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Abstract

In systems biology, mathematical models are a common tool to describe biological processes.
Especially models based on ordinary differential equations (ODEs) have aided the understanding
of causal relations within dynamic processes in cell biology.

ODE models typically depend on parameters, which are a priori unknown and have to be in-
ferred from measurement data, such as reaction rate constants or initial conditions of biochemical
species, which can not be measured. Although guidelines and algorithms for this inference exist,
parameter estimation and uncertainty quantification for ODE models remain challenging tasks,
already for commonly used small- and medium-scale models. However, on one hand, large-scale
models with thousands of parameters have been developed in recent years to understand and
predict the functioning of complex diseases, such as cancer. Inferring the parameters of these
models is computationally extremely challenging. On the other hand, with the rise of single-cell
measurement techniques, mixed-effect models based on ODEs which capture the system dynam-
ics also at the single-cell level have been developed, and come with challenges of their own. These
developments make it necessary to constantly improve existing and develop novel mathematical
methods for parameter estimation and uncertainty quantification.

In this thesis, we first transfer the principle of mini-batch optimization from training of
deep neural nets to ODE models and adapt it to this new problem class. For large-scale ODE
models trained on large datasets, this leads to a substantial reduction of computation time while
providing better parameter estimates than currently available methods. We then show that
ensemble models based on these parameter estimates provide better model predictions than the
more commonly used point estimates for these large-scale models.

Afterwards, we develop second order adjoint sensitivity analysis for ODE models with time-
discrete measurements. Also this reduces computation time and increases the reliability of pa-
rameter estimation and uncertainty quantification. Especially the efficiency and reliability of
uncertainty analysis via profile likelihoods is substantially improved.

Finally, we turn towards mixed-effect modeling with ODEs of biological processes at the
single-cell level. We propose a statistical framework that combines single-cell data and bulk
data, which only provides information about the averages of cell populations. Subsequently, we
present a novel parametrization which facilitates parameter estimation of covariance matrices,
which are essential in mixed-effect modeling. Then, we apply these techniques to develop a
survival model of erythroid progenitor cells upon stimulation with Erythropoietin.

In conclusion, the methodological contributions presented in this thesis allow efficient and
reliable parameter estimation and uncertainty quantification with better scaling properties than
previously available approaches. Hence, larger models based on larger datasets or more complex
models, possibly based on single-cell data and bulk data at the same time, can be developed
and parametrized. We hope that these contributions will enable the understanding of complex
biological processes at an unprecedented level.
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Zusammenfassung

Mathematische Modelle sind ein gängiges Mittel zur Beschreibung biologischer Prozesse in der
Systembiologie. Vor allem Modelle mit gewöhnlichen Differenzialgleichungen (DGLen) haben
beim Verständnis der Zusammenhänge innerhalb von dynamischen Prozessen in der Zellbiologie
weitergeholfen.

Wie es für viele andere Modelle der Fall ist, so hängen auch DGL-Modelle von Parametern ab,
deren Werte nicht im Vorhinein bekannt ist und die mit Hilfe von gemessenen Daten geschätzt
werden müssen. Obwohl es viele Herangehensweisen und Algorithmen für diese Aufgabe gibt,
bleiben die Parameterschätzung für DGL-Modelle und die ihr nachfolgende Unsicherheitsanalyse
– selbst für die üblichen klein- bis mittelskaligen Modelle – eine komplizierte Aufgaben. Dennoch
wurden zum einen in jüngster Zeit großskalige Modelle mit tausenden von Parametern entwick-
eln, um die Abläufe in komplexen Erkrankungen, wie z.B. Krebs, verstehen und vorhersagen
zu können. Die Parameter solcher Modelle zu bestimmen jedoch ist extrem rechenaufwändig.
Zum anderen hat das Aufkommen neuer Technologien, die Einzelzell-Messungen ermöglichen,
die Entwicklung von Mixed-Effect-Modellen auf Basis von DGLen erlaubt, mit deren Hilfe sich
Prozesse auf Einzelzell-Ebene erklären lassen. Jedoch bringt dieser Modellierungsansatz seine
ganz eigenen neuen Probleme mit sich. Diese Entwicklungen machen es notwendig, die vorhan-
denen mathematischen Methoden zur Parameterschätzung und Unsicherheitsanalyse beständig
zu verbessern und neue Methoden zu entwickeln.

Im Rahmen dieser Doktorarbeit übertragen wir das Prinzip der Mini-Batch Optimierung vom
Trainieren neuronaler Netze auf DGL-Modelle und passen es dem neuen Anwendungsbereich
entsprechend an. Dies führt – für großskalige DGL-Modelle, die auf großen Datensätzen trainiert
werden müssen – zur erheblichen Beschleunigung der Parameterschätzung und liefert gleichzeitige
bessere Schätzwerte für die Parameter als bisher verfügbare Methoden. Danach zeigen wir, dass
Ensemble-Methoden, die auf diesen Parameterschätzwerten beruhen, für diesen Modelltypus zu
bessere Vorhersagen führen als die für DGL-Modelle üblicherweise verwendeten Punktschätzer.

Anschließend entwickeln wir Methoden zur adjungierten Sensitivitätsanalyse zweiter Ordnung
für DGL-Modelle mit zeitlich diskreten Messdaten. Diese ermöglichen eine deutlich verkürzte
Rechenzeit und verlässlichere Resultate bei Parameterschätzung und Unsicherheitsanalyse. Ins-
besondere die Unsicherheitsanalyse durch Profilberechnungen wird dadurch wesentlich effizienter
und zuverlässiger.

Schließlich widmen wir uns Mixed-Effect-Modellen von biologischen Prozessen mit DGLen
auf Einzelzell-Ebene. Wir führen ein statistisches Modell ein, dass das Zusammenführen von
Einzelzell-Daten und nur die Populationsmittel betreffenden Messdaten erlaubt. Dann präsen-
tieren wir einen neuen Ansatz zur Parametrisierung von Kovarianzmatrizen, welche für Mixed-
Effect-Modelle notwendig sind, der deren Parameterschätzung erleichtert. Daraufhin wenden
wir die eingeführten Techniken an, um eine Modell über das Überleben unter Erythropoetin-
Stimulation von Erythroblasten auf Einzelzell-Ebene zu entwickeln.

Die in dieser Doktorarbeit vorgestellten Beiträge ermöglichen die effiziente und zuverälssige
Parameterschätzung und Unsicherheitsanalyse mit besserer Skalierbarkeit zu größeren Modellen
als bisher verfügbare Methoden. Dadurch können größere Modelle, basierend auf größeren Daten-
sätzen, oder komplexere Modelle, gegebenenfalls basierend auf Einzelzell- und Populationsmit-
teldaten, erstellt und ihre Parameter geschätzt werden. Wir hoffen, dass uns diese Beiträge das
Verständnis komplexer biologische Systeme und ihrer Zusammenhänge in bisher nicht gekannter
Weise ermöglichen werden.
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Chapter 1

Introduction

Mathematics is a part of physics. Physics is an experimental science, a part of natural
science. Mathematics is the part of physics where experiments are cheap.

V. I. Arnold

Although the house of mathematics is constructed from axioms and founded on the basement
of logic, it owes many of its walls and rooms to the influence from other sciences. It was the
interest to understand the movement of objects, which drove Newton to develop his form of
differential calculus and it was the development of quantum mechanics, which inspired von
Neumann to develop wide parts of what is now known as functional analysis. However, physics
was not the only driving force for developing new mathematics: Economics inspired the field
of financial mathematics, including the famous Black-Scholes equation, engineering motivated
optimization theory, and computer science was strongly involved in the development of scientific
computing and numerics. In this way, mathematics never existed isolated from other (natural)
sciences, but always as a part of those.

Since the second half of the 20th century, the interaction of mathematics with biology is
on the rise: Our understanding of cellular biology has improved dramatically, mainly for two
reasons: The development of new experimental techniques and the upcoming of quantitative
computational (and thus mathematical) modeling. Mathematical models allow to develop and
test hypotheses about the functioning of mechanisms within cells, which are still impossible to as-
sess experimentally. Therefore, modeling allows to “make measurable what can’t be measured“1,
and the – comparably young – science employing it to explain the functioning of complex bio-
logical systems has been termed systems biology [Ideker et al., 2001, Kitano, 2002, Klipp et al.,
2005].

1.1 Ordinary differential equation models of cellular processes

Mathematical models, especially mechanistic models which aim at a causal description of the
underlying process by using, e.g., dynamical systems, have been playing a particular role as tool
for understanding biological processes. Within the field of mechanistic modeling, ordinary differ-
ential equation (ODE) models are among the most popular approaches [Klipp et al., 2005]. For
many applications, they provide a reasonable tradeoff between a detailed interpretable descrip-
tion of the studied process and computational tractability. Starting with the neuron model by

1Quote attributed to Galileo Galilei

1



2 CHAPTER 1. INTRODUCTION

Hodgkin and Huxley [Hodgkin and Huxley, 1952], ODE models have allowed the explanation of
many processes, such as cellular signal transduction through different types of signaling cascades
[Kearns and Hoffmann, 2009, Kholodenko, 2007, Swameye et al., 2003], dynamics of receptor lev-
els [Becker et al., 2010, Hass et al., 2017], cell cycle [Lloyd, 2013, Münzner et al., 2019], apoptosis
[Spencer and Sorger, 2011], metabolism [Khodayari and Maranas, 2016, Smallbone and Mendes,
2013] and gene regulation [Kühn et al., 2009].

Parameter inference for ODE models

The detailed description of biological processes with ODE models comes at a price: It requires
quantities which can not be measured directly, such as reaction rate constants or concentrations of
experimentally inaccessible biochemical species. These quantities have to be modeled as unknown
parameters and inferred from measurement data, which is a computationally demanding process
[Raue et al., 2013b]. During the past decades, many mathematical and computational methods
have been established for successful model development [Funahashi et al., 2008, Mendes et al.,
2009], estimation of unknown parameters [Egea et al., 2007, Raue et al., 2013b] and quantification
of uncertainties of model parameters and predictions [Ballnus et al., 2017, Joshi et al., 2006,
Kreutz et al., 2013]. Many of these methods have been implemented in computational toolboxes
[Egea et al., 2014, Hoops et al., 2006, Raue et al., 2015], which are comparably easy to use and
allow for efficient model development, model visualization, parameter estimation, generation of
hypotheses, design of new experiments, predictions and uncertainty analysis.

Those methods and toolboxes have been applied with great success to improve our under-
standing of many processes [Adlung et al., 2017, Becker et al., 2010, Kholodenko, 2007]. However,
the large majority of these research projects focused on systems, which could be studied in rela-
tive isolation and which cover only a limited amount of biochemical species and reactions. These
limitations were due to the fact that studying more complex systems involving, e.g., pathway
crosstalk, is computationally extremely demanding. Furthermore, much more experimental data
would be needed to infer all the unknown parameters, which would be necessary to describe
such systems. However, collecting experimental data, which are comprehensive enough for a
satisfactory description of more complex systems, is costly and time consuming.

Recent developments

With the advent of cheaper and faster measurement techniques, such as next generation sequenc-
ing, and increasing availability of data storage, public databases with measurement data have
been established [Barretina et al., 2012, Cancer Genome Atlas Network, 2012, Li et al., 2017,
Yang et al., 2013]. At the same time, novel measurement approaches made it possible to study
biological processes in detail at single-cell level [Butler et al., 2018, Giesen et al., 2014, Herzen-
berg et al., 2006, Tsien, 1998]. Moreover, computing power of processors has increased and more
computing clusters offer computing services for research.

These developments have made it possible to pursue new ways in mathematical and computa-
tional modeling. Among these developments, some trends can be distinguished: First, larger and
more complex models are being developed, which try to capture the functioning of whole cells
[Karr et al., 2012, Münzner et al., 2019], explain pathway cross-talk in complex diseases [Fröh-
lich et al., 2018a, Hass et al., 2017, Korkut et al., 2015], or cover more biochemical species and
involved genes [Bouhaddou et al., 2018, Fröhlich et al., 2018a]. Second, approaches for single-cell
modeling are being developed (see Loos and Hasenauer [2019] for a review). They explain cell-to-
cell variability by either assuming cellular dynamics to be stochastic (sometimes termed intrisic
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noise), e.g., for species with low copy numbers, such as mRNA [Elowitz et al., 2002, Gillespie,
1992], or by assuming the cells themselves to be different (sometimes termed extrinsic noise),
e.g., by allowing model parameters to vary across cells [Karlsson et al., 2015, Llamosi et al.,
2016]. Also methods trying to combine intrinsic with extrinsic noise exist [Zechner et al., 2012],
approaches for accounting for different cell populations [Hasenauer et al., 2014], possibly combin-
ing the with intra-populational variability [Loos et al., 2018b], or methods which switch between
stochastic and deterministic dynamics, depending on the abundance of the corresponding species
[Hepp et al., 2015].

Those new developments also carry new challenges [Kapfer et al., 2019], and novel mathe-
matical and computational methods have been developed to cope with them (see Fröhlich et al.
[2019] for a summary): Employing methods such as adjoint sensitivity analysis [Fröhlich et al.,
2017a, Fröhlich et al., 2018a], highly parallelized toolboxes for parameter estimation [Penas et al.,
2015, Schmiester et al., 2019a], or exploiting the problem structure when dealing with relative
data [Loos et al., 2018a, Schmiester et al., 2019a, Weber et al., 2011] have helped to reduce the
computational burden dramatically. Yet, many problems still persist: On one hand, especially
for large ODE models, large amounts of experimental data are required to constrain the model
parameters. If such large datasets consist of many different experimental conditions – which is
often the case – these conditions have to be simulated independently. Problematically, a high
number of experimental conditions dramatically increases the computational cost for parameter
estimation. For datasets from drug screens, this can mean thousands of ODE solves – for only
one simulation of the dataset [Fröhlich et al., 2018a]. On the other hand, it is unclear how
reliable standard modeling approaches, such as maximum likelihood estimation, generalize to
this new scale of ODE models, even if parameter estimation was successful, or whether more
Bayesian approaches might result in better model performance [Henriques et al., 2017], as only
few ODE models with thousands of unknown parameters are available so far and have been
studied. Furthermore, although large-scale models pose a particular challenge, by far not all
issues have been resolved for smaller models. For some examples (see, e.g., Hass et al. [2019]
for a collection of models), reliable parameter estimation is still hard and global uncertainty
analysis may be extremely challenging. Finally, in the younger field of ODE based single-cell
modeling, often even best practices, which already exist for standard ODE models [Raue et al.,
2013b], are still missing. In this domain, methodological developments are often motivated by
and tailored to specific applications. For example, in ODE based mixed-effect models, an addi-
tional class of model parameters, which capture the variability of the cell population, has to be
inferred. Mathematical methods for their description have been developed [Pinheiro, 1994], but
have never evaluated and compared for their applicability to ODE based mixed-effect models.

In all, a lot of methodological research still has to be done, until all problematic aspects
of ODE based modeling of biological systems are well understood. Once this is the case, new
possibilities will open up for understanding biological processes at a new level of detail.

Challenges in ODE modeling

In this thesis, we consider in particular the following challenges within the field of ODE modeling:

(i) The computational cost of parameter estimation scales with the number of experimental
conditions to be simulated. Since large models require more data and hence more experi-
ments, established methods for parameter estimation become computationally prohibitive,
if the dataset consists of thousands of experimental conditions.
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Figure 1.1: Applicability of mathematical methods for parameter estimation of ODE models to different
model sizes and complexities. The more insight a method yields, the higher its computational burden
tends to be. The general aim of this thesis is to push the boundaries of what is computationally feasible
by introducing novel methods and by improving existing ones.

(ii) Currently, it is assumed that large-scale models tend to be “overparametrized“ compared
to small-scale models. Due to the high computational effort, most methods for reliable
uncertainty analysis are not applicable for these models. Although a number of concepts
exists how to deal with overfitting or large model uncertainties, not much is known about
how effective they are for large-scale ODE models.

(iii) Already for medium-scale models, reliable parameter estimation and uncertainty analysis
can be challenging for certain application examples. More robust algorithms exist (which
rely on higher order derivatives), but those scale poorly with model size.

(iv) When employing mixed-effect modeling to explain data of population averages and single-
cell data, it is desirable to integrate heterogeneous data types, as the model should capture
the average behavior as well as the behavior of the single cells in the population. A statistical
framework which allows the combination of these different data types is currently missing.

(v) When performing parameter estimation for mixed-effect models, covariance structures of
model parameters have to be inferred. As the parameter estimation of mixed-effect ODE
models is computationally challenging, efficient and robust computational methods are
required. However, existing inference methods for parameter estimation have mostly been
used to infer the trivial case of diagonal covariance matrices, which neglect the dependencies
between cell-to-cell variable model parameters.

1.2 Contribution of this thesis

The overall aim of all contributions of this thesis is to improve existing computational methods
and to develop novel ones to facilitate parameter optimization and uncertainty analysis for larger
models on larger datasets (Figure 1.1). More precisely, the above mentioned challenges are
addressed by contributions in this thesis in the following way:

(a) Mini-batch optimization is transferred from the field of deep learning and adapted to param-
eter estimation of ODE models to overcome the linear scaling of computation time with the
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number of simulation conditions, and therefore, challenge (i) is addressed. As this reduces
the total computation time substantially, free resources can be used to better explore the
parameter space, which enables the use of ensemble models. Those are then compared to the
more commonly employed point estimates for creating model predictions, which addresses
challenge (ii).

(b) Second order adjoint sensitivity analysis is developed for ODE models with time-discrete mea-
surements in order to efficiently compute second order derivatives of the objective function.
Subsequently, the positive impact of these derivatives on optimization and profile calculation
is demonstrated, therefore addressing challenge (iii).

(c) Single-cell data explaining cell populations is integrated with bulk data of population aver-
ages in a combined statistical framework. The formulation of a common likelihood function
allows parameter estimation for mixed-effect ODE models based on these heterogenous data
types, such that the model can describe the average population behavior as well as the
observed cell-to-cell variability. This addresses challenge (iv).

(d) A Lie-theoretic approach for efficient parametrization of symmetric positive definite (co-
variance) matrices, which have to be inferred in mixed-effect modeling, is developed. This
enables efficient parameter estimation of mixed-effect models with full and block-diagonal
covariance matrices and hence addresses challenge (v).

These contributions are part of manuscripts, which have either already been published in
peer-reviewed journals or are currently under review at such. Therefore, parts of this thesis are
similar or even identical to the following publications:

• Stapor, P.∗, Weindl, D.∗, Ballnus, B., Hug, S., Loos, C., Fiedler, A., Krause, S., Hross,
S., Fröhlich, F., Hasenauer, J. (2018). PESTO: Parameter EStimation TOolbox. Bioinfor-
matics, 34(4)

• Stapor, P., Fröhlich, F., Hasenauer, J. (2018). Optimization and profile calculation of
ODE models using second order adjoint sensitivity analysis. Bioinformatics, 34(13)

• Stapor, P., Schmiester, L., Wierling, C., Lange, B., Weindl, D., Hasenauer, J. (2019).
Mini-batch optimization enables training of ODE models on large-scale datasets. bioRxiv,
10.1101/859884, Under review

• Stapor, P.∗, Adlung, L.∗, Tönsing, C.∗, Schmiester, L., Schwarzmüller, L., Wang, D.,
Timmer, J., Klingmüller, U., Hasenauer, J., Schilling, M. (2019). Cell-to-cell variability in
JAK2/STAT5 pathway components and cytoplasmic volumes define survival threshold in
erythroid progenitor cells. bioRxiv, 10.1101/866871, Under review

Beyond these publications, I have contributed to the following manuscripts, some of which
have already been published in peer-reviewed journals:

• Stapor, P.∗, Kapfer, E.∗, Hasenauer, J. (2019). Challenges in the calibration of large-scale
ordinary differential equation models. IFAC-PapersOnLine, 52(26)

• Schälte, Y., Stapor, P., Hasenauer, J. (2018). Evaluation of Derivative-Free Optimizers
for Parameter Estimation in Systems Biology. IFAC-PapersOnLine, 51(19)

• Wang, D., Stapor, P., Hasenauer, J. (2019). Dirac mixture distributions for the approxi-
mation of mixed effects models. IFAC-PapersOnLine, 52(26)
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• Lines, G., Paszkowski, L., Schmiester, L., Weindl, D., Stapor, P., Hasenauer, J. (2019).
Efficient Computation of Steady States in Large-Scale ODE Models of Biochemical Reac-
tion Networks. IFAC-PapersOnLine, 52(26)

• Schmiester, L.∗, Schälte, Y.∗, Bergmann, F. T., Camba, T., Dudkin, E., Egert, J., Fröhlich,
F., Fuhrmann, L., Hauber, A. L., Kemmer, S., Lakrisenko, P., Loos, C., Merkt, S., Pathi-
rana, D., Raimundez, E., Refisch, L., Rosenblatt, M., Stapor, P., Städter, P., Wang, D.,
Wieland, F.-G., Banga, J. R., Timmer, J., Villaverde, A. F., Sahle, S., Kreutz, C., Hase-
nauer, J., Weindl, D. (2020). PEtab – interoperable specification of parameter estimation
problems in systems biology. arXiv, 2004.01154v2 [q-bio.QM], Under review

• Staedter, P.∗, Schälte, Y.∗, Schmiester, L.∗, Hasenauer, J., Stapor, P. (2020). Assessment
of ODE solver performance for biological processes, in preparation

Besides the mathematical contributions to these articles, I have been involved in the devel-
opment and maintenance of the following computational toolboxes, which have been used in
multiple peer-reviewed publications:

• PESTO, Parameter EStimation TOolbox : A toolbox for optimization and uncertainty
quantification based on profile likelihood computation and Markov chain Monte Carlo
sampling methods with customizable visualization features, written in MATLAB.

• AMICI, Advanced Multi-language Interface to CVODES and IDAS : An ODE-solver tool-
box, which interfaces the high-performing ODE and DAE solvers CVODES and IDAS from
the SUNDIALS package written in C. AMICI can be interfaced from different programming
languages (C++, Python, and MATLAB), has additional functionality for computing like-
lihood functions and first and second order derivatives thereof using forward, adjoint and
steady-state sensitivity analysis, and is implemented in C++, Python, and MATLAB.

• parPE, parallel Parameter Estimation framework : An optimization toolbox for highly
parallelized evaluation of likelihood functions and their gradients based on AMICI, allowing
for mini-batch and full-batch optimization methods and designed for high performance
infrastructures, written in C++ and Python.

• MEMOIR, Mixed-Effect MOdel InfeRence: A toolbox computing symbolic expressions
for non-linear mixed effect modeling based on multiple experiments and allowing the inte-
gration of heterogeneous data types, which can be interfaced with AMICI for mixed-effect
models which rely on ODEs and with PESTO for parameter estimation. MEMOIR is
written in MATLAB.

• SPToolbox, Sigma Point Toolbox: Allows the parametrization of covariance matrices and
the simulation and approximation of cell populations by different sigma point methods or
Monte Carlo sampling, written in MATLAB.

• PEtab, Parameter Estimation tabular formulation: A model and data format relying on
SBML models and tsv spreadsheets, which allows a standardized formulation of parameter
estimation problems. PEtab maps between experimental conditions of measured data
and simulation conditions for efficient parameter estimation, with additional visualization
functionalities.
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1.3 Outline of this thesis

The remainder of this thesis is structured as follows: In Chapter 2, the background knowledge
and notation for ODE based models of biological systems is introduced, first for the cases of
general ODE models, then for mixed-effect models, which capture dynamics at the single-cell
level. Then, existing methods for parameter optimization and uncertainty analysis are described.

Chapters 3 to 5 are based on published manuscripts and present the actual contributions of
this thesis. Each of these chapters starts with an introductory section, motivating the contri-
bution, presenting the corresponding research question, and giving background information on
the previous state-of-the-art in the research field. In a second section, the new methodology and
its implementation are described in detail and applications are presented. In a last section, the
impact of the contribution is discussed.

In Chapter 3, mini-batch optimization of ODE models based on large-scale datasets is pre-
sented, corresponding to contribution (a). Chapter 4 presents second order adjoint sensitivity
analysis as method to improve parameter estimation and uncertainty analysis, therefore relating
to contribution (b). In Chapter 5, methods for parameter estimation of mixed-effect models
based on ODEs are presented, which allows to combine single-cell data with population average
data, corresponding to contribution (c), and a Lie-theoretic approach to parametrize covariance
matrices is presented, which relates to contribution (d).

This thesis concludes with Chapter 6, in which a summary of the thesis’ contribution is given
and an outlook on possible next steps in the research of ODE models is presented.
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Chapter 2

Background

In this chapter, we introduce the terminology and notation for ODE models, describe the meth-
ods, on which this thesis is founded, and present the most important challenges, which were the
scientific motivation for this thesis, in detail. This chapter is based on my work in the following
publications and hence, some parts may be similar or even identical to them:

• Stapor, P., Fröhlich, F., Hasenauer, J. (2018). Optimization and profile calculation of
ODE models using second order adjoint sensitivity analysis. Bioinformatics, 34(13)

• Stapor, P., Schmiester, L., Wierling, C., Lange, B., Weindl, D., Hasenauer, J. (2019).
Mini-batch optimization enables training of ODE models on large-scale datasets. bioRxiv,
10.1101/859884, Under review

• Stapor, P.∗, Adlung, L.∗, Tönsing, C.∗, Schmiester, L., Schwarzmüller, L., Wang, D.,
Timmer, J., Klingmüller, U., Hasenauer, J., Schilling, M. (2019). Cell-to-cell variability in
JAK2/STAT5 pathway components and cytoplasmic volumes define survival threshold in
erythroid progenitor cells. bioRxiv, 10.1101/866871, Under review

2.1 Modeling of cellular processes

2.1.1 Modeling with ordinary differential equations (ODEs)

Ordinary differential equations (ODEs) are a common approach to model the time-evolution
of bio-chemical species in living cells. The underlying assumptions when using ODE models
are firstly, that spatial inhomogeneities can be neglected within one cellular compartment and
secondly, that all species are sufficiently abundant that the process is governed by deterministic
dynamics. The opposite would be either models based on partial differential equations, which
incorporate spatial information, or systems in which species have low copy numbers and which
are hence governed by stochastic dynamics, respectively [Klipp et al., 2005].

The time evolution of the system

We denote the time as t ∈ [0, T ] ⊂ R and the vector of state variables as x(t) ∈ Rnx . The
state vector describes the concentration of nx ∈ N biochemical species, which are, for example,
(phospho-)proteins, ligands, receptor or mRNA levels, or, in some cases, volumes of cell com-
partments. The time evolution of x is given by a vector field f , which depends on a vector of

9
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unknown parameters θ ∈ Rnθ and on a vector of known input parameters u ∈ Rnu :

d

dt
x(t, θ, u) = f(x(t, θ, u), θ, u), with x(0, θ, u) = x0(θ, u) (2.1)

Parameters are typically reaction rates constants, shuttling rates between compartments, or
initial concentrations of proteins, which cannot be measured directly and have to be estimated.
As those quantities should always be positive, it is common to parametrize them logarithmically
and exponentiate those values, which ensures their positivity. Input parameters are usually
external stimuli such as treatments with drugs or other ligands, measured initial concentrations
of certain species, mRNA expression levels or genetic profiles. Parameters and input parameters
are assumed to stay constant over time.

In the applications of this thesis, the right hand side f is Lipschitz-continuous (in most
applications even smooth) on the time interval of interest [0, T ] and for xi ≥ 0, with i = 1, . . . , nx,
such that the Picard-Lindelöf theorem guarantees the existence and uniqueness of a solution x(t)

at least in a neighborhood of the initial condition. Depending on f , θ, and u, and since the
right-hand side is typically not linearly bounded, this solution does not have to exist on the
whole interval [0, T ]. In general however, there is no solution in closed form [Raue et al., 2013b].
Yet, if the studied biological system is modeled appropriately and θ is in a biologically plausible
domain Ω of the parameter space Rnθ , a solution should exist for the whole interval [0, T ]:
Biological systems usually show either oscillatory dynamics or evolve towards a steady-state,
in rare cases they may show chaotic behavior. Hence, if an ODE describes the dynamics of a
biological system with sufficient accuracy, its solution should have no finite time singularities in
[0, T ] (such as possible for, e.g., Riccati equations), as this has no analogy in biology.

The lack of analytical solutions makes it necessary to use numerical methods, such as Runge-
Kutta, Adams-Moulton, or BDF schemes [Maiwald and Timmer, 2008, Mendes et al., 2009, Raue
et al., 2013b]. Depending on the equation, the employed ODE solver, and its settings, numerical
integration of Equation 2.1 may fail, which is a common problem when using ODE models of
biological process, in particular during parameter estimation [Chung et al., 2017b, Raue et al.,
2013b].

Measurement data and observation functions

A frequent aim of ODE models is to describe a vector of measurable quantities y(t) ∈ Rny ,
which we will call observables. In most cases, it is impossible to measure state variables x
directly, as many measurement techniques only allow an assessment on a relative scale (e.g.,
quantitative polymerase chain reaction, qPCR: Gibson et al. [1996]), maybe with an additional
offset (e.g., immunoblotting Renart et al. [1979]), on a (bi-)exponential scale (e.g., flow cytometry:
Herzenberg et al. [2006]), or as sums of certain state-variables (e.g., if an antibody binds to a
protein, independent of its phosphorylation state, see e.g., Bachmann et al. [2011]). For this
reason, we introduce observation functions, henceforth denoted by h [Raue et al., 2013b]:

y(t, θ, u) = h(x(t, θ, u), θ, u) (2.2)

Observable functions (or "observables", for short) can be matched to experimental data D,
collected at timepoints tj , j = 1, . . . , nt or at steady-state, if a steady-state is observed in the
studied system. In this case, we denote the steady-state as:

x∗(θ, u) = lim
t→∞

x(t, θ, u) (2.3)
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The steady-state can either be computed directly by root-finding methods, such as Newton’s
method, or by integrating the ODE until the norm of the right hand side undergoes a previously
defined threshold γ > 0 at some late timepoint t∗ [Mendes et al., 2009]. This grounds on the
assumption:∥∥∥∥dxdt (t∗, θ, u)

∥∥∥∥ < γ =⇒ ∀t>t∗ : ‖x(t, θ, u)− x∗(θ, u)‖ < ‖x(t∗, θ, u)− x∗(θ, u)‖ (2.4)

Often, measured data is available for different perturbations of the system: The system can
be treated with different drugs at different doses and knockouts or over-expressions of certain
genes can be induced. Such perturbations are usually captured by different vectors of input
parameters uk, where k denotes the k-th of ne experimental conditions [Raue et al., 2013b]. As
u influences the dynamics of the system, the time evolution differs for distinct experimental
conditions. Hence, to simulate the whole dataset once, ne different initial value problems have
to be solved [Raue et al., 2013b]. The whole dataset is then given as:

D = {ȳkij}k=1,...,ne
i=1,...,nky
j=1,...,nt

(2.5)

In the following, i will always be used to enumerate the entries of the observable vector, j
will be used for the different measurement timepoints, and k will always index the experimental
condition. This indexing scheme will be maintained throughout this thesis.

