

+

(

mS(ωo)vo
S(ωo)I

oωo

)

=

(

f

τ

)

, (2.41)

where f and τ are forces and torques expressed in the body-fixed frame, respectively.

Recursive algorithm and inner constraint computation

The multibody dynamics model (2.36) can directly be used in simulation, but then the
inertia matrix has to be inverted in every iteration step. Since this becomes expensive
for higher order systems, a recursive algorithm is used instead, which takes advantage of
the triangular form of JTtri in (2.36). Moreover, it allows to compute the constraint forces
acting in each joint explicitly. It is adopted from ([31], pp. 95-99) wherein a detailed proof is
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Algorithm 2.1: Recursive dynamics computation
1 while True do

2 Computation of forward kinematics: ;

3 for k ∈ {1, . . . , Ns} do

4 Set p = k − 1;

5 Compute Tkp, Ṫkp, ẏk, and hk = Ckẏk −Qk

6 Set M∗
Ns

= MNs
and h∗

Ns
= hNs

;

7 Computation of modified dynamics matrices: ;

8 for p ∈ {Ns − 1, . . . , 1} do

9 Set k = p+ 1 and compute M̂k = JT
k M∗

kJk, Nk = E −M∗
k (JkM̂

−1
k JT

k ),

M∗
p = Mp + T T

kpNkM
∗
kTkp, and h∗

p = hp + T T
kpNk(M

∗
k Ṫkpẏp + h∗

k)

10 Computation of minimal accelerations: ;

11 for k ∈ {1, . . . , Ns} do

12 Set p = k − 1 and compute s̈k = −M̂−1
k JT

k (M∗
k (Tkpÿp + Ṫkpẏp) + h∗

k),

ÿk = Tkpÿp + Ṫkpẏp + Jks̈k, and Qλ
k = Nk(M

∗
k ÿk + h∗

k)

sketched, and can be summarized as follows: First, calculate the forward kinematics starting
from subsystem k = 1. Then, compute the modified dynamics matrices, denoted with a
∗, in a descending order starting with subsystem p = Ns. Finally, determine all minimal
accelerations s̈k for k ∈ {1, . . . , Ns}. Algorithm 2.1 comprises the calculation details.

The minimal accelerations are integrated numerically and then enter Algorithm 2.1 via
equation (2.33) in every simulation time step. Note that the intermediate velocity ẏ0 and
acceleration ÿ0 are either zero, or provide a convenient way to account for base movement,
which is unaffected by the multibody system motion, e.g. a manipulator on a large ship.
The constraint force Qλ

k depends on the dynamics of all its successors and has to fulfill
the local orthogonality condition JTk Q

λ
k = 0, which holds if relative velocities are used as

minimal velocities [31].

2.4.3 Combined model of robot manipulator and flying robot

Applying the modeling approach presented above yields the dynamics of the serial multi-
body system in configuration space. The minimal representation (2.36) is the same as the
dynamics in joint coordinates φ ∈ R

n of a serial robotic manipulator with n joints ([37],
p. 29)

M(φ)φ̈+C(φ, φ̇)φ̇+ g(φ) = τj + τext, (2.42)

where Mn×n, Cn×n, and gn×1 are the inertia matrix, the Coriolis and centrifugal matrix,
and the vector of gravity terms, respectively. For conciseness, from now on the argument
φ will be mostly dropped. Different representations of the combined model composed of
floating base b, robot manipulator r, and flying robot (or VTOL UAV) u are discussed in
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Figure 2.10: Illustration of the manipulator on a floating base with flying robot attached at the end-effector.

the following. All couplings between b, r, and u become apparent, if the matrices are written
in block form, i.e.






Mbb Mbr Mbu

MT
br Mrr Mru

MT
bu MT

ru Muu











φ̈b

φ̈r

φ̈u




+






Cbb Cbr Cbu

Crb Crr Cru

Cub Cur Cuu











φ̇b

φ̇r

φ̇u




−






Qb

Qr

Qu




 = 0, (2.43)

where Mij are the blocks of the inertia matrix, which is positive definite and symmetric.
Furthermore, Cij are the blocks of the Coriolis/centrifugal matrix and Qk comprises external
forces and actuator forces acting on the three different subsystems.

Here, φb ∈ R
6 are the states of the floating base, φr ∈ R

n are the states of the n-DoF robot
manipulator, and φu ∈ R

3 are the states of the UAV. Therefore, in the most general case,
the combined system model has 6+n+3 DoF. Note, that the three DoF of the flying robot
are the result of a rigid connection to the manipulator which leaves the rotational DoF open,
e.g. a ball joint (or universal hinge). Moreover, three states for describing the orientation
of base or UAV are only sufficient, if a minimal attitude representation, e.g. Euler angles,
is used. Since the latter have singularities, a non-minimal representation like quaternions
is advantageous, resulting in 7 + n + 4 states of the general combined system model. The
above model is suitable for cases, where the motion of the floating base is influenced by the
motion of manipulator and flying robot, e.g. if a small wheeled mobile robot is used for
robot-assisted landing.

Large floating base case

For a robot manipulator operating on a large base, for example a heavy vehicle or a ship, it
is reasonable to assume that the manipulator has no effect on the motion of the base, but
vice versa. Under this assumption, (2.43) becomes
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[

MT
br Mrr Mru

MT
bu MT

ru Muu

]





φ̈b

φ̈r

φ̈u




+

[

Crb Crr Cru

Cub Cur Cuu

]





φ̇b

φ̇r

φ̇u




−

(

Qr

Qu

)

= 0. (2.44)

This model allows to directly include measured or simulated base motions through φ̈b

and φ̇b.

Planar motion case

A simplified version of (2.43) can be derived, if only planar motions of base, manipulator,
and aerial vehicle are considered. In the planar case, the structure of (2.43) and (2.44)
remains the same, but the dimensions of the state vectors reduce to φb ∈ R

3, φr ∈ R
n,

and φu ∈ R
1. This model neglects cross couplings in the angular velocities, but allows to

derive simplified controllers, which need less model knowledge. The planar model is used in
Section 4.4.1 and in Section 4.4.5 for a simulation case study.

Fixed base case

Lastly, a combined system is considered where the base is not moving. This allows to solely
study the interaction between flying robot and manipulator. Then, (2.43) reduces to

[

Mrr Mru

MT
ru Muu

](

φ̈r

φ̈u

)

+

[

Crr Cru

Cur Cuu

](

φ̇r

φ̇u

)

−
(

Qr

Qu

)

= 0. (2.45)

This model is considered mostly for the controller designs and experiments carried out at
DLR with a LWR 4+ on a fixed base.

2.4.4 Task space formulation

For a given task, e.g. robot-assisted take-off or landing of flying robots, one is interested in
the motion of a predefined point on the robotic system, e.g. the TCP of the manipulator,
in a Cartesian reference frame. One possible representation of the dynamics in Cartesian
coordinates is given by the task space (or operational space [38]) formulation. A pragmatic
reason for using the task space formulation, is that it does not require to compute the inverse
kinematics, which is prone to singularities and can be quite difficult to solve ([14], p. 102).
On the contrary, the forward (or direct) kinematics χ : R

n → R
m, which maps joint

angles φ ∈ R
n to Cartesian end-effector coordinates x ∈ R

m, is straightforward to compute
([14], p. 62). The mapping between joint velocities φ̇ ∈ R

n and task velocities ẋ ∈ R
m is

given by the Jacobian matrix J ∈ R
m×n ([14], pp. 135) as

ẋ =
∂χ(φ)

∂φ
φ̇ = J(φ)φ̇, (2.46)

ẍ = J(φ)φ̈+ J̇(φ)φ̇. (2.47)
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Configuration
space R

n Task space R
m

φ

φ̇

τ

x

ẋ
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Figure 2.11: Illustration of transformations between configuration and task space.

Using (2.46) and (2.47), velocities and accelerations in task space can be computed from
velocities and accelerations in joint space. For linear velocities v, it is straightforward to
calculate the partial derivatives of χ w.r.t. φ, but there is no 3× 1 orientation vector whose
derivative is the angular velocity ω, i.e. ω is not integrable. Therefore, it is more convenient
in practice to compute the Jacobian matrix J from

J =
∂χ

∂φ
=
∂ dχ

dt

∂ dφ
dt

=
∂ẋ

∂φ̇
. (2.48)

Note that because of x ∈ R
m and φ ∈ R

n, the Jacobian matrix (2.48) has m rows and n

columns. It is clear that for n > m, i.e. a redundant robotic system with joint space greater
than task space, the relation (2.46) is not directly invertible. Hence, for a redundant system
the inverse relation

φ̇x − φ̇nsp = J#ẋ (2.49)

requires a generalized pseudoinverse J# (see Appendix A3). A general nullspace projector1

is given by [39]
N = E − J#J . (2.50)

Hence, in the redundant case one has to distinguish between joint velocities φ̇x = J#Jφ̇,
which affect the motion of the end-effector, and nullspace velocities φ̇nsp = Nφ̇, which do
not affect the motion of the end-effector.

Exploiting the principle of virtual work, one can show that for static forces F ∈ R
m and

joint torques τ ∈ R
n a relation similar to (2.46) exists ([14], pp. 156):

F T δx = τ T δφ,

F TJ(φ)δφ = τ T δφ.

Therein, δx and δφ denote infinitesimal deviations in x and φ, respectively. Thus, for the
redundant case n > m, it follows that

τ = JTF +NTτ , (2.51)

where τnsp = NTτ are nullspace torques that do not affect the end-effector motion. Apply-
ing the nullspace projector (2.50) and the pseudoinverse J#T to (2.51) yields F = J#Tτ .

1For the derivation of the nullspace projector N , recall that JJ# = E, but J#J 6= E, and similarly

for NT that J#TJT = E, but JTJ#T 6= E.
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The dynamics in the task space coordinates x ∈ R
m follow from the equivalence of the

kinetic energy in configuration and in task space. Rearranging (2.42) and inserting in (2.47)
yields

ẍ = J(φ)M−1(φ)
(

τ −C(φ, φ̇)φ̇− g(φ)
)

+ J̇(φ, φ̇)φ̇. (2.52)

The task space dynamics can be written in the form

Λ(φ)ẍ+ µ(φ, φ̇) + Fg(φ) = Fτ , (2.53)

where Λ(φ) is referred to as pseudo kinetic energy matrix [40] and µ(φ, φ̇) is a vector of
Coriolis and centrifugal terms2.

Proposition 2.1. Dropping arguments, the inertia matrix, Coriolis/centrifugal vector, the

gravity terms, and the control input in task space are given by

Λ =
(
JM−1JT

)−1
, (2.54)

µ =
(
JM−1JT

)−1
(

JM−1Cφ̇− J̇ φ̇
)

, (2.55)

Fg = J#Tg, (2.56)

Fτ = J#Tτ , (2.57)

with the generalized pseudoinverse of the transposed Jacobian matrix defined as

J#T =
(
JM−1JT

)−1
JM−1. (2.58)

Proof. Inserting (2.54) - (2.58) in (2.53) yields (2.52).

Equations (2.54) - (2.58) are directly applicable to redundant systems. In the non-redundant
case, it follows that J#T = J−T and, hence,

µ = J−T
(

C −MJ−1J̇
)

J−1ẋ. (2.59)

The structure of the configuration space dynamics (2.42) and of the task space dynamics
(2.53) is used to describe serial dynamical systems throughout this thesis.

2.4.5 Decomposition of first principles two body model

The problem of a robot manipulator interacting with a flying robot can be modeled specif-
ically for a given manipulator and UAV. This model will contain the exact geometry and
inertia of both systems and may be used to design a model-based controller especially de-
signed for the underlying systems. However, in order to study a model decomposition based
on the inertia of the subsystems, an analogous model consisting of two rigid bodies, one
representing the manipulator and one representing the UAV, is discussed first.

Consider a system composed of two bodies as depicted in Figure 2.12. It does not contain
linear (or prismatic) joints and each body has three relative degrees of freedom represented
by ωri. The motion of the origin of the first reference frame (i.e. of the manipulators floating
base b) w.r.t. the inertial frame i is given by vib and ωib (measured in the base frame b).

2Note that µ is defined different than in [37] on p. 32 and, therefore, Λ̇ 6= µ+ µT (cf. [37], p. 33).
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rib

r12
rc2

b

i

1

2

C1
C2ωr1

ωr2

Figure 2.12: First principles two body model, e.g. of robot manipulator and flying robot.

Derivation of configuration space dynamics

The projection of the dynamics of the two rigid bodies is carried out using the upper
triangular Jacobian (2.35) introduced in Section 2.4.2

JTtri =

[

JT1 JT1 T
T
2,1

03×9 JT2

]

12×18

. (2.60)

The minimal representation is obtained using (2.39)

M =

[

JT1 (M1 + T T
2,1M2T2,1)J1 JT1 T

T
2,1M2J2

J2M2T2,1J1 JT2 M2J2

]

=

[

M11 M12

MT
12 M22

]

, (2.61)

and

C =

[

JT1 (C1 + T T
2,1C2T2,1)J1 JT1 T

T
2,1C2J2

J2C2T2,1J1 JT2 C2J2

]

+

[

JT1 (C1 + T T
2,1C2T2,1)J̇1 JT1 T

T
2,1C2J̇2

J2C2T2,1J̇1 JT2 C2J̇2

]

,

(2.62)

with ṡ =
(

ṡT1 ṡT2

)T
=
(

vTib ωTib ωTr1 ωTr2

)T
, i.e. n = 12 DoF in configuration space.

Some important properties are summarized below, which follow from the construction of
the serial chain dynamical system.

Important properties of serial chain dynamical systems

1. The elements of the projected inertia and Coriolis matrices M and C are linear in
the inertia matrices of the subsystems (cf. (2.61) and (2.62), respectively).

2. The elements of inertia matrix M and Coriolis matrix C do not contain the inertia of
the predecessing bodies in the chain. On the other hand, the elements of inertia and
Coriolis matrix depend on the inertia of all its successors.

3. If, as shown, relative velocities are used and the last element in the chain is a single
rigid body (which is always the case here), then the lower right 3 × 3 elements in
inertia and Coriolis matrix are simply M22 = Ic2 and C22 = S(ωi2)I

c
2 + İc2.
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4. Neither the inertia nor the Coriolis/centrifugal matrix depend on the orientation of
base b w.r.t. the inertial frame i.

Property 3 matches the observations by Khatib in [40] on page 27 for the kinetic energy
matrix of macro/mini structures.

Model decomposition in configuration space

Taking advantage of the linearity of M and C in M1, M2 and C1, C2, respectively, inertia
and Coriolis matrices are decomposed such that

M = M1(M1)+M2(M2) =

[

JT1 M1J1 0

0 0

]

+

[

JT1 T
T
2,1M2T2,1J1 JT1 T

T
2,1M2J2

J2M2T2,1J1 JT2 M2J2

]

(2.63)

and C = C1(C1) +C2(C2) follows analogously. The decomposed dynamics read

M1s̈+C1ṡ+ g1 +M2s̈+C2ṡ+ g2 = τ . (2.64)

Obviously, now a control law τ = τ1(M1,C1, g1) + τ2(M2,C2, g2) could be designed that
individually takes the properties of subsystems one and two into account. However, τ1

and τ2 have to be designed, such that the interconnected two body model reaches a stable
equilibrium.

Model decomposition in task space

Using the Jacobian (2.60), the dynamics can be transformed to task space using the method
described in Section 2.4.4. Recall the definition of the inertia matrix in task space

Λ =
(
JM−1JT

)−1
. (2.65)

To identify the contribution of the subsystems, Λ1 and Λ2 are sought-after, such that

Λ1 +Λ2 =
(

J (M1 +M2)
−1 JT

)−1
. (2.66)

To solve equation (2.66) for Λ1 and Λ2 individually, the following Lemma from [41] is
applied.

Lemma 2.1. For the inverse of the sum of two matrices it holds that

(M1 +M2)
−1 = M−1

2 −M−1
2 M1(M1 +M2)

−1. (2.67)

Proof. Multiplying (M1 +M2) from the right yields

E = M−1
2 (M1 +M2)−M−1

2 M1 = M−1
2 M1 +E −M−1

2 M1 = E.

Multiplying (M1 +M2) from the left leads to the same result. This proves the lemma.

53



Chapter 2 Preliminaries

Applying Lemma 2.1 to (2.66) yields

(

J (M1 +M2)
−1 JT

)−1
=
(
JM−1

2 JT − JM−1
2 M1(M1 +M2)

−1JT
)−1

, (2.68)

to which Lemma 2.1 can be applied once more, resulting in

Λ1(M1,M2) =(JM−1
2 JT )−1JM−1

2 M1(M1 +M2)
−1JT

(

J (M1 +M2)
−1 JT

)−1
,

(2.69)

Λ2(M2) =(JM−1
2 JT )−1. (2.70)

Equations (2.69) and (2.70) reveal that Λ1 and Λ2 can not be completely separated in
the redundant case. However, the portion of the last element in the chain can directly
be deduced. Here, it is given by subsystem two as Λ2(M2) = (JM−1

2 JT )−1. The first
element in the chain Λ1(M1,M2) depends on the inertias M1 and M2 as well as on the
configuration of the system defined by J . However, for non-redundant systems complete
decomposition can be accomplished as shown below.

Proposition 2.2. In the non-redundant and fully actuated case, i.e. with n = m, the

solution (2.69), (2.70) reduces to the complete and trivial decomposition

Λ1 +Λ2 = J−TM1J
−1 + J−TM2J

−1. (2.71)

Proof. The proof directly follows from the invertibility of J in the non-redundant case,
which applied to (2.69) results in

Λ1(M1,M2) = J−TM2J
−1JM−1

2 M1(M1 +M2)
−1JTJ−T (M1 +M2)J

−1 (2.72)

= J−TM1J
−1, (2.73)

which is the kinetic energy matrix of subsystem one.

Next, the decomposition of the Coriolis/centrifugal vector is treated. Recall the definition

µ = Λ(JM−1C − J̇)q̇, (2.74)

which should be solved for µ1 and µ2, such that

µ1 + µ2 = (Λ1 +Λ2)
(

J(M1 +M2)
−1(C1 +C2)− J̇

)

q̇. (2.75)

Again, applying (2.67) and rearranging leads to

µ1(M1,M2) = Λ1

(

J(M1 +M2)
−1(C1 +C2)− J̇

)

q̇ +Λ2(JM
−1
2 C1 − J̇)q̇

−Λ2(JM
−1
2 M1(M1 +M2)

−1(C1 +C2)− J̇)q̇,

µ2(M2) = Λ2(JM
−1
2 C2 − J̇)q̇.

(2.76)

The Coriolis/centrifugal vector µ2 of subsystem two can be identified directly, but the
Coriolis/centrifugal vector µ1 of subsystem one does only simplify in the non-redundant
case.
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Proposition 2.3. In the non-redundant and fully actuated case n = m, equation (2.76)

reduces to the complete and trivial decomposition

µ1 + µ2 = J−T (C1 −M1J
−1J̇)q̇ + J−T (C2 −M2J

−1J̇)q̇. (2.77)

Proof. Inserting the relation Λ = J−TMJ−1 in (2.74) yields

µ = J−T (C −MJ−1J̇)q̇, (2.78)

which is linear in M and C and therefore the decomposition is found as

µ = µ1 + µ2 = J−T
(

(C1 +C2)− (M1 +M2)J
−1J̇

)

q̇. (2.79)

Rearranging the above equation results in (2.77).

Equations (2.70) and (2.76) lead to a partial decomposition of the task space dynamics of
redundant systems

Λẍ+µ+Fg = Λ1(M1,M2)ẍ+Λ2(M2)ẍ+µ1(M1,M2,C1,C2)+µ2(M2,C2)+Fg. (2.80)

The terms Λ1 and µ1 contain the influence of subsystem two on the dynamics of subsystem
one. As can be seen from (2.69) and (2.70), Λ1 scales with M2. Moreover, equation (2.76)
shows, that the contribution of the Coriolis and centrifugal forces of system one is reduced
indirectly proportional to the diagonal elements of the product M1M

−1
2 (or directly pro-

portional to the diagonal elements of the product M−1
1 M2). These insights are intuitive,

because they simply show that a heavy subsystem contributes more to the overall dynamics
than a light subsystem.

The presented decompositions can be used to design controllers that take advantage of the
underlying dynamic structure of the robotic systems. For example, the derived inertia and
Coriolis/centrifugal matrices in task space allow to unilaterally compensate the coupling
between subsystem one and two. Furthermore, they allow to derive design principles for
robotic assistance systems. Most notably, non-redundant and fully actuated systems allow
a simpler modeling and control approach. However, redundant designs may result in better
performance, for example in terms of dexterity and workspace coverage. They require either
complete model knowledge or have to be robust against model uncertainties. Models and
suitable control laws for both the redundant and the non-redundant case are presented in
Chapter 4 and Chapter 5.

2.5 State-of-the-art control of redundant and distributed

systems

As explained above, in general the combined system is redundant meaning that it has more
DoF than are actually necessary to fulfill the task. Both flying robot and robot manipulator
use their own control computer resulting in a distributed system. Coordinated control of
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the system requires a communication channel. The latter is subject to time delay which
needs to be considered in the controller design and in the stability analysis.

Robot-assisted take-off and landing of flying robots has not been considered in the literature
so far. Nevertheless, state-of-the-art approaches exist for coordinated and distributed control
under time delay, for redundancy resolution, and for physical interaction control.

Coordinated and distributed control

Research considering coordinated control of a flying robot and a robot manipulator is mostly
devoted to aerial manipulation3 [5, 42, 43, 44, 45], where the manipulator is attached to
the aerial vehicle. This poses a challenge due to the dynamical coupling between the two
systems. Control of a flying robot equipped with a Light Weight Robot manipulator with
seven DoF is addressed in [46] (regulation case) and [47] (tracking case). Dynamics and
nonlinear control of a system composed of a quadrocopter and a manipulator (with multiple
DoF) are presented in [48, 49, 50].

Visually coordinated landing or docking of a flying robot on a mobile robot manipulator
is considered in [51] and [52], respectively, but only evaluated in simulation. Vision-based
autonomous landing of flying robots on a moving base is presented in [53] and [54]. Modeling
and control of manipulators on large moving platforms, such as ships, is treated in [36, 55,
56]. A recent adaptive control approach for networked cooperative mobile manipulators can
be found in [57].

Consideration of time delay

In the literature, time delay is mostly considered in telemanipulation, where a human opera-
tor controls a robot in a remote environment. Passivity, and therefore stability, may be
preserved using time domain passivity control (TDPC) initially introduced in [58] and ge-
neralized to multi-DoF haptic devices in [59] and to time-varying communication delay in
[60]. TDPC adjusts a variable damping such that the energy generated by the time de-
lay is exactly dissipated. The input and output energies are constantly monitored using
a passivity observer [61]. An alternative approach is to use so-called wave variables [62],
which are applied to coordinated control of robot manipulators with distributed control
architecture in [63]. The survey [64] provides an overview of the wave variable approach for
telemanipulation with (constant) time delays. A general treatment of stability analysis and
robust control of systems under time delay can be found in [65, 66]. A stability analysis
considering time delay for the linear dynamics model introduced in Section 4.2 is presented
in Appendix A9.

3Note that aerial or mobile manipulation are fundamentally different to robot-assisted take-off and

landing of flying robots. The aim of the latter is to move the flying robot along a desired trajectory by

means of the manipulator. Both systems may contribute to fulfill the task. In contrast to that, the aim

of aerial or mobile manipulation is to apply a desired wrench to the environment. There, the flying or

mobile robot has to compensate the counterforce arising from the interaction of the manipulator with the

environment.
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Time delay also affects the state estimation [67]. For instance, the delay may be directly
included in a Kalman filter, as done in [68, 69]. On the other hand, if the time delay of
the communication channel is lower than the update rate of the Kalman filter, it may be
neglected. However, due to varying time delay some measurements may arrive too late. They
would corrupt the estimate and need to be rejected. This is considered in Chapter 6, where
in-flight capturing of the flying robot by means of the robot manipulator is addressed.

Redundancy resolution

Redundancy occurs for robotic systems where the joint space is larger than the task space.
In [70], redundancy is exploited for impedance control of an aerial manipulator system. A
control approach for a seven DoF manipulator is presented in [71]. The approach is based
on potential fields and keeps the elbow of the manipulator between the landing skids of an
unmanned helicopter used for aerial manipulation. This approach is also implemented for
the experiments presented in Chapter 4.

Other examples are mobile manipulators or legged and wheeled humanoids [72]. The re-
dundancy also enables to fulfill secondary objectives in addition to the main task. Multiple
objectives may be formulated hierarchically as done in [73]. In [74], passivation of the
hierarchy is achieved via virtual energy tanks. A secondary objective is for example the
generation of a desired nullspace behaviour [75, 76]. The redundancy can also be resolved
through torque optimization [77]. An optimization allows to directly consider actuator con-
straints. In Chapter 5, distribution of the control effort between flying robot and robot
manipulator is realized via a heuristic or by solving a quadratic optimization problem.

Physical interaction control

Physical interaction inevitably occurs in robot-assisted take-off and landing of flying robots.
Thus, another relevant line of research is interaction control of robotic systems. Commonly,
interaction control is realized using direct force control ([78], p. 162), which requires to
measure the contact force, or indirect force control, such as impedance control ([78], p.
167). The latter is based on the seminal work [79] and has since then found wide acceptance
in the scientific community. In impedance control, the robot appears to the environment
as a mass-spring-damper system for which passivity and, therefore stability, can be shown
([37], p. 104).

In [19, 80], a unified framework for external wrench estimation and interaction control of
flying robots under wind influence is presented. The wrench is estimated using a generalized
momentum observer [81, 82] and included in the general impedance controller ([78], p.
167). An alternative approach can be found in [83], where a nonlinear Lyapunov-based
disturbance observer for estimating the external wrench is presented and the flying robot is
controlled via interconnection and damping assignment passivity-based control (IDA-PBC).
Physical interaction of a human with a flying quadrocopter by means of admittance control
is treated in [84], where external forces and torques are estimated by an Unscented Kalman
Filter (UKF) [85].
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2.6 Generalized task space control in a nutshell

Applying state transformations and feedback control to a nonlinear dynamical system in
order to obtain a linear system, is commonly referred to as feedback linearization [86, 87],
inverse dynamics control ([88], pp. 269), or nonlinear decoupling [89]. Feedback linearizing
the task space dynamics enables to utilize a whole set of linear and nonlinear control meth-
ods. It is assumed that the joint torques τ are the input to the robotic system, which is
reasonable for a torque-controlled robot like the LWR manipulator presented in Section 2.2.
An overview of the considered control scheme is depicted in Figure 2.13. Specifics about
the low-level torque controller of the LWR can be found in [22]. The task space controllers
introduced in the following can be transferred to position-controlled robot manipulators by
using an inner position and orientation control loop. This results in admittance control
([78], p. 170).

Proposition 2.4. Applying feedback linearization to the task space dynamics (2.53), trans-

forms (2.53) to a single double integrator system

ẍ = u. (2.81)

Proof. Introducing the virtual control u and inserting the control law

Fτ = Λu+ µd + Fg, (2.82)

with µd = µ in the dynamical system (2.53), yields (2.81).

The linear and angular accelerations ẍ ∈ R
m are now decoupled and can be controlled

independently. Possible redundancy of the robotic system needs to be resolved via the
nullspace torque τnsp, e.g. using joint damping, keeping the manipulator close to a desired
configuration, or using an elbow field [71]. The resulting control torque is

τ = JT (Λu+ µd) + τnsp + g. (feedback linearization) (2.83)

Next, different choices of the virtual control input u are discussed. A straight-forward
control law to track a desired pose xd with x̃ = x− xd is given by

u = ẍd −D ˙̃x−Kx̃, (2.84)

Trajectory

generator
Task space

controller
JT

Torque-controlled

manipulator

J

χ

ẍd

ẋd

xd

Fτ τ

φ̇

φx

−

ẋ

−

Figure 2.13: Task space control scheme considered in this work.
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with positive definite damping matrix D and positive definite stiffness matrix K. This
results in the so-called inverse dynamics controller

τ = JT
(

Λ(ẍd −D ˙̃x−Kx̃) + µd

)

+ τnsp + g. (inverse dynamics control) (2.85)

In terms of stability and robustness, the closed-loop dynamics under inverse dynamics
control are sensitive to dynamic uncertainties, such as viscous friction or joint damping
([24], p. 332). Also, a requirement for stability is that ΛD and ΛK in (2.85) are positive
definite, which cannot be guaranteed, because the product of two positive definite matrices
is not positive definite in general [90]. Hence, a slightly different control law u can be found
with

u = ẍd −Λ−1(D ˙̃x+Kx̃). (2.86)

This leads to classical task space impedance control ([37], p. 36)4 without inertia shaping

τ = JT
(

Λẍd −D ˙̃x−Kx̃+ µd

)

+ τnsp + g. (impedance control) (2.87)

The term impedance control stems from the electrical and mechanical analogon. A me-
chanical impedance takes position and velocity and generates a force, as opposed to an
admittance, which takes a force and results in a velocity and change in position. In his
seminal work [79], Hogan states that for safety reasons a robotic system in contact with the
environment (admittance) should always appear as an impedance.

Note that for stability and passivity (in the redundant case), the desired Coriolis/centrifugal
vector needs to be µd = µ − 1

2Λ̇
˙̃x. This can be shown using the (time-varying) Lyapunov

function ([37], p. 35)

V =
1

2

(

˙̃xTΛ ˙̃x+ x̃TKx̃
)

, (2.88)

whose derivative w.r.t. time follows with (2.87) as

V̇ = − ˙̃xTD ˙̃x+ ˙̃xT
(

µd − µ+
1

2
Λ̇ ˙̃x

)

. (2.89)

In the non-redundant case, the Coriolis/centrifugal vector can be (cf. (2.59) in Section 2.4.4)

µd = J−T
(

C −MJ−1J̇
)

J−1ẋd, (2.90)

which is shown in [37] on page 34 - 36.

An inherent problem of all task space control approaches, is that the Jacobian matrix can
become singular, e.g. at a singular configuration of the robotic system. Therefore, kinematic
singularities have to be avoided by the trajectory generator or motion planner. Furthermore,
so far external forces are not explicitly considered in the controller design, but implicitly
treated as unknown disturbances. If an external force acts on the robot, the dynamics (2.53)
become

Λẍ+ µ+ Fg = Fτ + Fext (2.91)

4The formulation of the impedance controller is different to [37], because here µd is a vector instead of a

matrix and it can either contain the velocity error (redundant case) or the desired velocity (non-redundant

case).
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or under the feedback linearizing control (2.85) introduced above

Λ(ẍ− u) = Fext. (2.92)

Considering the aim of this thesis, a robot manipulator that physically interacts with a
flying robot will perceive its real inertia. That might be disadvantageous, because of large
contact forces, especially for heavy UAVs. To address this fact, the inertia can be shaped
via

Fτ = Λu+ µd + Fg +
(
ΛΛ−1

d −E
)
Fext, (2.93)

wherein Λd is the desired inertia and Fext are the measured external forces. The inertia of
the double integrator system (2.92) then becomes

Λd(ẍ− u) = Fext, (2.94)

and the computed torque control law is obtained as

τ = JT (Λu+ µd) + τnsp + g + JT
(
ΛΛ−1

d −E
)
Fext. (inertia shaping) (2.95)

Example: Inertia mimicking for flying robot fixed to robot manipulator

Assume that a flying robot consisting of a single rigid body is attached at the end-effector
of a robot manipulator. The inertia of the flying robot (or UAV, index u) can be preserved
(md = mu, Id = Iu) or shaped (md < mu, Id < Iu), such that

Λd =

[

mdE 0

0 Id

]

, (2.96)

where md is the desired mass and Id is the desired inertia. Inserting (2.96) in (2.94) gives
[

mdE 0

0 Id

](

v̇ − uv

ω̇ − uω

)

= Fext. (2.97)

Thus, applying the control law (2.95) with (2.96) to the combined system dynamics (2.53)
results in decoupled translational and rotational dynamics equal to those of the flying robot,
but without velocity couplings. Now, any suitable control laws can be applied via the virtual
control inputs uv and uω without the need to account for the real inertia Λ, but for the
desired inertia Λd.
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"Once you have tasted flight, you will forever walk

the earth with your eyes turned skyward, for there

you have been, and there you will always long to

return."

— Leonardo da Vinci 3
Modeling and control of flying robots

In this chapter, independent modeling and control of flying robots is presented. The aim
is to highlight the crucial factors in flying robot control. Moreover, a control approach is
proposed that enables the flying robot to accurately follow a desired flight path even in the
presence of model uncertainties or external disturbances, such as wind or interaction forces.
The latter arise for example in contact with the robotic support system during take-off and
landing. Figure 3.1 shows a roadmap of this chapter.

Commonly, attitude and position controllers of flying robots only use a rigid body model
(see Section 3.2). The nonlinear dynamics of the rotor (or propulsion) system are usually
neglected and rotor thrust and torque are approximated using constant quadratic functions.

Section 3.2 Flying robot modeling

Rigid body model

Propulsion model

Atmosphere model

Section 3.3 Generalized trajectory tracking control

Attitude control

Position control
Omnidirectional

thrust
Bidirectional

thrust
Unidirectional

thrust

Section 3.4 Multicopter control allocation

Saturation handling with prioritization of control inputs

Section 3.5 Adaptive control approach

Air density or payload estimation

Section 3.6 Applications

Evaluation of bidirectional thrust and adaptive control

Figure 3.1: Structural overview of Chapter 3.
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However, rotor thrust and torque also linearly depend on the air density, which changes
depending on the local atmosphere. This uncertainty affects control performance, since
thrust and torque are not produced as expected, as well as the accuracy of disturbance
observers, which assume that applied thrust and torque are known. To achieve increased
performance, existing model-based control and external wrench estimation approaches are
extended using a novel adaptive control approach in Section 3.5. It enables trajectory
tracking, with formal passivity and convergence guaranty, and simultaneous air density
estimation. Alternatively, it can be used for payload estimation, because the mass of the
vehicle acts in a multiplicative way similar to the air density. In Section 3.3, position
control is presented from a generic perspective, i.e. in addition to common aerial vehicles
with unidirectional thrust vector, fully actuated vehicles (i.e. with omnidirectional thrust
vector) are considered and bidirectional thrust is introduced.

In Section 3.4, the distribution of generalized control forces, e.g. computed by position and
attitude controllers, to the actuators is treated. This is referred to as control allocation in the
aerospace and marine literature ([91], [92], p. 398). If the number of actuators N is greater
than the number of generalized control forces M , it is an overactuated control problem and
for N < M it is an underactuated control problem. Up to date, the control allocation for
flying robots is almost always solved without considering constraints. However, neglecting
the actuator limits can lead to actuator saturation and, in the worst case, to loss of control.
Therefore, multiple control allocation methods that consider different propulsion models
and actuator saturation are presented in Section 3.4.

On the considered flying robots at DLR, the rotor speeds can be measured. This is a matter
of the practical implementation and usually not possible on conventional unmanned aerial
vehicles. However, it has some major benefits. For instance, online rotor speed measure-
ments can be used to detect rotor saturation or failure, to perform an online parameter
identification (e.g. of the thrust and torque coefficients), and to implement closed-loop rotor
speed control.

This chapter is based substantially on the author’s own article [209], with the introduction
of bidirectional thrust and incremental control allocation being based on the author’s confer-
ence paper [215]. The remainder of this chapter is structured as follows. First, an overview
of the state-of-the-art in the respective fields is given in Section 3.1. Then, the considered
dynamical model of a flying robot and a parameter identification procedure are presented in
Section 3.2. Based on the rigid body dynamics, a generalized trajectory tracking controller
is introduced in Section 3.3 considering aerial vehicles with uni-, bi-, and omnidirectional
thrust vectors. In Section 3.4, control allocation for flying robots with multiple rotors
is presented and extended to polynomial propulsion models. Moreover, novel prioritized
saturation handling methods are discussed. In order to handle parameter variations, the
aforementioned adaptive controller is designed in Section 3.5. It specifically accounts for
varying air density or payload and is used to augment a hybrid external wrench estimator
used for disturbance rejection. Finally, the presented methods are evaluated in simulations
and experiments in Section 3.6.
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3.1 State-of-the-art flying robot control

In this section, state-of-the-art trajectory tracking, external wrench estimation, and satura-
tion handling approaches for flying robots are reviewed briefly and summarized in Table 3.1,
Table 3.2, and Table 3.3. Since flying robots are subject to wind, different environmental
conditions, and interaction forces, the emphasis is on approaches that account for external
disturbances as well as model uncertainties, such as a changing air density.

3.1.1 Trajectory tracking control

Many researchers have treated trajectory tracking control so far. A straightforward approach
is to use Proportional Integral Derivative (PID) control [93], with linearization about hover
[94] or feedback linearization [95]. The latter is sensitive to noise and modeling errors and
in general the convergence and stability of the integral part are difficult to assure. Other
approaches are the geometric controllers presented by Lee et al. [29] and by Mellinger et
al. [96], the Nonlinear Dynamic Inversion (NDI) based controller presented by Achtelik et
al. [97], and the integral sliding mode controller presented by Tomić et al. [98], wherein
also a comparison to linear Proportional Derivative (PD), linear PID, and adaptive integral
backstepping control [94] is given. In [94], a disturbance observer is used, which compensates
for model uncertainties.

In most of the above approaches, model uncertainties and parameter variations are neglected,
which lead to the development of adaptive controllers. Faessler et al. show in [99] that
the dynamics of a quadrocopter are flat1, also if first order (i.e. linear) drag effects are
considered, and use the identified drag coefficients as feed-forward compensation at high
velocities. Though, the quadrocopter system is not flat, as soon as higher order drag terms
are considered2. Fernando et al. [101] treat adaptive attitude control of a quadrocopter
with unknown inertia and achieve either asymptotic convergence of the attitude tracking
error or boundedness and robustness against disturbances via a leakage term. Though,
they neglect the influence of the air density on the propulsion wrench (i.e. rotor forces and
torques) of the quadrocopter. Demircioglu et al. [102] present adaptive attitude and altitude
control for a quadrocopter. They consider wind disturbances, but do not address the air
density explicitly and only provide simulation results. Schreier et al. [103] propose the
two classical adaptive control approaches Model Identification Adaptive Control (MIAC)
and Model Reference Adaptive Control (MRAC) for position and attitude control of a
quadrocopter. They consider a linearized quadrocopter model and a propulsion model with
lumped constant thrust and torque coefficients, i.e. which contain a constant air density.

An adaptive estimation of dynamical system and propulsion model parameters in conjunc-
tion with Incremental Nonlinear Dynamic Inversion (INDI) is presented by Smeur et al.

1In control theory, flatness means that the control inputs may be written as functions of the so-called

flat outputs (e.g. for flying robots the position and heading angle) and their derivatives. Flatness is used

in practice to simplify the trajectory generation problem by considering only the kinematics of the rigid

body [100].
2Please note that blade flapping [100] and drag models [99] are not considered in this work, because

robot-assisted take-off and landing are assumed to be performed at moderate velocities.
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Table 3.1: State-of-the-art trajectory tracking control of flying robots.

Reference Method Considered uncertainty / disturbances

[93, 94, 95] PID ✗/ ✗

[29, 96] Geometric, PD ✗/ ✗

[99] PD Rotor drag / ✗

[94] Integral backstepping ✗/ Ground effect
[98] Sliding mode ✗/ Acceleration-based observer

[101, 102, 103] MIAC, MRAC Plant model / Dryden gust model
[97] NDI ✗/ ✗

[104, 105] INDI Plant model / External force observer
[106] MPC ✗/ ✗

[107] MPC Perception system / ✗

[104]. This approach can be interpreted as a feedback linearization controller with a dis-
turbance observer. INDI allows to reject disturbances directly on acceleration level. How-
ever, angular acceleration measurements can only be obtained numerically on a flying robot
(hence, are noisy or delayed due to filtering) and the Least Mean Squares algorithm used
for parameter identification provides no guarantee for convergence of the tracking error and
does not yield the air density explicitly.

