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Eye movements are fundamental to our visual
experience of the real world, and tracking smooth
pursuit eye movements play an important role because
of the dynamic nature of our environment. Static
images, however, do not induce this class of eye
movements, and commonly used synthetic moving
stimuli lack ecological validity because of their low scene
complexity compared to the real world. Traditionally,
ground truth data for pursuit analyses with naturalistic
stimuli are obtained via laborious hand-labelling.
Therefore, previous studies typically remained small in
scale. We here present the first large-scale quantitative
characterization of human smooth pursuit. In order to
achieve this, we first provide a methodological
framework for such analyses by collecting a large set of
manual annotations for eye movements in dynamic
scenes and by examining the bias and variance of human
annotators. To enable further research on even larger
future data sets, we also describe, improve, and
thoroughly analyze a novel algorithm to automatically
classify eye movements. Our approach incorporates
unsupervised learning techniques and thus
demonstrates improved performance with the addition
of unlabelled data. The code and data related to our
manual and automated eye movement annotation are
publicly available via https://web.gin.g-node.org/
ioannis.agtzidis/gazecom_annotations/.

Introduction

The rapid decrease of visual resolution away from
the fovea renders the movement of the eyes essential for
perception and action in our complex and dynamic

visual world. Segmentation of eye movements into
discrete events is an important part of eye movement
research and has been investigated for decades.
Although we discuss the definitions of the particular
eye movement types later in the paper, reliably
separating gaze events from one another enables a large
number of analyses of eye tracking data sets in order to
search for group differences or similarities (Dowiasch
et al., 2016; Silberg et al., 2019), find the differences in
viewing behavior for different stimulus types (Vig,
Dorr, Martinetz, & Barth, 2011), and many other
research applications, including media summarisation
(Salehin & Paul, 2017).

For both precise quantification of eye movements
and the development of automatic algorithms for their
detection, ground truth data are required. Such data
are typically acquired via manual annotation (Larsson,
Nyström, & Stridh, 2013; Santini, Fuhl, Kübler, &
Kasneci, 2016; Andersson, Larsson, Holmqvist, Stridh,
& Nyström, 2017; Steil, Huang, & Bulling, 2018), which
is a time-consuming process, often requiring the effort
of multiple raters. This problem led to a relatively small
scale of the previously conducted studies (for reference,
the data sets in the works listed above range 3–25 min).
I. T. C. Hooge, Niehorster, Nyström, Andersson, and
Hessels (2018) concluded that while experienced yet
untrained annotators often do not produce well-
agreeing fixation annotations, human expertise still
represents the gold standard for complex, ill-defined
cases, which could include setting borders between
fixations and postsaccadic oscillations or slow pursuits.

In order to quantify the eye movements with
dynamic naturalistic stimuli on a larger scale, we here
collected what is, to the best of our knowledge, the
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largest manually annotated eye tracking data set that
accounts for smooth pursuit (SP, foveating an object
moving relative to the observer via an eye movement).
We collected the manually annotated eye movement
class labels for a set of 18 dynamic natural scenes,
viewed by a multitude of observers in the established
GazeCom data set (Dorr, Martinetz, Gegenfurtner, &
Barth, 2010). The labelled data set amounts to a total
of over 4.5 hours of eye tracking data, all samples
assigned to one of the four categories: fixation,
saccade, smooth pursuit, and noise. The latter was
employed during blinks, out-of-monitor gaze, and
naturally impossible gaze traces (i.e., the likely
recording noise).

Although the size of other data sets in the literature
would be sufficient for small- to medium-scale gaze
pattern analysis and evaluation of eye movement
detection algorithms, such amounts of data do not
allow for meaningful algorithm parameter tuning,
especially where machine learning is involved. For deep
learning models specifically, with their thousands of
parameters (Startsev, Agtzidis, & Dorr, 2019; Zemblys,
Niehorster, & Holmqvist, 2019), the amount of
available data, as well as their diversity, are crucial for
the development and refinement of sophisticated
models that could further improve the state of the art in
eye movement classification. Our data set, with its
millions of annotated gaze samples and tens of
thousands of labelled events, sets a new yardstick for
data set scale and enables the meaningful training of
highly parametrized classification models, as well as
makes large-scale analyses of naturalistic viewing
behavior possible.

As spontaneously occurring pursuit behavior in
naturalistic video viewing has not been quantified in the
literature, we set out to characterise it in this study.
Having manually annotated the GazeCom data set
recordings, we report on the amount and properties of
SP in this large-scale eye tracking data set, describing
and discussing the relations between different eye
movements in this context. For example, in our free-
viewing gaze data we observed that pursuits cover a
nonnegligible percentage of recorded gaze samples (ca.
11%), even more than is covered by saccades. We
additionally explicitly explored the congruence between
the eye movements performed by different observers,
thus for the first time directly numerically characteriz-
ing the synchrony—in space and time—of fixations,
saccades, and pursuits. We found that, even though
most of the time the observers spent fixating, smooth
pursuits were performed by a larger number of people
at the same time and at the same place.

While this work presents a large-scale analysis of eye
movements in its own right, it also demonstrates that
considerable effort is required to obtain reliable
annotations. To facilitate studies involving eye move-

ments without the need to perform expert annotations
for every analysed recording, algorithmic eye move-
ment classification approaches are being constantly
developed and refined. This strive for robust and
accurate automatic analysis resulted in an impressive
number of algorithms for eye movements classification
that exist to date. Many of them rely on simple speed or
dispersion thresholding (Salvucci & Goldberg, 2000;
Komogortsev & Karpov, 2013), while others use more
elaborate analyses such as principal component anal-
ysis (Berg, Boehnke, Marino, Munoz, & Itti, 2009;
Larsson, Nyström, Andersson, & Stridh, 2015) or
Bayesian inference (Santini et al., 2016). Lately,
machine learning approaches have been applied to eye
movement classification (Vidal, Bulling, & Gellersen,
2012; Anantrasirichai, Gilchrist, & Bull, 2016; Zem-
blys, Niehorster, Komogortsev, & Holmqvist, 2018)
with promising results. Most recently, deep learning
models have emerged as the new state of the art for eye
movement detection (Startsev, Agtzidis, & Dorr, 2019;
Zemblys et al., 2019).

Traditionally, automatic analysis performed based
on the subjects’ eye movements relied either on
detecting fixations and saccades (Williams, Lough-
land, Gordon, & Davidson, 1999), or on analyzing the
recordings that correspond to synthetic stimuli
(Spering, Schütz, Braun, & Gegenfurtner, 2011),
where targets for smooth pursuit, for example, are
limited and have well-defined properties. Recent
works show a tendency towards naturalistic stimuli,
however, which include dynamic content as well
(Dowiasch et al., 2016; Silberg et al., 2019). For these,
even a seemingly simple analysis that is limited to
fixations and saccades may be prone to errors because
of the accidental inclusion of pursuit samples (Dorr et
al., 2010). In their recent review, Andersson et al.
(2017) indeed found that the algorithms designed
without SP in mind would often falsely detect fixations
instead. This accounted for the vast majority (over
70%) of misclassified gaze samples in their data, both
in synthetic and realistic stimuli, albeit with the
participants instructed to follow moving targets,
which exacerbated this particular problem.

All this leads us to the observation that even though
SP is an as important part of viewing behavior as are
e.g., saccades, it is substantially underrepresented and
often entirely overlooked in current eye movement
detection approaches (Olsen, 2012; Mould, Foster,
Amano, & Oakley, 2012; Kasneci, Kasneci, Kübler, &
Rosenstiel, 2014; Anantrasirichai et al., 2016; Steil et
al., 2018; Zemblys et al., 2019), highlighting the need
to develop accurate pursuit classification algorithms
(Andersson et al., 2017). It is of interest to note that
one common property of all eye movement classifica-
tion methods to date is that they only process one gaze
recording of a single observer at a time, thus never
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accounting for the element of synchrony in the eye
movements performed by various observers for the
same stimulus (Startsev, Göb, & Dorr, 2019). This
limitation has its benefits in terms of online applica-
bility and the absence of additional data set restric-
tions, and it also seems to be sufficient for detecting
saccades and fixations, which have relatively defined
speed and acceleration ranges. For SPs, however,
simple analysis of the speed of the gaze might not be
sufficient to differentiate them from drifts (Yarbus,
1967, Chapter VI, Section 2), noisy fixations, or slow
saccades (we present speed distributions later in the
paper). Some algorithms, therefore, include accelera-
tion thresholds in order to avoid misclassification of
slow saccades as pursuits (e.g., (Mital, Smith, Hill, &
Henderson, 2011) or the SR Research saccade detector
(SR Research, 2009)). Mital et al. (2011) then simply
combine all ‘‘nonsaccadic eye movements’’ into one
category. While this is sufficient for some applications,
various areas of eye movement research require
distinguishing between different ways of looking at the
gaze targets, in terms of execution or perception
(Schütz, Braun, & Gegenfurtner, 2011; Spering et al.,
2011; Silberg et al., 2019).

What additionally distinguishes pursuits is that they
normally require a target in order to be executed. In
artificial scenarios, where SP targets are generated with
predefined speeds and trajectories, accurate detection
of pursuit can be mostly achieved via matching the
position of the gaze and position of the target at each
given time. One should, of course, take catch-up
saccades into account, but these are relatively easy to
detect. In natural scenes, and in the absence of the
detailed information about all the moving targets
throughout the video, such matching is practically
impossible. Dowiasch et al. (2016) computed optical
flow of the video instead, using it as a substitute for
gaze target speed, but during manual annotation of our
data set we noticed that gaze samples were often offset
relative to the targets they were following, likely due to
tracking inaccuracy.

As a substitute for moving object detection in
natural scenes, we recently proposed (Agtzidis, Start-
sev, & Dorr, 2016b) an SP detection algorithm that is
based on a clustering of several observers’ partial
scanpaths, where fixation and saccade samples were
eliminated in advance. This approach is based on the
observation that multiple people will often track
(pursue) the same objects of interest in natural scenes,
as well as on the spatio-temporal eye movement
congruency analysis performed in this work. Individual
gaze traces will be noisy, so a significant portion of the
gaze samples that would not be labelled as saccades or
fixations could be attributed to recording or oculomo-
tor artefacts. This noise, however, will be uncorrelated
between the observers. If, on the other hand, several

participants show similar gaze traces that are neither
fixations nor saccades, these patterns are correlated and
therefore less likely to be noise. Following this logic, we
can obtain an indication of a reliably detected SP and
filter out noise. A preliminary implementation of this
approach (Agtzidis et al., 2016b) already demonstrated
promising results for SP detection.

