
Fakultät für Wirtschaftswissenschaften

Vehicle Routing with Time Windows and
Flexible Delivery Locations

Alexander Jungwirth, Master of Science

Vollständiger Abdruck der von der Fakultät für Wirtschaftswissenschaften der Technischen Uni-

versität München zur Erlangung des akademischen Grades eines

Doktor der Wirtschaftswissenschaften (Dr. rer. pol.)

genehmigten Dissertation.

Vorsitzender Prof. Dr. Martin Grunow

Prüfer der Dissertation 1. Prof. Dr. Rainer Kolisch

2. Prof. Dr. Maximilian Schiffer

Die Dissertation wurde am 19.05.2020 bei der Technischen Universität München eingereicht und

durch die Fakultät für Wirtschaftswissenschaften am 15.06.2020 angenommen.



Abstract

Motivated by the hospital-wide scheduling of physical therapists, we study a new

variant of the well-known vehicle routing problem (VRP): the VRP with time

windows and �exible delivery locations (VRPTW-FL). In the classic VRP, each

customer is served in one �xed service location. However, in the VRPTW-FL each

customer is served in one of a set of potential service locations, each of which has

a certain capacity. From a practical point of view, the VRPTW-FL is highly rel-

evant due to its numerous applications, e.g. parcel delivery, routing with limited

parking space, and hospital-wide scheduling and routing of physical therapists.

Theoretically, the VRPTW-FL is challenging to solve due to the time-dependent

location capacities. When serving a customer, location availability must be en-

sured at every time. Precedence relations between customers, �exible service

locations, and a heterogeneous �eet increase the complexity further.

To solve the VRPTW-FL, we develop two mathematical models, and present

a hybrid adaptive large neighborhood search and an exact branch-price-and-cut

framework, Our heuristic employs an innovative backtracking procedure during

the construction phase to alter unsatisfactory decisions at an early stage. In the

metaheuristic phase, we employ novel neighborhoods and dynamic updates of the

objective violation weights. Our exact BPC includes two innovative approaches

to target the location capacity and the precedence relations: (1) based on branch-

ing on time windows, and (2) based on adding combinatorial Benders cuts.

For our computational study, we use hospital data to evaluate the bene�t of �ex-

ible service locations and various cost functions. We show that our algorithmic

features improve the solution quality considerably. We clearly outperform tradi-

tional hospital planning, and by trading-o� vehicle travel times and preferences

for service locations we show the economic potential of location �exibility. Our

branch-price-and-cut framework optimally solves realistic hospital instances with

up to 120 treatments, and we �nd that branching on time windows outperforms

adding cutting planes.
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Deutsch: Angelehnt an die krankenhausweite Planung von Physiotherapeuten

untersuchen wir eine neue Variante des Tourenplanungsproblems (TPP): das TPP

mit Zeitfenstern und �exiblen Lieferorten (TPPZF-FL). In der Grundvariante

des TPP werden Kunden nur an einem Standort bedient. Im TPPZF-FL werden

Kunden jedoch an einem von mehreren potentiellen Standorten bedient, von de-

nen jeder Lieferort eine bestimmte Kapazität hat. Aus praktischer Sicht ist das

TPPZF-FL relevant, da es neben der Planung von Physiotherapeuten auch weit-

ere Anwendungen z.B. bei der Paketzustellung oder Tourenplanung mit begren-

zter Parkplatzkapazität hat. Aus theoretischer Sicht ist das TPPZF-FL aufgrund

der zeitabhängigen Standortkapazitäten schwer zu lösen. Um einen Kunden be-

dienen zu können, muss stets die Verfügbarkeit des Standorts gewährleistet sein.

Vorgangsbeziehungen zwischen den Kunden, die Flexibilität der Lieferorte und

eine heterogene Fahrzeug�otte erhöhen die Komplexität zusätzlich.

Um das TPPZF-FL zu lösen entwickeln wir zwei mathematische Modelle und

präsentieren eine hybride Adaptive Large Neighborhood Search und ein ex-

aktes Branch-Price-und-Cut Framework. Unsere Heuristik nutzt einen inno-

vativen Backtracking-Ansatz während der Konstruktionsphase, um ungünstige

Entscheidungen frühzeitig zu korrigieren. In der Metaheuristik-Phase verwenden

wir neuartige Nachbarschaften und adjustieren dynamisch die Gewichtung von

Straftermen in der Zielfunktion. Unser exaktes Branch-Price-und-Cut Framework

beinhaltet zwei innovative Ansätze um die Standortkapazität und die Vorgangs-

beziehungen zu berücksichtigen: (1) basierend auf dem Branchen auf Zeitfenstern

und (2) basierend auf dem Hinzufügen von kombinatorischen Benders Schnittebe-

nen.

In der Rechenstudie verwenden wir Krankenhausdaten, um den Wert von �exi-

blen Lieferorten und unterschiedlichen Kostenfunktionen zu quanti�zieren. Wir

zeigen, dass die algorithmischen Erweiterungen die Lösungsqualität erheblich

verbessern. Wir übertre�en die aktuelle Krankenhausplanung deutlich und zeigen

durch Abwägen von Fahrzeiten und Präferenzen für bestimmte Lieferorte das

wirtschaftliche Potential der Standort�exibilität. Unser Branch-Price-und-Cut

Framework löst realistische Krankenhausinstanzen mit bis zu 120 Behandlungen

optimal und zeigt, dass das Branchen auf Zeitfenstern besser funktioniert, als das

Hinzufügen von kombinatorischen Schnittebenen.
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1 Introduction

1.1. Motivation

The shortage of quali�ed personnel is a crucial challenge for health care systems

worldwide (WHO, 2016). In aging societies, like most western and some Asian

ones, demand for health services increases faster than its supply. Employing

available health workers as e�cient as possible is the only short-term solution to

mitigate the negative e�ects of understa�ed health care systems.

In this context, we study the hospital-wide therapist scheduling and routing prob-

lem (ThSRP), which we model as a new variant of the well-known vehicle routing

problem (VRP). The ThSRP is a daily scheduling problem arising at almost ev-

ery hospital (Gartner et al., 2018), which can be classi�ed as o�ine operational

resource capacity planning according to the health care planing matrix by Hans

et al. (2012).

On a daily basis, a hospital planner assigns therapists to treatments, treatments

to rooms, and start times to treatments. The therapists have di�erent shift

patterns (morning, evening, or regular shift) and levels of quali�cation, which

de�ne the type of treatment they are available and quali�ed for. Treatments

have a known duration and a start time window in which service must begin. If

a patient receives multiple treatments throughout one day, precedence relations

may exist between them, i.e. the preceding treatment must be �nished before the

succeeding treatment can start. For most patients, multiple possible treatment

locations exist, i.e. patients can receive service at a central therapy center (TC)

or at the ward in which they are staying. As only a limited number of treatments

can be performed in parallel at the TC, the hospital planner must ensure location

availability at all times.