INDI is also used in combination with the differential flatness property of multicopters by
Tal et al. [105] to realize accurate tracking of aggressive quadrocopter trajectories. They use
a motion capture system for position estimation and neglect the influence of the air density
on the propulsion wrench, i.e. it will appear like a disturbance. Interestingly, they derive
an expression for the external forces similar to the external wrench estimators treated in
Section 3.5.4. A more recent trend in flying robot control is to include awareness of the
perception system [107] by defining a suitable cost function and using Model Predictive
Control (MPC) [106].

3.1.2 External wrench and wind estimation

Flying robots are subject to disturbances, e.g. close to the ground or close to structures, and
may be subject to wind disturbances if they operate outdoors. One of the first approaches
considering the influence of wind on flying robot control is the method by Waslander et
al. [108], who use a rigid body model and measured linear acceleration for wind estimation
and rejection. More accurate wind estimation is achieved by Tomić et al. [109] via an
aerodynamic power model and measured rotor speeds. General external wrench estimation
for flying robots is studied for instance in [110], [111], and [112]. The estimator by Tomić
et al. [112] is based on the original observer by de Luca et al. [81, 82]. In [112], it is
assumed that contact and wind forces can be distinguished, as shown in [113], and that
the commanded thrust and torques are exactly applied by the propulsion system (i.e. it is
assumed that the air density is known). This is, due to the varying air density, not true per
se. Thus, an additional online air density estimator is required.
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Table 3.2: State-of-the-art external wrench and wind estimation for flying robots.

Reference Method Considered air density

[108] Acceleration-based Known
[109] Aerodynamic power-based Known
[110] Constant mapping of controls to wrench Lumped
[111] Momentum-based Lumped

[112], [113] Acceleration-/momentum-based Known
[83] Lyapunov-based Lumped, constant
[85] Unscented quaternion-based Lumped, constant

This work Acceleration-/momentum-based Unknown, variable

The passivity-based control approach presented recently by Yüksel et al. [83] either requires
a direct measurement of the external wrench or uses a nonlinear Lyapunov-based wrench
observer. The latter depends heavily on the choice of the observer gain, shows poor per-
formance compared to sensor measurements, and neglects the influence of the air density
on the propulsion wrench. The external force and torque estimation for quadrocopters pro-
posed by McKinnon et al. [85] is based on the well-known unscented quaternion estimator
and also uses a lumped thrust coefficient with constant air density.

3.1.3 Prioritized control allocation under saturation

The thrust of a flying robot is limited and highly depends on the incoming airflow. The
relationship between propeller forces and airspeed is highly nonlinear [114] and no control
allocation algorithm actually considers this. However, the maximum thrust mainly depends
on the maximum rotor speed, which in turn depends on the motor/propeller combination
and on the available battery voltage.

Since attitude control is realized via differential thrust, control authority in roll, pitch, and
yaw is reduced, as soon as all rotors reach their maximum or minimum speed. Also, position
control performance in a cascaded loop highly depends on accurate attitude tracking. Going
into torque saturations will therefore also negatively impact position control performance.
This fact is crucial for robustness and can be accounted for on different levels in flying robot
control. It is important to notice, that saturation of the actuators means that the vehicle
is not able to follow the precomputed trajectory, for instance because of wind disturbances
or interaction forces. Any saturation handling will lead to a deviation from the desired
trajectory.

In the standard literature, control allocation with prioritization of the generalized forces is
achieved using a weighted pseudoinverse [115]. Though, the weighting is usually constant
and this method does not consider actuator limits. Raffler et al. [116] present pseudo
control hedging for multicopter path following. Pseudo control hedging is introduced by
Johnson et al. [117] for adaptive control of fixed-wing UAVs. It uses a virtual control input
on velocity or acceleration level and alters the input trajectory such that the limits of the
control surfaces (or actuators) are not exceeded. In other words, it changes the reference
trajectory in response to saturation. It is straightforward to implement and applicable for
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Chapter 3 Modeling and control of flying robots

Table 3.3: State-of-the-art prioritized control allocation for flying robots.

Reference Method Measured rotor speed

[92], p. 404 Weighted pseudoinverse ✗

[116, 117] Pseudo control hedging ✗

[118] Iterative root finding ✗

[120], [119] Active set ✗

This work Direct or iterative ✓

rate limiting and if a precomputed flight trajectory is available. Faessler et al. [118] present
a trivial solution to control allocation under saturation by iteratively reducing the thrust of
saturated rotors until the rotor speed limits are met. For this, an algebraic relation between
rotor thrust and torque based on the established quadratic model is derived. Experimental
results are presented only for saturation of the yaw torque. Smeur et al. [119] formulate
the control allocation as a constrained least squares problem and use weighted least squares
and an active set method [120] to solve the problem. It is a computationally expensive
but real-time capable approach. Similar to the above approach, only experimental results
for the yaw direction are presented. Note that all of the above approaches do not consider
the actual rotor speed due to a lack of appropriate sensors, but use the commanded rotor
speeds. Online recomputation or replanning of the trajectory [121, 122] is a different (and
usually computationally expensive) approach, which has to be implemented on the motion
planning level, rather than on the position and attitude control level. It is therefore not
treated in detail here. In contrast to state-of-the-art approaches, the direct and iterative
saturation handling procedures presented in this work consider a hierarchical prioritization
instead of a fixed weighting matrix. They do not require (but can make use of) a numerical
solution of the constrained control allocation problem.

3.2 Flying robot modeling

The components that constitute the flying robot plant model are summarized in Figure 3.2.
In general, the model is split into rigid body dynamics, actuator (motor) dynamics, and
aerodynamics, which are all presented in detail in the next sections. Figure 3.3 depicts a
quadrocopter which serves as an example of a flying robot.

ESC Motor Propellers
∑

Rigid body
∫ ∫

Battery

voltage Inertia, load
Atmosphere,

ground effect
Inertia, drag,

external wrench

Ωd U Ω Ti f , τ a, ω̇ v, ω p, R

Figure 3.2: Flying robot plant model with external influences and uncertainties.
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Figure 3.3: Quadrocopter with rotation directions of rotors Ωi, rotor thrust forces Ti, and body coordinate

frame Ψu. The origin of the body-fixed frame is the center of gravity of the rigid body. The

first axis points to the front of the vehicle, the second axis points to the right, and the third axis

points downwards, i.e. the three axes form a right-handed orthonormal base. Traditionally,

the pose of the vehicle is then described w.r.t. a North-East-Down (NED) world frame. For

convenience, the third axes is sometimes defined upwards [100] which means that the second

axis also changes direction and which results in the Forward-Left-Up (FLU) body frame and

the East-North-Up (ENU) world reference frame [123].

3.2.1 Considered rigid body model

The rigid body of a flying robot is composed of the fuselage (or frame) and the rotors. The
model employed by [124] is directly taken from [125] and considers the inertia of N rotors

Iuω̇ +
N∑

i=1

Ipω̇pi + ω ×
(

Iuω +
N∑

i=1

Ip(ω + ωpi)

)

= τ , (3.1)

where Iu and ω are inertia and angular velocity of the fuselage, ωpi are the rotor speeds
relative to the fuselage with i ∈ {1, . . . , N}. The inertia Ip is assumed equal for all N
propellers. This model is especially applicable to helicopter UAVs, where the main rotor
is relatively large compared to the fuselage and therefore contributes more to the overall
inertia. It is shown in [126], that modeling a helicopter as two rigid bodies increases control
performance. Instead of rotating blades, it is sufficient to treat the rotor as a static, solid
disk.

Usually, a multicopter is sufficiently well approximated by a single rigid body. Hence, its
dynamics are given by the Newton Euler equations and can concisely be written as [112]

mp̈ = −mge3 + TRiue3 + fext, (3.2)

Iuω̇ = S(Iuω)ω + τcog + τ + τext, (3.3)

Ṙiu = RiuS(ω). (3.4)

Therein, m is the mass, Iu is the overall inertia tensor of the flying robot, g is the acceleration
of gravity, e3 = (0 0 1)T is a unit vector, T is the scalar cumulative thrust, and τ is the
input torque. The angular velocity of body w.r.t. inertial frame is denoted with ω, Riu

is the rotation matrix from body to inertial frame, and S(·) is the skew-symmetric matrix
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Chapter 3 Modeling and control of flying robots

representation of the cross product (2.5). Different representations of Riu are presented in
Section 2.4.1. The geometric center of the multicopter frame is chosen as reference point.
An offset rg between the origin of the body-fixed frame and the center-of-gravity of the
fuselage is accounted for by the term τcog = mgS(rg)R

T
iue3. Furthermore, fext and τext are

external forces and torques, arising from physical interaction with the environment, from
external disturbances like wind, or from parametric uncertainties.

3.2.2 Considered propulsion model

The propulsion system of a flying robot consists of two main parts: the motor and the rotor
blades (or propellers).

The simplified dynamics of a standard brushless direct current (BLDC) motor are [127]

Ua = KeΩ+ iaRa + La
dia
dt
, (3.5)

τm = (Kq0 −Kq1ia)ia, (3.6)

IrΩ̇ = τm − τ. (3.7)

Therein, Ua, ia are voltage and current through the motor and Ω is the rotor speed. Fur-
thermore, Ra is the motor resistance and La is the motor coil inductance. The constant
Ke is related to the motor’s Kv-rating [127] defined as Ω = KvUa and Kq0 and Kq1 are
specific constants that need to be identified for a given BLDC motor. Finally, Ir is the
motor inertia, τm is the motor torque, and τ is the aerodynamic drag torque defined below
in (3.10).

For constant rotor speed and constant current and if the quadratic termKq1i
2
a (that accounts

for degrading torque efficiency associated with high currents) is neglected, it follows that

Kq0

(
Ua
Ra
− Ke

Ra
Ω

)

= τ. (3.8)

From the above the following observations can be drawn:

• For a fixed load τ , the motor speed Ω is only affected by the applied voltage Ua. An
increase in voltage results in an increase in speed.

• For a fixed voltage Ua, the motor speed Ω is inversely affected by the load τ . An
increase in load torque results in a decrease in speed.

The exact load on the motor is unknown in practice. It depends on the aerodynamics of the
propeller and changes with varying rotor inflow conditions. In addition to the unknown load
on the motor, the rotor speed is affected by changes in battery voltage Ubat. The voltage
supplied to the motor is controlled using an electronic speed controller (ESC). The ESC
supplies a defined voltage U = kUbat to generate a desired rotor speed. Modern ESCs for
BLDC motors use either six-step commutation or field oriented control (FOC) [128, 129].
Six-step commutation involves a zero-crossing detection to adjust the switching time and
to acquire a motor speed estimate. Closed-loop speed control is typically not implemented.
FOC uses an estimate of the electric speed and angle to commutate the motor. This results
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in better torque control and increased efficiency [128]. Other ESCs, like ESC32 [130], or the
approaches presented in [127] and [131] also directly implement rotor speed control on the
microcontroller of the ESC. For ESCs without rotor speed feedback control, battery voltage
can be measured and the drop in thrust force can be compensated as done by [118, 132].
However, a model-based voltage compensation is still prone to modeling errors and sensor
noise.

The second component of the rotor system is the propeller, which is spun by the motor and
which produces a force depending on the airfoil of the propeller blades. In principle, the rotor
blades produce thrust by moving air through the rotor disk plane which creates a flowfield.
This induced flowfield contributes to the local blade incidence and the dynamic pressure
which results in a lifting force [114]. Today, highly accurate aerodynamics models including
simulation of turbulence can be derived with the aid of computational fluid dynamics (CFD)
[133]. However, this is computationally demanding and not suitable for real-time control
and therefore not considered in this work. For flight dynamics around hover, it is sufficient
to consider only the normal component of the inflow [134], which is called the induced
downwash. In classical helicopter aerodynamics, rotor thrust is modeled using momentum
theory, blade element theory, or combinations thereof [114]. For flight control, momentum
theory and a steady-state solution of the rotor inflow are usually utilized [100]. It is assumed
that the flying robot is hovering, i.e. not translating horizontally or vertically, which leads
to

Ti = ρCTAR
2Ω2

i , (3.9)

where Ti is the thrust produced by a single rotor i, CT is the thrust coefficient, ρ is the
air density, A is the rotor disk area, R is the rotor radius, and Ωi is the rotor speed. For
convenience, rotor specific parameters, such as rotor radius and rotor disk area, may be
lumped in the thrust and torque coefficients [100]. Then, rotor thrust Ti and torque τi are
given by

Ti = ρcΩ2
i ,

τi = ρkΩ2
i ,

(3.10)

where c and k are the thrust and torque coefficients, respectively. They are identified
experimentally as depicted in Figure 3.4. In contrast to [100], here the air density ρ is
explicitly not lumped in c and k.

It is shown in [135], that the assumption Ti ∝ Ω2
i does not hold for flights at high forward

velocities. The propeller identification in Section 3.2.5 also reveals, that bidirectional thrust
under static conditions follows a polynomial with order ≥ 2 (see Figure 3.4), where offset
and linear term are due to losses at high rotor speeds, while a cubic term is not physically
motivated, but convenient because it naturally covers the transition from positive to negative
thrust. In the literature, more accurate thrust (or torque) to rotor speed mappings are
reported using a second order polynomial (cf. Figure 3.4) of the form [136, 118, 215]

Ti = aT0 + aT1Ωi + aT2Ω
2
i , (3.11)

τi = aQ0 + aQ1Ωi + aQ2Ω
2
i . (3.12)

The offset and the linear term in (3.11) are due to losses at high rotor speeds [114]. Polyno-
mials with order > 2 are not considered by standard control allocation procedures. Thus,
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Figure 3.4: Comparison of quadratic (2nd order), cubic (3rd order), and quartic (4th order) polynomial

fitting of rotor thrust and torque measurements.

the control allocation is generalized to polynomial propulsion models in Section 3.4.3 and
Section 3.4.4.

3.2.3 Ground effect models

Rotorcraft operating near ground experience the so-called ground effect, which essentially
increases the net rotor thrust because of increased inflow due to rotor downwash reflection
on the ground (see [137] and the references therein). It is clear that this effect needs to be
accounted for especially during take-off and landing.

Empirical ground effect models for helicopters from the literature [138] are

TIGE
TOGE

=

(

1− 1

(4h/R)2

)−1

Cheeseman and Bennet (3.13)

TIGE
TOGE

=

(

0.9926 +
0.03794

(h/2R)2

)2/3

Hayden (3.14)

where h is the height above ground, R is the rotor radius, and the indices IGE and OGE

describe the states "In Ground Effect" and "Out of Ground Effect", respectively. For
multicopters, several definitions of the effective rotor radius R exist. For example, the
distance from the outer tip of one rotor to the vehicles center may be used [138]. In [139], it
is shown that the ground effect can also be modeled as a spring. The predominant opinion
in the literature is that the ground effect is measurable up to h = 6R. Note that the above
formulas are not explicitly considered for control. Instead, the adaptive control approach
presented in Section 3.5 implicitly accounts for the ground effect, since it decreases (or
increases) the thrust in response to a pose error induced by the ground effect.

3.2.4 Atmosphere model

To assess the variation of the air density w.r.t. to the local atmosphere and, hence, the
variation of the thrust of a multirotor, an established atmosphere model shall be used. The
air density ρ may be calculated using the well-known gas equation ([140], p. 63)

ρ =
p

RfTK
, (3.15)
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(a) Air density ρ w.r.t. air temperature TC at con-

stant pressure p.

(b) Air density ρ w.r.t. pressure p at constant air

temperature TC .

Figure 3.5: Variation of the air density computed using the atmosphere model presented in Section 3.2.4.

The sea level standard atmosphere is defined as pstd = 1013 hPa, Tstd = 20 ◦C, and δ = 0,

which yields ρstd = 1.204 kg/m3 (red diamond). Copyright © 2020 IEEE [209].

where p is the air pressure in Pascal (Pa), TK is the temperature in Kelvin (K) and Rf
is the gas constant. Note that the air density scales linearly with air temperature and air
pressure. Its dependency on the relative humidity δ is considered via

Rf =
Rd

1− δ psatp (1− Rd
Rs

)
, (3.16)

with
Rd = 287.058 J / (kg K) dry air,
Rs = 461.523 J / (kg K) steam.

Therein, psat is the saturation vapor pressure which is obtained using the empirical Magnus
formula [141]

psat = p0 exp
C1TC
C2 + TC

, (3.17)

where {

C1 = 17.08085, C2 = 234.175 ◦C, if TC ≥ 0 ◦C,
C1 = 17.84362, C2 = 245.425 ◦C, if TC < 0 ◦C,

with p0 = 610.78Pa and TC being the air temperature in degrees Celsius (◦C). Figure 3.5
visualizes the influence of absolute air pressure p, temperature TC , and relative humidity
δ on the air density ρ. Figure 3.5a and Figure 3.5b reveal a difference in the air density
of approximately 20% in the considered temperature and pressure range. That means a
difference in thrust and torque of up to 20%, since both scale linearly with ρ (cf. (3.10)).
This variation has to be compensated by both the position and the attitude controller. Fur-
thermore, it becomes clear that the relative humidity has minor influence on the air density
(between 0.11% and 2.86% in Figure 3.5a and between 0.99% and 0.84% in Figure 3.5b).

3.2.5 Parameter identification procedure

Motivated by the approach presented in [19], the following hierarchical parameter identifi-
cation procedure is proposed: First, the parameters of the quadratic (3.10) or polynomial
propulsion model (3.11) are identified in a static experiment using a force-torque sensor and
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Figure 3.6: Offline identification of thrust and torque coefficients assuming a constant atmosphere and no

disturbances.

by measuring force, torque, and rotor speed (cf. Figure 3.6). An exemplary propeller identi-
fication is described in detail below. The motor model (3.7) can be identified independently
on a test bench via voltage, current, motor speed, and motor torque measurements. The
air density ρ can be calculated using an atmosphere model and temperature, barometric
pressure, and humidity sensor measurements. A possible uncertainty of the air density due
to changing weather or altitude requires continuous on-board sensor measurements or an
adaptive control approach (see Section 3.5). The mass m of the flying robot is straightfor-
ward to measure using a scale. To determine the location of the center-of-gravity (CoG),
multiple scales can be used to measure the forces at four corners of the aerial vehicle. From
a moment equilibrium and known forces and locations of the force measurements, two co-
ordinates of the CoG may be determined, i.e. two sets of measurements are necessary to
determine all three coordinates of the CoG. To identify the inertia, dynamic experiments
with a gravitational, a torsional, or a multi-filar pendulum [142] can be performed. Assum-
ing that the other parameters mentioned above are already known, the CoG and the inertia
can also be identified from flight data using the dynamical model (3.2), (3.3), (3.4) and
acceleration and rotor speed measurements. That leads to a system of equations which can
be solved in a least squares sense [19]. Note that for the parameters to converge, the three
rotational DoF must be sufficiently excited in the flight experiment.

Propeller identification

A propeller can be characterized by its diameter, slope, and blade number, but the main
influence is its airfoil [144]. To study the latter in detail and to find the most suitable pro-
peller for thrust inversion, accurate aerodynamic models and wind tunnel measurements are
needed [135]. This is beyond the scope of this thesis. Instead, the propellers for considered
quadrocopter Sparrow3 are identified via a static thrust test. For this, the quadrocopter is
mounted on a JR3 force-torque sensor, as shown in Figure 3.7a.

3The system identification of the DLR hexacopter Ardea is treated in detail in [19].
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1
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(a) Quadrocopter MAV mounted on the JR3

force-torque sensor (maximum rating

40N/4Nm@1 kHz) for static thrust tests

with rotor numbers 1 to 4. The rotation

directions are 1: CW, 2: CCW, 3: CW, 4:

CCW.
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b)
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(b) Selection of 5 inch propellers: a) HQ 5x4x2, b)

HQ 5x4x3, c) HQ 5x4x3V1S, d) HQ 5x4.5x3DP,

e) Graupner 3D 5x3.5x3, where the first number

is the diameter in inch, second number is the slope

in inch, and the third parameter is the number of

blades.

Figure 3.7: Propeller identification performed using a force-torque sensor. Copyright © 2018 IEEE [215].

Table 3.4: Propeller names, materials, and masses.

Name Material Mass [g]

a) HQ 5x4x2 Glass fiber composite 2.7
b) HQ 5x4x3 Glass fiber composite 3.7
c) HQ 5x4x3V1S Poly carbonate 3.5
d) HQ 5x4.5x3DP Poly carbonate 5.8
e) Graupner 3D 5x3.5x3 Polyamid glass fiber 5.8

Because of the size of the quadrocopter, only 5 inch propellers (see Figure 3.7b) are used.
From the commercially available ones, a set of five propellers is selected with different blade
numbers and slopes, different materials, and comparable mass (c.f. Table 3.4). For all
tests a RHD D2204 2300kv brushless DC motor and a Floureon Lithium-polymer battery
(3S, 11.1V, 1500mAh, 35C) are used. The on-board computer of the quadrocopter is a
Raspberry Pi 3 with Raspbian Linux and real-time patch, an emlid Navio2 sensor hat, as
well as completely custom-built autopilot soft- and middleware.

The KISS 24A ESC accepts PWM input up to 800Hz and sends serial telemetry messages
at up to 1 kHz. A telemetry rate of 100Hz was chosen and found sufficient due to the
static nature of the tests. Starting from 1500 PWM (motor stop), steps of 100 PWM until
2000 PWM (full forward) and then down to 1000 PWM (full backward) are commanded.
The measurements of the JR3 sensor are logged as well as the telemetry provided by the
ESC, i.e. temperature, voltage, current, and revolutions per minute. Due to high frequency
noise induced by the propellers spinning at up to 230001/min, the force and torque data
is low-pass filtered resulting in measurements at 10Hz. The ESC telemetry is manually
synchronized with the force measurements.
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Figure 3.8: Summarized test results for rotor i = 1 and all five propellers. Copyright © 2018 IEEE [215].

Figure 3.8 summarizes the outcome of the static thrust test for all five propellers (see Fig-
ure 3.7b) mounted at rotor i = 1, which rotates clockwise for upward and counter-clockwise
for downward thrust. Besides the mapping of PWM1 to rotor speed Ω1 in Figure 3.8a, it
shows the thrust f1 w.r.t. Ω1 (Figure 3.8b), the torque τ1 w.r.t. Ω1 (Figure 3.8d), as well as
the electrical power P = UI w.r.t. f1 (Figure 3.8c).

Because of its small mass (cf. Table 3.4) and drag, the tested two-blade propeller HQ 5x4x2
spins the fastest, but due to its smaller blade area it does not produce as much upward and
downward thrust as the other tested propellers. The propellers HQ 5x4x3 and HQ 5x4x3V1S
almost share the same blade geometry, but the HQ 5x4x3V1S is much more flexible, which
results in blade oscillations. That became evident in noisy force-torque sensor measurements
at all rotor speeds. Instead, the propeller HQ 5x4x3 is stiffer, has less undercamber, and
produces much more up- and downward thrust compared to the HQ 5x4x3V1S (cf. 3.8b).
The HQ 5x4.5x3DP and the Graupner 3D propellers are the heaviest and stiffest propellers
under test. The first one has the highest slope tested and therefore produces the highest
thrust at maximum rotor speed, as can be seen in Figure 3.8b. However, it also has the
highest power consumption (Figure 3.8c). Because of its unsymmetric undercambered blade
geometry and the small downward thrust shown in Figure 3.8b, is is unsuitable for realizing
bidirectional thrust. As expected, the Graupner 3D propeller produces the maximum down-
ward thrust. To the best of the author’s knowledge, it is currently the only available 5 inch
propeller with a fully symmetric profile and neutral blade geometry. It has also the lowest
slope of the tested propellers, which makes it suitable for flying at low velocities and which
explains the low power consumption shown in Figure 3.8c. It is selected for further flight
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experiments with the quadrocopter depicted in Figure 3.7a. The identified coefficients of
the propulsion model (3.10) or of the polynomials (3.11) and (3.12), respectively, are used
in the multicopter control allocation described in Section 3.4.

3.3 Generalized trajectory tracking control

A flying robot has six degrees of freedom (three rotational and three translational degrees of
freedom), but usually less control inputs, i.e. the system is underactuated. A demonstrative
illustration of this fact is, that the vehicle needs to tilt its thrust vector and therefore
change its orientation in order produce a force in a desired direction. This leads to the
cascaded control structure as shown in Figure 3.9. The outer position controller computes a
desired thrust force and a desired orientation, which are then forwarded to the inner attitude
controller and to the control allocation, respectively [112]. Due to the flatness property of
multicopter aerial vehicles with linear drag model [96, 99], it is also possible do derive the
controls T in (3.2) and τ in (3.3) or the angular rates ω directly from the desired flat
outputs (position p and yaw ψ) [97, 219, 99, 105]. Nevertheless, the cascaded structure is
advantageous because the attitude control can be used even if a position controller is not
present, e.g. if the flying robot is manually piloted.

Position

controller

Trajectory

generator
Attitude

controller

Control

allocation

Flying

robot

State

estimation

Td

pd, vd, ad

ψd Rid, ωd τd

Ωd

Riu, ω
p, v

Ω

Figure 3.9: Cascaded attitude and position control loop.

In contrast to the underactuated flying robots mentioned above, there also exist fully actu-
ated vehicles. Thus, in order to generalize trajectory tracking control, aerial vehicles with
uni-, bi-, and omnidirectional thrust vector (i.e. a fully actuated control allocation matrix)
are treated in the following.

3.3.1 Attitude controller

The inner loop of the cascaded controller depicted in Figure 3.9 is the attitude controller.
For attitude (orientation) tracking control, the geometric control law from [29] is employed

τd = J

(

Kω(ωd − ω)− 1

2
kReR

)

, (3.18)

but without accounting for the desired angular acceleration for simplicity, because otherwise
reference jerk, reference snap, and the first derivative of the commanded thrust would be
required [105]. In (3.18),

eR = (RT
idRiu −RT

iuRid)
∨ (3.19)
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is the geometric attitude error, whose properties are provided in [29], Rid is the desired
orientation, and (·)∨ denotes the vee map, i.e. the inverse of the cross product operation
S(·). The positive definite matrix Kω and kR > 0 are design parameters. The attitude
controller (3.18) may be used for all flying robots considered in this work. An estimate τ̂ext

of the external disturbances can be added to (3.18) as shown in Section 3.5.4.

3.3.2 Upright and inverted equilibrium

In this thesis, the ability of a multicopter UAV to produce up- and downward thrust is
demonstrated (see Figure 3.10). This is realized by using almost or fully symmetric pro-
pellers as well as modern ESCs, which are able to invert the motor’s direction of rotation
during flight (referred to as 3D mode). Basically, bidirectional thrust increases (and in
the case of fully symmetric propellers it even doubles) the possible envelope of the control
wrench compared to state-of-the-art approaches. A multicopter with bidirectional thrust
differs from common unidirectional thrust vehicles, because it is able to stabilize its position
and orientation at an upright and additionally at an inverted equilibrium. This allows to
realize novel applications that are discussed in Section 3.6.1.

To derive the equilibria, recall the translational dynamics (3.2). A static equilibrium exists,
if all derivatives of the state p vanish, hence, p̈ = 0 and

Riu(q)T = mge3. (3.20)

Clearly, for vehicles with unidirectional thrust the only equilibrium, from now on referred
to as upright equilibrium, is at

T =






0

0

mg




 , Riu = Rup =






· · 0

· · 0

0 0 1




 , (3.21)

where · denotes an arbitrary element in the rotation matrix. Note that for fully actuated
vehicles [145, 146], there exists a region of attraction, whose size depends on the maximum
applicable thrust force in xb- and yb-direction (cf. Figure 3.12). Because of the ability to

Figure 3.10: Quadrocopter with symmetric fixed-pitch propellers and bidirectional thrust flying upright

(left) and inverted (right). Copyright © 2018 IEEE [215].
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3.3 Generalized trajectory tracking control

produce positive and negative thrust, flying robots with bidirectional thrust vector have a
second stable equilibrium, the inverted equilibrium, at

T =






0

0

−mg




 , Riu = Rinv =






· · 0

· · 0

0 0 −1




 . (3.22)

For underactuated multicopter UAVs the equilibria correspond to an arbitrary yaw angle ψ
and zero (upright) or π (inverted) tilt angle φ:

cos(φ) = eT3 Riue3 = r3,3 = 1− 2q2x − 2q2y , (3.23)

where r3,3 is the lower right element of Riu and the quaternion representation q = (η ǫ)T

follows from the Euler-Rodrigues formula (see Appendix A7). Hence, the transformation
from upright to inverted equilibrium Rinv = RflipRup is obtained from (A7.1) in Ap-
pendix A7 and qw = qz = 0 as

Rflip =






1− 2q2y 2qxqy 0

2qxqy 1− 2q2x 0

0 0 −1




 , (3.24)

where the flip axis is defined as ǫ = (qx qy 0)T with ||ǫ|| = 1.

In order to hold a constant altitude, the maximum tilt angle of a multicopter is given by

cos(φmax) =
mg

Tmax
. (3.25)

Therefore, to transition from the upright to the inverted equilibrium and back, a suitable
trajectory has to be generated (see Appendix A6). From an energetic point of view, there is
no necessity to switch between the upright and the inverted equilibrium under normal flight
conditions, e.g. hovering or path following, except if one is more efficient due to the propeller
profile. Depending on the task of the flying robot, it might be sufficient to stabilize either
the upright or the inverted equilibrium. The decision which one to choose can be made
based on the actual tilt angle and the shorter distance to the respective equilibrium.

3.3.3 Common unidirectional thrust

Commonly, the thrust of each fixed-pitch propeller of a flying robot with multiple rotors is
modeled as unidirectional [100]. This has mainly two reasons: Firstly, common electronic
speed controllers (ESCs), which are used to control the rotational speed of the motors [131],
are programmed to drive the motor either clockwise (CW) or counter-clockwise (CCW)
and the direction of rotation can not be reversed during flight. Secondly, the propellers
used in flying robots are usually fixed-pitch, i.e. can not change the blade pitch as e.g.
conventional helicopters do, and are unsymmetric. These propellers produce less or even
no thrust, if spun in the opposite direction. For common flying robot tasks, the described
state-of-the-art setup is the most efficient one. However, as will be shown in the control
allocation in Section 3.4, it restricts the control wrench to half of the manifold achievable
with bidirectional thrust rotors.
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Chapter 3 Modeling and control of flying robots

A control law to track a desired position pd(t) = (xd(t) yd(t) zd(t))
T is given by

fi = m
(

p̈d +Kd
˙̃p+Kpp̃

)

+mge3, (3.26)

where p̈d is the desired linear acceleration, Kd ∈ R
3×3 is a diagonal positive damping,

Kp ∈ R
3×3 is a diagonal positive proportional gain, and p̃ = pd − p is the position error.

The force fi in the inertial frame has to be mapped to the vertical axis of the vehicle’s
body frame. Define xu = Riue1, yu = Riue2, and zu = Riue3, with e1 = (1 0 0)T ,
e2 = (0 1 0)T , and e3 = (0 0 1)T , respectively. It is clear, that Riu = [xu yu zu]

and ||xu|| = ||yu|| = ||zu|| = 1. Then, the projected desired thrust is given by

Td = zTu fi = cos(φ)||fi||. (3.27)

If the angle φ between zu and fi is zero, i.e. fi directly points in the direction of zu, the
projected thrust is equal to the Euclidean norm of fi.

From fi, the desired attitude of the flying robot is computed, e.g. as recently described in
[99], or more efficiently as done in [98, 147] via the quaternion4

qd =
1

√

2(1 + fTb fi)

(

1 + fTb fi

fb × fi

)

, (3.28)

where the sign of the third component of fb = (0 0 ±1)T is chosen such that fTb fi ≥ 0.
For fi = 0 it is impossible to derive the orientation using (3.28). This is uncommon, but
for a flip trajectory it occurs during a very short period of time (see Figure 3.20d). Hence,
at fi = 0 the orientation is hold constant. Subsequently, qd is converted to a rotation
matrix using (A7.1). The desired yaw angle ψd of the multicopter can be selected freely as
needed for the task. The resulting rotation matrix Rid = R(qd)Rz(ψd) is then passed to
the attitude controller (3.18).

The position and the attitude controller are PD controllers. Using Lyapunov theory, it is
straight forward to show, that with this control laws and without external disturbances or
model uncertainties, the position and attitude equilibria are asymptotically stable. Though,
as mentioned before, parameter uncertainties in the model and in the produced thrust as well
as external disturbances, like wind, will degrade trajectory tracking performance. Hence, in
order to increase robustness, an adaptive control approach is presented in Section 3.5.

3.3.4 Extension to bidirectional thrust

If a flying robot is able to produce negative thrust in the body frame, i.e. if the thrust
vector is bidirectional, an ambiguity exists between upright and inverted flight, because the
force fi is the same in both cases. Therefore, in practice upright or inverted thrust and the
corresponding attitude equilibrium are selected using the binary switches

σ =

{

1, upright,
−1, inverted,

Rswitch =

{

E3×3, upright,
Rflip, inverted,

(3.29)

4The derivation of this formula can be found in Appendix A5.
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3.4 Multicopter control allocation under saturation

with Td = σzTu fi as before and Rflip defined in (3.24). Again, the desired yaw angle ψd of
the multicopter can be selected independently. The resulting rotation matrix

Rid = RswitchR(qd)Rz(ψd)

is then passed to the attitude controller (3.18).

3.3.5 Extension to omnidirectional thrust

More recent research on multicopter UAVs focuses on full actuation in six degrees of free-
dom, which is especially useful for disturbance rejection and physical interaction with the
environment. This is achieved by passively tilting the rotors in a hexagonal configuration
[145, 146, 148]. However, even in this configuration there is no downward thrust and, hence,
the maximum downward acceleration is given by gravity. Recently, quadrocopters [149] and
hexacopters [150] with actuated lever arms are developed. They are able to apply forces
in any direction while maintaining an arbitrary orientation, at the cost of increased weight
and complexity due to the additional actuators.

Position

controller

Trajectory

generator

Attitude

controller

Control

allocation

Flying

robot

State

estimationfdpd, vd, ad

Rid, ωd, τd

Ωd

Riu, ω

p, v

Ω

Figure 3.11: Attitude and position control loop for fully actuated aerial vehicles.

Researchers have also tried to overcome the limitations of fixed-pitch propellers by using
variable-pitch propellers [147, 151, 152], like the ones used on helicopters, which include a
swashplate, a pitch link, and a servo motor [153]. This results in a more complex controller
design (rotor pitch has to be controlled in addition to rotor speed) and the need for additional
mechanical parts. The latter is indeed crucial on flying robots, because their take-off-weight
is limited by the maximum available thrust force. The resulting multicopters with non-
parallel thrust vectors are fully actuated, i.e. position and orientation can be controlled
independently. Hence, cascaded position and orientation control is superfluous, leading to
the controller structure depicted in Figure 3.11.

3.4 Multicopter control allocation under saturation

The mapping of desired thrust Td and torque τd computed by position and attitude con-
troller, respectively, to rotor speed commands Ωi (or more general to so-called control surface
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Chapter 3 Modeling and control of flying robots

deflections5) is referred to as control allocation ([92], p. 398). During fast maneuvers or due
to external disturbances, it may occur in practice that the rotor speeds are saturated, i.e.
that the attitude and position commands can not be realized. Therefore, a general con-
trol allocation procedure and different saturation handling strategies are discussed in this
section.

zu

yu

xu

χi

αi

ni

βi

zi

yi

xi

r

Figure 3.12: Rotor coordinate system and transformations of rotor i w.r.t. multicopter body frame u.

3.4.1 General control allocation for quadratic propulsion models

In the following, a general control allocation is presented considering flying robots with even
number of propellers N ≥ 4 and generic rotor configurations as shown in Figure 3.13. The
position of propeller i ∈ [1, N ] in the flying robot’s body frame u as shown in Figure 3.12
is

ri = r ·
(

cos(χi) sin(χi) 0
)T

(3.30)

and the rotor normal vector is

ni = Rz(χi)Ry(βi)Rx(αi)e3. (3.31)

From the propulsion model (3.10) it follows, that the thrust force vector Ti produced by
each propeller i is derived as

Ti = ρcniΩ
2
i , (3.32)

assuming equal thrust coefficients c for all rotors. Therein, ρ is the air density and ni is the
normal vector defined as above. The torque τi generated by propeller i is given by

τi = ρ(cri × ni + Pikni)Ω
2
i , (3.33)

where k is the equal torque coefficient of all propellers and Pi ∈ {-1, 1} denotes the propeller’s
direction of rotation (positive for clockwise and negative for counter clockwise revolutions).

Finally, the mapping from rotor speeds Ωi to forces f =
N∑

i=1
Ti and torques τ =

N∑

i=1
τi, i.e.

the control allocation matrix B of size 6×N with

(

f

τ

)

= ρB






Ω2
1
...

Ω2
N




 = ρB̟ (3.34)

5A helicopter with main and tail rotor can be considered a special type of multicopter. However, on

helicopters the blade pitch angle is actuated using a servo mechanism [154], in contrast to multicopters

where the blade pitch angle is fixed.
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3.4 Multicopter control allocation under saturation

is found as

B =

[

cn1 · · · cnN
cS(r1)n1 + P1kn1 · · · cS(rN )nN + PNknN

]

, (3.35)

where ̟ = (Ω2
1 · · · Ω2

N )
T is a vector containing the squared rotor speeds. The multi-

copter is fully actuated for rank(B) = 6, underactuated for rank(B) < 6, and overactuated
for rank(B) > 6. Furthermore, a multicopter with more rotors then actuated degrees of
freedom, i.e. N > rank(B), is referred to as redundant. Note that full actuation is associ-
ated and, hence, also verifiable with nonzero elements in the second and third row of the
vector on the left side of (3.34).

If all N rotors lie in a plane, as for instance on most common multicopters, the cumulative
thrust is a unidirectional vector through the center of mass and perpendicular to this plane.
The above mapping is then defined using the scalar thrust T and the allocation matrix
B(c, k, r) ∈ R

4×N as
(

T

τ

)

= ρB̟. (3.36)

In this work, a quadrocopter (subscript Q) as shown in Figure 3.13a and a coaxial hexa-
copter (subscript H) as depicted in Figure 3.13b are treated exemplarily. It holds for both
configurations that all rotors lie on a circle with radius r. The coaxial rotor configuration of
the hexacopter is characterized by different thrust and torque coefficients for upper (cu, ku)
and lower propeller (cl, kl). This difference is due to the fact that the lower propeller oper-
ates in the downstream of the upper propeller and therefore has a different inflow velocity.
The allocation matrices BQ of the quadrocopter and BH of the hexacopter are provided in
Table 3.5.

(a) Sparrow (b) Ardea (c)

T2

T1

T3

T4

r

Ω4

Ω1

Ω2

Ω3

xu

yu

zu

(d) Quadrocopter

T1 + T4

T2 + T5

T3 + T6

r

xu

yu

zu

Ω4

Ω1

Ω5

Ω2

Ω3

Ω6

(e) Coaxial hexacopter

Ω4

Ω1

Ω2

Ω3

Ω5

Ω6

xu

yu

zu
T1

T2

T3
T4

T6

T5
r

(f) Fully actuated hexacopter

Figure 3.13: Examples of flying robots with multiple rotors used for the experiments.
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Table 3.5: Exemplary control allocation matrices.

BQ BH










−c −c −c −c
√
2cr
2 −

√
2cr
2 −

√
2cr
2

√
2cr
2√

2cr
2

√
2cr
2 −

√
2cr
2 −

√
2cr
2

−k k −k k




















−cu −cu −cu −cl −cl −cl
√
3 cu r
2 −

√
3 cu r
2 0

√
3 cl r
2 −

√
3 cl r
2 0

cu r
2

cu r
2 −cu r cl r

2
cl r
2 −cl r

ku ku ku −kl −kl −kl











In order to obtain the required rotor speeds Ωi for a desired thrust Td and torque τd com-
manded by position and attitude controller, respectively, the relation (3.36) needs to be
inverted. For a quadrocopter, i.e. a quadratic allocation matrix BQ ∈ R

4×4, the general
inverse B

#
Q = B−1

Q is straightforward to compute. For a hexacopter with BH ∈ R
4×6, the

Moore-Penrose pseudoinverse may be used

B
#
H = BT

H(BHB
T
H)

−1, (3.37)

which minimizes the Euclidean norm ̟T̟ (see Appendix A3 for a proof). The hexacopter
is redundant. Under the assumption that the collective thrust is sufficient even with less than
six rotors, the control allocation can be recomputed by deleting the column corresponding to
the lost rotor in BH . However, an equilibrium of rotor forces and moments is only obtained
for a finite set of remaining rotors that satisfies BHB

#
H = E, i.e. for which B

#
H exists.

Otherwise, the vehicle will rotate with a defined steady-state angular velocity [124].