Figure 1 illustrates the detection patterns of this
approach on an example of the ducks_boat video of the
GazeCom data set (this video has two ‘‘main’’ moving
targets—two ducks flying by—and several much slower
moving, floating ducks). Here, the true positives (i.e.,
SP detected as SP, green traces), false positives (i.e., not
SP labelled as SP, red traces), and false negatives (i.e.,
missed SP samples, blue traces) reveal both the benefits
and the downsides of our approach: While most of the
codirected pursuit episodes are successfully identified
by our method, the nature of clustering leads to
potential false detections where a dense group of
samples was not discarded by the preceding steps of the
algorithm, and potential missed detections, e.g., when
the target was pursued by a single observer only.

The use cases and implications of the work presented
in this manuscript extend beyond its immediate
contributions (quantifying human eye movements in a
large manually annotated data set and improving upon
the state of the art of eye movement classification). The
data presented in this work enables us and other
researchers for the first time to quantify natural video-
viewing behavior in terms of its constituent eye
movements and their interactions or similarity between
the observers (Startsev, Göb, & Dorr, 2019) on a
comparatively large scale. The algorithmic analysis we
propose allows for fully automated processing of the
eye-tracking data sets, the size of which would make it
difficult or well-nigh impossible to collect full expert
annotations. Such analyses could further the research
both in medical contexts (Lagun, Manzanares, Zola,
Buffalo, & Agichtein, 2011; Tseng et al., 2013; Silberg
et al., 2019), in computer vision applications dealing
with human attention (Marat et al., 2009; Startsev &
Dorr, 2018), and for attempting to understand the
nature of human smooth pursuit in general (Hashi-
moto, Suehiro, Kodaka, Miura, & Kawano, 2003;
Yonetani, Kawashima, Hirayama, & Matsuyama,
2012). Moreover, the unsupervised nature of our
pursuit detection approach brings a unique property
into the eye movement analysis field: This clustering-
based algorithm is capable of improving detection
quality and robustness by using more unlabelled data,
i.e., without the need for additional annotations.

The manually labelled data set we collected is freely
available via https://web.gin.g-node.org/ioannis.
agtzidis/gazecom_annotations/ together with both our
hand-labelling framework and automatic eye move-
ment detection software. A detailed description of the
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latter, including the particularly relevant parameters
and use cases, is provided in the Programmatic
interface section.

Methods

In this section we describe the methodological details
of the pipeline that we employed in order to collect a
large annotated data set and construct an automatic
tool for the segmentation of gaze traces into distinct eye
movements. We start by describing the terminological
and data-related background for this work, the
labelling process that was used by the manual raters for
the annotation of fixations, saccades, SP, and noise in
the GazeCom data set. We then describe the classifi-

cation and evaluation procedures of our eye movement
detection framework.

Addressing terminological ambiguity

Before we proceed to describe further details of this
work, we address several definitions that might be
ambiguous or context-dependent, as they may differ in
various set-ups of eye-tracking experiments or in
various subfields (Hessels, Niehorster, Nyström, An-
dersson, & Hooge, 2018).

For example, throughout this manuscript we use the
term ‘‘naturalistic’’ in order to describe the stimulus
scenes in our data set. We use this term in the meaning
of ‘‘imitating real life or nature’’ in accordance with

Figure 1. Visualization of clustering-based pursuit classification in one video of our data set (ducks_boat). Data points for all observers

are presented. Correctly detected smooth pursuit samples (in green) as well as detection errors (in red, false detections; in blue,

missed samples) of our SP detection algorithm in the sp_tool framework.
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other literature (Krieger, Rentschler, Hauske, Schill, &
Zetzsche, 2000; Torralba, Oliva, Castelhano, & Hen-
derson, 2006; Dorr et al., 2010; Tatler, Hayhoe, Land,
& Ballard, 2011; McIlreavy, Fiser, & Bex, 2012; Smith
& Mital, 2013; Parks, Borji, & Itti, 2015; Leder,
Mitrovic, & Goller, 2016; Ramkumar et al., 2016;
Foulsham & Kingstone, 2017; Schomaker, Walper,
Wittmann, & Einhäuser, 2017; White et al., 2017). We
describe our experimental set-up as naturalistic in part
to contrast it with synthetic stimuli with prescribed,
isolated eye movements often used for studies involving
smooth pursuit (Vidal et al., 2012; Santini et al., 2016):
Naturalistic stimuli represent a more complex set of
visual inputs that affect oculomotor behavior (Mon-
ache, Lacquaniti, & Bosco, 2019), and the idea that the
visual system is optimized to efficiently encode the
inputs that surrounded our ancestors during evolution
is well established (Field, 1987; Atick & Redlich, 1992).

Another terminological clarification we make (fol-
lowing the recommendations of (Hessels et al., 2018))
concerns the particular eye movement definitions we
used for this work. We note that in our data, the head
of the observer was always fixed, so when we talk about
motion, we mean movement on the monitor, which
necessarily implies movement relative to the observer in
this set-up. Also, the eye tracker yielded point-of-
regard coordinates relative to the monitor (i.e., in the
world coordinate system). In this setting, we limited
ourselves to four labels: fixations, saccades, smooth
pursuits, and noise. For convenience of terminology,
we refer to fixations as ‘‘eye movements’’ as well, even
though they are technically defined by the absence of
motion (‘‘gaze event’’ might be a more accurate, but
less common term).

The following definitions were employed: (a) Fixa-
tions were defined as periods of relatively stationary
gaze, which was not following the motion of any
moving object in the video. (b) Saccades were defined
as jumps to different on-screen positions, and no
specific amplitude bounds were utilized. The end of
each saccade was marked when the gaze had stabilized
again. Even though there is no clear definition for
postsaccadic oscillations (PSOs; I. Hooge, Nyström,
Cornelissen, & Holmqvist, 2015), our saccade end
interpretation considers them part of respective sac-
cades. If a different way of handling the saccade and
PSOs combination is desired, additional analyses have
to be carried out. (c) Special care was given to SP
labelling since it can be confused with other pursuit-like
motions. SP labels were assigned to the parts of the
gaze recordings where the gaze point was smoothly
moving itself and was following a moving object in the
video, i.e., the projection of the point of regard had
roughly the same velocity—speed and direction of
motion—as some moving object. The spatial location
of the gaze also had to approximately match that of the

assumed target (some offset was allowed to account for
the potential drifts in tracking). Contrarily, if the gaze
was moving, even in a pursuit-like fashion, without a
corresponding target, it was considered part of a
drifting or noisy fixation. We observed several instances
in the data where the gaze recording was smoothly
moving in a direction perpendicular or even opposite to
the velocity of the closest potential target. (d) Blinks,
gaze reported outside of the monitor, as well as
intervals where the eye tracker was yielding zero
confidence, along with naturally impossible gaze traces,
which could be attributed to tracking artefacts, were
labelled as noise. In this work, ‘‘noise’’ is used to name
the parts of the gaze recordings that are irrelevant to
the present study, and a more precise labelling scheme
might be required for different-context studies. This is
why this label was also assigned to blinks, for example,
even though these are a dedicated type of eye activity.

Additionally, we use the terms ‘‘event’’ and ‘‘epi-
sode’’ interchangeably when talking about eye move-
ments, both referring to a period of time where all the
gaze sample class labels (either in human annotations
or in the output of an algorithmic detector) are
identical. Thus, any gaze recording is subdivided into
nonoverlapping eye movement events (episodes), each
described by a corresponding label (in this study—one
of the labels defined above).

We further note that we refer to the manual labels as
the ‘‘ground truth’’ for eye movement classification,
even though expert annotations differ between them-
selves (I. T. C. Hooge et al., 2018), and even such basic
eye movements as fixations and saccades are differently
defined in the field (Hessels et al., 2018). Therefore, the
labels produced by hand-labelling the eye tracking data
can only be an approximation of the eye movements
that were taking place at the time. Nevertheless, we
maintain the ‘‘ground truth’’ name for this type of data
as this represents the state-of-the-art data source in eye
movement classification (Zemblys et al., 2018; Startsev,
Agtzidis, & Dorr, 2019; Zemblys et al., 2019), though
some automatic scoring pipelines are also being
developed (Larsson, Nyström, Ardö, Åström, & Stridh,
2016).

Original data set

Because the GazeCom (Dorr et al., 2010) data set
forms the basis on which we build our work, we briefly
describe its set-up and basic statistics here. The data set
comprises 18 short naturalistic video clips (20 s each),
depicting everyday scenes. These include beach scenes,
pedestrian and car-filled streets, boats, animals, etc.
There is little to no camera motion in the recorded clips
(11 out of 18 clips lack it completely, four have slow
panning camera motion, and the camera was slightly
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shaking in the other three), and the scenes themselves
contain both rigid (e.g., cars) and nonrigid (e.g., human
or animal) motion at a variety of speeds. These clips
thereby form a set of dynamic and relatively natural-
istic stimuli.

All video clips were presented at 1280 3 720 pixels,
29.97 frames per second, at a distance of 45 cm from
the observers. The frames covered an area of 48 3 27
degrees of visual angle. The gaze of 54 participants was
recorded at 250 Hz with an SR Research EyeLink II
eye tracker. Even though the eye tracker allowed for
small head motion, a chin rest was used to stabilize the
participants’ heads. Some recordings were discarded by
the authors of the data set due to frequent (over 5%)
tracking loss, leaving 844 recordings in the published
data set (46.9 per clip on average). These data total 4.5
hr of gaze tracking recordings, all of which we annotate
and analyze in the context of this work.

Manual eye movement annotation

We now focus on the manual annotation part of our
work, for which we used the software described in
(Agtzidis, Startsev, & Dorr, 2016a). The graphical
interface presents an annotator with four panels (see
Figure 2). The top left panel displays the video overlaid
with the gaze trace (current gaze sample plus gaze

positions 100 ms before and after it). The bottom left
panel, which was not used during our labelling, is
optional and displays the optical flow of the video. The
two panels on the right display the x and the y gaze
coordinates as time series, which are overlaid with
color-coded boxes that correspond to the time intervals
of different eye movements. These intervals could be
freely created or deleted, and their borders could be
freely adjusted by the manual annotators, who could
also scroll through the video (to observe object motion
patterns) and change the temporal scale of the
displayed gaze coordinates.

