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Abstract

Manipulating plant densities under different irrigation rates can have a significant impact on

grain yield and water use efficiency by exerting positive or negative effects on ET. Whereas

traditional spectral reflectance indices (SRIs) have been used to assess biophysical param-

eters and yield, the potential of multivariate models has little been investigated to estimate

these parameters under multiple agronomic practices. Therefore, both simple indices and

multivariate models (partial least square regression (PLSR) and support vector machines

(SVR)) obtained from hyperspectral reflectance data were compared for their applicability

for assessing the biophysical parameters in a field experiment involving different combina-

tions of three irrigation rates (1.00, 0.75, and 0.50 ET) and five plant densities (D1: 150, D2:

250, D3: 350, D4: 450, and D5: 550 seeds m-2) in order to improve productivity and water use

efficiency of wheat. Results show that the highest values for green leaf area, aboveground

biomass, and grain yield were obtained from the combination of D3 or D4 with 1.00 ET, while

the combination of 0.75 ET and D3 was the best treatment for achieving the highest values

for water use efficiency. Wheat yield response factor (ky) was acceptable when the 0.75 ET

was combined with D2, D3, or D4 or when the 0.50 ET was combined with D2 or D3, as the ky

values of these combinations were less than or around one. The production function indi-

cated that about 75% grain yield variation could be attributed to the variation in seasonal ET.

Results also show that the performance of the SRIs fluctuated when regressions were ana-

lyzed for each irrigation rate or plant density specifically, or when the data of all irrigation

rates or plant densities were combined. Most of the SRIs failed to assess biophysical param-

eters under specific irrigation rates and some specific plant densities, but performance
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improved substantially for combined data of irrigation rates and some specific plant densi-

ties. PLSR and SVR produced more accurate estimations of biophysical parameters than

SRIs under specific irrigation rates and plant densities. In conclusion, hyperspectral data

are useful for predicting and monitoring yield and water productivity of spring wheat across

multiple agronomic practices.

Introduction

Overexploitation and uncontrolled pumping of groundwater in several arid regions has

resulted in a persistent decline in groundwater levels, a decrease in cropping area, and the

amount of water allocated to each crop, and ultimately making sustainable agriculture difficult

in these regions [1,2]. Saudi Arabia is a typical example of an arid region where the agricultural

sector depends mainly on groundwater for irrigation and accounts for more than 80% of the

irrigation water use [2]. Falling groundwater levels during the last two decades are now caus-

ing serious concerns in the sustainability of the agricultural sector in this country. Therefore, it

is now more pressing than ever to develop water-saving strategies that will improve the mar-

ginal benefit produced per unit of water applied rather than those for enhancing crop produc-

tion per unit area.

In areas under limited water supplies, irrigation water use efficiency (WUE), and grain

yield (GY) can be improved by using different strategies, including adopting site-specific agro-

nomic practices, developing drought-tolerance genotypes, and/or improving land husbandry

practices. When assessing the advantages of these three strategies, the first one would be the

most economically feasible, immediate, and effective measure, while the other two strategies

may require greater efforts over several years to get the desired results. Several studies have

reported the vital role of drought-tolerant genotypes in dynamically improving irrigation

water use; however, this can only be achieved when combined with appropriate agronomic

practices [3–6]. In this context, we propose that the implementation of appropriate agronomic

practices could be an essential and economically feasible approach for improving irrigation

water use and confronting the adverse effects of water deficits on crop production in drought-

prone areas.

Soil evaporation (E) and canopy transpiration (T), otherwise known as evapotranspiration

(ET), are critical components for revealing irrigation water consumption under field condi-

tions. For wheat crops, E accounts for up to 40% of the total crop water use, especially during

early growth stages where crop canopy coverage of the soil is small [7–9]. With increasing can-

opy size, T becomes the primary player in water loss while E becomes less important [10].

Because E may indirectly benefit crop growth and is directly associated with green leaf area,

attempts to reduce E will become an effective method for improving GY and WUE under lim-

ited water supplies. Numerous studies have suggested different agronomic practices for reduc-

ing E [11–13]. Among these practices, adjusting plant density is considered one of the most

important measures that could play an important regulatory role in reducing E and hence

improving GY and WUE [11]. Plant density plays an important role in modifying canopy size

that covers the soil, and this feature has the ability to modify the response of plants to different

soil moisture contents. Areas with limited water supplies dictate the necessity for lower plant

densities than those areas under well-watered conditions. In contrast, some studies have sug-

gested that an increase in plant density could reduce E in areas with a water deficit because

plants become shorter and have a decreased leaf area index (LAI) [13]. However, reduced
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plant densities under excessive irrigation often leads to a greater amount of dry matter per

plant, and this does not maximize WUE [11–13]. Therefore, finding the best combinations of

plant density and soil water availability may help to achieve maximum WUE and GY simulta-

neously by exerting positive or negative effects on ET at different stages of crop growth.

Deficit irrigation is another agronomic practice suggested for improving WUE under limited

water supplies. It has been reported that the WUE of most cereal crops can be increased signifi-

cantly by about 10–42% using deficit irrigation treatments when compared with full irrigation

treatments [12,14–16]. However, it is difficult to apply this agronomic practice to C3 plants with-

out an accompanying reduction in GY because their production is linearly correlated with crop

ET. In wheat crop, irregular tiller development and a reduction in the different yield components

are the major GY-reducing factors under deficit irrigation conditions. Interestingly, wheat crop

have the ability to compensate for a reduction in one yield component by improving the other

components, and as a result, such compensation can maximize on the yield potential under defi-

cit irrigation conditions [6,17]. Because plant density can play an important synergistic role

between different yield components, manipulating plant densities under different irrigation

rates can have a significant impact on GY and WUE by integrating different yield components.

Several important agronomic parameters, such as green leaf area (GLA), aboveground dry

matter accumulation (TDM), final GY, and WUE, could be used to define the best combina-

tions of irrigation rate and plant density. These parameters can help us to understand the bal-

ance between GY and WUE under different water deficits. The GLA and TDM are good

indicators for investigating the nature of vegetation growth and canopy architecture, the

amount of incoming radiation absorbed by the canopy, and the vertical distribution of radia-

tion through the canopy. They are also good predictors for estimating GY and ET [18–22].

Therefore, a rapid and non-destructive assessment of these parameters is of practical impor-

tance for finding the most successful combinations of plant density and water irrigation rate

required for enhancing GY and WUE of wheat growing in water-stressed regions.

With the rapid development of proximal remote sensing techniques and multivariate data

analysis, it is possible to conduct a simultaneous indirect assessment of multiple agronomic

parameters in a rapid, efficient, and non-destructive manner [23–27]. To achieve this, it is

important to determine the relationship between different agronomic parameters and their

hyperspectral reflectance properties. Hyperspectral reflectance can produce hundreds of con-

tiguous narrow wavebands, which allow a detailed study of various agronomic parameters

under different agronomic practices and conditions. To minimize the effects of soil back-

ground and solar angle, several empirical SRIs and multivariate integration methods have

been developed and used to assess agronomic parameters.

Previous studies mostly focused on estimating plant growth variables using SRIs under

optimal or stress conditions for individual agronomic practices. Few studies have been con-

ducted on the influence of multiple agronomic practices on canopy spectral reflectance or

have defined the sensitive bands or SRIs for estimating measured parameters under such prac-

tices. One such study by Li-hong [28] reported that an increase in water irrigation rate, plant

density, and nitrogen application of rice crops resulted in a decrease in canopy reflectance in

the visible region (VIS) and an increase in the near-infrared region (NIR) of the spectrum.

This was consistent with the findings of another study that measured canopy spectral reflec-

tance of different winter wheat cultivars grown at varying plant densities [29]. Here, the NIR

bands (780–1100 nm) were found to be better at differentiating between planting densities of

different cultivars than VIS bands (460–730 nm) [29]. Wang et al. [30] also reported that some

narrow-band SRIs were successfully used to estimate LAI, fresh weight of biomass, plant

height, and chlorophyll contents for different spring wheat cultivars under different planting

densities. Furthermore, Li [31] found that plant density and irrigation frequency had direct
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and significant effects on canopy spectral reflectance of winter wheat in the range of 400–900

nm, which included the VIS/NIR wavelength bands.