Single-cell data and mixed-effect modeling

If single-cell data is collected in order to gain particular insights, a mathematical model should
reflect this additional dimension of the data. Depending on the modeled system and the sci-
entific question, many different approaches exist, which attempt to reflect various additional
biological aspects, such as heterogeneity in cellular response upon treatment within a cell popu-
lation [Spencer et al., 2009], the existence of subpopulation structures within a cell population
[Hasenauer et al., 2014], or the differentiation process of single cells [Fischer et al., 2019]. A
common approach which can be nicely combined with ODE modeling are mixed-effect models
(MEMs) [Karlsson et al., 2015, Loos and Hasenauer, 2019]. The approach of ODE MEMs uses
deterministic dynamics, assuming high copy numbers of all involved biochemical species. Con-
ceptually, this captures cell-to-cell variability which arises from cells having different properties,
e.g., different protein abundances or cell or compartment sizes [Spencer et al., 2009].

Mathematically, a MEM allows different parameter vectors for different cells by using a
statistical model for the cell population. An in-silico cell population (reflected by a set of different
parameter vectors) is generated according to the MEM and then propagated through the ODE
[Tornoe et al., 2004]. As the ODE provides a nonlinear map from parameters to model outputs,
this yields a nonlinear mixed-effect model (NLMEM). The parameter vector for the `-th cell (or,
more generally, the `-th individual) is denoted as φ` and given by:

φ` = Fβ +Rb` (2.6)

Here, F and R are called the design matrices for fixed and random effects, β ∈ Rnβ is the vector
of so called fixed effects (usually a parameter set describing the population mean), b` ∈ Rnb
is the vector of random effects for the `-th individual, which captures the deviations of the
`-th individual from the population mean. The fixed effects β influence the parameters of all
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individuals, while the random effects b` are specific to a single individual. We will assume
that the random effects, which are often parametrized logarithmically, follow a multivariate
normal distribution with mean 0 and covariance matrix Σ, b` ∼ N (0,Σ), which is motivated
by biological findings [Fröhlich et al., 2018b]. The covariance matrix Σ is parameterized by a
vector δ, yielding the parameter vector θ = (β, δ), which describes the dynamics of the whole
population. Hence, when compared to a classical population average model as discussed before,
in which only θ = β has to be inferred, the MEM approach extends the parameter estimation
problem by the parameters of the population distribution which are grouped in δ.

The concept of NLMEMs (or sometimes called NONMEMs) is widely used in pharmacoki-
netics and pharmacodynamics (see, e.g., [Melin et al., 2020] for a recent application or [Sheiner
and Beal, 1983] for an early method review) to account for differences between individuals in
studies. In systems biology, most publications which use the term NLMEM work with single-cell
time-lapse data [Fröhlich et al., 2018b, Karlsson et al., 2015, Llamosi et al., 2016], which is often
measured by single-cell microscopy. Yet, also other approaches which are employed for analyzing
single-cell snapshot data, collected by flow or mass cytometry, effectively use NLMEMs as well
[Loos et al., 2018b]. However, the problem in this case is that cells from different time points in
a time series of snapshot data are not identical and cannot be compared directly. Hence, only
the shape of the distribution of single-cell observables can be used to infer the distribution pa-
rameters in δ. In general, this is less informative than fitting single-cell trajectories to single-cell
time-lapse data, but can still yield important insights into cellular processes. However, concep-
tually all the mentioned data types – population average data, single-cell snapshot data, and
single-cell time-lapse data – could be combined when using an ODE MEM (Figure 2.1).

When employing an ODE MEM with a population of nc individuals and a dataset with ne
experimental conditions, ne · nc trajectories of state variables must be integrated, i.e., ne · nc
initial value problems have to be solved. The time evolution of each of those is given by

x`,k(t) = x(t, φ`, uk) =

t∫
0

f(x(τ, φ`, uk), φ`, uk)dτ with x(0)`,k = x0(φ`, uk) (2.7)

for a random effect vector b`, where f is again the vector field of the underlying ODE model.
Denoting the observation functions for the distinct individuals by h̃ yields observable trajectories
ỹ:

ỹ`,k(t) = h̃(x`,k(t), φ`, uk) (2.8)

From those, the observation functions h at the population level can be computed, which can be,
e.g., statistical moments or percentiles:

y(t, θ, uk) = h(Ỹ k(t), θ, uk), with Ỹ k(t) = (ỹ1,k(t), . . . , ỹnc,k(t)) (2.9)

2.1.2 Statistical inference techniques

Noise models and likelihood functions

Observable functions describe measurement data and hence link them to a computational model.
But even if a model reflected the biological process perfectly, model output and measured data
would not coincide exactly, as measurements are always noise-corrupted. For this reason, we have
to construct a noise model for the measured data. In most cases, a time-series of a measured
observable is assumed to have noise terms which are independent, identically distributed and
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Figure 2.1: Different types of measurement data and simulations, which would be desirable to combine
for parameter estimation in mechanistic single-cell modeling. A Exemplary time-course of population
average data (grey) and corresponding simulation from ODE model (blue). B Exemplary time-course
of single-cell snapshot data (grey histograms) and corresponding simulation of population mean (solid
line) and standard deviations (dashed lines) from an ODE MEM (blue). C Exemplary time-course of
single-cell time-lapse data (one grey line per measured cell) and summarized simulations from an ODE
MEM (blue) depicting the simulated population mean (solid line) and simulated standard deviations
(dashed lines).

modeled as multiplicative or additive random variables [Raue et al., 2013b]. Although other
approaches have shown to be beneficial if, e.g., the dataset contains outliers [Maier et al., 2017]
or correlated noise [Sommerlade et al., 2015], the most common approach is an i.i.d. additive
Gaussian noise model [Raue et al., 2013b]:

ȳkij = yi(tj , θ, u
k) + εkij , with ε ∼ N

(
0,
(
σkij

)2
)

(2.10)

If the variance of the noise model is unknown, it can be modeled with additional parameters,
yielding σkij = σkij(θ). Such a statistical model allows the computation of the likelihood of a
measurement value yi(tj , θ, uk) given a parameter vector θ. Exploiting the assumed independence
of the measurement noise terms, we get:

L(D | θ) =

ne∏
k=1

nky∏
i=1

nt∏
j=1

1√
2πσkij(θ)

exp

−1

2

(
ȳkij − yi(tj , θ, uk)

σkij(θ)

)2
 (2.11)

Maximum likelihood estimation

The statistical model makes it possible to fit the unknown model parameters θ to the measure-
ment data by maximizing the likelihood L(D | θ). However, it is more common to work with the
negative logarithm of the likelihood, as firstly, most optimization algorithms are implemented as
minimization algorithms and secondly, the logarithm of the likelihood tends to be more convex
and is thirdly also numerically better tractable [Raue et al., 2013b]. Working with the already
discussed logarithms of the model parameters increases the numerical tractability further [Hass
et al., 2019]. This yields the negative log-likelihood as objective or cost function for an optimiza-
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tion problem:

Jnllh(θ) = − log (L(D | θ)) =
1

2

ne∑
k=1

nky∑
i=1

nt∑
j=1

( ȳkij − yi(tj , θ, uk)
σkij(θ)

)2

+ log
(

2π
(
σkij(θ)

)2)
(2.12)

In parameter estimation, a typical aim is to first find the global minimizer of Jnllh, which is
the maximum likelihood estimator θMLE :

θMLE = argminθ∈Ω Jnllh(θ) (2.13)

Minimizing J is equivalent to optimizing the quality of the fit of the model to the data. For
an additive Gaussian noise with known measurement noise (i.e., σkij(θ) = σkij), finding θ

MLE is
moreover equivalent to employing a weighted least squares algorithm.

When dealing with ODE MEMs, the likelihood needs to be formulated differently. As, de-
pending on the data and on the modeling approach, different likelihood formulations exist, we
refer to Chapter 5 for the corresponding equations.

Parameter priors and maximum a posteriori estimation

During parameter estimation, the parameter vector θ is restricted to a region Ω ∈ Rnθ in param-
eter space, which is assumed to be biologically plausible. This type of restriction is often called
box constraint, as Ω usually has the shape of a bounded box. In some cases, prior knowledge
from biology beyond box constraints is available and in recent years, databases which collect this
information have been created and made publicly available [Schomburg et al., 2013, Wittig et al.,
2012]. They can be queried to find such parameter priors manually or in an automated fashion.
If possible, this additional knowledge should be exploited to facilitate parameter estimation.

Mathematically, priors can be incorporated via Bayes’ theorem:

p(θ |D) =
p(D | θ) · p(θ)

p(D)
⇒ p(θ |D) ∝ p(D | θ) · p(θ) (2.14)

Here, p(D | θ) denotes the likelihood of observing the dataset D given the parameter vector θ,
p(θ) describes the prior knowledge about the probability distribution of θ, and p(θ |D) is the
posterior distribution of θ given D, which accounts for the additional prior knowledge. The term
p(D) is called evidence and describes the probability to observe the dataset D. In most cases,
p(D) is hard to compute [Kramer et al., 2010], but as it is just a normalization constant, it can
be omitted for many purposes [Hasenauer, 2013].

Looking again at the logarithm, the evidence becomes an additive constant, which does not
affect the location of the local minima of the objective function. Furthermore, many parameter
inference algorithms are not affected by the evidence. As this is also the case for the methods,
which are studied and developed in this thesis, the evidence will be neglected in the remainder
of this work. However, the prior does affect the objective function:

Jnlp(θ) = − log (L(D | θ))− log (p(θ)) = Jnllh − log (p(θ)) (2.15)

When performing parameter estimation with prior information, the objective function is the
negative logarithm of the posterior Jnlp instead of the negative logarithm of the likelihood Jnllh.
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Thus, the globally optimal parameter vector is called the maximum a posteriori estimate θMAP :

θMAP = argminθ∈Ω Jnlp(θ) (2.16)

In many cases, only flat priors with compact support according to the box constraints are
available yielding p(D | θ) ∝ p(θ |D) for θ ∈ Ω. Then, likelihood and posterior only vary by a
constant factor – and their logarithms only by an additive constant. In these cases, the location
of the minima of the objective function remains unaltered by the prior. In this thesis, we will
always incorporate prior knowledge if available and hence always use the term posterior instead
of likelihood and denote the negative log-posterior as objective or cost function J = Jnlp.

2.1.3 Interpretation of model parameters

Exploiting Bayes’ theorem also opens up the possibility to interpret model parameters in a dif-
ferent way. The (negative log-) likelihood − log

(
L(D | θ)

)
suggests that there is a true (or at

least: best) parameter vector θtrue, which has to be found and that the measurement data D is
just one realization of a ground truth, based on θtrue [Raue et al., 2013a]. This point of view
can be chosen, unaffectedly of whether prior knowledge is incorporated or not and it is called
the frequentist perspective. However, the fact that the posterior describes a probability of θ
conditioned on the data D suggests that the observed data D is the fundamental property and
that the model parameters θ should be regarded as stochastic. This point of view is called the
Bayesian perspective. Both interpretations of θ and D have their advantages and disadvantages
and both suggest the use of different techniques during parameter estimation. Yet, both perspec-
tives can also profit from each other and which one is used should depend on the specific model,
its applications, and the scientific question behind [Raue et al., 2013a].

Point estimates - frequentist perspective

In the frequentist perspective, no prior knowledge is incorporated and finding θMLE is of major
importance [Fisher, 1922]. Hence, parameter estimation is particularly concerned with parameter
optimization. Once the optimal parameter vector is found, the next main goal is to determine its
uncertainty [Raue et al., 2013a]. This approach has some practical advantages: First, numerical
techniques for optimization are fairly well developed and thus, parameter optimization is still
a challenging but often feasible task. Second, having one best parameter vector allows a clear
biological interpretation of its values as biological quantities. Third, if only one parameter
vector is to be considered and not a multi-dimensional distribution of parameters, generating
model predictions is straightforward. Those advantages, especially the numerical tractability,
have allowed the rapid development of ODE models of many biological processes, which have
supported our understanding of biology.

But there are also disadvantages: First, model predictions are typically made based on θMLE

alone. This means that (possibly available) information about the shape of the objective function
landscape is not reflected within those predictions, although it is known that model simulations
based on θMLE don’t have to yield the most probable value for a model prediction [Maier et al.,
2020]. Second, assessing the uncertainties of model predictions is feasible, but not straight-
forward.

From a frequentist perspective, it is desirable to refine a model, until it has one sharp and
clear global optimum [Maiwald et al., 2016, Raue et al., 2010]. For such models, using the
best parameter vector as point estimate for model predictions may indeed be an appropriate
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approximation, as most of the probability mass is located around the global optimum. However,
this will generally not be the case for not exhaustively refined ODE models.

Bayesian approaches and ensemble modeling

The Bayesian perspective is less concerned with the optimal parameter vector, but more with
the whole parameter distribution. Moreover, the use of prior information is an essential feature
of Bayesian methods. By exploiting these two aspects, additional information about the studied
system can be incorporated into model predictions. Hence, the main goal is typically to gener-
ate a representative sample from the posterior distribution. Once this has been achieved, the
whole sample can be used for model predictions. This allows an easy interpretation of model
uncertainties.

For this reason, the Bayesian perspective may have the advantage of being more satisfactory
from the statistical point of view. On the other hand, it has the important disadvantage that
generating a representative sample of the whole posterior distribution is computationally sub-
stantially more challenging than finding the best parameter vector [Ballnus et al., 2017]. Even
though a large number of sampling algorithms exists, among which Markov-chain Monte Carlo
algorithms are probably the most prominent ones [Hastings, 1970, Metropolis et al., 1953], it is
notoriously hard to assess whether they really generated a representative sample, as there are
many possible pitfalls [Ballnus et al., 2017, Bayarri and Berger, 2004, Raue et al., 2013a].

Especially for models which have not been refined iteratively, Bayesian approaches may yield
different model predictions than frequentist ones [Raue et al., 2013a]. In principle, many sam-
pling strategies are guaranteed to create a representative sample if they are run sufficiently long.
However, it may be unclear what "sufficently long" means in practical applications. But even if it
is impossible to assess the whole posterior distribution, lightweight approximations such as using
an ensemble of parameter vectors can improve the reliability of model predictions compared to
simple point estimates [Henriques et al., 2017, Villaverde et al., 2019].

2.2 Parameter estimation

2.2.1 Parameter optimization

In most cases, parameter optimization is the first step to be taken if an ODE model has been
set up and measurement data has been linked to it via observable functions [Raue et al., 2013b].
Optimizing the parameters of an ODE model is often complicated, as the evaluation of the
objective function depends on the (numerical) solution of an ODE and is hence not available
with arbitrary precision [Klipp et al., 2005, Raue et al., 2013b]. The ODE makes the objective
function highly non-linear in the parameters, in general non-convex, often multi-modal, and
computationally costly to evaluate. For this reason, methods have been developed which relax the
ODE constraint: Multiple shooting algorithms divide the time-interval for ODE integration into
subintervals [Bock and Plitt, 1984, Peifer and Timmer, 2007], and continuous shooting relaxes
the ODE constraint by approximating the ODE solution by, e.g., splines functions [Chung et al.,
2017b]. However, these methods have their own challenges and this thesis will focus to the so-
called single-shooting approach, i.e., ODE integration over the whole time-interval, while using
implicit ODE solvers (e.g., the BDF scheme) to reduce failure of ODE integration.

From a mathematical point of view, finding the global optimum of a multi-modal, computa-
tionally expensive, and possibly high-dimensional objective function is problematic, as theoretical
results for this situation are rare. Yet, a number of fairly well-working methods and best practices
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has been established in recent years [Ballnus et al., 2017, Mendes et al., 2009, Raue et al., 2013b,
Villaverde et al., 2018], and hopefully, these rather empirical method studies will at some point
allow to better understand the mathematical properties of these parameter estimation problems.
In the following, we want to briefly review the most common methods for parameter optimization
and uncertainty quantification in the field of systems biology.

Global parameter optimization

For global optimization of biologically motivated ODE models, many approaches exist [Fröhlich
et al., 2019]. The simplest idea, called multi-start local optimization, is to start many randomly
initialized local optimizations [Raue et al., 2013b]. The results of these local searches can be
stored, sorted by the final objective function value, and visualized in waterfall plots, which can –
if the local optimization runs worked well – reveal the structure of the local optima of the objective
function. The best local optimum is then assumed to be the global optimum (Figure 2.2).

Besides multi-start local optimization, many other methods exist for global optimization of
ODE models: the most commonly used are genetic algorithms [Hansen and Ostermaier, 1996,
Mitchell, 1998], swarm-based methods [Kennedy, 2011, Vaz and Vicente, 2007], or simulated
annealing [Kirkpatrick et al., 1983]. Another, very popular method is scatter-search [Egea et al.,
2014, Penas et al., 2015], which is a hybrid approach between a genetic algorithm and multi-start
local optimization. It aims to combine the global exploration of a genetic algorithm with the
local exploitation of local optimization techniques.

For ODE models in systems biology, many studies have shown that methods which employ
sophisticated techniques for local optimization, tend to outperform other approaches for many
example models [Egea et al., 2014, Raue et al., 2013b, Schälte et al., 2018, Stapor et al., 2018b,
Villaverde et al., 2018]. For that matter, it seems to be important to exploit (accurate) deriva-
tive information of the objective function, as this substantially improves the quality of local
optimization [Raue et al., 2013b, Schälte et al., 2018, Villaverde et al., 2018]. Without the use of
accurate derivatives, which can be obtained via, e.g., sensitivity analysis, also multi-start local
optimization often fails to achieve satisfactory results [Schälte et al., 2018]. In this thesis, we will
follow the idea of multi-start optimization with (different) derivative-based local optimization
strategies for all optimization tasks.

Local parameter optimization

Many algorithms for local optimization exist, but most techniques are either based on least-
squares algorithms such as the Gauss-Newton-type methods, or on interior-point methods. Least-
squares approaches are often combined with trust-region techniques for step-size control [Coleman
and Li, 1996, Dennis et al., 1981]. Interior-point algorithms [Boyd and Vandenberghe, 2004]
typically compute descent directions by Newton’s method using either explicit second order
derivatives [Byrd et al., 2000], by quasi-Newton methods such as (L-)BFGS [Fletcher and Powell,
1963, Goldfarb, 1970, Nocedal, 1980] or SR1 techniques [Byrd et al., 1996] using first order
derivatives, or by different flavors of the conjugate gradient method [Andrei, 2009, Branch et al.,
1999, Nash, 1984]. They use either line-search methods [Wächter and Biegler, 2006] or again
trust-region approaches [Byrd et al., 2000, Coleman and Li, 1996] for step-size control. Besides
these approaches, also gradient-free local optimization methods exist, among which hill climbing
techniques [De La Maza and Yuret, 1994], iteratively updated (quadratic models) [Powell, 2009],
or simplex-based methods such as the Nelder-Mead algorithm [Nelder and Mead, 1965] are most
frequently used. However, these gradient-free approaches usually turn out inferior for biologically



18 CHAPTER 2. BACKGROUND

fin
al

 o
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

sorted multi start indices

waterfall plot
pa

ra
m

et
er

 2

parameter 1

objective function landscape

Figure 2.2: Multi-start local optimization. Left panel: Example of an objective function landscape
with two parameters. Randomized initial points are drawn and local optimization are started to find the
closest minimum. Right panel: Results of the sorted local optimizations visualized in a waterfall plot.
The best local optimum, which was found, is assumed to be the global optimum.

motivated ODE models [Schälte et al., 2018].

Computing derivative information

Currently, three approaches are commonly used to compute objective function derivatives of
ODE models, such as its gradient or its Hessian: finite difference schemes, forward sensitivity
analysis, and adjoint sensitivity analysis.

Finite differences approximate the slope of a tangent by the slope of a secant. Therefore, they
are straightforward to implement and can be used for derivative computation of any black-box
function. However, finite differences require the choice of a step-size, which strongly influences
the accuracy of the computed derivative. As the accuracy of especially the gradient is crucial
for local optimization techniques to work, finite differences should only be used as last resort if
more accurate methods are not available, or if a good step size can be fixed a priori [Raue et al.,
2013b, Schälte et al., 2018].

The second method, forward sensitivity analysis [Leis and Kramer, 1988, Raue et al., 2013b],
is a semi-analytical approach for gradient computation, and many state-of-the-art computational
toolboxes rely on it [Kaschek et al., 2019, Raue et al., 2015]. When differentiating Equation 2.12
with respect to θr, the gradient is obtained:

∂J

∂θr
= −

ne∑
k=1

nky∑
i=1

nt∑
j=1

(
ȳkij − hi(tj , uk)(

σkij
)2 syir (tj , u

k) +

((
ȳkij − hi(tj , uk)

)2(
σkij
)3 − 1

σkij

)
∂σkij
∂θr

)
(2.17)

in which syir denotes the sensitivity, i.e., the derivative, of observable yi with respect to parameter
θr. The observable sensitivities are calculated from the state sensitivities sxr :

syir (tj , u
k) =

dyi
dθr

(tj , u
k) = ∇xhi(tj , uk)sxr (tj , u

k) +
∂hi
∂θr

(tj , u
k) with sxr (tj , u

k) =
∂x

∂θr
(tj , u

k)

(2.18)
The state sensitivities need to be computed by integrating the corresponding ODE, which is
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obtained from differentiating Equation 2.1:

d

dt
sxr (t, uk) =

(
∇xf

(
x(t, uk), uk

))
sxr (t, uk) +

∂f

∂θr

(
x(t, uk), uk)

)
(2.19)

In forward sensitivities analysis, the error in the state sensitivities can be controlled together
with the error of the state variables when integrating both ODEs (2.1) and (2.19) together, which
allows accurate gradient computation [Hindmarsh et al., 2005]. However, forward sensitivities
analysis requires solving an ODE of the size nx(nθ + 1). Hence, the computational effort of this
method scales linearly in the number of parameters and in the number of state variables, which
is computationally demanding for large nx and nθ.

The third method, adjoint sensitivity analysis [Fröhlich et al., 2017a, Sengupta et al., 2014],
circumvents the integration of the state sensitivities. In this approach, only the original ODE
system (2.1) is integrated forward in time and subsequently an ODE for the so called adjoint
state p(t) is integrated backward in time, starting at tnt :

d

dt
p
(
t, x(t, uk), uk

)
= −

(
∇xfT

(
x(t, uk), uk

))
p(t, uk) (2.20)
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(
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2

(2.21)

For time-discrete data, p(t) has to be reinitialized at each measurement time-point:

p(tj , u
k) = lim

t→t+j
p(t, uk) +

nky∑
i=1

∇xhi
(
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2

. (2.22)

In the end, the gradient is given as:

∂J

∂θr
= −

ne∑
k=1

 nky∑
i=1

nt∑
j=1
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+
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t0

pT (t, uk)
∂f

∂θr
(t, uk)dt+ p(t0, u

k)T
∂x0

∂θr
(uk)

 (2.24)

To compute this expression, nθ one dimensional quadratures have to be calculated during back-
ward integration. In practice, these quadratures are typically computationally less expensive,
so the linear dependence of the computation time on nθ for adjoint sensitivity analysis can be
considered to be weak, as pointed out in [Özyurt and Barton, 2005]. This yields the gradient for
little more than the cost of integrating two differential equations of the size nx. For large-scale
ODE models with many parameters, this approach has shown to be the most efficient method
for gradient computation [Fröhlich et al., 2017a, Kapfer et al., 2019, Sengupta et al., 2014] and
subsequently for local optimization [Fröhlich et al., 2017a, Fröhlich et al., 2018a, Villaverde et al.,
2018].
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2.2.2 Reliability of parameter estimates: Uncertainty analysis

Independent of the paradigm for parametric modeling – frequentist or Bayesian – finding the
best parameter vector is not enough. An assessment of uncertainties is crucial to know how
trustworthy model predictions are. These uncertainties arise due to measurement noise on one
hand, and due to limited observability of the system on the other hand: Typically, only a fraction
of the system state is assessable through observations [Raue et al., 2010]. Beyond measurement
noise and limited observability of the system, also further sources of uncertainties exist, such as,
e.g., uncertainties in the model formulation, or biases in the measurement data. However, as
these phenomena need to be assessed by different, particular methods, we will neglect them in
the following.

Observability, identifiability and uncertainty

Observability is concerned with the question, whether the system state x can be inferred from
the observable quantities y. We call a system observable if x can be inferred from y [Chis et al.,
2011, Raue et al., 2009], or, more heuristically, if the system state could be inferred in the case
of time-continuous noise-free measurements. Observability is linked to the concept of structural
identifiability: A model is called structurally identifiable, if θ can be uniquely determined from
the model output y of all considered experimental conditions [Chis et al., 2011, Ligon et al.,
2018]. It is important to note that this definition explicitly takes into account experimental con-
ditions and observables but no measurement data. Hence, structural identifiability is concerned
with the question whether the model parameters can be determined in theory from the model
outputs in the case of time-continuous noise-free measurements [Raue et al., 2009, 2013a]. Going
beyond structural identifiability, practical identifiability is concerned with the question whether
the model parameters can be determined in practice from a specific dataset D. Practical identi-
fiability takes into account the data, the noise model, the prior knowldge (if applicable), and the
likelihood function, and it is defined by fixing a confidence threshold: If the confidence interval
of a certain parameter to the fixed confidence threshold does not intersect with the boundary
of the box Ω, the parameter is called practically identifiable. Otherwise, it is called practically
non-identifiable [Raue et al., 2009]. Identifiability can be more generally defined for any model
property. A model property can be any function of the model parameters:

g : Ω −→ R, θ 7−→ g(θ) (2.25)

It follows from these definitions that practical identifiability implies structural identifiability.
Ideally, structural identifiability analysis is carried out before performing parameter estimation,
as it may simplify the parameter optimization [Raue et al., 2013a]. But most computational
methods for structural identifiability analysis suffer from drawbacks such as applicability only to
special cases or limited scalability to larger systems. For this reason, it is sometimes disregarded
in practice and only practical identifiability analysis is carried out after parameter optimization
[Raue et al., 2009, 2013a].

Many methods for practical identifiability analysis exist which aim at different degrees of ac-
curacy [Ballnus et al., 2017, Joshi et al., 2006, Kreutz, 2018, Kreutz et al., 2013, Villaverde et al.,
2019]. Often, very accurate methods which try to give insights about the whole posterior distri-
bution in detail are computationally very expensive and thus not applied to large-scale models
[Ballnus et al., 2017, Kreutz et al., 2013]. In these cases, less accurate and more approximative
methods tend to be used [Kapfer et al., 2019, Kreutz, 2018, Villaverde et al., 2019]. Usually, each
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method has a different aim concerning the insight which it provides about the model at hand.
In this thesis, uncertainty analysis is used as a summarizing term for these different methods
of (practical) identifiability analysis, most of which also allow an answer about the structural
identifiability of the model parameters or properties.

Local approximations

If a normal or log-normal noise model is used, the the parameter distribution around the global
optimum can be approximated by a second order Taylor expansion:

J(θMAP + ∆θ) ≈ J(θMAP ) +
1

2
∆θTH(θMAP )∆θ (2.26)

This requires the Hessian H(θMAP ) of the objective function or an approximation thereof. From
this approximation of the objective function, the likelihood function L can be approximated as
normal distribution with mean θMAP and covariance matrix H−1. Based on this approximation,
confidence intervals can be drawn (symmetrically) around θMAP [Fisher, 1922].

In most cases, using this type of local approximation is computationally cheap and hence
also achievable for large-scale models [Kapfer et al., 2019]. However, the quality of these approx-
imations strongly depends on how well the local structure of J around θMAP corresponds to the
global structure of J [Joshi et al., 2006]. Hence, local approximations should only be used as last
resort, if more accurate methods are not applicable due to their (usually higher) computational
effort [Kapfer et al., 2019, Villaverde et al., 2019]. Nevertheless, they can give important first
hints about the most or least identifiable directions in parameter space.

Profile likelihood analysis

A more accurate but also computationally more expensive method consists in using profile like-
lihoods. Profile likelihood (or short profile) calculation, which has been introduced in a systems
biology context in [Raue et al., 2009], is a common method to assess these uncertainties [Kreutz
et al., 2013]. It has shown to be a robust method for uncertainty analysis also in the presence
of structural non-identifiabilities, a situation which poses problems to other methods [Fröhlich
et al., 2014, Raue et al., 2013a]. A profile is the maximum projection of the likelihood to a chosen
parameter axis: for θr, r ∈ {1, . . . , nθ}, the profile value at θr = c this given by

PLθr(c) = max
θr=c
θ∈Ω

LD(θ). (2.27)

Profiles have to be computed separately for each parameter θr, r = 1, . . . , nθ, which causes a
linear scaling of the computational effort with the number of parameters. Moreover, although
different methods for profile calculation exist, the calculation of a profile is computationally
substantially more expensive than computing a local approximation for all model parameters.
Although profiles can also be computed directly for model properties [Kreutz et al., 2012], which
is convenient if there are less model properties than parameters, using profiles remains compu-
tationally expensive. However, profiles provide substantial and more than local insight into the
model [Raue et al., 2013a].
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Parameter sampling

Following a different goal than local approximations and profiles, methods exist which aim to
generate a representative sample from the posterior distribution directly, but which are compu-
tational much more expensive [Ballnus et al., 2017, Hug et al., 2013]. Among these approaches,
rejection and importance sampling are the most simple methods, but suffer from conceptional
problems, such as low acceptance rates, for high dimensional parameter spaces. More commonly
used and more robust are Markov chain Monte Carlo (MCMC) methods [Neal, 2011]. Here,
the a Markov chain is constructed, which has the posterior distribution as stationary distribu-
tion. The first algorithm, which followed this idea, was the Metropolis-Hastings (MH) algorithm
[Hastings, 1970, Metropolis et al., 1953], which generates new sample points from a proposal
distribution and then accepts or rejects these points, with a probability which depends on their
objective function values. Adaptations of the MH algorithm have been proposed, which either
improve the proposal distribution [Haario et al., 2001, Lacki and Miasojedow, 2015], use multiple
Markov chains such as parallel tempering [Ballnus et al., 2018, Miasojedow et al., 2013, Vousden
et al., 2016] or parallel hierarchical sampling [Rigat and Mira, 2012], or inform the the process
with derivatives of the objective function, such as the Metropolis-adjusted Langevin algorithm
[Girolami and Calderhead, 2011] or Hamilton Monte Carlo sampling [Graham and Storkey, 2017,
Hoffman and Gelman, 2014].

If sufficiently many such Markov chains are run long enough, the sampling algorithm it will
eventually find the stationary distribution and hence generate a representative sample. Con-
vergence proofs for these methods exist, but in practice, it is hard to check whether the chain
has converged to its stationary distribution or is just stuck in a certain region of the parame-
ter space [Ballnus et al., 2017]. Hence, among the discussed methods for uncertainty analysis,
MCMC methods may yield the most possible insight into the posterior distribution, but are dif-
ficult to assess in terms of quality and computationally the most expensive among the discussed
approaches [Ballnus et al., 2017].

Given a sample from the posterior distribution, predictions and model properties can be
computed using all the parameter vectors from the sample [Raue et al., 2013a]. This allows to
incorporate information beyond using just the best parameter vector when studying the system.