Current hospital planning is a manual and time consuming task leading to unsat-

isfactory results. Every morning before the treatments start, a hospital planner

is spending roughly an hour generating the schedule for the ongoing day. For the
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1 Introduction

hospital planner, it is already di�cult to generate feasible solutions and frequently

the resulting schedules leave patients unserved.

To facilitate planning, we present two solution approaches: (a) a hybrid adap-

tive large neighborhood search (ALNS), and (b) an exact branch-price-and-cut

(BPC) algorithm. While in traditional scheduling approaches the routing of the

therapists would be an indirect result, we are addressing the routing decisions ex-

plicitly, which has practical as well as theoretical advantages. In large hospitals,

therapists are spending a considerable part of their working times traveling be-

tween treatment locations. Minimizing traveling gives more time to treat patients,

which could be used on a tactical level to increase the number of appointments

scheduled per day.

Thus, routing is central for the practical application, however it complicates solv-

ing the problem compared to traditional scheduling approaches not involving

routing decisions. To the best of our knowledge, only Gartner et al. (2018) have

studied the ThSRP prior to this work. The authors model the ThSRP as a multi-

mode resource-constrained project scheduling problem (MMRCPSP) in which the

therapist routing constraints pose substantial challenges. Gartner et al. (2018)

solve the problem by employing a cutting plane algorithm relaxing the therapist

routing constraints and adding cuts once a violation of the latter constraints has

been identi�ed. The approach worked well for their instances since 30 minute

planning intervals are used and only a limited number of cutting planes had to

be generated.

In our case however, we will plan on a more granular level of 5 minute inter-

vals and we will account for additional hospital types for which the routing

decisions become more relevant. Therefore, we model the ThSRP as a VRP

which we call the vehicle routing problem with time windows and �exible deliv-

ery locations (VRPTW-FL). The VRPTW-FL is a variant of the vehicle routing

problem with time windows (VRPTW) with heterogeneous �eet, operations and

resource synchronization and �exible service locations. Precedence relations be-

tween treatments are considered by operations synchronization, i.e. the service of

one treatment must be �nished before another treatment can start. The resource

synchronization is needed to model the time-dependent location capacity that

acts as a renewable resource.

2



1 Introduction

The central novelty of our work is to address �exible service locations and capac-

ities for the location simultaneously in one routing problem. Individually, both

aspects have been addressed in the literature recently. Location capacities that

in�uence the routing decisions have, to the best of our knowledge, only been

studied in the contexts of electric and alternative fuel VRPs (cf. Bruglieri et al.,

2019; Froger et al., 2019). Charging and fuel stations are capacitated and allow

only a limited number of vehicles to recharge at a time. However, service sites of

customers are not capacitated, neither do multiple service locations for customers

exist.

Multiple service locations without capacities are studied in the contexts of parcel

and last-mile deliveries in which multiple delivery points per customer could exist.

These delivery points could be the customer's home, the trunk of the customer's

car or a public locker. The applications are either modeled as a generalized VRP

with time windows (GVRPTW) (cf. Yuan et al., 2020) or as a VRP with roaming

delivery locations (cf. Reyes et al., 2017; Ozbaygin et al., 2017). The di�erence

between the two formulations is that in the GVRPTW the time windows coincide

for di�erent service locations of the same customer while in the VRP with roaming

delivery locations the time windows of the same customer are disjunct.

1.2. Dissertation overview

This thesis is divided into two main parts based on the methodology proposed

to solve the VRPTW-FL. In Chapter 2, we develop the hybrid ALNS, and in

Chapter 3, we develop the BPC algorithm. In the following, we provide a chapter-

wise overview of this thesis and highlight its contributions.

Chapter 2: The Vehicle Routing Problem with Time Windows and

Flexible Delivery Locations. In this part, we di�erentiate the VRPTW-FL

from routing problems involving location decisions. We discuss the underlying

graph structure in detail and develop a compact formulation to mathematically

describe the problem. We propose a hybrid metaheuristic based on ALNS and

guided local search (GLS). The construction heuristic is based on insertion and

we add a backtracking mechanism to alter unsatisfactory decisions at an early

stage. In the metaheuristic phase, we extend the self-adaptiveness of the ALNS

by allowing feasibility violations. These violations are penalized in the objec-

tive function, and the penalty weights are dynamically adjusted following a GLS

approach. In our computational study, we assess the ALNS framework from a

3



1 Introduction

theoretical as well as a practical perspective. In the theoretical part, we examine

the performance of our heuristic procedure in general and its new features in

particular. In the practical part, we test our heuristic against current hospital

planning, and we evaluate the potential bene�t of �exibility by applying di�er-

ent cost functions for serving customers in di�erent locations and put them into

relation to the vehicles' travel costs. The main contributions of Chapter 2 are

threefold: (1) We introduce the VRPTW-FL, a new variant of the VRP, in which

the time-dependent capacity of service locations in�uences the routing decisions

of the vehicles. (2) We extend the self-adaptiveness of the ALNS by a GLS,

which guides the algorithm faster to particularly good regions of the solution

space. We show the bene�t of allowing location �exibility by employing a variety

of performance metrics.

Chapter 3: Exact Branch-Price-and-Cut for a Hospital Thera-

pist Scheduling Problem with Flexible Service Locations and Time-

dependent Location Capacity. Chapter 3 is stronger motivated by the un-

derlying hospital planning problem and approaches the VRPTW-FL from the

perspective of VRPs with synchronization constraints. While Chapter 2 focused

on the �exible delivery locations, the crucial part of developing an exact solution

approach for the VRPTW-FL is to properly address the time-dependent loca-

tion capacity and the precedence relations. Recently, location capacity has been

addressed by synchronization in the contexts of green-VRPs and electric-VRPs

(Bruglieri et al., 2019; Froger et al., 2019), and precedence relations are naturally

modeled by synchronizations. We solve the ThSRP by BPC in which we �rst

relax the synchronization constraints and enforce these at a later stage by either

branching on start time windows or by adding combinatorial Benders cuts. The

main contributions of Chapter 3 are threefold: (1) We develop an exact BPC

algorithm for the ThSRP to solve realistic hospital instances. The algorithm can

be used to derive better schedules with less manual work for hospital planners.

(2) We branch on the time windows of the treatments to alter start times such

that a detected violation cannot occur in subsequent branches. (3) We demon-

strate that branching can be a valid alternative to adding cutting planes when

addressing synchronization constraints in a BPC framework.