To overcome the strong multi-collinear and noisy variables in spectral band data and to

efficiently estimate the measured parameters, multivariate integration methods such as PLSR

and support vector machines (SVM) have been suggested to fulfil this goal [23,32,33]. Both

methods deal with a large number of spectral bands or SRIs as a single index in order to

improve the prediction of agronomic parameters. Therefore, with both methods, the measured

parameters can be simultaneously assessed through a wide range of wavelengths from the VIS,

NIR, and SWIR of the spectrum regions. PLSR is able to reduce the large number of measured

collinear spectral factors to a few non-correlated latent factors, to prevent over-fitting or

under-fitting the data, and to avoid redundant information [34]. The SVM can be used as an

alternative non-linear regression method for transforming data using a kernel function in a

new high-dimensional space. A predictive model is then built using a subset of representative

instances called support vectors [33]. Thus far, there are few reports comparing the efficiency

of SRIs and multivariate methods in estimating agronomic parameters measured under differ-

ent combinations of multiple agronomic practices.

The objectives of this study were the following: (1) to determine the best combinations of

water irrigation rate and plant density for maximizing GY and WUE of spring wheat growing

under water-stressed conditions, and (2) to compare the performance of various SRIs with

that of multivariate methods (PLSR and SVM) for estimating biophysical parameters (GLA,

TDW, GY, and WUE) measured under different combinations of multiple agronomic prac-

tices. We aim to assess the best combinations of irrigation rate and plant density that can be

used as effective and economically sustainable agronomic practices in managing spring wheat

crops under limited water irrigation supplies. Rapid and non-destructive methods are neces-

sary for detecting these combinations through estimations of biophysical parameters.

Materials and methods

Experimental site

The experiment was carried out during the 2016–2017 and 2017–2018 growing seasons at the

Research Station of the College of Food and Agriculture Sciences, King Saud University, Saudi

Arabia (24˚250N, 46˚340E; elevation 400 m). Average monthly climatic conditions at the exper-

imental site during the whole of wheat growth are given in Table 1. The soil type in the experi-

mental field is sandy loam in texture (75.1% sand, 16.1% silt, and 8.8% clay). The primary soil

hydraulic characteristics had a field capacity (FC) of 0.151 m3 m-3, permanent wilting point

(PWP) of 0.054 m3 m-3, and bulk density of 1.49 g cm-3 at a soil depth of 0.9 m. The specific

suction pressure of -0.03 and -1.5 MPa was used to measure the soil water content at FC and

PWP, respectively [35].

Table 1. Average monthly climatic conditions at the experimental site during the entier period of wheat growth (averaged over two seasons).

Months Temperature (˚C) Average relative humidity (%) Average rainfall (mm)

Maximum Minimum Average

December 22.2 10.6 16.4 47.0 12.0

January 20.2 9.0 14.6 51.0 11.9

February 23.4 11.2 17.3 41.0 8.0

March 27.7 15.2 21.5 36.0 21.0

April 33.4 20.4 26.9 34.0 23.8

https://doi.org/10.1371/journal.pone.0212294.t001
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Treatments, experimental design, and cultural practices

The experimental treatments included three different water irrigation rates (1.00, 0.75, and

0.50 of the estimated crop evapotranspiration; ETc) and five different plant densities (150, 250,

350, 450, and 550 seeds m-2). The amount of irrigation water for the full irrigation treatment

(1.00 ETc) was estimated by multiplying the daily reference evapotranspiration (ETo) by the

crop coefficient (Kc) of spring wheat. Daily meteorological data such as net solar radiation (MJ

m2 day-1), air temperature (˚C), wind speed (m s-1) and relative humidity (%) at a 2 m height,

saturation and actual vapor pressure (kPa), soil heat flux density (MJ m2 day-1), psychrometric

constant (kPa ˚C-1), and slope of the saturation vapor pressure curve (kPa ˚C-1) were collected

from weather stations located 200 m from the experimental site. These data were used for esti-

mating the ETo using the FAO PenmanMonteith equation given by Allen et al. [36]. The val-

ues of Kc for spring wheat as recommended by FAO-56 [36] were adjusted using the actual

values of relative humidity and wind speed in the study area. The cumulative irrigation esti-

mated for the full irrigation treatment (1.00 ETc) was 558.0 and 555.0 mm ha-1 during the first

and second growing seasons, respectively. The amount of irrigation water was reduced to 25

and 50% for the 0.75 and 0.50 ETc water deficit treatments, respectively. The amount of water

for each irrigation treatment was applied eight times; once at seedling, tillering, stem elonga-

tion, booting, heading, anthesis, grain milk, and grain dough stages. To ensure full germina-

tion, about 38 and 45 mm ha-1 of water was applied at sowing to all treatments in the first and

second seasons, respectively, to ensure full germination.

Irrigation was applied using a low-pressure water transportation surface irrigation system.

The main water pipe of the irrigation system was equipped with a flow meter connected at the

location where the main line encountered the main water source, distributed to the sub-main

hoses at each subplot, and equipped with a manual control valve in order to monitor and con-

trol the amount of water delivered for each irrigation rate.

Two levels below (150 and 250 seeds m-2) and two levels above (450 and 550 seeds m-2) the

standard recommended plant density (350 seeds m-2) for spring wheat were applied for each

water irrigation rate. When the plants were between the one- and two-leaf stages, plants along

0.50 m sections of two rows in each subplot were counted in order to confirm the final number

of plants per square meter for each plant density.

Field experiments were performed using a randomized complete block design with split-

plot arrangements and three replications. Water irrigation rate was randomly assigned to the

main plots within each replicate and plant density was randomly assigned to the split plots

within each main plot. Each subplot was 6.0 m long and eight rows wide with an inter-row

spacing of 0.15 m (7.2 m2 in total area). A 3.0 m wide isolation belt was placed between each

adjacent main plot to prevent water leakage. The seeds of the spring wheat variety Sakha 94

were sown by hand on December 1st in both seasons. Nitrogen, as ammonium nitrate (33.5%

N); phosphorus, as calcium superphosphate (15.5% P2O5); and potassium, as potassium chlo-

ride (60% K2O) were applied at rates of 180, 90, and 60 kg ha-1, respectively. The entire amount

of phosphorus was applied prior to seeding, whereas the entire dose of potassium was applied

at booting stage. The nitrogen fertilizer was applied in three doses: at seeding (30%), stem elon-

gation (40%), and booting stages (30%).

Measurements

Canopy hyperspectral reflectance measurements. Canopy reflectance spectra were mea-

sured at anthesis growth stage under sunny and windless conditions between the hours of

10.00 and 15.00 Saudi Arabia Standard (UTC+2). Within this period, the weather in the study

area remained stable from anthesis to maturity stage. The solar radiation reflected from the

Hyperspectral estimation of yield and water productivity of wheat
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wheat canopy was captured by a portable Field Spec spectroradiometer (Analytical Spectral

Devices Inc., Boulder, CO, USA) over a 350–2500 nm spectral region. The radiation was cap-

tured at 0.8 m above the canopy with a nadir field of view (FOV) of 25˚ and a spectral sampling

interval of 1.4 and 2.2 nm for the 350–1000 and 1000–2500 nm region, respectively. However,

the entire spectral range (350–2500 nm) was calculated automatically to resample to 1.0-nm

continuous bands. The 0.80 m vertical height coupled with 25˚ FOV covers a ~0.2 m2 sensing

area. A 40 cm × 40 cm calibration white reference panel covered with a mixture of barium sul-

fate (BaSO4) and white paint was used to calibrate the spectroradiometer and to generate

reflected light percentages. These calibrations were performed before and after the canopy

spectral reflectance measurement for each subplot. The spectral data of each subplot were col-

lected by averaging six sequential readings taken at different points on the three central rows

within each subplot by excluding the first meter of each row to eliminate any border effects.

Each spectral measurement was calculated automatically by averaging 10 scans at an interval

of one second. Finally, the spectral data were exported to View Spec Pro (ASD) software and

averaged for each subplot. SRIs were calculated based on published SRIs or newly developed

SRIs extracted from contour maps (Table 2). The contour maps of SRI readings show the coef-

ficients of determination (R2) from combinations of two individual wavelengths in the spectral

range of 350–2500 nm as normalized difference indices (Fig 1).

The different SRIs were selected to cover all combinations of the three main spectrum

regions [(visible-infrared (VIS), near-infrared (NIR), and shortwave-infrared (SWIR)] and

incorporated the wavelengths of the spectrum that are sensitive to changes in leaf/tissue struc-

ture, leaf pigmentation, aboveground biomass, photosynthetic efficiency, and/or plant water

status. For instance, SRIs such as moisture stress index (MSI), simple ratio water index.

Table 2. Full name, abbreviation (Abb.), and formula of different spectral reflectance indices (SRIs) developed in

this study and from the literature.