Finally, the general control allocation is given by

̟ =
1

ρm
B#

(

Td
τd

)

, (3.38)

where ρm is the model air density (usually considering the sea level standard atmosphere)
and Ωi is found by taking the square root of the corresponding element of ̟. Inserting
(3.38) in (3.36) yields the following relation between actually applied and desired thrust

T =
ρ

ρm
Td, (3.39)

which will be used later on in Section 3.5 for the development of an adaptive controller.

3.4.2 Numerical comparison of uni- and bidirectional thrust

It is stated above, that bidirectional thrust increases the control wrench compared to unidi-
rectional thrust. This is intuitively true for the scalar thrust T . For the torque τ a numerical
comparison is provided in Figure 3.14, generated by sampling the admissible rotor thrust.
The numerical values in Table 3.6 apply to the quadrocopter Sparrow (see Figure 3.13a).

The maximum torques lie within a cuboid with slope ∆τ = l
κ . Note that the maxima of τx

and τy are equal, thus, τy is not shown in Figure 3.14. Areas where the cumulative thrust
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3.4 Multicopter control allocation under saturation

Table 3.6: Numerical comparison between uni- and bidirectional thrust for quadrocopter Sparrow.

Numerical example (Sparrow)








T

τx
τy
τz








=








−1 −1 −1 −1
l −l −l l

l l −l −l
−κ κ −κ κ















T1
T2
T3
T4








l = 0.08m
κ = 0.25

m = 0.52 kg
g = 9.81m/s2

unidirectional thrust: 0 ≤ Ti ≤ 3.5N
bidirectional thrust: −3.5N ≤ Ti ≤ 3.5N
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m
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unidirectional 6 mg
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bidirectional 6 mg, 1 rev.

bidirectional 6 mg, 2 rev.

Figure 3.14: Comparison of available torques τx and τz with unidirectional and bidirectional thrust. The

plot is generated by sampling the complete admissible rotor thrust range given in Table 3.6.

Note that the actual torque limits depend on the thrust set-point and that the figure shows

a cut at τy = 0 through an octahedron.

exceeds gravity and where one or two propellers rotate in the reverse direction are highlighted
using different colors in Figure 3.14. It can be concluded, that in this particular case the
torque produced with bidirectional thrust (blue) indeed covers twice the area compared to
the torque produced with unidirectional thrust (red).

3.4.3 Nonlinear control allocation for polynomial propulsion models

The control allocation can be extended to account for polynomial propulsion models. For
this, the mapping of rotor forces and torques (3.32) - (3.35) is stated differently. The thrust
vector Ti of each propeller in the flying robot’s body frame can be written concisely as

Ti = Tini (3.40)

83



Chapter 3 Modeling and control of flying robots

and the torque τi on the multicopter generated by thrust and torque of propeller i is

τi = Tiri × ni + Piτini. (3.41)

Let C describe the mapping from rotor to cumulative force and torque, as
(

f

τ

)

=

[

n1 · · ·nN 0 · · ·0
S(r1)n1 · · ·S(rN )nN P1n1 · · ·PNnN

]

︸ ︷︷ ︸

C

h, (3.42)

with h = (T1 · · · TN τ1 · · · τN )
T . Now, instead of assuming Ti ∝ Ω2

i , the vector h on
the right side of (3.42) allows to consider arbitrary thrust and torque profiles of each rotor
i, e.g. higher order polynomials. Inserting polynomials (3.11) and (3.12) in (3.42) results in
a nonlinear system of equations. It can be formulated as

e(Ωi) = Ch(Ωi)−
(

fd

τd

)

, (3.43)

where fd and τd are desired force and torque, respectively, and e is the residual. Using a
quadratic cost function Γ = 1

2e
TWe with positive definite weighting matrix W ([92], p.

404), this may be solved by applying gradient (or steepest) descent6 ([155], p. 21)

Ωk+1 = Ωk − J#
e (Ωk)ek, (3.44)

using a generalized pseudoinverse J
#
e (Ω) (see Appendix A3) of the Jacobian

Je(Ω) =
∂e

∂Ω
. (3.45)

Then,

ek = Ch(Ωk)−
(

fd

τd

)

(3.46)

is the residual at iteration k and the optimization loop can run until Γ is below a given
threshold. For example, the Jacobian matrix for the quadrocopter Sparrow is given by

Je =













0 0 0 0

0 0 0 0

−aT1 − 2aT2Ω1 −aT1 − 2aT2Ω2 −aT1 − 2aT2Ω3 −aT1 − 2aT2Ω4√
2r(aT1+2aT2Ω1)

2 −
√
2r(aT1+2aT2Ω2)

2 −
√
2r(aT1+2aT2Ω3)

2

√
2r(aT1+2aT2Ω4)

2√
2r(aT1+2aT2Ω1)

2

√
2r(aT1+2aT2Ω2)

2 −
√
2r(aT1+2aT2Ω3)

2 −
√
2r(aT1+2aT2Ω4)

2

−aQ1 − 2aQ2Ω1 aQ1 + 2aQ2Ω2 −aQ1 − 2aQ2Ω3 aQ1 + 2aQ2Ω4













,

6One could also use the Levenberg-Marquardt method, which should result in faster convergence ([155],

p. 258). Alternatively, (3.43) could be solved directly for h in a least squares sense using the generalized

pseudoinverse (cf. Appendix A3). Then, the speed of each rotor can be found from h, again using a line

search method ([155], p. 30). In order to incorporate constraints on force and torque level, the solution

for h could also be obtained using a quadratic programming solver, such as qpOASES [156]. However,

since the constraints are actually on rotor speed level, the approaches in Section 3.4.7 and 3.4.6 seem more

appropriate.
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3.4 Multicopter control allocation under saturation

under the assumption, that thrust and torque w.r.t. rotor speeds Ωi of all four rotors follow
the quadratic polynomials (3.11) and (3.12), respectively. Since the quadrocopter is obvi-
ously not able to produce forces in the body-fixed x- and y-directions, it is sufficient and
also more efficient to implement the symbolic inverse J−1

e of the 4× 4 submatrix of Je with
nonzero elements. The Jacobian matrices for higher order polynomials and multicopters
with a larger number of rotors N follow analogously, but are omitted for brevity.

3.4.4 Incremental control allocation for polynomial propulsion models

Solving the nonlinear system of equations (3.43) in real-time is possible, but the computa-
tional complexity grows for higher order polynomials and an increasing number of rotors N .
Therefore, a different and straight-forward control allocation algorithm is introduced in the
following for comparison. Linearizing the polynomial propulsion model (3.11) and (3.12) at
current (estimated or measured) rotor speeds Ωi0 yields

Ti(Ωi) ≈ Ti(Ωi0) +
∂Ti
∂Ωi

∣
∣
∣
∣
Ωi0

(Ωi − Ωi0) +O(2) (3.47)

and

τi(Ωi) ≈ τi(Ωi0) +
∂τi
∂Ωi

∣
∣
∣
∣
Ωi0

(Ωi − Ωi0) +O(2). (3.48)

For convenience, one can define

A2N×N (Ωi0) =


















∂T1
∂Ω1

∣
∣
∣
Ω10

. . .
∂TN
∂ΩN

∣
∣
∣
ΩN0

∂τ1
∂Ω1

∣
∣
∣
Ω10

. . .
∂τN
∂ΩN

∣
∣
∣
ΩN0


















. (3.49)

Hence, it follows that
h = h0(Ωi0) +A(Ωi0) (Ω−Ω0) (3.50)

and inserting the linearized h in (3.42) yields
(

f

τ

)

= Ch0(Ωi0) +CA(Ωi0) (Ω−Ω0) . (3.51)

The control allocation matrix can now be interpreted as B = CA, which yields

Ω = Ω0 +B#

((

f

τ

)

−Ch0(Ωi0)

)

. (3.52)

This is comparable to an incremental control law [104], since it computes the desired rotor
speeds based on current (estimated or measured) rotor speeds. The rotor speeds Ωi0 can be
obtained from ESC measurements, while h0(Ωi0) follows from the polynomial thrust and
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torque models. The advantage compared to the iterative approach in Section 3.4.3 is that
(3.52) gives a direct result, i.e. no iterations are required. On the downside, the incremental
approach involves the inversion of the matrix CA in each time step and it is highly sensitive
to packet loss in the rotor speed feedback. Also, due to the linearization about the current
rotor speed, it will produce inaccurate results, if large and abrupt changes in thrust and
torque are commanded.

3.4.5 Prioritization of control inputs

The rotor speeds of a flying robot may saturate during fast maneuvers or if external dis-
turbances are present. Even if the rotor speed limits of the vehicle are taken into account
for motion planning, it is not guaranteed that these limits will not be exceeded in flight,
for instance due to unconsidered aerodynamics, low battery, or wind disturbances. On the
other hand, using too conservative limits in the trajectory design will prevent the vehicle
from exploiting its full agility. Thus, it is important to incorporate the rotor speed limits
Ωmax and to handle saturation of Ωi properly.

As soon as the rotor speeds of a multicopter saturate, the control authority is partially
lost. For example, at full thrust no moments can be produced any more. Depending on
the task, not all desired states of a multicopter are equally important. Therefore, it makes
sense to prioritize the control inputs and to handle actuator saturation online. Note that the
following applies to both the direct and the iterative control allocation approaches presented
above.

Because of the symmetry of a multicopter, its heading has the least priority in most ap-
plications. In addition, the yaw angle has the least control authority, i.e. will be the first
control input to saturate. In accordance with [118] and [119], roll and pitch have the highest
priority, because thrust can only be applied in the correct direction, if roll and pitch are
controlled accurately. Decreasing the magnitude of the thrust vector while maintaining its
direction enables the vehicle to follow the desired trajectory. Summing up, the priorities are
depicted in Figure 3.15.

  

P
R

IO
R

IT
Y

HIGH

LOW

MEDIUM

Roll and pitch angles

Heading angle

Thrust

Figure 3.15: Priorities of the flying robot states.

Alternatively, if the vehicle should track an object, e.g. using an on-board camera, the full
attitude can be prioritized higher than the thrust. Decreasing the thrust magnitude will
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3.4 Multicopter control allocation under saturation

inevitably lead to a deviation from the desired trajectory in all three translational degrees
of freedom. Hence, for the saturation handling to work, the generated trajectory should not
wind up, if the rotors of the multicopter are saturated. For this, instead of a temporal, a
spatial tracking scheme [157] can be used. In the following, in contrast to [118], saturation
handling is applied on rotor speed level, instead of on thrust level. This is due to the fact
that rotor speed is directly measurable on a flying robot, but rotor thrust is not.

3.4.6 Direct maximum input allocation

In the following, it is shown that the maximum attainable inputs can be computed directly
via the control allocation. Based on the prioritization of the control inputs, as defined in
Section 3.4.5, and if |τz,d| > 0, first compute a feasible yaw torque τz,max. Inserting the
control allocation matrix BQ of the quadrocopter with l =

√
2r
2 in (3.38) and solving for

τz leads to four different conditions for the maximum yaw torque at maximum rotor speed
Ωi,max:

τz,max =







k
cl (τx,d + τy,d + lTd − 4ρmclΩ

2
1,max),

k
cl (τx,d − τy,d − lTd + 4ρmclΩ

2
2,max),

k
cl (−τx,d − τy,d + lTd − 4ρmclΩ

2
3,max),

k
cl (−τx,d + τy,d − lTd + 4ρmclΩ

2
4,max).

(3.53)

Note that applying the same approach to the control allocation matrix BH of the hexa-
copter yields six conditions, which are not shown here for brevity. A sufficient condition for
feasibility of the calculated maximum yaw torque is

sign(τz,max) = sign(τz,d). (3.54)

If condition (3.54) is fulfilled, it means that a smaller but equally directed yaw torque can be
produced for the desired thrust force Td, desired roll torque τx,d, and desired pitch torque
τy,d. In this case Ω can be reallocated using τz,d = τz,max. Otherwise, set τz,d = 0 and
compute Tmax. The four conditions for Tmax follow accordingly as

Tmax =







1
kl (−kτx,d − kτy,d + clτz,d + 4ρmcklΩ

2
1,max),

1
kl (kτx,d − kτy,d − clτz,d + 4ρmcklΩ

2
2,max),

1
kl (kτx,d + kτy,d + clτz,d + 4ρmcklΩ

2
3,max),

1
kl (−kτx,d + kτy,d − clτz,d + 4ρmcklΩ

2
4,max).

(3.55)

For vehicles with unidirectional thrust vector, the resulting thrust is only feasible if

0 < Tmax <
N∑

i=1

Ti,max, (3.56)

because with zero cumulative thrust, no torques can be produced. With bidirectional thrust,
the admissible region of Tmax increases to

N∑

i=1

Ti(Ωi) < Tmax <
N∑

i=1

Ti(Ω̂i), (3.57)
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where Ω̂i denotes the upper (positive) limit and Ωi denotes the lower (negative) limit of the
rotor speeds, with Ωi = −Ω̂i for symmetric and Ωi 6= −Ω̂i for unsymmetric bidirectional
thrust. If the above conditions are fulfilled, Ω is reallocated using Td = Tmax. Otherwise,
all rotor speeds need to be clipped at the maximum rotor speeds, which means that none
of the desired control inputs are achieved.

Extension to polynomial propulsion models

It holds for all nonlinear propulsion models, that at any given (i.e. estimated or measured)
rotor speed Ωi a linear relation between thrust and torque of the form

τi = κi(Ωi)Ti (3.58)

can be computed [118]. Hence, it follows for all multicopter configurations that

(

f

τ

)

=

[

n1 · · · nN

S(r1)n1 + P1n1κ1(Ω1) · · · S(rN )nN + PNnNκN (ΩN )

]

︸ ︷︷ ︸

C∗






T1
...
TN




 . (3.59)

It is straightforward to show, that equation (3.59) may be inverted analytically (or symboli-
cally) for the multicopter configurations treated in this work. Then the exact same approach
as above can be applied to allocate the maximum admissible inputs at the current rotor
speeds Ωi, where i ∈ {1, . . . , N}.

Proof of the direct input allocation approach

The feasibility of the direct maximum input allocation approach is proven in the following.

Theorem 3.1. Without loss of generality, consider Nsat ≤ N saturated motors. Let motor j

be the motor that violates the rotor speed constraint the most. If (3.53) and (3.55) for motor

j, or appropriate variations thereof, yield a feasible result for τz,max or Tmax at Ωj,max, then

scaling down the control inputs τz,d or Td to τz,max and Tmax, respectively, leads for motors

1 . . . N to rotor speeds within the maximum rotor speed constraints.

Proof. For motor j it holds that Tj > Ti, i ∈ {1, . . . , N} \ {j}. If the cumulative thrust
is scaled down via T ∗

d = σjTd = Tmax, it can be seen from (3.59) that still σjTj > σjTi.
Recall that the scaling σj is computed, such that Ωj = Ωj,max. Therefore, Ωi < Ωj,max,
i ∈ {1, . . . , N} \ {j}, because the polynomials (3.11) and (3.12) are strictly monotonically
decreasing for decreasing rotor speeds. The argumentation for scaling the control torque
τz,d follows analogously due to the linearity of (3.58) and, hence, the linear relation between
τz and T1 . . . TN in (3.59).
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3.4 Multicopter control allocation under saturation

3.4.7 Iterative saturation handling

Directly allocating a maximum input as described above may lead to discontinuities in the
control input. This can be overcome by iteratively increasing or decreasing the control
input until the constraints are met. The iterative approach can be summarized as follows:
In every iteration step, the desired thrust and torques are mapped to rotor speeds using any
of the unconstrained control allocation procedures presented above (for example (3.38), the
iterative approach (3.44), or the linearized result (3.52)). The obtained speeds are checked
for consistency with the maximum possible rotor speeds. If the allocated rotor speeds are
infeasible, thrust and torques are decreased iteratively.

Pseudo code of the proposed iterative saturation handling procedure is provided in Algo-
rithm 3.1. Therein, Ω(t− 1) are the measured rotor speeds, which ideally should be equal
to the previously commanded rotor speeds, and µ and ε are tuning parameters. Those pa-
rameters are the step size of the iterative algorithm and determine how fast it will converge.
The algorithm lines 2 to 7 reduce the yaw torque by a fixed amount until the maximum
rotor speeds are not exceeded any more. If line 8 of the algorithm is reached, it means that
the yaw torque is reduced to zero, but the rotor speeds are still saturated. Then, the thrust
is decreased until it reaches the lower boundary ε. If that happens, it means that torques
are still to high to be allocated with the desired thrust. Then, the thrust is reset, the roll
and pitch torques are decreased by one increment µ, and the thrust is decreased iteratively
again. This loop continues until the rotor speed limits are met. According to Theorem 3.1 in
Section 3.4.6, this will eventually lead to Ω < Ωmax and will not end up in an infinite loop.
In order to decrease the running time of Algorithm 3.1, τz and T can be initialized using the
solutions of the direct input allocation approach from Section 3.4.6, since these represent
the maximum attainable values. The maximum rotor speeds can be adjusted according to
the momentarily available battery voltage Ubat via Ωmax = KvUbat (cf. the motor model in
Section 3.2.2). Note that the case Ω < Ωmin is not shown for brevity. It can be realized

Algorithm 3.1: Iterative saturation handling
1 Ω← allocate(Ω(t− 1), T, τ ) Implements e.g. (3.38), (3.44), or (3.52).

2 if Ω > Ωmax then

3 while |τz| > 0 do

4 τz ← τz − sign(τz)µ

5 Ω← allocate(Ω(t− 1), T, τ )

6 if Ω < Ωmax then

7 return

8 T ∗ ← T

9 while Ω > Ωmax do

10 if |T | < ε then

11 T ← T ∗

12 τx ← τx − sign(τx)µ

13 τy ← τy − sign(τy)µ

14 T = T − sign(T ∗)ε

15 Ω← allocate(Ω(t− 1), T, τ )
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Chapter 3 Modeling and control of flying robots

analogously by including the lower limits Ωmin of Ω and by iteratively increasing yaw torque
or thrust until the constraints are satisfied.

3.5 Adaptive control approach

As shown in Section 3.2.2, the propulsion forces (3.10) of a rotorcraft linearly depend on the
air density. This influence is often disregarded in the control of flying robots. Usually, the
air density is lumped in the constant thrust and torque coefficients. However, in practice,
it changes depending on local weather and altitude, i.e. depending on the atmospheric
parameters pressure, temperature, and humidity (cf. the atmosphere model in Section 3.2.4).
Position and attitude control and all additional components, like disturbance observers or
external wrench estimators (see Section 3.1.2), rely on an estimate of the applied forces.
Uncertainty in the propulsion model will inevitably degrade control performance and add
to the estimated external disturbances.

The variation of the air density is often implicitly considered via an integral term in the
altitude (height) controller [94]. However, the integral term has no physical justification and
its convergence and stability is difficult to guarantee. Alternatively, model uncertainties may
be estimated by an external wrench estimator [112], but then it is not possible to distinguish
between uncertainties in the propulsion model and external disturbances.

Sensors that measure absolute air pressure, air temperature, and relative humidity are
readily available, light weight, and easy to integrate. However, measurements acquired
with sensors on board the flying robot contain large uncertainties. Barometric sensors are
sensitive to wind and subject to large drifts. Temperature sensors are affected by heat
dissipation from surrounding electrical components. In addition to that, estimating the
propulsion forces based on sensor measurements is prone to sensor failures and provides no
guarantee for convergence of position and attitude control.

In order to account for the uncertainty of thrust and torque of a multirotor due to the afore-
mentioned variation in air density, an adaptive control approach for simultaneous position
tracking and air density estimation7 is presented here [209]. It does not require additional
sensor measurements and only relies on the desired trajectory and on an accurate pose es-
timate of the flying robot (namely height and vertical velocity), which is available from a
downward facing range sensor, from fusing GPS with IMU measurements, or from a VIO
[217]. In addition to the air density, the controller also adapts to changing mass, e.g. if a
payload is collected or dropped. The adaptive controller clearly improves position tracking
precision and the estimated air density leads to an augmented external wrench estimator
with improved accuracy. Moreover, the estimate of the air density may be used for mete-
orological measurements, for power estimation of wind energy plants, or, if combined with
accurate sensor measurements, to identify the thrust and torque coefficients of a flying robot.
It utilizes a reference model of the flying robot and is therefore an MRAC method [86].

7Patent granted, see [222].
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3.5 Adaptive control approach

3.5.1 Adaptive controller design

Consider the vertical translational dynamics in the inertial frame without external forces

mz̈ = −mg + fz, (3.60)

For a multicopter with N parallel thrust vectors, the vertical force fz follows as

fz = eT3 Riue3

N∑

i=1

Ti = ρceT3 Riue3

N∑

i=1

Ω2
i . (3.61)

Note that the linearity in ρ and c follows analogously for the lateral and longitudinal forces
as well as for arbitrary rotor configurations. For instance, the vertical force of the coaxial
hexacopter is given by

fz = ρeT3 Riue3

(

cu

3∑

i=1

Ω2
i + cl

6∑

i=4

Ω2
i

)

. (3.62)

Therein, cu and cl are the thrust coefficients of upper and lower propeller, respectively.
Inserting the relation (3.39) in (3.61) yields an expression for the vertical force

fz =
ρ

ρm
fz,d. (3.63)

Let the control input be u = fz,d. Then, inserting (3.63) in (3.60) gives8

ρm
ρ
mz̈ = −ρm

ρ
mg + u. (3.64)

A controller similar to ([86], pp. 317) that adaptively accounts for the mismatch between
ρm and ρ is given by

u = (1 + ε)m(z̈d − 2λ ˙̃z − λ2z̃ + g). (3.65)

Therein, z̃ = z − zd and ˙̃z = ż − żd are position and velocity error, respectively, λ > 0 is
the controller gain9, and ε is a parameter introduced for adaptation. It should result in
(1 + ε)→ ρm

ρ . Using m = ρm
ρ m for brevity, (3.64) is expanded on both sides, such that

mz̈ −mz̈d + 2mλ ˙̃z +mλ2z̃ = −m(z̈d − 2λ ˙̃z − λ2z̃ + g) + u. (3.66)

Substituting (3.65), the combined tracking error s = ˙̃z + λz̃, and ν = z̈d − 2λ ˙̃z − λ2z̃ + g in
equation (3.66) leads to

m(ṡ+ λs) = m̃ν, (3.67)

where m̃ = m̂ − m is the parameter error and m̂ = (1 + ε)m will be referred to as the
effective mass. For the derivative w.r.t. time of the parameter error it holds, because of
m = const., that

˙̃m = ˙̂m = ε̇m. (3.68)

8Examining equation (3.64) more closely, one realizes that z̈ + g is measured by the accelerometer and,

hence, a direct observer on ρm
ρ

could be created. However, this would not ensure simultaneous convergence

of the tracking error.
9Note that a damping ratio of 1 is used in order to reduce the number of design parameters.
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Figure 3.16: Schematics of the adaptive control approach combined with an external wrench estimator.

An adaptation law that achieves m̂ → m, and hence (1 + ε)→ ρm
ρ , is obtained using the

Lyapunov function

V =
1

2
ms2 +

1

2γ
m̃2, (3.69)

which is lower bounded by m ≥ 0, s2 ≥ 0, and m̃2 ≥ 0 and positive definite for a positive
design parameter γ. Its first derivative w.r.t. time is

V̇ = msṡ+
1

γ
m̃ ˙̃m = s(m̃ν −mλs) + 1

γ
m̃ ˙̂m (3.70)

= −mλs2 + m̃sν +
1

γ
m̃ ˙̂m. (3.71)

Using Barbalat’s lemma ([86], p. 123, [87], p. 323), stability and convergence of tracking
error s → 0 may be concluded, if V̇ ≤ 0 and V̈ is bounded. However, convergence of the
parameter error m̃ can only be guaranteed under persistent excitation, as shown for a similar
adaptive control law in ([87], pp. 327). Thus, the adaptation law is found as

˙̂m = −γsν = −γ( ˙̃z + λz̃)(z̈d − 2λ ˙̃z − λ2z̃ + g), (3.72)

for which it holds that ε̇ = ˙̂m
m , V̇ = −mλs2 ≤ 0, and V̈ = −2mλsṡ. The latter is bounded,

because of the boundedness of m, s, and ε. The adaptive gain ε is bounded in practice by
the maximum and minimum thrust of the flying robot. Typically, it may be constrained
artificially in the range −1.0 < ε ≤ 1.0.

An overview of the proposed adaptive control approach is depicted in Figure 3.16. For
adaptive position control in three degrees of freedom p = (x y z)T the inner-loop attitude
controller (3.18) and the outer-loop position controller

fd = m(1 + ε)
(

p̈d −Kd
˙̃p−Kpp̃+ ge3

)

(3.73)

are utilized with p̃ = p − pd. For the positive definite gain matrices it follows from (3.65)
that Kd = diag(λx, λy, 2λz) and Kp = diag(aλx, bλy, λ2z) with a > 0 and b > 0 being design
parameters. Starting from ε(t = 0) = 0, the adaptation law (3.72) is integrated numerically
during runtime to obtain ε, which then enters the controller (3.73). Finally, the desired
thrust Td is computed using (3.27), the desired orientation Rid, i.e. the rotation between e3

and fd, is calculated via (3.28), and the desired angular rate ωd is obtained numerically.
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Figure 3.17: Illustration of online air density or payload estimation.

3.5.2 Air density estimation

The air density ρ can be estimated using the adaptive control approach as depicted in
Figure 3.17. The estimate of the air density is computed as

ρ̂ =
1

1 + ε
ρm =

m

m̂
ρm. (3.74)

Up to now, the mass m is considered constant and known. Due to the definitions m = ρm
ρ m

and m̂ = (1 + ε)m, it becomes clear that m̂ → m allows to either estimate ρ, if ρm and
m are given, or m, if ρm and ρ are known, e.g. calculated using sensor measurements
and the atmosphere model from Section 3.2.4. Assuming that the air density estimate is
converged, its current value may be used to estimate a collected or dropped payload ∆m

via ∆m = εm− m̂0. Therein, m is the known take-off mass and m̂0 is the offset from zero
of m̂ at the start of the payload estimation.

As stated in ([86], pp. 331), convergence of the estimated parameters can only be guaranteed
under persistent excitation. However, it is found in the experiments in Section 3.6.2, that
the estimates of ρ and m converge during hover flight. Moreover, it is suspected that the
flight trajectories provide sufficient excitation for the parameters to converge. Note that
stability and accurate tracking are independent from parameter convergence and ensured
by the controller (3.65) even if neither m nor ρ is known exactly.

By design, the adaptation law is applicable to multirotor control without changing the
control allocation. Though, to estimate the air density correctly, the coefficients c and k in
(3.10) have to be identified experimentally beforehand, as shown above on Figure 3.6.

In practice, the adaptation law may be activated (e.g. through a service call)

• once, to estimate the air density, or

• if a payload is collected or dropped,

and deactivated afterwards in order to avoid adaptation to external disturbances. To re-
alize rejection of external disturbances, an external wrench estimator can be included in
Figure 3.16 in addition to the adaptive controller. In Section 3.5.4, it is shown how the es-
timated air density may be incorporated in order to increase the accuracy of the estimated
external wrench.
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3.5.3 Generalization and passivity analysis

Assume time-scale separation between rotational and translational dynamics, i.e. that the
attitude control is sufficiently fast. Relation (3.64) can be extended to three degrees of
freedom such that

m(p̈+ ge3) = u+ f ext, (3.75)

where m = ρm
ρ m, u = ρm

ρ f , and f ext =
ρm
ρ fext. Let mm be the model mass and m̂ =

(1+ε)mm be the effective mass. Then an adaptive controller for all three degrees of freedom
is given by10

u = m̂(p̈d − (P +K) ˙̃p−KPp̃+ ge3) = m̂ν, (3.76)

which is a general form of the control law (3.65). Adding −mν on both sides of (3.75) and
introducing the new error signal s = ˙̃p+ P p̃ yields

mṡ = −mKs+ m̃ν + f ext. (3.77)

Consider a Lyapunov function candidate similar to [158]

V =
1

2
(msTs+ p̃TQp̃+

1

γ
m̃2). (3.78)

Its first derivative with respect to time is

V̇ = sT (−mKs+ m̃ν + f ext) + p̃TQ(s− P p̃) +
1

γ
m̃ ˙̂m. (3.79)

Note that ˙̂m = ˙̃m sincem = const. by assumption. Inserting the adaptation law ˙̂m = −γsTν
and the definition of the error signal s leads to

V̇ = −( ˙̃pT + p̃TP T )mK( ˙̃p+ P p̃) + sTf ext + p̃TQ( ˙̃p+ P p̃)− p̃TQPp̃ (3.80)

= −m ˙̃pTK ˙̃p−mp̃TP TK ˙̃p−m ˙̃pTKPp̃−mp̃TP TKPp̃+ sTf ext + p̃TQ ˙̃p. (3.81)

Assume P = P T , K = KT , P > 0, K > 0, and define Q = 2mP TK.11 Then it follows,
that

V̇ = −m ˙̃pTK ˙̃p−mp̃TP TKPp̃+ sTf ext ≤ sTf ext, (3.82)

wherein the congruent transformation P TKP preserves the positive semidefiniteness of P
and K [159]. Hence, system (3.75) under the controller (3.76) is passive w.r.t. the power
port sTf ext. In addition, this shows global, asymptotic convergence of the tracking error
for the entire translational closed-loop dynamics. The parameter error m̃ will converge
for sufficient excitation of the system [86, 160]. Finally, from the result (3.82) Lyapunov
stability can be concluded.

10Thanks to Manuel Keppler for pointing me to this control law, to the corresponding Lyapunov function

candidate, and for providing a sketch of the passivity proof presented here.
11Note that the product of two symmetric and positive semidefinite matrices is not necessarily positive

semidefinite. However, it can be shown that it is positive semidefinite, if the product of the two matrices is

also symmetric [90].
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3.5.4 Augmented external wrench estimator

The hybrid external wrench estimator presented in [112] is given by

(

f̂ext

τ̂ext

)

=







t∫

0

Kf

(

mp̈− f − f̂ext

)

dt

Kτ

(

Jω −
t∫

0

(τ + S(Jω)ω + τ̂ext) dt
)






, (3.83)

where Kf and Kτ are the lowpass filter gains. The external force f̂ext is estimated using the
measured and lowpass filtered linear acceleration p̈ and the known mass m. The external
torque τ̂ext is estimated via the angular momentum using the measured angular velocity
ω and the known inertia J . The estimator (3.83) is shown to be input-to-state stable in
[112]. It contains the applied wrench (f τ )T , which is unknown on a flying robot. Or
more specifically, in (3.83) it is assumed that f and τ are evaluated using the known air
density.

The adaptive control approach allows to deduce the applied wrench via relation (3.39) such
that (

f

τ

)

=
ρ̂

ρm

(

u

τd

)

=
1

1 + ε

(

u

τd

)

(3.84)

where u and τd follow from (3.76) and (3.18), respectively, and ρ̂ is computed using (3.74).
Alternatively, if rotor speed measurements Ωmsr are available, the applied thrust and torque
can be obtained from (

T

τ

)

= ρ̂B̟(Ω2
msr). (3.85)

Disturbance compensation is achieved, if the flying robot completely counteracts the external
wrench. Additionally, the uncertainty in the applied wrench due to varying air density needs
be considered. An augmented control input

u∗ = u− (1 + ε)f̂ext, (3.86)

τ ∗
d = τd − (1 + ε)τ̂ext, (3.87)

is proposed, with u and τd as defined in (3.76) and (3.18), respectively. Now substitute u

and τd in (3.84) with u∗ and τ ∗
d from (3.86) and (3.87), respectively. The applied force thus

becomes f = mν + f̂ext, i.e. the uncertainty cancels out. This holds for the applied torque
analogously. The desired thrust T ∗

d = u∗TRibe3 and the desired torque τ ∗
d are then mapped

to desired rotor speeds via (3.38) (see also Figure 3.16).

3.6 Applications

In this section, applications of the control methods for flying robots presented in this chap-
ter, specifically considering bidirectional thrust (Section 3.3.4) and adaptive control (Sec-
tion 3.5), are discussed. Section 3.6.1 provides an evaluation of bidirectional thrust in sim-
ulations and experiments. It is shown that the available downward thrust may be utilized
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to realize safe landing on inclined surfaces. Furthermore, an efficient method to generate
flight trajectories is presented. To the best of the author’s knowledge, the conducted ex-
periments include the first autonomously performed transitions from upright to inverted
flight of a quadrocopter with fixed-pitch propellers but bidirectional thrust capabilities. In
Section 3.6.2, the adaptive control approach and the air density estimation are evaluated
in simulations and indoor as well as outdoor experiments with the quadrocopter Sparrow
(Figure 3.13a) and the coaxial hexacopter Ardea (Figure 3.13b).

3.6.1 Evaluation of bidirectional thrust

Bidirectional thrust on a multirotor aerial vehicle can be applied to realize for example agile
aerobatic maneuevers, rejection of large external disturbances, safe landing on inclined or
moving surfaces by increasing the contact pressure in order to stay in the friction cone (see
Figure 3.18), or inverted flight as shown in Figure 3.10. The latter is especially useful if
different sensors are attached on top and bottom of the flying robot. The two applications
slip reduction and flip from upright to inverted flight are treated in the following. For the
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illustrates the observed contact force, which results in a larger maximum inclination angle.

The achievable tilt angle also depends on the surface and landing gear material. Copyright

© 2018 IEEE [215].
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experiments, the fully symmetric Graupner 3D propellers (see Section 3.2.5) are selected
due to their nearly equal maximum thrust in both directions.

Landing on inclined surfaces with slip reduction

Landing on inclined surfaces requires to determine the surface normal vector and the gener-
ation of a suitable trajectory [219, 161]. Due to its computational efficiency, the trajectory
generation method presented in [162] is adapted.

Given the surface normal vector estimated in the body frame u, the target roll angle ϕf and
the target pitch angle θf can be derived. Due to the differential flatness of the problem and
with z̈f = 0, it follows for the target accelerations ẍf = tan(θf )g and ÿf = tan(ϕf )g. Some
examples for different surface inclinations are shown in Figure 3.18.

Once the flying robot is landed, it can switch to downward thrust and increase the contact
pressure to stay within the friction cone. The contact force can be estimated and controlled
using the measured rotor speed and the rotor speed to thrust mapping identified in Sec-
tion 3.2.5. Figure 3.18 depicts the quadrocopter in an experiment with changing surface
inclination and estimated contact force. The surface is tilted until the quadrocopter starts
to slide and then tilted back immediately. Increasing downward thrust clearly increases the
maximum inclination angle θ (cf. Figure 3.18).

Flip trajectory from upright to inverted flight

As mentioned before, switching from upright to inverted flight also requires a feasible trajec-
tory, that satisfies the maximum thrust forces of the flying robot. It is assumed that every
multicopter configuration can be transformed to the planar model in the x/z - plane

ẍ =
1

m
(f1 + f2) sin(θ),

z̈ =
1

m
(f1 + f2) cos(θ)− g, (3.88)

θ̈ =
1

Jyy
(f1 − f2)l,

where θ is the pitch angle and all rotor forces are summarized in f1 and f2, respectively.
Then, an optimal control problem may be formulated as follows:

min
td,f1,f2

Γ = td + f21 + f22 , s.t.







fmin ≤ f1 ≤ fmax,

fmin ≤ f2 ≤ fmax,

|θ̇| ≤ θ̇max,

(3.89)

where td is the duration of the trajectory. The yaw angle ψ is neglected and assumed
constant throughout the trajectory.

The initial orientation is θ0 = 0 and the target orientation is θf = π, or vice versa, while
the desired start and target position can be chosen depending on the application. Velocities
and accelerations at start and target are assumed to be zero. It can be seen from the
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Figure 3.19: Flip trajectories computed using optimal control solver GPOPS (left) and implemented con-

trol architecture (right). Copyright © 2018 IEEE [215].

propeller identification in Section 3.2.5, that one has to distinguish between vehicles with
symmetric (fmax = −fmin) and unsymmetric (fmax 6= −fmin) maximum bidirectional thrust.
Obviously, in the planar example, the limit for inverted flight with unsymmetric bidirectional
thrust is fmin = −1

2mg. Figure 3.19a shows the difference between trajectories for symmetric
and unsymmetric bidirectional thrust. All solutions of (3.89) are computed using the optimal
control toolbox GPOPS [163]. The upper two trajectories in Figure 3.19a satisfy fmax =

−fmin = mg, the lower two satisfy fmax = mg and fmin = −0.6mg. The parameters of
the considered quadrocopter are m = 0.52 kg, Jyy = 0.003 kgm2, l = 0.08m, and θ̇max =

120 ° s−1.

To compute the flip trajectory for flight experiments online, again the polynomial approach
by Mueller et al. [162] is used. The method is summarized briefly in Appendix A6. A
trajectory consisting of two segments can be iteratively checked for maximum thrust and
angular rate. For a 180deg (φf = ±π) flip, the constraint φh = ±π

2 at height zh = h is
introduced. It follows from

cos(φh) =
fTe3

||fTe3||
=

z̈h + g

||z̈h + g|| = 0, (3.90)

that the acceleration at zh must be z̈h = −g. For a smooth trajectory, jerk continuity at
the intersection of two segments is required. Therefore, a constraint on the durations of the
two segments is obtained as

td,1 = td,2 =

√

20h

3g
. (3.91)

Note that actually the whole (position) trajectory has C3 continuity (up to jerk). The flip
axis follows from the desired flight direction ∆p as (cf. Appendix A7)

ǫ =
∆p× e3

||∆p× e3||
. (3.92)

Figure 3.20(a) shows a polynomial flip trajectory generated using the described method.
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The computed optimal trajectories could also be generalized, e.g. by using Dynamic Move-
ment Primitives (DMPs) as done in [219, 220], or by solving the above optimization problem
directly on the flight control computer, which is deemed realistic with modern optimal con-
trol solvers [164].

Flip experiment

Finally, the performance of the control approach is assessed in a flip experiment. It is carried
out with the quadrocopter Sparrow shown in Figure 3.20c. The structure of the implemented
control architecture is depicted in Figure 3.19b. A Vicon motion tracking system is used to
estimate the pose of the flying robot in real-time. The results of the experiment and a picture
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of the quadrocopter performing a flip are shown in Figure 3.20. Desired height, orientation
(c.f. Figure 3.20d), and rotor speeds (see Figure 3.20b) are tracked well. However, below
50% battery capacity the motors saturate and the quadrocopter is not able to complete the
flip. This is because roll and pitch control authority is lost at full thrust. A video of the
performed flight experiments can be found here: https://youtu.be/yIAFX61MZMw.

3.6.2 Evaluation of adaptive control

This section summarizes results of simulations using a quadrocopter model and experiments
performed with the quadrocopter Sparrow (m = 0.77 kg) and with the hexacopter Ardea
(m = 2.74 kg). The aim is to evaluate the performance of the presented adaptive control
approach, the air density estimation, and the augmented external wrench observer. In
summary, these points are examined:

• comparison of different controllers in simulation,

• trajectory tracking with air density estimation at two different altitudes with Ardea,

• set-point control with air density or payload estimation with Sparrow, and

• height tracking and air density estimation with transition between indoors and out-
doors with Sparrow.

A video of the experiments conducted with Ardea on Mount Etna and with Sparrow at
DLR is provided online (https://youtu.be/HUCw56Tk0EE).