Prior to the hand-labelling process, the eye move-
ments were roughly prelabelled automatically with the
purpose of simplifying the annotation process (e.g., so
that the manual raters would not have to insert and
label as many eye movement episodes, mostly adjusting
their borders). For prelabelling we used the authors’
implementation of the saccade and fixation detection
algorithms of Dorr et al. (2010). The rest of the samples
were clustered in order to detect SP gaze samples by a
very early implementation of the Agtzidis et al. (2016b)
algorithm.

This technique of prelabelling the samples prior to
manual annotation allowed us to roughly double the
speed of the labelling process: For an expert annotator,
the labelling time decreased from ca. 10 to ca. 4 min on
average per single ca. 20 s recording (Agtzidis et al.,
2016a). The importance of these gains becomes evident

Figure 2. An example of the hand-labelling tool interface.
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when we consider the 4.5 hr of gaze recordings of the
GazeCom data set labelled by several annotators, thus
saving months of manual annotation time. Even
though any form of prelabelling introduces bias into
the resulting labels, we note the following: (a) Most of
the algorithms for eye movement detection, even the
simple threshold-based ones, detect fixations and
saccades reasonably well (Startsev, Agtzidis, & Dorr,
2019). Therefore, potential bias in the manual labels
should not constitute a large issue. (b) For smooth
pursuit, however, which is the focus point of this work,
and which is harder to detect algorithmically, we
specifically tested that our conclusions about the
performance of the SP detector we developed were not
unfairly affected by our labelling procedure (see the
Validity check for algorithmic detection evaluation
section).

The interface described above was used by three
human annotators in order to create a complete
manually labelled version of the GazeCom data set in
accordance to the eye movement definitions that were
given in the Addressing terminological ambiguity
section. The overall process involved two novice
annotators going through all the recordings twice,
followed by an expert who solved conflicts in their
annotations, but was still free to make any adjustments
in the labels in accordance with the provided eye
movement definitions.

The two novice annotators were paid undergraduate
students who received basic instructions about eye
movements and interpreting eye tracker data. Experts
in the eye movement field were available to answer their
questions at any point in the labelling process. Due to
their little prior experience with hand-labelling and
because we wanted their internal biases to stabilize,
these two annotators went through the data set for a
second time several months later. In the first pass they
were provided with the prelabelled suggestions and
instructed to change, add, or remove intervals accord-
ingly. In the second pass they were presented with their
own labelling and instructed to change it wherever they
thought it was not accurate (with respect to the eye
movement definitions). As a quality assurance measure,
a third (expert) annotator (one of the authors) re-
examined all the recordings in the data set with the
objective of resolving conflicts between the labels of the
first two annotators, also making changes where the
provided eye movement definitions were violated. We
report on the agreement between the raters later in the
paper.

In order to describe the eye movements in our data
set, we report several simple statistics. First, we
computed the overall speed of the events of each eye
movement class as episode amplitude divided by its
duration. Similarly, to characterize the directional
similarity of gaze movement within the individual eye

movement episodes, we computed the angular devia-
tion of sample-to-sample velocity vectors from the
overall direction of the corresponding episode. The
overall direction was computed as the vector pointing
from the start to the end position of gaze for each eye
movement episode. The deviations are then computed
as angles between the sample-to-sample shift vectors
and the respective overall direction vector. Such vectors
are visualized in Figure 3 for an example fixation of
GazeCom data.

To additionally quantify gaze behavior in naturalis-
tic dynamic video viewing, we also directly assessed
how synchronous were the eye movements (of the same
type) of different observers. To achieve this, we
computed the following for each of the eye movement
types considered here: (a) For each data point, we
determined the other data points belonging to its
spatio-temporal neighborhood (determined by the
parameters of the observer-driven clustering modifica-
tion of our approach, see Appendix, Observer-driven
clustering extension of DBSCAN—within 48 in the
monitor space and within 20 ms in time). (b) Among
these points, we computed the number of unique other
observers. (c) We then measured the percentage of gaze
samples (i.e., data points) that had no fewer than N
other observers’ gaze samples (of the same eye
movement type) in their neighborhood, and plotted this
over varying N (0 to 40 with a step of 1).

Figure 3. The sequence of gaze samples for an example fixation,

with the green vector marking the overall direction of the

episode and the red vectors corresponding to examples of

sample-to-sample gaze shift directions. The axes’ arrows

indicate the scale of the plot.
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Automatic eye movement annotation

Manually labelling eye movements is a tedious
process that requires a substantial amount of time, an
order of magnitude greater than the time required to
perform the recordings. Automating this process can be
desirable, as long as the algorithmically produced labels
offer qualitatively similar results to the manual ones.
The algorithm of Agtzidis et al. (2016b) forms the basis
for our automatic eye movement annotation approach.
Here we provide an in-detail description of the
algorithm and its implementation, which was devel-
oped in the context of this work. We further optimized
the parameters of our approach (see Appendix,
Parameter optimization), which has significantly im-
proved the algorithm’s performance (the values of the
optimized parameters are provided below). For rec-
ommendations regarding parameter adjustment when
the algorithm is to be applied to a different data set, see
Appendix, Parameter adaptation for other data sets.

Our approach first removes the confidently detected
saccades (along with blinks) and fixations from
consideration. Saccades were detected by the dual-
threshold saccade detector of Dorr et al. (2010).
Saccades nearest to the tracking loss intervals (but no
further than 25 ms) were marked as parts of a blink.
Fixations were removed based on sliding-window
analysis: All intersaccadic intervals with a gaze shift
magnitude below 1.418 were first marked as fixations
(value chosen via parameter grid search, see Appendix,
Parameter optimization). A 100 ms sliding window was
then applied to the remaining intervals to detect
fixation on- and off-sets when the average gaze speed in
the considered window fell below or raised above 28/s,
respectively.

After the prefiltering step, we clustered the remaining
‘‘pursuit candidate’’ samples with a variation of the
DBSCAN clustering algorithm (Ester, Kriegel, Sander,
& Xu, 1996). Importantly, the recordings of individual
observers were processed separately for saccade, blink,
and fixation detection, but the remaining SP candidate
samples were aggregated from all the available record-
ings for a given stimulus (between 37 and 52 in
GazeCom).

We employed DBSCAN in the 3D space consisting
of time and x, y coordinates. This algorithm effectively
finds densely populated areas of the considered space
by subdividing all the data samples into (a) cluster core
points, (b) border points, and (c) outliers. The concept
of the point’s neighborhood is important for these
definitions, and it is usually defined as all the data
points with a distance from the considered point not
exceeding a user-set value (parameter e). The core
points are defined as those having at least a certain
number (parameter minPts) of points in their respective
neighborhoods. Border points are those that do not

fulfil the requirements for core points but have at least
one core point in their neighborhood. All other data
samples are labelled as outliers (not a part of any
cluster) and receive a ‘‘noise’’ eye movement class label.

As there is no universal way of scaling distances in
time and in space, we proposed a slight modification of
the original DBSCAN algorithm by splitting coordi-
nates into groups that are considered together, and for
which an independently set threshold is used. For our
data, we grouped x and y and used the threshold exy¼
48 of visual angle. Time t represented the other
coordinate group, with the threshold et ¼ 80 ms. The
minPts parameter was set to 160 following the
optimization procedure in Appendix, Parameter opti-
mization.

An important distinction of DBSCAN from many
other popular clustering algorithms (e.g., k-means;
MacQueen, 1967, or Gaussian mixture models) is that
it does not assume that clusters can be represented by
centroids, but the cluster shape is arbitrary and only
determined by the data point density in the respective
space. This is particularly important for detecting the
grouping of smooth pursuit samples, as the trajectory
of the pursued target can be arbitrary, and the dynamic
nature of pursuit does not allow for its representation
as a centroid, which could be appropriate for fixations,
for example. Our implementation of DBSCAN not
only labels all the considered data points as either
belonging to a cluster or not, but also differentiates
between the individual clusters by assigning a corre-
sponding (unique) cluster ID to all the gaze samples
belonging to a particular cluster.

We also note that we additionally implemented a
more elegant, albeit less performant, version of the
algorithm, which clusters the data based on how many
unique observers have produced gaze samples in the
spatio-temporal vicinity of the considered gaze point,
instead of simply using the number of gaze samples
themselves. We describe this algorithm variant and
some analysis of its performance in more detail in
Appendix, Observer-driven clustering extension of
DBSCAN.

Programmatic interface

The implementation of our algorithm together with a
wide set of evaluation measures for eye movement
classification in general is available at https://web.gin.g-
node.org/ioannis.agtzidis/gazecom_annotations/ (ac-
companying the annotated GazeCom data set) or as
GitHub repository https://github.com/
MikhailStartsev/sp_tool. The implementation uses Py-
thon and several external libraries (e.g., for handling
ARFF data), which are listed as its dependencies. We
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will here briefly cover the functionality of the published
framework.

The framework can be used either as a Python
library that can be accessed from code or through an
executable file. In both cases, the framework user will
interact with the run_detection.py file and can set all the
parameters related to saccade, blink, fixation, and
pursuit detection as well as specify the path to input
and output directories. Implementation details of all
the detectors can be found in respective source files
(e.g., saccade_detector.py, etc.). The parameter set that
we recommend based on the results of the optimization
procedure in Appendix, Parameter optimization is
provided in the default_parameters.conf.json file, which
can be modified with any text editor, if necessary.

Two data formats can be loaded natively (without
preliminary conversion): ARFF (as described in
Appendix, Data format) and the original format of the
GazeCom data set (Dorr et al., 2010), also text-based,
with a header describing experiment set-up parameters.
We additionally provide conversion scripts for two
popular eye-tracking recording formats: text files
produced from binary SMI recording files and EyeLink
ASCII format (usually .asc files). These conversion
scripts also provide an example for programmatically
populating an ARFF file structure with any data and
can be found in the examples/ directory of the source
code.

Beyond this functionality, the framework provides
an implementation of a diverse set of metrics (see next
section), which can be computed for any ARFF data
(i.e., not necessarily GazeCom, not necessarily only the
eye movement types that are present in our data),
provided that some form of corresponding ‘‘ground
truth’’ and tested eye movement labels are available.
The implementation of the evaluation strategies can be
found in evaluate.py, and the evaluation script—
examples/run_evaluation.py—can be executed directly
from the command line.