Full name and Abb. of SRIs Formula Reference

Normalized difference Index (NDI548,522) (R548 − R522) / (R548 + R522) This work

Normalized difference Index (NDI626,386) (R626 − R386) / (R626 + R386) This work

Normalized difference Index (NDI680,1650) (R680 − R1650) / (R680 + R1650) This work

Normalized difference Index (NDI840,818) (R840 − R818) / (R840 + R818) This work

Normalized difference Index (NDI1226,670) (R1226 –R670) / (R1226 + R670) This work

Normalized difference Index (NDI1382,670) (R1382 –R670) / (R1382 + R670) This work

Normalized difference Index (NDI1450,900) (R1450 –R900) / (R1450 + R900) This work

Normalized difference Index (NDI1650,920) (R1650 –R920) / (R1650 + R920) This work

Normalized difference Index (NDI2450,2100) (R2450 − R2100) / (R2450 + R2100) This work

Normalized difference Index (NDI2498,1450) (R2498 − R1450) / (R2498 + R1450) This work

Normalized difference Index (NDI2500,2250) (R2500 − R2250) / (R2500 + R2250) This work

Normalized difference Index (NDI2500,2470) (R2500 − R2470) / (R2500 + R2470) This work

Moisture stress index (MSI) R1600 /R820 [37]

Simple ratio water index (SRWI) R860/R1240 [38]

Normalized water index -3 (NWI-3) (R970 − R880) / (R970 + R880) [39]

Normalized difference vegetation index (NDVI 900,685) (R900 − R685) / (R900 + R685) [40]

Normalized difference moisture index (NDMI2200,1100) (R2200 –R1100) / (R2200 + R1100) [41]

Normalized multi-band drought index (NMDI) R860 − (R1640 –R2130) / R860 + (R1640 + R2130) [42]

Optimized soil adjusted vegetation index (OSAVI) (R800 − R670)/(R800 + R670 + 0.16) [43]

Modified triangular vegetation index (MTVI) 1.2 × [(1.2 × (R800 –R550)– 2.5 × (R670 –R550)] [44]

https://doi.org/10.1371/journal.pone.0212294.t002
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(SRWI), normalized water index 3 (NWI-3), normalized difference moisture index

(NDMI), NDI(1450_900), NDI(1650_920), NDI(2498_1450), and NDI(2500_2250) incorporated a refer-

ence spectral band where the water absorption coefficient is weak and a measured spectral

band where the water absorption coefficient is moderate or high. SRIs such as NDI(680_1650)

and NDI(1226_670) included wavelengths where one is sensitive to change in plant water status

and the other is sensitive to change in leaf pigmentation and photosynthetic efficiency. The

wavelengths in normalized difference vegetation index (NDVI), modified triangular vegetation

index (MTVI), and optimized soil-adjusted vegetation index (OSAVI) were related to estimate

aerial biomass of crops.

Growth measurements. After completing canopy spectral reflectance measurements, an

area of 0.15 m2 (two 0.5 m consecutive rows) of wheat plants from each subplot was cut from

Fig 1. Contour maps of coefficients of determination (R2) for all dual wavelength combinations in the spectral

range of 350–2500 nm as normalized difference spectral indices. The pooled data of replications, irrigation rates,

plant densities, and season for each agronomic parameter i.e., green leaf area (a), aboveground dry weight (b), grain

yield (c), and water use efficiency (d), and for all agronomic parameters combined were used.

https://doi.org/10.1371/journal.pone.0212294.g001
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ground level, placed in a plastic bag, and transported to the laboratory for aboveground bio-

mass (TDW) measurements. The plant samples were cut into small pieces, put into drying

bags, and dried in a forced-air oven at 70˚C until they reached a constant weight. The TDW

was estimated on a land-area basis using the width and length of the harvested area. An addi-

tional 20 plants were collected randomly from each subplot, and all green leaves were sepa-

rated and run through an area meter (LI 3100; LI-COR Inc., Lincoln, NE, USA) to measure

surface GLA.

When wheat plants reached maturity, an area of 3.0 m2 (four 5 m consecutive rows) were

harvested from each subplot in order to measure grain yield (GY). Ears were separated from

plants, air-dried, threshed, and finally GY was adjusted to approximately 14% moisture

content.

Water use efficiency (WUE) and yield response factor (ky). WUE was calculated by

dividing GY by actual crop evapotranspiration (ET). ET was estimated using the general water

balance equation:

ET ¼ ETcþ Pþ Cr � R � D � DS

where ETc is the amount of irrigation water estimated for each water irrigation rate (mm); P is

the effective precipitation during the entire wheat growing season (mm), Cr is the capillary

rise to the root zone (mm), which was estimated to be zero due to the deep level of groundwa-

ter; R is the surface runoff (mm), which was also taken as zero because the irrigations were per-

formed with a low-pressure water transportation surface irrigation system and each subplot

was surrounded by earth dikes; D is the deep percolation below the plant root zone (mm),

which was estimated from the respective soil water content to a depth of 90 cm before irriga-

tion and subtracted from the soil water hold at filed capacity; and ΔS is the difference between

soil water content at sowing and harvesting, at a depth of 90 cm. Soil water content was mea-

sured by the gravimetric method. The values were converted to a volumetric basis by multiply-

ing them by the soil depth of the soil samples and the bulk density of the respective layer.

The ky for each season and for each combination of plant density and deficit irrigation rate

(0.75 and 0.50 ETc) was determined through the slope of the regression between the relative

GY decrease (1−GYa/GYm) and the corresponding relative seasonal crop evapotranspiration

(ET) deficit (1−ETa/ETm) [45], where GYa and GYm are the actual and maximum GY values,

respectively, and ETa and ETm are the corresponding actual and maximum ET values,

respectively.

Data analysis

Data for the different agronomic parameters (GLA, TDW, GY, and WUE) were tested using

analysis of variance appropriate for a randomized complete block split-plot design, with irriga-

tion rate as the main factor and plant density as the split factor. The difference between the dif-

ferent mean values of these parameters were compared using Duncan’s test at the 95%

probability level. The relationships between the 20 published and newly developed SRIs and

measured parameters were calculated using simple regression analysis (Sigma Plot 11.0).

The Unscrambler X multivariate data analysis software version 10.2 (CAMO Software AS,

Oslo) was used to calibrate and validate the models of PLSR and SVM. Both methods (PLSR

and SVM) were applied to extract the information concerning the measured agronomic

parameters as well as to take the strong collinearity of spectral bands into account and to

increase the prediction of the measured parameters. The full VIS-SWIR spectrum regions

(350–2500 nm) were utilized in both methods across two years to predict the measured param-

eters at each plant density, irrigation rate, and for each year. Cross validation was done
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through all the data of two years for each measured parameter in order to select the best cali-

bration models based on lowest root mean square errors (RMSE) and optimal latent factor.

Then the calibration model was used as an independent model for validating the data at each

plant density, irrigation rate, and for each year. The reliability of the two models for the differ-

ent agronomic parameters was expressed through adjusted coefficients of determination (R2),

RMSE, and slopes of the relationships between the observed and predicted values of each agro-

nomic parameter.

Results

Growth, GY, and WUE

Irrigation rates combined with different plant densities exerted a significant effect on the mea-

sured agronomic parameters, namely GLA, aboveground TDW, GY, and WUE, in both grow-

ing seasons (Fig 2). Generally, moderate (0.75 ET) and low (0.50 ET) irrigation rates led to

significantly decreased growth parameters (GLA and TDW) and GY than full irrigation rate

(1.00 ET). However, 0.75 ET displayed the highest WUE in both growing seasons, with 0.50

ET having a similar WUE to 1.00 ET in the second season (Fig 2).

The measured parameters were also significantly affected by plant density. The highest val-

ues for all parameters were obtained at plant densities of 350 seeds m-2 (D3) followed by densi-

ties of 250 seeds m-2 (D2) or 450 seeds m-2 (D4). The very low (150 seeds m-2, D1) and very

high (550 seeds m-2, D5) plant densities exhibited the lowest values for all measured parameters

(Fig 2).

The combined effects of irrigation rate and plant density had a significant impact on all

measured parameters in both growing seasons. Generally, densities of D3 or D4, D3, and D2

were the best densities to combine with irrigation rates of 1.00, 0.75, and 0.50 ET, respectively

(Fig 2). Interestingly, the values of TDW, GY, and WUE obtained from the combination of

0.75 ET (25% reduction in the quantity of water applied) and D3 were higher by 42.8, 30.7, and

46.1% in the first season and 37.8, 37.7, and 51.6% in the second season, respectively, than

those achieved from the combination of full irrigation and D1. Importantly, the combination

of 0.50 ET (50% reduction in the quantity of water applied) and D2 or D3 produced TDW and

GY values similar to those obtained from the combination of D1 and 1.00 or 0.75 ET. The com-

bination of 0.75 ET and D3 was the best treatment for achieving the highest values for WUE in

both seasons, while combinations of 0.75 ET and D2 or D4 and 1.00 ET and D3 or D4 were

comparable and not significantly different from one another (Fig 2).