4



2 The Vehicle Routing Problem with

Time Windows and Flexible

Delivery Locations

2.1. Introduction

Vehicle routing is well-studied in the operations research and management science

literature. It has theoretical as well as practical relevance to scienti�c communi-

ties and industries, such as logistics and healthcare. In the classic vehicle routing

problem (VRP), vehicles traverse a network with the objective to e.g. minimize

routing costs or the number of vehicles used. Each destination in the network

corresponds to exactly one customer, and each customer is visited once. For the

VRP, several extensions exist on the demand and delivery side. For example, on

the delivery side assigning capacities to the vehicles leads to the capacitated VRP,

while on the demand side associating customers with time windows leads to the

VRP with time windows (VRPTW) (see Desaulniers et al., 2014).

In this paper, we present an extension of the VRP with substantial enhancement

of the demand side: the VRP with flexible delivery locations (VRP-FL). In this

problem, a customer is no longer automatically assigned to his/her service lo-

cation. Instead, in the VRP-FL each customer must be served at exactly one

capacitated location among a set of multiple alternatives. In this context, capac-

itated means that the number of customers, which can be served at one location

at the same time is limited. When, additionally, time windows for customers are

considered, we obtain the VRP with time windows and flexible delivery locations

(VRPTW-FL). Note that by assigning capacities to service locations, the com-

plexity of the problem increases signi�cantly. Non-availability of locations leads

to rerouting of customers to alternative service location. Thus, the location ca-

pacity directly in�uences the routing decision.

There is little literature on VRPs incorporating �exible customer locations; to

the best of our knowledge, this is the �rst study of this type of problem with

5



2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

capacitated locations. The VRPTW-FL has been inspired by a problem in the

health care industry, where it is known as the hospital-wide therapist scheduling

and routing problem (see Gartner et al., 2018). Hospital planners have to decide

which therapist treats which patient in which room at which time. Therapists

can treat patients either at the ward or in a therapy center. For the VRPTW-FL,

vehicles represent therapists, customers represent patients and locations for the

customers represent treatments rooms. Especially in larger hospitals, the travel

times of therapists are considerable. Reducing travel times allows more time to

treat patients, which in the long run reduces the average waiting time for an

appointment.

Another application of the VRPTW-FL is �exible parcel delivery. Companies

such as DHL and Amazon have experimented with delivering to di�erent locations

depending on the time of the day (Audi AG, 2015). For example, a parcel can be

sent to a customer's home, the trunk of the customer's car or to a parcel box.

This paper presents a mixed integer program (MIP) for the VRPTW-FL. As a

generalization of the VRP, the VRPTW-FL is alsoNP-hard, and as we will show,
the VRPTW-FL cannot be described with a limited number of linear constraints.

Both properties make this problem extremely hard to solve to optimality. There-

fore, to tackle the problem we propose a hybrid meta-heuristic based on adaptive

large neighborhood search (ALNS) and guided local search (GLS).

The construction heuristic is based on insertion, and we add a backtracking mech-

anism to alter unsatisfactory decisions at an early stage. The solution derived

by the construction heuristic is then further improved by the hybrid ALNS. We

extend the self-adaptiveness of the ALNS by allowing feasibility violations which

are penalized in the objective function. The penalty weights are dynamically ad-

justed following a GLS approach, which adds robustness to the ALNS, and may

make it more suitable for future applications.

In our computational study, we assess our algorithm from a theoretical as well

as a practical perspective. In the theoretical part, we examine the performance

of our heuristic procedure in general and its new features in particular. In the

practical part, we test our heuristic against current hospital planning, and we

evaluate the potential bene�t of �exibility by applying di�erent cost functions for

serving customers in di�erent locations and put them into relation to the vehicles'

travel costs.

6



2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

Our results show that the heuristic works well; combining the ALNS with a GLS

leads the heuristic to considerably better regions of the planning horizon, and

backtracking provides much better initial solutions than traditional construction

heuristics. When applied to the hospital case, our heuristic clearly outperforms

current hospital planning methods. For practitioners we provide intuition how to

trade-o� routing costs and customer preferences. In general, our results encourage

planners facing similar problems to consider some degree of location �exibility

whenever possible.

The main contribution of this paper is threefold: (a) we introduce a new variant of

the VRP, which is highly relevant for practice, (b) we extend the self-adaptiveness

of the ALNS by a GLS, which guides the algorithm faster to particular good

regions of the solution space, and (c) we show the bene�t of allowing location

�exibility by employing a variety of performance metrics.

The remainder of this paper is structured as follows. We begin in �2.2 with an

overview of related work focusing on VRPs incorporating location decisions. In

�2.3, we develop a mathematical formulation for the VRPTW-FL and discuss the

underlying graph structure. Additionally, we outline how the VRPTW-FL can

be extended with multiple depots, multiple time windows, and pro�ts. In �2.4,

we present the hybrid meta-heuristic procedure used to solve the problem. We

provide evidence of our algorithm's capabilities in �2.5 and conclude in �2.6.

2.2. Related work

The VRP and its extensions have been studied extensively in the literature. Text-

books include Toth and Vigo (2002a, 2014) as well as Golden et al. (2008), while

literature reviews are, e.g. Desrochers et al. (1990); Laporte and Osman (1995);

Desrochers et al. (1999); Cordeau et al. (2002); Eksioglu et al. (2009); Laporte

(2009); Lahyani et al. (2015) and Vidal et al. (2020).

Since the particular feature of the VRPTW-FL are the multiple capacitated ser-

vice locations for customers, our review focuses on routing problems incorporating

location decisions. The �rst works considering both location and routing aspects

date back to the 1960s, e.g. Maranzana (1964); von Boventer (1961); Webb (1968);

Watson-Gandy and Dohrn (1973). Since then a multitude of di�erent problems

have arisen, all having routing and location decisions (see e.g. Prodhon and Prins,

2014).
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2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

However, to the best of our knowledge we are the �rst to consider multiple ca-

pacitated locations for customers, and only two routing problems were studied in

which serving customers is possible in multiple locations: (1) the vehicle routing-

allocation problem (VRAP) introduced by Beasley and Nascimento (1996), and

(2) the VRP with roaming delivery locations (VRPRDL) introduced by Reyes

et al. (2017). The VRAP is a special case of the location-routing problem (LRP)

and the VRPRDL extends the generalized VRP (GVRP).

In this section, we detail what, to the best of our knowledge, are the problems

related to the VRPTW-FL, describe how they are connected with and how they

di�er from each other. Finally, we show how the VRPTW-FL generalizes all of

these problems. Subsection 2.2.1 is devoted to LRPs and their extensions, and

Subsection 2.2.2 focusses on GVRPs and their extensions. Figure 1 presents an

overview of the evolution and the relations between the several problems that we

describe in the following subsections.

Figure 1 Connections between location and/or routing problems. The VRPTW-FL generalizes all of them. The
most relevant problems are extensions of the LRP and the GVRP (gray boxes). However, the VRPTW-FL can
also be seen as an extension of the VRPTW.