Sample- and event-level evaluation

The widely used evaluation measures we imple-
mented include sample-level accuracy/precision/recall/
F1 scores (we recommend using F1 as a balanced
combination of precision and recall) and Cohen’s
kappa. Levenshtein distances between the true and the
predicted labelled sequences (of either samples or
events), as proposed by Zemblys et al. (2019), evaluate
the edit distances between the two sequences, though
these are a relatively weak evaluation measure that
might not be well suited for the eye movement
classification problem (Startsev, Göb, & Dorr, 2019).

As for event-level evaluation, there is no consensus
in the literature as to which measures should be used.

We therefore tested several different strategies pro-
posed in the field. We particularly want to point out the
F1 scores as computed by I. T. C. Hooge et al. (2018),
where the intersecting same-class episodes are matched.
It was modified in recent works: In Zemblys et al.
(2019), the events that have the largest intersection are
matched (rather than the temporally first intersecting
event being treated as a match, as in the original
matching scheme of I. T. C. Hooge et al., 2018), and the
event-level Cohen’s kappa scores are computed ac-
cordingly. In Startsev, Agtzidis, and Dorr (2019), a
threshold for the ‘‘quality’’ of the intersection was
recommended, which results in no more than one
potential match for each of the ‘‘true’’ episodes. In
Startsev, Göb, and Dorr, (2019) we additionally
proposed a new event-level Cohen’s kappa-based
statistic, which we developed after analyzing the
literature evaluation strategies in the context of eye
movement classification baselines. These and other
evaluation methods can be found as functions of the
framework we provide.

In this manuscript we will mostly rely on sample-
level F1 scores and event-level F1 scores of (I. T. C.
Hooge et al., 2018) for simplicity. A larger spectrum of
metrics for this and other literature models is reported
on the data repository page, however.

Algorithm evaluation

To put the performance of our detector in context,
we compare it with three other methods that detect SP:
the algorithms of Berg et al. (2009, implemented in
Walther & Koch, 2006) and Larsson et al. (2015,
reimplemented by our group and available for down-
load on the data repository page), as well as I-VMP
(San Agustin, 2010, implemented by Komogortsev,
2014). I-VMP, among others, was optimized in
Startsev, Agtzidis, and Dorr (2019) via an exhaustive
grid search of its parameters in order to deliver optimal
performance on the full GazeCom data set, so its
results represent an optimistic scenario. These three
models (plus the approach described here) were the best
nondeep-learning detectors tested in Startsev, Agtzidis,
and Dorr (2019), when ranked by the average per-class
sample- and event-level F1 scores. We use the same
metrics in this paper and test all models on the full set
of annotations of the GazeCom recordings that are
collected as described in this work.

Beside sample- and event-level F1 scores, we wanted
to computationally directly assess the properties of the
episodes (as detected by all the algorithms) and how
they compare to those of the ground truth episodes. We
consider duration as an example of a widely used
episode characteristic. As researchers might, for ex-
ample, use SP episode durations to distinguish between
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clinical populations (Silberg et al., 2019), it would be
useful to know which algorithms should be used for
automatic event detection in order to obtain episodes
that are closer to the ground truth in terms of the
properties of interest.

Instead of comparing just average episode statistics
(e.g., as in Komogortsev, Jayarathna, Koh, & Gowda,
2010), we represent episode duration distributions as
histograms (of 256 bins) and evaluate their similarity
with appropriate measures: Kullback–Leibler diver-
gence (KLD; Joyce, 2011) and histogram intersection
similarity (HSIM; Swain & Ballard, 1991).

Results

Eye movement properties

Overall, the GazeCom data set (in our final
annotation) contains 38,629 fixations, 39,217 saccades,
and 4,631 SP episodes. While the number of SP
episodes may seem small, especially for training a
balanced classification algorithm, there are more
pursuit than saccade samples: 11% versus 10.5%. As
expected, most samples were labelled as fixations
(72.5%), with another ca. 6% labelled as ‘‘noise.’’

In this section, we visualize some basic and
commonly used (e.g., Salvucci & Goldberg, 2000;
Komogortsev & Karpov, 2013; Santini et al., 2016;
Zemblys et al., 2018; Startsev, Agtzidis, & Dorr, 2019)
statistics (speed and directional deviation) of the
ground-truth fixations, saccades, and pursuits.

Figure 4 visualizes the distribution of the overall
speeds of the events of each eye movement class.
Notably, some average saccade speeds were lower than
expected because of the inclusion of PSOs in our
definition. Whereas fixations and thus-labelled saccades
have almost no intersection in their speed distributions,
pursuits demonstrate a sizeable overlap with the
fixation class, while also extending into the territory of
the speeds of slow saccades.

Figure 5 visualizes the distributions of sample-to-
sample velocity vector angular deviation from the
overall direction of the corresponding episode. We can
observe that the three eye movement types we consider
correspond to three distinct shapes of the direction
deviation distribution, with saccades having the most
pronounced peak (Figure 5c), followed by SPs (Figure
5b), followed by an almost uniform distribution for
fixations (Figure 5a). The direction deviation distribu-
tion for fixations is not perfectly uniform because the
deviations of direction are computed regardless of the
gaze shift magnitude (e.g., see Figure 3), and thus any
drift, however small, would result in the distribution
skewing. The fact that these distributions exhibit
different patterns for fixations, saccades, and pursuits
indicates that gaze movement direction could be a
useful feature for eye movement classification (which
was also demonstrated in Larsson et al. (2016) and
Startsev, Agtzidis, and Dorr (2019).

Figure 6 depicts the spatio-temporal interobserver
congruency of different eye movement types, demon-
strating that pursuit has the strongest synchrony
between the observers, closely followed by fixations,
followed by saccades, finally followed by samples
labelled as noise.

Figure 4. Overall per-episode speed distributions for fixations, saccades, and smooth pursuits. These are the (normalized) histograms,

which were computed for each eye movement type independently with 50 equal-sized bins covering each respective speed range.

These were then plotted here in log-scale (see x axis), with the y axis representing the share of episodes in each of the bins. The

dashed vertical lines visualize the quartiles (first and third) of the respective distributions. Note that since the horizontal axis is in log-

scale, it is difficult to visually compare the areas under different parts of the curves. For example, for fixations (red solid line), 50% of

the labelled episodes (between the first and third quartile lines) had an overall speed between 18/s and 38/s, as indicated by the left

and right vertical red lines, respectively.
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Hand-labelling statistics

Labelling the full Gazecom data set lasted the
equivalent of several months of full-time work (in-
cluding the two passes through the whole data set for
the first two annotators). On average for all three
annotators, labelling one GazeCom recording (usually
ca. 20 s) took between 5 and 6 minutes, which is
equivalent to a labelling time of 15–18 s for each second

of the recorded gaze signal. The labelling process also
benefited from prelabeling the gaze signal, which more
than doubled the labelling speed (see the Manual eye
movement annotation section).

In Figure 7 we illustrate the confusion matrix
between the prelabelled and hand-labelled eye move-
ment classes, thus reporting which and how many
algorithmically preassigned labels were replaced during
manual annotation. The algorithmically suggested

Figure 5. Directional deviation distributions for fixations (a), pursuits (b), and saccades (c), presented as circular histograms. The

height of each bar represents the share of the sample-to-sample velocity vectors with the given angular deviation from the overall

direction of their corresponding episode (see Figure 3). Zero deviation angle means perfect alignment with the overall direction of the

respective episode.

Figure 6. Visualization for the spatio-temporal congruency between same-type eye movements of different observers. The y axis

portrays the share of the respective eye movement samples that are located within 20 ms and a 48 radius from the same-type

samples that belong to at least as many different unique observers as denoted by the x axis.
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labels are represented by the matrix rows, while the
final ‘‘ground truth’’ labels are represented by the
columns. Note that the individual cells contain the
overall share of the samples that had a certain
suggested label and a certain final label, i.e., the whole
matrix sums to 1.0, but not the individual rows or
columns. The color of the cells indicates the degree of
the correspondence between the originally suggested
labels of each type and the final labels of each type (see
color bar in Figure 7; if the prelabeling were perfect,
only the diagonal would be populated). It can be
observed that fixations and saccades were very well
detected by the algorithms (over 90% of the final labels
of these types were correctly labelled by the algorithms
that were used for prelabeling). For pursuit, however,
most of the finally assigned SP labels corresponded to
originally suggested fixation labels (ca. 59%), only 27%
being prelabelled correctly. A large share of the final
noise labels (ca. 31%) correspond to prelabelled
saccades, with half of them very likely being a part of
blinks (closer than 200 ms to a tracking loss interval),
which is common in video-oculography (Holmqvist et
al., 2011, Section 5.7).

Figure 7 already reflects the proportions of samples
that were prelabelled or received a manual label of a
certain type (these numbers can be obtained by
summing either the matrix rows or columns, respec-
tively). We also separately report the label shares and
the number of respective uninterrupted episodes in
Table 1. It can be seen again that the amount of SP has

increased dramatically with the manual annotation
(from 3% to 11% of gaze samples, ca. 3000 to ca. 4500
episodes), whereas the amount of saccades and
fixations (in terms of both samples and episodes) was
prelabelled relatively accurately. This is indicative of
both fixation and saccade classes being more well
defined in the literature and the existing (even simple)
detectors being much more accurate for these classes.
Overall, we can say that the preassigned labels were
changed substantially during manual annotation,
mostly affecting the smooth pursuit class.

Interrater agreement

We here report how well the three annotators agreed
in their labels in terms of sample-level F1 scores; event-
level scores were quantitatively similar because humans
tend not to fragment intervals (data not shown). The
scores presented in Table 2 indicate that all the
annotator pairs have very high agreement levels for
fixations and saccades. For pursuits, however, the
agreement is substantially lower and the final annota-
tor, who was mostly resolving the conflicts between the
labels of the first two annotators, tended to mostly
agree with the labelling of the first annotator.
Interestingly, the agreement scores between each
annotator’s first and second pass labels (marked with ini

and final in the table) are similar in value to the
interrater agreement, confirming the difficulty of

Figure 7. Confusion matrix for the prelabelled and manually

annotated eye movement samples. Rows correspond to the

suggested eye movement labels, columns—to the final hand-

labelled classes. Cell color reflects the share of samples in the

final hand-labelling that were originally prelabelled as the

respective suggested classes (i.e., per-column normalization is

employed; cf. the color bar on the right).