Yield response factor (ky). Fig 3 shows the relationship between the relative GY decreases

and the corresponding relative ET deficits in the two growing seasons. These relationships

were linear for the pooled data of irrigation rate and plant density, with the ky values (slopes)

of 1.32 and 1.28 in the first and second seasons, respectively (Fig 3). Moreover, Table 3 shows

the ky values for deficit irrigation treatments (0.75 or 0.50 ET) when combined with the differ-

ent plant densities. The 0.75 ET produced the lowest values for ky (less than one) when it was

combined with D3. The 0.50 ET produced comparable ky values as did the 0.75 ET, where ky

values of both were slightly higher than one when both treatments were combined with D2.

Interestingly, the ky values of 0.50 ET were significantly lower than those of 0.75 ET when they

were combined with low (D1) and high (D5) plant densities, but the values of ky for these com-

binations were significantly higher than one (Table 3).

Yield–seasonal crop ET relationship. The linear model delivered the best fit for describ-

ing the relationship between GY and seasonal crop evapotranspiration. This relationship was

significant for each season, with regression coefficients (R2) of 0.71 and 0.64 and slopes of the

linear regression, which represent the increase in GY for each unit increase in ET, of 1.72 and
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Fig 2. The effects of combining different irrigation rates with different plant densities on measured agronomic

parameters in two growing seasons. Bars with different letters are significantly different from each another at

P� 0.05. Vertical bars indicate standard error (n = 3). D1, D2, D3, D4, and D5 indicate plant densities of 150, 250, 350,

450, and 550 seeds m-2, respectively.

https://doi.org/10.1371/journal.pone.0212294.g002
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1.47 g m-2 mm-1 in the first and second seasons, respectively (Fig 4). Based on the intercepts

and slopes of the regression, the basal seasonal crop ET necessary to start GY production was

calculated to be 86.5 and 62.7 mm in the first and second seasons, respectively (Fig 4).

Hyperspectral assessment of growth, GY, and WUE

Contour map analysis of the spectral reflectance data. To select the optimal SRIs for

estimating the measured agronomic parameters, several contour maps were established using

the pooled data of replications, irrigation rates, plant densities, and seasons for each parameter

Fig 3. Yield response factor (ky) for two growing seasons of spring wheat under limited water supply treatments

(0.75 and 0.50 ET). �� indicates significance at 0.05 P level.

https://doi.org/10.1371/journal.pone.0212294.g003

Table 3. Yield response factor (ky) for the combination of deficit irrigation treatments (I) (0.75 and 0.50 ET) with different plant densities (D) in two growing

seasons.

I D First season Second season

1– (ETa/ETm) 1– (GYa/GYm) ky 1– (ETa/ETm) 1– (GYa/GYm) ky

0.75 ET D1 0.224 0.501 2.23 0.224 0.466 2.08

D2 0.222 0.228 1.02 0.222 0.237 1.07

D3 0.217 0.145 0.67 0.214 0.128 0.59

D4 0.216 0.233 1.08 0.217 0.266 1.13

D5 0.216 0.341 1.58 0.214 0.312 1.46

0.50 ET D1 0.437 0.624 1.43 0.432 0.590 1.37

D2 0.436 0.477 1.10 0.434 0.462 1.06

D3 0.436 0.520 1.19 0.430 0.524 1.22

D4 0.435 0.579 1.33 0.429 0.555 1.29

D5 0.434 0.656 1.51 0.428 0.595 1.39

D1, D2, D3, D4, and D5 indicate plant density of 150, 250, 350, 450, and 550 seeds m-2.

https://doi.org/10.1371/journal.pone.0212294.t003
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(Fig 1A–1D), and for all agronomic parameters combined (Fig 1E). These maps show the

coefficients of determination (R2) for the relationships between all possible dual wavelength

combinations of binary in the entire spectrum range (350–2500 nm) as normalized difference

spectral indices and the values of measured parameters. Using the R2 values obtained from the

contour maps, hotspot regions for the best R2 were located at 350–600 nm on the vertical axis

with 500–700 nm on the horizontal axis; 500–1000 nm on the vertical axis with 1100–2300 nm

on the horizontal axis; and 1100–2500 nm on the vertical axis with 2450–2500 nm on the hori-

zontal axis (Fig 1). In general, the contour maps established for GLA, TDW, and GY (Fig 1A,

1B and 1C) or for all agronomic parameters combined (Fig 1E) showed higher R2 values than

those established for WUE (Fig 1D).

Relationships between measured agronomic parameters and SRIs. The relationships

between 20 different SRIs (12 indices developed in this study and eight indices published in

the literature) and the measured agronomic parameters were analyzed under each irrigation

rate (across five plant densities for two seasons, n = 10) and plant density (across three irriga-

tion rates for two seasons, n = 6), all irrigation rates (averaged for five plant densities within

each irrigation rate for two seasons, n = 6) and plant densities (averaged for three irrigation

rates within each plant density for two seasons, n = 10), and all pooled data (n = 30) (Tables 4

and 5).

In general, the results showed that under specific irrigation rates, all the SRIs examined

failed to assess all agronomic parameters under 0.75 ET, and GY and WUE under 0.50 ET.

There were a few SRIs (a maximum of seven out of 20 SRIs) showing a moderate relationship

with GLA and TDW at 1.00 and 0.50 ET treatments (Table 4). For instance, the SRIs such as

NDI(548,522), NDI(2450,2100), NDI(2498,1450), NDI(2500,2250), NDI(2500,2470) and MTVI at 1.00 ET,

and NDI(840,818), NDI(1226,670), NDI(2450,2100), NDI(2500,2250), NDI(2500,2470), NDVI and OSAVI

at 0.50 ET showed moderate relationships with GLA (R2 = 0.39–0.64) and TDW (R2 = 0.38–

0.53), respectively (Table 4). Interestingly, all the SRIs examined, except for NWI-3, showed

Fig 4. Relationship between grain yield and seasonal crop evapotranspiration of spring wheat under limited water

supplies. ���, �� indicates significance at 0.001 and 0.01 P levels, respectively.

https://doi.org/10.1371/journal.pone.0212294.g004
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Table 4. The determination coefficients of the relationships between the measured agronomic parameters (green leaf area and aboveground total dry weight) and

20 developed and published spectral reflectance indices (SRIs) under each irrigation rate (n = 10) and plant density (n = 6), pooled irrigation rates (n = 6) and plant

densities (n = 10), and all pooled data (n = 30).

Irrigation rates Plant densities (D) Pooled data

SRIs 1.0 ET 0.75 ET 0.50 ET All ET D1 D2 D3 D4 D5 All D

Green leaf area (GLA)

NDI(548_522) 0.39 0.01 0.02 0.87 0.39 0.72 0.41 0.23 0.01 0.09 0.21

NDI(626_386) 0.25 0.01 0.19 0.50 0.26 0.08 0.40 0.12 0.58 0.35 0.26

NDI(680_1650) 0.01 0.02 0.03 0.55 0.44 0.40 0.11 0.71 0.34 0.86 0.38

NDI(840_818) 0.02 0.04 0.57 0.70 0.29 0.03 0.06 0.89 0.39 0.02 0.10

NDI(1226_670) 0.02 0.00 0.18 0.65 0.48 0.41 0.20 0.93 0.45 0.86 0.51

NDI(1382_670) 0.01 0.02 0.04 0.54 0.40 0.37 0.14 0.82 0.32 0.87 0.39

NDI(1450_900) 0.12 0.06 0.26 0.92 0.69 0.43 0.58 0.46 0.77 0.19 0.42

NDI(1650_920) 0.03 0.11 0.22 0.88 0.47 0.02 0.34 0.45 0.76 0.03 0.27

NDI(2450_2100) 0.43 0.00 0.29 0.96 0.67 0.24 0.27 0.47 0.65 0.62 0.41

NDI(2498_1450) 0.50 0.00 0.20 0.92 0.33 0.00 0.15 0.46 0.66 0.06 0.26

NDI(2500_2250) 0.55 0.00 0.34 0.98 0.75 0.27 0.40 0.54 0.69 0.66 0.48

NDI(2500_2470) 0.64 0.02 0.34 0.98 0.48 0.08 0.11 0.66 0.41 0.50 0.37

MSI 0.03 0.11 0.12 0.74 0.52 0.01 0.36 0.36 0.76 0.01 0.20

SRWI 0.01 0.09 0.30 0.92 0.52 0.05 0.17 0.56 0.62 0.02 0.11

NWI-3 0.06 0.23 0.38 0.43 0.17 0.10 0.07 0.55 0.82 0.07 0.11

NDVI 0.01 0.00 0.29 0.67 0.56 0.40 0.25 0.85 0.54 0.52 0.54

NDMI 0.15 0.10 0.21 0.87 0.51 0.01 0.48 0.42 0.84 0.07 0.30

NMDI 0.01 0.11 0.45 0.85 0.40 0.07 0.27 0.72 0.71 0.04 0.27

OSAVI 0.12 0.00 0.24 0.70 0.58 0.38 0.21 0.80 0.52 0.61 0.53

MTVI 0.46 0.16 0.03 0.53 0.67 0.15 0.00 0.49 0.08 0.03 0.17

Aboveground total dry weight (TDW)