Ensembles from parameter optimization

Recently, ensemble methods have been proposed, which try to approximate a sample from the pos-
terior distribution in a simplified way by a so called ensemble [Henriques et al., 2017, Villaverde
et al., 2019]. These approximations should not be confounded with actual samples, as they don’t
aim to accurately represent the posterior distribution. Such an ensemble can be taken from
the results of a multi-start local optimization and may take into account the history of each
local optimization run [Villaverde et al., 2019]. No guarantees exist that such an ensemble will
represent the parameter distribution accurately, but it provides upper bounds for the value of
the objective function (and hence lower bounds for the likelihood value) at different points in
parameter space. Given the fact that this information is available from parameter optimization
without additional computational effort, it can be a valuable resource especially for large-scale
models, for which more accurate approaches such as MCMC sampling or profile calculation are
computationally prohibitive [Villaverde et al., 2019].

Also in this case, the ensemble can be used similar to an MCMC sample to generate predic-
tions or compute model properties by taking into account all the parameter vectors from the
ensemble. In general, this yields different predictions than using only the best parameter vector
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and can hence be seen as more Bayesian approach of using a computational model.

Further methods

Beyond local approximations, profile likelihood, and sampling methods, other approaches have
been proposed to quantify parameter and prediction uncertainties of ODE models: For exam-
ple, bootstrapping [Joshi et al., 2006] is commonly used to assess parameter uncertainties and
also implemented in computational toolboxes [Balsa-Canto and Banga, 2011]. However, it has
been shown that bootstrapping can yield misleading results in the presence of structural non-
identifiabilities [Fröhlich et al., 2014].

For a Bayesian point of view, other sampling strategies than Markov chain Monte Carlo meth-
ods exist, such as sequential Monte Carlo methods [Doucet et al., 2000, Robert and Casella, 2004].
To gain additional insight about parameter and predictions uncertainties, sampling methods may
be combined with (global) sensitivity analysis [Eriksson et al., 2018]. However, methods based
on importance sampling/resampling suffer from low acceptance rates in high dimensions, which
prohibits their use for large-scale models. Furthermore, methods which assess the probability
density function of the state variables and the model parameters based on partial differential
equations (PDE) were developed for uncertainty quantification with controllable error [Weiße
and Huisinga, 2011, Weiße et al., 2010]. However, these methods require additional information
on the initial probability distribution of the state variables, which is often not available.

Most of the applications, on which this thesis focuses, are either high-dimensional or possess
strong non-identifiabilities, as the key goal of this thesis is the development of scalable and
efficient computational methods for large-scale models. Hence, we will mostly rely on ensemble
methods an, where possible, profile likelihood analysis in the following.
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Chapter 3

Mini-batch optimization for ODE
models

In the previous chapter, we have seen that ODE models need to be trained with measurement
data to yield meaningful predictions. Modern implementations of efficient algorithms have led to
a drastic reduction of computation time and made it possible to carry out parameter estimation
for many biological ODE models on usual laptops within minutes or hours [Mendes et al., 2009,
Raue et al., 2015]. However, this is typically the case for comparably small models, which
describe rather isolated signaling pathways or explain single features of a system [Becker et al.,
2010, Swameye et al., 2003].

In some cases, the study of certain biological systems can not be reduced to one or maybe
not even to a few signaling pathways, as, e.g., pathway crosstalk may be an essential feature, or
the study goal is to describe a whole system with all of its parts. Typical examples would be
understanding and predicting the effects of drugs and drug combinations in cancer cells [Fröhlich
et al., 2018a, Hass et al., 2017] or understanding the functioning of whole cells [Babtie and
Stumpf, 2017, Karr et al., 2012].

For these large-scale models, which result from studying such systems, even the most sophis-
ticated mathematical methods are sometimes insufficient to constrain the computational burden
to a tractable amount [Kapfer et al., 2019]. Offloading the work to a computing cluster and
massively parallelizing the computational effort allows to reduce the waiting time for the mod-
eler, but the accumulated computation time may still exceed ten or hundred thousand of hours
[Fröhlich et al., 2018a, Schmiester et al., 2019a]. This is especially the case, if not only the
ODE systems itself is large, but also many experimental conditions have to be simulated. As the
number of data points, which are necessary to constrain the model parameters, typically grows
with the size of the model [Aldridge et al., 2006], these two effects rarely come alone, but mostly
together.

On one hand, the computational effort for solving the underlying ODE of a parameter esti-
mation problem is expected to scale with the size of the ODE system, i.e., the number of state
variables. On the other hand, the computational effort scales linearly in the number of experi-
mental conditions. Methods for reducing the computation time for large-scale ODE systems have
been developed since a long time and implementations of ODE solvers are already extremely ef-
ficient [Kapfer et al., 2019, Maiwald and Timmer, 2008]. Hence, it is likely to be easier to reduce
the computation time by attempting to break the linear scaling in the number of experimental
conditions.

In other scientific fields, especially in the field of deep learning, which focuses on neural
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nets with hidden layers, data sets for model training may be vast [Goodfellow et al., 2016,
Janowczyk and Madabhushi, 2016]. For these neural nets, stochastic gradient descent or mini-
batch optimization methods are typically applied in parameter estimation [Abadi et al., 2015,
Goodfellow et al., 2016]. It was shown that these methods may indeed break the linear scaling
with the number of experimental conditions and hence reduce computation time substantially
[Wilson and Martinez, 2003]. However, none of the common implementations of these mini-batch
optimization techniques focuses on ODE models. A direct method transfer from deep learning
to ODE models is hence unlikely to work right away, as the typical optimization tasks in both
fields have their particular challenges.

In this chapter, we discuss a scalable parameter estimation method for large-scale datasets,
which is based on adaptations of mini-batch optimization to parameter estimation of ODE mod-
els. An implementation thereof into an efficient and massively parallelizable computational
framework, written in C++, was developed as part of this thesis. First, algorithmic adaptations
to make mini-batch optimization better suited for optimization problems based on ODE-models
are presented. Then, an optimization benchmark study on small- to medium-scale models with
artificially created data is carried out. Subsequently, the gained knowledge is transferred to a
large-scale ODE model, which is trained on a dataset of real measurements with 13,000 experi-
mental conditions, which is an unprecedented scale for ODE models [Fröhlich et al., 2018a]. We
show that our implementation reduces the computation time for model training by more than an
order of magnitude while providing better optimization results when compared to established ap-
proaches. In a last step, we use our results for comparing ensemble models with point estimates
for this large-scale model and show that ensemble models tend to outperform the classically used
point estimates in this case.

This chapter is based on my work in the following publication and hence parts of it may be
similar to it:

• Stapor, P., Schmiester, L., Wierling, C., Lange, B., Weindl, D., Hasenauer, J. (2019).
Mini-batch optimization enables training of ODE models on large-scale datasets. bioRxiv,
10.1101/859884, Under review

3.1 Background: Parameter estimation for large-scale models

Models in systems biology have been steadily growing and methods for parameter estimation
were constantly improved to keep up with problem sizes [Egea et al., 2007, Fröhlich et al., 2017a,
Raue et al., 2013b, Schmiester et al., 2019a]. Yet, with soaring availability of measurement data
through public databases [Barretina et al., 2012, Cancer Genome Atlas Network, 2012, Eduati
et al., 2017, Li et al., 2017] and increasing capacity of computing clusters, parameter estimation
of large-scale models has gained importance in recent years. For this reason, a brief overview
about state-of-the-art methods for parameter estimation of large-scale models is given in this
section.

3.1.1 Existing methods for large-scale ODE models and challenges

Available methods for parameter estimation of large-scale models

The first step for making parameter estimation tractable for large-scale models consists of using
an efficient optimization approach. So far, different studies have shown that employing multi-
start local or scatter search techniques with sophisticated local optimization techniques based
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Figure 3.1: Visualization of wall time vs. (accumulated) CPU time. All three diagrams show the same
CPU time, but different wall times. Wall time describes the waiting time for the user until a result is
obtained and can hence be reduced by distributing tasks onto multiple CPUs. CPU time is the total
computation time, which was used by all CPUs which were employed to obtain the result.

on accurately computed gradients are most efficient for ODE models [Raue et al., 2013b, Schälte
et al., 2018, Villaverde et al., 2018]. Computing the necessary derivatives of the objective function
is most efficiently carried out by adjoint sensitivity analysis [Fröhlich et al., 2017a, Sengupta et al.,
2014]. Although forward sensitivity analysis allows to construct an approximation to the Hessian
of the objective function, which is often beneficial in optimization, adjoint sensitivity analysis,
which does not yield a Hessian approximation by itself, outperforms forward sensitivity analysis
for sufficiently large models [Fröhlich et al., 2017a, Villaverde et al., 2018].

It has furthermore been shown that exploiting the structure of the objective function by
hierarchical optimization allows a substantial reduction of computation time [Loos et al., 2018a,
Weber et al., 2011]. This approach can also be combined with adjoint sensitivity analysis, which
ensures efficiency for all model sizes [Schmiester et al., 2019a].

Moreover, parallelized implementations allow either a distribution of the workload over multi-
starts or even over simulations of experimental conditions in objective function evaluations to
different degrees [Penas et al., 2015, Raue et al., 2015, Schmiester et al., 2019a]. In scatter search,
asynchronous updates of the reference set have shown to outperform synchronous updates and
allow a better exploitation of parallel computing structures [Penas et al., 2015]. Hence, parallel
implementations help to enable parameter estimation for large-scale models.

Challenges for large-scale models

Despite the presented advances of computational methods in recent years, the necessary compu-
tation time for parameter estimation remains a major bottleneck in computational and systems
biology [Kapfer et al., 2019, Kreutz, 2016, 2019], as the presented advances allowed the develop-
ment of larger and larger models.

Although parallelization allows to reduce the wall time, i.e., the waiting time for the mod-
eler until a parameter estimation result is obtained, it does not reduce the overall computation
time (Figure 3.1). Moreover, massive parallelization is only possible on large computing clusters,
which restricts the applicability of these methods to researchers which have access to such clus-
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ters. Moreover, as scientific computation toolboxes, which employ sophisticated parallelization
techniques, often require specific knowledge from the researcher, they tend to be less used in the
community. Beyond these limits, distributing computation time on multiple CPUs is only possi-
ble to a certain level, before either parallelization becomes inefficient due to the communication
overhead between the CPUs [Gustafson, 1988], or as certain algorithms can only be scheduled
in parallel to a limited degree [Amdahl, 1967]. As finally, high computation times lead to high
energy consumption, they also raise ecological questions. For these reasons, the aim should be
to reduce computation time rather than wall time.

Another problem consists of the fact that published large-scale models suffer from further
problems than just being time consuming to parametrize. Often, the parameters of these models
are poorly identifiable and the objective function is only weakly constrained in many directions
in parameter space [Fröhlich et al., 2018a, Kapfer et al., 2019]. In such a scenario, the probability
mass of the posterior distribution is not located sharply around a global optimum, but likely to
be spread over a large area in parameter space, as it can be shown for smaller models [Raue et al.,
2013a]. Unfortunately, the corresponding computational methods to assess rigorously whether
or not the probability mass is indeed spread, such as profile likelihood computation or MCMC
sampling, are not applicable to these models due to their high computational cost [Kapfer et al.,
2019]. Hence, firstly, optimization methods for large-scale models have to cope with many poorly
constrained directions in parameter space, which may hamper optimizer convergence [Maiwald
et al., 2016], and secondly, it is unclear how well the maximum a posteriori estimate describes
the dynamics of the modeled system, even if parameter estimation can be carried out [Maier
et al., 2020, Murphy, 2012]. In consequence, beyond reducing computation time, it is important
to also assess the appropriateness of the commonly used point estimates.

3.1.2 Mini-batch optimization methods for neural nets and challenges

Principle of mini-batching

In the field of deep learning, where also gradient-based local optimization methods are used [Le-
Cun et al., 2002, Martens, 2010, Rumelhart et al., 1986, Sutskever et al., 2013], model training
is often performed on vast datasets, requiring many independent model evaluations [Janowczyk
and Madabhushi, 2016, LeCun et al., 1998]. The problematic scaling behavior with respect to the
size of the dataset is addressed by mini-batch optimization [Goodfellow et al., 2016, Sutskever,
2013, Wilson and Martinez, 2003]: Classical (full-batch) optimization methods evaluate all con-
tributions to the objective function, i.e., simulate all experimental conditions, in each iteration of
parameter optimization (Figure 3.2 A). In contrast, mini-batch optimization methods evaluate
only the contribution to the objective function coming from a randomly chosen subset of ex-
perimental conditions, a mini-batch, in each step [Goodfellow et al., 2016, Robbins and Monroe,
1951]. Thus, the model is only evaluated on a fraction of the dataset per optimization step, which
reduces the computation time [Goodfellow et al., 2016, Wilson and Martinez, 2003] (Figure 3.2
B).

More precisely, let m be the current optimization step, then a mini-batch Sm ⊆ {1, . . . , ne}
is drawn at random, and estimates of the objective function and its gradient are computed only
based on Sm. These estimates of the objective function and its gradient in optimization step m
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Figure 3.2: Visualization of full-batch and mini-batch optimization. A Classical full-batch optimiza-
tion methods evaluate the contribution of all data points – and thus all experimental conditions – to
the objective function in each step. The computation time scales linearly with the number of indepen-
dently evaluable experimental conditions. B In mini-batch optimization, the independent experimental
conditions are randomly divided into disjoint subsets, the mini-batches. Per optimization step, only the
contribution of the chosen mini-batch is evaluated. Hence, possibly many optimization steps can be
performed during one epoch, which is the time needed to evaluate the objective function on the whole
dataset. This figure is adapted from Figure 1 of the author’s publication [Stapor et al., 2019].

are given as:

Jm(θ) =
∑
k∈Sm
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+ log
(
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(
σkij
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︸ ︷︷ ︸
=Jk(θ)

=
∑
k∈Sm

Jk(θ) (3.1)

∇θJm(θ) = . . . =
∑
k∈Sm

∇θJk(θ) (3.2)

It is important to note that no experimental conditions are drawn twice until the full dataset
has been evaluated, a time-frame which is called one epoch. Hence, the mini-batches belonging
to one epoch are disjoint and form a partition of the dataset. Theoretically, also the inner sum
structure (over the indices i and j) could be used for mini-batching. However, when working with
ODE models, the computationally demanding part is the solution of the initial value problem
for an experimental condition k. Once this is done, evaluating the different observables yi at
different time points tj happens in negligible time. For this reason, mini-batching will only make
sense over the conditions k for most ODE model applications.

In summary, mini-batch optimization is a particular paradigm of local optimization and a
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priori only capable of finding local optima [Robbins and Monroe, 1951]. It allows to perform
more – but less informed – optimization steps than classical full-batch approaches in the same
computation time. Overall, it is likely that more optimization steps, but (hopefully) less epochs
will be needed when compared to full-batch optimization.

Mini-batch optimization algorithms in a nutshell

The way how the parameter update is executed in each optimization step, i.e., how θ(m+1)

is computed from θ(m) and the estimated gradient
∑

k∈Sm ∇θJk(θ(m)), depends on the chosen
optimization algorithm. Some of the most commonly used algorithms which we investigate closer
in this chapter are:

• Vanilla stochastic gradient descent (SGD) [Robbins and Monroe, 1951], which is the sim-
plest algorithm, using only the negative gradient of the objective function as update direc-
tion.

• Stochastic gradient descent with momentum [Polyak, 1964, Sutskever et al., 2013], a com-
mon variant, which uses a decaying average of negative gradients as direction instead of
the negative objective function gradient alone.

• RMSProp [Tieleman and Hinton, 2012], a so-called adaptive algorithm, which rescales the
current gradient by a decaying average of root-mean-squares over the previous objective
function gradients.

• Adam [Kingma and Ba, 2015], another adaptive algorithm, which attempts to combine the
benefits of RMSProp with the momentum approach by using two decaying averages.

A well-written summary of these and further mini-batch optimization algorithms can be found
in [Goodfellow et al., 2016].

Despite their different approaches, all the mentioned mini-batch algorithms have some fea-
tures in common. First, they are not guaranteed to – and, in fact, don’t even try to – produce a
series of parameter vectors, along which the objective function decreases monotonically. Hence,
it is to be expected that the progress which is made in one optimization step can be (at least
partly) undone in another, subsequent step. This is a striking difference to most local full-batch
optimization algorithms, which at least try to or can even guarantee to produce monotonically
decreasing trajectories of objective function values. Over the whole optimization process how-
ever, most of mini-batch optimization methods are guaranteed to converge to a local minimum
in probability. Second, all of these mini-batch optimization algorithms rescale the proposed
optimization step with a factor η, called the learning rate. If we assume a given algorithm in
optimization step m to produce a parameter update d(θ(m)), then the next proposed parameter
vector will be

θ(m+1) = θ(m) + ηm · d(θ(m)), (3.3)

with ηm being the learning rate at stepm. Obviously, η affects the step size of the optimizer. But
as for most algorithms ‖d(θ(m))‖ 6= 1, it is not identical to the step size. In many publications,
the learning rate is either fixed to a previously chosen value, such as 10−3 [Ruder, 2016], which
is a commonly used value for training deep neural nets, or prescheduled over the optimization
process [Goodfellow et al., 2016].
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Challenges in the transfer of existing algorithms to ODE models

Sophisticated implementations of many mini-batch optimization algorithms are available in state-
of-the-art toolboxes for neural nets, such as Tensorflow [Abadi et al., 2015]. Conceptually, these
frameworks can be employed to mimic simple ODE solver schemes, e.g., a forward Euler inte-
gration, such as done in [Yuan et al., 2019]. However, ODE models in systems biology typically
exhibit stiff dynamics, which makes it necessary to employ implicit solvers with adaptive time
stepping [Klipp et al., 2005, Mendes et al., 2009, Raue et al., 2013b], such as, e.g., a BDF scheme.
Unfortunately, there is no straight-forward way of extending the approach presented in [Yuan
et al., 2019] to adaptive time-stepping.

Approaching the problem from the other side and applying mini-batch optimization algo-
rithms directly on parameter estimation of ODE models is more promising but also not straight
forward: When estimating parameters of ODE models, it is a common problem that the trajec-
tory of the optimizer passes through regions in parameter space in which numerical integration
of the ODE fails [Chung et al., 2017b]. Such failure can occur for several reasons, but the main
reasons are either the step size of the solver falling below numerical precision, resulting in ex-
ceeding the maximum number of allowed steps for ODE integration, or diverging expressions in
the right hand side, causing infinities or not-a-number values in the state variables [Serban and
Hindmarsh, 2005]. By default, mini-batch optimization algorithms are not designed to cope with
these issues.

Another problem is hyperparameter tuning: Most local optimization methods, also mini-
batch techniques, crucially depend on hyperparameters, which have to be set prior to parameter
estimation. For full-batch optimization methods such as BFGS [Goldfarb, 1970] with trust-region-
reflective [Coleman and Li, 1996] or interior-point algorithms [Wächter and Biegler, 2006], many
hyperparameters are associated with stopping conditions and at least good rules-of-thumb exist
for their choice. For mini-batch optimization, the success of optimization is governed by different
hyperparameters, such as the mini-batch size, the learning rate, the optimization algorithm
or algorithm-dependent tuning parameters. So far, the influence of these hyperparameters on
parameter optimization of ODE models has not been studied at all and good choices first have
to be found.

3.1.3 Theoretical results and practical application of mini-batch optimization

Many theoretical results on the convergence of stochastic gradient descent or derived mini-batch
optimization algorithms exist [Duchi et al., 2011, Gower et al., 2019, Kingma and Ba, 2015,
Polyak, 1964, Robbins and Monroe, 1951, Schmidt et al., 2017]. However, those publications
are concerned with diverse scenarios of mini-batch optimization. In general, mostly two such
scenarios can be discerned.

One group of manuscripts [Defazio et al., 2014, Gower et al., 2019, Schmidt et al., 2017]
focusses on the situation that a finite sum of functions Jk is optimized:

θ∗ = argminθ∈Rnθ J(θ) with J(θ) =
1

K

K∑
k=1

Jk(θ) (3.4)

In the setting of this thesis, K corresponds to the number of experimental conditions ne. In most
publications, the Jk are assumed to be smooth and their sum J strongly convex [Defazio et al.,
2014, Schmidt et al., 2017]. However, this strong convexity condition on the J can be relaxed, as
long as a probabilistic version of Lipschitz continuity is fulfilled by the Jk [Gower et al., 2019]. In
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this finite sum setting, it can be shown that, using a fixed learning rate η, vanilla SGD converges
in expectation to the proximity of the global minimizer with linear rate of convergence, i.e., there
is an 0 < α < 1 such that in optimization step m [Schmidt et al., 2017]:

E [J(θm)− J(θ∗)] = Cαm + ε (3.5)

Here, C is a positive constant and ε > 0 can be interpreted as the approximation quality, which
can be controlled be the learning rate and the mini-batch size [Gower et al., 2019]. Hence,
vanilla SGD converges quickly towards the optimal solution, but stops progressing as soon as
it has approached the optimum up to ε. Interestingly, if a decreasing learning rate scheme is
employed, such as ηm = 1/m, then this ε-noisiness in the optimization process can be avoided
and vanilla SGD converges to θ∗ in probability. However, it does so with a substantially lower
rate of convergence, which will be

E [J(θm)− J(θ∗)] ≤ C 1√
m
, for some C > 0 (3.6)

if J is convex and
E [J(θm)− J(θ∗)] ≤ C 1

m
, for some C > 0 (3.7)

if J is strongly convex [Goodfellow et al., 2016].

Another group of publications [Duchi et al., 2011, Kingma and Ba, 2015, Polyak, 1964, Rob-
bins and Monroe, 1951, Tieleman and Hinton, 2012] focusses on the situation of an infinite series
of convex functions and aims to find the corresponding minimizer. This can be interpreted as an
infinite sequence of repeated and independent random experiments [Robbins and Monroe, 1951].
In some of those works, a regret function R(m) is defined, which depends on the optimization
step m [Duchi et al., 2011, Kingma and Ba, 2015]. If we consider a sum of m convex functions
Jk, 1 ≤ k ≤ m, then this regret is given as:

R(m) =
m∑
k=1

(
Jk(θk)− Jk(θ∗m)

)
(3.8)

with θ∗m being the minimizer of R(m). In this situation, the aim is to find a series of parameter
vectors θk, such that 1

mR(m) converges towards 0, which implies that θk −→ θ∗m under some
assumptions on the Jk. The general convergence result, which holds for vanilla SGD as well
as for more involved algorithms such as momentum based approaches, RMSProp or Adam, is
[Goodfellow et al., 2016, Schmidt et al., 2017]:

1

m
R(m) ≤ C 1√

m
, for some C > 0 (3.9)

In order to achieve this convergence, two assumptions on the learning rate η are needed [Good-
fellow et al., 2016, Robbins and Monroe, 1951]:

lim
m→∞

∞∑
m=1

ηm =∞ (A1)

lim
m→∞

∞∑
m=1

η2
m <∞ (A2)
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When analyzing the convergence rates, we see that most mini-batch optimization algorithms
converge at a sublinear rate. Hence, they show a worse asymptotical behavior than (full-batch)
gradient descent, which achieves a linear rate of convergence [Nesterov, 2013]. However, in
practice, methods such as SGD with momentum, RMSProp, or Adam are widely used [Goodfellow
et al., 2016, Sutskever et al., 2013], as they progress quickly towards an optimal solution. In this
thesis, we are less concerned with the precise asymptotic properties of the optimization algorithms
– although we want to ensure that the employed algorithms converge indeed asymptotically – but
rather with the question, whether mini-batch optimization yields meaningful results in practical
applications for parameter estimation of ODE models at all, which is not clear a priori. We
also want to stretch that our applications are markedly different from the settings, in which
convergence for mini-batch optimization algorithms is typically proven: We cannot expect our
objective functions to be convex (indeed, they are expected to be non-convex and multi-modal).
Moreover, we want to reduce the number of necessary optimization steps as much as possible,
rather than looking at their asymptotic behavior, as the objective function evaluation is usually
computationally costly.

3.2 Contribution: Adapting mini-batching to ODE models

3.2.1 Method adaptations and implementation

As mentioned before, we needed to adapt existing algorithms for a safe use of mini-batch op-
timization with ODE models. Our first adaptation was a functionality, which prevents local
optimization runs from crashing, if the underlying ODE could not be integrated. Since this
mechanism only gets active upon failure of the objective function or gradient evaluation, we
call it the rescue interceptor. As we used pre-scheduled learning rates throughout the study, we
observed after first tests that it makes sense to moreover implement an additional line-search,
which is performed in each optimization step. This additional line-search should avoid too high
and hence possibly inappropriate step-sizes and hence accelerate convergence in the beginning
of a local optimization procedure, if the chosen learning rate was too high.

Rescue interceptor to handle ODE integration failure

We introduce an additional term, the reduction factor β, which is always multiplied to the learning
rate and initialized with the value 1. The rescue interceptor is activated, if ODE integration (with
gradient computation) fails (Figure 3.3 A): It undoes the last optimization step (but keeps the
current mini-batch), multiplies the reduction factor β by r (here: r = 0.2, but any number
r < 1 would do), and proposes a new step, for which the objective function and its gradient
are computed. This procedure is repeated until either a parameter vector is found for which
ODE integration is possible, or the local optimization run is finally stopped after a maximum
number of repetitions. Whenever ODE integration is successful, the reduction factor is mildly
increased again by multiplication with c (here: c = 1.3, but any number c > 1 would do), to at
most 1. Hence, a failure of ODE integration will cause reduced step-sizes for some subsequent
steps, which mimics the behavior of a trust-region implementation. A detailed pseudo-code of
the rescue interceptor is given in Algorithm 1, its impact on the optimization result is assessed
in Section 3.2.2.
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B

Figure 3.3: Illustration of method adaptations for mini-batch optimization. A Schematic of the rescue
interceptor, which tries to recover a local optimization run after a failed model evaluation, based on
backtracking line-search. B Line-search implementation for mini-batch optimizers based on backtracking
with fixed mini-batch, which attempts to avoid too high step-sizes to accelerate convergence. This figure
is adapted from Figure 3 of the author’s publication [Stapor et al., 2019].

Additional line-search functionality to improve optimization for high learning rates

The additional line-search works independently of the rescue interceptor and is based on the in-
terpolation method, described in of [Nocedal and Wright, 2006, Chapter 3]. It uses an additional
reduction factor 0 < γ ≤ 1, which is multiplied to the learning rate analogously to the reduction
factor β of the rescue interceptor. After a parameter update is proposed, the objective function
is re-evaluated without gradient – for the new parameter vector, but on the same mini-batch
– and checked for improvement (Figure 3.3 B). If the new step yields an improvement, it is
accepted, otherwise a backtracking line-search is performed according to the mentioned interpo-
lation algorithm, by shrinking the reduction factor γ. In contrast to the rescue interceptor, this
step-size reduction only applies to the current optimization step and the reduction factor is again
initialized with γ = 1 in the next step. A comparison of this approach to standard mini-batch
optimization is given in Figure 3.4, a pseudo-code is provided in Algorithm 2, its influence on
the optimization result is shown in Section 3.2.2.

Rescue interceptor and additional line-search can be combined, as they are not redundant. This
can be seen in the following way: The additional line-search implementation may reduce step-
sizes, if integration failure is encountered, but will finally accept one of the proposed steps after
a predefined number of iterations. If the ODE can yet not be integrated, the rescue interceptor
will be activated in the next optimization step. It also occurs that the ODE can be integrated
for a given parameter vector, but the numerical computation of its gradient is not possible. Also
such a case will trigger the rescue functionality, despite an additional line-search being used.

Implications of the algorithmic adaptations on convergence results

It was pointed out previously that the implementation of the rescue interceptor behaves similar
to a trust-region algorithm which only shrinks the trust-region radius in case of ODE integration
failure. Assuming that the biological system is modeled appropriately, the global optimum
should be located in a biologically plausible domain in parameter space. Consequently, ODE
integration failure is not expected to occur sufficiently close to the global optimum, i.e., in some
open neighborhood of it. Adhering to the assumption that the learning rate – and hence also the
optimization step size – shrinks over the optimization process (Assumption A2), the optimizer
will at some point reach this open neighborhood and will stay in it, as the step-size converges to
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Algorithm 1 Rescue functionality for mini-batch optimization
Code parts specific to rescue functionality are shown in blue
Initialization:

1: Set initial parameter vector θ ← θ0

2: Set and initialize optimization algorithm for parameter update
3: Set stopping criterion, e.g., maximum number of epochs N
4: Set variables to store necessary information about previous optimization step:

parameter vector θ∗, gradient estimate g∗, possibly optimization algorithm dependent quan-
tities Q∗,
initialize with (θ∗, g∗, Q∗)← (NaN,NaN,NaN)

5: Set reduction factor β = 1
6: Set reduction multiplier r < 1
7: Set increase multiplier c > 1

Procedure for optimization with rescue functionality :
1: while Stopping criterion not met do
2: Get next mini-batch
3: Compute gradient estimate: g ← gradientFunction(θ)
4: if ODE integration was successful then
5: Update old quantities: (θ∗, g∗, Q∗)← (θ, g,Q)
6: Update reduction factor: β ← min(c · β, 1)
7: Perform parameter update: θ ← parameterUpdater(θ, g,Q, β)
8: else
9: if θ∗ is NaN then

10: return ODE integration failure at initial point
11: end if
12: while Last call to gradientFunction failed and maximum number of rescue steps not

reached do
13: Undo last step: (θ, g,Q)← (θ∗, g∗, Q∗)
14: Update reduction factor β ← r · β
15: Perform parameter update: θ ← parameterUpdater(θ, g,Q, β)
16: Compute gradient estimate: g ← gradientFunction(θ)
17: end while
18: if Last call to gradientFunction failed then
19: return ODE integration failure not recoverable
20: end if
21: end if
22: end while
Changes in parameterUpdater-functions:

Replace parameter update (θ ← θ + η · δ) by (θ ← θ + η · β · δ)
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Algorithm 2 Line-search functionality for mini-batch optimization
Code parts specific to line-search functionality are shown in blue
Initialization:

1: Set initial parameter vector θ ← θ0

2: Set and initialize optimization algorithm for parameter update
3: Set stopping criterion, e.g., maximum number of epochs N
4: Set variable to store information from previous optimization step:

parameter vector θ∗

5: Set line-search reduction factor γ = 1

Procedure for optimization with line-search functionality :
1: while Stopping criterion not met do
2: Get next mini-batch
3: Compute objective and gradient estimate:

(
j,g
)
← gradientFunction(θ)

4: Set line-search reduction factor γ = 1
5: Perform parameter update: θ ← parameterUpdater(θ, g,Q, γ)
6: Compute objective: j(1) ← objectiveFunction(θ)
7: if Improvement: j(1) < j then
8: Accept step: θ∗ ← θ
9: else

10: Undo last step: θ ← θ∗

11: Compute optimal line-search factor γ ← based on quadratic interpolation for g, j, j(1)

12: Perform parameter update: θ ← parameterUpdater(θ, g,Q, γ)
13: Compute objective: j(2) ← objectiveFunction(θ)
14: if Improvement: j(2) < j then
15: Accept step: θ∗ ← θ
16: else
17: Undo last step: θ ← θ∗

18: Compute optimal line-search factor γ ← based on cubic interpolation for g, j, j(1), j(2)

19: Perform parameter update: θ ← parameterUpdater(θ, g,Q, γ)
20: Compute objective: j(3) ← objectiveFunction(θ)
21: Set m = 3
22: while No improvement and maximum number of line-search steps not reached do
23: Undo last step: θ ← θ∗

24: Compute optimal line-search factor γ ← based on cubic interpolation for
g, j, j(m−1), j(m)

25: Perform parameter update: θ ← parameterUpdater(θ, g,Q, γ)
26: Compute objective: j(m+1) ← objectiveFunction(θ)
27: Increment m← m+ 1
28: end while
29: Accept step: θ∗ ← θ
30: end if
31: end if
32: end while
Changes in parameterUpdater-functions:

Replace parameter update (θ ← θ + η · δ) by (θ ← θ + η · γ · δ)
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Figure 3.4: Comparison of standard mini-batch optimization and mini-batch optimization with line-
search. Left panel: Standard mini-batch optimization often uses a prescheduled learning rate, which
determines the step-size during optimization regardless of whether an optimization step leads to an
improvement or not. Right panel: If line-search is enabled, the objective function is re-evaluated on
the same mini-batch and checked for improvement. If no improvement is achieved, the learning rate is
reduced until either an improvement is achieved or until the maximum number of line-search steps is
reached. This figure is adapted from Figure 7 of the author’s publication [Stapor et al., 2019].