Eye movement

type

Suggested label Final expert label

Share Episodes Share Episodes

Fixation 76.2% 39,293 72.6% 38,629

Saccade 10.7% 40,233 10.5% 39,217

SP 3.3% 2879 11% 4631

Noise 2.5% 6319 5.9% 3493

Unassigned 7.3% 27,165 0% 0

Table 1. The overall percentage of gaze samples and number of
episodes of all eye movement types in the algorithmically
suggested (‘‘prelabelled’’) labels and the final set of labels
produced in our annotation procedure.

Eye movement

type

1ini vs.

1final

2ini vs.

2final

1final vs.

2final

1final vs.

final

2final vs.

final

Fixation 0.950 0.977 0.933 0.975 0.949

Saccade 0.904 0.951 0.863 0.937 0.883

SP 0.787 0.796 0.629 0.904 0.697

Table 2. Agreement between the initial (1ini and 2ini) and final
(1final and 2final) annotations of the two nonexpert annotators,
and all annotator pairs in the form of sample-level F1 scores.
The ‘‘final’’ label refers to the annotations of the third (expert)
rater, who consolidated the labels of 1final and 2final.
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pursuit annotation in naturalistic stimuli, compared to
the labelling of fixations and saccades.

We will examine algorithmic detection in more detail
in the next section, but we report the same type of
agreement scores for our algorithm and all of the
individual annotators in Table 3. As our detector was
optimized for the final manual label, its own SP
detection outputs agree more with the final annotator,
but the differences are small. Generally, the agreement
of our algorithm with the manual raters is close to the
agreement between the raters themselves.

Algorithmic detector parameter optimization
results

We randomly sampled the multidimensional pa-
rameter space of our fixation and pursuit detectors (see
Appendix, Parameter optimization), which enabled us
to illustrate the performance range of our detector in
the form of a ROC-like plot in Figure 8. The
optimization procedure has substantially increased the
sensitivity of the sp_tool – from 0.46 for the prelimi-
nary parameter set in (Agtzidis et al., 2016b) to 0.59
after optimization—at the cost of minimally lowered
specificity (0.98 to 0.97). The optimization criteria did
not account for fixation detection quality. However,
this improvement in SP detection also comes with an
increase in the event-level F1 score for fixation
detection—0.75 for Agtzidis et al. (2016b) versus 0.81
for the sp_tool after parameter optimization—at a
small decrease of sample-level F1 (0.91 to 0.89).

Quantitative evaluation

In this section we report and discuss the various
performance statistics for our sp_tool detector in
comparison to the other methods in the literature,
which include the preliminary version of the multi-
observer SP detector (Agtzidis et al., 2016b) and the
algorithms of Berg et al. (2009), San Agustin (2010),
and Larsson et al. (2015). Our comparison is based on
several metrics: First of all, the sample- and event-level
F1 scores were computed. Then, we numerically
compared the distributions of automatically detected

SP episodes with those in the ground truth via KLD
and HSIM (see the Algorithm evaluation section). For
F1 scores and HSIM, higher values are better, with a
perfect algorithm scoring 1. For KLD, lower values are
better (as it is a measure of divergence), with the best
score of 0.

SP detection performance is separately addressed in
Table 4. From these statistics it can be seen that
parameter optimization positively affects both the F1
scores and the distributional metrics, more than halving
the KLD and increasing the HSIM score over 1.5 times,
compared to the Agtzidis et al. (2016b) version of the
algorithm. Overall, the biggest weakness of the Agtzidis
et al. (2016b) parameter set for the sp_tool lies in
generating a large number of short SP episodes, which
is reflected by the KLD and HSIM measures, ranking it

Eye movement

type

sp_tool

vs. 1

sp_tool

vs. 2

Sp_tool

vs. final

Fixation 0.883 0.882 0.886

Saccade 0.849 0.883 0.864

SP 0.626 0.602 0.646

Table 3. Agreement between our algorithmic eye movement
detection framework and all of the annotators in the form of
sample-level F1 scores.

Figure 8. Smooth pursuit detection performance range of our

framework, depending on the parameters.

Algorithm

Sample

F1 �
Event

F1 �

Duration

distr.

KLD �

Duration

distr.

HSIM �

Ours (sp_tool): optimized 0.646 0.527 0.620 0.679

Larsson et al. (2015) 0.459 0.392 0.693 0.647

I-VMP (optimized) 0.581 0.531 1.154 0.602

Agtzidis et al. (2016b) 0.571 0.415 1.280 0.440

Berg et al. (2009) 0.422 0.424 1.923 0.459

Table 4. Smooth pursuit detection evaluation results on the
entire GazeCom data set. Notes: The � symbol marks the
columns where the higher score is better; � where the lower
score is better. The rows are sorted by their average scores (KLD
taken with a negative sign). Best score in each column (or
within 0.01 of it) is bolded.
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on average below (Larsson et al., 2015) and I-VMP,
even though its F1 scores are mostly higher or on par
with these models. Parameter optimization led to a
significant performance increase that puts our frame-
work higher than the competition, yielding the best
results in all considered metrics except event-level F1
scores, where the score is slightly behind the optimized
I-VMP, but only by 0.004.

The sp_tool framework also detects fixations and
saccades as part of its pipeline, and we compared the
algorithms employed there to the same literature
models as in Table 5 for SP (for full evaluation tables,
see Startsev, Agtzidis, & Dorr, 2019). For saccade
detection, sp_tool and our reimplementation of Lars-
son et al. (2015) use the same saccade detector (Dorr et
al., 2010), which yields better sample- and event-level
F1 scores than the next best model for saccade
detection in our evaluation (Berg et al., 2009): 0.86 and
0.88 versus 0.70 and 0.86, respectively. In terms of
fixation detection, the sp_tool performance (0.89 and
0.81 for sample- and event-level F1 scores) is compa-
rable, though slightly behind the Larsson et al. (2015)
model with its scores of 0.91 and 0.87, respectively.
These results indicate that the sp_tool offers an
improvement to SP detection without sacrificing
fixation and saccade detection performance, thus
offering a balanced framework for eye movement
classification.

Validity check for algorithmic detection
evaluation

Here we address the issue that was raised in the
Manual eye movement annotation section: Since a pilot
implementation of the clustering strategy described in
this work was used to algorithmically prelabel SP prior
to manual annotation (to speed up the tedious process),
it is possible that the potential correlation of the final
labels with the algorithmically suggested labels would
unfairly benefit our model’s evaluation scores. We
therefore tested our (postoptimization, see Appendix,
Parameter optimization) and literature SP detectors on

those gaze sample where the label was changed by the
manual raters during the annotation process.

Overall, the final manual annotator ‘‘disagreed’’ with
the algorithmically suggested labels in 18.5% of the
cases. This seems low, but this encompasses 72.9% of
the final SP labels, so the partial evaluation for this
class is meaningful. Table 5 presents the sample- and
event-level F1 scores for all the tested detectors on these
data. It can be seen that even in these conditions our
model outperforms the literature models by a notice-
able margin.

It has to be additionally noted that all the results
reported in this table are noticeably lower than the
corresponding values in Table 4 (for the full GazeCom
data set): Sample-level F1 scores in Table 5 are ca. 0.2
lower than on the full data set, event-level scores—
between 0.1 and 0.2 lower. This leads us to argue that
the SP episodes that were correctly prelabelled prior to
manual annotation represent a set of easily detectable
examples for any pursuit detector, so their preannota-
tion would not bias the evaluation in favor of our
approach.

Robustness to variations in the number of
observers

As the approach we take to SP detection is based on
analyzing the recordings of several observers at once,
we tested how much its performance depends on the
number of the observers whose gaze recordings are
available for processing.

To be able to compare the performances of our
model on the subsets of GazeCom with reduced
numbers of observers, as well as to alleviate the effects
of the random subsampling, we repeatedly sampled
reduced observer sets for each stimulus video clip
independently. We tested the subsets that included
between 5 and 45 observers and sampled (without
replacement) the respective number of recordings 20
times for each video. If the video had fewer recordings
than required, all of the available recordings were used
without duplication.

Figure 9 presents the sample- and event-level F1
scores for SP detection achieved by our algorithm
(parameters optimized for the full GazeCom set and
adjusted according to the recommendations in Appen-
dix, Parameter adaptation for other data sets, i.e.,
minPts scaled proportionally to the number of observ-
ers) and compares those to the results of I-VMP—the
literature model with the best respective scores (see
Table 4).

It can be observed that sample-level performance of
our model confidently exceeds that of I-VMP when 15
or more observers’ recordings are processed at once,
and keeps increasing. Event-level F1 scores for our

Algorithm SP sample F1 SP event F1

Ours (sp_tool): optimized 0.423 0.419

I-VMP (optimized) 0.382 0.399

Berg et al. (2009) 0.240 0.316

Larsson et al. (2015) 0.207 0.239

Table 5. Partial evaluation results (only on the labels that were
changed during the annotation), demonstrating that our
labelling procedure does not unfairly favor our model. Notes:
The rows are sorted by their average scores. Highest score in
each column is bolded.

Journal of Vision (2019) 19(14):10, 1–25 Startsev, Agtzidis, & Dorr 14

Downloaded from jov.arvojournals.org on 05/04/2020



approach also increase with the number of observers,
but only reach performance levels comparable with I-
VMP when ca. 40 observers have viewed each clip.

We note that the observed dynamics in the (sample-
level) F1 scores were due to precision rapidly increasing
with the number of observers (from 0.47 to 0.7 for five
and 45 observers, respectively), while recall gradually
decreased (from 0.69 to 0.59). On the whole, the
increase in sample-level F1 scores becomes incremental
around the 15-observer mark. For event-level scores the
same is observed only at around 30–35 recordings per
stimulus.

Discussion

In this work we presented, first of all, the manual eye
movement annotations for the GazeCom data set
(Dorr et al., 2010). These represent, to the best of our
knowledge, the largest collection of expert eye move-
ment class labels where smooth pursuit is taken into
account. Other dynamic content viewing data sets that
are manually annotated are typically either small in size
(Andersson et al., 2017), or focus on synthetic stimuli
viewing (Santini et al., 2016). A recent work by Steil et
al. (2018) only annotates the data for determining
whether the gaze keeps following the same object
between recording frames, which does not differentiate
between fixations and pursuits, thus confounding static
and dynamic gaze behaviors in its definition of
‘‘fixation.’’ The data set presented in Agtzidis, Startsev,
and Dorr (2019) annotates smooth pursuit in 3608

video viewing as well, but it is much smaller in size (ca.
0.5 h). Kurzhals, Bopp, Bässler, Ebinger, and Weiskopf
(2014) manually annotated only the areas of interest
and not the eye movements themselves (fixations
detected by a standard algorithm are also provided).
The data set presented in this work will allow
researchers to acquire insights into certain aspects of
behavior during naturalistic video viewing, where
differentiating between fixations and pursuits is of
importance.