NDI(548_522) 0.18 0.10 0.00 0.81 0.41 0.54 0.39 0.21 0.001 0.26 0.15

NDI(626_386) 0.33 0.16 0.25 0.62 0.35 0.10 0.45 0.13 0.71 0.03 0.23

NDI(680_1650) 0.03 0.01 0.12 0.66 0.65 0.28 0.13 0.68 0.50 0.82 0.35

NDI(840_818) 0.03 0.00 0.49 0.59 0.20 0.03 0.05 0.94 0.30 0.03 0.07

NDI(1226_670) 0.04 0.00 0.40 0.76 0.69 0.29 0.22 0.93 0.61 0.37 0.44

NDI(1382_670) 0.03 0.00 0.14 0.66 0.63 0.25 0.16 0.79 0.48 0.64 0.35

NDI(1450_900) 0.00 0.10 0.33 0.94 0.65 0.34 0.53 0.49 0.76 0.02 0.29

NDI(1650_920) 0.01 0.14 0.25 0.87 0.31 0.01 0.29 0.50 0.73 0.14 0.17

NDI(2450_2100) 0.13 0.04 0.40 0.99 0.63 0.14 0.26 0.46 0.64 0.08 0.32

NDI(2498_1450) 0.11 0.11 0.25 0.95 0.20 0.001 0.13 0.47 0.66 0.05 0.19

NDI(2500_2250) 0.23 0.05 0.41 0.99 0.67 0.15 0.38 0.53 0.69 0.12 0.37

NDI(2500_2470) 0.48 0.04 0.38 0.98 0.34 0.01 0.11 0.64 0.46 0.42 0.35

MSI 0.01 0.13 0.17 0.78 0.33 0.01 0.30 0.41 0.72 0.13 0.14

SRWI 0.06 0.07 0.31 0.85 0.24 0.04 0.14 0.62 0.54 0.13 0.12

NWI-3 0.00 0.00 0.37 0.41 0.001 0.11 0.04 0.61 0.67 0.03 0.11

NDVI 0.02 0.00 0.53 0.78 0.75 0.29 0.26 0.88 0.70 0.08 0.45

NDMI 0.00 0.11 0.26 0.89 0.36 0.01 0.43 0.45 0.84 0.09 0.19

NMDI 0.02 0.11 0.37 0.75 0.21 0.04 0.22 0.76 0.64 0.15 0.13

OSAVI 0.12 0.00 0.50 0.80 0.75 0.27 0.23 0.84 0.64 0.24 0.48

MTVI 0.38 0.00 0.19 0.58 0.65 0.09 0.001 0.57 0.06 0.40 0.23

The bold values indicate significant correlations at 0.05, 0.01 or 0.001. The full name of the abbreviations of SRI is listed in Table 2. D1, D2, D3, D4, and D5

indicate plant density of 150, 250, 350, 450, and 550 seeds m-2.

https://doi.org/10.1371/journal.pone.0212294.t004
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Table 5. The determination coefficients of the relationships between the measured agronomic parameters (grain yield and water use efficiency) and 20 developed

and published spectral reflectance indices (SRIs) under each irrigation rate (n = 10) and plant density (n = 6), pooled irrigation rates (n = 6) and plant densities

(n = 10), and all pooled data (n = 30).

Irrigation rates Plant densities (D) Pooled data

SRIs 1.0 ET 0.75 ET 0.50 ET All ET D1 D2 D3 D4 D5 All D

Grain yield (GY)

NDI(548_522) 0.12 0.09 0.00 0.73 0.41 0.50 0.19 0.22 0.01 0.20 0.15

NDI(626_386) 0.15 0.08 0.19 0.57 0.36 0.22 0.43 0.10 0.63 0.04 0.23

NDI(680_1650) 0.15 0.01 0.11 0.66 0.75 0.44 0.14 0.69 0.40 0.73 0.37

NDI(840_818) 0.02 0.07 0.27 0.47 0.01 0.12 0.03 0.96 0.34 0.03 0.04

NDI(1226_670) 0.14 0.00 0.27 0.76 0.79 0.45 0.21 0.99 0.51 0.29 0.44

NDI(1382_670) 0.14 0.00 0.11 0.66 0.73 0.41 0.17 0.79 0.38 0.52 0.37

NDI(1450_900) 0.00 0.18 0.19 0.89 0.76 0.31 0.32 0.56 0.75 0.03 0.26

NDI(1650_920) 0.05 0.30 0.13 0.81 0.36 0.03 0.15 0.54 0.72 0.15 0.13

NDI(2450_2100) 0.13 0.04 0.26 0.91 0.62 0.14 0.17 0.56 0.58 0.07 0.30

NDI(2498_1450) 0.03 0.14 0.12 0.82 0.10 0.01 0.05 0.55 0.57 0.06 0.15

NDI(2500_2250) 0.20 0.05 0.28 0.91 0.64 0.16 0.24 0.62 0.63 0.09 0.35

NDI(2500_2470) 0.44 0.03 0.25 0.90 0.21 0.02 0.01 0.72 0.42 0.47 0.31

MSI 0.05 0.30 0.06 0.73 0.34 0.03 0.17 0.46 0.73 0.13 0.14

SRWI 0.10 0.23 0.17 0.75 0.24 0.11 0.06 0.65 0.54 0.13 0.08

NWI-3 0.03 0.05 0.22 0.27 0.001 0.22 0.001 0.61 0.65 0.03 0.06

NDVI 0.09 0.01 0.30 0.77 0.85 0.45 0.24 0.93 0.60 0.06 0.45

NDMI 0.06 0.21 0.13 0.81 0.37 0.001 0.23 0.51 0.80 0.10 0.16

NMDI 0.05 0.27 0.28 0.68 0.25 0.07 0.10 0.76 0.65 0.16 0.19

OSAVI 0.20 0.00 0.27 0.76 0.81 0.37 0.18 0.89 0.55 0.20 0.45

MTVI 0.18 0.01 0.07 0.58 0.49 0.01 0.05 0.59 0.04 0.46 0.17

Water use efficiency (WUE)