Comparison of different controllers in simulation

Proportional Derivative (PD) and Proportional Integral Derivative (PID) controllers are
often used in practice and are therefore compared with the presented adaptive controller.
Figure 3.21a shows a comparison of simulation results obtained with a PD controller, a PID
controller using the integral of the position error, a PD controller which uses the estimated

Table 3.7: Quadrocopter simulation parameters.

m [kg] I [kg m2] ρm [ kg
m3 ] ρ [ kg

m3 ]
0.52 diag(2e−3, 2e−3, 2e−3) 1.204 1.3

cm [N s2/rad2] c [N s2/rad2] κ [m] r [m]
0.0005 0.0008 0.1 0.11

Kd Kω kR Kf

2
√
KpI3×3 30I3×3 150 5I3×3

100

 https://youtu.be/yIAFX61MZMw
https://youtu.be/HUCw56Tk0EE
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(a) Reference trajectory vs. actual trajectory for the

different controllers.

(b) External force estimated in the simulation.

Figure 3.21: Comparison in simulation of PD, PID, DOB, and MRAC using a quadrocopter model. Copy-

right © 2020 IEEE [209].

external wrench for disturbance observation and rejection (DOB), and the adaptive con-
troller (MRAC) presented in this work. The PD, PID, and DOB controllers use ε = 0. For
the simulation, a quadrocopter model and the parameters and controller gains summarized
in Table 3.7 and in Figure 3.21a are considered. All gains are tuned manually and, where
applicable, are equal for the considered controllers. The estimator for the external torque
with gain Kτ is not treated here for conciseness. For the PD controller, Figure 3.21a reveals
a steady-state error due to the difference in the product of air density and thrust coefficient
(cf. Table 3.7). With the PID controller, the actual height z only ever converges to the
desired height zd once the desired position is constant (dashed blue line). Both DOB and
MRAC converge much faster with the same gains as used for the PD controller. MRAC,
i.e. the adaptive approach, provides perfect trajectory tracking, i.e. p̃, ˙̃p → 0 for t → ∞.
The main difference of DOB compared to MRAC is that with MRAC external forces are
estimated correctly, which is due to the multiplicative nature of the air density. An example
is shown in Figure 3.21b for a step disturbance in the inertial x-direction of 3N (dashed
black line). The DOB alone estimates the external force incorrectly due to wrong air den-
sity and thrust coefficient, whereas with MRAC the estimate is the exact lowpass filtered
reconstruction of the external force.

Air density estimation experiment

To evaluate the air density estimation at different altitudes, experiments at DLR in Oberpfaf-
fenhofen, Germany, and on Mount Etna in Sicily, Italy, were conducted (see Figure 3.23(a)
and (b)). Figure 3.22 shows experimental results of the air density estimation approach
acquired with the hexacopter Ardea (Figure 3.13b). The atmospheric parameters of that
day (Dec. 7, 2018) in Oberpfaffenhofen, Germany, are p = 960hPa, Ta = 20 ◦C, and δ = 46%.
They are available through local weather stations and were double-checked in the lab us-
ing an external BME280 sensor [143]. It can be seen that the air density converges to
ρ = 1.137 kg/m3, which is calculated for comparison using the atmosphere model from Sec-
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Figure 3.22: Estimated air density ρ (solid blue line). ρm is the modeled air density based on the sea level

standard atmosphere (1013 hPa, 20 ◦C, black dashed line) used in the control allocation. The

sensor measurement for comparison is ρ = 1.137 kg/m3 (red dashed line). Copyright © 2020

IEEE [209].

tion 3.2.4. The convergence to the measured air density also proves the correctness of the
identified thrust coefficients. Next, the position tracking accuracy of the adaptive controller
is compared to the non-adaptive case (ε = 0) in experiments with the hexacopter Ardea
(Figure 3.13b) and with the quadrocopter Sparrow (Figure 3.13a).

Adaptive control experiments with hexacopter Ardea

The results for Ardea are shown in Figure 3.24. The adaptive controller is activated prior
to take-off and remains active until Ardea is landed. It can be seen that the trajectory
is tracked more precisely with the adaptive controller (cf. Figure 3.24b) than with the
non-adaptive controller (cf. Figure 3.24a). The controller gains used in both cases are
Kd = diag(1.6, 1.6, 4.0) and Kp = diag(2.0, 2.0, 4.0) and the gain of the adaptation law is
γ = 0.1. For comparison, the Root Mean Square Error (RMSE) in (x, y, z) is (0.10, 0.05,
0.12) m without and (0.09, 0.03, 0.02)m with the adaptive controller, i.e. the latter reduces
the RMSE in all three axes by (10, 40, 83.3)%. Hence, without external disturbances, it is
shown that the air density converges to the real value and that the tracking error is reduced.

(a) (b) Copyright © 2020 IEEE [209].

Figure 3.23: Experiments performed with the coaxial hexacopter Ardea at DLR (a), including transition

from indoors to outdoors, and on Mount Etna in Sicily (b) in order to test the adaptation to

different ambient conditions. The fishing rod is attached to Ardea for safety reasons.
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(a) Non-adaptive position controller (ε = 0). (b) Adaptive position controller.

Figure 3.24: Experimental evaluation of position tracking with the hexacopter Ardea. The position p ∈ R
3

estimated by the VIO system is depicted in red and the desired polynomial trajectory pd is

depicted in blue. The interpolator resets to the estimated position after every trajectory

segment.

An additional experiment conducted with Ardea including the transition from indoors to
outdoors is shown in Figure 3.23. Note that Ardea is not equipped with a barometric
pressure sensor. Take-off on Mount Etna (see Figure 3.23(b)) at an altitude of 2600 m
above Mean Sea Level (MSL) without adaptive control or manual tuning of the model air
density is not possible, due to the required increase in thrust [209].

Adaptive control experiments with quadrocopter Sparrow

The results of the experiments with Sparrow are shown in Figure 3.26. In Figure 3.26(a) and
(b), a payload of ∆m = 0.1 kg is added after approximately 14 s to assess the disturbance
rejection and payload estimation of the adaptive controller compared to the nominal position
controller without adaptation, i.e. ε = 0. With the latter, the altitude is not tracked well
even without external disturbances, because of model uncertainties and decreasing battery
voltage. This is usually compensated using a battery model [132]. With the adaptive
controller, the altitude is tracked accurately and the additional payload is compensated,
i.e. no additional battery model is needed for accurate trajectory tracking. Again, the
adaptive gain is γ = 0.1. An image sequence of the experiments with Sparrow is depicted
in Figure 3.25. It can be seen in Figure 3.26(b) that the payload mass ∆m is estimated
correctly and that the disturbance is rejected. However, without closed-loop rotor speed
control, the estimates of both air density and payload are affected by changes in battery
voltage and therefore require a battery model.
The results of a transition flight from indoors to outdoors are depicted in Figure 3.26(c).
For this, Sparrow is piloted manually, but with adaptive height control using a downward
facing range sensor. The air density estimate is close to the ground truth indoors (20 ◦C,
1.122 kg/m3, dash-dotted) and outdoors (5 ◦C, 1.179 kg/m3, dashed). The RMSE along the
z-direction is 0.29m with PD and 0.08m with adaptive control.
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Figure 3.25: Experiments with 0.1 kg added payload without (top) and with adaptive controller (bottom).

The time between each of the video frames is 0.5 s, i.e. the total duration of the motion is

2.5 s. Copyright © 2020 IEEE [209].

Payload

added

(a) Non-adaptive position controller (ε = 0).

Adaptive control

activated

 m

Payload

added

(b) Adaptive position controller (γ = 0.1) and payload

estimation.

(c) Indoor/outdoor experiment with Sparrow. Copyright © 2020 IEEE

[209].

Figure 3.26: Experimental evaluation of position tracking and payload estimation (top) and in-

door/outdoor transition (bottom) with the quadrocopter Sparrow. A payload of 0.1 kg is

manually added in (a) and (b) (cf. image sequence in Figure 3.25) after approximately 14.8 s.

3.7 Summary and conclusion

This chapter is devoted to the development of a robust pose tracking controller for flying
robots under model uncertainties, external disturbances, and actuator saturation. First,
related work in trajectory tracking control, external wrench estimation, and prioritized con-
trol allocation for flying robots is summarized. Then, the considered dynamical model of
a flying robot is introduced in detail. Essentially, the rigid body dynamics, quadratic and
polynomial propulsion models, and an established atmosphere model are considered for con-
troller design. The developed control approach for flying robots is composed of a generic
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attitude tracking controller, a position tracking controller considering uni-, bi-, and omni-
directional thrust vectors, and a prioritized control allocation procedure. For the latter,
iterative and direct saturation handling methods are discussed. The robustness of the con-
troller against variations in air density, thrust coefficients, and payload is increased using
an adaptive control approach. If persistent excitation is provided, it allows for simultaneous
position tracking and air density (or payload) estimation and only requires a rigid body
model and position and velocity measurements. Moreover, the closed-loop system is shown
to be passive. The estimated air density may be used for flight control, to enhance the
accuracy of a hybrid external wrench estimator, or for meteorological measurements. In
a simulative comparison with state-of-the-art approaches, the proposed adaptive controller
combined with an external wrench observer clearly decreases the tracking error and increases
the accuracy of the estimated external wrench. The performance of the adaptive controller
is verified in experiments with the custom-built quadrocopter Sparrow and the coaxial hex-
acopter Ardea. Furthermore, different applications of bidirectional thrust are discussed and
evaluated experimentally using the quadrocopter Sparrow. The experiments with Sparrow
include the first autonomously performed transitions from upright to inverted flight of a
quadrocopter with fully symmetric fixed-pitch propellers [215].
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"If one is working from the point of view of getting

beauty into one’s equation, ... one is on a sure line

of progress."

— Paul A.M. Dirac 4
Controller designs using separate models

In this chapter, coordinated control approaches are presented for robot-assisted take-off and
landing of a flying robot by means of a ground-based robot manipulator. The controller
designs assume a separation of the combined system dynamics of a flying robot attached
to the end-effector of the robot manipulator (see Section 2.4.3). In Section 4.1, the sepa-
rate dynamics are recalled and the underlying assumptions are summarized. The model is
decomposed into an independent part and a part which contains the coupling terms. This
allows to design distributed controllers in a straightforward way. The obtained controllers
are independent in the sense that one system is only aware of its own dynamics and the
other system handles the coupling terms. This is especially applicable for a robot manipu-
lator with high payload capabilities and a light flying robot equipped with an off-the-shelf
autopilot. All approaches presented in this chapter are intended for the partially clamped
case (c.f. Section 2.3). Note that the content of Section 4.2 is taken from the author’s article
[208], whereas Section 4.3 and Section 4.4 are based on the author’s papers [213] and [212],
respectively.

The collection of coordinated control approaches in Section 4.2 utilizes linearization1 of the
flying robot dynamics. Using a linearization about hover (see Section 4.2.1), a stability
criterion for the low-level attitude controller of the flying robot is found in Section 4.2.2.
In Section 4.2.3, a computed torque control law for the manipulator is derived allowing to
command a desired end-effector acceleration. Alternatively, to increase robustness against
external disturbances such as a flying robot attached at the end-effector of the robot ma-
nipulator, an impedance controller with acceleration input is presented. Then, considering
the linearized dynamics and using established linear control techniques, a pole placement
design (Section 4.2.4) and modal decoupling design (Section 4.2.5) are presented. The
latter generates a desired end-effector acceleration for the manipulator and an orientation
command for the flying robot. In Section 4.2.6, all linear approaches are evaluated and com-
pared in experiments using a DLR/KUKA Light Weight Robot (LWR) and an off-the-shelf
quadrocopter.

The approach in Section 4.3 uses an established nonlinear control method, called backstep-
ping ([87], p. 589), which is applicable to the system at hand due to its strict feedback

1Here, linearization, in contrast to feedback linearization, means linear approximation of the dynamics

about a given state in order to obtain a linear and, hence, less complex representation of the dynamics in

the vicinity of the considered state (also referred to as linearization point).
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form. The backstepping method is explained briefly in Section 4.3.1. To avoid singularities,
quaternions are used to represent the attitude of the flying robot. Thus, the backstep-
ping approach is extended to quaternions in Section 4.3.2 and the quaternion error and an
additional control input are introduced in Section 4.3.3. Then, a backstepping controller
is designed in Section 4.3.4 and used to compute a feed-forward force for the augmented
impedance controller presented in Section 4.3.5. In Section 4.3.6, the proposed backstepping
control approach is evaluated experimentally using a DLR/KUKA LWR and an off-the-shelf
quadrocopter.

The above approaches assume a hovering flying robot and do not explicitly consider motion
of the base of the robot manipulator. Therefore, in Section 4.4 base motion compensation
and active thrust control are added. For illustration and simulation purposes, a planar
model of a robot manipulator on a moving base is introduced in Section 4.4.1. The extended
controller in Section 4.4.2 relies on known (measured) base motion. In Section 4.4.3, the
attitude controller of the flying robot and the stability criterion (4.18) is applied to the
planar case. The active thrust vector control approach in Section 4.4.4 uses the feed-forward
acceleration provided by a trajectory generator. Finally, both extensions are evaluated in an
extensive simulation case study in Section 4.4.5 using a planar moving base model, simulated
ship motion, and the inertial parameters of five flying robots with different thrust-to-weight
ratios.

4.1 Separate dynamics of flying robot attached to manipulator

Recall the dynamics (2.43) of the combined system





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
 = 0, (4.1)

composed of base b, robot manipulator r, and flying robot (or UAV) u. From (4.1) the
separate dynamics of the flying robot are extracted as

Muuφ̈u +Cuuφ̇u +Qext = Qu, (4.2)

where Qext = MT
ruφ̈r + Curφ̇r + MT

buφ̈b + Cubφ̇b comprises all coupling forces and φu is
the configuration of the flying robot. The configuration space velocities are related to task
space velocities via

(

ωu

vu

)

= Ju(φb,φr,φu)






φ̇b

φ̇r

φ̇u




 , (4.3)

where Ju is a Jacobian matrix. Equation (4.2) are the dynamics of a single rigid body. This
follows directly from observation 3 in Section 2.4.5. Hence, the model (4.2) is equivalent to
the rigid body dynamics of a flying robot shown in Section 3.2.1. The rotational dynamics
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Figure 4.1: Model of a quadrocopter connected to a serial robotic manipulator with seven DoF.

may be written in the body-fixed frame u and the translational dynamics in the inertial
frame i, such that2

[

Iu 03×3

03×3 muE3×3

](

ω̇u

v̇u

)

=

(

S(Iuωu)ωu + τur + τext

−muge3 + Fur + Fext

)

. (4.4)

Therein, mu is the mass of the flying robot, Iu = diag(Ixx, Iyy, Izz) is its diagonal inertia
tensor with respect to its center of mass CM , g is the gravitational acceleration, ωu is the
rotational, vu is the translational velocity, and e3 = (0 0 1)T is a unit vector. The matrix
S(·) again denotes the skew-symmetric cross product operator (2.5) defined in Section 2.4.1.
Note, that τur and Fur both contain forces and moments applied by flying robot and robot
manipulator and τext as well as Fext contain external disturbances and the associated parts
of the coupling forces Qext.

From a torque balance about CM for the flying robot connected to the manipulator via a
universal hinge as depicted in Figure 4.1, one obtains

τur = τatt + S(ρ)Rui(ϕ, θ, ψ) FEE , (4.5)

where Rui(ϕ, θ, ψ) is a rotation matrix constructed using Euler angles Φ = (ϕ θ ψ)T ,
that transfers a vector given in the inertial frame i to the body-fixed frame u of the UAV.
The force applied by the robot at its end-effector is denoted as FEE . The displacement
vector written in u from CM to EE is defined as ρ = (0 0 −l)T with the length l of
the universal hinge. The torque required to stabilize a desired attitude is denoted as τatt

in (4.5). As shown in Section 3.4, it holds for underactuated flying robots, like helicopters

2The equivalence of (4.2) and (4.4) may be verified by inserting the derivative w.r.t. time of (4.3) in

(4.4), multiplying JTu from the left, and rearranging. It also follows from the general partial decomposition

of redundant systems presented in Section 2.4.5.
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and multicopters, that the thrust vector is given by T = (0 0 T )T . It is assumed to be
always perpendicular to the (xu,yu)-plane of the UAV [165]. For a quadrocopter, as shown

in Figure 4.1, the collective thrust T is the sum of all rotor thrust forces
4∑

i=1
Ti. If the flying

robot is connected to the robot manipulator, a balance of forces yields

Fur = TRT
ui(ϕ, θ, ψ)e3 + FEE . (4.6)

Combining equations (4.4), (4.5), and (4.6) with the kinematics

ṙCM = vu, (4.7)

ṘT
ui = −RT

uiS
T (ωu) = RT

uiS(ωu), (4.8)

gives the complete equations of motion of the flying robot fixed to the robot manipulator
via a universal hinge. Therein, rCM is the position of the aerial vehicle’s center of mass in
the inertial frame.

In the following, it is assumed that

• the flying robot is equipped with an arbitrary attitude controller which generates τatt,

• T is either only used for gravity compensation or alternatively for height control,

• the forces applied by the flying robot onto the manipulator are negligible.

4.2 Linear state space control

In this section, the equations of motion (4.4) of the unmanned aerial vehicle fixed to a
robot manipulator by means of a universal hinge are linearized and analyzed for stabil-
ity (Section 4.2.2). The nonlinear terms in the translational dynamics, introduced by the
transformation from body-fixed to inertial frame, as well as the cross product term in the
rotational dynamics vanish through linearization. For a light flying robot, their influence
can be considered small, as will be shown in the experiments in Section 4.2.6 of this chap-
ter. Linear control is a well-studied field, so many tools are readily available and the results
can be interpreted in-depth. In the following, these established linear control methods are
applied:

• PID control ([166], p. 263) in Section 4.2.3,

• pole placement using Ackermann formula ([167], p. 331) in Section 4.2.4,

• decoupling via Roppenecker formula [168], ([167], p. 334) in Section 4.2.5.

The overall controller scheme with its three different realizations is shown in Figure 4.2. For
robot manipulator control, a nonlinear model and a feedback linearization in task space (cf.
Section 2.6) is used, which tracks a desired translational acceleration computed by the linear
controllers. The coupling terms in the task space dynamics can be incorporated if they are
known. Uncertainties in flying robot model and control allocation (which influence thrust
and, thus, the gravity compensation of the flying robot) are accounted for via an integral
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Figure 4.2: Scheme of the state space control approach with the three realizations of the controller depicted

using different line styles. The controller (4.23) for the orientation of the end-effector as well as

the feed-forward torque controller (4.24) from Section 4.2.3 are used for all three realizations.

The coupled controller (4.29) - (4.31) in Section 4.2.4 produces a desired translational acceler-

ation of the robot’s end-effector to control both position and orientation of the flying robot (or

UAV) simultaneously. In order to fulfill the same task, the decoupling controller (4.39)-(4.40)

in Section 4.2.5 generates an appropriate end-effector acceleration and a torque which is added

to the attitude control torque of the aerial vehicle.

part in the linear control law. The computed-torque control law for the manipulator is
derived in Section 4.2.3 allowing to command a desired end-effector acceleration. Then, a
nominal linear state space controller is designed, neglecting the dynamics of the flying robot.
This controller is then extended in Section 4.2.4 in order to control both the flying robot’s
center of mass position CM and its orientation about CM in a coupled manner using the
robot manipulator. The attitude controller of the flying robot is assumed to be linear with
known gains, as presented in Section 4.2.2. Finally, a modal control approach [168] is used
to decouple the acceleration of the end-effector from the orientation of the flying robot in
Section 4.2.5.

4.2.1 Linear approximation about hover

Here, the linearization h(x) ≈ h(x0) +∇h|x0∆x with ∆x = x − x0 ([166], p. 55) of the
flying robot dynamics about hover Rui = E3×3 is presented briefly. Given the orientation of
the aerial vehicle is described by the rotation matrix Rui introduced in Section 2.4.1. The
equations of motion (4.4) are linearized about ϕ0 = θ0 = ψ0 = 0 and ω0 = 0, where the
index 0 indicates the steady hover state. The linearized rotation matrix is given by

Rui(∆ϕ,∆θ,∆ψ) ≈






1 ∆ψ −∆θ
−∆ψ 1 ∆ϕ

∆θ −∆ϕ 1




 , (4.9)
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for which the small angle assumption sin(x) = x, cos(x) = 1 is used and products of
deviations are neglected, e.g. ∆ψ∆θ = 0. Under equal assumptions, it follows for the
kinematics (4.8) that

ṘT
ui ≈






0 −∆ωz ∆ωy
∆ωz 0 −∆ωx
−∆ωy ∆ωx 0




 . (4.10)

Finally, with v̇0 = 0, τur,0 = 0, T0 = mug, and FEE,0 = 0, the rotational dynamics are
obtained as

ω̇u ≈






0 −mul
Ixx

0
mul
Iyy

0 0

0 0 0









∆r̈EE + g






∆θ

−∆ϕ
1









+






1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz




∆τatt (4.11)

and the translational dynamics as

v̇u ≈






0 g 0

g 0 0

0 0 0











∆ϕ

−∆θ
∆ψ




+

1

mu
∆Fu +∆r̈EE . (4.12)

Therein, r̈EE is the acceleration of the manipulator’s end-effector and τatt and r̈EE are the
control inputs. This is similar to the equations of motion of a linearized inverted pendulum,
e.g. used in [75], but with the difference that the attitude may be controlled directly via
τatt, i.e. by means of the rotors of the flying robot. Since h(x0) = 0 and x0 = 0 and
therefore ∆x = x, the ∆ notation is omitted in the following for brevity.

4.2.2 Stability criterion for PD attitude control of flying robot

The question arises whether it is possible for a given attitude controller to stabilize the
orientation while the flying robot is rigidly connected to the end-effector of the manipulator.
Therefore, the stability of the hover state (ωT ΦT )T = 06×1 with constant thrust force
T = mug is analyzed. It is reasonable to assume that the flying robot is equipped with a
linear Proportional Derivative (PD) attitude controller [165] and that the rotors produce
the torque

τatt = −diag(kωx , kωy , kωz) ωu − diag(kϕ, kθ, kψ)






ϕ

θ

ψ




 . (4.13)

The torque τatt is generated depending on the geometry of the flying robot and on the rotor
parameters. Further details are presented in Section 3.2 and Section 3.4. In the following,
x- and y-direction are combined for conciseness. This is indicated using the notation x/y

which means that the equations equally hold for x or y, respectively. Inserting (4.5), (4.6),
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and (4.13) in (4.4) and linearizing about the hover state yields for the rotational dynamics
about the x-, y-, and z-axis, respectively (cf. body coordinate axes depicted in Figure 4.1)

(

ω̇x/y
ϕ̇/θ̇

)

=

[ −kωx/y
Ixx/yy

−kϕ/θ+mugl
Ixx/yy

1 0

]

︸ ︷︷ ︸

Ax/y

(

ωx/y
ϕ/θ

)

, (4.14)

(

ω̇z
ψ̇

)

=

[
−kωz
Izz

−kψ
Izz

1 0

]

︸ ︷︷ ︸

Az

(

ωz
ψ

)

. (4.15)

The characteristic polynomials Pi = det (Ai − λiE2×2) for i ∈ {x, y, z} are obtained as

Px/y = λ2x/y +
kωx/y
Ixx/yy

λx/y +
kϕ/θ −mugl

Ixx/yy
, (4.16)

Pz = λ2z +
kωz
Izz

λz +
kψ
Izz

. (4.17)

According to the Routh-Hurwitz criterion ([166], p. 391), the hover state is stable if all
coefficients within (4.16) and (4.17) are positive. Since all other parameters are positive,
it follows that the gains kϕ/θ, kωx/y , kψ, and kωz have to satisfy the (necessary, but not
sufficient) conditions [208]

kϕ/θ > mugl, kωx/y > 0, kψ > 0, kωz > 0. (4.18)

Moreover, from the eigenfrequency ω0 and the damping ζ of (4.16)

ω0 =

√

kϕ/θ −mugl

Ixx/yy
, (4.19)

ζ =
kωx/y

2
√

Ixx/yy(kϕ/θ −mugl)
, (4.20)

it can be seen that by increasing the length l of the universal hinge or the mass mu of the
flying robot, the eigenfrequency ω0 can be decreased while the damping ζ is increased and
vice versa.

4.2.3 Manipulator control with acceleration input

In this section, the dynamics (2.42) of a serial robotic manipulator with n joints, as presented
in Section 2.4.4, are considered. In order to mitigate the influence of the manipulator’s motor
inertias, of friction in the joints, and of model uncertainties, the integral of the position error
r̃ = rEE,d − rEE is added to the system states. The desired translational acceleration of
the end-effector r̈EE,d is defined as intermediate control input. Assuming direct control of
the acceleration, a linear state space model for the translational motion of the end-effector
is obtained as 




r̈EE

ṙEE

r̃




 =






0 0 0

E 0 0

0 −E 0











ṙEE

rEE
∫
r̃dt




+






r̈EE,d

0

rEE,d




 . (4.21)
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A linear controller
r̈EE,d = −K1

(

ṙEE rEE
∫
r̃dt
)T

(4.22)

can be designed such that the poles of the closed-loop are placed at a desired location in
the left complex half-plane using e.g. Ackermann’s formula [169]. Since flying robot and
manipulator are connected via the rotational hinge, the orientation of the aerial vehicle
and the robotic end-effector can be controlled independently. The control law from [170] is
adopted in order to generate a desired rotational acceleration for the robot

ω̇EE,d = −
1

2
kEE






(REERd)
{3,2} − (REERd)

{2,3}

(REERd)
{1,3} − (REERd)

{3,1}

(REERd)
{2,1} − (REERd)

{1,2}




− kωEEωEE (4.23)

using the actual and the desired orientation REE and Rd as well as the rotational part of the
velocity of the end-effector (vT ωT )TEE = J(φ)φ̇. In (4.23), the notation (REERd)

{i,j}

denotes the element of REERd in row i and column j. Note the similarity with (3.19)
in Section 3.3.1 and the vee map (2.7) defined in Section 2.4.1. The feedback lineariza-
tion (2.81) - (2.83) presented in Section 2.6 allows to directly include the desired acceleration,
for which it should hold that (r̈T ω̇T )TEE = (r̈T ω̇T )TEE,d. Hence, (2.83) becomes

τj = JT (φ)Λ(φ)

(

r̈

ω̇

)

EE,d

+ JT (φ)µd(φ, φ̇) + g(φ) + τnsp, (4.24)

where τnsp is a general nullspace torque (2.51) introduced in Section 2.4.4. The latter is a
design parameter and can be used to include additional objectives, e.g. to realize a desired
posture of the manipulator without interfering with the end-effector task. An experimental
evaluation of the controller (4.24) with (4.22) and (4.23) can be found in Section 4.2.6. In
the next section, the control law (4.21) is extended in order to stabilize the position and the
orientation of the flying robot simultaneously.

4.2.4 Flying robot control design using pole placement

As soon as the aerial vehicle is connected to the manipulator via the universal hinge, the
position of its center of mass in the inertial frame is given by

irCM = irEE +Rib
bρ. (4.25)

It is assumed that the flying robot is equipped with the linear attitude controller (4.13) and
the thrust force is T = mg. This yields the following independent linear state space models
for the x-, y-, and z-motion of the flying robot








r̈x
ṙx
ω̇y
θ̇








UAV

=








0 0 0 g

1 0 0 0

0 0

0 0
Ay








︸ ︷︷ ︸

Ax








ṙx
rx
ωy
θ








UAV

+








1

0

−ml
Iyy

0







r̈EE,x, (4.26)
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






r̈y
ṙy
ω̇x
ϕ̇








UAV

=








0 0 0 −g
1 0 0 0

0 0

0 0
Ax








︸ ︷︷ ︸

Ay








ṙy
ry
ωx
ϕ








UAV

+








1

0
ml
Ixx

0







r̈EE,y, (4.27)








r̈z
ṙz
ω̇z
ψ̇








UAV

=








0 0 0 0

1 0 0 0

0 0

0 0
Az















ṙz
rz
ωz
ψ








UAV

+








1

0

0

0







r̈EE,z. (4.28)

It can be seen from (4.28), that the yaw angle ψ of the UAV is not controllable by r̈EE .
Instead, it can be stabilized by the UAV attitude controller at an arbitrary orientation ψ0,
which is free but has to be known. Furthermore, to reduce the influence of motor inertia and
friction, the integral of the position error r̃ = rCM,d − rCM is again added to the system’s
state vector. Then, instead of the pure translational controller (4.22), three independent
linear controllers are designed using pole placement [169]

r̈EE,x,d = −K2

(

ṙx rx − rx,0 ωy θ
∫
r̃xdt

)T
, (4.29)

r̈EE,y,d = −K3

(

ṙy ry − ry,0 ωx ϕ
∫
r̃ydt

)T
, (4.30)

r̈EE,z,d = −K4

(

ṙz rz − rz,0
∫
r̃zdt

)T
. (4.31)

Therein, (rx,0 ry,0 rz,0)
T is the UAV’s initial center of mass position. Inserting (4.29),

(4.30), and (4.31) in (4.24) and using (4.23) for stabilizing the end-effector orientation at
Rd = E yields the final computed-torque control law for the robot manipulator.

The stability criterion (4.18) can be interpreted as the lower bound on the controller gains,
since the acceleration r̈EE is assumed to be zero. An additional bound on the maximum
end-effector acceleration can be found using the Lyapunov function

Vx =
1

2
ω2
x +

1

2
(kϕ −mugl)ϕ

2 ≥ 0, (4.32)

with kϕ > mugl. A Lyapunov function Vy for ωy and θ can be found analogously (see
Appendix A8). Using the derivative of (4.32) and Vy the following additional criteria is
found

r̈EE,x ≥ −
kωyIyy

mul
ωy, r̈EE,y ≤

kωxIxx
mul

ωx. (4.33)

The complete derivation of (4.33) can be found in Appendix A8. In conclusion, the fly-
ing robot can be connected to the manipulator via an universal hinge without considering
its attitude in the manipulator controller, as long as both criteria (4.18) and (4.33) are
fulfilled.

4.2.5 Flying robot control design via modal decoupling

In Section 4.2.4, actuation of the flying robot is neglected, i.e. it is treated like an inverted
pendulum. However, the flying robot is able to control its orientation independently using
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its rotors. The communication channel between manipulator and flying robot allows to send
commands and enables the UAV to contribute to the take-off and landing task. This can be
considered conveniently by adding a torque input ∆τatt to the linear system dynamics, as
depicted in Figure 4.2. The torque ∆τatt is the deviation from the already present attitude
control torque τatt of the flying robot and leads to








r̈x
ṙx
ω̇y
θ̇








UAV

= Ax








ṙx
rx
ωy
θ








UAV

+








1 0

0 0

−ml
Iyy

1
Iyy

0 0








︸ ︷︷ ︸

Bx

(

r̈EE,x
∆τatt,y

)

︸ ︷︷ ︸
ux

, (4.34)








r̈y
ṙy
ω̇x
ϕ̇








UAV

= Ay








ṙy
ry
ωx
ϕ








UAV

+








1 0

0 0
ml
Ixx

1
Ixx

0 0








︸ ︷︷ ︸

By

(

r̈EE,y
∆τatt,x

)

︸ ︷︷ ︸
uy

, (4.35)

through which ψ is now controllable as well:
(

r̈z
ṙz

)

UAV

=

[

0 0

1 0

](

ṙz
rz

)

UAV

+

(

1

0

)

r̈z, (4.36)

(

ω̇z
ψ̇

)

UAV

= Az

(

ωz
ψ

)

UAV

+

(
1
Izz

0

)

∆τatt,z. (4.37)

Again, the integral of the position error r̃ and additionally the integral of the orientation
error Φ̃ = (ϕ̃ θ̃ ψ̃)T = (ϕd − ϕ θd − θ ψd − ψ)T is added to the system states. The
matrices Ax, Ay, Bx, and By are adapted accordingly and become

A
∗
x/y =






Ax/y 0

0 −1 0 0

0 0 0 −1 0




 , B

∗
x/y =






Bx/y

0




. (4.38)

The aim is to find decoupling control laws

ux = Kx

(

ṙx rx − rx,0 ωy θ
∫

r̃xdt
∫

θ̃dt
)T

UAV

, (4.39)

uy = Ky

(

ṙy ry − ry,0 ωx ϕ
∫

r̃ydt
∫

ϕ̃dt
)T

UAV

, (4.40)

for (4.34) and (4.35) and use a formula by Roppenecker [168] to compute the gains Kx

and Ky

Kx/y =
[

p1 ...p6

]

x/y

[

w1 ...w6

]−1

x/y
. (4.41)

Therein, pi,x/y with i ∈ {1, 2, 3, 4, 5, 6} are the so-called parameter vectors defined pi,x/y =

Kx/ywi,x/y, with wi,x/y being the eigenvectors associated with the eigenvalues λi,x/y of the
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closed-loop system (4.34) with (4.39), or (4.35) with (4.40), respectively. From the definition
of the eigenvectors, the following linear system of equations is obtained






λiE −A
∗

B
∗

eTj(i)






x/y
︸ ︷︷ ︸

Di,x/y

(

wi

pi

)

x/y

= 0. (4.42)

The unit row vectors eTj(i), whose elements are all zero except for the jth element which is
one, are added in (4.42) in order to make the system of equations solvable and allow to define
additional requirements for the solution of (4.42). The goal is to suppress certain states in
the eigenmodes exp(λi(t− t0))wi,x/y of the closed-loop systems. A suitable requirement
can be formulated as follows: The eigenvalue λi,x/y should not influence the jth state
with i ∈ {1, 2, 3, 4, 5, 6} and j ∈ {1, 2, 3, 4, 4, 2}. The solution of (4.42) is obtained from
(

wi pi

)T

x/y
= kernel

(
Di,x/y

)
analytically using the six 7× 8 matrices Di,x/y yielding

Kx =












−a −mu · l · a
b mu · l · b
0 −kωy − Iyy · d
g −kθ + 2 ·mu · g · l + Iyy · e
c mu · l · c
0 Iyy · f












T

, (4.43)

with
a = λ3 + λ4 + λ5, b = λ3λ4 + λ3λ5 + λ4λ5,

c = λ3λ4λ5, d = λ1 + λ2 + λ6,

e = λ1λ2 + λ1λ6 + λ2λ6, f = λ1λ2λ6.

From the closed-loop equation for the x-direction

A
∗
x −B

∗
xKx =












a −b 0 0 −c 0

1 0 0 0 0 0

0 0 d −e 0 −f
0 0 1 0 0 0

0 −1 0 0 0 0

0 0 0 −1 0 0












, (4.44)

it can be seen that the translational and the rotational states are indeed decoupled if the
controller (4.43) is used. In addition, the integrals in the controllers (4.29) - (4.31) result
in zero steady-state error in position and orientation. A stability analysis of (4.34) - (4.37)
considering time delay in the communication channel between the flying robot and the
manipulator can be found in Appendix A9.

The controller gain Ky follows analogously, but is omitted here for the sake of brevity. The
controllers for the subsystems (4.36) and (4.37) with gains Kz and Kψ are again obtained
using pole placement and with the integral of the position and the orientation error r̃z and
ψ̃, respectively, as additional states.
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4.2.6 Experimental evaluation

The landing system demonstrator is shown in Figure 4.3. It is composed of a torque-con-
trolled DLR/KUKA Light Weight Robot (LWR) with seven DoF (see Section 2.2 for details).
At the end-effector, a camera system for visual localization of the UAV, an electromagnet for
attaching and releasing the aerial vehicle, and a force-torque sensor for measuring the interac-
tion forces are mounted. The off-the-shelf quadrocopter AR.Drone 2.0 [171], which is used in
this lab experiment, is equipped with a custom-built universal hinge that decouples UAV and
end-effector orientation such that only translational forces are applied by the robot (see Fig-
ure 4.3). The model parameters of the quadrocopter can be found in Table 4.1. The attitude
controller gains are those of the manufacturer and are identified using step responses about
the three principal axes as (kϕ, kθ, kψ, kωx , kωy , kωz) = (0.59, 0.66, 0.03, 0.04, 0.05, 0.03). The
gravitational acceleration is assumed to be g = 9.81m/s2. All controllers are implemented
using MATLAB/Simulink® and the communication with the quadrocopter is established
using standard 2.4GHz wireless LAN.

The gain K1 of the controller (4.22) in Section 4.2.3 is obtained by placing the poles at
λi,1 ∈ {−3,−4,−5}, which results in a subjectively fast motion of the LWR. The poles for
the controllers (4.29) - (4.31) in Section 4.2.4 are chosen as λi,2/3 ∈ {−5,−5,−5,−5,−5}
and λi,4 ∈ {−3,−4,−5} yielding K2/3 and K4, respectively. The pole λi,2/3 is chosen faster

Table 4.1: Model parameters of quadrocopter AR.Drone 2.0.

Mass mu [kg] Inertia I [kg m2] Hinge length l [m]
0.480 diag([0.006 0.007 0.012]) 0.06

Figure 4.3: Robotic VTOL UAV landing system in the DLR Flying Robots lab (left) and a screenshot

from the simulation environment (right). The enlarged detail shows the universal hinge and

the electromagnet which connect the quadrocopter to the end-effector of the serial robotic

manipulator. Copyright © 2016 IEEE [208].

118



4.2 Linear state space control

t = 0s t = 3.5s t = 6s t = 9s t = 11.5s t = 14s t = 19s

Figure 4.4: Picture sequence from the performed experiment with the controller from Section 4.2.5. The

indicated time instants correspond to the plot in Figure 4.7. A short video is provided on-

line [172] showing the robotic assistance system for flying robots and some of the conducted

experiments. Copyright © 2016 IEEE [208].
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maximum deviations d1 and d2 from the direct path between two waypoints are depicted.

Copyright © 2016 IEEE [208].

than the open-loop poles to test if the orientation control is nevertheless better compared
to the nominal manipulator controller (4.22). The poles for the controllers (4.39) and (4.40)
from Section 4.2.5 are chosen with slightly different orientation eigenvalues λ1,x/y, λ2,x/y,
and λ6,x/y compared to the open-loop, as λi,x/y ∈ {−3.5 + 9i,−3.5− 9i,−3,−4,−5,−5} and
λi,z/ψ ∈ {−3,−3,−3} yielding Kx/y and Kz/ψ respectively, to examine the influence of
the decoupling in the closed-loop behaviour. It depends on the ratio between position and
attitude gains, if either position or orientation is prioritized. If the gains for the translational
motion are higher, the controller tries to keep the end-effector close to the desired position.
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(b) Experimental results using the control laws

(4.29) - (4.31) from Section 4.2.4. The top row

shows the trajectory of the UAV’s center of mass.

Figure 4.6: Experimental results using the three different linear state space control approaches. The last

row shows the joint torques of the Light Weight Robot. Only the first four torques are labelled

since the other three are close to zero. Copyright © 2016 IEEE [208].

This deteriorates the accuracy of the attitude control. On the other hand, if the gains for
the rotational motion are higher, orientation control is more accurate (similar to an inverted
pendulum), while the deviation from the desired position is increased. The end-effector of
the robot is controlled such that it always points upwards, as shown in Figure 4.3, using
the orientation controller (4.23) with gains (kEE , kωEE ) = (12.0, 7.0). Alternatively, this
tasks can be realized by the nullspace controller, which would result in task decoupling and
increased authority of the end-effector task. For now, the joint redundancy of the LWR is
resolved using the elbow field [71]. It constrains the elbow such that it points downwards
and produces τnsp. The term JT (φ)µd(φ, φ̇) in (4.24) is neglected in the implementation,
because of its minor numerical value compared to the other terms.

All three controllers are tested with the same sequence of four position set-points as shown
in the top row of Figure 4.6 and Figure 4.7 for the controllers from Section 4.2.3, Sec-
tion 4.2.4, and Section 4.2.5. A picture sequence from the experiments with the controller
from Section 4.2.5 is shown in Figure 4.4. No additional interpolator is used between the
desired set-points. Note that for the controller (4.22) from Section 4.2.3 the set-point for the
end-effector irEE,d is commanded, while for controller from Section 4.2.4 and Section 4.2.5
the desired position of the UAV’s center of mass irCM,d is commanded. Every set-point is
sent as soon as the previous waypoint is reached within 1 cm accuracy. Hence, the duration
of the trajectory segments for the three different controllers varies, as can be seen in the top
row of Figure 4.6 and 4.7. With the nominal controller (4.22), it takes about 19 s to execu-
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Figure 4.7: Experimental results using the control laws (4.39) and (4.40) from Section 4.2.5. The fourth

row shows the attitude torques which are sent to the aerial vehicle. The last row shows the

joint torques of the Light Weight Robot. Only the first four torques are labelled since the other

three are close to zero. Copyright © 2016 IEEE [208].

tion the complete trajectory sequence, with the control laws (4.29) - (4.31) the duration is
approximately 17 s and the control laws (4.39) and (4.40) result in the slowest motion with
a duration of about 20 s. The mean squared error (MSE) of the deviation from the four
position set-points is very similar for controller (4.22) (MSE: 0.028), the controllers (4.29),
(4.30), (4.31) (MSE: 0.029), and the controllers (4.39), (4.40) (MSE: 0.029). However, the
path of the UAV’s center of mass in Figure 4.5 reveals a deviation from the direct connection
between two waypoints of up to 8 cm with the control laws (4.39) and (4.40).