0. Then, the reduction factor β reaches and remains at its initial value 1. Thus, for a given mini-
batch optimization algorithm, the corresponding convergence proof remains unchanged, if the
method is combined with the rescue interceptor. Hence, the rescue interceptor does not interfere
with the convergence of a chosen mini-batch optimization algorithm and has no negative influence
on its asymptotic properties.

In contrast to the rescue interceptor, the additional line-search functionality only has an
effect on the current optimization step, not on the subsequent ones. However, the optimizer step-
size may be affected also in proximity to the global optimum. Hence, in order to keep existing
convergence results, the line-search functionality can be slightly adapted: If a lower bound γmin

on the reduction factor γ is enforced, Assumption A1, which is necessary in the convergence
proofs of most of the common algorithms, will not be violated and hence, convergence is ensured.
This lower bound could be realized by, e.g., setting γ = γmin and stopping the iterative line-search
algorithm, as soon as a reduction factor γ < γmin is proposed.

Implementation in the toolbox parPE

We implemented the mentioned mini-batch algorithms together with the discussed adaptations
in the computational toolbox parPE. parPE is a C++ library [Schmiester et al., 2019a], which
provides the means for parallelized objective function evaluation and optimization of ODE models
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Figure 3.5: Schematic overview of bechmarking full-batch and mini-batch optimization methods on
small- to medium-scale models. Benchmark models were chosen and observation functions adapted,
noisy artificial data created based on simulations with the reported parameter vectors, 100 initial points
for optimization were drawn randomly, multi-start local optimization was carried out, and multi-start
results were compared against each other to compute summary statistics. This figure is adapted from
Figure 2 of the author’s publication [Stapor et al., 2019].

generated by the ODE solver toolbox AMICI [Fröhlich et al., 2019] using optimizers such as Ipopt
[Wächter and Biegler, 2006].

parPE was originally developed as part of the publication [Schmiester et al., 2019a]. The
implementation, adaptation and testing of mini-batch optimizers is a contribution of this thesis.

3.2.2 Benchmark study on test models: Identifying the most important hy-
perparameters

The implementation of mini-batch optimization in parPE allowed us to directly compare full-
batch against mini-batch optimizers, to benchmark mini-batch algorithms against each other,
and to assess the influence of mini-batch hyperparameters on the optimization of ODE models.
Furthermore, this is – to the best of the author’s knowledge – the first implementation of mini-
batch optimization schemes tailored to ODE models, which employs state-of-the-art techniques,
such as stiff ODE integrators and adjoint sensitivity analysis.

Application examples

To evaluate the adapted mini-batch optimization algorithms for ODE models, we considered three
benchmark problems (Table 3.1). These small- to medium-scale examples were chosen based on
a recently published collection of benchmark models [Hass et al., 2019]. To facilitate the analysis
of the scaling behavior with respect to the number of experimental conditions, we decided to
generate artificial (i.e., simulated) data (Figure 3.5). We hence picked models with different
system sizes, which allowed such to generate large artificial datasets, which were sufficiently
heterogeneous. This should ensure clear differences in objective function values and gradients,
when different mini-batches were used. In order to allow the creation of heterogeneous datasets,
the SBML files, input parameters, and observable functions were slightly altered. Additive
Gaussian noise was added to the model simulations, using the noise levels which were reported
in [Hass et al., 2019] for each observable. The precise model versions have been made freely
available in the SBML/PEtab format at Zenodo, under https://doi.org/10.5281/zenodo.3556429

We used a mini-batch size of 30 experimental conditions and 50 epochs of training – corre-
sponding to roughly 50 iterations of a classical full-batch optimizer – which are typical hyperpa-



3.2. CONTRIBUTION: ADAPTING MINI-BATCHING TO ODE MODELS 39

Fujita1 Bachmann2 Lucarelli3 Fröhlich4,∗

State variables 9 25 33 1228
Parameters 19 40 72 4517
Time points 10 10 8 1
Conditions 600 1,200 1,500 13,000
Data points 6,000 12,000 60,000 13,000
Data type artificial artificial artificial measurements
Modeled system EGF/AKT JAK/STAT TGF/Smad pan cancer

signaling signaling signaling signaling

Table 3.1: Overview of ODE models for benchmarking of mini-batch optimization.
∗ The model from Fröhlich et al. was not used in the benchmark study, but later as application example.

rameter choices in deep learning [Goodfellow et al., 2016]. We benchmarked the four implemented
optimization algorithms: Vanilla stochastic gradient descent (SGD), stochastic gradient descent
with momentum, RMSProp, and Adam. To assess the impact of the learning rate, we considered
three schedules:

• Medium learning rate, logarithmically decreasing from 10−1 to 10−4.

• Low learning rate, logarithmically decreasing from 10−2 to 10−5.

• Constant learning rate, fixed to the value 10−3.

To ensure robustness of the mini-batch optimizers against failure in ODE integration, we acti-
vated the rescue interceptor in all local optimizations, but so far did not use the additional line-
search implementation. The well-established full-batch optimizer Ipopt [Wächter and Biegler,
2006] was used as benchmark and was granted 50 iterations, so all tested methods had a similar
computational budget. For each model, 100 randomly chosen initial parameter vectors were cre-
ated, from which all optimizers were started. To assess the overall performance of each optimizer
setting, we sorted the starts by their final objective function value and each of the 100 starts was
ranked across the optimizer settings. Computing the mean of the 100 rankings for each setting
led to an averaged rank per model, which we used as a proxy for overall optimization quality
(Figure 3.5).

Benchmarking algorithms and hyperparameters

We found across all algorithms that the medium, but decreasing learning rate was preferred,
the low but decreasing learning rate was second and the constant learning rate resulted in the
worst performance (Figure 3.6 A). A higher learning rate in the beginning of the optimization
process seemed to be crucial for the mini-batch optimizers to progress quickly towards favorable
regions of the parameter space. Given the medium learning rate, different algorithms were able
to compete with or even outperform the full-batch optimizer Ipopt, but the adaptive algorithm
RMSProp performed particularly well. In most cases, the preferred learning rates led to step-
sizes during optimization which were comparable or slightly lower than those which were chosen
by classical (full-batch) optimization methods.

1Model adapted from Fujita et al. [2010]
2Model adapted from Bachmann et al. [2011]
3Model adapted from Lucarelli et al. [2018]
4Model adapted from Fröhlich et al. [2018a]
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models. A Comparison of performance for different local optimizers with three different learning rate
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the local optimizer Adam with tuning parameters taken from the literature (standard) vs. a simplified
version (tuned). C-E Boxplots of final cost function values for the best 25 starts of the two best mini-
batch optimizers, compared against the Ipopt (full-batch optimizer), for each model. F Comparison of
performance for all starts of the best two mini-batch optimizers given the best learning rate, for different
mini-batch sizes, compared against Ipopt (ranks of models are stacked). This figure is adapted from
Figure 2 of the author’s publication [Stapor et al., 2019].
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Given these findings, we compared the optimization algorithm Adam – which is maybe the
most popular algorithm for training deep neural nets – with two different tuning variants: the
tuning proposed in the original publication (called standard, see [Kingma and Ba, 2015]) and a
simplified scheme (called tuned), which employs the same rate for both internally used decaying
averages. The analysis of the best 25 starts for all models with medium, decreasing learning
rate showed that the tuned version outperformed the original one for all cases on our benchmark
examples (Figure 3.6 B). When comparing the performance of the tuned version of Adam and
RMSProp with medium learning rate, we see that they show a very similar performance for the
best 25 starts for all three tested models and perform as good as Ipopt or even better (Figure 3.6
C-E).

We then assessed the impact of the mini-batch size on the optimization result. Again, we used
an average ranking, 100 starts, and investigated 6 mini-batch sizes for each model. We restricted
our analysis to the two previously best performing optimization algorithms, tuned Adam and
RMSProp, with the medium, decreasing learning rate. We found that in general, small mini-
batch sizes were preferred, but the optimal size seemed to be model dependent (Figure 3.6
F). While a mini-batch size of only one experimental condition worked best for the smallest
example (Fujita), a mini-batch size of 10 experimental conditions performed best for the other
two examples, yielding about 0.1% to 1% of the whole dataset as mini-batch. Interestingly, the
mini-batch size seemed to impact both optimization algorithms to the same degree.

Impact of algorithmic adaptations

The first observation of the previous study was that higher learning rates improved the optimiza-
tion process. Hence, we tested the effect of further increasing it and introduced an additional
learning rate:

• High learning rate, logarithmically decreasing from 10−0 to 10−3.

Despite the previous results, the high learning rate seemed to obstruct the optimization process
(Figure 3.7 A). This finding motivated the implementation of the additional backtracking line-
search: As it is a priori not clear what a good choice for the learning rate would be for a given
model, we concluded that using rather high learning rates in combination with an additional
line-search might resolve the problem of finding an adequate learning rate for each model.

In a next step, we wanted to asses the effect of our algorithmic adaptations. We found that
ODE integration failure was present in our benchmark models, although it was less critical than
expected: Only the optimization of the smallest model (Fujita) suffered substantially from these
failures. However, by using the rescue interceptor, all local optimization runs could be recov-
ered, as long as the ODE integration failure did not happen at the initial point of optimization
(Figure 3.7 B).

We then evaluated both algorithmic improvements together, for Adam and the medium and
high learning rate on the three benchmark models (Figure 3.7 C). Interestingly, we found the
strongest improvement for the largest model, although it suffered only little from integration
failure. The line-search improved the optimization process at high learning rates, which can be
seen in a direct comparison (Figure 3.7 D) and in the waterfall plot (Figure 3.7 E). Considering
all three models, we saw that the rescue interceptor was always helpful, whereas the line-search
could also reduce the computational efficiency in case a good learning rate was chosen (Fig-
ure 3.7 C). This is not surprising, as the line-search needs additional computation time and some
optimization runs were stopped prematurely due to imposed wall-time limits. However, these
adverse effects at lower learning rates were mild when compared against the positive effects at
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Figure 3.7: Influence of line-search methods on optimizers performance and reliability. A Boxplots for
the best 25 starts of mini-batch optimizers Adam for three different learning rates for the largest example
(Lucarelli), showing that too high learning rates obstruct the optimization process. B Percentage of failed
local optimizations per model (with optimizer Adam) due to non-integrability of the underlying ODE.
Failure at the initial point of optimization can not be recovered, but failure during the optimization
process is prevented when applying the rescue functionality. C Comparison of performance for optimizer
Adam, given different learning rates, for naive implementation, with rescue functionality, and rescue
functionality and line-search (ranks of models are stacked). D All starts of the local optimizer Adam for
the largest of the three examples (Lucarelli), naive implementation compared against rescue functionality
and line-search, employing a high learning rate. E Waterfall plot for the largest of the three examples
(Lucarelli), for naive implementation of Adam, with rescue functionality and with rescue functionality
and line-search. This figure is adapted from Figure 3 of the author’s publication [Stapor et al., 2019].

high learning rates. As the selection of a good learning rate is currently a trial-and-error process,
the adaptation is overall beneficial. However, if a decent learning rate has been found for a
specific model, the additional line-search does not improve optimization any further.

3.2.3 Application 1: Large-scale ODE model of cancer signaling

After successfully testing mini-batch optimization on the small- to medium-scale models, we
evaluated the method on a large-scale model with real measurement data, for which we expected
the method to have the highest benefit. Therefore, we considered the largest publicly available
ODE model of cancer signaling [Fröhlich et al., 2018a] (see also Table 3.1). It comprises various
pathways and their cross-talk and captures 1,228 biochemical species and 2,686 reactions. The
generic chemical reaction network can be adapted to cancer cell-lines and treatment conditions
using input parameter vectors, which describe the mutation and expression status of different
genes, certain initial conditions, growth medium components, and drug binding affinities. We
could extract and match overall 16,308 data points of viability readouts for different cell-lines
under various (single drug) treatment conditions from the Cancer Cell Line Encyclopedia [Bar-
retina et al., 2012] to the model. We split these data into a training set of 13,000 data points
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and an independent test set of 3,308 data points. To the best of the author’s knowledge, this
was the first time that an ODE model has been trained on a dataset with so many experimental
conditions.

Impact of learning rate and backtracking line-search on large-scale application ex-
ample

To confirm our findings from the smaller models, we revisited them on the large-scale application
example. We first restricted the parameter estimation for this model to 20 multi-starts with
different optimizers. Compared to the common practice for smaller models [Raue et al., 2013b,
Villaverde et al., 2018], 20 local optimization runs are unlikely to be sufficient to safely infer
a global optimum, but this was the highest number of runs which has so far been carried out
in previous studies for a model of this size, due to the high computation times of more than
60,000 hours [Schmiester et al., 2019a]. We hence used the optimization with the local full-batch
optimizer Ipopt as benchmark, and granted it 150 iterations, applying an L-BFGS scheme as
Hessian approximation, as done in [Schmiester et al., 2019a].

As mini-batch optimizer, we used Adam, running for 20 epochs with two different learning
rates: We had previously seen that the medium learning rate performed best. However, for
Adam, the Euclidean norm of the initial optimization step ∆θ scales roughly with the square
root of the parameter dimension [Kingma and Ba, 2015], which can be seen in the following way:
An optimization step of Adam is computed component-wise for each entry of the parameter
vector θr as a ratio of two decaying averages: The numerator is a decaying average over the
past r-th entries of the gradient, controlled by the tuning parameter ρ1, with 0 < ρ1 < 1. The
denominator is the square root of a decaying average over the past squared r-th entries of the
gradient (root-mean-square), controlled by the tuning parameter ρ2, with 0 < ρ2 < 1, stabilized
by a small constant ε. Denoting the r-th entry of the objective function gradient with gr, the
learning rate with η, and the update direction with d, this yields for the first optimization step:

‖∆θ‖2 = ‖ηd‖2 =

√√√√√√√
nθ∑
r=1

(
(1−ρ1)gr

1−ρ1

)2

(√
(1−ρ2)g2r

1−ρ2 + ε

)2 =

√√√√ nθ∑
r=1

g2
r

(|gr|+ ε)2
=

√√√√ nθ∑
r=1

1

1 + 2ε|gr|+ε2
g2r

≈ √nθ

(3.10)
This was the reason why we tested the two following learning rate schemes:

• Medium learning rate, logarithmically decreasing from 10−1 to 10−4.

• Low learning rate (only reduced initial learning rate), logarithmically decreasing from 10−2

to 10−4.

We furthermore tested both learning rates with and without additional line-search, as we did
not have any prior information about a good learning rate beyond the aforementioned heuristics.
Moreover, we also enabled the rescue interceptor. Mini-batch and full-batch optimizers were
initialized at the same parameter vectors to ensure comparability of the optimization results.
We additionally took snapshots of the optimization process with Ipopt at computation times
that were as close as possible to those used by the mini-batch optimizations, to have a direct
comparison.

We found that in terms of final objective function values and correlation with the training
data, mini-batch optimization at lower learning rates yielded slightly better results than the
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Figure 3.8: Optimization results for the large-scale cancer model, for different learning rates (LR), with
rescue functionality only (rescue) and with additional line-search (LS). A Boxplots of the 10 best runs out
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figure is taken from the author’s publication, Figure 5 [Stapor et al., 2019].
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Figure 3.9: In-depth analysis for Figure 3.8, with 100 multi-starts for mini-batch optimization. A
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Ipopt runs with 150 iterations (Figure 3.8 A). In terms of total computation time, the mini-
batch approach with low learning rates was faster by a factor of 4.1. Optimization with medium
learning rates yielded inferior results in terms of objective function values and correlation with
the data, but further reduced the overall computation time. Additional line-search markedly
improved the optimization quality for this model at the medium learning rate, while increasing
the computation time by less than 13%. For the runs with lower learning rate, the line-search had
almost no effect on computation time and final objective function values. When assessing the fit
to independent test data, we found again that mini-batch optimization with the lower learning
rates showed similar or better results than Ipopt (Figure 3.8 B). As before for high learning rates,
the optimization at medium learning rates was improved by line-search, but turned out to be
inferior overall when compared to optimization at lower learning rates.

We investigated two further threshold-dependent characteristics to assess optimization per-
formance: the computation time until convergence was reached for the first time and the number
of converged starts per computation time. Both are common metrics for optimization perfor-
mance [Villaverde et al., 2018]. As threshold for convergence, we defined a value-to-reach based
on the ten best optimization results from Ipopt (the benchmark) and fixed it to the mean plus
one standard deviation over final objective function values. We now granted 100 starts to the
mini-batch optimizers, to allow them a similar budget of total computation time as for Ipopt.

Considering the computation time until the first start converged, mini-batch optimization at
medium learning rate with line-search was fastest, outperforming Ipopt by a factor of up to 27
(Figure 3.9 A and D).

When comparing the best ten starts and the waterfall plot (Figure 3.9 B and C), we see
that mini-batch optimization at low learning rates clearly outperformed Ipopt. Mini-batch op-
timization at medium learning rates showed a result that was comparable to Ipopt, but only if
the additional line-search was enabled. This highlights the fact that even simple schemes for
learning rate adaptation can be beneficial. When comparing the number of converged starts per
computation time, mini-batch optimization was up to a 6.9-fold faster than full-batch optimiza-
tion (Figure 3.9 E). This time, optimization with lower learning rates performed better. Hence,
lower learning rates yield more reasonable step-sizes for large-scale models. Importantly, in the
metric of converged starts per computation time, all of the four approaches clearly outperformed
Ipopt.

Overall, these observations confirm the finding that the choice of the learning rate is a crucial
hyperparameter when working with mini-batch optimizers for ODE models and that, if too
high learning rates are chosen, line-search can substantially improve the optimization result
(Figure 3.9).

Impact of mini-batch size on large-scale application example

To evaluate the robustness of mini-batch optimization with respect to mini-batch size, we ran
optimizations with mini-batch sizes 10, 100, 1000, and 13000 (full-batch), granting 10, 20, 50,
and 150 epochs of optimization time and 100, 100, 50, and 25 local optimizations, respectively.
This time, we used Adam at low learning rate without the line-search feature, as the previous
study indicated it to have little to no impact for the chosen learning rate. Moreover, especially
for optimization with smaller batch sizes, lower learning rates implicitly make sense, as more
optimization steps can be performed due to the lower mini-batch size.

For the large-scale model of cancer signaling, we found a clear benefit of smaller mini-batch
sizes. Objective function and correlation values were substantially improved (Figure 3.10 A). As
the total computation time was reduced by smaller mini-batch sizes due to the lower number of
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Figure 3.10: Optimization results for the large-scale cancer model, for different mini-batch sizes at
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epochs, we faced the counter-intuitive effect of a seeming anti-correlation of optimization perfor-
mance and total computation time. Optimization with the smallest mini-batch size outperformed
Ipopt in terms of final objective function values while reducing the total computation time by
more than a factor of 10. The findings on the optimization quality persisted when looking at the
performance on the set of independent test data (Figure 3.10 B). Again, the smallest mini-batch
size yielded the best results, showing even a better generalization to independent test data than
all previously tested approaches. A possible explanation of this effect might be a regularizing
effect of small batch-sizes, which may lead to less overfitting of the training data.

Overall, the two smallest mini-batch sizes achieved better optimization results than Ipopt.
Especially the waterfall plot for the smallest mini-batch size showed that not only computation
time was reduced, but also the optimization quality was markedly improved (Figure 3.11 B and
C). When comparing computation time to first convergence, mini-batch optimization was up to
52 times faster than Ipopt (Figure 3.11 A and D). In terms of converged starts per computation
time, we found an 18-fold improvement when using mini-batch optimization (Figure 3.11 E).

As additional test, we assessed the influence of the optimization algorithm on the optimization
result (Figure 3.12). This indicated again that the chosen algorithm was less important than
the choice of the learning rate or the mini-batch size: Only the most simple algorithm, Vanilla
SGD, showed a substantially worse performance for the application example, but the two more
complex algorithms, RMSProp and Adam, were comparable in all of the investigated metrics.
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3.2.4 Application 2: Comparing ensemble methods with point estimates for
large-scale ODE models

The fact that mini-batch optimization substantially reduced the computation time per local op-
timization run allowed to increase the number of optimization runs during parameter estimation.
This is important, as firstly, more runs enable a better exploration of the parameter space. Sec-
ondly, having more optimization results also allows to build richer ensembles from the multi-start
result.

For small ODE models, using ensembles of multi-start results is uncommon, as mathemat-
ically more sound methods are available to assess the reliability of model predictions, such as
profile likelihood analysis or MCMC sampling. However, for the considered large-scale appli-
cation example, such methods would need millions of hours of computation time and weeks to
months of wall time, which puts them out of reach. Ensembles can hence help to improve the
performance of the trained model and similar approaches have been tested in the context of logic
modeling [Costello et al., 2014] or when facing an automated model selection for a high number
of models [Henriques et al., 2017]. Recently, ensembles have also been proposed for uncertainty
quantification of ODE models [Villaverde et al., 2019].

To assess the influence of ensembles on model simulations and predictions, we relied on the
mini-batch optimization results from 100 multi-starts, batch size of 100, and low learning rate
with additional line-search. We considered this a realistic setting, which we achieved for our
application example without an extensive ex-post tuning of hyperparameters and which could
have been obtained for other application examples as well.

We used three metrics as comparison for how well the model simulation describes the training
data to which it was fitted. Firstly, we considered the Pearson correlation between measurement
data and model simulation (Figure 3.13 A). Then, we considered a cell-line under a specific
treatment conditions in the dataset to be responsive, if the viability of the corresponding cell-
line was reduced by more than a factor of two. This allowed us to compute a receiver-operator-
characteristic (ROC), based on the model simulations. We hence used the area under the ROC
(AUROC) as second measure (Figure 3.13 B). Based on the ROC, a classification threshold was
determined by finding the tangential point of the ROC with a straight of slope 1 [Hastie et al.,
2005]. Using this threshold, we classified model simulations as (non-)responsive for certain cell-
lines and treatments. By this classification, we could compute an overall classification accuracy
for model simulations, which we used as third quality measure for the model output.

We compared the model simulations for each of the best 50 optimization results alone (point
estimates) against ensembles, which were built from the best parameter vectors, up to a specific
multistart index, yielding 50 ensembles. Our analysis showed that model simulations based
on the ensembles consistently outperformed the those from single point estimate in all three
metrics (Figure 3.13 C). Point estimates always yielded best results for the best optimization
run. For ensembles, the performance increased for all metrics when more optimization results
were included and declined mildly when too many weak results were added. Hence, for each
metric, there existed an optimal ensemble size, which ranged from 12 (for the correlation) to 38
(for the AUROC). These findings persisted, when we investigated the situation on independent
test data, for which we used the classification thresholds, which had been inferred from the
training data (Figure 3.13 D). Although the optimal ensemble size differed from those on the
training data, ensembles outperformed point estimates for all metrics, and the performance of
the ensemble increased with ensemble size, before gradually decreasing again.

These results suggest that the training data can be used to infer a reasonable ensemble size,
based on one or more different metrics. It seems to be reasonable to generate large ensembles,
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Figure 3.13: Comparison of model simulation quality in three different metrics. A Correlation of model
simulation with measured data for the training set. Cell-lines with treatments, which reduced viability
by more than 50%, were labeled as responsive and a threshold for classifying a model simulation as
(non-)responsive was inferred. B Receiver-operator-characteristics (ROCs) for the ten best optimization
results (grey, solid lines) and for an ensemble model (black, dotted line) of the 12 best starts. C Assessing
the quality of model simulations on the training set via: correlation (blue), area under ROC (AUROC,
grey), and classification accuracy (orange), which was computed for each of the 50 best starts (dots) and
for ensembles, created from the best optimization results up to a certain start (solid lines). D Assessing
the quality of the model predictions on the test set, for the same metrics and simulation settings as in C.
Classification accuracy was computed for thresholds inferred from the training set. Subfigure A and B of
this figure are adapted from Figure 4 of the author’s publication [Stapor et al., 2019].

as larger collections might better represent the posterior distribution of the model parameters.
However, including too many suboptimal parameter vectors in the ensemble reduces its overall
performance.

3.3 Discussion

3.3.1 Summary and conclusion

In this chapter, we introduced mini-batch optimization for ODE models, presented algorithmic
adaptations to make this method better suitable for the considered problem class, and imple-
mented these algorithms into an open source framework. Then, we identified the most important
hyperparameters of the new method in a benchmark study of small- to medium-size models with
artificial data and transferred the knowledge to a large-scale application example model, which
we trained on a large-scale dataset of publicly available measurement data. On this application
example, the proposed method was able to outperform established approaches for parameter
estimation by more than an order of magnitude in terms of computation time, while providing
better optimization results. Finally, we showed that the results from mini-batch optimization
can be combined with ensemble methods when generating model simulations and predictions and
that these ensemble methods clearly outperformed the more commonly used point estimates for
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the investigated application example.
We identified the choices of learning rate and mini-batch size to be the most influential hy-

perparameters for parameter optimization and made the three following observations: Firstly,
learning rates for mini-batch optimization which yield step-sizes slightly smaller than those used
by established optimization techniques are a good choice. This might indicate that good step-
sizes for mini-batch optimization can be identified with similar means as this is done in full-batch
optimization. Secondly, surprisingly small mini-batch sizes were preferred in all of our applica-
tion examples. Hence, it makes sense for a modeler to test batch sizes with few experimental
conditions first. Thirdly, the choice of the optimization algorithms seems to be less important, as
at least the two adaptive algorithms Adam and RMSProp performed equally well on all examples.

We have seen that mini-batch optimization can substantially speed-up parameter estimation
for ODE models, if large datasets are used, which addresses Challenge (i) from the Introduction.
However, this means that applications of mini-batch optimization will mostly be restricted to
models, which need such datasets to constrain model parameters, as optimization techniques for
smaller-scale models are already efficient. Typically, large datasets will be mostly employed for
large-scale ODE models.

Moreover, as mini-batch optimization allows running more local optimizations than classi-
cal optimization approaches, due to the reduced computation time, it is naturally suited for a
combination with ensemble methods. We could show that ensemble methods yield better model
simulations and predictions than point estimates, at least for our large-scale application example,
therefore addressing Challenge (ii). We hypothesize that this might be due to the high number
of non-identifiable directions in parameter space for large-scale models [Fröhlich et al., 2018a,
Kapfer et al., 2019]. Poorly identifiable parameters may (but don’t have to) lead to misguided
model simulations, which may be a reason for the observed lower performance of model simula-
tions based on point estimates. In the case of low parameter identifiability, model simulations
based on a consensus of parameter vectors might increase the reliability model simulations, as it
was recently pointed out in [Villaverde et al., 2019].

3.3.2 Open problems in mini-batch optimization

Although the presented implementation already outperformed established standards, it is far from
being mature. Many problems persist when applying mini-batch techniques to ODE models and
the work in this thesis should only be considered as a proof of applicability and first step towards
a new method, which opens up further directions for parameter estimation of ODE models.

Adaptivity of hyperparameters

The learning rate and the mini-batch size are crucial for a successful optimization, but so far,
no clear rules beyond heuristics for their tuning exist. We hence think that learning rates and
mini-batch sizes would be promising candidates for self-tuning schemes.

Concerning the learning rate or step-size, many options exist, which could be adapted from
full-batch optimization strategies, where self tuning schemes are commonly applied to fix the
optimizer step-size [Boyd and Vandenberghe, 2004, Byrd et al., 1988, Nocedal and Wright, 2006].
Combining those with mini-batch optimization might lead to substantial improvements. We also
proposed and tested a corresponding line-search implementation for mini-batching, which may
serve as a starting point.

For the mini-batch size, auto-tuning may be less straight forward, but also here, first ap-
proaches exist, which are based on assessing the variance of the objective function gradient
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across a chosen mini-batch and possibly enlarging the mini-batch size [Lei and Jordan, 2019].
For specific algorithms, also first theoretical results have been proposed [Gazagnadou et al.,
2019]. Probably any scheme for automatically choosing a good batch size would be highly benefi-
cial, as we have seen that the mini-batch size is likely to be the most important hyperparameter
for an efficient optimization process.

Finding adequate stopping criteria

A further open problem is finding adequate stopping criteria for mini-batch optimization. The
number of epochs over which to optimize has direct influence on the learning rate and the
optimization success. Thus, although not being considered explicitly as hyperparameter in our
study, it also has to be fixed prior to optimization. Ideally, a self tuning approach could help
to eliminate this hyperparameter. A promising approach might be combining the presented
algorithms with early-stopping methods, which assess the variance of the gradient-estimate over
the mini-batch [Mahsereci et al., 2017].

3.3.3 Outlook and next steps

Hierarchical mini-batch optimization

Another algorithmic improvement – more specific to ODE models – would be combining mini-
batch optimization with hierarchical optimization for observation-specific parameters, such as
scaling factors or parameters for measurement noise [Loos et al., 2018a, Schmiester et al., 2019a].
This approach has allowed substantial improvements in parameter optimization for ODE models
and it is to be expected that also mini-batch optimization would benefit from it. A combination
of the two methods would make it necessary to draw the mini-batches more carefully, such that
the dependencies between the observation specific parameters of the model are respected. This
should in principle be possible, but may require differently sized mini-batches, which depend on
the structure of the training data.