Eye movement behavior in dynamic natural
scenes

Our work provides the first quantitative character-
ization of human pursuit behavior in dynamic natural
scenes. Given the significance of this eye movement
type, we argue that researchers should take smooth
pursuit into account when analyzing gaze recordings
for dynamic stimuli. In our experiments ca. 11% of the
viewing time was spent performing smooth pursuit,
which is more than the time spent during saccades. This
is particularly impressive as the stimuli were not
designed to induce SP (unlike commonly used artificial
moving stimuli), and the participants were not
instructed to specifically ‘‘follow moving objects’’ as in
e.g., Larsson et al. (2013).

Examining the speed distribution of the occurring SP
episodes in the GazeCom data set—see Figure 4—
allows us to conclude that, at least for this data set,
achieving accurate ternary eye movement classification
(i.e., distinguishing fixations, saccades, and pursuits

Figure 9. The dynamics of the sample- and event-level F1 scores of the sp_tool pursuit detection depending on the number of

observers that are used for analysis simultaneously. Dashed lines indicate the scores achieved by the best other model (see Table 4).

The shaded areas correspond to 61 SD of the scores over 20 runs.
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from one another) via any number of speed thresholds
is impossible, as the three classes have an overlap in
their speeds. The particular challenge is presented by
the introduction of smooth pursuit: Fixations and
saccades, for example, have practically no overlap in
their overall speed, and could be almost perfectly
separated with a simple speed threshold (in the absence
of SP). SP, however, would be impossible to classify
correctly using speed thresholds only (as in I-VVT;
Komogortsev, Gobert, Jayarathna, Koh, & Gowda,
2010, for example), as there is a high degree of overlap
with fixations, as well as some intersection with the
saccade class. Of course, the speed distribution of SP is
directly stimulus-dependent: Unlike fixations and
saccades, which are only to some extent influenced by
the observed stimulus properties (faster paced scenes
could reduce average fixation durations, saccade
amplitudes depend on the spatial distribution of the
objects of interest on the video surface, etc.), pursuit
speeds are very close to the speeds of the corresponding
targets, at least up to about 1008/s (Meyer, Lasker, &
Robinson, 1985). This means that in a different data set
of stimuli, the overlap between the speeds of fixations,
pursuits, and saccades may look different. However, we
note the following: (a) The scenes in the GazeCom data
set are representative of the real world (albeit without
head rotation freedom for the viewer; in recording set-
ups with unrestrained head, nonnegligible head move-
ment is present for a large portion of the time—e.g., ca.
50% in (Agtzidis et al., 2019)). Therefore, our
observations should be generalizable to similar condi-
tions in other data sets. (b) The stimuli in our data
contained a variety of natural and man-made targets,
moving at a range of speed and directions. Since the
participants were not instructed to perform a specific
task or to exhibit specific viewing behavior during the
gaze recording session, we can conclude that the
observed SP properties are ‘‘natural’’ in the sense of not
being stressful to perform. This means that the pursuit
episodes in our data set cover some, but potentially not
all of the range for spontaneously occurring SP speeds
and directions, implying that the conclusions we make
about the difficulty of separating the considered eye
movement classes can only be underestimating this
difficulty in a more generic set-up.

Very similar observations can be made about the
plot of the directional deviations of different eye
movement types in Figure 5: For these distributions as
well, a typical pattern emerges—SP is somewhere ‘‘in-
between’’ fixations and saccades, noticeably compli-
cating classification. From the arguments above we
infer that simple thresholds of basic eye movement
statistics (speed, direction) are not optimal for smooth
pursuit classification. Hence combinations of simple
properties, higher order statistics, or either implicitly or
explicitly learned (e.g., via training machine learning

algorithms) complex features are more appropriate for
the detection of all eye movements occurring in
dynamic scene viewing. It is, however, unclear whether
the modalities characterizing the gaze traces alone
(speed and direction in this case) provide enough
information to distinguish the eye movements from one
another. Based on our previous experiments (Startsev,
Agtzidis, & Dorr, 2019), we can only claim that (a)
complex features learned from basic statistics on a
variety of time scales improve classification beyond
simple thresholding, and (b) analyzing large segments
of gaze traces is much more beneficial than analyzing
individual gaze sample characteristics, and increasing
the temporal context size for such analysis can
drastically improve the classifier.

In order to further examine the viewing behavior in
our data set, as well as to quantitatively motivate our
clustering-based smooth pursuit detection approach,
we computed spatio-temporal synchrony in the eye
movements of different types (see Figure 6). The results
matched our intuitive expectations about the eye
movements that are neither fixations nor saccades—the
congruence between the SP samples of different
observers is much higher than that for the noise
samples, which could be misinterpreted for potential
pursuits. In addition to this, we saw that pursuit
demonstrated the highest degree of synchrony between
the observers, separating it from the other classes
(though the percentages for fixations performed syn-
chronously are not much lower). Saccades, on the other
hand, are rarely performed at the same time and place
by different observers. Figure 6 allows us to directly
quantify the synchrony of the different eye movements
in our data set: Over 50% of smooth pursuit (fixation)
samples are in the immediate spatio-temporal neigh-
borhood of the samples of another seven (six) observers
in the GazeCom data. Bearing in mind that GazeCom
has an average of 46.9 unique observers’ recordings per
stimulus, we can see that 11% of smooth pursuit
samples belong to episodes that are synchronous
between over half of all the observers that watched the
videos. The same can be said about just 6% of fixation
samples. On the same data set as used in this work,
Dorr et al. (2010) previously made a broader observa-
tion that gaze congruency between observers is the
highest when a small number of moving objects are
present in the scene, though without considering
particular eye movement classes. Mital et al. (2011) also
reported that the clustering of gaze points was
predicted well by the motion in the video, meaning that
pursuit targets are likely to attract attention of multiple
subjects at the same time. In Startsev, Göb, and Dorr
(2019), temporal interobserver synchrony of the per-
formed eye movements is indirectly examined, but the
spatial aspect is not considered.
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Manual annotation and ‘‘ground truth’’

We further compare the annotation pipeline in our
work with a recent work by I. T. C. Hooge et al. (2018),
who observed that expert annotators often disagree in
their fixation annotations when they use their own
implicit definitions of the eye movements. Keeping
these findings in mind, we provided our annotators
with a set of instructions and validated their labels with
an additional correction by an expert. The first two
annotators in our procedure were not field experts, but
they received basic instructions regarding the eye
movement types and the labelling process, with only the
third annotator having prior experience and expertise
in the field. Nevertheless, they demonstrated high
agreement when it comes to fixation and saccade
episodes both between their two passes and with the
final annotator (event-level F1 scores for both classes �
90% for all annotator pairs), indicating that at least the
interpretation of the definitions of these eye movements
was consistent between raters. SP labelling, however, is
far more subjective, as it seems: Having received
identical instructions, the nonexpert annotators dis-
agreed about these labels much more than about the
other classes not only between themselves, but also
between the first and second pass of the same rater.
This disagreement is likely due to the fact that the SP
labelling instructions included somewhat intuitive
concepts, such as the gaze moving smoothly and the
motion of the gaze corresponding to the movement of
some target in the scene. The perception of both of
these can depend on the zoom level in the labelling
interface and the speed at which the rater scrolled
through the video frames, not to mention the subjective
thresholds and criteria for the presence of motion, its
smoothness, and trajectory correspondence. In subse-
quent versions of the annotation tool (Agtzidis et al.,
2019) we have, therefore, included gaze speed plots to
be able to set explicit thresholds for annotators (e.g., ‘‘a
sustained gaze speed of at least X8/s can constitute an
SP, provided that there is a target in the scene that
moves along a similar trajectory’’), thus somewhat
eliminating the rater-dependent bias and the depen-
dence on the zoom level.

In this context, it is an interesting question whether
the information that is typically presented to human
annotators is enough to yield quality eye movement
labels. The issue is actually two-fold: (a) Whether
enough information is provided to sufficiently charac-
terize the viewing behavior (e.g., should the annotators
see the gaze in relation to the stimulus) and (b) whether
human annotators (with their limited numerical infer-
ence possibilities and visual perception precision) can
efficiently use this provided information (with respect
to the visualization scale, the necessity to combine
information across different plots, or the units of the

visualized values, for instance). With respect to the
former, several works in the literature (Andersson et
al., 2017; I. T. C. Hooge et al., 2018) use an approach
where the expert is blind to the stimulus, and therefore
cannot assess, for example, the number of potential
gaze targets and the position of gaze with respect to
them, which could potentially help disentangle a series
of fixations in noisy data. In Andersson et al. (2017),
the gaze trace is shown at different scales, however, one
of which corresponds to the dimensions of the stimulus.
Pupil diameter was additionally visualized, which is
typically not taken into account by the algorithms. In
this work, however, we define smooth pursuit in
relation to following a moving (in world coordinates, as
the observer’s head is fixed in space) target, so we argue
that the visualization of gaze with respect to the video
frames is essential. Taken to the extreme, as in Steil et
al. (2018), a similar definition can be applied to
separate the eye movements into either focusing on a
target or not, regardless of whether the target is moving
relative to the observer (all denoted as ‘‘fixation’’ in that
work). This approach loses the granularity of eye
movement analysis, however.

As to the second point, we note the fixed (temporal)
scale and a somewhat unintuitive unit for gaze speed
(px/s2) of the visualizations in I. T. C. Hooge et al.
(2018). However, providing a speed signal to the
annotator could be a great help, especially when several
speeds have to be compared and combined for
meaningful classification (e.g., for the set-up with
unrestrained head motion; Kothari et al., 2017;
Agtzidis et al., 2019). As noted by Andersson et al.
(2017), any particular way of presenting gaze data to
annotators will inevitably bias their internal criteria for
distinguishing eye movement classes. However, until
bias-free ways of annotating eye movements are
developed, manual annotation remains an important
part of evaluating and training algorithmic detectors in
this field (I. T. C. Hooge et al., 2018).