NDI(548_522) 0.12 0.10 0.00 0.23 0.02 0.76 0.04 0.15 0.05 0.16 0.01

NDI(626_386) 0.15 0.09 0.19 0.06 0.78 0.04 0.12 0.05 0.43 0.09 0.04

NDI(680_1650) 0.15 0.001 0.11 0.10 0.39 0.47 0.03 0.49 0.26 0.72 0.05

NDI(840_818) 0.02 0.05 0.28 0.06 0.05 0.09 0.06 0.82 0.42 0.01 0.01

NDI(1226_670) 0.15 0.001 0.27 0.16 0.33 0.49 0.03 0.81 0.36 0.39 0.06

NDI(1382_670) 0.14 0.001 0.11 0.10 0.34 0.47 0.04 0.56 0.24 0.60 0.04

NDI(1450_900) 0.00 0.19 0.19 0.27 0.19 0.78 0.03 0.55 0.68 0.003 0.04

NDI(1650_920) 0.05 0.27 0.13 0.23 0.03 0.001 0.07 0.49 0.65 0.07 0.01

NDI(2450_2100) 0.13 0.04 0.26 0.20 0.15 0.82 0.08 0.56 0.42 0.14 0.06

NDI(2498_1450) 0.04 0.14 0.12 0.15 0.03 0.61 0.23 0.56 0.35 0.02 0.02

NDI(2500_2250) 0.20 0.05 0.28 0.18 0.20 0.82 0.07 0.61 0.48 0.16 0.06

NDI(2500_2470) 0.44 0.04 0.25 0.19 0.03 0.58 0.28 0.64 0.37 0.55 0.09

MSI 0.05 0.27 0.06 0.24 0.04 0.06 0.05 0.45 0.69 0.07 0.01

SRWI 0.09 0.19 0.17 0.10 0.09 0.01 0.13 0.55 0.50 0.06 0.002

NWI-3 0.03 0.03 0.22 0.02 0.05 0.02 0.29 0.47 0.47 0.004 0.004

NDVI 0.10 0.01 0.30 0.16 0.42 0.49 0.01 0.78 0.44 0.13 0.06

NDMI 0.05 0.19 0.13 0.23 0.06 0.43 0.04 0.51 0.65 0.04 0.02

NMDI 0.05 0.23 0.28 0.11 0.01 0.01 0.09 0.54 0.62 0.08 0.001

OSAVI 0.21 0.00 0.27 0.13 0.42 0.63 0.001 0.77 0.41 0.29 0.07

MTVI 0.18 0.01 0.07 0.001 0.48 0.91 0.40 0.55 0.03 0.49 0.05

The bold values indicate significant correlations at 0.05, 0.01 or 0.001. The full name of the abbreviations of SRI is listed in Table 2. D1, D2, D3, D4, and D5

indicate plant density of 150, 250, 350, 450, and 550 seeds m-2.

https://doi.org/10.1371/journal.pone.0212294.t005
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moderate to strong relationships with GLA (R2 = 0.50–0.98), TDW (R2 = 0.58–0.99), and GY

(R2 = 0.47–0.91) when the data of all three irrigation rates were combined; however, they failed

to estimate WUE (Tables 4 and 5).

It is notable that four out of 20 SRIs for TDW, GY, and WUE (i.e. NDI(680,1650),

NDI(1382,670), NDI(2500,2470), and MTVI) and eight out of 20 SRIs for GLA (i.e. NDI(680,1650),

NDI(1226,670), NDI(1382,670), NDI(2450,2100), NDI(2500,2250), NDI(2500,2470), NDVI, and OSAVI)

showed moderate to strong relationships with these parameters when regressions were ana-

lyzed for the combined data of all plant densities (Tables 4 and 5). Under specific plant den-

sity, the majority of SRIs exhibited moderate to strong (R2 values ranging from 0.50 to 0.99)

relationships with GLA, TDW, and GY under D4 and D5 and with WUE (R2 values ranging

from 0.51 to 0.82) under D4. A sufficient number of SRIs (about half) still showed moderate to

strong (R2 values ranging from 0.51 to 0.85) relationships with GLA, TDW, and GY under D1

and with WUE (R2 values ranging from 0.58 to 0.91) under D1. All the SRIs failed to estimate

the variations in GY and WUE under D3, and only one SRI (NDI(548_522)) that showed moder-

ate relationships with GLA, TDW, and GY under D2 as well as NDI(1450_900) with GLA and

TDW under D3, and NDI(626_386) with WUE under D1 (Tables 4 and 5). All SRIs, except three

(NDI(840,818), SRWI, and NWI-3), showed weak to moderate (R2 values ranging from 0.13 to

0.54) relationships with GLA, TDW, and GY when all the experimental data were combined,

but at the same time all SRIs failed to estimate the variation in WUE (Tables 4 and 5).

Multivariate statistical analysis to predict measured agronomic parameters. PLSR and

SVM were applied as a cross-validation to select calibration models (Table 6) that were used to

validate and predict measured parameters. The models were calibrated through cross-validation

depending on the lower value of the RMSE. A suitable number of latent variables were selected

using the dataset of all measured data and then validated using a dataset of samples from each

irrigation rate and plant density (Tables 7 and 8), and for each season (Figs 5 and 6).

The results showed that the PLSR models performed well for estimating all measured

parameters under specific irrigation rate and plant density, with the exception of TDW under

0.75 ET, and WUE under D2. The R2 values for significant PLSR models ranged from 0.46 to

0.89, 0.66 to 0.98, and 0.53 to 0.85 under specific irrigation rate, plant density, and season,

respectively (Table 7 and Fig 5). The SVM models also provided an accurate estimation of all

measured parameters under specific irrigation rate and plant density, with the exception of

Table 6. Equations and the determination coefficients (R2) of partial least square regression (PLSR) and support

vector machine (SVM) models that were used to predict different measured agronomic parameters (presented in

Tables 7 and 8 and Figs 5 and 6).

Parameters Equations R2

PLSR

Green leaf area (GLA) y = 0.7034x + 90.195 0.70
���

Aboveground total dry weight (TDW) y = 0.6131x + 484.15 0.61
��

Grain yield (GY) y = 0.612x + 2467.3 0.61
��

Water use efficiency (WUE) y = 0.6131x + 5.2685 0.61
��

SVM

Green leaf area (GLA) y = 1.1102x - 29.343 0.54
��

Aboveground total dry weight (TDW) y = 1.2077x - 239.73 0.58
��

Grain yield (GY) y = 1.1039x - 576.02 0.60
��

Water use efficiency (WUE) y = 1.0055x - 0.3783 0.45
�

�, ��, ��� indicate significance at 0.05, 0.01 and 0.001 P level, respectively

https://doi.org/10.1371/journal.pone.0212294.t006
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GLA under the three specific irrigation rates, TDW and GY under 0.50 ET, and WUE under

D2 and the second season. The R2 values for significant SVM models ranged from 0.48 to 0.81,

0.48 to 0.96, and 0.65 to 0.80 under specific irrigation rate, plant density, and season, respec-

tively (Table 8 and Fig 6). These significant relationships for both models (PLSR and SVM)

also delivered the lowest values for RMSE and the highest values for the slope (Tables 7 and 8

and Figs 5 and 6). In addition, the quality of PLSR and SVM for estimating measured parame-

ters depended on the levels of irrigation rate and plant density as well as the season. In general,

the PLSR models provided a more accurate estimation of GLA, TDW, and GY under 1.00 and

0.50 ET than those under 0.75 ET. The opposite held true for WUE. Under specific plant den-

sity, the PLSR models exhibited comparable values of R2 between the five plant densities, with

the exception of TDW under D1 and WUE under D2, which showed moderate and non-

Table 7. Predication models (the range for original and validation data of agronomic parameters (Par.), R2, slope, intercept and RMSE) using partial least square

regression (PLSR) for the full wavelength range (350–2500 nm). Models are based on the calibration data of two years for green leaf area (GLA), aboveground total dry

weight (TDW), grain yield (GY) and water use efficiency (WUE) under individual irrigation rates and plant densities.

Irrigation rates Plant densities (D)

Statistics 1.00 ET 0.75 ET 0.50 ET D1 D2 D3 D4 D5

GLA (cm2 plant-1)

Range of orginal data 315.3–510.4 252.5–377.0 138.9–244.6 178.2–407.9 221.7–461.8 197.0–486.8 152.7–510.4 138.9–432.8

Range of validation 287.2–461.8 243.1–367.3 90.0–393.2 209.1–368.5 249.8–433.2 274.0–461.8 175.3–410.9 90.0–393.2

R2 0.89
���

0.46
�

0.82
���

0.87
���

0.79
��

0.83
���

0.84
���

0.75
��

Slope 0.95 1.05 3.3 0.68 0.90 0.53 0.64 0.93

Intercept 21.6 -51.50 -364.6 96.0 21.7 171.0 97.6 - 0.25

RMSE 48.1 33.2 78.1 34.6 39.6 61.3 55.5 60.8

TDW (g m-2)

Range of orginal data 950.3–2343.3 939.6–1683.4 545.9–1019.4 568.2–1047.2 978.3–1640.9 886.2–2186.0 626.9–2343.3 545.9–1823.6

Range of validation 997.1–1992.7 852.8–1509.8 450.4–1453.3 606.2–1497.4 934.5–1837.6 1093.7–1992.7 798.4–1749.0 450.4–1640.9

R2 0.59
�

0.27 0.74
��

0.66
�

0.70
��

0.74
��

0.91
���

0.88
���

Slope 0.50 0.44 1.69 1.46 1.09 0.54 0.52 0.87

Intercept 750.8 616.8 -322.8 -186.6 45.2 654.4 531.4 61.4

RMSE 350.6 295.4 296.4 290.9 338.6 331.1 367.3 228.6

GY (g m-2)

Range of orginal data 506.3–959.8 479.1–820.4 329.8–501.9 360.7–568.5 501.6–854.4 443.9–952.8 404.0–959.8 329.8–884.3