Improving convergence by variance reduction or second order techniques

A complementary approach would be to implement optimization algorithms with so called vari-
ance reduction techniques [Lei and Jordan, 2019]. These approaches either store and reuse com-
puted gradient estimates from past mini-batches or compute occasionally a gradient estimate
based on a substantially larger mini-batch, in order to reduce the randomness in the gradient
estimate per mini-batch. Some of these methods enjoy good theoretical convergence properties
but are demanding in terms of memory consumption, which might make them prohibitive for ap-
plications in deep learning, but possibly still well suited for training of ODE models. Especially
the ideas behind SAG [Schmidt et al., 2017] and SAGA [Defazio et al., 2014] allow a combination
with sophisticated stopping criteria or self-tuning of the optimizer step-size [Gazagnadou et al.,
2019], which makes them attractive for further development in the field of ODE models.

Another approach would be optimization techniques based on (approximate) second-order
derivatives, such as proposed in recent publications [Bottou et al., 2017, Chung et al., 2017a,
Wang et al., 2017]. So far, stochastic Newton or quasi-Newton methods have been less used
in the context of mini-batch optimization [Bottou et al., 2017]. One reason may be that the
matrix inversion in Newton-type methods can cause instabilities: Exact Newton-type methods
have been shown to work less reliably when combined with mini-batching and may even fail
to converge to the optimal solution [Chung et al., 2017a]. However, in quasi-Newton methods,
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this problem can be circumvented by updating the approximation of the inverse of the Hessian
directly [Chung et al., 2017a]. The particular advantage of mini-batch second-order optimization
methods in the context of ODE models would be that techniques for step-size control could be
applied which are very similar to those in full-batch optimization, such that these methods would
substantially simplify the choice of a good learning rate. Moreover, second-order techniques can
also be combined with variance reduction techniques (as, e.g., done in [Wang et al., 2017]), which
makes them even more appealing.

Mini-batch optimization and uncertainty analysis

The last and probably most challenging problem is about uncertainty analysis for parameters
and predictions of large-scale models [Kapfer et al., 2019]. In principle, the most insightful
methods are profile likelihoods and MCMC sampling, which are widely applied for smaller models.
For large-scale models however, either completely different approaches or at least adaptations
have to be found, due to the high computational effort which is related to these methods. A
possible approach could be ensembles, which we discussed in this chapter in the context of model
simulations, but which have recently also been proposed to assess uncertainties of parameters
and predictions [Villaverde et al., 2019]. Going beyond optimization results, ensembles could also
be created from the optimization history, as done in [Villaverde et al., 2019]. Again, mini-batch
optimization would be best suited for this, as it creates a richer optimization history (due to the
higher number of optimization steps, which can be performed).

It has also recently been pointed out that mini-batch optimization with Vanilla SGD, fixed
step-size, and batch size 1 can be interpreted as a special case of the Hamiltonian Monte Carlo
method [Mandt et al., 2018], a particularly popular family of MCMC algorithms [Hoffman and
Gelman, 2014]. From the point of view of ensemble methods, it makes heuristically sense: Initial-
izing a mini-batch optimization for one or few epochs at the global optimum with fixed learning
rate and small step-size easily creates a rich ensemble for uncertainty quantification. Neverthe-
less, it is important to note that this heuristic can be made precise, as done in [Mandt et al.,
2018]. However, an application of this approach still has to be evaluated for ODE models.

Finally, mini-batching is not restricted to optimization: An application of this idea to the
Metropolis-Hastings (MH) algorithm, i.e., MCMC sampling, has been proposed recently [Seita
et al., 2018]. In the past decades, many adaptations to the MH algorithm have been presented,
which increase its efficiency (see, e.g., [Ballnus et al., 2017] for a review that focuses on ODE
models), which might also be transferable to the ideas presented in [Seita et al., 2018]. In this
case, a sufficiently parallelized implementation of mini-batch MCMC methods could resolve the
high computational burden of parameter sampling and maybe pave the way towards rigorous
uncertainty assessment for large-scale ODE models, which are trained on vast datasets.



Chapter 4

Second-order derivatives in parameter
estimation

In the previous chapters, we already pointed out that accurate derivative information is crucial for
many local optimization strategies to work. The objective function gradient gives an indication
in which direction a descent is possible, but it gives no indication about a favorable step-size
for the next step. Although optimization algorithms exist which work only with gradients, such
as gradient descent with backtracking line-search, it is clear that additional information opens
up additional possibilities to design efficient algorithms. As second order derivatives encode the
curvature of the objective function landscape, they allow to develop criteria for choosing the
step-size during optimization [Nocedal and Wright, 2006]. Hence, most common optimization
techniques exploit at least some kind of second order information, but mostly in an approximated
fashion. As moreover the standard approach to profile computation also relies on solving a series
of local optimization problems, second order derivatives are also crucial in this field.

It seems natural to assume that more accurate second order derivatives may allow a better
planning of optimizer step-sizes than approximations. However, for typical ODE models in sys-
tems biology, this has not been investigated in detail. One reason for this is that accurate second
order derivatives are usually expensive to compute, especially for models based on differential
equations [Boiger et al., 2016]. Hence, it is often assumed that the additional computational
effort for accurate second order derivatives will not be sufficiently balanced by an improved opti-
mization performance. Beyond that, it is also a considerable effort to implement computational
methods that calculate second order derivatives with more involved techniques than finite dif-
ferences. For these reasons, algorithms exploiting sensitivity based second order derivatives are
rarely used, with only few notable exceptions [Balsa-Canto et al., 2001, 2004].

In this chapter, we introduce second order adjoint sensitivity analysis to compute accurate
Hessians of the objective function which depend on the solution of an ODE and therefore address
challenge (iii) from Chapter 1.1. We show that this approach enjoys better scaling properties than
currently available methods while providing accurate Hessians. We then perform a benchmark
study of different methods in order to assess the benefit of exact Hessians for multi-start local
optimization and profile calculation. This study is based on two example models with real
measurement data taken from publications, which are commonly used as benchmark examples
[Hass et al., 2019]. Additionally, we propose a novel approach for computing profiles, which
efficiently exploits exact Hessians and which we show to outperform existing methods.

This chapter is based on my work in the following publications. Thus, some of its parts may
be similar to those:

53
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• Stapor, P., Fröhlich, F., Hasenauer, J. (2018). Optimization and profile calculation of
ODE models using second order adjoint sensitivity analysis. Bioinformatics, 34(13)

• Stapor, P.∗, Weindl, D.∗, Ballnus, B., Hug, S., Loos, C., Fiedler, A., Krause, S., Hross,
S., Fröhlich, F., Hasenauer, J. (2018). PESTO: Parameter EStimation TOolbox. Bioinfor-
matics, 34(4)

4.1 Background: Second order derivatives for ODE models

4.1.1 Methods for computing second-order derivatives

A number of different methods exist to either approximate or compute the Hessian of an objective
function which depends on the solution of an ODE. Excluding second order adjoint sensitivity
analysis, which we introduce in this chapter, the following approaches are commonly used:

1.) The Fisher Information Matrix (FIM) [Fisher, 1922], which can be interpreted as an approx-
imation based on observable sensitivities.

2.) Quasi-Newton methods, such as the the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme
[Goldfarb, 1970], which iteratively approximate the Hessian from gradients which are ob-
tained during optimization.

3.) Finite differences based on gradients from first order adjoint sensitivity analysis, yielding the
Hessian, up to numerical errors.

4.) Second order forward sensitivity analysis [Vassiliadis et al., 1999], yielding the Hessian with
adjustable numerical accuracy.

Approximative methods

The FIM is related to the asymptotic covariance of maximum likelihood estimates [Swameye
et al., 2003] and provides an approximation to the Hessian of the negative log-likelihood func-
tion. The approximation converges quadratically in the size of the residuals (ȳkij −hi(tj , uk))/σkij
[Raue, 2013]. Assuming Gaussian measurement noise, the FIM can be computed from observable
sensitivities. We recall that those are given by syir (tj , u

k) = d
dθr
hi(tj , θ, u

k). If the measurement
noise is not parameter dependent, its computation is straight forward:

FIMr,q(θ) =

ne∑
k=1

nky∑
i=1

nt∑
j=1

syir (tj , u
k)syiq (tj , u

k)(
σkij
)2 (4.1)

As the FIM is constructed from observable sensitivities, it requires forward sensitivity analysis,
which is feasible for small- to medium-scale models, but becomes prohibitive for large-scale
models. Although the FIM provides only an approximation, it is often used in optimization, as
many toolboxes rely on forward sensitivity analysis and hence the FIM is obtained at almost
no additional cost. If however the measurement noise is unknown, various different first-order
approximations of the Hessian are possible.

The BFGS scheme is an algorithm which sequentially computes a positive-definite approxima-
tion to the Hessian during an optimization process. This approximation relies on the secant-
method and only requires gradients, which are computed in each optimization step. It is hence
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also applicable for large-scale models, as it can be combined with adjoint sensitivity analysis.
Some variants of this algorithm circumvent computing and storing the full Hessian by directly
computing the Newton step via a limited amount of stored gradients [Nocedal, 1980], which
makes them even more efficient for large-scale problems. Implementations can be found in many
state-of-the-art optimization toolboxes, like, e.g., Ipopt [Wächter and Biegler, 2006], or fmincon
[MathWorks, 2016].

Alternative (quasi-Newton) methods, which also rely on the principle of sequentially approx-
imating the Hessian matrix or its inverse but use different updates rules, would be symmetric
rank 1 [Byrd et al., 1996], the Davidon-Fletcher-Powell formula [Fletcher and Powell, 1963], or
Broyden’s method [Broyden, 1965].

Finite differences

Central finite differences compute the Hessian based on perturbations in each parameter direction
by a small step ε:

∂2J

∂θr∂θq
(θ) ≈

∂J(θ+εeq)
∂θr

− ∂J(θ−εeq)
∂θr

2ε
(4.2)

where eq is the unit vector with 1 at the q-th position. The accuracy of this method depends
on the step size ε. Good choices of ε depend in turn on the error tolerances of the ODE solver
and are thus not easy to determine (see Hanke and Scherzer [2001] and the references therein).
Hence, using finite differences to compute derivatives often leads to less successful results in local
optimization than using more accurate methods [Raue et al., 2013b, Schälte et al., 2018].

Forward sensitivity analysis

Second order forward sensitivity analysis extends, similar to first order forward sensitivity anal-
ysis, the considered ODE system, now including first order and second order derivatives of the
state variables. Integrating those second order state sensitivities makes it possible to compute
an analytically derived expression for the Hessian.

For the sake of readability, we will omit the indices j and k for the timepoints and experimen-
tal conditions and the summing over them in the equations of this part. At the same time, we
will just sum over an index i, which enumerates all data points, comprising different observables
and timepoints. The dependence on the i-th data point will be denoted by a subscript (e.g., hi)
instead of listing dependencies on t, x, θ, and u. Furthermore, we will denote, where necessary,
differentiations by a transposed Nabla operator with respect to a vector v of size nv, in the sense
of

∇Tv : C2(R,R) −→ C1(R,R1×nv), f 7−→
(
∂f

∂v1
, . . . ,

∂f

∂vnv

)
(4.3)

where we assume the corresponding functions to be sufficiently smooth (i.e., at least twice contin-
uously differentiable). Double differentiations by ∇v∇Tv or ∇Tv ⊗∇Tv with the respective meaning,
where ⊗ denotes a Kronecker product.

We rewrite the equation for the gradient from Equation (2.17) in our simplified notation:

∂J

∂θr
=
∑
i=1

((
1

σi
− (ȳi − hi)2

σ3
i

)
∂σi
∂θr
− ȳi − hi

σ2
i

(
∇xhi(sxr )i +

∂hi
∂θr

))
(4.4)
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Another differentiation with respect to θq gives the Hessian.

∂2J

∂θr∂θq
=
∑
i=1
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− 1
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+ 3
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i
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(4.5)

In this expression, the second order state sensitivities (sxr,q)i show up, which have to be computed.
The corresponding ODE system is given by:

ṡxr,q =
(
∇Tx f

)
sxr,q +

((
∇Tx ⊗∇Tx

)
f
) (
sxr ⊗ sxq

)
+
∂∇Tx f
∂θr

sxq +
∂∇Tx f
∂θq

sxr +
∂2f

∂θr∂θq
(4.6)

The whole ODE system, which has to be integrated for second order forward sensitivities, has
(n2
θ + nθ + 1)nx equations. If the symmetry of the Hessian is exploited, it can be reduced to

(nθ/2 + 1)(nθ + 1)nx equations, but the computational complexity of the problem still scales
quadratically in the number of parameters and linearly in the number of state variables, which
limits this method to small-scale applications. However, second order forward sensitivity analysis
yields accurate Hessians, since the error of the second order state sensitivities can be controlled
during ODE integration.

4.1.2 Exploiting second order derivatives for parameter optimization

In local optimization, derivatives may be exploited for computing a search direction and for
determining the size of the next optimization step [Boyd and Vandenberghe, 2004, Nocedal and
Wright, 2006]. As search direction, an optimizer can use either the negative gradient (yielding
gradient descent), or perform a (dampened) Newton step (or an approximation thereof). Indeed,
most implementations interpolate between those two options, yielding techniques such as the
dogleg method or Krylov subspace methods [Nocedal and Wright, 2006]. All of these techniques
need the objective function gradient to work and, with exception of gradient descent, they all
use some kind of Hessian information. Additionally, all of them use some kind of second order
derivatives, with the exception of plain gradient descent.

For computing the step-size, trust-region [Sorensen, 1982] or line-search methods [Armijo,
1966] are employed. For trust-region, many approaches exist, while line-search is typically per-
formed using an exact step length or by backtracking. Again, all methods use first and second
order derivatives or approximations thereof: They compute a local model of the objective func-
tion, which approximates the true objective function. Then, this local model is optimized either
along the search direction or within the trust-region (Figure 4.1). Optimizing this local model
is often called the inner problem of an optimization step, while the outer problem is the original
optimization task [Nocedal and Wright, 2006].

Beyond the search direction and the step-size, optimizers typically have to deal with box-
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constraints, which are typical for ODE models in systems biology. Here, two methods are com-
mon: reflection based methods [Coleman and Li, 1996], which rescale the step-size depending on
the distance to the boundary of the box, and interior-point methods [Boyd and Vandenberghe,
2004], which add a penalizing barrier function to the original optimization problem, which is
relaxed during the optimization process.

In the beginning of a local optimization, it is most important that the optimizer chooses a
descent direction, but the accuracy of step-size computation is less important, as long as the step-
size is not too long. Hence, the accuracy of the local model (or the inner problem) is less crucial
in this part of the optimization process. However, although approximative derivatives may suffice
in the beginning, the closer the optimizer gets to a local optimum, the more important becomes
the agreement of the inner and the outer problem. Hence, in the last part of the optimization
problem, the accuracy of the derivatives, also the second order derivatives, is of major importance
[Nocedal and Wright, 2006]. Especially in this phase, the computation of exact Hessians is likely
to be beneficial.

Most computational toolboxes only use approximations of the Hessian matrix by default, but
can be provided with exact second order derivatives, if computed by the user. The MATLAB
optimization toolbox [MathWorks, 2016], which was used for the studies in this chapter, allows
the specification of three algorithms, which are commonly used for optimization problems in
systems biology:

1. fmincon – interior-point (based on [Byrd et al., 2000]),

2. fmincon – trust-region-reflective (based on [Branch et al., 1999, Coleman and Li, 1996]),

3. lsqnonlin – trust-region-reflective (based on [Coleman and Li, 1996]).

The first two expect a scalar valued objective function and allow the user to provide the Hessian,
but use approximations by default (a BFGS approximation in the first, a conjugate gradient
method in the second case). The latter, lsqnonlin, expects the user to provide residuals and
their sensitivities and constructs a predefined Hessian approximation based on a Gauss-Newton
algorithm. This restricts its usability to a specific kind of objective functions (weighted least
squares), but exploits the problem structure to a higher degree.

It is now an interesting – and non-trivial – question, which of these algorithms works best
in which situation and whether – and if so, when – providing them with exact second order
derivatives is beneficial. In other words: Does providing accurate second order derivatives im-
prove the convergence of commonly used optimizer implementations? And if this is the case:
Are second order adjoint methods efficient enough such that the computation of accurate second
order derivatives pays off?

4.1.3 Profile likelihood computation

Profile likelihood (or short profile) calculation [Kreutz et al., 2013] as discussed in the Chapter 2,
is a common method to quantify uncertainties of parameters or predictions and assess practical
identifiability of small- to medium-scale models [Kreutz et al., 2013]. We repeat Equation (2.27)
from Chapter 2 here, which defines the points on the profile of parameter θr at θr = c:

PLθr(c) = max
θr=c
θ∈Ω

LD(θ) ∝ exp

−min
θr=c
θ∈Ω

J(θ)

 . (2.27)
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Figure 4.1: Methods for determining step-sizes during a local optimization. Left: Line-search methods
first fix a search direction (in this case the negative gradient). Then, typically a local model of the cost
function along the search direction is constructed from a Hessian-vector product or an approximation of
the Hessian. Optimizing the local model gives the step-size. Right: Trust-region methods also construct
a local model of the cost function, which is usually two- or higher dimensional. They optimize the local
model within the trust-region (e.g., a ball) around the current position, to compute the search direction
and the step-size at the same time and update the trust-region radius for the next step.

Currently, two approaches exist to compute profiles for model properties: An optimization-based
and an integration-based approach (Figure 4.2).

The optimization-based approach (as implemented in [Raue et al., 2015]) exploits the fact
that the points on a profile are conditionally optimal and computes the profile for θr via a
sequence of optimization problems [Raue et al., 2009]. In each step, all parameters besides θr
are optimized while θr is fixed to a value c. For each new step, c either increased or decreased
(depending on the profile calculation direction) and a new (local) optimization is initialized based
on the previously found parameter values. As long as the function PLθr(c) is smooth, this initial
point will be close to the optimum and it suffices to run one local optimization which typically
converges within few iterations. Yet, as many optimizations have to be performed to obtain a full
profile and usually all profiles have to be computed, this process is computationally demanding.

An efficient alternative to the optimization-based is the integration-based approach [Chen
and Jennrich, 1996, 2002] (as implemented in [Kaschek et al., 2019]), which circumvents repeated
optimization by using a dynamical system which evolves along the optimal path (2.27). For a
model property g : Ω −→ R (e.g., g(θ) = θr), which is constrained to g(θ) = c, the dynamical
system is obtained by differentiating the optimality condition with respect to the value of the
constraint c. This yields:

∇θJ(θ) + λ∇θg(θ) = 0 (4.7)

Here, λ is a Lagrange multiplier. After differentiation, we get the following differential algebraic
equation (DAE): (∇θ∇Tθ J +∇θ∇Tθ g ∇θg

∇Tθ g 0

)(
dθ
dc
dλ
dc

)
=

(
0

1

)
(4.8)

The matrix on the left hand side is called the mass matrix. Multiplying this equation with
its inverse from the left (assuming it exists) yields an ODE formulation. The resulting ODE
can in principle be integrated with established differential equation solvers if the Hessian ∇2

θJ
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Figure 4.2: Methods for computing profile likelihoods for a parameter. Left: The (standard)
optimization-based approach starts from the global optimum and moves along a parameter axis in small
intervals. It uses a local optimization method to optimize all but the profiled parameter. Right: The
integration-based method defines an ODE which describes the profile path through parameter space start-
ing at the global optimum. Integrating this ODE yields the profile path and hence the profile likelihood.

or an approximation thereof is computed [Chen and Jennrich, 2002]. In principle, also a direct
integration of the DAE would be possible, but it has been shown that using the ODE formulation
tends to be more efficient [Boiger et al., 2016]. However, integrating this ODE is non-trivial, as
the mass matrix may have singularities, which may lead to discontinuities in the profile path.
This results in small step sizes during ODE integration. Moreover, the trajectory of the ODE
solver may deviate from the true profile path of Equation (2.27) due to numerical errors or
approximations being used. These aspects can make the integration-based method fail, or, if
error tolerances are relaxed or ODE integration is even carried out with a fixed step-size, may
yield incorrect results. moreover, as computing the Hessian is a challenging task, this method is
currently less used for profile computation. However, in cases in which optimization is intricate,
the integration-based method may even work better than the optimization-based approach.

4.2 Contribution: Second order adjoint sensitivity analysis

To assess the potential of second order adjoint sensitivity analysis, the corresponding equations
for time-discrete measurements were derived and implemented in the ODE solver toolbox AM-
ICI. We compared accuracy and computation time for the Hessian with those from established
methods. Furthermore, we evaluated parameter optimization and profile calculation methods
using Hessians for published models.

4.2.1 Derivation and implementation

To the best of the author’s knowledge, second order adjoint sensitivity analysis has not been
used together with time-discrete measurements and the corresponding equations have not been



60 CHAPTER 4. SECOND-ORDER DERIVATIVES IN PARAMETER ESTIMATION

derived so far. Furthermore, second order adjoint sensitivity analysis has, as far as the author can
tell, not yet been applied in the field of systems and computational biology and no ready-to-use
implementation of it is available.

Along the lines of first order adjoint sensitivity analysis, which is explained in Chapter 2,
second order adjoint sensitivity analysis computes Hessians with better scaling properties than
second order forward sensitivity analysis. Again, the error of the Hessian can be controlled during
ODE integration, yielding as accurate results as those from second order forward sensitivity
analysis. To compute Hessians, the idea of the adjoint method is applied with an additional
differentiation with respect to θ. In a first step, the system defined by (2.19) is integrated
forward in time. Subsequently, the corresponding adjoint system is integrated backwards in
time, using the information from the forward simulation. This system consists of the original
adjoint system plus the nθ derivatives of the adjoint state with respect to θr.

Equations of the second order adjoint system

To derive the equations for the second order adjoint system, we first look at the equation which
defines the contribution of the j-th timepoint to the gradient, which we call Jj . Again, we omit
all dependencies (except those of t, as they are important for the derivation) and neglect the
sum over the experimental conditions k:

∂Jj(θ)

∂θr
=

ny∑
i=1

((
1

σij
− (ȳij − hi(tj))2

σ3
ij

)
∂σij
∂θr
− ȳij − hi(tj)

σ2
ij

(
∇Txhi(tj)sxr (tj) +

∂hi(tj)

∂θr

))

=

ny∑
i=1

((
1

σij
− (ȳij − hi(tj))2

σ3
ij

)
∂σij
∂θr
− ȳij − hi(tj)

σ2
ij

(
∇Txhi(tj)sxr (tj) +

∂hi(tj)

∂θr

))

+

tj+1∫
tj

p(t)T

ṡxr (tj)−
∂f(t)

∂θr
−∇Tx f(t)sxr (tj)︸ ︷︷ ︸

=0

 dt (4.9)

=

ny∑
i=1

((
1

σij
− (ȳij − hi(tj))2

σ3
ij

)
∂σij
∂θr
− ȳij − hi(tj)

σ2
ij

∂hi(tj)

∂θr

)
−

tj+1∫
tj

p(t)T
∂f(t)

∂θr
dt

−
tj+1∫
tj

(
ṗ(t)T + p(t)T∇Tx f(t)

)
sxr (t)dt−

ny∑
i=1

ȳij − hi(tj)
σ2
ij

∇Txhi(tj)sxr (tj)

+ lim
t→t−j+1

p(t)T sxr (t)− lim
t→t+j

p(t)T sxr (t) (4.10)

In the first step, we add the ODE of the first order state sensitivities, i.e., a term equal to 0 ∈ Rnx ,
take the scalar product with another vector p(t) (which will be the adjoint state later on), and
integrate over the time interval [tj , tj+1]. In the last step, we use integration by parts in order
to get the time derivative of the adjoint state and regroup all expressions with state sensitivities
together.

To compute the Hessian, we differentiate Equation (4.10) with respect to θq and get an
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expression for the contribution of the j-th timepoint to the Hessian:

∂2Jj(θ)

∂θr∂θq

=

ny∑
i=1

(
− 1

σij

∂σij
∂θq

+ 3
(ȳij − hi(tj))2

σ4
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∂θq

+ 2
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σ3
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))
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∂θq
sxr (t) (4.11)

We can use Equation (4.11) to define the equations for the second order adjoint state analogously
to the first order adjoint state:

∂ṗ(t)

∂θq
= −∂p(t)

∂θq
∇x(f(t)T )−

(
(sxq (t)⊗ In)(∇x ⊗∇x)(f(t)T ) +

∂∇x(f(t)T )

∂θq

)
p(t) (4.12)

∂p(tj)

∂θq
= lim

t→t+j

∂p(t)

∂θq
+
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i=1

ȳij − hi(tj)
σ2
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(
∇Tx∇xhi(tj)sxq (tj) +
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∇Txhi(tj)sxq (tj) +
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)
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)
(4.13)

∂p(tnt)
T

∂θq
= 0 (4.14)

Using these equations, those from the adjoint state and summing up over all time points finally
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yields the Hessian:
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(4.15)

The computation of the Hessian by second order adjoint sensitivity analysis requires solv-
ing two ODE systems of size nx(1 + nθ) and n2

θ one dimensional quadratures. Again, these
quadratures are fast to evaluate compared with the ODE systems. Hence, the scaling behavior
is expected to be almost linear in the number of state variables and the number of parameters.

Implementation in the toolbox AMICI

The code for computing gradients by first order forward and adjoint sensitivity analysis has
already been implemented in the MATLAB, Python, and C++ based toolbox AMICI (Advanced
Multilanguage Interface to CVODES and IDAS, Fröhlich et al. [2019]). In its core part, AMICI
relies on the ODE solver CVODES [Serban and Hindmarsh, 2005] from the SUNDIALS package
[Hindmarsh et al., 2005]. The implementation of the presented equations for the computation of
Hessians by second order adjoint sensitivity analysis is part of the contribution of this thesis.

AMICI generates C++ code for ODE integration that can be interfaced from MATLAB
(and Python) to ensure computational efficiency. This is important, since during parameter
estimation, ODE integration is the computationally most expensive part, although being carried
out in a compiled language. So far, the generation of the C++ files necessary for second order
adjoint sensitivity analysis is only available via the MATLAB interface of AMICI. A refactoring
of the corresponding code in Python 3 is envisaged for the near future.

Beyond the possibility to compute the full Hessian, the MATLAB interface of AMICI also
allows to compute directional second order derivatives, i.e., Hessian vector products, directly.
As this method does not even need the full first order forward sensitivity matrix, it scales only
weakly in the number of parameters and would hence also be applicable to large scale models
[Özyurt and Barton, 2005]. Also this implementation has been a part of this thesis.

4.2.2 A hybrid method for profile calculation

Switching between methods

For profile computation, we propose a hybrid method which switches between the optimization-
and the integration-based approach depending on which method is more promising in the current
situation. This hybrid optimization- and integration-based approach employs by default the
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integration-based technique using a high-order Adams-Bashforth scheme [Shampine and Reichelt,
1997], which can handle moderately stiff ODE systems. If the mass matrix in (4.8) is singular,
a (Moore-Penrose) pseudo inverse with adjustable conditioning is used, which allows to balance
the stiffness of the ODE against the accuracy with which the profile path is followed. However,
other (low-rank) approximations of the inverse would be possible and might be beneficial [Chung
et al., 2015]. If the step size falls below a previously defined threshold, integration will be stopped
and a few optimization-based steps are carried out to circumvent numerical integration problems.
This generally accelerates profile computation, since the integration-based method is usually the
faster alternative, but becomes slower if the profile ODE becomes stiff. After some optimization
based steps, ODE integration is reinitialized at the profile path. During profile integration, the
remaining gradient is monitored. If it exceeds a predefined threshold, one single optimization
step is started to regain the profile path on which profile integration reinitialized.

Implementation in the toolbox PESTO

The algorithm for hybrid profile calculation was implemented in the MATLAB toolbox PESTO
(Parameter EStimation TOolbox, Stapor et al. [2018b]). The code version used for the study
in this thesis is available via Zenodo, at https://doi.org/10.5281/zenodo.1162326. An updated
version of the code is available on Github.

The implementation allows the use of either user-provided Hessians (which may either be
approximations, such as the FIM, or accurate Hessian from second order sensitivity analysis),
Hessians based on finite-differences from user-provided gradients or objective function values,
and Hessian approximations based on quasi-Newton schemes (BFGS, SR1, or DFP), which are
automatically computed and updated by PESTO.

4.2.3 Application examples

For the assessment of the methods, we considered five published models and corresponding
datasets (called M1 - M5). The models possess 3 to 26 state variables, 9 to 116 unknown
parameters and a range of dataset sizes and identifiability properties. Four models describe
signal transduction processes in mammalian cells, one describes the central carbon metabolism
of E. Coli. An overview about the model properties is provided in Table 4.1.

Table 4.1: Overview of considered ODE models and their properties

M11 M22 M33 M44 M55

State variables 6 3 9 18 26
Parameters 9 28 16 116 86
Time points 8 7 16 51 16
Conditions 1 3 1 1 10
Data points 24 72 46 110 960
modeled system Epo receptor RAF/MEK/ERK JAK/STAT E. Coli carbon EGF, TNF

signaling signaling signaling metabolism signaling

1Model adapted from Becker et al. [2010]
2Model adapted from Fiedler et al. [2016]
3Model adapted from Swameye et al. [2003]
4Model adapted from Chassagnole et al. [2002]
5Model adapted from MacNamara et al. [2012]
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Figure 4.3: Scaling of computation times of the four investigated methods to compute or approximate
the Hessian (at global optimum for each model) including linear fits and their slopes. All reported
computation times were averaged over 10 runs. A) For model M5, the number of parameters was fixed
to different values. B) The ratio of the computation times for Hessians or its approximation over the
computation time for solving the original ODE is given for the five models from Table 4.1. This figure is
taken from the author’s publication [Stapor et al., 2018a], Figure 1.

4.2.4 Hessian computation

Scaling behavior of the method

To verify the theoretical scaling of the discussed methods, we evaluated the computation times
for the model with the largest number of state variables (M5). This evaluation revealed that the
practical scaling rates were close to their theoretical predictions (Figure 4.3 A). Second order
adjoint sensitivity analysis, FIM, and finite differences based on first order adjoint sensitivity
analysis exhibited a roughly linear scaling with respect to the number of parameters. Second
order forward sensitivity analysis exhibited the predicted quadratic scaling. The FIM showed the
lowest computation time for all models. The proposed approach, second order adjoint sensitivity
analysis, was the fastest method to compute the true Hessian, taking in average about 4 times
as long to compute as the FIM.

We also evaluated whether the same scaling holds across models (Figure 4.3 B). Interestingly,
we found similar but slightly higher slopes for all considered methods, although the number of
state variables between models differs substantially. This suggests that in practice the number
of parameters is indeed a dominating factor. Overall, second order adjoint sensitivity analysis
was the most efficient method for the evaluation of the Hessian.

Accuracy of the Hessian matrix

To assess the accuracy of Hessians and their approximations provided by the different methods,
we compared the results at the global optimum. In general, we observed a good agreement of
Hessians computed using second order adjoint and forward sensitivity analysis (Figure 4.4 A).
For the Hessian computed by finite differences, we found – as expected – numerical errors (Figure
4.4 B), which depended non-trivially on the combination of ODE solver accuracy and the step
size of the finite differences. The FIM usually differed substantially from the Hessians, even
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though this approximation is often considered to be good close to a local optimum (Figure 4.4
C).