2.2.1. Location-routing problems

The location routing problem (LRP) can be de�ned as location planning incorpo-

rating tour planning (Nagy and Salhi, 2007). Generally the task is to determine

locations for depots and vehicle routes from depots to customers. This problem

has many practical applications, e.g. planning where distribution systems such as

factories and warehouses should be placed for customers to receive their deliveries

from those facilities. Reviews of LRPs are, e.g. Balakrishnan et al. (1987); Min

et al. (1998); Nagy and Salhi (2007); as well as Prodhon and Prins (2014).
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2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

Clearly the LRP incorporates routing and location decisions since it combines

the location allocation problem (LAP) and the VRP. However, the LRP and the

VRPTW-FL di�er considerably. While in the LRP customer locations are �xed

and depot locations are �exible, the contrary is the case for the VRPTW-FL.

Note that �exible depot locations could also be introduced to the VRPTW-FL

as shown in Section 2.3.4.

The vehicle routing-allocation problem (VRAP) by Beasley and Nascimento

(1996) is an extension of the LRP, in which customers have multiple service

locations, and not all customers must be visited, i.e. a customer can be assigned

to another customer's location or a customer can be left unserved. Practical

applications are, e.g. routing mobile clinics in rural areas or designing postal

collection routes. The location decision for customer service is very similar to the

VRPTW-FL. However, there are no capacity limits for the service locations and

no time windows are assigned to customers.

The VRAP is closely related to VRPs with pro�ts (VRPPs), in which each cus-

tomer is associated with a speci�c pro�t (see e.g. Archetti et al., 2014), and

customers can be left unserved, too. The objective of the VRPP is to minimize

routing costs while maximizing pro�ts. The central di�erence between the VRAP

and the VRPP is that the latter's customers have only one �xed service location.

In the VRPTW-FL, all customers must be served. However, the functionality of

having pro�ts can easily be added (see Section 2.3.4).

The vehicle routing with demand allocation problem (VRDAP) introduced by

Ghoniem et al. (2013) is a variant of the VRAP. In the VRDAP, customers are

assigned to delivery sites and vehicles visit the delivery sites from a central depot.

In contrast to the VRAP, the delivery sites are di�erent from the customers'

locations. One application is the distribution of food to people in need where

the food is delivered e.g. to parking lots. The main di�erence to the VRPTW-

FL is that there are no capacities in the delivery sites and no time windows for

customers.

2.2.2. Generalized VRP

The generalized VRP (GVRP) constitutes the second stream of literature relevant

to the VRPTW-FL. The GVRP is an extension of the VRP in which vehicles visit

clusters of potential delivery sites instead of individual customers. Each cluster

has a given demand and only one delivery site in the cluster must be visited;
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e.g. when routing vessels in maritime transportation, only one port in a certain

region may have to be visited to serve the entire region. Several more practical

applications exist for the GVRP (see e.g. Baldacci et al., 2010; Bekta³ et al.,

2011).

The GVRP can be seen as an LRP since there is a location decision to visit a

particular site within a cluster. However, we believe the GVRP should be seen as

an extension of the VRP as the main decision involved is the routing of vehicles,

and selecting the location inside the cluster is only a minor aspect.

The GVRP is a special case of the VRPTW-FL, and the VRPTW-FL becomes a

GVRP when the following two conditions are met: (1) all locations of a customer

are distinct from all other locations in the problem, and (2) time windows for the

customers span the entire planning horizon. Location capacity does not have to be

considered since in the GVRP multiple visits to a single location are forbidden.

Moccia et al. (2012) introduce the GVRP with time windows (GVRPTW), where

a time window is assigned to each node in the cluster and time windows of the

nodes inside a cluster can di�er. The VRPTW-FL cannot be transformed di-

rectly into a GVRPTW, since time windows in the VRPTW-FL are customer

and not location speci�c, i.e. only a single time window exists for all locations

of a customer. However, di�erent time windows for di�erent customer locations

can be incorporated (see Section 2.3.4).

A special case of the GVRPTW that has recently attracted interest is the VRP

with roaming delivery locations (VRPRDL) (Reyes et al., 2017; Ozbaygin et al.,

2017). The problem structure is very similar to the VRPTW-FL; however, the

time windows for the nodes in one cluster are disjointed. A practical application

of the VRPRDL is trunk deliveries in which parcels are delivered to a customer's

car which can change locations during the day. Thus multiple service locations

can exist for a customer, depending on the time of day. Since the VRPRDL is a

special case of the GVRPTW, transforming the VRPRDL into the VRPTW-FL

is equivalent to transforming the GVRPTW into the VRPTW-FL. In the context

of last-mile deliveries, Yuan et al. (2020) studied the single vehicle case of the

GVRPTW and proposed a branch-and-cut algorithm to solve the problem.

10



2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

2.3. Model development

In this section, we develop a mathematical model and discuss the underlying

graph structure. Section 2.3.1 gives a formal problem description and introduces

the notation. We follow the standard notation for VRPs and VRPTWs as pre-

sented in Irnich et al. (2014) and Desaulniers et al. (2014), respectively. However,

we deviate from their notation when necessary to model the special properties of

the VRPTW-FL. In Section 2.3.2, we detail the graph structure of the VRPTW-

FL and demonstrate its di�erences from the graph of the classic VRPTW. Section

2.3.3 presents a non-linear mixed integer problem formulation for the VRPTW-FL

and discusses linearizations. Finally, we show how the problem can be extended

to incorporate multiple depots, multiple time windows as well as pro�ts in Section

2.3.4.

2.3.1. Formal problem description

The classic VRP serves a set of customers I = {1, 2 . . . , I} with speci�c demand

qi > 0 for a single good using a set of homogeneous vehicles K = {1, . . . , K} with
given capacity Q > 0. A vehicle starts its tour in the depot, visits a subset of

customers S ⊆ I and returns to the depot, which is denoted as dummy customer

0 for the outward trip, and I + 1 for the return trip. In both cases the demand

is assumed to be q0 = qI+1 = 0.

The connections between two customers i and j, including the depot as dummy

customers, are associated with travel cost ctravelli,lj
with li and lj being the service

locations for customer i and j. The aggregated demand of the customers visited

by a single vehicle must be less than or equal to the vehicle's capacity. The

objective is to minimize the total travel costs over all vehicles while serving all

customers.

The VRPTW extends the VRP by assigning a speci�c service time si and time

window [ai, bi] to each customer i, with ai and bi being the earliest and latest

possible start of service, respectively. The travel time between two customers

is denoted as ti,j ≥ 0. Generally a hard time window restriction is used, which

means a vehicle can arrive at the customer before ai but never after bi. In case

of early arrival, the vehicle must wait at the site of customer i until ai.