Range of validation 604.7–913.8 493.2–756.5 319.8–573.4 319.8–684.5 505.3–913.8 477.6–863.1 523.3–872.1 343.4–742.2

R2 0.60
��

0.56
�

0.68
��

0.74
��

0.83
��

0.98
���

0.80
��

0.84
��

Slope 0.53 0.63 2.08 1.42 0.92 0.77 0.60 0.70

Intercept 358.4 200.7 -357.9 -134.8 106.2 136.6 253.9 128.0

RMSE 114.69 103.46 128.97 100.22 80.64 141.0 114.64 109.21

WUE (g m-2 mm-1)

Range of orginal data 0.86–1.60 1.05–1.79 1.01–1.53 0.86–1.16 1.31–1.63 1.35–1.79 1.23–1.61 1.01–1.48

Range of validation 0.96–1.55 1.06–1.65 1.02–1.53 0.96–1.41 1.30–1.58 1.20–1.65 1.33–1.63 1.02–1.46

R2 0.66
��

0.83
���

0.55
�

0.74
��

0.16 0.73
��

0.88
���

0.96
���

Slope 0.74 0.71 0.68 2.27 0.45 0.80 0.61 0.87

Intercept 0.33 0.40 0.40 -1.28 0.76 0.21 0.60 0.15

RMSE 0.205 0.105 0.113 0.234 0.154 0.144 0.09 0.049

�, ��, ��� indicate significance at 0.05, 0.01 and 0.001 P level, respectively. D1, D2, D3, D4, and D5 indicate plant density of 150, 250, 350, 450, and 550 seeds m-2,

respectively.

https://doi.org/10.1371/journal.pone.0212294.t007
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significant relationships, respectively (Table 7). The SVM models provided comparable values

of R2 between 1.00 and 0.75 ET for GY and between the three irrigation rates for WUE but

provided a more accurate estimation of TDW under 0.75 ET than under 1.00 and 0.50 ET. The

SVM models exhibited comparable values of R2 between the five plant densities, with the

exception of GLA under D3, TDW, GY and WUE under D1, as well as WUE under D2 and D3,

which all showed moderately significant relationships (Table 8). Both models provided a more

accurate estimate of measured parameters for the first season than for the second season, with

the exception of GLA in the PLSR model and DW in the SVM model, which displayed inverse

relationships (Figs 5 and 6).

Table 8. Predication models (the range for original and validation data of agronomic parameters (Par.), R2, slope, intercept and RMSE) using support vector

machine regression (SVM) for the full wavelength range (350–2500 nm). Models are based on the calibration data of two years for the green leaf area (GLA), above-

ground total dry weight (TDW), grain yield (GY) and water use efficiency (WUE) under individual irrigation rates and plant densities.

Irrigation rates Plant densities (D)

Statistics 1.00 ET 0.75 ET 0.50 ET D1 D2 D3 D4 D5

GLA (cm2 plant-1)

Range of orginal data 315.3–510.4 252.5–377.0 138.9–244.6 178.2–407.9 221.7–461.8 197.0–486.8 152.7–510.4 138.9–432.8

Range of validation 233.0–425.4 251.1–383.7 157.1–355.4 205.5–318.8 246.3–425.4 221.6–405.6 225.3–414.7 157.1–339.43

R2 0.28 0.18 0.19 0.86
���

0.86
���

0.53
�

0.81
��

0.89
��

Slope 0.45 0.60 0.81 0.51 0.74 0.45 0.53 0.38

Intercept 178.35 123.75 89.54 125.5 87.82 180.1 135.18 145.00

RMSE 93.4 36.04 72.27 45.1 34.49 73.9 64.1 33.2

TDW (g m-2)

Range of orginal data 950.3–2343.3 939.6–1683.4 545.9–1019.4 568.2–1047.2 978.3–1640.9 886.2–2186.0 626.9–2343.3 545.9–1823.6

Range of validation 891.1–1745.3 849.6–1584.4 665.2–1571.4 745.2–1287.1 1063.4–1745.3 924.2–1676.1 993.6–1733.8 665.2–1491.5

R2 0.48
�

0.71
��

0.26 0.55
�

0.91
���

0.83
���

0.87
���

0.93
���

Slope 0.39 0.69 0.73 1.16 1.13 0.56 0.42 0.67

Intercept 848.51 375.9 454.4 - 60.92 -42.86 505.20 718.60 365.7

RMSE 389.2 140.2 334.1 259.1 155.9 319.2 406.0 197.7

GY (g m-2)

Range of orginal data 506.3–959.8 479.1–820.4 329.8–501.9 360.7–568.5 501.6–854.4 443.9–952.8 404.0–959.8 329.8–884.3

Range of validation 499.1–864.2 499.1–797.9 369.0–767.7 392.3–652.1 533.2–864.2 475.5–833.2 504.1–852.2 369.0–738.1

R2 0.63
��

0.64
��

0.34 0.48
�

0.77
��

0.92
���

0.78
��

0.96
���

Slope 0.51 0.76 1.21 0.93 0.85 0.68 0.52 0.69

Intercept 343.34 111.5 139.6 89.3 104.0 182.0 286.9 156.6

RMSE 151.0 84.6 136.1 86.6 67.7 152.7 129.5 70.7

WUE (g m-2 mm-1)

Range of orginal data 0.86–1.60 1.05–1.79 1.01–1.53 0.86–1.16 1.31–1.63 1.35–1.79 1.23–1.61 1.01–1.48

Range of validation 1.02–1.54 1.02–1.54 1.05–1.49 1.02–1.49 1.40–1.57 1.31–1.57 1.34–1.56 1.15–1.51

R2 0.75
��

0.81
���

0.70
��

0.49
�

0.02 0.52
�

0.64
�

0.84
���

Slope 0.78 0.63 0.70 2.86 - 0.11 0.34 0.37 0.67

Intercept 0.33 0.46 0.43 -1.85 1.64 0.96 0.89 0.46

RMSE 0.095 0.14 0.01 0.21 0.12 0.15 0.12 0.089

�, ��, ��� indicate significance at 0.05, 0.01 and 0.001 P level, respectively. D1, D2, D3, D4, and D5 indicate plant density of 150, 250, 350, 450, and 550 seeds m-2,

respectively.

https://doi.org/10.1371/journal.pone.0212294.t008

Hyperspectral estimation of yield and water productivity of wheat

PLOS ONE | https://doi.org/10.1371/journal.pone.0212294 March 6, 2019 17 / 26

https://doi.org/10.1371/journal.pone.0212294.t008
https://doi.org/10.1371/journal.pone.0212294


Discussion

The results of this study indicated that selecting the best combinations of irrigation rate and

plant density could improve GY and water productivity of wheat under limited water supplies.

These combinations could play an important role in regulating the amount of water lost by ET

and the amount of water available to the plant by exerting positive or negative impacts on

ground coverage at different stages of crop growth [8,9,12]. Combining a low irrigation rate

with a very low plant density may provide sufficient water for individual plants, but results in

more soil evaporation (E) due to less ground coverage, especially during early growth stages.

Fig 5. Scatter plots and linear relationships between observed and predicted values of green leaf area (GLA),

aboveground total dry weight (TDW), grain yield (GY) and water use efficiency (WUE) based on PLSR for full

spectrum regions (350–2500 nm) on a 1:1 line. The spectral reflectance data of the two seasons were used to predict

the measured parameters during the first and second seasons.

https://doi.org/10.1371/journal.pone.0212294.g005
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To reduce ET, it was suggested to increase plant density under low irrigation rates to arrive at

higher ground coverage, and this also might lessen the plant transpiration rate (T) because the

plants may become shorter and have a fewer number of leaves under limited water supplies

[13]. Although reducing plant density under an adequate irrigation rate might maximize dry

matter production per plant, it does not add benefit for GY and decreases the WUE. All of

these explanations indicate that the yield and water productivity of wheat could be improved

by optimizing the best combinations of irrigation rate and plant density. The results of this

study indicated that GLA, TDW, GY, and WUE responded strongly to different combinations

of irrigation rate and plant density (Fig 2). Interestingly, a 25% reduction in the amount of

water (0.75% ET) with medium plant density (D3) displayed a higher WUE than that obtained

Fig 6. Scatter plots and linear relationships between observed and predicted values of green leaf area (GLA),

aboveground total dry weight (TDW), grain yield (GY) and water use efficiency (WUE) based on SVM for full

spectrum regions (350–2500 nm) on a 1:1 line. The spectral reflectance data of the two seasons were used to predict

the measured parameters during the first and second seasons.