The desired orientation of the quadrocopter, written in Euler angles, is (ϕ θ ψ)T = 0 and
its trajectory is shown in the second row of Figure 4.6 and 4.7. The MSE of the deviation
from the desired orientation of the Euler angles ϕ, θ, ψ, depicted in Figure 4.6 and 4.7,
shows that the precision of the orientation control using decoupled control (4.39), (4.40) is
superior compared to the other two controllers (MSE: 1.81). The nominal controller (4.22)
shows the worst orientation accuracy (MSE: 3.77). The third row of Figure 4.6 and 4.7
depicts the corresponding angular velocities of the quadrocopter measured by its on-board
IMU. The desired and measured joint torques of the robot manipulator are depicted in the
last row of Figure 4.6 and 4.7 and show equal tracking performance in all three experiments
of the low-level torque controller of the LWR. The additional torque commands for the
quadrocopter’s attitude controller ∆τatt are only shown in the fourth row of Figure 4.7
since ∆τatt is only used with this controller (see also Figure 4.2).
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The experimental results indicate that the linear controllers (4.29) - (4.31) designed using
pole placement in Section 4.2.4 as well as the model decoupling controllers (4.39) and (4.40)
from Section 4.2.5 both increase the performance in position and attitude control compared
to the nominal manipulator controller (4.22) presented in Section 4.2.3. The controllers
(4.29) - (4.31) can fulfill position and orientation control simultaneously while the weighting
between both is defined by the eigenvalues of the closed-loop system. With the selected
eigenvalues, the execution time of the test sequence is reduced by 2 s while the accuracy in
orientation control is increased. The controllers (4.39) and (4.40) mitigate the effect of a
change in the UAV’s orientation on its center of mass position in the inertial frame and in
addition generates correction torques for the flying robot’s attitude. This leads to deviations
from the direct path between two waypoints but to best performance in attitude control
compared to the other two controllers. The reason for the deviation in position is, that
in this experiment set-points are commanded instead of a continuous trajectory between
the four points in Cartesian space. The attitude of the flying robot is regulated using the
off-the-shelf controller implemented by the manufacturer. Closed-loop torque control is not
available, which may be the reason why the disturbance is not compensated completely.
In practice, the difference in performance of the presented linear control approaches highly
depends on the acceleration control of the robot as well as on the torque control of the UAV.
The controllers (4.29), (4.30), and (4.31) only use state feedback from the flying robot, while
for the controllers (4.39) and (4.40) it is important that the computed torque ∆τatt is really
produced by the flying robot. Therefore, the controllers (4.29) - (4.31) from Section 4.2.4
are beneficial for applications where no accurate UAV torque controller is available.

4.3 Nonlinear backstepping control

Here, the same decomposition of the system dynamics as in the previous section is used.
However, a nonlinear backstepping controller is designed to control the pose of the flying
robot attached at the end-effector of the robot arm. First, the backstepping method and
quaternion backstepping are introduced, then the novel control approach is presented and
evaluated in experiments with the robotic assistance system demonstrator.

4.3.1 Backstepping method

Backstepping or integrator backstepping is a nonlinear control method ([87], p. 589) suitable
for dynamical systems given in strict feedback form

ẋ = f(x) +B(x)w, (4.45)

ẇ = f1(x,w) +B1(x,w)u. (4.46)

Proposition 4.1. Assume that asymptotic stability of (4.45) under the virtual control law

α with w = α(x) is confirmed using the Lyapunov function V0(x). If B1(x,w) in (4.46)

is invertible, then it is possible to use the backstepping control law

u(x,w) = B−1
1 (x,w)

(

α̇−BT (x)

(
∂V0(x)

∂x

)

−K(w −α)− f1(x,w)

)

, (4.47)
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with α̇ = ∂α
∂x (f(x) +B(x)w), to render the equilibrium xe of the dynamical system (4.45,

4.46) asymptotically stable.

Proof. Consider the Lyapunov function

V (x,w) = V0(x) +
1

2
(w −α)T (w −α) ≥ 0 (4.48)

with time derivative

V̇ (x,w) =

(
∂V0(x)

∂x

)T

(f(x) +B(x)w)
︸ ︷︷ ︸

ẋ

+ (w −α)T (ẇ − α̇). (4.49)

Inserting the controller (4.47) in (4.46) yields

ẇ = α̇−BT (x)

(
∂V0(x)

∂x

)

−K(w −α). (4.50)

Using the above result in (4.49) and rearranging leads to

V̇ (x,w) =

(
∂V0(x)

∂x

)T

(f(x) +B(x)α)− (w −α)TK(w −α), (4.51)

for which it follows because of
(
∂V0(x)
∂x

)T
(f(x) +B(x)α) ≤ 0 with a suitably chosen α

and a positive definite K that
V̇ (x,w) ≤ 0. (4.52)

4.3.2 Quaternion backstepping

In order to avoid representation singularities, quaternions shall be used as attitude represen-
tation. Since the kinematics of a quaternion q = (qw qx qy qz)

T = (η ǫT )T are given in
strict feedback form (4.45, 4.46), the backstepping approach (4.47) can be applied directly.
The kinematics (cf. (2.25)) with input u read

q̇ =
1

2

[

−ǫT
ηE3×3 + S(ǫ)

]

ωu =
1

2
Qq(q)ωu, (4.53)

ω̇u = u. (4.54)

The attitude error qe is defined using quaternion multiplication (see (2.23) and (2.24)),
hence

qe =
(

ηe ǫTe

)T
= q−1

d ⊗ q =
[

q−1
d Qq(q

−1
d )

]

q, (4.55)

which is equal to the rotation from the desired attitude qd to the current attitude q [173].
Due to the ambiguity of quaternions mentioned in Section 2.4.1, the backstepping variables
have to be chosen carefully to avoid unwinding [174], i.e. it needs to be assured that from
the two possible rotations always the shorter one is performed. Here, only the regulation
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Figure 4.8: Illustration of the terms 1−|ηe| and sgn(ηe)(1−|ηe|) in (4.56) and (4.62), respectively. Consider

a quaternion error qe with arbitrary rotation axis ǫe and rotation angle ϕe ∈ [−2π, 2π]. Then,

applying the above terms restricts the angle ϕe to ϕ̂e = 2sgn(ηe) arccos(1−|ηe|) (gray area). For

example, the dashed lines show the evolution of ϕe = −260 deg, which ends up at ϕ̂e = 100 deg,

and ϕe = 300 deg, which ends up at ϕ̂e = −60 deg.

case (or set-point control), i.e. a constant attitude reference, is considered. A suitable choice
of the backstepping variables is

z1 =
(

1− |ηe| ǫTe

)T
, ż1 =

1

2

[

sgn(ηe)ǫTe
ηeE3×3 + S(ǫe)

]

︸ ︷︷ ︸

=:Z

ωu,

z2 = ωu −α, ż2 = ω̇u − α̇.

(4.56)

The augmented quaternion error is illustrated in Figure 4.8 and the augmented signum
function is given by

sgn(ηe) =

{

−1, ηe < 0,

1, ηe ≥ 0.
(4.57)

Consider the Lyapunov functions

V0 =
k

2
zT1 z1 > 0, (4.58)

V = V0 +
1

2
zT2 z2 > 0. (4.59)

A virtual control input α, which results in asymptotic stability of the equilibrium ωu = 0

is
α = −K1Z

Tz1. (4.60)

For the latter and with k > 0 and K1 > 0, it is straightforward to show that

V̇0 = kzT1 ż1 = −kzT1 ZK1Z
Tz1 + kzT1 Zz2. (4.61)

Then, according to (4.47) from Section 4.3.1, the backstepping controller is derived as

u = α̇− kZTz1 −K2z2, (4.62)

for which it holds that

V̇ = V̇0 + zT2 ż2 = −kzT1 ZK1Z
Tz1+kz

T
1 Zz2 − kzT2 ZTz1

︸ ︷︷ ︸

=0

− zT2 K2z2 ≤ 0. (4.63)
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Thus, stability and convergence of the orientation error may be concluded applying LaSalle’s
invariance principal ([87], p. 128). Note that Z is a state-dependent gain matrix and that
the control α has a discontinuity at ηe = 0, due to ZTz1 = sgn(ηe)ǫe. This is necessary in
order to disambiguate the quaternion and avoid unwinding [174]. Asymptotic stability can
therefore only be shown locally for ηe 6= 0.

4.3.3 Additional control input

Recall the separate dynamics model derived in Section 4.1. Inserting (4.5) and (4.6) in (4.4)
yields the concise formulation

[

I 0

0 muE

]

︸ ︷︷ ︸

Mu

(

ω̇u

v̇u

)

=

(

S(Iωu)ωu + τatt

−muge3 + TRT
uie3

)

︸ ︷︷ ︸
au

+

[

S(ρ)Rui

E

]

︸ ︷︷ ︸

Bu

FEE , (4.64)

where the inertia matrix of the flying robot is denoted as Mu, the input matrix as Bu, and
the rest of the right-hand side of (4.64) as au.

The input matrix Bu in (4.64) is not invertible due to the underactuation of the system,
which prevents this model from being directly utilized for nonlinear backstepping design.3

Therefore, an additional torque input ∆τatt is appended, which is sent to the flying robot
and added to τatt, such that the control input becomes

u =
(

uT1 uT2

)T
=
(

∆τ Tatt F T
EE

)T
. (4.67)

Hence, the system becomes fully actuated and the augmented input matrix Bu is invertible4

with

Bu =

[

E S(ρ)Rui

0 E

]

. (4.68)

4.3.4 Backstepping controller design

The controller for the system depicted in Fig. 4.9 is derived following the procedure presented
in Section 4.3.2 and [175]. It is extended to include both the rotational and the translational
dynamics of the flying robot. As depicted in Figure 4.10, the final control approach combines
orientation and position control and the latter is used in Section 4.3.5 to extend the classical
impedance controller (2.87) from Section 2.6.

3A similar conclusion may be drawn if the controllability of the analogous linear time-invariant (LTI)

system

ẋ = Ax+Bu (4.65)

with A = M−1
u and B = M−1

u Bu is examined. For the controllability matrix ([167], p. 291)

C =
[

B AB A2B . . . An−1B
]

, (4.66)

with n = 6, it follows that rank(C) = 5 < n, i.e. the system is not controllable.
4For B = M−1

u Bu, it follows that rank(C) = 6 = n, i.e. the system is controllable.
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Figure 4.9: Flow diagram of the flying robot dynamics for backstepping controller design.

The first backstepping variable z1 is chosen to be

z1 =
(

1− |ηe| ǫTe rTe

)T
. (4.69)

The Cartesian position error re = r − rd is defined as the difference between current posi-
tion r and desired position rd of the end-effector EE and the term 1 − |ηe| is again used
to avoid unwinding. A graphical explanation of the latter is given in Figure 4.8. Then, the
first derivative of (4.69) with respect to time is

ż1 =

[

Z(qe)4×3 04×3

03×3 E3×3

]

︸ ︷︷ ︸

=:W

(

ωu

vu

)

. (4.70)

Next, the Lyapunov function candidate

V1 =
k3
2
zT1 z1 > 0 (4.71)

is introduced, which is positive definite for k3 > 0. Its derivative with respect to time is

V̇1 = k3z
T
1 ż1 = k3z

T
1 W

(

ωu

vu

)

. (4.72)

Using a virtual control input α, the second backstepping variable z2 is defined as

z2 =

(

ωu

vu

)

−α. (4.73)

An intermediate control law, that preserves asymptotic stability for the equilibrium ωu =

vu = 0 of (4.73) is
α = −K1W

Tz1. (4.74)

Therein, K1 > 0 is a positive definite diagonal gain matrix. Hence, (4.72) becomes

V̇1 = −k3zT1 WK1W
Tz1

︸ ︷︷ ︸

≤0

+ k3z
T
1 Wz2. (4.75)

Next, the outer-loop controller as depicted in Figure 4.9 is designed. The derivative of (4.73)
is found as

ż2 =

(

ω̇u

v̇u

)

− α̇, (4.76)
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Figure 4.10: Integration of the backstepping controller in the proposed framework for coordinated control

of robot manipulator and flying robot.

which can be rewritten using (4.64) to

Muż2 = au +Buu−Muα̇. (4.77)

A possible Lyapunov function candidate for the closed-loop system is then

V2 = V1 +
1

2
zT2 Muz2 > 0, (4.78)

which is positive definite and whose first derivative with respect to time is

V̇2 = V̇1 + zT2 Muż2. (4.79)

Inserting (4.77) in (4.79) yields

V̇2 = V̇1 + zT2 au + zT2 Buu− zT2 Muα̇

= −k3zT1 WK1W
Tz1 + k3z

T
1 Wz2 + zT2 au + zT2 Buu− zT2 Muα̇.

(4.80)

The aim is to render (4.80) negative definite, hence, the backstepping control law

u = B
−1
u (−K2z2 − au +Muα̇− k3W Tz1) (4.81)

is derived, wherein K2 > 0 is another positive definite diagonal gain matrix. Finally,
inserting (4.81) into (4.80) yields the Lyapunov function for the complete system (4.64)
under the controller (4.81)

V̇2 = −k3zT1 WK1W
Tz1 − zT2 K2z2 ≤ 0, (4.82)

with K1 > 0, K2 > 0 and k3 > 0. Note, that the quaternion part of W is an ad-
ditional state-dependent gain matrix. Asymptotic stability of the equilibrium re = 0,
qe = (1 0 0 0)T , ωu = vu = 0 can be shown by applying the LaSalle invariance theorem
([87], p. 128).

Remark 1 : Due to

W Tz1 =

[

sgn(ηe)ǫe
E3×3re

]

, (4.83)
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the control u can jump at the transition from ηe > 0 to ηe < 0 and vice versa. Asymptotic
stability can therefore only be guaranteed locally for ηe 6= 0.

Remark 2 : For implementing the controller (4.81), the derivative of the intermediate control
law (4.74) with respect to time can be computed from attitude, position, and velocity
measurements as

α̇ = −K1

(

Ẇ Tz1 +W T ż1

)

= −K1

((
∂W T

∂η
η̇ +

∂W T

∂ǫ
ǫ̇

)

z1 +W TW

(

ωu

vu

))

. (4.84)

4.3.5 Extended manipulator controller

The backstepping controller (4.81) presented above generates a torque ∆τatt = u1 that is
sent to the flying robot and a force FEE = u2 that should be applied by the manipulator’s
end-effector to the UAV. The latter follows from (4.81) as

FEE = −(K1,rK2,r + k3E)re − (muK1,r +K2,r)vu +muge3 − TRiue3
︸ ︷︷ ︸

FFTS,Fz

. (4.85)

Note that since the thrust force T of a flying robot is not directly measured in practice, it
is convenient to use the force FFTS,Fz measured by the force-torque sensor (FTS) at the
end-effector for feedback control. The positive diagonal matrices K1,r and K1,r as well as
the scalar k3 are the design parameters of the backstepping controller for the translational
direction.

The force (4.85) can be mapped to robot joint torques, as presented in Section 2.6 for the
classical Cartesian impedance controller (2.87) via

τj = JT (φ)Λ(φ)ẍd + JT (φ)µd(φ, φ̇) + JT (φ)

(

FEE

τori

)

+ g(φ) + τnsp, (4.86)

where τnsp is a nullspace torque, g(φ) is the gravity compensation of the manipulator, and
τori allows to control the orientation of the end-effector independently from the desired
force (4.85), and thus independently from the orientation of the flying robot. End-effector
orientation control is implemented using the control law (4.23) from Section 4.2.3. The
desired acceleration ẍd in the additional tracking term Λ(φ)ẍd can be generated using a
Cartesian interpolator. The control laws (4.85) and (4.23) can be expressed in general as

Fτ =

(

FEE

τori

)

= −Kxe −Dẋ. (4.87)

Inserting (4.87) with gravity compensation and the remaining tracking term Λ(φ)ẍd in the
task space dynamics (2.53) yields the dynamical relationship for the forces at the end-effec-
tor

Λ(φ)ẍe + (µ(φ, φ̇) +D)ẋ+Kxe = Fext. (4.88)

Compared to the manipulator controller (4.24) from Section 4.2.3, now forces are mapped
to joint torques instead of accelerations. The control law (4.86) with (4.85) includes the
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4.3 Nonlinear backstepping control

nonlinear dynamics of the flying robot, instead of the linearized dynamics used through-
out Section 4.2. Furthermore, the controller (4.86) results in a compliant behaviour (e.g.
like a mass-spring-damper system) in Cartesian space, which is advantageous during physical
interaction between manipulator and flying robot.

4.3.6 Experimental results

In order to validate the proposed control strategy, experiments using the demonstrator de-
pcited in Figure 4.11 and the off-the-shelf quadrocopter AR.Drone 2.0 [171] are preformed.
The setup is identical to Section 4.2.6. The quadrocopter is connected to the end-effector
of the robot via the universal hinge shown in Figure 4.11. Again, all controllers are imple-
mented using MATLAB/Simulink® and communication with the AR.Drone is established
via standard 2.4GHz wireless LAN.

Both the performance of the orientation control of the flying robot and the Cartesian posi-
tion control of the robot manipulator arm are evaluated. The conditions used in the three

Table 4.2: Conditions considered in the three experiments E1, E2, and E3.

Experiment Conditions

E1 ∆τatt = 0, ẍd = 0, FFTS = 0

E2 Using ∆τatt and ẍd; FFTS = 0

E3 Using ∆τatt, ẍd, and FFTS

Figure 4.11: Robotic VTOL UAV assistance system demonstrator in the DLR Flying Robots lab with

custom-built universal hinge (left) and screenshot from the simulation and visualization en-

vironment (right). Copyright © 2015 IEEE [213].
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Chapter 4 Controller designs using separate models

experiments are summarized in Table 4.2. For all experiments, the same desired position
trajectory with respect to time t, shown in Figure 4.12a, is used and the desired orientation
of the quadrocopter is set to qd = (1 0 0 0)T . The gains of the backstepping controller

found by trial-and-error are K1 = K2 =

[

E3×3 03×3

03×3 30E3×3

]

and k3 = 35. The implementa-

tion of the controller (4.86) includes the gravity compensation g(φ). To compute τnsp,
the elbow-field from [71] is used such that the elbow of the robot points downwards. The
end-effector should always point upwards. The PD controller (4.23) with gains kp = 25 and
kd = 7 generates the torque τori for the end-effector orientation.
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(a) Desired trajectory rd(t) for experiments E1-E3.
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(b) Position errors re(t) in experiments E1-E3.

Figure 4.12: Desired position rd(t) (left) and position errors re(t) in experiments E1, E2, and E3 (right).
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Figure 4.13: Orientation of the quadrocopter in E1 (top, left) and E2 (top, right), torque ∆τatt sent to

the AR.Drone in E2 (bottom, left), and force measurement FFTS in E3 (bottom, right).

Copyright © 2015 IEEE [213].
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4.4 Base motion compensation and active thrust control

The initial experiment E1 sets the basis for comparison. Therefore, neither the additional
torque ∆τatt nor the measurement from the force-torque sensor FFTS is used. The desired
acceleration of the end-effector ẍd is also set to zero. The results of E1 reveal overshoots in
the end-effector position (see Figure 4.12b) and a deviation of up to 9.2deg from the desired
orientation, illustrated in Figure 4.13a using Euler angles (ϕ θ ψ)T = 0.

In the second experiment E2, the desired acceleration ẍd is used in the controller (4.86)
and the torque ∆τatt, depicted in Figure 4.13c, is sent to the UAV. Figure 4.12b shows
that using the acceleration ẍd leads to an increased accuracy in position tracking with less
overshoot, while there is still a deviation from the desired trajectory. Figure 4.13b shows
a decreased deviation from the desired orientation compared to E1, but the amplitude is
still up to 6.8deg. This is due to the fact that the torque of the AR.Drone is feed-forward
controlled using the controller implemented by the manufacturer which does not yield ac-
curate results. In the final experiment E3, the force FFTS,Fz measured by the force-torque
sensor (Figure 4.13d) is additionally fed back into (4.85). The results of E3, depicted in
Figure 4.12b, indicate that the forces acting at the robotic end-effector in vertical direction
are compensated and that therefore the controller’s performance in position tracking in this
direction is increased. The torque ∆τatt in E3 is similar to E2 (see Figure 4.13c) and is
therefore omitted here. Hence, it can be concluded that the backstepping controller (4.81)
combined with the extended manipulator controller (4.86) enables compliant and coordi-
nated physical interaction between the robot manipulator arm and the aerial vehicle with
decent accuracy for the landing task.

4.4 Base motion compensation and active thrust control

So far the actual thrust vector direction of the flying robot is not considered and the motion
of the robot manipulator’s base is neglected (see Figure 4.14 (a)). Both are addressed in this
section, as shown in Figure 4.14 (b), extending the linear and nonlinear control approaches
already presented in this chapter.

Compensation of the base motion is required to realize accurate trajectory tracking. Active
thrust vector control allows the flying robot to contribute to the assistance task and reduces
the workload of the robot manipulator. Both extensions are evaluated in a simulation case
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(a) Overview of control framework used in Sec-

tion 4.2 [208] and Section 4.3 [213].
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(b) Schematic overview of the active thrust vector ap-

proach presented in Section 4.4 [212].

Figure 4.14: Comparison of two different approaches for coordinated control of robot manipulator and

flying robot. Copyright © 2017 IEEE [212].
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Chapter 4 Controller designs using separate models

study. In order to test the robustness of the control approach, the model parameters of five
flying robots with different mass and inertia are used in the simulation.

4.4.1 Planar moving base system model

For the simulation case study, the planar model shown in Figure 4.15 of a three link robot
manipulator on a moving base is used. A flying robot attached at the end-effector via a
universal hinge (or ball joint) adds one more degree-of-freedom to the complete system, i.e.
n = 7. The state coordinates of the planar model are defined as

s =
(

xb zb β φ1 φ2 φ3 φu

)T
=
(

sTb sTr su

)T
, (4.89)

where sb = (xb zb β)T , sr = (φ1 φ2 φ3)
T , and su = φu. Therein, xb, zb are the

translational and β is the rotational DoF of the base, φi, i ∈ {1, 2, 3} are the joint angles of
the robot, and φu is the relative orientation of the flying robot.

The planar system dynamics can be derived using the Projection Equation approach pre-
sented in Section 2.4.2. Model parameters of the considered robot manipulator are sum-
marized in Table 4.3. Therein, mi and Ici are the mass and the inertia w.r.t. the center
of mass C of each link with length li, rpi is the distance from the origin of frame p to the
origin of frame i along the z-axis of p, di is the distance from the origin of p to c, and τ̂i
are the maximum joint torques. These parameters are reasonable for the considered class
of manipulators, e.g. for the KUKA/DLR Light Weight Robot.

xd(t), ẋd(t), ẍd(t)

β

ΨiΨb

φ1

l1

φ2

l2

φ3 r34

l3

l4

φu

θT

Figure 4.15: Planar three link manipulator with flying robot attached at the end-effector via an universal

hinge (grayed out), which adds one more DoF to the mutibody system. Copyright © 2017

IEEE [212].
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4.4 Base motion compensation and active thrust control

Table 4.3: Parameters of three link robot manipulator with attached flying robot.

(p, i) li
[m]

rpi
[m]

di
[m]

mi [kg] Ici
[kg·m2]

τ̂i
[Nm]

(0, 1) 0.52 0 0.2 5.25 1/12mil
2
i 180.0

(1, 2) 0.45 0.4 0.195 3.81 1/12mil
2
i 80.0

(2, 3) 0.07 0.39 0.03 1.76 1/2mil
2
i 30.0

(3, 4) 0.15 0.22 0.15 Table 4.4 Table 4.4 -

From the combined system dynamics (2.43) written in block form in Section 2.4.3, the
couplings between base (index b), robot arm (index r), and flying robot (UAV, index u)
become apparent. For a robot manipulator operating on a large platform, e.g. a ship, it is
reasonable to neglect the influence of the manipulator on the ship (but not vice versa) [55].
Hence, the coupling terms in the base dynamics vanish, such that


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
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(

0

T

)

0




 ,

(4.90)
where τr and τu are the torque inputs of robot arm and flying robot, respectively, T is the

magnitude of the rotor thrust (see Figure 4.15), and g =
(

gTb gTr gTu

)T
is the gravity

vector. Note that the inputs of the base and external forces are not considered here. Instead,
the motion of the base is assumed to be known. It enters the dynamics of the planar floating
base system (4.90) via s̈b and ṡb.

4.4.2 Manipulator control with base motion compensation

The goal is to enable the robot manipulator to tow the aerial vehicle to the landing spot on
the moving surface, as depicted in Figure 4.15. The end-effector pose of the robot should
follow a given trajectory xd(t) ∈ R

3 in the world frame with desired velocity ẋd(t) and
acceleration ẍd(t) while compensating for measured base motion. For consistency with
Section 4.2 and Section 4.3, the influence of the UAV on the robot manipulator is neglected,
hence only the manipulator dynamics are taken into account.

Inspired by [55], the remaining coupling terms in (4.90) can be deleted using the compensa-
tion torque

τcomp = MT
brs̈b +Crbṡb. (4.91)

Assuming that (4.91) is applied, the configuration dynamics of the manipulator become

Mrrs̈r +Crrṡr + gr = τr. (4.92)
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Chapter 4 Controller designs using separate models

With J =
[

Jb Jr

]

, the velocities and accelerations in task space can be decomposed as

ẋ = Jṡ = Jbṡb
︸︷︷︸

ẋb

+ Jrṡr, (4.93)

ẍ = J̇bṡb + Jbs̈b
︸ ︷︷ ︸

ẍb

+ J̇rṡr + Jrs̈r. (4.94)

Rearranging (4.92) and inserting in the above yields

ẍ = ẍb + J̇rṡr + JrM
−1
rr (τr −Crrṡr − gr) . (4.95)

Similar to (2.54) - (2.57) in Section 2.4.4, the following substitutions

τr = JTr Fτ , (4.96)

gr = JTr Fg,r, (4.97)

Crrṡr = JTr µr + JTr ΛrJ̇rṡr, (4.98)

lead to
Λrẍ+ µr + Fg,r = Λrẍb + Fτ , (4.99)

where Λr = (JrM
−1
rr JTr )

−1 and ẍb is the acceleration of the base. A possible choice for a
task space controller with base motion compensation is

Fτ = Λrẍd + µr,d +K (xd − χ(s)) +D (ẋd − ẋ) + Fg,r −Λrẍb, (4.100)

where χ(s) is the forward kinematics of the complete system and K > 0, D > 0 are the
desired stiffness and damping matrices, respectively. The stiffness and damping terms may
be directly substituted with the control laws derived in Section 4.2 and Section 4.3. The
computed-torque controller is finally implemented using (4.100), (4.91), and a nullspace
torque τnsp (2.51) as

τj = JTr Fτ + τcomp + τnsp. (4.101)

It is directly applicable to redundant systems. However, since the planar 3 DoF manipulator
depicted in Figure 4.15 is non-redundant w.r.t. the planar task, the control law reduces to

τj = MrrJ
−1
r ẍd + (Crr −MrrJ

−1
r J̇r)J

−1
r ẋd

︸ ︷︷ ︸

tracking terms

+ JTr (K (xd − χ(s)) +D (ẋd − ẋ))
︸ ︷︷ ︸

PD terms

+ gr
︸︷︷︸

gravity compensation

+MT
brs̈b +Crbṡb −MrrJ

−1
r ẍb − (Crr −MrrJ

−1
r J̇r)J

−1
r ẋb

︸ ︷︷ ︸

base motion compensation

(4.102)

This always applies if the number of DoF of manipulator, base, and task is equal. Note
that neither inertia nor Coriolis/centrifugal matrices, but only the gravity compensation
in (4.102) depend on the base orientation β. Most importantly, the control law does not
require the inertia of the base, which is not available in general. Note that the coupling
terms used in the base motion compensation also do not contain the base inertia. This can
be directly seen from the inertia matrix (2.61) and the Coriolis/centrifugal matrix (2.62) of
the representative two body model presented in Section 2.4.5.
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4.4 Base motion compensation and active thrust control

The controller (4.102) does not take the coupling terms in (4.90) between flying robot and
manipulator dynamics into account. The combined system model of robot manipulator and
flying robot including the coupling terms is considered in Chapter 5. The advantage of the
controller (4.102) is that it does not require UAV model or state information. However, for
heavy flying robots with large thrust T and high desired accelerations, the robot can reach
its maximum joint torque limits. This fact is addressed in Section 4.4.4.

4.4.3 Planar flying robot attitude control

As before, it is assumed that the vertical take-off and landing unmanned aerial vehicle is
equipped with a PD attitude controller

τu = kp(θd − θ) + kd(θ̇d − θ̇) = −kpθe − kdθ̇e, (4.103)

with θ = β +
4∑

i=1
φi, desired orientation θd and angular velocity θ̇d. As stated above in

Section 4.2.2, the PD controller has to satisfy condition (4.18)

kp > mu · g · l4, kd > 0, (4.104)

in order to ensure stability while the flying robot is attached to the robot via a universal hinge
as shown in Figure 4.15. This conservative condition is derived from the linearized system
dynamics. Robustness is increased by increasing kp. However, an alternative formulation
can be found using a Lyapunov analysis of the multibody system components that influence
the flying robot. Extracting and evaluating those terms from (4.90)

[

MT
bu MT

ru Muu

]






s̈b

s̈r

s̈u




−Quu = 0 (4.105)

for the planar model yields

Iu(β̈ +

4∑

i=1

φ̈i)−mu

(

l4
0

)

Rui

(

0

g

)

− τu = 0 (4.106)

and, hence,

θ̈ =
−mu · g · l4 · sin(θ) + τu

Iu
. (4.107)

Note that mu = m4 and Iu = Ic4, since n = 4 and the flying robot is the last element in

the chain. The Coriolis and centrifugal terms in
[

Cub Cur Cuu

]

are neglected, which is

reasonable for a straight-line trajectory. Hence, the controller (4.103) is augmented using
the above results as

τu = −kpθe − kdθ̇e +mu · g · l4 · sin(θ). (4.108)

In order to prove stability, the Lyapunov function candidate

V =
1

2

kp
Iu
θ2e +

1

2
θ̇2e
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Table 4.4: Flying robot model parameters.

Name Type mu [kg] Iu [kg m2] Tmax [N] Tmax

W
[-]

Parrot AR.Drone 2.0 Quad 0.480 0.006 10.0 2.12

AscTec Hummingbird Quad 0.710 0.003 20.0 2.87

AscTec Firefly Hexa 1.00 0.010 36.0 3.67

MIT X-Cell Heli 4.54 0.18 162.0 3.64

Yamaha R-50 Heli 43.94 5.98 754.0 1.75

is used, for which it now follows intuitively with (4.107), (4.108), and θ̈d = 0, that

V̇ =
kp
Iu
θeθ̇e + θ̇eθ̈e =

kp
Iu
θeθ̇e + θ̇e

(

−kp
Iu
θe −

kd
Iu
θ̇e

)

= −kp
Iu
θ̇2e < 0, (4.109)

i.e. the extended controller (4.108) renders the equilibrium of (4.107) asymptotically sta-
ble. Note that the linear stability criterion (4.104) also applies to (4.107) directly, since
| sin(θ)| ≤ 1.

4.4.4 Flying robot thrust vector control

In general, the thrust force of a VTOL UAV points along the body-fixed vertical axis. For
multicopters and helicopters thrust and torque are not independent, i.e. zero thrust would
imply zero admissible torque and therefore zero attitude control authority. As can be seen
from Figure 4.15 and Eq. (4.90), the thrust does not have a moment about the pivot of the
rotational hinge but can counteract the gravity force. For the robot manipulator, the thrust
is an external force acting at the end-effector.

Hence, the objective is to find a reasonable value for the thrust, which is nonzero and does
not disturb the robot manipulator in the assistance task. The solution is to demand the
thrust vector to counteract gravity and to contain the desired direction of motion of robot
manipulator and flying robot, i.e. fi = gu + mu ẍd. Therein, the known acceleration ẍd

of the desired trajectory is used for feed-forward control. As presented in Section 3.3.3,
the thrust magnitude can be obtained by projecting the force in the inertial frame on the
vertical axis of the flying robot via

T = zTu fi. (4.110)

Finally, the desired thrust vector orientation is derived from (4.110) for the planar case as

θd = asin
(
fTi e1

||fi||

)

. (4.111)

The general solution in 3D can be found in Appendix A4. As a result, the flying robot
will counteract its weight and decrease the forces applied by the robot (and therefore the
required joint torques) in order to accelerate along the trajectory. Note that for the practical
application, a well identified rotor model, as well as rotorspeed and airspeed measurements
are mandatory, because the thrust of a rotor depends not only on its rotation speed but
also on the airspeed. A simulative validation of the presented control approach is provided
in the next section.
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4.4 Base motion compensation and active thrust control

4.4.5 Simulation case study with ship motion

In order to evaluate the performance of the control approach (see Figure 4.14(b)), a simula-
tion case study using MATLAB/Simulink® is conducted. To consider thrust vector control
and base motion compensation independently, the actual case study is carried out in two
steps: under no base motion and with ship motion at three different sea states. In each
part, the following scenarios are treated:

i.) a worst case scenario, i.e. maximum thrust is applied,

ii.) a flying robot under pure gravity compensation, and

iii.) active thrust vector control.

For the study, the three link robot model parameters shown in Table 4.3 are used. To assess
the robustness of the presented control approach, the five different VTOL UAVs shown in
Figure 4.16 are considered. In Table 4.4, mu, Iu, Tmax, and Tmax

W are mass, inertia, maxi-
mum thrust, and thrust-to-weight ratio of the flying robots, respectively. The multicopter
parameters are those provided by the manufacturers and the helicopter parameters are taken
from [176]. In order to generate results for an admissible range of desired velocities and ac-
celerations, the circular reference trajectory depicted in Figure 4.17 and Figure 4.18a is
used.

Note that in i.) and ii.), it is assumed that the robot controller knows about the mass mu,
inertia Iu, and applied thrust T and that the flying robot maintains its hover attitude, which
are similar assumptions as made in the previous control approach shown in Figure 4.14(a).
In iii.), the flying robot tracks a desired orientation computed by (4.111) and controls its
thrust using (4.110). In i.) - iii.), the robot controller gains are set to K = 1000E and
D = 30E. The attitude controller gains kp = 1800 · g · l4 and kd = 0.6 are found to hold
well for the five considered VTOL UAVs.

In Figure 4.17, active thrust vector control for a X-Cell helicopter with mass mu = 4.54 kg
(see Table 4.4 for further details) is visualized using the exemplary circular trajectory defined
in polar coordinates with R = 0.2m and a bang-bang jerk profile. It results in five revolu-
tions within 20 s with varying velocity and acceleration in Cartesian space. The resulting
orientation θ of the flying robot during the area of maximum acceleration (highlighted red in
Figure 4.17(a) and (b)) is shown using a colored contour of a multicopter in Figure 4.17(c).
The thrust vector magnitude is depicted in the bottom plot of Figure 4.17(a). Note that

(a) AR.Drone (b) Humming-

bird

(c) Firefly (d) X-Cell (e) R-50

Figure 4.16: VTOL UAVs considered in the simulation case study.
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Figure 4.17: Example of active thrust vector control on a circular trajectory. The thrust vector magnitude

T w.r.t. time is shown in the bottom plot of Figure 4.17(a). Copyright © 2017 IEEE [212].
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(right). Copyright © 2017 IEEE [212].

according to the desired acceleration in Cartesian space, the flying robot needs to decelerate
on the right and accelerate on the left side of the circle. Both is achieved successfully by
tilting the thrust vector and decreasing, respectively increasing, the thrust force. Maximum
thrust is produced at about t = 10 s. At that instant, the desired acceleration in x-direction
is zero while maximum acceleration in z-direction is demanded. Therefore, the thrust vector
of the flying robot points perfectly upright and produces maximum thrust. In addition to
the tracking errors in position, velocity, and acceleration, defined as

e(x) =
√

(xd − x)2 + (zd − z)2, (4.112)
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4.4 Base motion compensation and active thrust control

and of the errors in orientation θe of the flying robot, defined as in (4.103), the maximum
constraint force Qλ

4 is examined in detail. It gives insight in the force applied by the robot
manipulator in order to accelerate the flying robot along the desired trajectory.

No base motion: Maximum thrust vs. gravity compensation vs. active thrust control

For this simulation set, no base motion is assumed and the simulation is conducted as
described above. The results for the cases i.) - iii.) are summarized in Table 4.5 for the
five VTOL UAVs listed in Table 4.3. It can be seen, that in i.) and ii.) the position
tracking errors are similar, which is due to the assumption of known flying robot properties.
However, the maximum joint torques of the robot in i.) and ii.) are distributed differently.
In iii.), compared to i.) and ii.), the performance in trajectory tracking is significantly
increased. The flying robot is stabilizing the hover orientation in i.) and ii.) but has to
follow an attitude trajectory in iii.), which results in an increased attitude error. For the
R-50 helicopter, the torque limits of the manipulator are exceeded in i.) and ii.) (highlighted
red in Table 4.5), whereas in iii.) the manipulator stays within its actuator constraints. The
robot joint torques in iii.) tend to be below those in ii.), while the torque τu of the flying
robot and its thrust T in iii.) are above those in ii.). This shows that under active thrust
vector control, more workload is put on the aerial vehicle. Note that the VTOL UAV’s
thrust magnitude T complies with its limit Tmax, listed in Table 4.4, in all three cases and
for all five UAVs.

Table 4.5: Simulation results without base motion.
AR.Drone 2.0 Hummingbird Firefly X-Cell R-50

i.) ii.) iii.) i.) ii.) iii.) i.) ii.) iii.) i.) ii.) iii.) i.) ii.) iii.)

e(x) [cm] max 0.67 0.67 0.59 0.72 0.72 0.59 0.78 0.78 0.60 1.53 1.53 0.63 11.49 11.49 4.59

e(ẋ) [ cm
s

]max 5.50 5.50 4.75 5.91 5.91 4.78 6.43 6.43 4.85 11.45 11.45 4.83 51.78 51.78 14.87

e(ẍ) [ cm
s
2

]max 58.9 58.9 51.0 62.5 62.5 50.9 67.0 67.0 50.9 107.0 107.0 44.3 206.8 206.8 77.4

|θe| [deg] max 0.01 0.01 0.48 0.02 0.02 1.31 0.02 0.02 0.59 0.12 0.12 0.10 2.29 2.29 2.29

|τ1| [Nm] max 38.9 41.7 40.9 35.2 42.0 41.0 28.9 42.5 40.9 26.8 49.1 40.9 168.2 158.4 69.3

|τ2| [Nm] max 10.1 11.4 10.8 8.6 11.7 10.9 5.9 12.1 10.8 19.2 15.7 10.6 76.6 121.1 36.5

|τ3| [Nm] max 0.4 0.4 0.1 0.5 0.5 0.1 0.7 0.7 0.1 3.3 3.3 0.8 63.1 62.9 29.7

|τu| [Nm]max 2e-4 2e-4 0.50 3e-4 3e-4 0.53 8e-4 8e-4 0.56 0.03 0.03 1.77 7.90 7.90 32.61

T [N] max 10.0 4.7 5.6 20.0 7.0 8.4 36.0 9.8 11.8 162.0 44.5 53.4 754.0 431.4 516.9

In Figure 4.18b, the maximum constraint force Q̂λ4,z in z-direction acting in the universal
hinge is depicted. For cases ii.) and iii.), a linear relation for the constraint forces w.r.t.
the flying robot mass mu is observed. The slope for case ii.) is identical with the maximum
acceleration of the trajectory in z-direction, whereas the slope for iii.) is much smaller.
It holds for the considered Cartesian trajectory independently from the considered robot
manipulator parameters. For the given trajectory, the thrust is always helping in i.). This
will not be the case for other trajectories, like a straight line. The plot of the constraint
force in Figure 4.18b substantiates the low torques in ii.) and iii.), but the actual torques
depend on the current configuration of the robot manipulator. However, it can be concluded,
that active thrust vector control indeed increases the trajectory tracking performance while
extending the range of flying robots a robot manipulator can cope with in the take-off or
touch-down phase.
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Chapter 4 Controller designs using separate models

Without vs. with base motion compensation at three different sea states

The second part of the simulation case study is devoted to the validation of base motion
compensation. In order to assess the practical potential of robot-assisted landing of VTOL
UAVs on ships, a realistic ship motion simulation is needed. In-depth treatment of ocean
vehicle dynamics is beyond the scope of this work. A detailed introduction can be found in
[92] from which the marine systems simulator (MSS) MATLAB® toolbox is utilized. The
MSS provides the simulation of a supply vessel with length 82.80m for which the hydro-
dynamic coefficients are computed using the commercial program ShipX. Wave excitation
at the three different sea states 3, 4, and 5 is considered. Probability, maximum observed
wave height, and peak frequency for all sea states are shown in Table 4.6. Note that the
probability of sea states 0, 1, and 2 is summarized. All values in Table 4.6 are from [92].