The VRPTW-FL extends the VRPTW by allowing additional locations for serv-

ing the customers. The set of locations is de�ned as L = {0, . . . , L} and a
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customer i can be served in a subset of locations Li ⊆ L\{0} with location 0 be-

ing the depot. Location l ∈ L has a capacity Cl de�ning the maximum number of

customers which can be served at the same time. For unbounded locations we set

Cl = ∞. When serving customer i at location l, �xed location costs clocationi,l ≥ 0

are incurred. The location cost can be used to model that customers have prefer-

ences for certain locations. The objective of the VRPTW-FL is to minimize the

sum of travel and location costs, where travel costs ctravell,r are de�ned as the cost of

traveling between two locations l, r ∈ L instead of two customers i, j ∈ I∪{0}.

The crucial information in the VRPTW-FL is if a certain location l ∈ L is

available for any arbitrary small time interval τ ∈ [aτ , bτ ] with 0 ≤ aτ ≤ bτ or

if the location capacity is already fully used. Therefore, we introduce indicator

function I(i, l, k, τ) which is 1 if customer i is served in location l by vehicle k in

time interval τ and 0 otherwise. Using this indicator function, we can calculate

the number of customers being served at a speci�c location in any given time

interval.

Therapist scheduling as a practical application of the VRPTW-FL incorporates

two additional aspects: precedence relations between customers and heterogeneous

vehicles. Certain customers have to be visited before other customers can be

visited. Note, in therapist scheduling a �customer" corresponds to a treatment

and multiple treatments might be required for a single patient during the planning

horizon. Some treatments have to be executed before other treatments can start,

e.g. a cast must be removed before a stretching or strengthening exercise can be

done. Therefore, we de�ne set P as the precedence relations between customer

tuple 〈i, j〉, in which customer imust be served before customer j can be served.

Therapists also di�er in skills and shift patterns. Each therapist belongs to one of

two shift types: regular shifts or short shifts. Furthermore, each therapist has a

certain skill set which de�nes treatments that can be carried out by the therapist.

Thus, it might be that a therapist is not quali�ed for a particular treatment or the

shift pattern does not allow for visiting a customer during his/her time window.

Therefore, therapists are modeled by heterogeneous vehicles and each vehicle k

can service a subset of customers Ik ⊆ I.

2.3.2. Structural differences of VRPTW and VRPTW-FL

Having introduced the basic notation, this section examines the structural di�er-

ences between the VRPTW and the VRPTW-FL. We derive a graphical repre-
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sentation for the VRPTW-FL and show that the optimal objective function value

of the VRPTW always yields an upper bound for the VRPTW-FL.

To represent the VRPTW-FL as a network, we introduce a directed graph G =

(V ,A) with vertex set V and arc set A. In our problem each vertex corresponds

to a customer-location tuple 〈i, l〉 ∈ {I ∪ {0}} × Li. For arc set A ⊆ V × V , we
have 〈〈i, l〉, 〈j, r〉〉 ∈ A for 〈i, l〉, 〈j, r〉 ∈ V : i 6= j i� customer i can be served at

location l before customer j is served at location r by the same vehicle k. Each

arc is associated with a cost value ctravell,r and a time value ttravell,r . Note that for two

vertices vi,l and vj,r, only locations l and r are relevant to determine the travel

cost and travel time between the vertices.

Let S ⊆ V be a subset of the vertex set. The in-arcs, having their head node in S,
are de�ned as δ−(S) = {〈vi,l, vj,r〉 ∈ A : vi,l /∈ S, vj,r ∈ S} and the out-arcs, having
their tail node in S, as δ+(S) = {〈vi,l, vj,r〉 ∈ A : vi,l ∈ S, vj,r /∈ S}. Singleton

sets S = {vi,l} are de�ned as δ+|−(vi,l) := δ+|−({vi,l}). If 〈i, l〉 ∈ δ−(j, r), then

〈j, r〉 ∈ δ+(i, l), meaning if 〈i, l〉 is a predecessor of 〈j, r〉, then 〈j, r〉 is a successor
of 〈i, l〉.

If each customer can only be served at one location, then the graph of the

VPRTW-FL is equal to the routing network of the VRPTW. To show the ben-

e�t of the VRPTW-FL over the VRPTW, we consider the graph in Figure 2,

which shows a routing network for three customers, three service locations, and

the depot. The �rst customer has two possible locations L1 = {1, 2}, the second
customer has three possible locations L2 = {1, 2, 3} and the third customer has

one possible location L3 = {3}.1 The time windows [ai, bi] are given below the

customer-location tuples. We assume that the travel times equal the travel costs,

that the service time si of each customer is equal to 1, that each customer has

a preferred location (marked by bold boxes), and if the customer is served in

the preferred location, location costs of 0 occur and if the customer is served in

another location, location costs of 1 occur. Arcs within the same location have

travel costs of 0.

If, as in the VRPTW, only one location per customer exists, i.e. for the VPRTW-

FL the customers must be served in their preferred location, a vehicle can either

serve customers i1 and i3, or i2 and i3 but never customers i1 and i2. Thus,

1Note that edges between the customer-location tuples are needed to track the sequence in

which customers are served. Tracking would not be possible in a network only consisting of

the locations.
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〈0, 0〉
depot

〈I + 1, 0〉
depot

〈i1, 1〉
[2, 3]

location 1(1)

〈i2, 1〉
[4, 5]

2

2

2

2

〈i1, 2〉
[2, 3]

location 2 (1)

〈i2, 2〉
[4, 5]

2

2

2

2

〈i3, 3〉
[6, 8]

location 3 (1)

〈i2, 3〉
[4, 5]

5 5

5

5

3

3

3

3

3

〈i1, l〉
[ai1 , bi1 ]

location l (Cl)

〈j1, r〉
[aj1 , bj1 ]

location r (Cr)

〈in, l〉
[ain , bin ]

〈jm, r〉
[ajm , bjm ]

...
...

tl,r

tl,r

Figure 2 Routing network example: VRPTW vs. VRPTW-FL. Dotted boxes denote locations and include all
customers that can be served at this location. Nodes belonging to the same customer are printed in the same
color. Bold boxes denote that this location is the customer's preferred location. The dashed arrow displays the
connection that is impossible due to time window restrictions. Service times are not displayed as si = 1 for all
i ∈ I.

two vehicles are required leading to a total travel time of 14. In the VRPTW-FL,

however, serving customer i2 at his/her alternative location 1 guarantees that one

vehicle can serve all customers within a travel time of 10 and additional location

swapping cost of 1.

In general, the infeasibility of a VRPTW-FL implies the infeasibility of the cor-

responding VRPTW, but not vice versa. Moreover, the objective function of an

optimal solution of the VRPTW yields an upper bound for the VRPTW-FL.

To formalize this, we introduce function η : I × L 7→ V mapping the swap of

customer i from the preferred location to another location at cost clocationi,l . Then,

a VRPTW-FL instance is uniquely given by tuple 〈K, I,V , η〉 and Theorem 2.1

holds.