https://doi.org/10.1371/journal.pone.0212294.g006
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from combinations using full irrigation rate (1.00 ET) regardless of plant density, and pro-

duced a GY and sometimes a TDW that were similar to those obtained for 1.00 ET when com-

bined with D2 or D5. A 50% reduction in the amount of water (0.50% ET) with D2 or D3

produced comparable values for most agronomic parameters with those obtained from 1.00 or

0.75 ET under low plant density (D1) (Fig 2).

The response of GY to different combinations of irrigation rate and plant density was tested

through the slope of the regression (ky) between the relative GY decrease and the correspond-

ing relative ET deficit. The ky values obtained for combined data (1.32 and 1.28 in the first and

second seasons, respectively; Fig 3) in this study were higher than the value (1.15) reported for

spring wheat by Doorenbos and Kassam [45]. Because ky values are strongly influenced by dif-

ferent crop management practices [4,46], the higher ky values found in this study may be due

to the reduction in GY may not be offset under high plant density due to intense competition

between plants and/or that the yield components of individual plants may not compensate for

the decrease in plant density. Therefore, the values of ky could be somewhat improved under

deficit water irrigation through the appropriate combinations of irrigation rate and plant den-

sity. Evidence for this hypothesis is evident from the wide range of ky values found among the

different combinations of plant density and 0.75 and 0.50 ET treatments (Table 3). The results

showed that a 25% (0.75 ET) and 50% (0.50 ET) water deficit may be acceptable for spring

wheat productivity when the first treatment was combined with D2, D3 or D4, and the second

treatment was combined with D2 or D3, as the ky values of these combinations were compara-

tively less than one or comparable with those obtained by Doorenbos and Kassam [45].

The linear regression analysis between GY and ET showed that about 71 and 64% of the

variation in GY could be attributed to differences in seasonal ET in the first and second sea-

sons, respectively (Fig 4). This also implies that the matching between irrigation rate and plant

density has a significant influence on seasonal ET through manipulating ground coverage and

adjusting canopy shading. A linear relationship between GY and seasonal ET has also been

reported by Huang et al. [47] for winter wheat under different irrigation rates where about

66% of the GY variation is explained by seasonal ET.

Heretofore, and to the best of our knowledge, there are only a few studies that have exam-

ined the performance of hyperspectral reflectance sensing for estimating the variations in bio-

physical parameters under different combinations of multiple agronomic practices. As

expected, manipulations between irrigation rate and plant density will create significant varia-

tion in different biophysical and biochemical characteristics of the canopy, which eventually

induce significant changes in canopy reflectance characteristics. Feng et al. [29] reported that

as the plant density of winter wheat increased, the spectral reflectance of the canopy in the VIS

region decreased, while that of the NIR reflectance increased. The percentage of decrease in

the VIS reflectance is predominantly linked to significant variations in leaf pigmentation and

photosynthetic activity, while the percentage of increase in the NIR reflectance is associated

with significant variation in biomass accumulation, canopy cover, green leaf area index

(GLAI), leaf internal structure, and leaf water content [41,42,48,49].

Several studies have also reported that the wavelengths in the red-edge and NIR regions are

considered to contain more information regarding GLAI and biomass than any other part of

the spectral regions [31, 50–52]. Duan et al. [53] reported that under water-stressed condi-

tions, the reflectance of red bands increased, while NIR reflectance decreased, and thus SRIs

could provide important information about green biomass under stress. Because the leaf water

content could be significantly affected by the combination of low or moderate irrigation rates

with high plant density, the strong and weak water absorption bands found in the SWIR and

NIR regions, respectively, cannot be ruled out. Therefore, the published and developed SRIs
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proposed for estimating measured agronomic parameters in this study included the three dif-

ferent spectral regions (VIS, NIR, and SWIR).

The majority of the SRIs examined in this study performed poorly in estimating the mea-

sured parameters under specific irrigation rates, but the performance improved significantly

(R2 was between 0.47 and 0.99), with the exception of WUE, when all data of the irrigation

rates were combined. Although all SRIs, with a few exceptions, showed low to moderate rela-

tionships with GLA, TDW, and GY (R2 was between 0.13 and 0.54), these SRIs were able to

assess the variations in these parameters successfully when all data of the irrigation rates, plant

densities, and seasons were combined (Tables 4 and 5). Very few SRIs exhibited a better fit

with the measured parameters (R2 = 0.40–0.87) when all data of the plant density were com-

bined. However, about half or more than half of the SRIs exhibited a better fit with GLA,

TDW, and GY under D1 (R2 = 0.51–0.85), D4 (R2 = 0.50–0.99), and D5 (R2 = 0.50–0.84) when

analyzing the relationship for each plant density separately (Tables 4 and 5).

All of these results indicate that different combinations of irrigation rate and plant density

can create a large variation in the heterogeneity of canopy structure and architecture, LAI, soil

background reflectance, light saturation, leaf angle distribution, and canopy chlorophyll and

water content between treatments [29,30,31,41,42,48,49]. These comprehensive factors are

sufficient enough to blur the relationships between most SRIs examined and the measured

parameters. Therefore, several studies have reported that to improve the fit of the relationship

between SRIs and measured parameters, it is important to analyze these relationships using

the pooled data of all treatments in order to avoid the heterogeneity occurring between these

treatments, or design new SRIs to remove the adverse effects of multiple factors on the spectral

properties of the canopy [29, 50, 54–59]. For instance, Prabhakara et al. [58] reported that

many SRIs failed to differentiate between the amount of biomass in six winter cover crops

when the biomass was too high or too low. Once saturation or soil background reflectance was

removed, the fit between SRIs and biomass was further improved when the data were analyzed

across all levels of groundcover of the six crops. The index OSAVI, which was designed to

reduce the influence of soil background, has been found to be effective for estimating biomass,

chlorophyll content, and GLAI, although there is a wide range of variation between treatments

in biomass and groundcover [54,60–62]. Lobos et al. [57] also reported that the relationships

between SRIs and agronomic parameters showed a marked increase in the predictive potential

when the data of all irrigation treatments were combined.

Although SRIs are easy to calculate and many of them were effective in estimating agro-

nomic parameters, they are limited by their use of a few wavelengths, and are influenced by

different degrees of soil background or saturation of the vegetation, as well as by timeliness

and regional specificity [33,63, 64]. Previous studies have shown that multivariate regression

models such as PLSR and SVM seem to be good alternatives to SRIs for interpreting the rela-

tionships between measured parameters and canopy spectral reflectance, which generally per-

form equally or better than SRIs for estimating the variations in these parameters

[23,26,33,34,63,65]. The results of this study showed that the PLSR and SVM models per-

formed better than the individual SRIs when estimating all measured parameters under spe-

cific irrigation rate and plant density (Tables 7 and 8). Similarly, Hansen and Schjoerring [32]

obtained a better estimate of green biomass and leaf nitrogen concentration of winter wheat in

a field experiment that included four nitrogen levels, two cultivars, and three different plant

densities, when using PLSR rather than the best of the selected narrow-band SRIs. Zhai et al.

[66] showed better performance for the SVM when estimating potassium, nitrogen, and phos-

phorus content in the leaves of different plants. The findings of these two studies and our

results indicate that the PLSR and SVM may be useful tools for estimating the measured

parameters when applied on hyperspectral reflectance data for different combinations of
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multiple agronomic practices which showing a great variation and heterogeneity in canopy

reflectance characteristics.

Conclusion

The traditional evaluation of growth, GY, and WUE by analysis of variance, ky, and the rela-

tionship between GY and seasonal ET demonstrated that the GY and water productivity of

spring wheat could be improved by selecting the best combinations of irrigation rate and plant

density under limited water supplies. The evaluation using hyperspectral data in this study

indicated that this tool could be used as a rapid, cost-efficient, and non-destructive method for

monitoring the growth, GY, and WUE of wheat under multiple agronomic treatments. Most

of the SRIs assessed the measured parameters, excepting WUE, more efficiently when the data

of three irrigation rates and the data of all experimental treatments were combined. A suffi-

cient number of SRIs produced a satisfactory performance at the seedling densities D1, D4, and

D5. The accuracy of hyperspectral data in estimating measured parameters improved when

using multivariate analysis (PLSR and SVM), with the estimations provided by both models

were better than those offered by individual SRIs under specific irrigation rates and some spe-

cific plant density.

Supporting information

S1 Table. Canopy spectral reflectance of irrigation rate and plant density in the range

between 350 and 2500 nm of the spectrum.
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