Table 4.6: Sea states.

Sea
state

Maximum
wave height [m]

Peak
frequency [rad/s]

World wide
probability [%]

0 0 0
1 0.1 1.11 11.2486
2 0.5 0.93
3 1.25 0.79 31.6851
4 2.5 0.68 40.1944
5 4.0 0.60 12.8005
6 6.0 0.53 3.0253
7 9.0 0.46 0.9263
8 14.0 0.39 0.1190
9 Over 14.0 - 0.0009

Table 4.7: Resulting maximum base motion (supply vessel, L=82.80m).

Sea
state

zb,max

[m]
ẋb,max

[m/s]
żb,max

[m/s]
ẍb,max

[m/s2]
z̈b,max

[m/s2]
β̇max

[rad/s]
β̈max

[rad/s2]
3 0.11 0.13 0.09 0.08 0.06 0.01 0.01
4 0.39 0.33 0.27 0.20 0.22 0.02 0.02
5 0.90 0.55 0.59 0.28 0.42 0.03 0.03

The JONSWAP wave spectrum ([92], p. 206) is a de facto standard for nonfully developed
seas with wind generated waves under the assumption of finite water depth and, therefore,
used in this simulation case study. The simulation results for sea states 3 to 5 can be found
in Table 4.8, wherein results without base motion compensation are highlighted gray and
results with base motion compensation are highlighted blue. For conciseness, only the ma-
ximum joint torques of the robot manipulator are included in Table 4.8. The joint torques
tend to increase with increasing sea state. With active base motion compensation, more
workload is put on the robot, which results in higher joint torques compared to no base mo-
tion compensation. Regarding the R-50 helicopter, the manipulator considered in this work
can only comply with its actuator limits at sea state 3 and if active thrust vector control iii.)
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4.5 Summary and conclusion

Table 4.8: Results with simulated ship motion of a supply vessel (L=82.80m).
AR.Drone 2.0 Hummingbird Firefly X-Cell R-50

i.) ii.) iii.) i.) ii.) iii.) i.) ii.) iii.) i.) ii.) iii.) i.) ii.) iii.)

SEA STATE 3 (max. heave ẑ0 = 0.11m)

|τ1| [Nm] max. 38.8 41.6 40.8 35.1 41.9 40.8 28.7 42.3 40.7 27.7 48.6 40.5 160.8 161.4 63.3

|τ2| [Nm] max. 10.3 11.5 10.9 8.8 11.9 11.0 6.1 12.3 11.0 18.6 16.2 11.1 71.2 120.2 37.9

|τ3| [Nm] max. 0.3 0.3 0.1 0.5 0.5 0.1 0.7 0.7 0.2 3.1 3.1 0.8 62.4 62.2 27.6

|τ1| [Nm] max. 38.7 41.5 40.7 35.0 41.8 40.7 28.7 42.2 40.7 27.7 48.5 40.4 160.9 161.9 65.5

|τ2| [Nm] max. 10.3 11.6 10.9 8.8 11.9 11.1 6.1 12.3 11.1 18.5 16.3 11.2 71.4 120.5 40.3

|τ3| [Nm] max. 0.4 0.4 0.1 0.5 0.5 0.1 0.7 0.7 0.2 3.1 3.1 0.8 62.6 62.4 29.4

SEA STATE 4 (max. heave ẑ0 = 0.39m)

|τ1| [Nm] max. 38.7 41.5 40.8 34.9 41.8 40.9 28.6 42.2 41.0 29.7 48.9 42.4 157.2 173.9 77.5

|τ2| [Nm] max. 10.2 11.5 10.9 8.7 11.8 11.0 6.0 12.3 11.0 21.0 16.2 11.8 91.3 127.8 56.8

|τ3| [Nm] max. 0.4 0.4 0.1 0.6 0.6 0.2 0.8 0.8 0.3 3.5 3.5 1.4 60.9 60.7 35.1

|τ1| [Nm] max. 38.6 41.4 40.8 34.9 41.7 40.9 28.6 42.2 41.0 29.7 48.7 42.4 160.1 175.5 80.6

|τ2| [Nm] max. 10.2 11.5 10.8 8.7 11.8 10.9 6.0 12.2 10.9 21.1 16.2 11.9 93.1 127.8 57.0

|τ3| [Nm] max. 0.4 0.4 0.1 0.6 0.6 0.2 0.8 0.8 0.3 3.5 3.5 1.4 59.5 59.3 38.3

SEA STATE 5 (max. heave ẑ0 = 0.90m)

|τ1| [Nm] max. 39.5 42.3 41.6 35.8 42.7 41.7 29.4 43.3 41.8 32.3 51.4 43.7 172.1 181.7 101.5

|τ2| [Nm] max. 9.9 11.2 10.8 8.3 11.5 10.9 5.7 11.9 10.9 19.0 16.6 12.1 81.3 135.3 57.7

|τ3| [Nm] max. 0.5 0.5 0.2 0.7 0.7 0.3 1.0 1.0 0.4 4.3 4.3 2.0 62.9 62.7 38.0

|τ1| [Nm] max. 39.1 42.0 41.4 35.5 42.4 41.6 29.3 42.9 41.7 32.2 50.7 43.7 171.5 186.5 112.3

|τ2| [Nm] max. 9.9 11.1 10.7 8.3 11.4 10.8 5.7 11.8 10.8 19.0 16.7 11.9 85.4 135.2 80.0

|τ3| [Nm] max. 0.5 0.5 0.2 0.7 0.7 0.3 1.0 1.0 0.4 4.4 4.4 2.1 63.7 63.5 50.0
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Figure 4.19: Position tracking error (see Eq. (4.112)) with ship motion at sea state 4. Copyright © 2017

IEEE [212].

is used. Analyzing the position tracking error at sea state 4, depicted in Figure 4.19, reveals
that base motion compensation increases the tracking accuracy considerably, except for the
R-50 helicopter in i.) and ii.), since the joint torque limits are exceeded.

4.5 Summary and conclusion

In this chapter, the separate models of flying robot and robot manipulator are considered and
linear and nonlinear controllers are designed. The approaches are applicable especially for
light weight flying robots, where the reaction forces on the robot manipulator are negligible
or may be treated as external disturbances. At first, base motion is neglected and the flying
robot’s thrust is assumed constant. Subsequently, the approaches are extended to include
base motion compensation and active control of the flying robot’s thrust vector. The control
approaches are evaluated in experiments with a robotic assistance system demonstrator
composed of a DLR/KUKA Light Weight Robot and an off-the-shelf quadrocopter. Both
base motion compensation and thrust vector control are evaluated in an extensive simulation
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Chapter 4 Controller designs using separate models

case study. It reveals that thrust vector control is required for flying robots above 5 kg
take-off weight in order to comply with the joint torque limits of the manipulator.

The advantage of the control approaches based on separate models mostly lies in their
manageable complexity. Since they require little state information, communication between
the two subsystems is reduced to a minimum. This in turn reduces the required hardware
components and the implementation effort on middleware level. In addition, the impedance
control strategies employed on both manipulator and flying robot side provide passive and,
therefore, stable interaction between the subsystems. However, the presented approaches
neglect the coupling terms present in the combined system dynamics. The latter as well as
heavier flying robots are explicitly addressed in the following chapter.
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"Coming together is a beginning, staying together

is progress, and working together is success."

— Henry Ford 5
Controller designs using a combined model

In contrast to the previous Chapter 4, where separate models of the flying robot and the
robot manipulator are considered, this chapter is devoted to the control of the combined
system composed of a flying robot, a manipulator, and a base. Unlike in whole-body con-
trol [177], the base is not actuated, but its states are assumed to be measurable.

The most important feature is that both robot manipulator and flying robot are able to
apply a wrench in the inertial frame by means of their actuators, i.e. joint motors and
rotors, respectively. Hence, the system is overactuated w.r.t. the assistance task. Due to
the coupling of forces and torques of common underactuated flying robots (i.e. with parallel
rotor thrust vectors), a thrust force is always present, as long as torques are required to
stabilize the attitude. Hence, in this section, solutions are presented which distribute the
required force in task space between the robot manipulator and the flying robot. The
assistance task then becomes a cooperative task, since both robot manipulator and flying
robot contribute to it using their actuators. This is especially applicable to heavy UAVs for
which otherwise the maximum payload of the robot manipulator would be exceeded.

The remainder of this chapter is structured as follows. First, the combined system model
introduced in Section 2.4.3 is recapped in Section 5.1 and a task space controller for the
combined system is presented in Section 5.2. Two possible options to incorporate the wrench
of the flying robot in task space are highlighted. The first option is addressed in Section 5.3.
Note that substantial parts of Section 5.1, Section 5.2, and Section 5.3 are taken from
the author’s paper [214]. In Section 5.3.1, a model decomposition based on the inertia
of the subsystems is presented and transformed to task space. It is utilized to derive a
heuristic for sharing the workload between the robot manipulator and the flying robot in
Section 5.3.2. After additional remarks in Section 5.3.3 and Section 5.3.4 regarding the
practical implementation, the workload sharing approach is evaluated in simulations and
experiments in Section 5.3.5 and Section 5.3.6, respectively.

The second option to distribute the control effort between the flying robot and the manipu-
lator is addressed in Section 5.4, where the control allocation is stated as an optimization
problem. An analytical solution without inequality constraints and the quadratic problem,
which can be solved numerically including linear equality and inequality constraints, are
presented in Section 5.4.1 and Section 5.4.2, respectively. Furthermore, the optimal con-
trol allocation problem is extended to enable optimal reorientation of the flying robot in
Section 5.4.3 and an adaptive parameter is added to the task space control law in order to
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Chapter 5 Controller designs using a combined model

account for uncertainties in the flying robot’s thrust vector (Section 5.4.4). In Section 5.4.5,
the adaptive task space controller for the combined system, as well as the optimal control
allocation approach with optimal reorientation of the flying robot are evaluated in simula-
tions including random but realistic base motions. To enable a practical implementation,
Section 5.4.6 summarizes appropriate extensions of the combined control approach. Finally,
Chapter 5 is summarized and concluded in Section 5.5.

5.1 Combined dynamics of flying robot and robot manipulator

Consider a generic robot manipulator r with n joints, as shown in Figure 5.1, with a flying
robot (or UAV) u attached to the end-effector via a universal hinge with three rotational
DoF (cf. Section 2.4.3). The latter can be modeled as an additional joint in the kinematic
chain, i.e. the combined system with n+ 3 DoF in configuration space is obtained

[

Mrr Mru

MT
ru Muu

]

︸ ︷︷ ︸

M

(

φ̈r

φ̈u

)

︸ ︷︷ ︸

φ̈

+

[

Crr Cru

Cur Cuu

]

︸ ︷︷ ︸

C

(

φ̇r

φ̇u

)

︸ ︷︷ ︸

φ̇

+ g = τ . (5.1)

Therein, M is the inertia matrix, C is the Coriolis matrix, g is the gravity vector, and φ is
the vector of generalized coordinates [37]. The input vector

τ =

(

τr

τu

)

︸ ︷︷ ︸
τc

+ JT

(

Fu

0

)

+ τext (5.2)

comprises the actuator torques τc of both robot manipulator (τr) and UAV (τu), the force
vector

Fu = Riu

(

0

T

)

(5.3)

of the UAV in the inertial frame Ψi, as well as external disturbances τext. The thrust T
always points along the z-axis of the UAV’s body-fixed frame Ψu. Furthermore, Riu is a
rotation matrix, which transforms a vector given in the Ψu-frame to the Ψi-frame. The
matrix J = ∂χ(φ)

∂φ is the Jacobian, with χ(φ) being the forward kinematics of the combined
system. Note that here the end-effector is the UAV, as shown in Figure 5.1.

The pose of the flying robot in the inertial frame is defined as x = (ξT ΦT )T , where ξ is
the position of the reference point (depicted red in Figure 5.1). The shape of the orientation
vector Φ depends on the considered attitude representation (see Section 2.4.1). Equation
(5.2) reveals that the combined system (5.1) is overactuated for Fu 6= 0 (and rank(J) > 0),
while the flying robot itself is underactuated. This fact is exploited for workload sharing in
Section 5.3.

Since take-off and landing maneuvers are defined in task space [38], the dynamics (5.1) are
transformed, as done in Section 2.4.4, to obtain

Λẍ+ µ+ Fg = J#Tτc +

(

Fu

0

)

+ Fext = Fτ + Fext, (5.4)

144



5.2 Task space control of the combined system

Ψi

φ1

τ1

Ψu

T

θ

Robot arm r

UAV rotorcraft u

Figure 5.1: Visualization of the robot-assisted landing task and the considered system model consisting

of a UAV rotorcraft and a robot manipulator. The goal is to tow the flying aerial vehicle to

the ground by means of the robot manipulator mounted on the landing surface. The flying

robot is attached to the robot manipulator via a universal hinge (or ball joint, blue) while the

end-effector (red reference point) should follow a given trajectory. Copyright © 2017 IEEE

[214].

with the generalized pseudoinverse (cf. Appendix A3)

J#T =
(
JM−1JT

)−1
JM−1. (5.5)

5.2 Task space control of the combined system

Utilizing the combined system model in task space (5.4), a straightforward choice for a
controller that provides accurate and robust tracking is given by

Fτ = Λ(ẍd −Dẋe −Kxe) + µd + Fg, (5.6)

which is an inverse dynamics controller (cf. (2.85) in Section 2.6), but an impedance con-
troller (2.87) (with or without inertia shaping (2.95)) could be used as well. Two different
options for controlling the combined system are considered in this chapter. They are sum-
marized in Table 5.1. In the first case, the control torque is defined as the projection of
the task space force applied by the robot manipulator minus the task space force already
applied by the flying robot (i.e. its thrust force). This leads to

τc = JT

{

Λ(ẍd −Dẋe −Kxe) + µd + Fg −
(

Fu

0

)}

+ τnsp, (5.7)
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Chapter 5 Controller designs using a combined model

Table 5.1: Considered options to control the combined system.

Case 1 Case 2

τc = JT (Fτ − Fu) + τnsp Qu = JTFτ + τnsp

Allows to incorporate given Fu, which
may be designed such that the workload
is shared as desired (refer to Section 5.3).

Allows to include the control allocation of
the flying robot (see Section 3.4) and

online optimization (refer to Section 5.4).

where τnsp is a nullspace torque, xe = x − xd is the error vector, and (xd, ẋd, ẍd) is
the desired trajectory, which the flying robot should follow. The pose error is defined as
xe = (ξTe eTR)

T , where ξe = ξ − ξd is the translational position error. Using (3.19), the
attitude error eR may be deduced directly from given rotation matrices. For the controller
gains it holds that D > 0 and K > 0, which ensures stability for inverse dynamics control.
For other PD control approaches without reshaping, a diagonal stiffness gain might be
required for the orientation dynamics (e.g. see example 3 on p. 15 of the report [178]).

In the second case, the task space control force (5.6) is distributed optimally to the robot
manipulator and the flying robot. This case is treated in Section 5.4. The closed-loop error
dynamics are directly obtained for Fext = 0 by inserting (5.7) in (5.4) as

ẍe +Dẋe +Kxe = 0, (5.8)

which is the well-known damped harmonic oscillator. The equilibrium of (5.8) is stable for
a positive definite damping matrix D and a positive definite stiffness matrix K. It can be
concluded that for closed-loop stability, the force Fu is arbitrary as long as the controller
(5.7) is aware of it and if at the same time the torque limits are not reached. Nevertheless,
if Fu interferes with the task at hand, the torque τr and therefore the workload (or control
effort) of the robot manipulator is increased. Furthermore, τr has to comply with the joint
torque limits τmax, which can be exceeded for a given trajectory and a heavy flying robot,
i.e. for large mu compared to the maximum payload of the robot manipulator. This leads to
the question how the thrust vector Fu should be chosen in order to support the assistance
task instead of disturbing it.

5.3 Workload sharing

The aforementioned overactuation of the combined system can be used to the share the
control effort, or workload, of the assistance task between the robot manipulator and the
flying robot. This is especially useful, if heavy flying robots are considered, which would
otherwise exceed the maximum payload of the manipulator. In this section, a heuristic
approach based on a decomposition of the combined system is presented.
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5.3 Workload sharing

5.3.1 Task space control based on the decomposed model

In order to independently treat the influence of the flying robot u on the robot manipulator r
and vice versa, it is convenient to decompose the system dynamics (5.1) w.r.t. inertial effects.
This can be done as shown in Section 2.4.5, using

M = M̃(mr) + M̂(mu), (5.9)

C = C̃(mr) + Ĉ(mu), (5.10)

g = g̃(mr) + ĝ(mu), (5.11)

with the mass of the robot manipulator mr = (m1 · · · mn)
T and the mass of the flying

robot mu = mu. Here, (̃·) denotes the parts related to the manipulator and (̂·) the parts
related to the flying robot. This yields

M̃φ̈+ C̃φ̇+ g̃ + M̂φ̈+ Ĉφ̇+ ĝ = τ (5.12)

in configuration space and

Λ̃ẍ+ µ̃+ F̃g + Λ̂ẍ+ µ̂+ F̂g = J#Tτ (5.13)

in task space. This is applicable to the non-redundant combined system case, as pointed
out in Section 2.4.5.

Other decompositions of the combined system dynamics may be applied as well, such as
the transformation of coordinates considered in [47, 179, 180] or the passive decomposition
presented in [49, 181]. However, both require the knowledge of the center of mass position
of the combined system for controller design.

The decomposed system dynamics in task space (5.13) are utilized to design a control law
that enables distributing the workload between the robot manipulator r and the flying
robot u. Substituting the terms corresponding to the flying robot u in the controller (5.7),
yields

τc = JT

{(

Λ̃+

[

Λ̂ξξ Λ̂ξΦ

Λ̂T
ξΦ Λ̂ΦΦ

])((

ξ̈d

ω̇d

)

−Dẋe −Kxe

)

+

(

µ̃+

[

µ̂ξξ µ̂ξΦ

µ̂Φξ µ̂ΦΦ

])

+ F̃g +

(

F̂g,ξ

F̂g,Φ

)

−
(

Fu

0

)}

. (5.14)

5.3.2 Heuristic force distribution

Obviously, Fu could be used to directly apply the feed-forward acceleration terms and to
compensate for parts of the Coriolis/centrifugal terms as well as for the flying robot’s gravity
vector with

Fu = Λ̂ξξξ̈d + Λ̂ξΦω̇d + µ̂ξξ + µ̂ξΦ + F̂g,ξ. (5.15)

Moreover, Fu affects the rotational dynamics in task space via the coupling terms in Λ and
µ. Note that the trivial solution Fu = 0 is infeasible in practice, because T = 0 implies
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Robot arm takes on

complete workload

0.0

Workload is shared by

robot arm and UAV

0.5

Maximum additional

workload of UAV

1.0
α

Figure 5.2: Illustration of the workload distribution factor α ∈ [0, 1]. The workload of the robot-assisted

take-off and landing tasks can be distributed dynamically between the robot manipulator and

the flying robot, for instance, to comply with the robot’s joint torque limits and to enable

take-off and landing of heavy flying robots. Copyright © 2017 IEEE [214].

τu = 0. This is true for multicopters as well as for autonomous helicopters. For example, the
cumulative thrust T of a multicopter is the sum of all rotor forces, while the multicopter’s
torque τu results from the difference between the rotor forces. In comparison with the latter,
the thrust T of a helicopter is the main rotor’s force component along the body-fixed z-axis,
while the helicopter’s torque τu depends on the main rotor force acting perpendicular to
the tip-path-plane (TPP) and on the actual tilt angles of the TPP [153].

Therefore, from the possible choices of Fu the most practical one is selected, which does not
require state feedback except for the vector of generalized coordinates φ:

Fu = αΛ̂ξξξ̈d + F̂g,ξ. (5.16)

A scalar gain α ∈ [0, 1] is introduced, as defined in Figure 5.2, which scales the feed-forward
acceleration and therefore allows to define the workload distribution between the robot
manipulator and the flying robot.

5.3.3 Flying robot thrust vector control

Again, the desired thrust T in (5.3) is directly computed by projection onto the vertical axis
of the flying robot zu = Riue3, expressed in the inertial frame, via

T = zTuFu. (5.17)

In order to enable the flying robot to apply the force Fu in the inertial frame, the desired
orientation Φd of the combined system in task space has to be assigned accordingly. In

Ψi

Ψu

Fu

F̂g,ξ

αΛ̂ξξ ξ̈d

θd

Figure 5.3: Representation of the transformation (5.18) for thrust vector control (5.16). Copyright © 2017

IEEE [214].
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Figure 5.4: Final workload sharing control approach. Copyright © 2017 IEEE [214].

general, this is achieved using a transformation that aligns the aerial vehicle’s thrust direc-
tion in the body frame e3 = (0 0 1)T with the desired force vector Fu (see Figure 5.3).
The orientation about the vector Fu, i.e. the heading ψd of the flying robot, can be chosen
independently. Using Euler angles Φd = (ϕd θd ψd)

T and the XY Z convention, this can
be expressed as [126]

θd = arcsin

(
F T
u e1

||Fu||2

)

, (5.18)

ϕd = − arcsin

(
F T
u e2

||Fu||2 cos(θd)

)

. (5.19)

Alternative solutions using rotation matrices or unit quaternions for attitude representation
are summarized briefly in Appendix A4. In order to compute Φ̇d and Φ̈d via (5.16), (5.18),
and (5.19), the given trajectory ξd has to be C4, i.e. four times continuously differentiable,
which can be accomplished in practice using fifth order polynomials for example.

The computed desired orientation trajectory as well as the scalar thrust from (5.17) is then
fed into the combined controller (5.7). Figure 5.4 illustrates the final workload sharing
control approach presented in this section. Eq. (5.16), (5.17), (5.18), and (5.19) constitute
the thrust control block, while the combined control block contains the control law (5.7).

5.3.4 Remarks for the practical implementation

The combined control law (5.7) requires the knowledge of the combined flying robot and
robot manipulator model. It is assumed that the propulsion model of the flying robot,
i.e. motor dynamics and propeller aerodynamics, is well identified [153]. In practice, aerial
vehicles and manipulators have independent control systems. Therefore, a communication
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channel and open interfaces have to be present which allow to exchange states and model
parameters.

The flying robot dependent terms in (5.7) can be included directly in the flying robot’s
attitude controller. With active gravity compensation, only the remaining parts of (5.7),
(5.16), and (5.17), respectively, are transmitted and applied during task execution. This
eliminates the risk of a crash caused by a complete communication loss.

The formulation of the thrust control law (5.16) is chosen because a minimum amount of
states is needed for realization. In the current form, gravity is always compensated. The
factor α regulates the force distribution between the aerial vehicle and the manipulator, but
the total amount of force remains constant. Robustness against wind disturbances while
satisfying maximum torque constraints can be increased by adding the translational parts of
the stiffness and damping terms from (5.7) in (5.16). Nevertheless, the tracking performance
will still depend on the total amount of stiffness and damping.

It is assumed that α is provided prior to task execution or during runtime by a higher
level component. For instance, the joint torques can be monitored and if a defined limit is
reached, α can be set accordingly. To generate a continuous attitude reference, α has to be
at least two times continuously differentiable.

Since the task space controller (5.7) can include the inverse Jacobian, it is prone to configura-
tion singularities, which can be avoided in practice e.g. by using damped least squares [182].
Additionally, torque optimization [77] can be used to resolve possible redundancy by gener-
ating corresponding nullspace torques.

One problem that arises for the heuristic force distribution, is the design of the workload
sharing factor α. As mentioned before, it should be chosen, such that the actuator limits
of the flying robot and the manipulator are not exceeded. Additionally, α needs to be
differentiable in order to result in a sufficiently smooth reference attitude and control torque.
One solution is to filter (5.16) using a higher order blend (e.g. a second-order filter), as shown

Figure 5.5: First and second order filters applied to α and resulting reference pitch angle θd and torque τu.
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Figure 5.6: Heuristic workload sharing with a higher order blend of the control force. The blend is activated

depending on a check of the actuator limits of both the flying robot and the robot manipulator.

in Figure 5.5. The latter is activated depending on an actuator limit check of both the
flying robot and the robot manipulator. The final workload sharing approach is illustrated
in Figure 5.6.

5.3.5 Simulation results

For numerical simulations, the dynamical model of a three link robot system in the ξ1ξ3-plane
as depicted in Figure 5.7 is used. Here, the robot manipulator is composed of link l1 and l2,
while the UAV is modeled as a point mass mu at a distance l3 from the universal hinge.
All model parameters of the non-redundant system can be found in Table 5.2. In the plane,
the UAV’s orientation in task space is directly obtained as θ = φr,1 + φr,2 + φu. Moreover,
a wind gust

Fwind =

(

−W exp (−5(t− tw)2)
02×1

)

(5.20)

is introduced acting in negative ξ1-direction with maximum amplitude W at time tw. In
(5.20), exp(·) denotes the exponential function.

Using MATLAB/Simulink®, a straight-line landing trajectory as illustrated in Figure 5.9a
and Figure 5.8 is simulated with and without wind disturbance and for different workload
distribution factors α ∈ [0, 1]. As can be seen in Figure 5.9a, the trajectory is accurately
tracked for K = 200E and D =

√
200E, with E being a 3 × 3 identity matrix. In terms

of position tracking, α→ 1 does not result in better performance, since (5.16) only includes
feed-forward terms. However, α → 1 definitely results in a reduction of the manipulator’s
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Figure 5.7: Planar three link robot system model. Copyright © 2017 IEEE [214].

Table 5.2: Model parameters used in the simulation.

l1 l2 l3 mr,1 mr,2 mu g

0.6m 0.6m 0.25m 8 kg 8 kg 40 kg 9.81m/s2

control effort. This can be seen from the controls depicted in Figure 5.9b and from the
results in Table 5.3, which summarizes for α = 0 and α = 1

• mean squared error eMSE = 1
N

N∑

k=1

x2
e(tk),

• standard deviation σ =

√

1
N−1

N∑

k=1

|xe(tk)− µ|2, with mean µ = 1
N

N∑

k=1

xe(tk),

• maximum torque max(|τj(tk)|) in Nm,

• maximum thrust max(|T (tk)|) in N,

• control effort of the robot manipulator Γr = τ Tr,1τr,1 + τ Tr,2τr,2, and

• of the flying robot Γu = τ Tu τu + τ ∗T
u,1τ

∗
u,1 + τ ∗T

u,2τ
∗
u,2.

Therein, N is the number of logged data points from the simulation using a Runge-Kutta
integrator with a fixed time step ∆t = 0.001 s, tk is the discrete simulation time, and
τj ∈ {τr,1, τr,2, τu} denotes the torque acting at the jth joint of the combined system. The
additional torques τ∗u,1 and τ∗u,2 are obtained from the mapping

(

τ∗u,1
τ∗u,2

)

= JTξξRiu

(

0

T

)

, (5.21)

where Jξξ is the translational part of the Jacobian and τu is the pitch torque of the UAV.
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As expected, the position error is low with and without workload sharing and unaffected
by the wind gust. The disturbance causes a deviation in orientation (see Figure 5.9a) and

Figure 5.8: Visualization of the simulated landing maneuver using the workload sharing control approach

with α = 1 from (ξ1, ξ3) = (-0.06m,1.45m) to (ξ1, ξ3) = (1.14m,0.25m) within 5 seconds

disturbed by a side wind gust with W = 110N at tw = 2 s. The system is plotted every 0.3 s.

Copyright © 2017 IEEE [214].

(a) Desired (dashed) and actual trajectory (solid) of

the UAV’s center of gravity with workload sha-

ring (α = 1) and under a side wind gust with

W = 110N at tw = 2 s. Note that the position

trajectory (top) is accurately tracked despite the

wind gust.

(b) Torques τc = (τr,1 τr,2 τu)
T of combined sys-

tem and thrust force fT of the flying robot for a

given trajectory and different workload distribu-

tion factors α under no side wind (W = 0). Note

that for α → 1 the torques decrease toward the

case mu = 0 (dashed), while the thrust increases.

Figure 5.9: Simulation results with workload sharing. (a) depicts the trajectory in the ξ1ξ3-plane and (b)

shows the time series of the control inputs. Copyright © 2017 IEEE [214].
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Table 5.3: Summary of the simulation results.

W 0N 110N

α 0 1 0 1

(

ξ1[m
2] ξ3[m

2] θ[rad2]
)T (

ξ1[m
2] ξ3[m

2] θ[rad2]
)T

eMSE







0.16

0.13

0.00






· 10−10







0.16

0.10

0.62






· 10−10







0.00

0.00

0.01













0.00

0.00

0.01







(

ξ1[m] ξ3[m] θ[deg]
)T (

ξ1[m] ξ3[m] θ[deg]
)T

σ







0.04

0.04

0.00






· 10−4







0.04

0.03

4.49






· 10−4







0.00

0.00

3.76













0.00

0.00

3.81







(

|τr,1|[Nm] |τr,2|[Nm] |τu|[Nm] |T |[N]
)T (

|τr,1|[Nm] |τr,2|[Nm] |τu|[Nm] |T |[N]
)T

max











108.42

30.70

3.85

392.40





















91.95

23.31

0.01

408.05





















108.42

30.70

21.74

392.40





















91.95

22.82

20.74

408.05











(

Γr[N
2m2] Γu[N

2m2] Γr + Γu[N
2m2]

)T (

Γr[N
2m2] Γu[N

2m2] Γr + Γu[N
2m2]

)T







0.23

5.63

5.85






· 108







0.16

5.84

6.00






· 108







0.22

5.92

6.14






· 108







0.16

6.12

6.28






· 108

leads to higher torques of the UAV. The effect of the wind gust on the orientation in task
space depends on the corresponding controller gains. The simulations also reveal that the
wind gust acting at the center of gravity of the UAV rotorcraft (see Figure 5.7) has minor
influence on the robot manipulator due to the rotational hinge. Workload sharing decreases
the maximum joint torques of the robot manipulator, which results in a lower control effort
for the manipulator and a higher workload for the aerial vehicle. This also holds under side
wind conditions. For α → 1 and W = 0 the torques decrease towards the case where no
UAV is present, i.e. mu = 0.

5.3.6 Experimental results

Experiments on a robot-assisted landing testbed as shown in Figure 5.11 are conducted. It
consists of a custom-built hexacopter in a starlike configuration, as shown in Figure 5.10
with mu = 2 kg and 0.25m rotor diameter, and a KUKA/DLR Light Weight Robot (LWR)
manipulator with seven DoF and mr = 16 kg. The hexacopter is fixed to the robot via a
custom-built universal hinge (see Figure 5.10), which can be attached and detached using
an electromagnet mounted at the end-effector of the manipulator. Details about the dy-
namical model of the LWR can for instance be found in [183]. The manipulator and the
hexacopter are controlled at 1 kHz and 500Hz, respectively. Data transfer between the robot
manipulator and the UAV rotorcraft is realized using 2.4GHz IEEE 802.11 WLAN.
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Figure 5.10: Robot-assisted landing experimental setup. Copyright © 2017 IEEE [214].

Figure 5.11: Exemplary landing maneuver performed with the robot-assisted landing testbed consisting

of a hexacopter with mu = 2 kg and a LWR manipulator with mr = 16 kg. The workload

sharing control approach is used with α = 0.5. Copyright © 2017 IEEE [214].

Again, a straight-line landing trajectory as shown in Figure 5.11 as well as in Figure 5.12a is
used. Suitable controller gains found in the experiments are Kr = 1000E and Dr = 0.5E

for the manipulator and Ku = 300E and Du = 20E for the UAV rotorcraft, where E

is an identity matrix of appropriate size. The differences in the gains are due to friction
in the robot’s joints as well as uncertainties in the control allocation of the UAV (i.e.
the mapping of motor commands to applied forces and torques), for which a static thrust
identification using a force-torque sensor was performed prior to the experiments. There,
the hexacopters maximum thrust was identified to be 36N. No nullspace resolution was used
in the experiments because of the planar trajectory and friction in the joints.

Figure 5.12 shows the results of two experiments without (α = 0) and with workload sharing
(α = 0.5). The desired position trajectory is tracked sufficiently well in both cases. For
the case α = 0.5, the orientation θ depicted in Figure 5.12b (bottom) illustrates how the
UAV tilts backwards approximately in the middle of the trajectory in order to decelerate.
The robot joint torques in both experiments in Figure 5.12b confirm that workload sharing
reduces the control effort of the manipulator. The maximum torque difference in joint
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(a) Desired (dashed) and actual (solid) landing

trajectory from (ξ1, ξ3) = (0.07m,1.29m) to

(ξ1, ξ3) = (0.50m,0.83m) within 3 seconds (top).

The bottom plot shows the UAV’s pitch angle θ

for experiments with (α = 0.5) and without work-

load sharing (α = 0).

(b) Measured robot joint angles qr,j and torques τr,j

with j ∈ {2, 4, 6} for experiments with (α = 0.5,

solid) and without workload sharing (α = 0,

dashed). Because of the in-plane motion, the

other joints are not affected and therefore omit-

ted for clarity.

Figure 5.12: Experimental results with workload sharing. (a) depicts the trajectory in the ξ1ξ3-plane and

(b) shows the robot’s measured joint angles and torques. Copyright © 2017 IEEE [214].

two of the LWR is 6Nm. The control effort of joints 2, 4, and 6 of the manipulator are
Γr(α = 0) = 3.28 · 105 and Γr(α = 0.5) = 2.92 · 105. This is a reduction of 11%.

Due to the lab environment, the UAV rotorcraft’s mass in the experiment was limited to
mu = 2 kg. Nevertheless, the results underline the findings of the simulations. For future
investigations in the lab, the admissible torque of the LWR could be constrained artificially
and wind disturbances may be included.

5.4 Optimal control allocation

Instead of leaving the choice of the workload distribution factor α to the designer or a higher
level algorithm, it is more convenient to perform an online optimization. For this, different
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controller

Control
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Robot
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Flying
robot

Kinematics

x, ẋ, ẍ
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φ̈u

Figure 5.13: General overview of task space controller for the combined system with control allocation for

the subsystems robot manipulator and flying robot.
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possibilities are presented in the following. The control allocation problem is formulated
as

Qu = τc, (5.22)

with τc = JTFτ + τnsp for conciseness. The control allocation matrix Q is not invertible in
general. Furthermore, u is the generalized control input to the combined system and

Fτ = Λ(ẍd −Dẋe −Kxe) + Fg + µd (5.23)

is the output of the task space controller (cf. Figure 5.13). Nullspace resolution is realized via
τnsp and gravity compensation is included in Fτ on the right-hand side of (5.22). Equation
(5.22) represents the equality constraint of the optimization problem. It is important to note,
that the actuator limits of the combined system are heterogeneous, i.e. for manipulators the
joint torques are limited whereas for flying robots the rotor speeds, and hence, the rotor
thrust forces are limited. Thus, the control input is u = (τ Tr ̟T )T , where ̟ may be a
vector of squared rotor speeds, as before, or contain generic control surface deflections. Let
the force of the flying robot in the inertial frame be Fu and the produced torque in joint
space be τu. Then, the general control allocation of a flying robot with N controls is given
by

(

Fu3×1

τu3×1

)

=

[

Riu3×3Bf3×N

Bτ3×N

]

̟N×1. (5.24)

Consider a manipulator with n joints. As mentioned before, the flying robot attached at
the end-effector of the manipulator via a ball joint results in a joint space of the combined
system with n + 3 DoF. In order to derive the control allocation matrix Q, (5.22) may be
reformulated as

(

τrn×1

03×1

)

+

(

0n×1

τu3×1

)

+ JT(n+3)×6

(

Fu3×1

03×1

)

= JT(n+3)×6Fτ6×1 + τnsp(n+3)×1
. (5.25)

Inserting (5.24) and rearranging yields
[

En×n
03×n

]

τrn×1 +

([

0n×N
Bτ3×N

]

+ JT(n+3)×6

[

Riu3×3Bf3×N

03×N

])

︸ ︷︷ ︸

Σ(n+3)×N

̟N×1 (5.26)

for the left-hand side, from which the control allocation matrix is obtained as

Q(n+3)×(n+N) =

[

En×n
Σ(n+3)×N03×n

]

. (5.27)

5.4.1 Analytical solution via Lagrange multipliers

In order to realize an optimal control allocation, consider the minimization problem

min
u

1

2
uTHu s. t. τc −Qu = 0. (5.28)
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A solution can be found by applying the method of Lagrange multipliers [184]. The La-
grangian function G is defined as

G =
1

2
uTHu+ λTτc − λTQu, (5.29)

where λ denotes the Lagrange multipliers. Setting the partial derivative of the Lagrangian
w.r.t. the control input to zero, i.e.

∂G

∂u
= uTH − λTQ = HTu−QTλ = 0, (5.30)

yields

u = H−TQTλ. (5.31)

Analogously, setting the partial derivative of the Lagrangian w.r.t. the Lagrange multipliers
to zero, i.e.

∂G

∂λ
= τc −Qu = 0, (5.32)

recovers the control allocation mapping (5.22). Inserting (5.31) in (5.22) and rearranging
gives the expression for the Lagrange multipliers

λ =
(
QH−TQT

)−1
τc. (5.33)

Finally, by inserting (5.33) in (5.31), the control input u minimizing the above objective
function is obtained as

u = H−TQT
(
QH−TQT

)−1

︸ ︷︷ ︸

Q#

τc. (5.34)

Therein, Q# is the weighted, right pseudoinverse of Q, i.e. QQ# = E.

Least squares solution

For H = E, Q# in (5.34) is the Moore-Penrose pseudoinverse Q+ and u = Q+τc gives the
least squares solution that minimizes 1

2u
Tu, i.e. the Euclidean norm of the control input.

However, the least squares solution does not individually reduce the control effort of the
manipulator or the flying robot, since it treats all control inputs equally.

Weighted least squares solution

The weighted least squares solution (5.34) involves the selection of an appropriate matrix H

that distributes the control effort between the robot manipulator and the flying robot. In
other words, instead of the workload distribution factor α, now H is the design parameter.
However, it can not be assured that the control inputs do not exceed the actuator limits.
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5.4.2 Constrained quadratic programming solution

In order to include upper and lower bounds

umin ≤ u ≤ umax, (5.35)

of the generalized control input, a numerical optimization can be performed. Equation
(5.35) may be expressed as an inequality constraint, i.e.

[

E

−E

]

u ≤
(

umax

−umin

)

. (5.36)

Thus, the minimization problem is given by

min
u

1

2
uTHu s. t.







Qu = τc,[

E

−E

]

u ≤
(

umax

−umin

)

, (5.37)

which is obviously a quadratic problem with linear equality and inequality constraints.