Algorithmic annotation

In another branch of our analysis, we extended and
improved on our previously developed algorithm for
pursuit detection (Agtzidis et al., 2016b), which uses the
recordings of several observers to improve the detection
quality. The optimized parameter set demonstrated
excellent performance on the GazeCom data set, in
terms of both sample- and event-level measures,
including comparing basic episode statistics to the
manually annotated events. It also demonstrated its
generalizability on an independent data set of Anders-
son et al. (the video-viewing subset, 2017), for which
results were presented in Startsev, Agtzidis, and Dorr
(2019): The sp_tool model (with optimized parameters,
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adjusted according to Appendix, Parameter adaptation
for other data sets) yielded the best mean sample- and
event-level F1 score (averaged across fixations, sac-
cades, and pursuit). Its event-level F1 score for SP
(0.592) was at least 0.11 higher than that of the next
best models on that data.

We discuss the strengths and weaknesses of this
clustering-based SP detection approach on an example
of the visualization in Figure 1. First of all, it can be
seen that when the observers are following distinct
targets (the ‘‘main’’ targets that attract most of the
attention by their sudden motion onsets), SP is detected
relatively well (see the green clusters in Figure 1). Only
comparatively few SP episodes are missed in the
vicinity of these dense clusters. However, the use of
clustering here means that if certain fixation samples,
for example, were not detected by the fixation detector
beforehand and form dense groups, SP labels will be
assigned to them (see two red clusters at the bottom of
Figure 1). Similarly, if only a single observer is
following a target, the corresponding SP episode(s) will
likely be missed due to insufficient sample density (see
the continuous blue sample sequence at the top of
Figure 1).

The extensive evaluation performed in this work
demonstrated that pursuit detection quality increases
with the number of observers. This is not characteristic
to any other eye movement detection algorithm, since
recordings are usually processed independently. The
machine learning-based methods (e.g., Zemblys et al.,
2018; Startsev, Agtzidis, & Dorr, 2019; Zemblys et al.,
2019), also benefit from additional data, but they
require additional annotated data being provided to
improve the trained models, since supervised learning is
applied. Our method, on the other hand, only requires
additional data without annotations due to the unsu-
pervised nature of clustering. This means that the effort
required in order to improve pursuit detection quality
with our algorithm is much lower than in the case of
other data-driven approaches: Data annotation can
take up to 18 times longer than the recordings
themselves (cf. the Hand labelling statistics section and
I. T. C. Hooge et al., 2018); for mobile eye tracking
data, the overhead can be even larger (Munn, Stefano,
& Pelz, 2008).

Using several recordings per stimulus, of course,
imposes certain restrictions on the applicability of the
algorithm. First and foremost, there have to be several
observers viewing each stimulus. This, however, is
relatively typical for video-based eye tracking studies
(Itti & Carmi, 2009; Kurzhals et al., 2014; Andersson et
al., 2017). For experiments with synthetic stimuli,
researchers sometimes randomly generate the motion
of the target(s) for each observer (e.g., Santini et al.,
2016). Clustering cannot be applied in such cases, but

the method remains applicable when the same synthetic
sequences are presented to all of the participants.

Another issue with the approach that involves
clustering the gaze samples of several recordings is that
this processing can only happen when all the recordings
have already been collected, i.e., no online detection is
possible. However, the pipeline can be modified for
online detection of pursuit that occurs during the
viewing of the stimuli that have already been presented
to other observers. To this end, the already available
prerecorded data points are clustered beforehand, and
only the core points of the clusters should be retained.
The newly arriving gaze coordinates can then be tested
for proximity to the preclustered points in a real-time
fashion.

Our high-quality algorithmic analysis of eye move-
ment episodes enables automated processing of (large)
data corpora collected for dynamic stimuli. In Silberg
et al. (2019), for example, our eye movement classifi-
cation framework was used to automatically detect
pursuit in the recordings of 51 participants, who were
shown half of the videos of the GazeCom data set (ca.
2.5 hr of eye tracking data). In Startsev and Dorr
(2018), automatic eye movement classification via the
framework described here was used to produce training
data for saliency modelling in a more targeted way, i.e.,
focusing specifically on predicting human fixations or
pursuit. Providing enough training data for a deep
learning computer vision system would be impossible
without an automated detection system: The training
set of the Hollywood2 data set (Mathe & Sminchisescu,
2012), which was used in Startsev and Dorr (2018),
comprises well over 30 hours of eye tracking record-
ings. The fact that the Startsev and Dorr (2018)
saliency model that was trained on automatically
detected pursuit performed better than all of the
literature models when predicting ground truth pursuit
on the GazeCom data set validates the fact that the SP
detection method we developed here can be used to
study human pursuit patterns in a data-driven way even
without manual annotations.

Conclusions

In this work we presented our contributions to both
the manual and the automatic analysis of eye move-
ment events in eye tracking recordings. Firstly, we
collected a data set of manual eye movement annota-
tions for the entire GazeCom data set, which makes
this the largest data set where smooth pursuit was also
considered by the annotators. Based on this data set,
we, for the first time, quantitatively described and
characterized pursuit behavior in dynamic naturalistic
scene viewing without instructions or task. We found
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that the percentage of samples attributed to smooth
pursuit was slightly higher than that for saccades, thus
emphasizing the importance of this eye movement in
studies with dynamic stimuli. Pursuit also demonstrat-
ed the highest spatio-temporal interobserver congru-
ence across all eye movements we annotated, indicating
the importance of the targets that induce this type of
visual behavior. Motivated by the latter finding, we
additionally described and improved our multiobserver
smooth pursuit detection algorithm that outperforms
other approaches in the literature. We found that the
detection quality of our algorithm rises with the
number of observers in the data set, which sets it aside
from other detectors in the literature: The results of our
model can be improved simply by increasing the pool of
observers, without manual processing of the additional
recordings. The implementation of this algorithm is
provided as part of the sp_tool framework, which
detects all major eye movement types as well. The code
of our methods (including all the data handling
procedures, detectors, and several evaluation strategies)
is publicly available together with the manual labels we
assembled for the full GazeCom data set via https://
web.gin.g-node.org/ioannis.agtzidis/gazecom_
annotations/.

Keywords: smooth pursuit, data set, natural scenes,
eye movement classification, clustering, unsupervised
learning

Acknowledgments

This research was supported by the Elite Network
Bavaria, funded by the Bavarian State Ministry for
Research and Education.

*MS and IA contributed equally to this article.
Commercial relationships: none.
Corresponding author: Mikhail Startsev.
Email: mikhail.startsev@tum.de.
Address: Human-Machine Communication, Technical
University of Munich, Munich, Germany.

References

Agtzidis, I., Startsev, M., & Dorr, M. (2016a). In the
pursuit of (ground) truth: A hand-labelling tool for
eye movements recorded during dynamic scene
viewing. In 2016 IEEE Second Workshop on Eye
Tracking and Visualization (ETVIS) (pp. 65–68).
Baltimore, MD: IEEE.

Agtzidis, I., Startsev, M., & Dorr, M. (2016b). Smooth

pursuit detection based on multiple observers. In
Proceedings of the Ninth Biennial ACM Symposium
on Eye Tracking Research & Applications (pp. 303–
306). New York, NY: ACM.

Agtzidis, I., Startsev, M., & Dorr, M. (2019). 360-
degree video gaze behavior: A ground-truth data
set and a classification algorithm for eye move-
ments. In Proceedings of the 27th ACM Interna-
tional Conference on Multimedia (pp. 1007–1015).
New York, NY: ACM.

Anantrasirichai, N., Gilchrist, I. D., & Bull, D. R.
(2016). Fixation identification for low-sample-rate
mobile eye trackers. In 2016 IEEE International
Conference on Image Processing (ICIP) (pp. 3126–
3130). Phoenix, AZ: IEEE.

Andersson, R., Larsson, L., Holmqvist, K., Stridh, M.,
& Nyström, M. (2017). One algorithm to rule them
all? An evaluation and discussion of ten eye
movement event-detection algorithms. Behavior
Research Methods, 49(2), 616–637, https://doi.org/
10.3758/s13428-016-0738-9.

Atick, J. J., & Redlich, A. N. (1992). What does the
retina know about natural scenes? Neural Compu-
tation, 4(2), 196–210, https://doi.org/10.1162/neco.
1992.4.2.196.

Berg, D. J., Boehnke, S. E., Marino, R. A., Munoz, D.
P., & Itti, L. (2009, 05). Free viewing of dynamic
stimuli by humans and monkeys. Journal of Vision,
9(5):19, 1–15, https://doi.org/10.1167/9.5.19.
[PubMed] [Article]

Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth,
E. (2010). Variability of eye movements when
viewing dynamic natural scenes. Journal of Vision,
10(10):28, 1–17, https://doi.org/10.1167/10.10.28.
[PubMed] [Article]

Dowiasch, S., Backasch, B., Einhäuser, W., Leube, D.,
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Kasneci, E., Kasneci, G., Kübler, T. C., & Rosenstiel,
W. (2014). The applicability of probabilistic meth-
ods to the online recognition of fixations and
saccades in dynamic scenes. In Proceedings of the
2014 Symposium on Eye Tracking Research &
Applications (pp. 323–326). New York, NY: ACM.

Komogortsev, O. V. (2014). Eye movement classifica-
tion software. Retrieved from http://cs.txstate.edu/
;ok11/emd_offline.html

Komogortsev, O. V., Gobert, D. V., Jayarathna, S.,

Koh, D. H., & Gowda, S. M. (2010). Standardi-
zation of automated analyses of oculomotor
fixation and saccadic behaviors. IEEE Transactions
on Biomedical Engineering, 57(11), 2635–2645.

Komogortsev, O. V., Jayarathna, S., Koh, D. H., &
Gowda, S. M. (2010). Qualitative and quantitative
scoring and evaluation of the eye movement
classification algorithms. In Proceedings of the 2010
Symposium on Eye-Tracking Research & Applica-
tions (pp. 65–68). New York, NY: ACM.

Komogortsev, O. V., & Karpov, A. (2013). Automated
classification and scoring of smooth pursuit eye
movements in the presence of fixations and
saccades. Behavior Research Methods, 45(1), 203–
215.

Kothari, R., Binaee, K., Bailey, R., Kanan, C., Diaz,
G., & Pelz, J. (2017). Gaze-in-world movement
classification for unconstrained head motion dur-
ing natural tasks. Journal of Vision, 17(10):1156,
https://doi.org/10.1167/17.10.1156. [Abstract]

Krieger, G., Rentschler, I., Hauske, G., Schill, K., &
Zetzsche, C. (2000). Object and scene analysis by
saccadic eye-movements: An investigation with
higher-order statistics. Spatial Vision, 13(2–3), 201–
214.