Theorem 2.1 Having instances τ1 = 〈K, I,V , η〉 and τ2 = 〈K, I,V ′, η〉, which

only di�er in the vertex sets V and V ′ de�ned by the customer-location combina-

tions, let z∗1 and z∗2 be the optimal solution for instance τ1 and τ2, respectively. If

Vi ⊆ V ′i holds for all V ′i ∈ V ′ and Vi ∈ V with i ∈ I, then z∗2 ≥ z∗1.

If each customer can be assigned to any location, i.e. all location costs clocationi,l

are 0 and each location is uncapacitated, then the VRPTW-FL becomes an easy
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problem because all customers can be served at the location closest to the depot.

However, if the location costs are greater than 0 or the locations' capacities are

bounded by at least I − 1, the VRPTP-FL is NP-hard.

2.3.3. Mathematical model

For the VRPTW-FL, we have two decision variables: xi,l,j,r,k = 1, if vehicle k ∈ K
serves customer i ∈ I in location l ∈ Li immediately before serving customer

j ∈ I in location r ∈ Lj, and 0 otherwise, and Ti,l,k being the start time of

serving customer i ∈ I in location l ∈ Li by vehicle k ∈ K. Binary variables

xi,l,j,r,k constitute the tours, while continuous variables Ti,l,k yield the scheduling

decisions.

To account for heterogeneous vehicles, sets and parameters corresponding to a

certain vehicle are indexed by k, e.g. Vk are all vertices which can be reached by

vehicle k. The subset of vehicles which can serve a customer i are denoted as Ki.
Let P de�ne the precedence relations between two customers 〈i, j〉. Customer j

can only be served if customer i has already been served. The VRPTW-FL can

now be stated as model (2.1)-(2.11):

min
∑
k∈K

∑
〈i,l〉∈Vk\〈I+1,0〉

∑
〈j,r〉∈δ+k (i,l)

(
ctravell,r + clocationj,r

)
· xi,l,j,r,k (2.1)

subject to∑
k∈Ki

∑
〈i,l〉∈Vk

∑
〈j,r〉∈δ+k (i,l)

xi,l,j,r,k = 1 ∀ i ∈ I (2.2)

∑
〈j,r〉∈δ+k (0,0)

x0,0,j,r,k = 1 ∀ k ∈ K (2.3)

∑
〈i,l〉∈δ−k (j,r)

xi,l,j,r,k −
∑

〈i,l〉∈δ+k (j,r)

xj,r,i,l,k = 0 ∀ k ∈ K, 〈j, r〉 ∈ Vk (2.4)

∑
〈i,l〉∈δ−k (I+1,0)

xi,l,I+1,0,k = 1 ∀ k ∈ K (2.5)

ai ≤ Ti,l,k ≤ bi ∀ k ∈ K, 〈i, l〉 ∈ Vk (2.6)

xi,l,j,r,k ·
(
Ti,l,k + si + ttravelr,l − Tj,r,k

)
≤ 0

∀ k ∈ K, 〈i, l〉 ∈ Vk\〈I + 1, 0〉, 〈j, r〉 ∈ δ+
k (i, l) (2.7)
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Ti,l,k1 + si + tmin
i,j ≤ Tj,r,k2

∀ 〈i, j〉 ∈ P , l ∈ Li, r ∈ Lj, k1 ∈ Ki, k2 ∈ Kj (2.8)∑
i∈Il

∑
k∈Ki

I(i, l, k, τ) ≤ Cl ∀ l ∈ Lbounded, τ ∈ T bounded
l (2.9)

∑
(i,l)∈Vk

qi
∑

(j,r)∈δ+k (i,l)

xi,l,j,r,k ≤ Qk ∀ k ∈ K (2.10)

xi,l,j,r,k ∈ {0, 1} ∀ k ∈ K, 〈i, l〉 ∈ Vk, 〈j, r〉 ∈ δ+
k (i, l) (2.11)

Ti,l,k ≥ 0 ∀ k ∈ K, 〈i, l〉 ∈ Vk (2.12)

Objective function (2.1) minimizes the sum of travel and location costs. The

VRPTW-FL's constraint set can be divided into three parts:

Tour constraints (2.2)-(2.5): Constraints (2.2) ensure that every customer

is served exactly once. Constraints (2.3)-(2.5) de�ne the tour of each vehicle:

constraints (2.3) and (2.5) impose a tour start and end at the depot, while con-

straints (2.4) are the �ow conservation constraints.

Scheduling constraints (2.6)-(2.8): Constraints (2.6) set the start times for

serving customer i, while constraints (2.7) set the time di�erence between two

customers served consecutively by the same vehicle by linking variables xi,l,j,r,k

and Ti,l,k. Constraints (2.8) ensure the precedence relations.

Location and vehicle capacity constraints (2.9)-(2.10): Constraints (2.9)

bound the number of customers served in time interval τ at location l. Con-

straints (2.10) ensure that a vehicle k cannot satisfy more customer demand

than its capacity limit Qk. The variable domains are given in constraints (2.11)

and (2.12).

Model formulation (2.1)-(2.11) is nonlinear due to constraints (2.7) and (2.9).

Constraints (2.7) can be linearized following the approach in Desaulniers et al.

(2014). However, for the linearization of constraints (2.9), an in�nite number of

linear constraints is needed, or the planning horizon must be discretized. The

number of locations and customers is �nite, but the number of time intervals to

serve the customers is in�nite due to the continuous de�nition of time. Therefore,

if cuts were added for every location l ∈ Lbounded, whose capacity can be violated

by a subset of customers S ⊆ I served in a speci�c time interval τ , an in�nite
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number of cuts would have to be generated to enforce location capacity at each

moment in time.

2.3.4. Generalizing the VRPTW-FL

The VRPTW-FL already adds substantial �exibility to the VRPTW. However,

besides heterogeneous vehicles and precedence relations, the graph structure pre-

sented in Section 2.3.2 allows for further generalizations without requiring major

changes to its underlying structure. We discuss three extensions: multiple depots,

multiple time windows, and pro�ts.

VRPTW-FL with multiple depots

The multi-depot VRP (MDVRP) has many practical applications (Renaud et al.,

1996); for an overview of recent publications see Vidal et al. (2012). In the

MDVRP, vehicles start their tours from more than one depot and each vehicle

ends its tour in the start depot.

Multiple depots can be incorporated into the VRPTW-FL rather easily. The

routing network already contains multiple service locations, and only two vertices

would have to be added for each additional depot: one vertex for outbound trips

and one vertex for inbound trips.

VRPFL with multiple time windows

Generally in VRPs, a customer is associated with at most one time window

(Desaulniers et al., 2014). However, a few authors discuss scenarios with multiple

time windows (see e.g. Ibaraki et al., 2005; Hashimoto et al., 2013). In the

VRPTW-FL, all customer-location tuples have the same time window for the

same customer. However, without changing the graph structure di�erent time

windows can be assigned for the di�erent customer-location tuples of a customer.