The optimization problem stated above may be solved for instance using the open-source
parametric quadratic programming (QP) software qpOASES [156], which uses an active set
method. The software is highly efficient, especially for Model Predictive Control applica-
tions [164]. Other algorithms that can be used for numerical optimization are, for example,
the interior point or trust region reflective methods [155].

5.4.3 Optimal reorientation of the flying robot

In the above control allocation (5.27), the instantaneous configuration φ (included in J(φ))
of the combined system is used. Since the desired orientation of the end-effector Rid is
not optimized, only the magnitude of the flying robot’s thrust vector will vary, but not
its direction. That also implies that the flying robot can only contribute to the assistance
task in this direction. This is a fundamental difference compared to the workload sharing
approach in Section 5.3.1, where the thrust vector direction changes depending on the
workload sharing factor α.

However, reorientation of the flying robot can be achieved by adding a second optimization
prior to (5.37) in the control loop, resulting in a sequential quadratic programming (SQP)
approach. Instead of using (5.27), the control allocation problem is formulated for the
force Fu in the inertial frame, such that

Qfuf = JTFτ + τnsp, (5.38)

with uTf =
(

τ Tr τ Tu F T
u

)

, uf,min ≤ uf ≤ uf,max, Fτ given by (5.23), and

Qf =

[

En×n 0n×3
JT

[

E3×3

03×3

]

03×n E3×3

]

. (5.39)
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Figure 5.14: Sequential quadratic program for optimal control allocation.

The additional minimization problem can be stated as

min
uf

1

2
uTfHuf s. t.







Qfuf = τc,[

E

−E

]

uf ≤
(

uf,max

−uf,min

)

. (5.40)

It is assumed that the constraints on Fu and τu are independent, which is not the case
in practice, as can be seen directly from (5.24). The actual constraints are imposed by
subsequently solving the optimization problem (5.37). Figure 5.14 illustrates the resulting
sequential quadratic program (SQP). The new desired orientation is computed from Fu,
which is the solution of (5.40), as described in Appendix A4. Note that the obtained desired
force Fu might not be continuous, which could lead to problems stabilizing the orientation
of the flying robot. This needs to be considered in the implementation. For example,
the solution of the constrained problem can be mixed (see equation (27) in [185]) with
the unconstrained least squares solution, which is known to be continuous. The attitude
error is, again, determined by (3.19), which in turn is used in (5.23) to recompute Fτ . As
long as the actuator limits are not exceeded, the least squares solution is used, since it is
computationally cheaper and equal to the SQP solution without inequality constraints.
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5.4 Optimal control allocation

5.4.4 Adaptive control extension

As discussed extensively in Chapter 3, the thrust of flying robots includes uncertainties
and is usually not feedback-controlled. To cope with this, the adaptive control approach
presented in Section 3.5 is extended to the combined system (2.43).

Assume that the input of the combined system (5.4) is subject to a multiplicative uncer-
tainty 1

1+ε (cf. (3.39) in Section 3.4 and (3.64) in Section 3.5.1), with constant ε > −1, since
(1 + ε) ≤ 0 is physically irrelevant, such that 1

(1 + ε) (Λẍ+ µ+ Fg) = Fτ + (1 + ε)Fext. (5.41)

It is reasonable to assume a scalar parameter ε, because the uncertainty of the rotor thrust
equally affects all 6 DoF. Recall the generalized passivity-based adaptive control law (3.76),
which is now used to compute the desired force in task space

Fτ = (1 + ε̂)ν, (5.42)

where

ν = Λ(ẍd − P ˙̃x−K ˙̃x−KPx̃) + Fg + µd, (inverse dynamics control) (5.43)

ν = Λẍd −ΛP ˙̃x−K ˙̃x−KPx̃+ Fg + µd, (impedance control) (5.44)

with x̃ = x − xd and positive definite P = P T , positive definite K = KT , and µd =

µ− 1
2Λ̇s. Again, the final control input follows as τc = JTFτ + τn and the adaptation law

is defined as
˙̂ε = −γsTν, (5.45)

where s = ˙̃x + P x̃ is the combined tracking error. Passivity of the closed-loop dynamics
w.r.t. the power port (1 + ε)sTFext may be verified similar to Section 3.5.3. The proof
including the derivation of the term µd is omitted for brevity but can be found in Ap-
pendix A10.

5.4.5 Simulation results

In order to validate the methods presented in this section, a simulation of the multibody
system composed of the base b, the LWR manipulator r, and the flying robot u is imple-
mented as described below. The simulation is carried out using MATLAB/Simulink®, the
Simulink implementation of the multibody dynamics algorithm of [32], and the MATLAB
interface of qpOASES [156].

To simulate the interaction between the robot manipulator, the flying robot, and the floating
base, a free-floating base model is introduced, that mimics the dynamics of a rigid body
floating in water. It consists of a single rigid body fixed to the origin by spatial and
rotational springs and dampers, as shown in Figure 5.15, and is excited by wave forces.
Again, the JONSWAP wave spectrum ([92], p. 206) is used with wave height 1.5 m. In

1Note the scaling of the external force, due to the input uncertainty. For a pure model uncertainty, the

scaling of the external force would not be present.
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Table 5.4: Moving base model translational and rotational stiffness and damping.

ktrans [N/m] krot [N/rad] dtrans [N s/m] drot [N s/rad]
400 40 20 4

Fwaves

xi

yi

zi

ktrans, krot

dtrans, drot

g

Figure 5.15: Analogous 3D floating base spring-damper model with wave excitation Fwaves.

order to increase its effect on the base, the force in xi-, yi-, and zi-direction is amplified by a
factor of 20 and the moment about the zb-axis is amplified by a factor of 2. The equilibrium
between spring-damper reaction forces and gravity g is shifted by constantly applying 0.95g

to simulate buoyancy. The stiffness and damping values are given in Table 5.4 and are
similar for the xi-, yi-, and zi-directions.

The desired position trajectory is generated using fifth-order polynomials and describes a
rectangle in Cartesian space, as shown in Figure 5.16. To assess the robustness of the
closed-loop control, the multibody system is dropped into the water at the start of the
simulation, as can be seen in Figure 5.16, Figure 5.18(a), and Figure 5.19(a),(b). The
duration of the reference trajectory is 30 s. It is assumed that the motion of the base, its
mass mb = 40 kg, and its inertia Ixxb = Iyyb = Izzb = 6.67 kg m2 are known exactly.

In simulation the following points are evaluated:

• inverse dynamics control or impedance control of the combined system,

• QP and SQP for optimal control allocation and reorientation of the flying robot,
respectively, and

• adaptive control to cope with the uncertainty in the thrust of the flying robot.
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5.4 Optimal control allocation

Table 5.5: Actuator limits used in the simulation, with τr,min = −τr,max and Tmin = 0.

τr,max [Nm] Tmax [N]
Joint / rotor number 1 2 3 4 5 6 7 1 2 3 4

Limit 165 100 70 70 70 30 30 150 150 150 150

Table 5.6: Artificial limits for optimal reorientation, with τu,min = −τu,max and Fu,min = 0.

τu,max [Nm] Fu,max [N]
Axis xi yi zi xi yi zi

Limit 24 24 12 200 200 400

(a) t = 6 s (b) t = 14 s

Figure 5.16: Combined system and rectangular reference trajectory (desired −−, actual −, base move-

ment −).

Table 5.7: Root Mean Square Error (RMSE) of the flying robot’s position in simulation.

RMSE [m] without adaptive control RMSE [m] with adaptive control
xi yi zi xi yi zi

0.0034 0.0033 0.0919 0.0030 0.0029 0.0859

The actuator limits considered for optimal control allocation are listed in Table 5.5 for the
single QP approach and in Table 5.6 for the additional optimal reorientation of the flying
robot (SQP approach). For both optimizations, H is a square identity matrix of appropriate
size. The maximum rotor thrust forces and the parameters mu = 40 kg, Ixxu = Iyyu = Izzu =

6.67 kg m2 of the flying robot result in a realistic thrust to weight ratio of 1.5 (cf. Table 5.5).
The dynamic properties of the LWR can be found for example in [183].

In Figure 5.18, Figure 5.19, and Figure 5.17 the results of various simulation runs are
depicted. Figure 5.18(a) shows that the position converges using the impedance controller
and that the reference trajectory is tracked well even under large random base motion
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(a) Comparison of tilt angle with single QP and

SQP, i.e. constant orientation and optimal reori-

entation of the flying robot.

(b) Convergence of adaptive parameter ε → 0.25 due

to artificial uncertainty of thrust 0.8Fu = 1
1+ε

Fu

and with adaptation gain γ = 0.1.

Figure 5.17: Tilt angle of flying robot (a) and adaptive parameter ε (b).

(a) Reference and actual Cartesian end-effector tra-

jectory without uncertainties.

(b) 3D position of floating base excited by spring-

damper and wave forces.

Figure 5.18: Results of the multibody simulation without artificial uncertainties.

(cf. Figure 5.18(b)) but without uncertainties. Figure 5.19(a) and (b) compare the position
tracking accuracy under artificial uncertainty of the rotor thrust without and with adaptive
control (see Section 5.4.4), respectively. As expected, the reference trajectory is tracked
more precisely with adaptive control (see the RMSE in Table 5.7 for comparison) at the
cost of increased rotor thrust, as indicated by the joint torques and rotor thrust forces shown
in Figure 5.19(c) and (d). From the latter, it can also be seen that the control allocation
using QP (see Section 5.4.2) results in actuator commands that comply with the limits
defined in Table 5.5. In Figure 5.17(a) the tilt angle with QP control allocation is compared
to optimal reorientation of the flying robot using SQP (see Section 5.4.3 and Figure 5.14).
The tilt angle computed by the SQP approach is rather small and, hence, likely to be
indistinguishable from noise or disturbances. This suggests that the SQP may be omitted
in practice resulting in a computationally cheaper implementation. Finally, Figure 5.17(b)
depicts the adaptive parameter ε of the controller (5.42), which converges exactly to the
value of the simulated uncertainty of the thrust force.
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5.4 Optimal control allocation

(a) End-effector trajectory with artificial uncer-

tainty in thrust but no adaptive control.

(b) End-effector trajectory with artificial uncer-

tainty in thrust and with adaptive control.

(c) Actuator commands using least squares (dashed,

index ls) and constrained QP solution (solid, in-

dex qp).

(d) Actuator commands with adaptive control using

least squares (dashed, index ls) and constrained

QP solution (solid, index qp).

Figure 5.19: Results of the multibody simulation with artificial uncertainties.

5.4.6 Extensions for practical implementation

Some assumptions made in the derivation of the combined control approach presented above
might prevent a practical implementation. They are addressed and suitable extensions are
discussed in this section.

Identifying or neglecting the base inertia

The inertia of the base is included in the combined system model and, so far, it is assumed to
be known. For a robot manipulator operating on a ship, this is rather unrealistic. In order
to still apply the combined control approach, an online parameter estimation ([86], p. 358)
may be performed or the adaptive control approach [186], ([88], p. 277) can be applied. The
latter additionally allows to consider uncertainty in the manipulator’s or the flying robot’s
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inertia. Another possibility is to omit the base inertia in the combined model, to assume
that the base motion is not influenced by the manipulator or the flying robot, and instead
to measure and compensate the base acceleration, as done in Section 4.4.2 and [55].

Estimation of the base motion

Similar to its inertia, the motion of the base is assumed to be known. It is reasonable
to assume, that the base motion can be measured by off-the-shelf sensor systems, such
as IMUs and Differential GPS (DGPS or DGNSS) with Real Time Kinematics (RTK).
Furthermore, the ship motion can be estimated and predicted using auto-regression [56] or
Kalman filters [187, 188]. The latter requires only acceleration measurements and no vessel
specific parameters.

Admittance interface to the flying robot

The aforementioned uncertainty in rotor thrust also holds for the torques produced by the
flying robot. Since they are often not feedback-controlled, the torques commanded by the
combined control approach might not be applied exactly by the flying robot. To overcome
this issue, an admittance interface can be used, which accepts torque inputs and generates a
corresponding angular velocity reference. The latter is commanded to a low-level closed-loop
rate controller. This approach is inspired by [177], where a torque-controlled humanoid robot
on a velocity-controlled base is considered. The main difference here is that the flying robot
is the last element in the kinematic chain. The parameters of the admittance model can be
chosen arbitrarily, but have to be included in the combined system dynamics instead of the
real model of the flying robot. This also allows to mimic a heavier or lighter flying robot.

Estimating or bypassing the transformation between the UAV and the manipulator

Another issue unconsidered so far is the estimation of the transformation between the flying
robot and the end-effector of the manipulator. Depending on how the connection between
the two systems is established, e.g. using a gripper, an electromagnet, or a docking inter-
face, this transformation is unknown a priori and needs to be measured. For this, different
techniques can be used, for example using fiducial markers at the end-effector and a down-
ward facing camera mounted on the flying robot, as proposed in Chapter 6, or vice versa.
Alternatively, the difference between absolute end-effector and absolute flying robot orien-
tation estimates can be used, but their accuracy might be insufficient depending on the
precision of the magnetometer for heading estimation. A completely different solution is to
reformulate the problem by choosing the end-effector of the robot manipulator as reference
point, command a constant orientation of the flying robot, and only vary the magnitude
of the vertical thrust force, which is independent from the orientation. The last approach
is motivated by the fact that the tilt angle of the flying robot, as observed in the simula-
tions, is negligibly small and might not be distinguishable from noise. This observation is
substantiated especially by the simulation results with optimal reorientation presented in
Section 5.3.5 and Section 5.4.5.
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5.5 Summary and conclusion

In this chapter, a task space control approach for robot manipulator assisted take-off and
landing of flying robots is presented. Both inverse dynamics and impedance control are
directly applicable to the redundant system. The combined model of the flying robot, the
robot manipulator, and the free-floating base considers all coupling terms in the dynamics.
This implies that an accurate model is required. Moreover, it is assumed that the motion of
the base, i.e. its pose, velocity, and acceleration, can be measured or estimated. Two options
for controlling the combined system are presented, which allow to share the control effort
between the flying robot and the robot manipulator: a heuristic workload sharing approach,
which uses an inertia decomposition and can be solved analytically, and a numerical solution,
for which the control allocation is formulated as a quadratic minimization problem with
equality and inequality constraints.

The performance of both solutions is evaluated in simulations and experiments with a light
weight manipulator and a custom-built hexacopter. Both approaches are especially useful if
heavy flying robots are considered, since the required actuator torque of the manipulator is
decreased significantly. The first solution is computationally less expensive and requires less
state information to be exchanged between the flying robot and the robot manipulator, but
it is restricted to non-redundant systems and inequality constraints are difficult to enforce.
The second solution is also applicable to redundant systems, allows to include inequality
constraints, and is optimal w.r.t. a quadratic cost function. However, the optimization is
computationally expensive, which could potentially affect the real-time performance. So
far, it is evaluated using MATLAB/Simulink® on a desktop computer with Intel Xeon
CPU E5-1620 @ 3.60GHz. A second optimization is proposed for optimal reorientation
of the flying robot instead of commanding a constant attitude. This results in a SQP
approach. However, in simulation only a negligibly small reference tilt angle is computed.
This substantiates the conjecture, that the second optimization can be omitted for the sake
of a less complex implementation.

To cope with uncertainties of the flying robot’s rotor thrust, an adaptive parameter is added
to the task space controller. In a simulation including artificial uncertainties and large, ran-
dom base motions, the position error converges to zero with the adaptive controller, whereas
with the nominal impedance controller, a steady-state error of approximately 8 cm remains.
In addition, with the adaptive control approach, the closed-loop dynamics are shown to be
passive. Finally, possible extensions are summarized, which enable a practical implementa-
tion of the presented combined control approaches. Further experimental evaluation is part
of future work.
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"Computers are able to see, hear and learn.

Welcome to the future."

— Dave Waters 6
In-flight capturing of a flying robot

This chapter is devoted to autonomous in-flight capturing of a flying robot by means of
a robot manipulator fixed to the landing surface. Hence, the initial phase of the three
phases of robot-assisted landing presented in Section 2.3 is considered. In order to robustly
catch the flying robot, the relative distance between the end-effector of the manipulator
and the docking interface of the UAV needs to be measured accurately. Moreover, the state
estimation should be reliable and has to account for time delays in the acquisition and
processing of the sensor data.

To achieve this, an object tracking approach based on computer vision is proposed in Sec-
tion 6.1. It overcomes the major limitations of external tracking systems discussed in Sec-
tion 6.1.1. By using multiple fiducial (or artificial) markers as presented in Section 6.1.2,
robustness against occlusion of single markers is achieved. Furthermore, the well-known
Kalman filter is used in Section 6.1.3 for fusing the distance measurements with the visual
inertial odometry of the flying robot. This enables to estimate the pose of the flying robot at
a higher update rate compared to the frame rate of the camera used for marker tracking.

Combining marker tracking with the Cartesian impedance controller (2.87) and (4.100)
presented in Section 2.6 and Section 4.4.2, respectively, results in visual servo control as
shown in Section 6.2. In Section 6.2.1, the maximum attainable translational velocities of
the DLR Light Weight Robot (LWR) are computed based on an optimization. The latter
allows to visualize and assess the capabilities of a given manipulator, i.e. at what speed
the flying robot may be caught by the manipulator. The Cartesian impedance controller is
extended in Section 6.2.2 to include the relative pose estimate acquired using visual marker
tracking. The workspace of the manipulator is constrained artificially in order to avoid
singular configurations, like the outstretched configuration.

For completeness, different docking interfaces between flying robot and manipulator are
discussed briefly in Section 6.3. An electromagnet is selected due to its generality and
robustness. In Section 6.4, the multi-marker tracking algorithm and the visual servo con-
trol approach are evaluated in experiments with a DLR/KUKA LWR, a custom docking
interface, an off-the-shelf camera, and a quadrocopter.
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Chapter 6 In-flight capturing of a flying robot

6.1 Robust visual tracking of the flying robot

In this section, an overview of available pose measurement methods, the selected visual
tracking approach, and the implemented Kalman filter for sensor fusion are presented.

6.1.1 Overview of pose measurement approaches

Different pose, i.e. position and orientation, estimation methods are available today. The
considered systems with main properties and disadvantages are listed in Table 6.1. The
well-known Global Positioning System (GPS) in combination with inertial measurements
of an IMU enables pose estimation of flying robots [100]. However, GPS is only available
outdoors and at a low rate. Its accuracy is deemed insufficient for in-flight capturing of a
flying robot. On the other hand, external tracking systems, like Vicon [100], A.R.T. [109],
and the HTC Vive Lighthouse [189] provide precise pose estimates at a high rate, but they
are usually only available indoors. Moreover, they require additional external components,
which need to be installed and calibrated. The same holds for Ultra Wide Band (UWB)
localization [190]. The maximum update rate of UWB is comparable to external tracking
systems, but its accuracy is lower and it only provides position measurements.

Visual odometry (VO) [217], i.e. determining the position and orientation of a vehicle based
on camera images, overcomes the main drawbacks of the systems mentioned above. It may
be used indoors and outdoors and can achieve high accuracy. The update rate is limited by
camera frequency and processing time, but can be increased using a sufficiently fast camera
or sensor fusion with an IMU. The sensitivity w.r.t. lighting conditions is a problem, for
example at night, but can be relaxed by using spotlights for illumination. Objects in the

Table 6.1: List of established pose measurement systems.

System Description Max. rate Accuracy Drawbacks

Vicon,
A.R.T.

Motion capture systems using
external infrared cameras and
passive markers

250 Hz 1mm not available
outdoors

HTC Vive
Lighthouse

Tracking system for virtual
reality devices using infrared
emitters and receiver diods

250-1 kHz 1mm only area of
4 m by 4 m

Ultra Wide
Band (UWB)

High frequency radio mes-
sages and runtime measure-
ments between anchors

1 kHz 10-30 cm provides only
position

GPS, Galileo,
GLONASS,
BeiDou

Global positioning systems
using runtime of radio signals
emitted by satellites

1-10 Hz 1-5m only position
with low ac-
curacy

Visual odome-
try

Feature tracking in mono or
stereo camera images to ob-
tain a velocity estimate

1-200 Hz 1 cm sensitive to il-
lumination
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6.1 Robust visual tracking of the flying robot

camera images can be tracked using fiducial markers [191]. Recent advances in computer
vision, e.g. using deep neural networks, also enable tracking of generic objects without the
need for artificial markers [192]. However, the robustness and reliability of marker-less
approaches is difficult to assess. Since the installation of fiducial markers on the ground
and on the flying robot seems reasonable, visual marker tracking is selected for measuring
the relative distance between the end-effector of the manipulator and the flying robot. The
camera may be installed at the end-effector or on the ground. These two options only differ
in the required extrinsic calibration.

6.1.2 Multi-marker tracking algorithm

Today, many software implementations of fiducial marker tracking algorithms are readily
available that can be impplemented on the ground station computer. In [191], a comparison
of different marker types, called tags, is presented. Due to their fast computation, the
ARToolKitPlus [193] and AprilTags [194] are considered in this work. Artificial markers are
a reliable and accurate method to detect and localize an object using a monocular camera.
However, the tags have to be fully visible in the image in order to be successfully detected
and localized [191]. The probability of one marker on the flying robot being outside the field
of view of the camera increases with decreasing distance between flying robot and camera.

To increase the probability of a marker being detected, multiple markers are used. They
are attached at the bottom of the flying robot, as shown in Figure 6.1. During the initial
approach phase, described in Section 2.3, all markers can be localized. One marker is defined
as a reference and the relative positions and orientations of the other markers with respect
to this marker are calculated and stored. Using these relative positions and orientations
together with the current poses of one or more previously localized markers, the pose of

P

M

Figure 6.1: Tracked markers on the bottom of the flying robot as seen by the camera at the end-effector of

the robot arm. The coordinate systems of two localized markers and of the reference marker

M , which is localized although it is outside the field of view, are visualized.
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Chapter 6 In-flight capturing of a flying robot

(a) Two markers are fully visible, one is not detected. (b) One marker is occluded by the robot arm.

Figure 6.2: Tracked markers on the ground as seen by the camera on the bottom of the flying robot.

the reference marker can be computed, even if it is outside the field of view. The detected
markers and the marker coordinate systems are shown in Figure 6.1. It can be seen that
the reference marker outside of the field of view of the camera is also localized. If more than
two markers are detected simultaneously, a RANSAC [195] algorithm is used to identify
and delete outliers in the marker localization. To position the flying robot relative to the
robot manipulator, e.g. during the approach phase (see Section 2.3), the same multi-marker
tracking algorithm can be used for flying robot control. An example is shown in Figure 6.2.

6.1.3 Sensor fusion using Kalman filter

The update rate of the distance measurement obtained from the marker tracking algorithm
on the ground station computer is limited by the camera frequency. Usually, the on-board
state estimation of the flying robot is significantly faster. To increase the rate of the marker
estimate, all available sensor measurements can be combined, as shown in Figure 6.3, using a
Kalman filter [196]. This also attenuates noise and provides a prediction of the marker pose.
In general, the pose estimation problem is nonlinear, hence, an Extended Kalman Filter
(EKF) [196] is used. In general, the EKF uses a process model and a measurement model
linearized at the current estimate, sensor and process noise, as well as sensor measurements
to update the pose estimate. The filter algorithm adopted from ([196], p. 51) is given by

Prediction: (6.1)

xk = g(x̂k−1) (6.2)

P k = GkPk−1G
T
k +Xk (6.3)

Correction: (6.4)

Kk = P kH
T
k (HkP kH

T
k +Zk)

−1 (6.5)

x̂k = xk +Kk(zk − h(xk)) (6.6)

Pk = (E −KkHk)P k (6.7)

where k is the current time step, x̂k is the estimate, Pk is the estimate covariance matrix, and
Gk =

∂g(x̂k−1)
∂x̂k−1

and Hk =
∂h(xk)
∂xk

. The (·) notation denotes values before the correction step.
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Furthermore, Kk is the Kalman gain, zk is the measurement vector, Xk is the covariance
of the process noise, Zk is the covariance of the measurement noise, and E is an identity
matrix with appropriate size. If X is large, the Kalman filter tracks large changes in the
data more closely and vice versa. And for smaller Z, the estimated state will follow the
measurement more closely and vice versa.

A Kalman filter allows to incorporate measurements at different rates. However, delayed
measurements can significantly deteriorate the estimate. Hence, the update strategy il-
lustrated in Figure 6.4 is implemented. It rejects measurements whose delay is above a
threshold. Here, measurements with time stamp smaller than the previous filter update are
rejected. The varying time delay of the wireless LAN communication channel is computed
from the difference between computer clock and message time stamps. This requires clock
synchronization of ground station computer and on-board flight control computer.

The Precision Time Protocol (PTP) defined in the standards IEEE 1588 and IEC 61588 [197]
is used to synchronize the clocks. The PTP algorithm is illustrated in Figure 6.5. Figure 6.6
shows round trip delay (RTD) measurements recorded for the custom-built quadrocopter
Sparrow and the off-the-shelf AR.Drone 2.0 (see Figure 2.2b in Section 2.1). The observed
RTD, which is most of the time about 4ms for Sparrow and about 1ms for the AR.Drone,
shows that the IMU measurements can be used in the Kalman filter. The occurrence of very
delayed messages confirms that the proposed update strategy depicted in Figure 6.4 is needed
to handle outliers. Note that the Kalman filter also rejects marker pose measurements which
arrive too late. Therefore, the estimate is not corrupted, if the tags are not detected.

Comm.
channel

Drift
comp.

Visual
odometry

Mahony
filter

IMU

Kalman
filter

@100Hz Marker
tracking

Manipulator
controller

Camera

@200Hz

@500Hz

@1 kHz

@30Hz

x̂

zvo

zimu

zu

zr

zc

Figure 6.3: Overview of the sensor fusion implementation which provides a prediction of the marker pose.

t
zu

t
x̂m

update update update

t
zm

30ms

10ms

5ms

update update update updatereject reject

Figure 6.4: Kalman filter update strategy. Measurements of the Visual Inertial Odometry (VIO) of the

flying robot that arrive too late due to varying time delay of the communication channel are

rejected.
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Ground station (Master) Flight control computer (Slave)

T1

T2

T1′

T2′

T4

T3

sync

follow up

delay request

delay response

Figure 6.5: Illustration of the Precision Time Protocol (PTP). It uses a hierarchical master-slave architec-

ture. The masters selects the most accurate clock as reference clock. To determine the delay,

the master sends its time stamp T1 to the slave. Additionally, T1′ is measured at the ethernet

interface to eliminate the delay in the pipeline from stack to hardware. The slave records the

time at which the messages are received using its own clock as T2 and T2′, respectively. Then,

it repeatedly sends delay request messages with time stamps T3 to the master. The master

responds with the time stamp T4 at which the messages are received. The master-to-slave and

slave-to-master delays are determined from the differences between the time stamps. The mean

value provides the time deviation from the master, which the slave uses for synchronization.

Flight

controller

Ground

station

Round trip delay

ping

pong

blabla

(a) (b)

Figure 6.6: Round trip delay (RTD) measurements for the quadrocopters Sparrow and AR.Drone 2.0

acquired over ten minutes using ping command. RTD for AR.Drone is 1ms in 80 percent of

the time. RTD for Sparrow, which is based on a Raspberry Pi 3B+, is 4ms in 50 percent of

the time.

An extended Kalman filter for estimating the marker pose that incorporates on-board pose
estimates of the flying robot can be designed as follows. A pose may be described by a
translation r and a quaternion q which represents the orientation. Using quaternions in
the Kalman filter is inspired by [198]. The advantage of quaternions is that they have
no singularities and that their derivative w.r.t. time can be written very concisely (see
Section 2.4.1). Without loss of generality, some important assumptions are made, as they
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Figure 6.7: Considered reference frames and translations.

significantly reduce the size of the process model. The dynamic transformation from camera
frame c to world frame w of the robot manipulator are performed a priori on the manipulator
side. The marker pose in the camera frame c can always be transformed to the world frame w
using the static extrinsic camera calibration, the forward kinematics χ(φ) of the manipulator
(available at 1 kHz), and the estimated pose of the moving base. Hence, it is assumed that
w coincides with c. The constant transformation from body-fixed frame u of the flying robot
to the marker frame m is also applied a priori, i.e. the flying robot publishes pose, velocity,
and acceleration of the marker expressed in the world frame i. Note that the world frame w
of robot manipulator and the world frame i of the flying robot do not coincide in general.
Summing up, the frames c, m, and i, as shown in Figure 6.7, and the static transformation
between c and i are considered in the Kalman filter. Considering a varying transformation
between c and i might be more general, but would considerably increase the size of the state
vector as well as the complexity of the presentation here and of the final implementation.

The state vector x̂ of the Kalman filter is defined as

x̂ =
[

x̂Tr x̂Tq

]T
(6.8)

where
x̂r =

(
crTcm

cvTcm
caTcm

irTim
ivTim

iaTim
irTci

)T
, (6.9)

with linear velocities v and linear accelerations a and

x̂q =
(

qTcm q̇Tcm q̈Tcm qTim q̇Tim q̈Tim qTci

)T
. (6.10)

For better readability, the hat notation (̂·) is omitted for the elements in x̂ and the discrete
process model is written independently for the translational and for the rotational part as

x̂r,k = gr(x̂k−1) = Ar,k−1(x̂k−1)x̂r,k−1, (6.11)

x̂q,k = gq(x̂k−1) = Aq,k−1(x̂k−1)x̂q,k−1, (6.12)

respectively. Note that (6.11) and (6.12) are nonlinear since Ar,k−1 and Aq,k−1 depend
on the states qci,k−1 and qim,k−1. If the sample time ∆t is small enough, accelerations
can be assumed constant in the interval [(k − 1)∆t, k∆t]. For convenience, transformation
of the translations is carried out using rotation matrices, which can be constructed from
quaternions using the Euler-Rodrigues formula (2.20) from Section 2.4.1. The marker track-
ing algorithm from Section 6.1.2 provides the quaternion qcm and the state estimation of
the flying robot is assumed to provide the quaternion qim and its first and second deriva-
tives w.r.t. time. Recall that the quaternion multiplication is defined using the quaternion
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Chapter 6 In-flight capturing of a flying robot

matrix Q(q) (2.24) and that the quaternion kinematics are given by (2.25) (see both in
Section 2.4.1). Thus, the process model follows as

Ar,k−1 =















E 0 0 0 ∆tR(qci,k−1)
1
2∆t

2R(qci,k−1) 0

0 0 0 0 R(qci,k−1) ∆tR(qci,k−1) 0

0 0 0 0 0 R(qci,k−1) 0

0 0 0 E ∆tE 1
2∆t

2E 0

0 0 0 0 E ∆tE 0

0 0 0 0 0 E 0

R(q−1
ci,k−1) 0 0 −E 0 0 0















(6.13)

and

Aq,k−1 =















E 0 0 0 ∆tQ(qci,k−1)
1
2∆tQ(qci,k−1) 0

0 0 0 0 Q(qci,k−1) ∆tQ(qci,k−1) 0

0 0 0 0 0 Q(qci,k−1) 0

0 0 0 E ∆tE 1
2∆t

2E 0

0 0 0 0 E ∆tE 0

0 0 0 0 0 E 0

U(q−1
im,k−1) 0 0 0 0 0 0















, (6.14)

where E is an identity matrix. In the prediction step, (6.13) and (6.14) are evaluated using
the estimates qci,k−1 and qim,k−1 at time step k−1. To predict the covariance, the Jacobian
Gk is required ([196], p. 50), which is computed using Ak−1 = diag(Ar,k−1,Aq,k−1) as

Gk =
∂(Ak−1x̂k−1)

∂x̂k−1
= (6.15)

























Ar,k−1 021×24

∂(R(qci,k−1)(
ivim,k−1∆t+iaim,k−1

1

2
∆t2))

∂qci,k−1

∂(R(qci,k−1)(
ivim,k−1+

iaim,k−1∆t))
∂qci,k−1

∂(R(qci,k−1)
iaim,k−1)

∂qci,k−1

09×3

∂(R(q−1

ci,k−1
)crcm,k−1)

∂qci,k−1

028×21

Rows 1-24,

columns 1-24

of Aq,k−1
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1
2∆t
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(6.16)

The following identities are needed to derive the matrix (6.16). For the partial derivatives
of the rotation matrices, it holds that

∂(R(q)r)

∂r
= R(q),

∂(R(q)r)

∂q
=





2qwrx + 2qyrz − 2qzry 2qxrx + 2qyry + 2qzrz 2qwrz + 2qxry − 2qyrx 2qxrz − 2qwry − 2qzrx
2qwry − 2qxrz + 2qzrx 2qyrx − 2qxry − 2qwrz 2qxrx + 2qyry + 2qzrz 2qwrx + 2qyrz − 2qzry
2qwrz + 2qxry − 2qyrx 2qwry − 2qxrz + 2qzrx 2qzry − 2qyrz − 2qwrx 2qxrx + 2qyry + 2qzrz



 .
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6.2 Visual servo control of the robot manipulator

And for the partial derivatives of the quaternion multiplication it holds that

∂(Q(q1)q2)

∂q2
= Q(q1), (6.17)

∂(Q(q1)q2)

∂q1
=
∂(U(q2)q1)

∂q1
= U(q2), (6.18)

∂(U(q−1
1 )q2)

∂q1
=
∂(Q(q2)q

−1
1 )

∂q1
= W (q2), (6.19)

where U(q) is the conjugate quaternion matrix defined in (2.24) and

W (q) =

[

η ǫT

ǫ −ηE − S(ǫ)

]

. (6.20)

Since the visual inertial odometry of the flying robot and the marker pose obtained from the
multi-marker tracking algorithm have different update rates, they are incorporated in the
Kalman filter using two different measurement models. Fortunately, the models are linear,
such that line (6.6) of the EKF becomes

x̂k = xk +Kk(zu,k −Huxk), (6.21)

x̂k = xk +Kk(zc,k −Hcxk), (6.22)

for the odometry and camera measurements, respectively, where

Hu =

[

09×9 E9×9 09×31

012×33 E12×12 012×4

]

,

Hc =

[

E3×3 03×46

04×21 E4×4 04×24

]

.

Using the sensor fusion approach as described above, an estimation of the pose of the flying
robot relative to the end-effector of the manipulator is obtained as visualized in Figure 6.8.
Note that once the static transformation between frame c and frame i is estimated, the pose
of the marker can be estimated using this transformation and the odometry of the flying
robot. That means that the estimate is available even if the markers are occluded or outside
of the field of view of the camera.

6.2 Visual servo control of the robot manipulator

Visual servo control uses computer vision for motion control of a robot [199, 200, 201]. In
this section, a straightforward approach for visual servo control of the robot manipulator
is proposed. The pose estimate obtained from the Kalman filter is directly used in the
Cartesian impedance controller (2.87) and (4.100) presented in Section 2.6 and Section 4.4.2,
respectively. But first, the maximum attainable end-effector velocity of the DLR LWR is
assessed numerically.
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Chapter 6 In-flight capturing of a flying robot

Multi-marker tracking

Prediction

Figure 6.8: Visualization of the estimated pose of the flying robot obtained from multi-marker tracking

(black) and predicted (green) using a Kalman filter approach for sensor fusion.

6.2.1 Assessment of the maximum end-effector velocity

In order to assess in which velocity region the robot manipulator is able to compensate the
base motion and catch the flying robot, a rough estimation based on the maximum joint
speeds φ̇max is presented. A manipulator’s Cartesian velocity capabilities for a given confi-
guration can be analyzed using so-called manipulability ellipsoids [202, 203] and polytopes
[204, 205]. Since the translational motion is dominant for the capturing task, only the ma-
ximum linear velocities v are considered here. One can distinguish between an analysis in
the weak sense, where |φ̇| ≤ φ̇max, and in the strong sense, where additionally the angular
velocity of the end-effector is constrained to be zero. In order to obtain a conservative
estimation, an analysis in the strong sense is performed.

Instead of manipulability ellipsoids and polytopes, which are computationally demanding,
a trivial solution is presented. The joint space is sampled using steps of 10 deg and the opti-
mization problem defined below is solved numerically using the MATLAB® implementation
of qpOASES [156].

min
φ̇

− vTv = φ̇TJTJφ̇ s. t.

{

−φ̇max ≤ φ̇ ≤ φ̇max,

Jωφ̇ = 0.
(6.23)

Note that minimizing −vTv is equal to maximizing vTv. It holds for the Jacobian that

J =

[

Jv

Jω

]

and the Cartesian end-effector position is obtained via the forward kinematics χ(φ). Similar
to manipulability ellipsoids and polytopes, the dynamics of the manipulator are neglected,
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6.2 Visual servo control of the robot manipulator

(a) x-z-plane. (b) Side view.

Figure 6.9: Maximum attainable velocity of the manipulator LWR 4+.

i.e. it is assumed that the manipulator can reach its maximum joint velocities instanta-
neously. The results for the LWR 4+, whose maximum joint velocities are given in Table 2.1
in Section 2.2, are shown in Figure 6.9. Note that the colors correspond to the Euclidean
norm of the linear velocity ||v||. Theoretically, the LWR 4+ could reach velocities up to
2m/s. Obviously, it is not able to reach the maximum velocity in the outstretched confi-
guration. It is reasonable to conclude a maximum velocity of approximately 1m/s in the
entire workspace.

6.2.2 Cartesian impedance visual servo control

For tracking the motion of the flying robot by means of the robot’s end-effector and fi-
nally capturing the aerial vehicle, the Cartesian impedance controller (2.87) is utilized.
This allows to realize compliant contacts and avoid switching between controller modes.
A straight-forward approach to visual servo control is chosen. The relative distance mea-
surement between c and m is interpreted as a desired velocity and directly incorporated
in the controller. Velocity limits and workspace boundaries of the robot manipulator are
considered using a saturation function. Another possibility is to use virtual walls [206], i.e.
virtual spring-damper-systems, which generate a repelling force at the end-effector.

It is clear, that the relative distance between the camera c mounted at the end-effector and
the marker m can be transformed to a desired pose xd in the world frame of the manipulator
using the forward kinematics χ(φ). Next, recall the Cartesian impedance controller (2.87)

τd = g(φ)− J(φ)T (Kdxe +Ddẋe) + τnsp (6.24)

with the position error defined as xe = x − xd and using the Jacobian J(φ) of the ma-
nipulator. Furthermore, Kd, and Dd are the desired Cartesian stiffness and the desired
Cartesian damping, with Kd = diag(K1, . . . ,K6) and Dd = diag(D1, . . . , D6), respectively.
Joint torques within the nullspace of the manipulator, i.e. which do not influence the end-
effector motion but the robot’s posture, are comprised in τnsp. The motor dynamics of the
manipulator are neglected, i.e. it is assumed that the joint torques τj are controlled directly.

179



Chapter 6 In-flight capturing of a flying robot

The low level torque controller of the manipulator assures that τj follows the desired joint
torque τd.

Virtual workspace boundaries

In order to account for workspace boundaries and to avoid configuration singularities, a
limit on the admissible distance measurement, denoted as d, is added. The desired cubic
workspace in the base frame b is defined by center bc and length l = (lx ly lz)

T , as
depicted in Figure 6.10. Then the limit is defined as

d = sat
(

brbm,
bc− l

2
, bc+

l

2

)

− χ(φ), (6.25)

with
brbm = χ(φ) +Rbc

crcm (6.26)

and using a saturation function defined as

sat (a, a, a) =







a, a ≤ a
a, a < a < a

a, a ≥ a
. (6.27)

Therein, a is the value to saturate, a is its lower and a its upper limit. Note that in (6.25),
each element of the vector argument is saturated independently. The augmented distance
d is interpreted as a desired velocity of the end-effector

ẋd = sat (kδ · d, ẋmin, ẋmax) , (6.28)

wherein kδ > 0 is a scalar gain. It follows from (6.28), that

xd = xd(t0) +

t∞∫

t0

sat (kδ · d, ẋmin, ẋmax) dt, (6.29)

bc

lz +∆lz
lz

ly

lx

Figure 6.10: Exemplary virtual workspace limits for a cubic robot arm workspace with center bc. It may

be implemented using a saturation function for the end-effector velocity or via a virtual wall.
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6.3 Discussion of docking interfaces

wherein t0 is the start and t∞ is the end time. (6.28) and (6.29) are inserted in (6.24)
and enable to account for the minimum and maximum velocities ẋmin and ẋmax of the
manipulators end-effector.