Kurzhals, K., Bopp, C. F., Bässler, J., Ebinger, F., &
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Appendix

Data format

In this section we present the Attribute-Relation File
Format (ARFF) that is used throughout our work for
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eye-tracking data representation. Its description should
facilitate the interpretation and usage of our data and
algorithms. ARFF is a popular file format in the data
mining/machine learning community but largely un-
known in the eye-tracking community. We will,
therefore, briefly explain it here. A more detailed
explanation is given in Agtzidis et al. (2016a). ARFF is
an extendible, text-based file format, where all of its
keywords are case insensitive and start with the ‘‘@’’
symbol. The ‘‘@attribute’’ keyword is needed to
describe each of the columns of the data in the file,
specifying its name and type (could be integer, real, or
categorical). After the attributes are defined, the
‘‘@data’’ keyword begins the section of the file that
contains the set of samples. Each line in this section is a
comma-separated list of values corresponding to all of
the declared attributes.

As this format does not allow for storing any
metadata that characterize the entire recording (e.g.,
the experimental set-up) and not each individual
sample, we extended this format. However, since we
wanted to maintain compatibility of our ARFF files
with third-party software, e.g., WEKA (Hall et al.,
2009), we introduced a special format for the comments
in the ARFF files (lines starting with ‘‘%’’), which starts
with ‘‘%@metadata’’ and contains the name and the
value of the described meta-attribute (e.g., ‘‘%@meta-
data width_px 1280’’). Such comments are corre-
spondingly processed by our software but are safely
ignored by other toolkits.

Using this notation enables the storage and extrac-
tion of the information specific to the eye tracking
experiment, such as the dimensions and properties of
the monitor and the eye tracking set-up by simply
adding meta-attributes to the header of the ARFF file.
We used the following attributes for each recording: the
dimensions of the stimulus displayed on the screen in
pixels (‘‘width_px’’ and ‘‘height_px’’) and millimetres
(‘‘width_mm’’ and ‘‘height_mm’’), as well as the
distance from the observer’s eyes to the monitor in
millimetres (‘‘distance_mm’’). These sufficiently define
the monitor-based experimental set-ups with fixed head
position to compute the pixels-per-degree (PPD) value,
which can be used to convert the on-screen gaze
position units to visual angle units. This format is
flexible enough to allow for effortless extensions to
more complex scenarios such as head-mounted display
experiments in (Agtzidis et al., 2019).

Parameter optimization

To optimize the parameters of our eye movement
classification framework, we tested a random subset of
a grid of plausible parameter combinations for our
fixation and pursuit detectors. We considered the

parameters of the fixation detector even though pursuit
detection was of main interest to us because our
clustering approach only processes the gaze samples
that were not labelled as fixations. If some pursuit
samples receive a label of fixation, there is no possibility
to retrieve them with our approach. For example, the
confusion matrix in Figure 7 demonstrates the perfor-
mance of a reasonable fixation detector from the
literature that has not been optimized together with the
subsequent SP detector. This detector labels just under
60% of the ‘‘true’’ SP samples as fixations, which would
result in very poor sensitivity.

For fixation detection, we optimized (a) the upper
limit for the gaze shift during an intersaccadic interval
(intervals with shifts below this threshold were marked
as parts of a fixation right away)—0.78 to 2.88, (b) the
lower limit on the intersaccadic interval duration that
sets the condition for applying sliding window-based
steps to it (intervals with lower durations ignored at
this step)—75 to 300 ms, (c) the moving average
window size that was applied to every remaining
intersaccadic interval to suppress recording noise—3, 5,
7, or 11 samples, (d) the length of the sliding window
that was used for analysis—35 to ca. 140 ms, (e) the
upper speed threshold for fixation samples—0.78/s to
48/s, as well as (f) the minimal plausible SP duration,
which was used to label as noise all nonfixation
episodes of a shorter duration—35 ms to ca. 140 ms.

For smooth pursuit detection (i.e., the parameters of
our DBSCAN modification), we optimized (g) the
spatial distance threshold exy—18 to 48, (h) the temporal
distance threshold et—0 to 160 ms, and (i) the minPts
parameter—20 to 320, as well as setting minPts to the
number of observers, whose recordings are being
processed for a given stimulus (the latter was the value
used in Agtzidis et al., 2016b).

The parameters marked with (a), (b), (d), (e), (f), and
(g) were randomly sampled on the logarithmic grid
with the base of

ffiffiffi

2
p

; those marked with (h) and (i), with
the base of 2. The grid was constructed to explore
parameter combinations with values both lower and
greater than in the parameter set of Agtzidis et al.
(2016b). A total of 2.25 million combinations of these
values are possible. We randomly sampled ca. 6500 of
those to assess the possible performance range of the
algorithm.

To make sure the parameter set we would choose
based on this optimization was relatively stable to
fluctuations in the data, as well as to ensure some
degree of the best parameters’ ability to be generalized,
we performed this optimization on two nonoverlapping
subsets of the data separately, and then selected a
parameter set that performed consistently well on both
subsets. Recordings were split based on the corre-
sponding stimuli (half of the GazeCom video clips in
each part). We split the recordings this way as we
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intuitively suspected that decreasing the number of
observers will have a negative impact on the algo-
rithm’s performance (we tested this experimentally in
the Robustness to variations in the number of
observers section). Splitting the data set by video clips
rather than by the individual observers has proven to
have another positive effect in our recent work
(Startsev, Agtzidis, & Dorr, 2019): We found that
optimizing an algorithm for all clips, but only a subset
of observers, leads to more prominent overfitting
behavior than optimizing it for all observers, but only a
subset of clips. This effect was especially noticeable for
SP detection, which is the main target of our
optimization here.

Therefore, out of the tested ca. 6500 parameter
combinations, we selected the top 25 (less than 0.5%)
for each of the two data subsets independently, ranked
by the F1 score for smooth pursuit samples. This
yielded six parameter combinations that were within
the selected percentile for both subsets simultaneously.
We chose the parameter set that resulted in the best
average F1 score across the subsets. We provide the full
parameter sets corresponding both to the original
method (Agtzidis et al., 2016b) and to the optimized
version, which we obtained here, together with the code
of our model on the code repository page.

Parameter adaptation for other data sets

Here we describe the adjustment that has to be made
to the parameters of our algorithm to adapt it to be
used with a different data set. The full set of parameters
is stored in a configuration file and can be accessed and
adjusted with a text editor.

Only a minor change is required to adapt the
clustering algorithm for a different use case, however. It
has to do with the minPts parameter, which defines the
number of gaze points in the spatio-temporal vicinity of
the considered gaze point that is necessary to make this
point a core point of a cluster. This number has a linear
dependency on (a) the sampling rate and (b) the
number of observers in the data set. The minPts
parameter has to be scaled accordingly. GazeCom has
the sampling rate of FGazeCom¼ 250 Hz and NGazeCom¼
46.9 observers per clip on average. Therefore, in order
to use our algorithm on a new data set with the
sampling frequency F̂ and N̂ observers for each clip, the
parameter has to be updated as follows:

minPts ¼ minPtsGazeCom �
F̂

FGazeCom

� N̂

NGazeCom
; ð1Þ

where minPtsGazeCom ¼ 160, taken from our optimized

parameter set. We used this correction formula for our
experiments with reducing the number of observers in
the Robustness to variations in the number of
observers section, and in Startsev, Agtzidis, and Dorr
(2019) to adapt the parameters of this method to the
data set of Andersson et al. (2017).

In case data quality is substantially different from
the GazeCom data, other parameters might need to be
altered as well. For example, it would make sense to
increase exy for noisy recordings, and larger et could be
advisable for lower frequency data.

Observer-driven clustering extension of DBSCAN

While the regular DBSCAN determines whether
each data point belongs to a dense cluster by
comparing the number of unique gaze samples in its
neighborhood to a fixed threshold, we propose
considering the number of unique observers with their
samples in this neighborhood (see Figure A1). The
number of unique observers’ gaze traces in the vicinity
of the considered gaze point will be then compared to a
threshold, to which we refer as minObservers, analo-
gously to the minPts parameter of the original
DBSCAN algorithm. In the sp_tool framework, the
minObservers parameter can be set either to an integer
(in which case it is directly used for thresholding) or to
a floating point value in the [0, 1] range (in which case it
indicates the share of the number of participants that
have viewed each individual stimulus). The actual
threshold in the latter case is then computed for each
stimulus individually. If the minObservers threshold is
set as a proportion of the total number of observers,
there are no parameter adjustments that need to be
made to adapt the clustering scheme to other data sets,
as this density criterion does not directly depend on the
absolute number of observers in the data set or the
sampling frequency of its recordings (though et might
need to be increased if the sampling rate is too low—the
optimal et for this version of the algorithm was 20 ms,
which is shorter than the sampling interval of some eye
trackers).

We optimized the parameters for this DBSCAN
variation in the same way as for its minPts version (see
Appendix, Parameter optimization) and provide the
optimal parameter set together with the source code.
The minObservers threshold that yielded the best
performance in our random search (values from 0.05 to
0.2 were tested, with the log-scale grid with the base of
ffiffiffi

2
p

) was 0.14 (for the full GazeCom data set this is on
average equivalent to six observers).

This parameter combination was additionally tested
on the subsets of the GazeCom data with a varying
number of observers (same as for the minPts version in
the the Robustness to variations in the number of
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observers section), without any parameter correction
required whatsoever. We observed performance pat-
terns similar to those in Figure 9, but the values for the
minObservers version of the algorithms were always
below those for the minPts variant: The sample-level F1
scores were typically 0.02 worse; the event-level scores,

ca. 0.1 lower. Based on this, we cannot recommend
using the observer-based modification of our algorithm
when detection performance is the key issue. It may,
however, serve as an easier generalizable solution and
an example of tailoring generic data analysis strategies
specifically to eye-tracking recording processing.

Figure 10. DBSCAN modification specifically for eye tracking recordings: In order to ascertain whether each considered data point (on

the left side, together with its spatio-temporal neighborhood) belongs to a cluster, traditional DBSCAN checks the number of (other)

data points in its vicinity (middle). Our proposed modification would consider the number of (other) observers’ gaze traces (right side)

in the neighborhood of the considered data point.
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