In so doing, the time window structure of the GVRPTW (Moccia et al., 2012)

and the VRPRDL (Reyes et al., 2017) can be mapped.

To assign more than one time window to a customer-location tuple, simply |T W|
copies of the customer-location tuple have to be generated where |T W| is the

number of time windows for the speci�c tuple. However, the size of the graph

would expand considerably.
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VRPTW-FL with profits

The VRPP is a VRP in which only a subset of customers must be visited (Archetti

et al., 2014). Each customer is associated with a pro�t, and the objective is to

tradeo� the cost of traveling to the customer with the pro�t gained from serving

the customer.

In the graph of the classic VRP, all vertices must be visited. In the VRPP,

however, not all vertices must be visited. This is similar to the VRPTW-FL

in which only a subset of customer-location tuples is visited. If customers were

associated with pro�ts and the constraint that all customer must be visited is

relaxed, we would have a VRPTW-FL with pro�ts without changing the structure

of our solution approach, and only updated input data would be required.

2.4. Solution methodology

The VRPTW-FL cannot be described with a reasonable number of linear con-

straints (cf. �2.3.3), and thus generating a solution using a standard MIP solver

is impossible. Therefore, our solution approach is based on an adaptive large

neighborhood search (ALNS) framework. Using an ALNS, we can keep the con-

tinuous structure of the problem and generate a close to optimal solution relatively

quickly.

The ALNS is a well-established framework for solving routing problems. It was

originally developed by Ropke and Pisinger (2006a) and is still used in publica-

tions addressing new variants of VRPs (see e.g. Masson et al., 2013; Kovacs et al.,

2014; Azi et al., 2014; Li et al., 2016; Mancini, 2016; Parragh and Cordeau, 2017;

Schi�er and Walther, 2018). The ALNS works well for the VRPTW-FL not only

due to its good performance for the VRP, but also due to the incorporation of

other desirable features, such as the simplicity of the underlying concept, its �exi-

bility with respect to VRP variants, and the possibility of using parallel hardware

(Laporte et al., 2014).

The ALNS is an extension of the large neighborhood search introduced by Shaw

(1998) and relies on the ruin-and-recreate principle applied in Schrimpf et al.

(2000), which is similar to the rip-up principle of Dees and Karger (1982). In a

�rst phase, an initial solution is constructed, and then in an improvement phase,

the ALNS iteratively destroys parts of this solution using randomly selected de-
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2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

stroy operators and reconstructs the destroyed solution with randomly selected

repair operators. The combination of destroy and repair operators de�nes the

neighborhood in which the new solution will be sought. If the solution is ac-

cepted according to an acceptance criterion, the current solution is replaced by

the new solution and the procedure starts again. The probability of selecting a

particular destroy and a repair operator is adjusted based on the success (or lack

thereof) of improving a temporary solution in the past.

Our ALNS incorporates innovative features in both the construction phase and

the improvement phase. In the former, our heuristic follows the k-regret insertion

approach of Potvin and Rousseau (1993), which we extend with a backtracking

mechanism to alter unsatisfactory decisions at an early stage. To counteract

infeasible sequences of subsequently planned customers due to the simple nature

of the k-regret procedure, we return to an earlier stage of the insertion with a

given probability, and restart from this stage by inserting another customer.

In the improvement phase, we deviate from the standard ALNS presented by

Ropke and Pisinger (2006a) in three ways: (1) we allow temporarily infeasible

solutions, however sanction the infeasibilities in the objective function with penal-

ties; (2) we dynamically adjust these penalties depending on how often certain

features have been violated in past iterations; and (3) we develop new destroy

operators, which exploit the underlying problem structure of potentially having

more than one location per customer.

The generation of temporarily infeasible solutions enables a better traversing of

the search space because it reduces the chance of getting stuck in a local optimum

(Cordeau et al., 2002), and by oscillating between feasible and infeasible regions

with the appropriate penalty parameters the border of feasibility is sought, a

region which is very promising for �nding high quality solutions (Glover and

Hao, 2011; Vidal et al., 2015). For the VRPTW-FL, we allow three infeasibilities:

(1) unscheduled customers, (2) violations of time windows, and (3) violations of

precedence relations. In therapist scheduling, these are precisely the three aspects

that a human planner would relax when faced with a hard scheduling task, where

no feasible solution can be obtained manually.

Updating penalties for the violation terms dynamically extends the self-

adaptiveness from operator probability updates to objective function weights,

and therefore makes the approach more �exible and robust for dealing with the
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2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

problem at hand. From a formal point of view, our approach combines the ALNS

with a guided local search (GLS) as employed in Voudouris and Tsang (1999),

and thus leads to a hybrid version of the ALNS. A simpler version of such an

adaptive mechanism was originally formulated by Cordeau et al. (2001) and is

e.g. used in Schi�er and Walther (2018).

In what follows, we �rst formalize our hybrid ALNS framework in �2.4.1. In

�2.4.2, we detail the construction heuristic, including the backtracking mecha-

nism. In �2.4.3, we provide the reader with information about the destroy and

repair operators used, and the update procedures for the operators and objective

function weights. Finally in �2.4.4, we provide implementation details focusing

on preprocessing and parameter optimization.

2.4.1. Formal hybrid ALNS framework

Let s be a vector representing any (partial) solution for the VRPTW-FL and

let f(s) be the function that returns the objective function value for s as stated

in (2.1), then our heuristic works on the modi�ed objective function

min fmod(s) = f(s) +λ ·
∑
i∈I

(
pnai · Inai (s) + ptwi · Itwi (s) + ppredi · Ipredi (s)

)
, (2.13)

where Inai (s), Itwi (s) and Ipredi (s) are indicator functions equal to 1, if in a solu-

tion s customer i is not assigned to any vehicle, if the time window of customer i

is violated, and if the precedence relation of customer i is violated, respectively.2

The penalty terms are denoted by pnai , ptwi and ppredi ; see �2.4.3 for how penalties

are set and updated. The weight of penalties compared to routing and location

costs is controlled by λ.

Algorithm 1 provides the pseudo code for the hybrid ALNS framework. A solution

is represented by s, and an initial solution sinit from the construction phase serves

as input. The initial solution is set equal to the best global optimum found thus

far (see Algorithm 1 line 1).

In the main loop 2 � 14, destroy operator d ∈ Ω− and repair operators r ∈ Ω+

modify the current solution scurrent. In each iteration h of the main loop, q ≥ 1

pairs of destroy and repair operators are randomly selected to destroy and repair

2Precedence violation of customer i is de�ned as service of i has started although service of

preceding customer j has not been �nished yet.
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n ∈ [nh, n̄h] elements in solution scurrent. Parameters nh and n̄h de�ne the lower

and upper bounds of a�ected elements in each iteration h.