Since most optimization algorithms internally compute a Newton-type update ∆θ = −H−1g,
in which H is the Hessian and g is the gradient, we also evaluated the quality of the Hessian
pre-image. For this purpose, we compared the inverses of the regularized Hessians computed
with different methods with the one computed using second order adjoint sensitivity analysis in
the operator norm. If the Hessian was not invertible, we used the Moore-Penrose-Pseudoinverse.
This analysis revealed that the pre-images from second order forward and adjoint sensitivity
analysis coincide well, whereas those from finite differences and the FIM differed substantially
from the results based on second order sensitivity analysis (Figure 4.4 D).

In combination, our assessment of scaling and accuracy revealed that second order adjoint
sensitivity analysis provides the most scalable approach to obtain accurate Hessians. Rough
approximations of the Hessian in terms of the FIM could however be computed at a lower
computational cost.

4.2.5 Application 1: Parameter optimization

As our results revealed a trade-off between accuracy and computation time for computing Hes-
sians, we investigated how this affects different optimization algorithms. To this end, we com-
pared optimization with different setups: Newton and quasi-Newton variants of the interior-point
algorithm and the trust-region-reflective algorithm, which are implemented in the MATLAB rou-
tine fmincon:

• Residuals and their sensitivities were computed with first order forward sensitivity analysis
and provided to the least-squares algorithm lsqnonlin, which used the trust-region-reflective
algorithm for step-size computation and constraint handling.

• Gradient and FIM were computed using first order forward sensitivity analysis and provided
to fmincon, which used the trust-region-reflective algorithm for step-size computation and
constraint handling.

• Gradient and Hessian were computed with second order adjoint sensitivity analysis. A
positive definite transformation of the Hessian was provided to fmincon, using the trust-
region-reflective algorithm for step-size computation and constraint handling (which needs
a strictly positive definite Hessian to work, which we achieved by enforcing a lower threshold
for the eigenvalues of the Hessian).

• Gradients were computed using first order forward sensitivity analysis and provided to fmin-
con, using the interior-point algorithm for constraint handling with a BFGS approximation
of the Hessian.

• Gradient and FIM were computed with first order forward sensitivity analysis and provided
to fmincon, using the interior-point algorithm for constraint handling.

• Gradients and Hessians were computed with second order adjoint sensitivity analysis and
provided to fmincon, using the interior-point algorithm for constraint handling.

The optimization study was carried out using the MATLAB toolbox PESTO for the models
M2 and M3. Those two models were chosen, since they are small enough for a rigorous benchmark
study, but exhibit dynamics which are more involved than simple mass action kinetics and
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Figure 4.4: Accuracy of different methods to compute or approximate the Hessian at the global optimum
for the models M2 and M3. Each point represents the numerical value of one Hessian entry as computed
by two different methods: A) second order forward analysis vs. second order adjoint analysis. B) finite
differences (different finite difference step sizes and ODE solver tolerances were considered) vs. second
order adjoint sensitivity analysis. C) Fisher information matrix vs. second order adjoint analysis. All
computations were carried out with relative and absolute tolerances set to 10−11 and 10−14, respectively.
For finite differences, lower accuracies of 10−7 and 10−10 were tested, together with the step sizes 10−5

and 10−2. D) Operator norm of the differences in the inverse of the regularized Hessians computed with
second order adjoint sensitivity analysis compared to five considered methods (second forward sensitivity
analysis, finite differences with different tolerances and step sizes, Fisher information matrix). This figure
is taken from the author’s publication [Stapor et al., 2018a], Figure 2.



4.2. CONTRIBUTION: SECOND ORDER ADJOINT SENSITIVITY ANALYSIS 67

10
1

10
2

10
3

10
4

ti
m

e
 /
 c

o
n
v
e
rg

e
d
 s

ta
rt

 [
s
]

JAK/STAT model

FIM H BFGS FIM H

10
2

10
3

o
p
ti
m

iz
a
ti
o
n
 s

te
p
s

0

10

20

30

40

50

60

c
o
n
v
e
rg

e
d
 s

ta
rt

s
 [
%

]

RAF/MEK/ERK model

FIM H BFGS FIM H

lsqnonlin lsqnonlin

|- trust-region -| |- trust-region -||- interior-point -| |- interior-point -|

|-           fmincon           -| |-           fmincon           -|

A

B

C

Figure 4.5: Performance measures of different local optimization methods (lsqnonlin with trust-region-
reflective algorithm and fmincon with trust-region-reflective and interior-point algorithm, using either
Hessians (H), Fisher information matrix (FIM), or the BFGS scheme). The multi-start optimization
was carried out multiple times using different starting points for the local optimizations. Mean and
standard deviation for A) the ratio of computation time over converged optimization starts and B) the
number of converged starts are shown. C) Median and standard deviation of the number of steps over
all optimization runs. This figure is taken from the author’s publication [Stapor et al., 2018a], Figure 3.
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Figure 4.6: Waterfall plots of different local optimization methods. For the models of JAK/STAT and
RAF/MEK/ERK signaling, four multi-start local optimizations (of which the first is shown here) with
six different local optimization methods were carried out (using the least-squares optimization algorithm
lsqnonlin with the trust-region-reflective algorithm, the constraint optimization algorithm fmincon with a
trust-region-reflective algorithm provided with either the FIM or the Hessian computed with second order
adjoint sensitivity analysis, and fmincon with an interior-point method with either a BFGS approximation
of the Hessian, the FIM, or the Hessian computed with second order adjoint sensitivity analysis). Each
multi-start consisted of 200 local optimization runs, of which the final objective function values were
sorted and depicted. Plateaus in the waterfall plot indicate local optima of the objective function. This
figure is taken from the author’s publication [Stapor et al., 2018a], Supplementary Figure 1.
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thus represent challenging optimization tasks. For each of these local optimization methods,
we performed four multi-start local optimizations with different initializations and 200 starting
points each. Mean and standard deviation depicted in Figure 4.5 were computed over these four
repetitions. For the numerical experiments, we provided the following tolerances to the local
optimization algorithms:

• tolerance for step size in parameter: 10−10 for the JAK/STAT model, 10−12 for the
RAF/MEK/ERK model

• tolerance for change in the objective function: 10−10 for both models

• tolerance for the remaining gradient: 10−6 for both models

Moreover, the following settings have been used for optimization:

• maximum number of optimization steps (per step at least one gradient evaluation): 2000

• maximum number of objective function evaluations: 1000 · nθ

• PrecondBandWidth = inf, i.e. the inner optimization problem was solved by factorization

For all other optimization options, the MATLAB default settings were used.
We considered the least-squares algorithm lsqnonlin as gold standard for the considered prob-

lem class, as this method has previously been shown to be very efficient [Raue et al., 2013b]. Here,
we studied the effect of using exact Hessians on the optimization algorithms trust-region-reflective
and interior-point implemented in fmincon. As performance measure of the optimization meth-
ods, we considered the computation time per converged start (i.e. starts which reached the
global optimum), the total number of converged starts and the number of optimization steps.
The definition of a threshold of the objective function value to which an optimization was ac-
cepted as converged to the global optimum was based on the corresponding waterfall plot for
each experiment (see Figure 4.6).

The least-square solver lsqnonlin outperformed, as expected, the constrained optimization
method fmincon (Figure 4.5 and Figure 4.6). Among the constrained optimization methods, the
methods using exact Hessians computed with the second order adjoint method performed equal
or better than the alternatives regarding overall computational efficiency (Figure 4.5 A). Indeed,
these methods reached a higher percentage of converged starts (Figure 4.5 B and Figure 4.6)
than fmincon using the FIM or the BFGS scheme. This is important, as convergence of the
local optimizer is often the critical property [Raue et al., 2013b]. In addition, the number of
necessary function evaluations was reduced (Figure 4.5 C). Furthermore, we found differences in
convergence and computational efficiency for fmincon, depending on the chosen algorithm.

4.2.6 Application 2: Profile computation

To assess the benefits of Hessians in uncertainty analysis, we compared the performance of
optimization- and integration-based profile calculation methods for the models M2 and M3. For
the optimization-based approach, we employed the algorithm implemented in PESTO, which
uses first order proposal with adaptive step-length selection [Boiger et al., 2016]. We compared
the local optimization strategies described in the previous section (omitting the methods based
on the FIM, due to their poor performance). For the hybrid approach, we used the MATLAB
default tolerances for ODE integration. We compared the hybrid scheme using Hessians and the
FIM. All profiles were computed to a confidence level of 95%.
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Figure 4.7: Computation time for parameter profiles using either the optimization-based method (lsqnon-
lin or fmincon with trust-region (TR) or interior-point (IP) algorithm and Hessian or BFGS approxima-
tion), or the hybrid method with either FIM or Hessian. Top: Total computation time for all profiles
of the application example M3 (JAK/STAT signaling model). Bottom: Total computation time for all
profiles of the application example M2 (RAF/MEK/ERK signaling model). This figure is taken from the
author’s publication [Stapor et al., 2018a], Supplementary Figure 7.

The comparison of the profile likelihoods calculated using different approaches revealed
substantial differences (Figure 4.7). The optimization-based approaches worked well for the
JAK/STAT model but mostly failed for the RAF/MEK/ERK model (Figure 4.7A). For the
RAF/MEK/ERK model, only fmincon with the trust-region-reflective algorithm and exact Hes-
sians worked reliably among the optimization-based methods. Even lsqnonlin yielded inaccurate
results for 11 out of 28 parameter profiles (Figure 4.9). A potential reason is that the toler-
ances – which were previously also used for optimization – were not sufficiently tight. Purely
integration-based methods failed due to numerical problems, e.g. jumps in the profile paths
(Figure 4.8). Even extensive manual tuning and the use of different established ODE solvers
(including ode113, ode45, ode23, and ode15s) did not result in reasonable approximations for all
profiles. In contrast, the hybrid approach computed accurate profiles for all parameters and all
models, when provided with exact Hessians. However, when provided with the FIM, the hybrid
approach failed as soon as it had to perform optimization steps.

In addition to the accuracy, also the computation time of the methods varied substantially.
The hybrid method using exact Hessians was substantially faster than the remaining methods
(see Figure 4.7). The second fastest method was the optimization-based approach using exact
Hessians with the trust-region-reflective algorithm for optimization. lsqnonlin was slightly slower
and fmincon using the interior-point algorithm substantially slower (for both, the BFGS scheme
and Hessian), although they – as mentioned above – did not provide accurate profiles.

Overall, the proposed hybrid approach using exact Hessians outperformed all other methods.
Compared to the best reliable competitor (optimization-based profile calculation using fmincon
with the trust-region-reflective algorithm and exact Hessians), the computation time was reduced
by more than a factor of two. This is substantial for such highly optimized routines and outlines
the potential of exact Hessians for uncertainty analysis.
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Figure 4.9: Profile likelihoods for the 28 parameters of the RAF/MEK/ERK example. The
posterior ratio in the profile likelihood is depicted against the parameter value for each profile,
profiles are cut off at a confidence level of 95%. The two methods using the Hessian (light
blue and yellow, optimization based and hybrid) are in good agreement with each other. The
optimization based profiles computed with lsqnonlin show an unfavorable behavior for 11 out
of 28 profiles, as those profiles are not fully computed and cut off due to convergence problems
during optimization. This figure is taken from the author’s publication [Stapor et al., 2018a],
Supplementary Figure 3.
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4.3 Discussion

4.3.1 Summary and conclusion

ODE models in systems and computational biology rely on estimated parameter values, which
are inferred from experimental data with numerical optimization methods. In this chapter, we
presented second order adjoint sensitivity analysis, a method to compute accurate Hessians at
low computational cost. This means that the method scales linearly in the number of model
parameters and state variables. We also provided a ready-to-use implementation thereof in the
freely available toolbox AMICI, and benchmarked its efficiency on a set of published models from
systems biology. Then, we demonstrated that the efficiency of some of the most common methods
in parameter optimization in systems biology can be improved by using those Hessians. Finally,
we introduced a novel method for profile computation, which outperformed existing approaches
by efficiently exploiting the Hessian of the objective function.

We showed that second order adjoint sensitivity analysis possesses better scaling properties
than common methods to compute Hessians while yielding accurate results, rendering it a promis-
ing alternative to existing techniques. Moreover, as the Hessian can be used for optimization,
we demonstrated that state-of-the-art constraint optimization algorithms yield more robust re-
sults when using exact Hessians. However, computing and exploiting those exact Hessian was
not beneficial in all situations: The analysis of the optimizer performance revealed that least-
squares algorithms (such as lsqnonlin), which exploit the problem structure to a higher degree,
are difficult to outperform and still remain the methods of choice, if applicable. Many param-
eter estimation problems considered in systems biology do however not possess this structure.
This is for instance the case for problems with additional constraints [Mitra et al., 2018], ap-
plications considering the chemical master equation [Fröhlich et al., 2016], or ODE constrained
mixture models [Hasenauer et al., 2014]. For these problem classes, the trust-region-reflective
and interior-point optimization algorithms as implemented in fmincon are the state-of-the-art
methods.

For the computation of profile likelihoods, we demonstrated that Hessians from second or-
der adjoint sensitivity analysis reduce computation time and improve robustness for all of the
investigated computational methods. This makes sense, as in optimization-based profile compu-
tation, local optimizations are started close to a local optimum. In the vicinity of an optimum,
the accuracy of second order derivatives is more crucial, as the convergence of an optimization
algorithm depends on a good correspondence of the outer and the inner optimization problem.
In this situation, providing the optimization algorithm with exact Hessians allows to outperform
even highly problem tailored algorithms such as lsqnonlin.

Finally, we presented a hybrid method for profile computation, which can efficiently handle
problems that are poorly locally identifiable and have ill-conditioned Hessians. We also provided
an implementation of this method in the freely available parameter estimation toolbox PESTO.
Although being a reliable approach for uncertainty analysis [Fröhlich et al., 2014], profile likeli-
hoods are often disregarded due to their high computational effort. The presented hybrid method
based on exact Hessians may be an approach the tackle this problem, as already the still simple
implementation used in this thesis outperformed all established approaches.

4.3.2 Further applications for second order adjoint sensitivities

Beyond the presented applications in this thesis, second order adjoint sensitivity analysis to-
gether with the presented implementation can be used for further applications. As some of these
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applications are straightforward to implement, we expect them to be investigated soon.

Methods for exploiting Hessians in optimization more efficiently

In recent years, novel optimization algorithms are being steadily developed, which exploit curva-
ture information about the objective function (see Fröhlich et al. [2019] for a review of optimiza-
tion methods).

Either directions of negative curvature can be used to escape saddle-points efficiently [Dauphin
et al., 2014], or third-order approximations of the objective functions are constructed iteratively
from Hessians along the trajectory of optimization to improve the convergence order [Cartis
et al., 2011, Martinez and Raydan, 2017, Nesterov and Polyak, 2006]. As this information is
most efficiently computed by second order adjoint sensitivity analysis, an application would be
a natural next step.

Another approach might be a hybrid optimization algorithm which switches the type of the
second order derivative: Such an algorithm could start with a quasi-Newton-method in the
beginning of the optimization process and switch to exact Hessians as soon as the algorithm
comes close to a first-order stationary point. This might improve optimization performance,
as the computationally still more demanding Hessian is only computed when it is likely to be
beneficial. Such approaches might outperform current optimization strategies, which are often
not designed to exploit, e.g., directions of negative curvature that may be present in non-convex
problems. These methods will be particularly interesting subjects of further studies when being
combined with second order adjoint sensitivity analysis.

Applications for directional second order derivatives

While this chapter focused on the efficient calculation of the Hessian, second order adjoint sensi-
tivity analysis can also be used to compute Hessian vector products [Özyurt and Barton, 2005].
This information can be exploited by optimization methods such as truncated Newton [Nash,
1984] or accelerated conjugate gradient [Andrei, 2009] algorithms, which are suited for large-
scale optimization problems. As the corresponding implementation for directional second order
adjoint sensitivity analysis is already available within AMICI, applying it for optimization would
be straight forward. It was however disregarded for this thesis, as the optimization algorithms
implemented in MATLAB are not designed to efficiently exploit Hessian vector products and
hence, adequate optimization algorithms would still have to be implemented first.

Further applications

Besides optimization and profile calculation, Hessians can also be used for local approximations
of the likelihood function, which allows an approximative assessment of practical identifiability
properties and the approximation of the parameter confidence intervals for large-scale models
[Fröhlich et al., 2018a, Kapfer et al., 2019]. In addition, Hessians can be employed by for certain
MCMC sampling methods [Girolami and Calderhead, 2011, Lan et al., 2015]. Also bootstrapping
methods [Joshi et al., 2006] or the radial penalization method [Kreutz, 2018] would profit from
accurate Hessians, as the performance of optimization is improved, which is used in these methods.
Hence, the approaches presented here may accelerate various uncertainty analysis methods and
make their application feasible for model sizes, for which these methods have not been applicable
before.
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4.3.3 Outlook and further research

Beyond simply exploiting the proposed second order adjoint sensitivity method, also further
research in the field of adjoint sensitivity analysis itself with applications in systems biology
is a promising next step. Either the proposed methods can be tailored more specifically to
certain problem classes, or completely novel problem classes can be tackled by extending adjoint
methods.

Adjoint sensitivity analysis for steady-state data

Especially for large-scale ODE models, it is common that measurement data is only available for
the steady-state of the system [Fröhlich et al., 2018a, Khodayari and Maranas, 2016, Schmiester
et al., 2019a]. Mathematically, this is a particular case, which exhibits a particular problem
structure. Taking advantage of this structure could lead to substantially more efficient algorithms:
Inferring the steady-state of the system is often possible by direct root finding approaches, such
as Newton’s method, as implemented in many computational toolboxes [Fröhlich et al., 2019,
Mendes et al., 2009]. It has been shown that these approaches can outperform classical ODE
integration by orders of magnitude [Lines et al., 2019].

Adjoint sensitivity analysis can be combined with direct steady-state computation, as for the
steady-state of the original ODE system also the adjoint problem has a specific structure: It
reduces to a linear ODE with constant matrix. Such problems have an analytical solution, which
can be computed by solving a linear system of equations, instead of integrating an ODE system.
Hence a corresponding implementation would be highly beneficial.

Adjoint sensitivity analysis and discrete events

Another extension of the current version of adjoint sensitivity analysis would be deriving and
implementing the adjoint equations for ODE systems which exhibit discrete events, i.e., dis-
continuities in the right hand side of the ODE or even in the ODE solution. Discrete events
are a common way to model certain biology systems which show extremely stiff dynamics with
almost instantaneous reactions to specific triggers, such as spiking neurons [Izhikevich, 2003].
Corresponding implementations for time-dependent triggers are implemented in many state-of-
the-art toolboxes [Fröhlich et al., 2019, Hoops et al., 2006, Raue et al., 2015, Somogyi et al.,
2015]. However, at the moment only AMICI is able to handle more complex (e.g., parameter or
state-dependent) trigger functions while also integrating the corresponding forward sensitivity
equations, even up to second order [Fröhlich et al., 2017b]. Yet, the counterpart for adjoint
sensitivity analysis has so far neither been derived nor implemented. Filling this gap with an
appropriate mathematical and computational solution is an important next step, which would
for the first time allow efficient parameter estimation for large-scale models with discrete events.

Adjoint sensitivity analysis for higher order derivatives

Recently, a novel method for approximative profile computation has been proposed [Lill et al.,
2019]. It exploits the geodesic equations on the model manifold that rely on the Christoffel
symbols, which are local representations of covariant derivatives. Already by approximating the
geodesic equation by using constant Christoffel symbols, some important non-local effects can
be captured.

For some specific problems in parameter estimation, this method can outperform existing
approaches [Lill et al., 2019]. As Christoffel symbols go beyond the Hessian matrix and allow
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to approximate third order derivatives of the objective function, they can currently only be
computed from second order forward sensitivities. As we have seen in this chapter, computing
second order forward sensitivities scales poorly in the number of model parameters. However, a
corresponding adjoint formulation for the Christoffel symbols can be derived, which enjoys better
scaling properties, namely a similar scaling to second order adjoint sensitivities as proposed here.
Deriving and implementing this method would allow to test this approach even for medium-scale
models, and might hence be a promising alternative to current techniques.
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Chapter 5

Parameter estimation for ODE
mixed-effect models

In the last decades of the 20th century, measurement techniques such as immunoblotting [Renart
et al., 1979] or quantitative polymerase chain reaction (qPCR) [Gibson et al., 1996] allowed to
collect large amounts of data about average protein and RNA levels in bulks of cells. From
these data, many ODE models of biochemical reaction networks have been constructed, which
in turn enhanced our understanding of many cellular processes [Bachmann et al., 2011, Becker
et al., 2010, Chen et al., 2009, Kholodenko, 2007, Zheng et al., 2012]. In recent years, new
measurement techniques came up, from which similar information about RNA and protein levels
could be inferred for single cells [Giesen et al., 2014, Herzenberg et al., 2006, Kolodziejczyk et al.,
2015]. This higher level of detail in measurement data pushed again our understanding of cell
biology: It showed that genetically identical cells may develop pronounced cell-to-cell variability
upon stimulation [Spencer et al., 2009], it allowed to observe how cells differentiate from one cell
type to another [Haghverdi et al., 2016], and it enabled to understand how a gradual response of
a cell population can be controlled by exploiting cell-to-cell variability [Mitchell and Hoffmann,
2018].

The heterogeneity which is observed in isogenic cells is mostly assumed to arise from two
different sources [Llamosi et al., 2016, Swain et al., 2002]: The first one is typically attributed
to the stochasticity of intra-cellular processes (e.g., in gene expression) and is sometimes termed
intrinsic noise [Swain et al., 2002]. The second one is attributed to differences between cells, such
as different protein abundances or variability of compartment and cell sizes across cells, governed
by deterministic dynamics, and termed extrinsic noise [Llamosi et al., 2016, Rosenfeld et al., 2005].
As method development for ODE models is the focus of this thesis, the following chapter will
be concerned with contributions to single-cell ODE modeling. Due to their deterministic nature,
single-cell ODE models are mainly used to model extrinsic noise. In order to underline that
extrinsic noise is a fundamental biological property of cells and does not arise from measurement
errors, we will rather use the term cell-to-cell variability in the following.

Recently, the additional information in single-cell data led to the development of new math-
ematical models [Hasenauer et al., 2014, Karlsson et al., 2015, Khammash, 2009, Zechner et al.,
2012]. However, due to the higher complexity of these data, the landscape even of determinis-
tic single-cell models is more heterogeneous than this is the case for classic ODE models [Loos
and Hasenauer, 2019]. One reason for this can be attributed to the various types of single-cell
data themselves, such as time-lapse, time-lapse statistics, and snapshot data: Each of these
data types is collected by different measurement techniques, has specific advantages, and comes
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with its own challenges. Hence, different modeling approaches and computational methods have
been developed [Filippi et al., 2016, Karlsson et al., 2015, Loos et al., 2018b]. For this reason,
combining different types of single-cell data with each other or with population average data is
currently an open problem [Loos and Hasenauer, 2019]. Moreover, single-cell data allows to infer
knowledge about the distribution of measurable quantities across cells. How to best describe and
estimate these distributions rather than only average values of measurements in cell populations
by statistical models is another challenging question [Pinheiro and Bates, 1996].

In the comparably young field of single-cell modeling, it is common that novel mathematical
methods need to be developed for applicational projects. This discerns single-cell ODE modeling
from modeling with population average data, for which a number mature and highly optimized
computational toolboxes are freely available and maintained since several years [Choi et al.,
2018, Fröhlich et al., 2019, Hoops et al., 2006, Raue et al., 2015]. Also the contributions of
this chapter were motivated by the development of an ODE mixed-effect model (ODE MEM) of
JAK2/STAT5 signaling. Yet, they are applicable to a wide range of modeling problems. As a
first contribution, we propose an approach how to integrate two different data types – population
average and single-cell snapshot data – into one statistical model. This approach enables the
estimation of model parameters and the selection between candidate models for both data types
simultaneously in a statistically sound manner, which has so far been an open problem [Loos and
Hasenauer, 2019]. Secondly, when working with ODE MEMs in systems biology, the covariance
structure of the cell-specific parameters (the random effects) has to be inferred. We introduce a
novel, Lie-theoretic approach, to parametrize and estimate covariance matrices and compare it
with previously proposed methods for this task [Pinheiro and Bates, 1996].

This chapter is based on my work in the following publication:

• Stapor, P.∗, Adlung, L.∗, Tönsing, C.∗, Schmiester, L., Schwarzmüller, L., Wang, D.,
Timmer, J., Klingmüller, U., Hasenauer, J., Schilling, M. (2019). Cell-to-cell variability in
JAK2/STAT5 pathway components and cytoplasmic volumes define survival threshold in
erythroid progenitor cells. bioRxiv, 10.1101/866871, Under review

5.1 Background: ODE MEMs of cellular processes

5.1.1 Modeling and simulating population average and single-cell snapshot
data

In this chapter, we focus on ODE based models which capture cell-to-cell variability in highly
abundant biochemical species. Despite this restriction, various measurement techniques exist and
diverse modeling approaches have been developed (see [Loos and Hasenauer, 2019] for a review).
In contrast to population average measurements, single-cell measurements are typically given by
a vector or a distribution of observed values rather than by a single value, which describes the
average across a bulk of cells. Hence, those experiments need to be simulated differently and
have to be described by other likelihood functions than this is done in classic ODE models.

Statistical models of cell populations

The simplest method to model populations of single cells is the standard two stage approach
(STS) [Karlsson et al., 2015, Laird and Ware, 1982], sometimes also called the naive approach
[Llamosi et al., 2016]. In this concept, the data of each cell is treated as a separate parameter
estimation problem. By fitting all cells independently, a distribution of parameter vectors is
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obtained. Despite being intuitive and simple to implement, the STS has major drawbacks:
Firstly, the STS fails to properly discern measurement noise and biological variability, as it
is agnostic about the underlying structure of the single-cell population [Fröhlich et al., 2018b,
Karlsson et al., 2015]. This shortcoming can to some degree be addressed by recent improvements
[Dharmarajan et al., 2019]. Secondly, it would be computationally extremely demanding when
dealing with single-cell snapshot data, which was used in the application example of this chapter.
In single-cell snapshot data, thousands or, if multiple experimental conditions are considered,
even millions of cells can be measured. When using the STS, the model would have to be fitted
to all these cells independently, which would increase the computational complexity by multiple
orders of magnitude.

Mixed-effect models (MEMs) are a statistically sound approach to allow variable parameters
across a population of cells [Karlsson et al., 2015, Laird and Ware, 1982]. MEMs use a common
distribution assumption for the cell population, which constrains the single-cell parameters and
allows it to discern biological variability from measurement noise [Fröhlich et al., 2018b]. As
mentioned in Equation 2.6, each cell (indexed by `) has a specific parameter vector φ`, which
is computed as a combination of the fixed effect parameter vector β and the random effect
parameter vector b:

φ` = Fβ +Rb` (2.6)

Here, F and R are called the design matrices for the fixed and the random effects [Pinheiro,
1994].

Due to their clear statistical foundations, MEMs are increasingly employed to model cell-to-
cell heterogeneity [Almquist et al., 2015, Fröhlich et al., 2018b, Karlsson et al., 2015, Llamosi
et al., 2016, Loos et al., 2018b]. Originally, the concept of MEMs was developed to study
differences within a group of individuals, e.g., humans or animals [Fisher, 1918, Henderson et al.,
1959], but is now adopted in many scientific domains and has become a research topic of its
own [Kuhn and Lavielle, 2005, Pinheiro, 1994]. In particular, the field of pharmacokinetics
and pharmacodynamics is worth being mentioned [Beal and Sheiner, 1980, Laird and Ware,
1982, Sheiner and Beal, 1983]: Some of the main computational toolboxes originate from this
domain, such as MONOLIX [Antony, 2019] and NONMEM [ICON Development Solutions, 2020].
However, both are sold under proprietary licenses.

Likelihood functions for cell populations

In systems and mathematical biology, MEMs are commonly used when dealing with single-cell
time-lapse data [Karlsson et al., 2015]. In this case, the likelihood contributions of the cells
are multiplied, as intracellular processes are assumed to be independent across cells – which is
questionable due to possible batch effects. In MEMs, the common distribution assumption for
the model parameters enters the likelihood formulation, as the likelihood of the parameters of
each single-cell is is conditioned on this common distribution assumption [Pinheiro, 1994]. The
likelihood of the `-th cell given the measurement data ȳ`,k for the k-th experimental condition
is then given as:

L`,k(β, δ, λ) =

∫
b`∈Rnb

p
(
ȳ`,k

∣∣∣ β, b`,Λ(λ), uk
)

p
(
b`
∣∣∣ D(δ)

)
db` (5.1)

Here, λ denotes the parametrization of a covariance matrix of measurement noise Λ of the single-
cell trajectories and δ are the parameters which describe the covariance structure of the random
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effects Σ. The evaluation of this likelihood requires the integration over b`, which is numerically
problematic, as the computational effort of standard quadrature rules scales exponentially with
the dimension of b, which complicates maximum likelihood computation [Kuhn and Lavielle, 2005,
Pinheiro, 1994]. Moreover, although this likelihood function would in principle be applicable also
to single-cell snapshot data, it would require simulations for each measured cell, similar to the
STS. This makes it computationally extremely expensive and hence unsuitable for single-cell
snapshot data.

Alternatively and more specific to single-cell snapshot data, distribution assumptions about
the measured quantities can be used to derive a likelihood function, under which each single cell
is evaluated [Spencer et al., 2009]. This approach has shown to perform well in practice and can
also be combined with models accounting for intrinsic noise [Filippi et al., 2016], subpopulation
structures within the data [Hasenauer et al., 2014, Loos et al., 2018b], or MEMs to allow certain
parameters to vary across cells [Loos et al., 2018b].

The main problem for both approaches is that the likelihood formulations differ substantially
from the likelihood which is used for population average data. Hence, it is unclear how data from
those two measurement techniques can be combined with each other or with population average
data. Conceptually, the likelihood contributions from different experiment types could simply be
multiplied like this is done for different experimental conditions in classic ODE models. However,
it is likely that the likelihood from one data type will then outweigh the other contributions and
hence parameter estimation may yield strongly biased results. This could be cured by introducing
an additional weighting term to appropriately balance the dissimilar contributions, but so far
there exists no convincing solution for this problem [Loos and Hasenauer, 2019].

Simulating single-cell snapshot data

When simulating cell populations by computational methods, in-silico populations of parameter
vectors have to be created. In such an in-silico population, each individual (reflected by a
parameter vector) can represent one or multiple cells. The main goal is to balance computational
complexity while accurately reflecting the distribution of the measured quantities of the real cell
populations. For this task, different approaches have been proposed in the literature.