The transition from tracking to capturing is realized by increasing the workspace limits l

until the docking point lies within the workspace boundaries. This can be done either with a
step of ∆l, as indicated in Figure 6.10, or using linear interpolation from l to l+∆l in order
to slow down the transition. The start of the transition can be triggered autonomously,
e.g. as soon as the flying robot reaches a defined rendezvous and stays there for a defined
duration, or manually by an operator.

6.3 Discussion of docking interfaces

In this section, different docking interfaces are discussed in order to select a suitable one for
the experiments. The considered designs are depicted in Figure 6.11.

A gripper (Figure 6.11 (a)) is a very general tool and usually available directly. No special
interface is required on the UAV, except for an area where it can be gripped. However, a
gripper is not necessarily reliable or robust and the area between the gripper jaws is usually
small.

A (Figure 6.11 (b)) suction cup is more specialized and usually more reliable than a common
gripper. However, it requires compressed air and a corresponding flat counterpart on the
UAV to provide a firm grip.

(a) Gripper (b) Suction cup (c) Electromagnet (d) Cylindrical

peg-in-hole

Figure 6.11: Illustration of different mechanical docking interfaces.

Electromagnets (Figure 6.11 (c)) are widely used and directly available. They require direct
current (usually 12V or 24 V) and can be switched on and off via a relay. A magnetic
counterpart is required on the UAV. They are very robust and reliable, as the magnetic
forces can be very strong and also act at some distance (about 0-5 cm).

Due to the mentioned advantages, a 12 V electromagnet is used in this work. A round steel
plate with a diameter of 5 cm is attached to the UAV via the custom universal hinge (see
Section 4.2.6, 4.3.6, and 5.3.6). A disadvantage of the used magnet is that holding forces
remain even after the voltage is switched off and the UAV is difficult to disconnect.
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Chapter 6 In-flight capturing of a flying robot

Generality Specialization

Two-finger
Gripper

Spacecraft
Docking Interface

Electro-
magnet

Multi-finger
Gripper

Suction 
Cup

Figure 6.12: Gripper designs: generality vs. specialization.

Table 6.2: Advantages and disadvantages of general or specialized docking interfaces.

General gripper Specialized docking interface

⊕ high availability ⊖ low or no availability
⊕ low cost ⊖ high cost
⊖ low accuracy and robustness ⊕ increased accuracy and robustness
⊖ need to consider flying robot design ⊖ increased weight of flying robot

A cylindrical peg-in-hole interface as shown in Figure 6.11 (d) might increase the reliability
of the docking maneuver. It could be used in addition to the aforementioned docking
interfaces as well. Figure 6.12 and Table 6.2 categorize the interface designs and sum up
the advantages and disadvantages.

6.4 Experimental results

In order to evaluate the visual servo control approach, several experiments are conducted
using the demonstrator for robot-assisted take-off and landing of flying robots already pre-
sented in Section 4.2.6, 4.3.6, and 5.3.6. The manipulator is mounted on a fixed base and
has a camera and an electromagnet attached at its end-effector (see Figure 6.13). The cam-
era is the Asus Xtion Pro Live camera with a resolution of 640× 480 pixels at a rate of 30
frames per second (see Figure 6.13 (b)).

The Parrot AR.Drone 2.0 quadrocopter [171] is controlled via 2.4GHz wireless LAN. Seve-
ral markers are attached at the bottom of the quadrocopter as shown in Figure 6.13. Due
to safety reasons, the quadrocopter is attached to the lab ceiling with a rope. Its posi-
tion above a reference is stabilized using a PID controller and the multi-marker tracking
algorithm described in Section 6.1.2. Multi-marker tracking is found to be more reliable
than single-marker tracking, because the single reference marker is often occluded by the
elbow of the manipulator. The orientation of the quadrocopter expressed in Euler angles
is depicted in the upper plot in Figure 6.15a. Its heading is varying within ±8deg, which
is irrelevant due to the symmetry of the quadrocopter and because the docking interface is
centered below the quadrocopter. The lower plot in Figure 6.15a shows that the quadro-
copter is stabilized at a desired position with respect to the reference marker on the ground.
All parameters used in the experiments are summarized in Table 6.3. Figure 6.16 and Fig-
ure 6.17 show image sequences of a visual tracking experiment and an in-flight capturing
experiment, respectively. Furthermore, a successful capturing attempt and the trajectory of
quadrocopter and manipulator is illustrated in the picture sequence in 6.14. The physical
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(a) (b)

Figure 6.13: Setup of the in-flight capturing experiments.

Table 6.3: Parameters used for the in-flight capturing experiments.

Parameter Value

Controller gain kδ, see (6.28), (6.29) 4.0

Impedance controller stiffness Kd in N/m K1...3 = 1000, K4...6 = 100

Impedance controller damping Dd in in Ns/m D1...6 = 0.5

Minimum / maximum linear velocity vmin /max ∓1.0m/s
Kalman filter time step ∆t 0.01 s
Workspace center bc (−0.4 0 0.8)Tm
Workspace length l (0.4 0.4 0.4)Tm
Workspace prolongation ∆l (0 0 0.3)Tm
Multi-marker tracking rate 30Hz
Visual inertial odometry rate 200Hz

connection between both is established using an electromagnet and a metal plate attached
to the quadrocopter via a universal hinge. The position of the manipulator’s end-effector
and its relative distance to the metal plate during the capturing attempt is depicted in
Figure 6.15b. It can be seen that the relative distance stays within a range of 5cm and
converges to zero as the electromagnet reaches the metal plate. Capturing is realized with
a step of ∆lz = 0.3m and initiated as soon as δx and δy are below 2.0cm for 2.0 s (i.e. at
time t = 18 s in Figure 6.15b).

In Section 1.3, the need for coordinated control is motivated by the assumption that the
robot controller has to consider the UAV’s orientation in order to prevent the UAV from
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Chapter 6 In-flight capturing of a flying robot

Figure 6.14: Exemplary successful in-flight capturing experiment. The trajectories of the docking of the

end-effector, and both together are visualized with red, green, and blue crosses, respectively.
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Figure 6.15: Log data plots of successful in-flight capturing experiment.

tilting sideways in an undesired way. The results of the capturing experiments clearly
justify this assumption. As can be seen in Figure 6.14, the quadrocopter is significantly
tilted sideways in the instance the contact is established and shortly afterwards. The robot
is stopped manually after the UAV is captured. Obviously, an additional sensor is needed
in order to determine if the capturing attempt is successful or not. A sensor would enable
to react correctly to a failed attempt or to switch automatically to the next phase of the
landing maneuver.

In summary, the motion of the docking point could be tracked by the manipulator arm with
an accuracy below 5cm. Furthermore, the flying robot could be captured autonomously and
reliably. The reliability depends on the docking interface and may be increased by choosing
a large, conical, and self-centering mechanism. Different options for the docking interface
are discussed in the previous Section 6.3.
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6.4 Experimental results

Figure 6.16: Image sequence of a visual tracking experiment. The end-effector of the manipulator con-

stantly follows the quadrocopter. The duration of the depicted motion is 7 s.
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Chapter 6 In-flight capturing of a flying robot

Figure 6.17: Image sequence of an in-flight capturing experiment. The duration of the maneuver is 2 s.
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"There is an art to flying, or rather a knack. The

knack lies in learning how to throw yourself at the

ground and miss."

— Douglas Adams 7
Conclusion

7.1 Summary

In this thesis, coordinated control approaches for robot-assisted take-off and landing of
flying robots are developed and tested in simulations and experiments. The evaluation of
the presented controllers is summarized in Table 7.1. All coordinated controllers use the
fundamental combined model of the flying robot attached to the manipulator via an universal
hinge presented in Section 2.4 and the task space formulation introduced in Section 2.4.4.

Chapter 3 is devoted to independent modeling and control of flying robots. A generalized
control approach including bidirectional thrust, control allocation procedures considering
actuator saturation, and an adaptive control approach accounting for uncertainties of the
rotor thrust are presented. This results in robust and accurate trajectory tracking as well
as increased precision of an external wrench estimator. Additionally, the system under
the adaptive controller is shown to be passive. Indoor and outdoor experiments performed
with the hexacopter Ardea and the quadrocopter Sparrow prove the performance of the pre-
sented control approach. The experiments with Sparrow include the first ever autonomous
transition from upright to inverted flight of a quadrocopter with fixed-pitch propellers.

In Chapter 4, the separate models of flying robot and robot manipulator are used for con-
troller design. As shown, studying the linearized models allows an estimation of the stability
limits. Nonlinearities of the attitude dynamics are considered in the backstepping design.
However, their effect will only be visible at some distance from the hovering state and at
high rotational speeds. The obtained controllers are especially applicable to light UAVs,
whose influence on the robot manipulator is negligible. Low complexity of the approaches
does not necessarily result in worse performance, both in simulations and experiments (see
Figure 7.1). The advantage of the controllers is that they require little state information,
such that communication and implementation effort are reduced. The impedance control
strategy provides passive and, thus, stable interaction between the subsystems. The task
space control approach is extended to account for accurately estimated base motion. It is
evaluated successfully in simulation.

Chapter 5 considers the combined model of flying robot and robot manipulator. The pre-
sented inertial decomposition allows for workload sharing based on a heuristic (see Sec-
tion 5.3). If required, the control effort of the manipulator can be reduced, such that it can
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Table 7.1: Comparison of control approaches presented in this work.

Section Description Assumptions Complexity Sim. / Exp. Performance
Independent control of flying robot

3.3 PD control
No external
disturbances

✓/ ✓

3.5
Adaptive
control

Accurate pose
estimate

✓/ ✓

Coordinated control based on separate models

4.2.3
Task space
control without
UAV model

Influence of
UAV is
negligible

✓/ ✓

4.2.4

As above with
linearized UAV
model and pole
placement

Light flying
robot

✓/ ✓

4.2.5
As above using
modal
decoupling

Light flying
robot

✓/ ✓

4.3

As above with
nonlinear UAV
model and
backstepping

Light flying
robot

✓/ ✓

4.4.2
Base motion
compensation

Accurate
estimate of
base motion

✓/ ✗

4.4.4
As above with
active thrust
vector control

Accurate
estimate of
base motion

✓/ ✗

Coordinated control based on combined model

5.3

Workload
sharing using
decomposed
model

Desired
trajectory
available

✓/ ✓

5.4.2
Optimal
control
allocation

Sufficient
computing
capacity

✓/ ✗

5.4.4
As above with
adaptive
control

Sufficient
computing
capacity

✓/ ✗

Independent control of robot manipulator

6.2.2
Cartesian
impedance
control

Visual
distance
measurement

✗/ ✓
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7.2 Outlook

also assist heavy flying robots. The same holds for the optimal control allocation presented
in Section 5.4, which is more effective but computationally much more expensive. In short,
the control approaches in Chapter 4 neglect the coupling between the subsystems but do
not depend so heavily on information exchange with low latency as the control approaches
in Chapter 5.

In-flight capturing of the flying robot is considered in Chapter 6. A visual tracking al-
gorithm is presented which uses multiple fiducial markers. The pose estimate as well as
the visual inertial odometry is fed into an EKF, which results in an increased update rate
and robustness against occlusions of the estimate. The latter combined with a Cartesian
impedance controller results in visual servo control of the robot manipulator. It is shown
experimentally that a quadrocopter could be captured repeatedly using an electromagnet
mounted at the end-effector of the manipulator.

7.2 Outlook

As summarized in Table 7.2, the research questions stated in Section 1.3 could be answered
adequately in this thesis. A broad spectrum of coordinated control approaches for robot-as-
sisted take-off and landing of flying robots is provided. Nevertheless, several open points
are worth investigating in the future.

First of all, further experiments are required to entirely assess the capabilities of the task
space controllers. This includes in-flight capturing of the flying robot as well as cooperative
take-off and landing. Especially heavier flying robots have to be considered. In addition,
suitable sensors and approaches to accurately estimate the base motion need to be inves-
tigated. Also, the stability margins w.r.t. time delay and the sensitivity of the control
approaches to uncertainties in the base motion estimation need to be evaluated more thor-
oughly. Stability independent of the time delay could be shown for the linearized model
under certain conditions (see Appendix A9). For general passivation of the distributed non-
linear system, TDPC or wave variable approaches are readily applicable, as suggested in
Section 2.5.

So far, independent models but centralized task control as well as a combined model and
combined control are considered. Another possibility would be to utilize external wrench
estimation and independent control of the flying robot to realize impedance control with
inertia shaping, compliance in one desired direction, or force amplification, as proposed
in [112]. Furthermore, closed-loop rate control could be considered instead of pose control
of the flying robot. An admittance interface [177] to the task space controller can be used to
provide desired rates instead of forces and torques generated by the impedance controller.

The increased computing power available on modern flying robots enables the application
of computationally more intensive control approaches, such as nonlinear model predictive
control [207]. In particular, disturbance rejection and actuator saturation is handled more
naturally by model predictive controllers.
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Chapter 7 Conclusion

Table 7.2: Evaluation of the research questions stated in Section 1.3.

Research
question

Addressed in
chapter(s)

Sufficiently
addressed

Q1 How can the dynamics of the robotic support system
composed of manipulator on a moving base and flying robot
be modeled?

2, 3, 4

Q2 What are suitable concepts for coordinated control of
flying robot and robot manipulator on a moving base?

4, 5

Q3 How can both flying robot and robot manipulator con-
tribute to a successful realization of the assistance task?

4, 5

Q4 How can the relative distance between manipulator and
flying robot be measured accurately in order to realize ro-
bust take-off and landing?

6

Q5 How do the coordinated control approaches perform
in simulations and real world experiments with different
VTOL UAVs?

4, 5, 6

Recent developments in object tracking based on deep neural networks [192] suggest that
artificial markers might not be necessary any more and arbitrary objects can be tracked at
high frame rates. It is also imaginable, that the visual inertial state estimates of both flying
robot and robot manipulator could be fused directly, for example using a particle filter [196]
instead of the Kalman filter presented in this work.

Finally, the novel insights gained from studying cooperative control of the two considered
heterogeneous robotic systems may be transferred to other domains. They are applicable
to other systems and other applications as well, such as collaborative manipulation, aerial
manipulation, or cooperative load transportation.
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A1 Most relevant terms regarding control architectures

To increase clarity, the most relevant terms used in the literature to describe control system
architectures are defined below in the context of robot-assisted take-off and landing of flying
robots.

independent

Two systems are independent, if they are not physically interacting with each other
and do not depend on state information of the other system. Flying robot and robot
manipulator are independent only during approach and departure phase.

combined

The dynamics of flying robot and robot manipulator can be combined to one
model, which considers the bilateral coupling terms.

coupled / decoupled

The dynamics of flying robot and robot manipulator are bilaterally coupled in the
combined system model. They may be decoupled by control, e.g. via feedback of the
computed coupling terms.

decomposed (or separated)

The combined model is decomposed into submodels, which can be computed sep-
arately and, hence, used for distributed control. However, they are not independent.

distributed

Distributed control refers to the control of the combined system, where flying
robot and robot manipulator use their own on-board control computer. Distributed
control deals with control of two or more systems with independent control computers
connected in a communication network.

coordinated

Flying robot and robot manipulator need to be coordinated in order to fulfill the
task at hand. One of the two systems or a higher level instance may be responsible
for the coordination.
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overactuated (or redundant)

There is a difference between overactuation and redundancy. A system is overac-

tuated, if the number of actuators is greater than the number of degrees of freedom.
It is referred to as redundant, if it has more actuated degrees of freedom than are
actually required for the task. If a system is overactuated, it is also redundant, but
not vice versa.1

fully actuated

A robotic system is fully actuated, if the number of its degrees of freedom is equal
to the number of its actuated degrees of freedom.

underactuated

A robotic system is underactuated, if the number of its degrees of freedom is smaller
then the number of its actuated degrees of freedom. For example, a flying robot with
multiple rotors but parallel thrust vectors in the body frame is underactuated with
respect to its 6D pose, because it cannot apply forces perpendicular to the thrust
direction.

cooperative control

Cooperative control is a distinct field in control theory. It considers multiple
agents and the communication network between them.

centralized / decentralized control

One can distinguish if decisions are made centralized, i.e. if the states of all agents
are known at one point, or decentralized, i.e. if decisions are made locally by an agent
depending on its own state and maybe the states of its nearest neighbours.

shared control

Shared control means human operator control plus automation. This is not ad-
dressed in this work.

A2 Forward kinematics of DLR Light Weight Robot

In general, the forward transformation from coordinate frame k to frame k−1 can be carried
out using a homogeneous transformation matrix Tk−1,k ∈ SE(3) defined as

Tk−1,k =








c(θk) −s(θk) 0 ak
s(θk)c(αk−1) c(θk)c(αk−1) −s(αk−1) −s(αk−1)dk
s(θk)s(αk−1) c(θk)s(αk−1) c(αk−1) c(αk−1)dk

0 0 0 1







, (A2.1)

1For example, a flying robot with six or eight rotors with parallel thrust vectors is underactuated, but

redundant, i.e. it can lose a single rotor and still maintain stable flight. If the thrust vectors are arranged

appropriately, the vehicle may become fully actuated or even overactuated.
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A3 Derivation of the generalized pseudoinverse

where s(·) = sin(·), c(·) = cos(·), and ak−1, αk−1, dk, and θk are the Denavit-Harten-
berg (DH) parameters ([14], p. 67). The DH parameters of the DLR LWR 4+ used in this
work are listed in Table A2.1.

Table A2.1: DH parameters of DLR LWR 4+.

k ak−1 αk−1 [deg] dk θk

1 0 0 l1 φ1
2 0 90 0 φ2
3 0 -90 l2 φ3
4 0 -90 0 φ4
5 0 90 l3 φ5
6 0 90 0 φ6
7 0 -90 l4 φ7

The lengths l1 - l3 are given in Figure 2.3 in Section 2.2, whereas l4 is the length of the used
end-effector. Finally, the forward kinematics transformation is obtained as

Tb,7 = Tb,1T1,2T2,3T3,4T4,5T5,6T6,7, (A2.2)

where b denotes the base of the manipulator.

A3 Derivation of the generalized pseudoinverse

Consider a vector of task space velocities ẋ and a vector of velocities in configuration space
φ̇, which are connected via the Jacobian matrix J , such that

ẋ = Jφ̇. (A3.1)

In order to derive a generalized pseudoinverse of J , consider the optimization problem

min
φ̇

1

2
φ̇TQφ̇

s. t. ẋ− Jφ̇ = 0,

which includes the metric Q. Define

Γ =
1

2
φ̇TQφ̇+

(

ẋ− Jφ̇
)T

λ (A3.2)

=
1

2
φ̇TQφ̇+ λT ẋ− λTJφ̇, (A3.3)

where λ are the so-called Lagrange multipliers. The partial derivative of Γ w.r.t. φ̇ is set to
zero

∂Γ

∂φ̇
= φ̇TQ− λTJ = 0, (A3.4)

which leads to
φ̇ = Q−TJTλ. (A3.5)
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Setting the partial derivative of Γ w.r.t. the Lagrange multipliers to zero

∂Γ

∂λ
=
(

ẋ− Jφ̇
)T

= 0 (A3.6)

yields the forward kinematics mapping (A3.1). Multiplying J from the left in (A3.5) gives

Jφ̇ = JQ−TJTλ, (A3.7)

which can be rearranged to

λ =
(
JQ−TJT

)−1
ẋ (A3.8)

for any non-singular matrix Q and full row-rank Jacobian matrix J . Inserting (A3.8) in
(A3.5) eventually yields

φ̇ = Q−TJT
(
JQ−TJT

)−1
ẋ = J#ẋ, (A3.9)

where J# is the generalized pseudoinverse, which solves the minimization problem stated
above. It can be directly seen, that Q = I results in the Moore-Penrose pseudoinverse,
which minimizes the Euclidean norm φ̇T φ̇. With Q = M , where M is the inertia matrix,
the dynamically consistent pseudoinverse [40], which minimizes the kinetic energy 1

2 φ̇
TMφ̇,

is obtained.

A4 Reference attitude from desired thrust vector

Given a desired thrust vector in the inertial frame fd ∈ R
3, the desired orientation of a flying

robot w.r.t. the inertial frame can be determined. The actual computation depends on the
utilized attitude representation. Three different possibilities are summarized in the table
below. The formula for the quaternion is derived in Appendix A5. Conversion between the
attitude representations is possible, however, extracting Euler angles (ϕd θd ψd) or the
quaternion qd from the rotation matrix Rd is tedious [30].

Table A4.1: Computation of the reference attitude given a desired thrust vector fd.

Attitude representation [Reference]
Euler angles [126] Rotation matrix [96, 99] Quaternion [147]

θd = arcsin
(

fTd e1
||fd|||

)

zb =
fd

||fd|| , yb =
zb×xc

||zb×xc|| , qrp =
1√

2(1+fTb fd)

(

1 + fTb fd

fb × fd

)

ϕd = −arcsin
(

fTd e2
||fd||| cos(θd)

)

xb = yb × zb, fb = ±e3, s.t. fTb fd ≥ 0

Set ψd as desired with xc =






cos(ψd)

sin(ψd)

0




 qc =








cos(ψd2 )

0

0

sin(ψd2 )








Rd =
[

xb yb zb

]

qd = qrp ⊗ qc
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A5 Quaternion from two vectors

A5 Quaternion from two vectors

This problem always arises in the control of underactuated flying robots. The desired thrust
vector in the inertial frame fi is commanded by the position controller. From fi and the
nominal thrust vector fb, which is usually equal to e3 = (0 0 1)T , the quaternion reference
qd for the attitude controller needs to be found.

Consider the unit vectors fb, fi, and n and recall the definition of the unit quaternion (2.14)

qd =

(

cos(ϕ2 )

sin(ϕ2 )n

)

(A5.1)

where ϕ is the rotation angle and n is the rotation axis. The angle ϕ between fb and fi is
given by

cos(ϕ) = fTb fi. (A5.2)

Furthermore, it holds that
sin(ϕ)n = fb × fi. (A5.3)

Using the trigonometric relations

cos(
ϕ

2
) = ±

√

1 + cos(ϕ)

2
(A5.4)

and

sin(
ϕ

2
) =

sin(ϕ)

2 cos(ϕ2 )
, (A5.5)

it follows that

cos(
ϕ

2
) = ±

√

1 + fTb fi

2
= ± 1 + fTb fi

√

2(1 + fTb fi)
, (A5.6)

sin(
ϕ

2
)n = ± sin(ϕ)n

√

2(1 + cos(ϕ))
= ± fb × fi

√

2(1 + fTb fi)
, (A5.7)

and, hence,

qd = ±
1

√

2(1 + fTb fi)

(

1 + fTb fi

fb × fi

)

. (A5.8)

Interestingly, qd is in fact a unit quaternion, due to

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

1 + fTb fi

fb × fi

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=
√

2(1 + fTb fi).

A6 Efficient flip trajectory generation

Here, a computationally efficient method for computing trajectories for bidirectional thrust
vehicles, including a flip to inverted flight, are presented. Due to their simplicity and defined
derivatives, it is convenient to use polynomials for trajectory generation. A minimum jerk
solution using fifth order polynomials is presented in [162]. This method is adopted and
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additional constraints for jerk consistency at the flip trajectory segment intersection are
derived.

Only x-, y-, z and yaw angle ψ are treated, due to the flatness property w.r.t. x, y, z,
ψ and their derivatives. For completeness, recall the fifth order polynomial formulation
from [162]:










p(t)

v(t)

a(t)

j(t)

s(t)










=










α
120 t

5 + β
24 t

4 + γ
6 t

3 + a0
2 t

2 + v0t+ p0
α
24 t

4 + β
6 t

3 + γ
2 t

2 + a0t+ v0
α
6 t

3 + β
2 t

2 + γt+ a0
α
2 t

2 + βt+ γ

αt+ β










, (A6.1)

wherein p, v, a, j, and s denote position, velocity, acceleration, jerk, and snap, respectively.
The parameters α, β, and γ are obtained from






α

β

γ




 =

1

t5d






720 −360td 60t2d
−360td 168t2d −24t3d
60t2d −24t3d 3t4d











∆p

∆v

∆a




 , (A6.2)

where td is the duration of the trajectory segment and the initial (index 0) and final states
(index f) are summarized in






∆p

∆v

∆a




 =






pf − p0 − v0td − 1
2a0t

2
d

vf − v0 − a0td
af − a0




 . (A6.3)

For a 180 deg (φf = ±π) flip it must hold that φh = ±π
2 at height zh = h. It then follows

from

cos(φh) =
fTe3

||fTe3||
=

z̈h + g

||z̈h + g|| = 0 (A6.4)

where the force f in the inertial frame is given by the definition of the position controller,
that the acceleration at zh needs to be z̈h = −g and that the accelerations ẍh and ÿh
are free. Since the position can be translated to any arbitrary initial position, without
loss of generality, the start position is assumed to be at the origin. Furthermore, for a
smooth trajectory jerk consistency at the intersection of two segments is required with
td,1 = td, 2 = td, i.e. j1(td,1) = j2(0). This yields for the z-direction

αz1
2
t2d + βz1td + γz1 = γz2 (A6.5)

and with zero velocity at start 0, via-point h, and end f , as well as zero acceleration at start
0 and end f

∆z1 = h, ∆ż1 = 0, ∆z̈1 = −g,

∆z2 = −h+ 1
2gt

2
d, ∆ż2 = gtd, ∆z̈2 = g,
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Figure A6.1: Exemplary generated flip trajectory.

and from (A6.2)

αz1 =
1

t5d
(720h− 60gt2d),

βz1 =
1

t5d
(−360htd + 24gt3d),

γz1 =
1

t5d
(60ht2d − 3gt4d),

γz2 =
1

t5d
(−60ht2d + 9gt4d).

(A6.6)

Inserting (A6.6) in (A6.5) yields the relationship between the height h of the flip and the
duration td of one segment:

td =

√

20h

3g
. (A6.7)

This leads to zero jerk
...
z h = 0 at zh. For the x-direction the velocity ẋh at xh =

xf
2 and

the end position xf is left open. One obtains

∆x1 =
xf
2 , ∆ẋ1 = ẋh, ∆ẍ1 = 0,

∆x2 =
xf
2 − ẋhtd, ∆ẋ2 = −ẋh, ∆ẍ2 = 0.

Due to zero acceleration ẍh = 0, the jerk at xh is always consistent. With the above results
and (A6.7), the trajecory can be computed using (A6.1) and (A6.2). Thrust and angular
rate feasibility, i.e.

fmin ≤ f(t) ≤ fmax (A6.8)
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and
1

f(t)2
||j(t)||2 ≤ ω2

max, (A6.9)

with

f(t) = m

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣






ẍ(t)

ÿ(t)

z̈(t)




−






0

0

g






∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

, (A6.10)

can be achieved by iterating over h, xf , and ẋh until a feasible trajectory is found.

A7 Flip quaternion and axis

A quaternion q = (qw qx qy qz)
T = (η ǫT )T can be converted to a rotation matrix

using the Euler-Rodrigues formula [28]

R(q) =
(
η2 − ǫT ǫ

)
I3×3 + 2ǫǫT + 2ηS(ǫ) (A7.1)

=






1− 2q2y − 2q2z 2qxqy − 2qwqz 2qwqy + 2qxqz
2qwqz + 2qxqy 1− 2q2x − 2q2z 2qyqz − 2qwqx
2qxqz − 2qwqy 2qwqx + 2qyqz 1− 2q2x − 2q2y




 . (A7.2)

It follows for a φ = 180 deg rotation, i.e. qw = cos(φ2 ) = 0

qw=0
=






1− 2q2y − 2q2z 2qxqy 2qxqz
2qxqy 1− 2q2x − 2q2z 2qyqz
2qxqz 2qyqz 1− 2q2x − 2q2y






and for a rotation axis in the xy-plane, i.e. qz = 0

qz=0
=






1− 2q2y 2qxqy 0

2qxqy 1− 2q2x 0

0 0 −1




 .

The rotation axis ǫ = (qx qy 0)T with ||ǫ|| = 1 for a 180 deg flip can be obtained from
initial and final position as

ǫ =
∆p× e3

||∆p× e3||
(A7.3)

where ∆p = pf − p0 and e3 = (0 0 1)T .

A8 Criterion for maximum end-effector acceleration

Here, a stability criterion for the maximum end-effector acceleration of the robot manipu-
lator is derived considering the PD attitude controller of the flying robot. Recall the linear
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A9 Proof of stability independent of time delay

models (4.26) and (4.27) with (4.16) derived in Section 4.2.1 and Section 4.2.2, which may
be written as

ϕ̇ = ωx (A8.1)

ω̇x = −kωxωx − kϕϕ+muglϕ+
mul

Ixx
r̈EE,y (A8.2)

and

θ̇ = ωy (A8.3)

ω̇y = −kωyωy − kθθ +muglθ −
mul

Iyy
r̈EE,x, (A8.4)

respectively. First, consider the Lyapunov function candidate

Vx =
1

2
ω2
x +

1

2
(kϕ −mugl)ϕ

2 ≥ 0, (A8.5)

with kϕ > mugl (cf. condition (4.18)). Its first derivative w.r.t. time is

V̇x = ωxω̇x + kϕϕϕ̇−muglϕϕ̇ (A8.6)

= −kωxω2
x − kϕϕωx +muglϕωx +

mul

Ixx
r̈EE,yωx + kϕϕϕ̇−muglϕϕ̇ (A8.7)

= −kωxω2
x +

mul

Ixx
r̈EE,yωx, (A8.8)

for which it has to hold that V̇x ≤ 0 and, therefore,

r̈EE,y ≤
kωxIxx
mul

ωx. (A8.9)

Second, consider the Lyapunov function candidate

Vy =
1

2
ω2
y +

1

2
(kθ −mugl)θ

2 ≥ 0, (A8.10)

with kθ > mugl (cf. condition (4.18)). Its first derivative w.r.t. time is

V̇y = ωyω̇y + kθθθ̇ −muglθθ̇ (A8.11)

= −kωyω2
y − kθθωy +muglθωy −

mul

Iyy
r̈EE,xωy + kθθθ̇ −muglθθ̇ (A8.12)

= −kωyω2
y −

mul

Iyy
r̈EE,xωy, (A8.13)

for which it has to hold that V̇y ≤ 0 and, therefore,

r̈EE,x ≥ −
kωyIyy

mul
ωy. (A8.14)

A9 Proof of stability independent of time delay

Here, it is shown that stability of the closed-loop control of the manipulator and the flying
robot may be assured independent from the time delay of the communication channel.
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back

interaction
forces

controlsfeedback

Figure A9.1: Control loop with time delay.

Figure A9.1 shows the considered interconnection of the flying robot and the manipulator.
It is reasonable to neglect the internal time delays of the separate control loops of the flying
robot and the manipulator, since they are not the main concern of the analysis presented
here. However, a single time delay occurs depending on where the compensation term
∆τatt (cf. (4.34) - (4.37) in Section 4.2.5 or (4.67) in Section 4.3.3) is computed, i.e. on the
manipulator side using (delayed) measurements of the UAV orientation or on the UAV side
using the (delayed) commanded force of the manipulator. Both cases boil down to a single
time delay as depicted on Figure A9.1.

The following assumptions are made to allow a linear stability analysis:

• Only the motion in the x, z-plane and manipulator forces in the x-direction are con-
sidered, i.e. the applied force of the manipulator in the z-direction is assumed zero.

• The thrust force of the flying robot is always T = mg.

• A single time delay d ≥ 0 is considered as pointed out above.

Recall the separate model (4.4) of the flying robot u derived in Section 4.1. Under the above
assumptions, the model reduces to








ẍ(t)

ẋ(t)

θ̈(t)

θ̇(t)








=








−dx
m −kx

m 0 −gmu

1 0 0 0

− dxl
Iyy − kxl

Iyy − dθ
Iyy − kθ

Iyy

0 0 1 0















ẋ(t)

x(t)

θ̇(t)

θ(t)








+








0 0 0 0

0 0 0 0
dxl
Iyy

kxl
Iyy 0 0

0 0 0 0














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(A9.1)
where the second term on the right-hand side is the delayed compensation of the tilt torque,
which is equal to S(ρ)RuiFEE in the nonlinear case. Equation (A9.1) is given in the general
form ([65], p. 44)

ẋ(t) = A0x(t) +A1x(t− d), d ≥ 0. (A9.2)

One can be distinguish between delay-independent and delay-dependent stability ([65], p.
31). Theorem 2.1 in [65] can be used to show delay-independent stability of system (A9.2).

Theorem A9.1. The system (A9.2) is stable independent of the time delay if and only if

(i) A0 is stable,

(ii) A0 +A1 is stable,
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(iii) r((jωE−A0)
−1A1) < 1, ∀ω > 0, where r(·) denotes the spectral radius of a matrix.

The proof of Theorem A9.1 can be found in [65] on pp. 44. If the system is not stable
independent of the time delay, it is possible to determine the delay margin, i.e. the limit of
d up to which the system is stable and at which it holds that ([65], p. 48)

det(jωE −A0 −A1e
−jωd) = 0. (A9.3)

A more general analysis of systems under time delay can be performed using the Lyapunov-
Krasovskii stability theorem or the Razumikhin theorem [65]. However, this involves solv-
ing linear matrix inequalities (LMIs) and, as pointed out in [65], provides usually very
conservative results.

In the following, the numerical values listed in Table A9.1 are used, which are taken from
Chapter 4 and Chapter 5.

Table A9.1: Exemplary numerical values for stability analysis.

Symbol mu Iyy l g kx dx kθ dθ

Value 0.48 0.007 0.06 9.81 1000 0.5 0.66 0.05

Unit kg kg m2 m m/s2 N/m Ns/m N/m Ns/m
Des-
crip-
tion

UAV
mass

UAV
inertia

lever
arm of
univer-
sal
hinge

accele-
ration
of
gravity

stiffness
of im-
pedance
con-
troller

damping
of im-
pedance
con-
troller

stiffness
of
attitude
con-
troller

damping
of
attitude
con-
troller

Section 4.2.6 4.2.6 4.2.6 4.2.6 5.3.6 5.3.6 4.2.6 4.2.6

It is straightforward to verify that A0 and A0 +A1 of system (A9.1) are stable, since their
eigenvalues

A0 : λ1 = −0.56 + 45.86i, λ2 = −0.56− 45.86i,

λ3 = −3.54 + 7.86i, λ4 = −3.54− 7.86i

A0 +A1 : λ1 = −0.52 + 45.64i, λ2 = −0.52− 45.64i,

λ3 = −3.57 + 9.03i, λ4 = −3.57− 9.03i

(A9.4)

lie in the left complex half-plane. Empirically, it can be shown that the system can become
unstable for an increased lever arm l and the constant controller gains in Table A9.1. On the
contrary, appropriately increasing the attitude controller gains restores stability even with
increased length l. Next, criterion (iii) in Theorem A9.1 is verified by computing the spectral
radius, i.e. the maximum eigenvalue, of (sE −A0)

−1A1. It is found analytically, that with
the parameters in Table A9.1 the maximum eigenvalue is always below 1. Figure A9.2
depicts the numerical result for a defined range of s.

Hence, all three criteria of Theorem A9.1 are fulfilled and, therefore, system (A9.1) is stable
independent of the time delay d. In summary, this illustrates that closed-loop controllers for
robotic assistance of flying robots can be designed which result in stability independent of
the time delay of the communication channel. On the other hand, if stability independent
of the time delay can not be achieved, alternative methods, such as wave variables [62] or
the time domain passivity approach [58], need to be implemented additionally.
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Figure A9.2: Maximum eigenvalue of system (A9.1) for different frequencies jω, i.e. time delays. It can

be seen that the eigenvalue is < 1 for all ω and, hence, the system is stable independent of

the time delay d.

A10 Adaptive control of combined system: Proof of passivity

Consider the dynamics of the combined system (5.41) with scalar multiplicative input un-
certainty and the adaptive inverse dynamics controller (5.43) or the adaptive impedance
controller (5.44), respectively.

Expanding (5.41) on both sides by −(1 + ε)ν leads for inverse dynamics control to

(1 + ε)
(

Λ(¨̃x+ P ˙̃x+K ˙̃x+KPx̃) + µ− µd

)

= Fτ + (1 + ε)Fext − (1 + ε)ν (A10.1)

and for impedance control to

(1 + ε)
(

Λ ¨̃x+ΛP ˙̃x+K ˙̃x+KPx̃+ µ− µd

)

= Fτ + (1 + ε)Fext − (1 + ε)ν. (A10.2)

Inserting (5.43) in (A10.1) or (5.44) in (A10.2), respectively, yields the dynamics of the
combined tracking error s = ˙̃x+ P x̃ as

Λ(ṡ+Ks) + µ− µd = ε̃ν + F ext, (inverse dynamics control) (A10.3)

Λṡ+Ks+ µ− µd = ε̃ν + F ext, (impedance control) (A10.4)

where ε̃ = ε̂ − ε and Λ = (1 + ε)Λ, K = (1 + ε)K, µ = (1 + ε)µ, µd = (1 + ε)µd,
and F ext = (1 + ε)Fext for brevity. Now, consider the positive definite Lyapunov function
candidate

V =
1

2

(

sTΛs+ x̃TQx̃+
1

γ
ε̃2
)

, (A10.5)

with constant gain γ > 0. An appropriate structure of the positive definite matrix Q is
found in the following. The first derivative of (A10.5) w.r.t. time along the solution of the
differential equations (A10.3) or (A10.4), respectively, is

V̇ = sTΛṡ+
1

2
sT Λ̇s+ x̃TQ ˙̃x+

1

2
x̃T Q̇x̃+

1

γ
ε̃ ˙̂ε. (A10.6)
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Note that ε is assumed to be constant. Inserting (A10.3), the definition of the tracking error
s = ˙̃x+ P x̃, and the adaptation law ˙̂ε = −γsTν gives

V̇ =− ˙̃xTΛK ˙̃x− ˙̃xTΛKPx̃− x̃TPΛK ˙̃x− x̃TPΛKPx̃

+
1

2
sT Λ̇s+ sT (µd − µ) + x̃TQ ˙̃x+

1

2
x̃T Q̇x̃+ sTF ext.

(A10.7)

For Q = 2PΛK, the term − ˙̃xTΛKPx̃ − x̃TPΛK ˙̃x vanishes due to the symmetry of Λ,
K, and P . In addition, choosing µd = µ − 1

2Λ̇s cancels the derivative Λ̇ of the kinetic

energy matrix. Finally, inserting Q̇ = 2P Λ̇K, yields

V̇ = − ˙̃xTΛK ˙̃x− x̃TPΛKPx̃+ x̃TP Λ̇Kx̃+ sTF ext. (A10.8)

Therefore, V̇ ≤ sTF ext and, hence, passivity w.r.t. the power port sTF ext can only be
shown as long as x̃TPΛKPx̃ ≥ x̃TP Λ̇Kx̃ and if ΛK and PΛK, i.e. Q, are positive
semidefinite. These requirements are clearly a disadvantage of inverse dynamics control
compared to impedance control.

On the contrary, inserting (A10.4), s = ˙̃x+ P x̃, and ˙̂ε = −γsTν in (A10.6) gives

V̇ =− ˙̃xTK ˙̃x− ˙̃xTKPx̃− x̃TPK ˙̃x− x̃TPKPx̃ (A10.9)

+
1

2
sT Λ̇s+ sT (µd − µ) + x̃TQ ˙̃x+

1

2
x̃T Q̇x̃+ sTF ext. (A10.10)

For Q = 2PK, the term − ˙̃xTKPx̃− x̃TPK ˙̃x vanishes due to the symmetry of K and P .
Again, choosing µd = µ− 1

2Λ̇s cancels the derivative Λ̇ of the kinetic energy matrix. Since
Q̇ = 0, it follows that

V̇ = − ˙̃xTK ˙̃x− x̃TPKPx̃+ sTF ext ≤ sTF ext. (A10.11)

This shows passivity w.r.t. the power port sTF ext of the closed-loop dynamics (A10.4)
under adaptive impedance control. The only requirement, in addition to positive definite
gain matrices P and K, is that Q is positive semidefinite.
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