The simplest and probably most accurate way to simulate a cell population is creating a mas-
sive Monte Carlo sample from the assumed distribution of random-effects (e.g., a multi-variate
normal distribution), in which each individual reflects a single cell (Figure 5.1). As this leads
to in-silico populations with thousands of individuals, this approach becomes computationally
prohibitive for larger models, as the computation time grows linearly with the number of indi-
viduals. At the other end of the spectrum, sigma point methods such as discussed in [van der
Merwe, 2004] yield a very efficient, but approximative approach: A d-dimensional distribution
is approximated by 2d+ 1 individuals, which are located at the center and along the coordinate
axes. For linear models, this approach matches mean and covariance exactly, but for nonlinear
models such as the solutions of ODEs, the approximation quality is highly model dependent
and may be poor [Weiße et al., 2010]. Dirac mixture distributions (DMDs) provide an approach
in between [Gilitschenski and Hanebeck, 2013, Wang et al., 2019]: A DMD is a small set of
points which is optimized to reflect the target distribution (here: a multivariate standard normal
distribution) as accurately as possible. A modified Cramér-von Mises distance [Hanebeck and
Klumpp, 2008] between the DMD and the target distribution has to be minimized, in order to
obtain the Dirac points. As the number of these Dirac points can be freely chosen, which allows
to adapt the approximation quality, a DMD can be interpreted as a small, but optimal sample.

When fitting multiple ODE MEMs with different numbers of random effects, e.g., in order to
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Figure 5.1: In-silico population of parameter vectors for different MEMs with two parameters. Monte
Carlo samples with 1000 individuals are depicted in yellow, a Dirac mixture model (DMD) with 12
individuals is depicted in blue A MEM with two fixed effects and one log-normally distributed random
effect. B MEM with two fixed effects and two uncorrelated, log-normally distributed random effects. C
MEM with two fixed effects and two positively correlated, log-normally distributed random effects.

identify the best among a group of candidate models, the choice of the in-silico population may
have a substantial impact on the outcome. As DMDs or sigma-points are approximative methods,
the approximation quality can differ for different numbers of random effects or individuals [Wang
et al., 2019]. This has to be taken into account when comparing log-likelihood values of the fitted
candidate models, as done in model selection [Fröhlich et al., 2019].

5.1.2 Estimating covariance matrices in MEMs

In an ODEMEM, the parameters which describe the covariance structure Σ of the random effects,
denoted by δ, have to be inferred and hence extend the estimation problem when compared to
a classic ODE model. In many applications, Σ is often assumed to be diagonal for simplicity
and therefore, possible correlations between the random effects are disregarded [Fröhlich et al.,
2018b]. However, these correlations may be important, as they encode information about the
modeled biological system, such as coregulations of certain proteins or coupled synthesis and
degradation rates [Llamosi et al., 2016]. Hence, it is important to not restrict the model to
diagonal covariance matrices, but to also take block-diagonal or other covariance structures into
account. For this task, the following approaches have been presented in the literature [Pinheiro
and Bates, 1996]:

• The matrix logarithm sets Σ = exp(Ψ) [Pinheiro and Bates, 1996]: A symmetric matrix
Ψ is parametrized entry-wise and then the matrix exponential is applied to ensure positive
definiteness through the spectral mapping theorem.

• The (upper) Cholesky decomposition L of Σ [Lindstrom and Bates, 1990] can be
parametrized entry-wise. Then, the covariance matrix is obtained by Σ = LTL, which
again ensures positive definiteness – or semi-definiteness, depending on the choice of the
parameter bounds.

• The spherical parametrization [Bates and Watts, 1988] is based on the Cholesky decom-
position L: It parametrizes the vectors of the upper Cholesky decomposition by spherical
coordinates (denoted by l), therefore allowing to put box-constraints on the variances of Σ.
It sets Σ = ϕ(l)Tϕ(l) with L = ϕ(l) and ϕ denoting the coordinate transformation from
spherical to Cartesian coordinates.
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• The Givens parametrization [Thisted, 1988] parametrizes the eigenvalue decomposition
by using a diagonal matrix D of eigenvalues and an orthogonal matrix of eigenvectors U ,
which yields Σ = UTDU . The parametrization of U is solved by a product of rotation
matrices Um, yielding U = U1 · . . . · UM .

While the parametrizations via the matrix logarithm and the Cholesky decomposition are con-
ceptionally simple, they do not allow to constrain the variances or the eigenvalues of Σ directly
by box-constraints [Pinheiro and Bates, 1996]. This complicates the definition of meaningful
lower and upper bounds for the corresponding parameters, which are important during param-
eter estimation or when sampling initial points for multi-start local optimization. Moreover,
if random effects are used for parameters which describe initial values of the ODE, those two
parametrizations are prone to integration failure of the ODE solver, as large eigenvalues of Σ

may lead to unfavorable initial values of the ODE at the initial point of a local optimization.
This is a substantial drawback, as frequent ODE integration failure may lead to poor results
when performing parameter estimation.

The spherical parametrization allows to parametrize the variance terms directly and defines
additional parameters for angles on a sphere, which are related to the correlations between
random effects. This allows to constrain the eigenvalues of Σ to a certain degree, but if Σ is suffi-
ciently high dimensional, the eigenvalues can still become large. Finally, the Givens parametriza-
tion allows to directly constrain the eigenvalues of Σ and therefore reduces the probability of
ODE integration failure at the initial point of a local optimization, which makes it favorable for
ODE MEMs. However, the parametrization of the orthogonal matrices is rather involved. This
may be an explanation for the comparably slow convergence which was observed for this method
[Pinheiro and Bates, 1996].

5.2 Contribution 1: Combining single-cell snapshot and popula-
tion average data in ODE MEMs

ODE modeling of biological systems typically happens based on population average data first, as
these data are cheaper and quicker to collect. For many cellular processes, such ODE models have
already been established, curated and made publicly available on databases such as BioModels
[Li et al., 2010] or JWS online [Olivier and Snoep, 2004]. Hence, when a system is modeled at
the single-cell level, an ODE model and population average data are often already available. It
would hence be eligible to also integrate these data and extend the model, instead of completely
replacing it. Moreover, single-cell and population average measurements often cover different
biochemical species, as not all measurement techniques are suitable for all species. Thus, it
is usually impossible to replace all population average data by single-cell data, without losing
information about the system. For these reasons, a framework which is able to combine multiple
data types is highly desirable.

5.2.1 A common likelihood function for single-cell snapshot and population
average data based on statistical moments

Assuming a biochemical species has been measured by single-cell snapshot data such as flow
cytometry, the mean value of the measurement can be used just like population average data.
However, single-cell snapshot measurements yield distributions of measurement values for each
experiment and hence more information can be extracted than only the mean value: As the mean
is the first moment of an observable which is distributed across a population of cells, the most
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Figure 5.2: Visualization of moment extraction based on single-cell snapshot data. For a time-series of
single-cell snapshot measurements, first and second order moments are computed based on Equations 5.3
and 5.4. A computational model can then be fitted to the time-series data of these extracted moments.

straight forward possibility to combine information about the measured distribution would be
also considering further (central) moments of higher order. This would be firstly the variance of
the measured observable and, in the case of multiplexed (simultaneous) measurements of different
observables, the covariances of these observables.

Extracting statistical moments from single-cell snapshot data allows the combination
with population average data

In the following, we denote data from population average measurements by ȳkij and data from
single-cell snapshot measurements by z̃k,`ij . As before, the index i enumerates the observables, j
the measurement timepoints, k the experimental conditions, and ` over the cells. This yields the
following two datasets:

DPA =
{
ȳki,j

}k=1,...,ne

i=1,...,nky
j=1,...,nt

and DSC =
{
z̃k,`i,j

}k=1,...,ne
`=1,...,nc(i,j,k)

i=1,...,nky
j=1,...,nt

(5.2)

We propose to use the following quantities as observed quantities for single-cell snapshot data,
which provide information about the distribution of the population:

1st order moments: z̄kµ(i,j) = E`
(
z̃k,`i,j

)
=

1

nc

nc(i,j,k)∑
`=1

z̃k,`i,j (5.3)

Central 2nd order moments: z̄kΣ(i1,i2,j)
= E`

((
z̃k,`i1,j − E`

(
z̃k,`i1,j

))(
z̃k,`i2,j − E`

(
z̃k,`i2,j

)))
=

1

nc − 1

nc(i,j,k)∑
`=1

(
z̃k,`i1,j − z̄

k,`
µ(i1,j)

)(
z̃k,`i2,j − z̄

k,`
µ(i2,j)

)
(5.4)

Hence, we use the sample mean and the sample variance over the single cells, which we denote
by E`, rather than all data points in the sample. However, the proposed moment extraction
technique reduces the information, which can be used for parameter estimation: Not the whole
distribution of measured values is exploited, but only its statistical moments (Figure 5.2). Yet,
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this approach has the advantage that information about the shape of the distribution (second
order moments) can be treated in the same way as information about the average of the measured
quantities (first order moments). Hence, single-cell snapshot data can be integrated with data
from population average measurements, by interpreting the latter as first oder moments of an
unknown distribution of the measured quantity.

Analogously to the simulations yi(tj , θ, uk), which are linked to population average data
points ȳki,j , the measured quantities z̄kµ(i,j)

and z̄kΣ(i1,i2,j)
have to be simulated. This can be done

by extending the ODE model to an ODE MEM and by creating an in-silico population (via a
Monte Carlo sample, sigma points, or a DMD), which is propagated through the ODE and which
yields a distribution of simulated individuals:

1st order moments: zµ(i)(tj , (θ, δ), u
k) = Eφ

[
zi(tj , φ, u

k)
]

(5.5)

Central 2nd order moments: zΣ(i1,i2)(tj , (θ, δ), u
k) = Eφ

[(
zi1(tj , φ, u

k)− Eφ
[
zii(tj , φ, u

k)
])

·
(
zi2(tj , φ, u

k)− Eφ
[
zi2(tj , φ, u

k)
]) ]

(5.6)

In this notation, φ are the parameters of the simulated individuals, and E` denotes again the
sample mean and the sample variance taken over the distribution of simulated individuals. If the
single-cell measurements are assumed to be subject to a substantial level of (single-cell) measure-
ment noise, the simulated moments must be corrected. However, as the single-cell measurement
noise is typically assumed to have mean 0, only the second order moments are affected. The
noise term can be modeled using a multi-variate normal distribution with covariance matrix
Λ(λ), where λ is a parametrization of the noise which extends the parameter estimation problem.
Assuming the single-cell measurement noise to be independent of the cell-to-cell variability, the
noise-corrected central second order moments read:

zΣ(i1,i2)(tj , (θ, δ, λ), uk) = Eφ
[(
zi1(tj , φ, u

k)− Eφ
[
zii(tj , φ, u

k)
])

·
(
zi2(tj , φ, u

k)− Eφ
[
zi2(tj , φ, u

k)
]) ]

+ Λ(λ) (5.7)

In order to use a consistent statistical model, the simulations of population average data points
also have to be simulated by the MEM as well and are treated as measurements of first order
moments:

yi(tj , (θ, δ), u
k) = Eφ

[
yi(tj , φ, u

k)
]

(5.8)

A common likelihood function enables the simultaneous fitting with heterogeneous
data types

In order to use both data types for parameter estimation, a common likelihood function has to
be set up. For this purpose, a noise model for the measurement noise of z̄kµ(i,j)

and z̄kΣ(i1,i2,j)

is necessary. In principle, various noise models, such as discussed in, e.g., [Maier et al., 2017],
provide reasonable choices. However, if the measurement error is not assumed to scale with
the measured observable, an additive normal noise is the simplest choice, to which we want to
restrict in the following. We hence model the statistical moments of the single-cell measurements
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as random variables in the following sense:

z̄kµ(i,j) = zµ(i)(tj , (θ, δ), u
k) + εkµ(i,j) with εkµ(i,j) ∼ N

(
0,
(
σkµ(i,j)(θ)

)2
)

(5.9)

and

z̄kΣ(i1,i2,j)
= zΣ(i1,i2)(tj , (θ, δ), u

k) + εkΣ(i1,i2,j)
with εkΣ(i1,i2,j)

∼ N
(

0,
(
σkΣ(i1,i2,j)

(θ)
)2
)
(5.10)

Assuming independence of the measurement noise terms for the population average measure-
ments and for the statistical moments of the single-cell measurements, we obtain:

L
(
θ, δ | D

)
= LPA

(
θ, δ | DPA

)
· LSC

(
θ, δ | DSC

)
(5.11)

The population average likelihood function is given as usual by:

LPA
(
θ, δ | DPA

)
=

ne∏
k=1

nky∏
i=1

nt∏
j=1

1√
2πσkij(θ)

exp

−1

2

(
ȳkij − yi(tk, θ, uk)

σkij(θ)

)2
 (5.12)

This likelihood function is identical to the likelihood function (2.11) used in Chapter 2. The only
difference consists in using the sample means over series of single-cell measurements instead of
using population average measurements as data points. In full analogy, relying on the sample
variance across single-cell measurements, the single-cell likelihood is given as:

LSC
(
θ, δ | DSC

)
=

ne∏
k=1

nky∏
i=1

nt∏
j=1

1√
2πσkµ(i,j)(θ)

exp

−1

2

(
z̄kµ(i,j) − zµ(i)(tj , (θ, δ), u

k)

σkµ(i,j)(θ)

)2
 ·

ne∏
k=1

nky∏
i1,i2=1
i1≤i2

nt∏
j=1

1
√

2π
k
Σ(i1,i2,j)(θ)

exp

−1

2

(
z̄kΣ(i1,i2,j)

− zΣ(i1,i2)(tj , (θ, δ), u
k)

σkΣ(i1,i2,j)
(θ)

)2


(5.13)

Importantly, this formulation allows to avoid the numerically highly problematic marginalization
of random effect parameters, by using a large sample of data points and simulations instead.
Based on these expressions, the corresponding negative log-likelihood functions can be derived
and used as objective functions for parameter estimation. This enables maximum likelihood
or maximum a posteriori estimation based on population average and single-cell snapshot data
simultaneously.

Implementation in the mixed-effect modeling toolbox MEMOIR

The proposed methodology was implemented in the freely available MATLAB toolbox MEM-
OIR1, which provides a framework for (ODE based) mixed effect modeling. MEMOIR already
had an implementation for likelihood or posterior computation based on population average data.
As a contribution of this thesis, this likelihood function was extended by the proposed approach
for single-cell snapshot data based on statistical moments.

1Current version available at https://github.com/ICB-DCM/MEMOIR
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Figure 5.3: Model selection for ODE MEM of JAK2/STAT5 signaling. This figure was adapted from the
author’s publication [Adlung et al., 2019], Figure 4. A Visualization of the ODE model with its species
and reactions. Colored components are assumed to be variable across cells. B Covariance structures of
the different nested ODE MEMs. C Waterfall plot with final objective function values for the best 150 out
of 400 local optimization runs for the three considered ODE MEMs. D Best found final objective function
values for each of the three considered ODE MEMs. E Model selection via Bayesian information criterion
(BIC) reveals that Model 2 provides the best trade-off between goodness of fit and model complexity.

5.2.2 Application: Single-cell ODE modeling of JAK2/STAT5 signaling

The motivating application example for this work was the development of an ODE MEM of
JAK2/STAT5 signaling. The JAK2/STAT5 pathway regulates apoptosis decisions in colony
forming unit-erythroids (CFU-Es), which are progenitors of red blood cells in the bone marrow
[Swameye et al., 2003]. In this application, an ODE model, which was developed by a group of
collaboration partners based on an existing model [Bachmann et al., 2011], was used as a starting
point. This model describes the phosphorylation of the transcription factor STAT5 through the
Janus Kinase JAK2 and the phosphorylated Epo receptor upon stimulation of the Epo receptor
with Erythropoietin (Epo) and the migration of phosphorylated STAT5 from the cytoplasm to
the nucleus (Figure 5.3 A). Phosphorylated STAT5 activates the transcription of the genes CISH
and SOCS3, resulting in the synthesis of the proteins CIS and SOCS3, which regulate STAT5
activation by negative feedback.

The model was extended by the author of this thesis to an ODE MEM by including single-cell
snapshot data, which was obtained from flow cytometry measurements carried out by the collab-
oration partners. Three time-series of flow cytometry data were measured under eight different
treatment conditions for eleven timepoints. The measurements were multiplexed and quantified
the total amount of STAT5 and the amount of phosphorylated STAT5 simultaneously. In order
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to identify the main sources of cell-to-cell heterogeneity in the response upon stimulation with
Epo, three candidate models with a nested structure of random effects were developed (Figure 5.3
B), which assume different quantities to be variable across cells: The first candidate model only
considered variability in the initial amounts of proteins (the Epo receptor JAK2 complex, the
phosphatase SHP1, the amount of total STAT5 and a cell-to-cell variable measurement offset of
phosphorylated STAT5) and allowed those random effects to be correlated. The second model
additionally allowed the nuclear shuttling rate constants (import and export) to vary across cells
and assumes an additional correlation between these two random effects, but assumed those to
be independent of the initial protein concentrations. The reason for this heterogeneity can be
explained by varying volumes of the nucleus and the cytoplasm, which may lead to different
import and export times of the transcription factor. The third model extended this by also
including variability in the amount of Epo which is sensed by the cells, as the ligand might be
unevenly distributed.

As the sigma point approximation resulted in inaccurate estimates of the covariance structure,
a DMD was used to balance computation time and approximation accuracy more flexibly. For
the largest candidate model, Model 3, which had seven random effects, the corresponding DMD
had 6 · 7 = 42 Dirac points, consisting of three times as many individuals as a corresponding
sigma point approximation, to ensure sufficient accuracy. The DMDs for the smaller models 1
and 2 were computed from the DMD of Model 3 by marginalizing the corresponding dimensions
in the DMD. This ensured the behavior of the smaller DMDs to be consistent with the largest
DMD, assuming the corresponding random effects were estimated to have no variability. Hence,
not only the random effect structure but also the DMDs were nested and had the same number
of Dirac points for all models.

Then, the three candidate models were fitted to the data by multi-start local optimization,
using the MATLAB routine fmincon with the trust-region-reflective algorithm (Figure 5.3 C)
and 400 initial points, which were randomly generated by latin hypercube sampling [Raue et al.,
2013b]. The waterfall plot revealed plateaus indicating local optima that could be reproduced
by different initial points. Interestingly, the two models 2 and 3, which accounted for cell-to-cell
variable shuttling rates, performed clearly better than Model 1, which only allowed the initial
protein concentrations to be variable (Figure 5.3 D). Moreover, the models 2 and 3 reached the
same negative log-posterior values indicating that the additional variability in the amount of
Epo, which is sensed by the cell, was not supported by model and data. For this reason, model
selection based on the Bayesian information criterion (BIC) identified the second model as best
candidate (Figure 5.3 E).

The nested DMDs turned out to be indeed crucial for model selection: For comparison, Model
2 was also fitted with a DMD consisting of 6 · 6 = 36 Dirac points, keeping the number of Dirac
points per random effect fixed, rather than the DMD itself. Surprisingly, this 36-point-DMD
allowed to achieve better negative log-posterior values than it was possible for Model 3 and for
Model 2 with the 42-point-DMD. However, using these “better” parameter estimates from Model
2 with the 36-point-DMD with Model 2 and 3 with the 42-point-DMD could not reproduce these
superior log-posterior values, but resulted in worse values. As moreover Model 3 is a superset
of Model 2, Model 3 should be able to achieve at least the same log-posterior values as Model 2.
From this, it can be concluded that in a model selection of nested ODE MEMs which are fitted
using DMDs, also the DMDs must be nested to ensure proper model selection.

For the chosen Model 2, we compared the quality of the model simulation after parameter
estimation with the measured single-cell data. As the model was only fitted based on statistical
moments, which it could explain well (Figure 5.4), it was unclear whether it would also explain
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Figure 5.4: Moments extracted from a time series of multiplexed flow cytometry data for the
JAK2/STAT5 model with fits of the selected ODE MEM. The model fits (solid lines) reproduce the
behavior of the data (dots) for the mean, variance and covariance of phosphorylated and total STAT5,
the transparent bands indicate the estimated standard deviation of the data. This figure was adapted
from the author’s publication [Adlung et al., 2019], Supplementary Figure 5.
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Figure 5.5: Kernel density plots of selected timepoints for multiplexed flow cytometry data and model
simulation for the JAK2/STAT5 model. The upper panel shows the model simulation (shading), with
mean (circle) and covariance structure (crosses), which were used for parameter estimation. The lower
panel shows the corresponding quantities for the measured data. Beyond only explaining the statistical
moments, the model also captures the overall shape of the distribution. This figure was adapted from
the author’s publication [Adlung et al., 2019], Figure 5 A.
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the population distribution of the multiplexed measurements. We found that, despite not re-
producing the measured distribution with high accuracy, the model indeed captured the overall
shape of the distribution and its density to at least a satisfactory degree (Figure 5.5). Given the
fact that the model had not been informed about the population density of the measured quan-
tities during parameter estimation, the result was convincing. From this, we can conclude that
fitting single-cell snapshot data based on statistical moments does indeed provide a meaningful
way of integrating heterogeneous data types into a common framework.

The selected Model 2 was then used, together with data on cellular survival, to infer the
mechanism which controls the survival of the CFU-E cells. A set of different candidate survival
models was created based on hypotheses which were previously discussed in the literature [Bach-
mann et al., 2011]. The analysis suggested that the percentage of phosphorylated nuclear STAT5
has to exceed a certain threshold over a time span of about two hours in a single cell, in order
to ensure a sufficient survival signal. Otherwise, the cell will undergo apoptosis [Adlung et al.,
2019].

5.3 Contribution 2: A novel parametrization of covariance matri-
ces

We have seen that covariance matrices have to be inferred when performing parameter estimation
for an ODE MEM. Desirable properties of such parametrizations – especially in the context of
an application to ODE MEMs – would be:

Favorable convergence properties during parameter estimation: Especially for ODE
MEMs, fast convergence and the possibility to constrain the parameters to a reasonable region
in parameter space is most important. Since the covariance matrix is estimated simultaneously
with the remaining parameters of the ODE MEM and since parameter estimation for standard
ODE models is already challenging [Kapfer et al., 2019, Raue et al., 2013b], good convergence
properties of the covariance parametrization are of particular importance.

Meaningful parameter bounds for the parameter estimation problem: The possibility
to constrain the model parameters to a plausible region in parameter space prior to optimization
is crucial, as well. Especially for ODE MEMs, random effects may influence the stiffness of the
underlying ODE. This is particularly important if the initial values of the ODE are modeled
by random effects, as poorly chosen starting points of local optimizations may lead to frequent
failure of ODE integration and can hence obstruct the optimization process.

Inferring structured covariance matrices without constraints: Ideally, also structured
covariance matrices (e.g., block diagonal or more complex shapes) can be estimated, without
using constraint optimization methods, as unconstrained optimization methods tend to enjoy
better convergence properties than constrained optimization strategies. As an alternative, priors
can be used for certain entries of the covariance matrix, in order to constrain them to small
values, without using actual constraint-based methods. However, if the parametrization allows
to encode a certain structure directly, this will be preferable.

Uniqueness of the parametrization for a given covariance matrix: Ideally, it would be
favorable if there was a one-to-one correspondence between parameters and covariance matrices,
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as this ensures structural identifiability. However, when working with biological models, in none
of the available parametrization techniques, the parameters themselves carry any direct biological
meaning, but only the variances and correlations have a biological interpretation. Hence, possible
redundancies in the parametrization are likely to be less critical.

5.3.1 A Lie algebraic parametrization of covariance matrices

Among the four methods, which were mentioned in the background section – the matrix loga-
rithm, the Cholesky decomposition, the spherical Cholesky approach, and the Givens parametriza-
tion – the Givens parametrization seems to most promising when it comes to constraining the
spectrum of the covariance matrix. However, the parametrization of the rotation matrices as a
product of elementary rotations is mathematically unsatisfactory, as it depends on the choice of
an ordering of these elementary rotations. This may cause dependencies between the rotation
angles. For this reason, we propose a novel parametrization approach, which relies on Lie theo-
retic ideas, in order to improve the Givens parametrization, and discuss it in the context of ODE
MEMs.

Concept and properties of the Lie algebraic parametrization

The problematic part is how to best parametrize the rotation matrices. The n-dimensional
rotation matrices are a representation of the group of special orthogonal transformations SOn,
which is a compact Lie group. As compact Lie groups have nontrivial geometries, parametrizing
them directly is intricate. However, Lie groups enjoy a rich mathematical structure, which can
be exploited. A possibility to parametrize the Lie group SOn indirectly consists in going via
the Lie algebra and using the exponential map. The Lie algebra is the tangent space of the Lie
group at the unit element and can hence be parametrized easily by choosing a basis, as it is a
vector space. For SOn, the Lie algebra is denoted by son [Duistermaat and Kolk, 2000], and
its elements are often called the infinitesimal generators of SOn. The exponential map provides
then a correspondence between the Lie group and its Lie algebra. It maps the unit element of
the vector space 0 on the unit element of the Lie group and is diffeomorphic in a neighborhood
around these unit elements. When representing SOn by the rotation matrices, the corresponding
representation of son are the antisymmetric matrices, and the representation of the exponential
map is the matrix exponential.

Similar to the Givens parametrization, the proposed Lie algebraic parametrization δ describes
a covariance matrix Σ by its eigenvalue decomposition λ1, . . . , λn and its system of eigenvectors,
which yield a rotation matrix (Figure 5.6 A). However, this rotation matrix is parametrized in
the Lie algebra, i.e., via an antisymmetric matrix, which is then exponentiated to generate the
actual rotation matrix (Figure 5.6 B). The parametrization of the antisymmetric matrix happens
via coefficients α1, . . . , αnA , which are multiplied with a basis A1, . . . , AnA of the antisymmetric
matrices (with nA = n(n− 1)/2):

δn : (λ1, . . . , λn, α1, . . . , αnA) 7−→ exp

(
nA∑
m=1

αmAm

)
exp

(
diag

(
λ1, . . . , λn

))
exp

(
nA∑
m=1

−αmAm
)

(5.14)
Hence, the proposed approach describes a covariance matrix by a vector of eigenvalues, which are
parametrized logarithmically, to ensure positivity, and a set of coefficients for the antisymmetric
matrices (Figure 5.6 C).
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Practical considerations

In principle, every basis of the antisymmetric matrices will yield a parametrization of the co-
variance matrices. As only the final generating matrix, i.e., the linear combination of the basis
matrices, is exponentiated, the impact of choosing another basis of the antisymmetric matrices is
minimal: When changing to another basis, the new parameters δ are obtained by linear transfor-
mation between those two bases. As long as two orthonormal bases are chosen, the corresponding
transformation matrix will be orthogonal and will thus have a condition number of 1. Hence,
for orthonormal bases, the numerical properties of the parametrization will not depend on the
choice of the basis.

For the implementation, we chose elementary antisymmetric matrices Am: Each m trans-
lates into a row index m1 and a column index m2 by lexicographical ordering, i.e., (m1,m2)(m),
with m2 > m1. Hence, (m1,m2)(1) = (1, 2), (m1,m2)(2) = (1, 3), . . . , (m1,m2)(n − 1) =

(1, n), (m1,m2)(n) = (2, 3), . . . , (m1,m2)(nA) = (n − 1, n). We set Am = A(m1,m2)(m), hav-
ing an entry of 1 in row m1 and column m2, an entry of −1 in row m2 and column m1 and being
0 elsewhere. This choice makes it possible to estimate also block diagonal covariance matrices,
and hence allows to enforce certain structures on the estimated covariance matrix without using
constraint optimization. For example, if the linear combination of the antisymmetric matrices is
block diagonal, also its exponential, i.e., the orthogonal matrix, will be block-diagonal. Hence,
all factors in Equation 5.14 share the same block-diagonal shape, and the covariance matrix will
also be block-diagonal.

Surjectivity of the Lie algebraic parametrization

It remains to show that the map δn from Equation 5.14 is indeed a valid parametrization of
the covariance matrices, i.e., that all covariance matrices can be described in this way. In other
words, the aim is to prove the following theorem:

Theorem 1. Let n ∈ N and δn the map from Equation 5.14 for a basis of the antisymmetric
matrices {Am}m=1,...,nA. Then the map δn is surjective and locally injective around 0.

In order to prove Theorem 1, we need some results from Lie theory about the exponential
map. The first one concerns compact Lie groups and is given in, e.g., [Duistermaat and Kolk,
2000] as Corollary 3.1.4:

Lemma 1. Let G be a finite-dimensional, connected, and compact Lie group and g its Lie algebra.
Then the exponential map exp: g −→ G is surjective.

Proof. The proof is given in Chapter 3.1 of [Duistermaat and Kolk, 2000].

The second result we will need is that for a (finite-dimensional) Lie algebra g of a Lie group
G and every X ∈ g, the exponential map defines a one-parametric subgroup of G.

Lemma 2. Let G be a finite-dimensional Lie group, g its Lie algebra and X ∈ g. Then, the map

Φx : R −→ G, t 7−→ exp(tX) (5.15)

defines a one-parametric subgroup of G. In particular, we have for s, t ∈ R:

Φx(s) · Φx(t) = Φx(s+ t) = Φx(t) · Φx(s) (5.16)
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Proof. The proof follows directly from Theorem 1.3.2 and Definition 1.3.3 of the exponential map
given in [Duistermaat and Kolk, 2000]. Alternatively, the statements can be found in Proposition
2.3 of [Hall, 2015].

Proof of Theorem 1. Let Σ be a symmetric positive definite matrix of size n× n. Then, it has a
unique eigenvalue decomposition (unique up to reordering) with eigenvalues Λ1, . . . ,Λn > 0 and
an orthogonal matrix U such that

Σ = U · diag(Λ1, . . . ,Λn) · UT

= U · diag(exp
(
λ1

)
, . . . , exp

(
λn
)
) · UT

= U · exp
(

diag(λ1, . . . , λn)
)
· UT

As the exponential map exp: son −→ SOn is surjective (Lemma 1) and U ∈ SOn, there exists an
antisymmetric matrix A such that exp(A) = U . Due to Lemma 2, we have exp (−A) = exp (A)−1.
As UT = U−1, the map δ given in Equation 5.14 is indeed a surjective parametrization of the
symmetric positive definite matrices. Local injectivity of δn is ensured be the local injectivity of
the exponential map, the bijectivity of the parametrization of antisymmetric matrices and the
uniqueness (up to reordering) of the eigenvalue decomposition.

It is important to note that the proposed parametrization δ is not globally injective: Different
sets of (α1, . . . , αnA) may yield the same rotation matrix after exponentiation. As discussed
previously, uniqueness in the parametrization of Σ may be helpful in certain cases, but it is not
crucial, when parametrizing covariance structures in ODE MEMs. There, the most interesting
properties are the variances and the correlations of the random effects rather than the parameters
themselves.

Implementation into the framework SPToolbox

The computational toolbox SPToolbox is a MATLAB framework that can be linked to the
mixed-effect toolbox MEMOIR [Wang et al., 2019]. SPToolbox computes in-silico populations
based on Monte Carlo sampling, the sigma point method [van der Merwe, 2004], or Dirac mixture
distributions [Gilitschenski and Hanebeck, 2013]. It transforms these in-silico populations, which
are created based on standard normal distributions, according to a given covariance matrix,
which describes the random effects in the case of a MEM. Originally, SPToolbox was capable of
computing these covariance matrices based on the matrix logarithm. As a contribution of this
thesis, it was extended by the remaining parametrization approaches which are discussed in this
chapter, in particular by the Lie algebraic parametrization.

5.3.2 Benchmarking convergence of covariance parametrizations

In order to assess whether the proposed Lie algebraic approach enjoys the desired convergence
properties when estimating symmetric positive definite matrices, the previously discussed four
methods for parametrization of covariance matrices and the Lie algebraic method were compared
with each other. For this purpose, a benchmark study was created based on 5 benchmark test
cases (B1 - B5, Figure 5.7 A) of increasing difficulty, with d = 4, . . . , 8 and d × d describing
the shape of the matrix. Each benchmark study was repeated five times. For each benchmark
B = B1, . . . , B5 and each repetition R = 1, . . . , 5, multi-start local optimization was carried out
in the following way: A covariance matrix ΣR

B was randomly generated based on a previously
defined correlation pattern (Figure 5.7 A). This covariance matrix was considered to be the
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Figure 5.7: Concept of benchmark study for covariance parametrizations. A Correlation patterns of
benchmark models. Grey field denote non-zero entries. B Work flow of benchmark study.

ground truth, from which a population with 10000 · d individuals was sampled. From this
population, the empirical covariance Σ̂R

B of the sample was computed to mimic a certain level of
random measurement noise (Figure 5.7 B). Based on Σ̂R

B, the following objective function was
defined:

JΣ̂RB
(δ) =

1

2

(∥∥∥Σ̂R
B − Σsim

B (δ)
∥∥∥2

F
+
∥∥∥diag

(
Σ̂R
B − Σsim

B (δ)
)∥∥∥2

F

)
(5.17)

Here, ‖ · ‖F denotes the Frobenius norm, diag(·) reduces a matrix to its diagonal, and Σsim
B is

the simulated covariance matrix. Hence, the objective function is an adaptation of the Frobenius
norm, which accounts for the symmetry of covariance matrices. With this objective function, op-
timization was carried out using the parameter estimation toolbox PESTO with default options,
using 100 local optimization runs in multi-start local optimization with 100 optimization steps
each and randomly generated initial guesses based on latin hypercube sampling. An optimization
run was considered to be converged, if its final objective function value reached a threshold TRB
defined by the ground truth:

JΣ̂RB
(δ) < TRB =

1

2

(∥∥∥Σ̂R
B − ΣR

B

∥∥∥2

F
+
∥∥∥diag

(
Σ̂R
B − ΣR

B

)∥∥∥2

F

)
(5.18)

When assessing the final objective function values for all repetitions and all benchmarks,
we found that the overall convergence for each method was mostly conserved across repetitions
(Figure 5.8 A). Moreover, the quality of optimization dropped substantially when the dimension
of the benchmark problem increased: While for the smallest benchmark problem B1, at least
some local optimization runs reached low objective function values in each repetition for all
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methods, convergence was substantially and consistently worse for the largest benchmark B5.
When analyzing the total number of converged starts and the variability across repetitions, the
matrix logarithm performed worst across all benchmarks (Figure 5.8 B). The Cholesky and the
spherical Cholesky parametrization still yielded favorable results for the smallest benchmark B1,
but performed considerably worse for the benchmarks B2 to B5. The Givens parametrization and
the proposed Lie algebraic approach performed best overall. For B4, the Givens parametrization
showed the highest number of converged starts, while for B1, B2, and B5 the Lie algebraic
parametrization performed clearly best. For B3, both approaches achieved similar convergence.
For the largest benchmark B5, the Lie algebraic parametrization was the only method which was
able to find the global optimum at all, in at least three out of the five repetitions.

Overall, the Lie algebraic approach outperformed the other parametrization methods: When
comparing the median number of converged starts across repetitions, it was the best method
for four of the five benchmarks and the second method for the remaining one. This indicates
that the proposed approach may indeed be helpful when inferring covariance structures for ODE
MEMs.

5.3.3 Application: Inferring the covariance structure in an ODE MEM of
JAK2/STAT5 signaling

We then studied the properties of the Lie algebraic parametrization for the previously discussed
models of JAK2/STAT5 signaling in terms of optimization convergence and integration failure
more closely and investigated the optimization results for the estimated covariance matrices. The
models consisted of 21 parameters which described reaction rate and hence influence the model
dynamics. In the finally selected model, six random effects (hereafter called RE1 to RE6) were
considered. RE1 and RE2 described export and import rates of the phosphorylated transcription
factor STAT5 from and into the nucleus, which were allowed to be correlated. The random effects
RE3, RE4, and RE5 described initial concentrations of the Epo receptor, the protein SHP1,
and the total amount of STAT5. RE6 described a cell dependent offset in the measurement of
phosphorylated STAT5, which could also be interpreted to cover a basal activation rate of STAT5.
As previously discussed, also RE3 to RE6 are were assumed to be correlated between each other,
but independent of RE1 and RE2. Hence, six eigenvalue parameters and seven parameters for
the correlations had to be estimated, yielding in total 33 parameters which influence the model
dynamics. Together with observation parameters, such as scaling factors and measurement noise
levels, the model comprised 178 parameters and was fitted to a total of 1945 data points.

For this application example, the possibility to control the eigenvalues of the covariance
matrices at the initial point of optimization turned out to be crucial. To test the robustness of
initial guesses for local optimization runs, 400 initial points were randomly generated by latin
hypercube sampling for the matrix logarithm approach, the Cholesky, the spherical, the Givens
parametrization, and the Lie algebraic method. For those initial guesses, the computation of
the objective function value and its gradients was evaluated. When using the matrix logarithm,
ODE integration failure at the initial point of optimization occurred in roughly 64% of the cases,
despite a careful adaptation of parameter bounds for the sampling of starting points. For the
Cholesky parametrization, ODE integration even failed for about 96% of the initial points. In
contrast, the spherical and the Givens parametrization resulted in failure for only 35% and 16%

of the cases, respectively. With the Lie algebraic parametrization, this evaluation succeeded
for 88% of the starting points and caused ODE integration failure only in 12% of the cases,
making it a very robust method for the parametrization of covariance structures in this ODE
MEM (Figure 5.9 A). This suggests that parametrization methods, which allow to control the
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Figure 5.9: Results for parameter estimation of an ODE MEM with non-diagonal covariance matrix. A
Success rate of ODE integration at initial point of local optimization for different methods of covariance
parametrization. B Waterfall plot for the ODE MEM of JAK2/STAT5 signaling, using the Lie algebraic
parametrization. The best 100 out of 400 starts are depicted, plateaus indicate convergence of optimiza-
tion to the same local optimum. The dashed lines indicate thresholds for drawing confidence intervals to
confidence levels 95% and 99%, respectively, when using the profile likelihood approach. C Coordinate
plot of estimated variance terms of the covariance matrix of random effects for all optimization results
below the threshold of 99% confidence. Coordinate plots which overlay each other prove that the same lo-
cal optimum was found. D Coordinate plot of estimated correlations in the covariance matrix of random
effects for all optimization results below the threshold of 99% confidence. E Scatter plot for the global
optimum of estimated covariance structure. This subfigure was adapted from the author’s publication
[Adlung et al., 2019], Figure 5 B.

eigenvalues of the covariance matrix or at least the variance terms, are less prone to numerical
errors when applied in ODE MEMs.

For the subsequent parameter estimation, multi-start local optimization was used together
with the Lie algebraic parametrization method and the trust-region-reflective algorithm of the
optimization routine fmincon from the MATLAB optimization toolbox [MathWorks, 2016]. De-
spite the comparably high number of model parameters (for an ODE MEM) and the non-trivial
covariance matrix, parameter estimation showed a favorable convergence behavior in the water-
fall plot, indicating clear plateaus for different local minima (Figure 5.9 B). When computing
cutoff values for the negative log-posterior for confidence levels of 95% and 99%, which are used
to infer practical identifiability in the profile likelihood method [Raue et al., 2009], the final
objective function values for all local optimization runs but one indicated reproducible local op-
tima. (Figure 5.9 B). Furthermore, not only the negative log-posterior values were reproducible,
but also the entries of the estimated covariance matrices: The variance terms of the different
minima overlayed each other in the coordinate plot (Figure 5.9 C), and the estimated correla-
tions as well (Figure 5.9 D). The coincidence of the estimated covariance matrices proved that
indeed the same local optima were found, when the same objective function value was obtained,
although the parameters which described those covariance matrices did not coincide across local
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optimizations. This suggested, that most of the covariance terms (except the variance of random
effect 4, which described the initial amount of SHP1) were likely to be practically identifiable.
However, as profile likelihood computation was not carried out, due to the high computation
times involved, this was only an indication for and not a proof of practical identifiability.

Concerning the biological interpretation of the inferred results, the estimated covariance
matrix of the ODE MEM showed pronounced correlation patterns (Figure 5.9 E). Biologically
speaking, this argues for strong co-regulations of protein abundances. This was especially the
case for the Epo recpector-JAK2 complex and the phosphatase SHP1, for which a strong positive
correlation (ρ = 0.80) was detected, and for the total abundance of STAT5 and SHP1, for which a
negative correlation (ρ = −0.71) was predicted. This would indeed be plausible, as proteins which
commonly form complexes tend to have correlated degradation rates or may be co-expressed.
These results indicate that it is important to not only infer variances of model parameters in an
ODE MEM, but to also consider off-diagonal elements, as those may be important to describe
the actual biological system.

5.4 Discussion

5.4.1 Summary and conclusion

Mathematical modeling of single-cell dynamics is a young research field with miscellaneous chal-
lenges and concepts [Loos and Hasenauer, 2019]. When restricting to single-cell ODE modeling,
two of the main conceptional challenges are firstly, how to integrate heterogeneous data types in
a consistent statistical framework [Loos and Hasenauer, 2019], and secondly, how to efficiently
infer the main aspects of cell-to-cell variability of a population of cells [Pinheiro and Bates, 1996].
In this chapter, two contributions were presented which each address one of these issues.

In a first section, single-cell snapshot data was combined with population average data, as
population average data is still the most common data type in dynamical modeling (such as
used in [Hass et al., 2019]). This was achieved by reducing single-cell snapshot data to its
statistical moments, which allowed a consistent integration with population average data. The
approach was implemented into a computational framework and applied to an ODE MEM, which
extended a previously published ODE model of JAK2/STAT5 signaling [Bachmann et al., 2011].
The presented framework allowed to identify and better understand the sources of cell-to-cell
variability in erythroid progenitor cell, which regulate the response of the erythroid system at
the population level, i.e., the production of red blood cells upon stimulation with Erythropoietin.

The combination of population average and single-cell snapshot data in one common statisti-
cal framework and parameter estimation of a model to these data types simultaneously had not
been possible so far [Loos and Hasenauer, 2019]. Single-cell snapshot data can be collected in
a highly multiplexed fashion for many species when compared with other single-cell data types
[Giesen et al., 2014, Perfetto et al., 2004]. Hence, this contribution enables the extension of many
ODE models, which so far captured only the population average behavior, to single-cell ODE
models. In this way, it will be possible to infer more knowledge about the dynamics of many
cellular processes at the single-cell level, which can differ substantially and also qualitatively from
the behavior at the population level for some systems [Gaudet and Miller-Jensen, 2016, Tay et al.,
2010]. This might help to better understand the differences between the response of biological
systems at the population and the single-cell level. As the behavior at the single-cell level is
more representative for the actual biological process than the dynamics at the population level
[Llamosi et al., 2016], removing obstacles in single-cell modeling may leverage our understanding
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of many biological systems.
In a second section, a novel Lie algebraic approach to parametrize covariance structures, i.e.,

symmetric positive definite matrices, was proposed. These matrices are necessary to describe
the distribution of cell-to-cell variable components in a cell population [Karlsson et al., 2015].
The proposed method was benchmarked against other existing approaches [Pinheiro and Bates,
1996] and outperformed them for the majority of test cases. Subsequently, the different methods
were compared on the model of JAK2/STAT5 signaling, which underlined the robustness of the
Lie algebraic method. Finally, the inference results for the covariance structure of cell-to-cell
variability in the JAK2/STAT5 model were investigated, which demonstrated that the proposed
method also performs well in a challenging practical application.

In ODE modeling of biological systems, reliable and efficient estimation of the model param-
eters is still one of the key challenges [Kapfer et al., 2019, Kreutz, 2019]. This is even more the
case when working with ODE MEMs, as not only the parameters describing unknown reaction
rate constants and unknown initial concentrations have to be inferred, but also additional pa-
rameters, which describe the heterogeneity of the cell population. These population distribution
parameters are typically used to model the covariance structure of the random effects in ODE
MEMs [Karlsson et al., 2015]. As their estimation interferes with the estimation of the popula-
tion average model parameters, such as reaction rate constants, parameter estimation becomes
overall substantially more challenging for ODE MEMs [Fröhlich et al., 2018b]. Hence, methods
which allow the efficient estimation of covariance structures of random effects are indispensable
for efficient ODE mixed-effect modeling. As the presented Lie algebraic approach tends to enjoy
better convergence properties than other currently existing methods and also enabled a success-
ful parameter optimization for the ODE MEM of JAK2/STAT5 signaling, we hope that it will
be beneficial also in future applications of single-cell ODE modeling.

5.4.2 Open problems for ODE MEMs

Improving the assessment of the population distribution

As already pointed out in Section 5.2, the reduction of single-cell snapshot data to its first and
second order moments allows to capture main aspects of cell-to-cell variability, but it does not
suffice to infer the shape of the distribution of single-cell measurements accurately. In order
to address this shortcoming, further enhancements are necessary. A straight forward approach
would be to include higher, e.g., third order, moments into the concept. Additionally estimating
the skewness of the distribution of a measured observable might allow to reproduce the data even
more accurately [Loos and Hasenauer, 2020, Sahu et al., 2003]. At the same time, including more
moments in the proposed approach may lead to predominance of the single-cell data points in
the parameter estimation process. As the number of moments to include grows rapidly with the
order of the moments considered, it may be desirable to balance their statistical weight with an
additional weighting factor, which could be derived from enumerating the extracted moments. A
complementary idea would be to consider different population models than multi-variate normal
distributions for either the random effects or the measured quantities, such as considered in [Loos
and Hasenauer, 2020].

Alternatively, if restricting to first and second order moments and multivariate normal dis-
tributions, standard deviations or coefficients of variation and correlations in the measurements
could be used to inform the parameter estimation process, instead of the variances and covari-
ances [Toni and Tidor, 2013]. A priori, it is unclear whether one or the other approach reflects
the behavior of a cell population more appropriately, and hence this may be subject of a further
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study.

Correlated noise model for single-cell snapshot data

In the application example of JAK2/STAT5 signaling, measurements of total and phosphorylated
STAT5 were carried out by multiplexed flow cytometry. Yet, the measurement noise of those
data points was considered to be independent although correlated models of measurement noise
might have been appropriate (such as proposed in [Sommerlade et al., 2015]): In multiplexed flow
cytometry, different biochemical species are measured simultaneously and hence, measurement
noise may show dependencies for those species [Herzenberg et al., 2006]. However, correlated
noise models require the estimation of covariance matrices and their inversion, which makes them
numerically challenging. For this task, the Lie algebraic parametrization approach proposed in
this thesis may be beneficial. Hence, combining correlated noise models with the Lie algebraic
parametrization might be an interesting enhancement for future applications.

Furthermore, it is a known problem that the data obtained from multiple single-cell mea-
surements tends to be more clustered within each experiment than across experiments, which is
known as the batch effect [Hicks et al., 2015]. Different methods have been developed to cope
with this problem, especially when analyzing single-cell sequencing data [Büttner et al., 2019].
A hierarchical structure for the noise model, which considers batch effects of measurements may
hence also be appropriate in ODE MEMs, especially when dealing with single-cell time-lapse or
single-cell time-lapse statistics data.

Extension of the moment-based approach to single-cell time-lapse statistics data

In principle, the idea of moment extraction from single cell data would also be applicable for the
data type of single-cell time-lapse statistics, such as present in [Filippi et al., 2016]. In addition to
the covariance structure of measurements for each time point, also the correlation across different
time points has to be inferred in this data type. However, the extraction of these moments for
the time correlation yields a substantial increase in the number of data points, which makes this
data type substantially more challenging to work with. Hence, concepts for weighting these data
points against those coming from other measurement techniques are likely to be necessary [Loos
and Hasenauer, 2019]. Yet, schemes based on the enumeration of statistical moments and an
additional decay of the weights over the time series might allow the integration of even single-cell
time-lapse statistics with single-cell snapshot and population average data.

5.4.3 Outlook and further research

Combination of the moment-based approach with single-cell time-lapse data

Although the moment based approach allows to combine heterogeneous data types in one pa-
rameter estimation problem, it may fail to allow a straight forward integration of single-cell
time-lapse data. Single-cell time-lapse data differs substantially from the other data types, as
each single cell can be identified over time, and hence any approach, that restricts to only relying
on the distribution of the cell population, will miss important information in these data. For this
reason, a specific likelihood (as shown in Equation 5.1 and discussed in [Karlsson et al., 2015])
is used for ODE MEMs of single-cell time-lapse data.

Unfortunately, this likelihood for single-cell time-lapse data in ODE MEMs is problematic
by itself, as it relies on numerically hardly tractable integrals, which require approximations
[Pinheiro, 1994]. For this reason, maximum likelihood estimation for ODE MEMs is an active
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field of research itself. Different approaches have been proposed to cure this problem, which rely
either on a modified expectation-maximization algorithm [Chan et al., 2011, Kuhn and Lavielle,
2005] or try to circumvent MEMs completely [Dharmarajan et al., 2019]. Hence, even combining
single-cell time-lapse data with other data types in a common statistical framework is highly
challenging and a currently unresolved problem.

Establishing a collection of benchmark models for ODE MEMs

It was already mentioned that various approaches and frameworks for deterministic single-cell
modeling exist [Filippi et al., 2016, Fröhlich et al., 2018b, Llamosi et al., 2016, Loos et al.,
2018b]. However, these different methods have, to the best of the author’s knowledge, never
been thoroughly compared against each other. Moreover, no computational toolbox, which
would be able to apply all of these concepts is available, and currently the best competitors
are software packages under proprietary licenses [Antony, 2019, ICON Development Solutions,
2020]. This makes it almost impossible to properly benchmark computational methods against
each other, which in turn make it challenging for a modeler to identify the best computational
approach to address a specific scientific question. At the same time, the aspect of reproducibility,
reusability, and comparability of computational models are becoming increasingly important in
systems biology [Kapfer et al., 2019, Kreutz, 2019].

For classic ODE models, a collection of benchmark models has recently been proposed [Hass
et al., 2019]. This collection allows to address many methodological questions by thoroughly
testing them on a large sample of real applications. A similar benchmark collection of single-cell
ODE models, comprising a set of published models and datasets [Almquist et al., 2015, Dhar-
marajan et al., 2019, Filippi et al., 2016, Fröhlich et al., 2018b, Hasenauer et al., 2014, Karlsson
et al., 2015, Llamosi et al., 2016, Loos et al., 2018b] would be an important next step for the
scientific community. Such a benchmark collection would also necessitate a common standard for
the formulation of single-cell ODE models, the corresponding data, and the parameter estimation
problem, similar to the PEtab format, which has recently been proposed for population average
ODE models [Schmiester et al., 2020]. Ideally, this format would come together with a flexible
and freely available computational toolbox for single-cell model inference, which could cope with
at least most of the common model types, which have been used in recent publications. Similar
to PEtab, which is based upon the SBML standard [Hucka et al., 2003], a standard for the
definition of parameter estimation problems of ODE models could be based upon the pharmML
standard [Swat et al., 2015], which would be flexible enough to cover most of the model types.
However, also a simple and efficient standard format for the measurement data would have be
defined, which is non-trivial.

Given such a benchmark collection, a common format, and a toolbox, a set of highly inter-
esting questions could possibly be answered:

Q1 How do the different modeling approaches for single-cell time-lapse data [Dharmarajan
et al., 2019, Karlsson et al., 2015] relate to each other and is one of these approaches
more appropriate or computationally less expensive than the rest? An answer to this
question which is based on more than one or two models might allow a more efficient model
development and more reliable conclusions about biological systems at the single-cell level
in the future.

Q2 How does the type of single-cell data influence the parameter inference and the biological
conclusions which can be drawn from a fitted model? Or, more precisely: If a model
was originally informed with single-cell time-lapse data, what is the effect of reducing this
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data to single-cell time-lapse statistics or even single-cell snapshot data? Answering this
question might allow a better interpretation of single-cell models.

Q3 How does the chosen model for the covariance structures, i.e., a diagonal, full, or structured
covariance matrix, in single-cell models influence the result of parameter estimation and
hence biological conclusions?

Q4 How do the different approaches for covariance matrix parametrization perform in a more
exhaustive benchmark study based on realistic application examples?

As pointed out, properly addressing these questions is hardly possible without a sufficiently large
set of realistic benchmarks. For this reason, a community effort to create a common model and
data collection and to allow for interoperability between the currently exiting frameworks via
a common format is likely to be the one of the most important challenges in single-cell ODE
modeling at the moment [Loos and Hasenauer, 2019].



Chapter 6

Discussion

6.1 Summary and Conclusion

Mathematical modeling of biological processes is an important tool to describe and understand
cellular biology at a systems level [Kitano, 2002]. This thesis was concerned with the develop-
ment of efficient computational methods, which is necessary due to the steady increase of size
and complexity of such mathematical models based on ordinary differential equations (ODEs)
[Fröhlich et al., 2018a, Kapfer et al., 2019]. In Chapter 1, five current challenges were mentioned,
which arise when dealing with ODE based models and the inference of unknown parameters.
After giving an overview about currently existing computational methods in Chapter 2, these
five challenges were addressed by the methodological contributions presented in Chapter 3, 4,
and 5.

In Chapter 3, the concept of mini-batch optimization was transferred from the field of deep
learning to parameter optimization in ODE models. Adaptations of common mini-batch opti-
mization algorithms were presented, which allowed to efficiently employ these algorithms also in
ODE constrained optimization with its specific challenges. These adapted algorithms were im-
plemented into a parallelized parameter estimation framework and tested on a set of benchmark
problems, from which conclusions about the most important hyperparameters of mini-batch opti-
mization were drawn. This allowed to scale up parameter estimation for a large-scale ODE model
of cancer signaling to a dataset from a public database of unprecedented scale. At the same time,
mini-batch optimization allowed to employ ensemble methods for generating model predictions,
which were compared to predictions based on point estimates. In this comparison, ensemble
methods turned out to be substantially more reliable for at least this particular large-scale ODE
model.

In Chapter 4, adjoint sensitivity analysis was extended to second order. Adjoint sensitivity
analysis is currently the most efficient method to compute the gradient of an objective function
which depends on the solution of an ODE. Analogously, second order adjoint sensitivity analysis
allows to compute the Hessian of such an objective function at substantially lower cost than
this was possible before [Stapor et al., 2018a]. The corresponding equations for time-discrete
measurements were derived and implemented into a freely available ODE solver toolbox. Then,
second order adjoint sensitivity analysis was applied in the context of parameter optimization
and profile likelihood computation, where it was shown to improve the robustness and efficiency
of existing algorithms. Moreover, a hybrid approach for profile likelihood computation, which
combines the advantages of the two currently existing methods, was proposed, implemented into
the freely available parameter estimation toolbox PESTO [Stapor et al., 2018b] and tested on
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two published models, which showed it to outperform the current alternatives [Stapor et al.,
2018a].

In Chapter 5, two challenges in the field of ODE mixed-effect modeling of biological processes
at the single-cell level were addressed. Firstly, a combined likelihood based on population average
data and first and second order moments of single-cell snapshot data was proposed, which allowed
to integrate these two heterogeneous data types into a statistical model and to estimate model
parameters based on both data types simultaneously. Secondly, a novel Lie algebraic method
to parametrize symmetric positive definite matrices, which are used to describe the covariance
structure of cell populations, was introduced, which enjoys good convergence properties during
parameter estimation. These two contributions allowed to carry out parameter estimation and
model selection for an of ODE MEM of JAK2/STAT5 signaling, which described the survival
decisions of erythroid progenitor cells at the single-cell level and which allowed to identify sources
to cell-to-cell heterogeneity and their impact on the survival mechanism [Adlung et al., 2019].

Overall, the contributions in this thesis substantially improved the scalability of a series of
mathematical approaches in parameter estimation and uncertainty analysis for large-scale and
medium-scale ODE models, as well as for single-cell ODE MEMs. It enabled especially param-
eter estimation for some model classes, where this was computationally extremely challenging
before. By this means, it enabled to further push the boundaries of what is feasible in deter-
ministic mathematical modeling of biologically systems. Hopefully, these advances will allow
the development of larger, more complex and more realistic models of cellular processes and
will contribute to a better understanding of some of the problems, which are currently faced in
medicine, pharmacology, and healthcare.

6.2 Outlook and future directions

In the individual chapters of this thesis, we outlined further research questions and possible
extensions of the proposed contributions, such as next steps concerning mini-batch optimization
of ODE models, extension of adjoint sensitivity analysis to discrete events, or the integration of
additional types of single-cell data in ODE mixed-effect models. However, it will also be critical
to tackle complementary challenges, which were not addressed in this thesis but are yet linked to
it, as they either relate to multiple of its chapters or match the same goals as its contributions.
Here, a broader outlook on the most important of these further challenges shall be given.

In some applications, large-scale ODE models are trained on data which was collected when
the modeled system is considered to be in steady-state [Fröhlich et al., 2018a, Gopalakrishnan
et al., 2020, Khodayari and Maranas, 2016, Schmiester et al., 2019a]. As parameter estimation
for steady-state data is a special case, it is possible to apply a set of mathematical simplifications
and to employ additional methods, some of which may be more powerful than the approaches
which were discussed in this thesis. For some models, integration of the underlying ODE can
be circumvented and direct root finding methods, auch as Newton’s method, can be applied
[Fiedler et al., 2016, Gopalakrishnan et al., 2020]. It was shown that for large-scale ODE models,
inferring the steady-state via Newton’s method can accelerate computations by up to two orders
of magnitude [Lines et al., 2019]. However, it may be that a model possesses conserved quantities,
which have to be removed prior to applying Newton’s method [Vallabhajosyula et al., 2006]. For
this reason, some computational toolboxes provide implementations of such methods [Fröhlich
et al., 2019, Hoops et al., 2006], if only the steady-state of a system is needed rather than the
full time-course. Yet, when inferring the objective function gradient based on steady-state data,
a part of the speed-up may be lost, as the computation of state sensitivities requires solving a
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large linear system of equations. This steady-state sensitivity approach is still substantially faster
than a full integration of forward sensitivities, but not necessarily faster than adjoint sensitivity
analysis [Lines et al., 2019]. Hence, combining adjoint sensitivity analysis with steady-state
sensitivity analysis may be highly beneficial when working with large-scale systems.

Another problem concerning large-scale models is how to collect enough measurement data to
properly constrain model parameters. Large public databases exist [Barretina et al., 2012, Cancer
Genome Atlas Network, 2012, Yang et al., 2013], which can be exploited for this task. However,
those databases are mostly restricted to cancer cell lines and often only comprise steady-state
data. Hence, even for cancer models, these datasets may be insufficient to render parameters
and model predictions identifiable, as information about the temporal evolution is missing. Thus,
it is an important challenge to collect and exploit more sources of information: One possibility
might be including prior information for parameters from existing databases, such as SABIO-RK
[Wittig et al., 2012] or BRENDA [Schomburg et al., 2013]. For large-scale models, it is unlikely
that this can be done by hand. Tools which collect these priors automatically and map them to
an annotated model would be highly beneficial. Another option would be including qualitative
data, which does not compare model outputs with quantitative measurements, but rather with
findings which can be retrieved from literature screenings from publication texts. Similar tools,
which can be used for semi-automated model assembly have recently been developed [Gyori
et al., 2017]. Such qualitative data may concern inequality constraints on models outputs or the
ordering of observation rather than their quantitative values. In recent years, some approaches
have been presented which can exploit such qualitative data [Mitra et al., 2018, Schmiester et al.,
2019b] and which may turn out promising in the near future. However, also for this topic, many
problems persist, as it is, e.g., not yet possible to combine qualitative and quantitative data
into one statistical framework and also the formulation of a noise model for qualitative data is
currently problematic.

Generally, when developing mathematical methods for ODE models, a thorough benchmark-
ing of existing approaches and their implementations would be extremely beneficial [Kreutz,
2016, 2019]. With the recent advances concerning a common standard for parameter estimation
problems [Schmiester et al., 2020] and the establishment of a benchmark collection of published
ODE models [Hass et al., 2019], it is finally possible to properly compare computational tool-
boxes against each other. This might also lead to a substantial boost in method and model
development, as modelers will be able to choose the best framework to analyze their system of
study.

Scalability of models and methods will also be an important aspect in single-cell modeling.
Here, method and toolbox development seems not yet to be as mature as for classic ODE models.
Making models and tools interoperable and analyzing which are the methods of choice to address
specific problems would be an important achievement [Loos and Hasenauer, 2019]. For example,
the efficiency of existing approaches for parameter optimization of ODE MEMs has – to the best
of the author’s knowledge – never been benchmarked in systems biology, and similar problems
exist for methods for uncertainty analysis. Hence, the earlier mentioned benchmark collection
of single-cell ODE models and a common standard for the definition of a parameter estimation
problem, which might, e.g., rely on the model standard pharmML [Swat et al., 2015], could
provide substantial novel insights and boost the field.

A further question in single-cell modeling may be how to best combine adjoint sensitivity anal-
ysis [Fröhlich et al., 2017a, Sengupta et al., 2014] with models of cell populations, such as sigma
point methods [van der Merwe, 2004] or Dirac mixture models [Gilitschenski and Hanebeck, 2013].
In principle, this would be possible, but so far, no implementation of this concept exists. When
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scaling up ODE MEMs to larger systems, the development of adjoint sensitivity analysis for cell
population models might become an enabling step in parameter estimation of these models. In
the future, this might allow a holistic understanding of large-scale systems at the single-cell level.

Seen from a higher level, the challenges which were discussed so far can and will be addressed
in the near and midterm future. They are either concerned with the question, how computational
efficiency in large-scale modeling can be improved in order to circumvent the need for large-scale
computing clusters, which have been used in, e.g., [Penas et al., 2015, Schmiester et al., 2019a].
Or they relate to progresses in single-cell ODE modeling, in order to better understand the
behavior of biological systems at the single-cell level, which is often argued to be biologically
more fundamental than the population level [Llamosi et al., 2016, Tay et al., 2010]. In the
long run however, it will be crucial to improve our capability of combining models which reflect
different layers of biological processes: Those which describe the fine-grained behavior inside
of cells [Kholodenko, 2007] and those which describe the spatial or tissue specific context and
capture the coarse-grained behavior [Starruß et al., 2014]. This area of multi-scale or multi-level
modeling is currently a highly active field of research [Hasenauer et al., 2015, Imle et al., 2019,
Jagiella et al., 2017, Yu and Bagheri, 2020] and will gain importance, as using different layers of
models is the only way to reflect complex systems in detail and sufficiently close to reality for
drawing conclusions about the functioning of biology. And a thorough understanding of complex
biological systems is urgently needed to tackle the pressing questions, which we face in biology,
pharmacology, and medicine, and which we need to answer in order to improve healthcare and
to save lives.
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