We select q ≥ 1 di�erent pairs of destroy and repair operators in step 3 to make

use of parallel computing. The sets of destroy and repair operators are �nite and

will be described in detail in �2.4.3 and �2.4.3, respectively. When deriving these

operators, a destroyed solution should be repairable by any repair operator. The

probability of selecting a destroy operator ρ− and a repair operator ρ+ depends

on their past success. The update procedure for the probabilities ρ+ and ρ− is

described in �2.4.3.

If the new solution stemp
q improves the best global solution sbest, we update sbest

and the current solution scurrent (see lines 6 - 7). Otherwise, we check whether

the temporary solution stemp is accepted as a new searching point using some

criteria de�ned by the local search framework (see lines 8 - 10). In our case, we

use a Simulated Annealing (SA) framework (see Kirkpatrick et al. (1983)), which

de�nes the acceptance of the solution and the direction of the destroy and repair

operators.

The structure of Algorithm 1 is based on Pisinger and Ropke (2010). However,

the main di�erence is line 13, where the objective penalty terms pna, ptw and ppred

are updated (see �2.4.3 for a detailed description). The algorithm terminates after

a stopping criteria has been met, e.g. a total number of iterations or iterations

without improvement, then the best global solution sbest is returned.

2.4.2. Construction phase

Our constructive heuristic is similar to the κ-regret3 approach of Potvin and

Rousseau (1993), which can be seen as a greedy based insertion heuristic with a

look ahead perspective (see Algorithm 2). In the VRPTW-FL, the look ahead

perspective becomes even more crucial than in the VRPTW as a good assignment

of customers to vehicle routes may still be infeasible due to a poor assignment of

customers to locations.

3To avoid confusing indices k for vehicles and the k-regret approach, we use index κ for the

k-regret approach.
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Algorithm 1 Hybrid Adaptive Large Neighborhood Search

input: initial solution sinit with objective fmod(sinit) (see �2.4.2)

1: sbest = scurrent = sinit, ρ−(1, . . . , 1), ρ+(1, . . . , 1)
2: while stopping criteria is not met do

3: select q pairs of destroy and repair operators d ∈ Ω− and r ∈ Ω+ based on ρ−

and ρ+ (see �2.4.3 and �2.4.3)
4: for each q do

5: stemp
q = r(d(scurrent))

6: if fmod(sbest) < fmod(stemp
q ) then

7: sbest = scurrent = stemp
q

8: else if new solution stemp is accepted then

9: scurrent = stemp
q

10: end if

11: update ρ− and ρ+ (see �2.4.3)

12: end for

13: update objective penalty terms puns, ptw and ppred (see �2.4.3)

14: end while

return: sbest

A route rk for each vehicle k ∈ K is represented by an ordered sequence

rk = [〈i0, l0, T0〉, . . . , 〈imk−1, lmk−1, Tmk−1〉, 〈imk
, lmk

, Tmk
〉,

〈imk+1, lmk+1, Tmk+1〉, . . . 〈ink
, lnk

, Tnk
〉]

of customer-location-start time tuples with 〈imk
, lmk
〉 ∈ V and Tmk

∈ [aim , bim ].

The customers in each route rk are served according to the order given in the

route sequence, i.e. for each position 0 ≤ mk ≤ nk in route rk we have

Tmk−1 + simk−1 + ttravellmk−1,lmk
≤ Tmk

. (2.14)

At the beginning of the construction heuristic, each vehicle route rk contains

only tuples for starting and ending the tour in the depot, i.e. 〈i0, l0, T0〉 = 〈0, 0, 0〉
and 〈ink

, lnk
, Tnk
〉 = 〈n+ 1, 0, T 〉, respectively.

The goal of the heuristic is to sequentially insert one customer-location-start

time tuple in one position of one of the |K| routes (one route for each vehicle)

such that the capacities of the locations are satis�ed and inequality (2.14) holds.

However, instead of selecting the best greedy-based position within the routes,

the next route position yielding the highest regret between the 1-st and the κ-th

best insertion position between all routes is selected. A large gap between the

best and the κ-st position indicates that a later assignment might be di�cult or

infeasible. The di�erence between our regret approach and Potvin and Rousseau

(1993) is that we consider the κ best insertion positions over all routes while
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Potvin and Rousseau (1993) consider the κ best routes to insert a customer. Our

construction heuristic works on a simpli�cation of objective function (2.13) where

the penalty values (costs) for each type of violation are �xed and equal for each

customer.

min f simple(s) = f(s)+λ·
∑
i∈I

(
cna · Inai (s) + ctw · Itwi (s) + cpred · Ipredi (s)

)
. (2.15)

Let R be the set of all routes over all vehicles k ∈ K and let gκ(i,R) denote the

objective function value, if customer i is inserted in the κ-th best position of all

routes rk ∈ R, i.e. we have gκ(i,R) ≤ gκ+1(i,R) for all rk ∈ R. For objective

function value gκ(i,R), we denote by l(gκ(i,R)), T (gκ(i,R)) and m(gκ(i,R))

the corresponding location, start time, and insertion position of customer i in

routes R. If only one possible insertion position is left for customer i, i.e. cus-

tomer i can only be assigned and scheduled in one location and in one route at

one insertion position, we set gκ(i,R) =∞ for all κ ≥ 2. Let Ina be the subset of
customers, which have not yet been assigned to one route. For all routes rk ∈ R
and customer i ∈ Ina we compute the following regret measure:

∆gκ(i,R) = gκ(i,R)− g1(i,R). (2.16)

Measure ∆gκ(i,R) yields the di�erence between the best insertion position for a

customer i and its κ-th best insertion position with respect to all routes. The

regret for a customer indicates what can be lost in later insertions, if the customer

is not immediately inserted in the best insertion position. A large regret measure

indicates that the number of interesting alternative positions for inserting the

customer is small, and thus this customer should be considered �rst. On the

other hand, a small regret measure indicates that the customer can easily be

inserted into alternative positions in later iterations without losing much. The

customer and vehicle with the greatest regret measure is given by customer-route

combination 〈i∗, rk∗〉 = arg max
i∈Ina

{∆gκ(i,R)}. Thus, customer i∗ is inserted in

route rk∗ ∈ R at position m (g1(i∗, rk∗)); the service of customer i∗ starts at time

T (g1(i∗, rk∗)) at location l (g1(i∗rk∗)). If customer i cannot be inserted into any

route, the regret measure ∆g1(i,R) is 0 as we de�ne that ∞ − ∞ = 0. This

is either the result of a bad insertion of one or several customers in previous

iterations or the instance is generally infeasible.
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Let us assume that a feasible solution exists. Then, current infeasibility originates

either because no insertion position exists such that inequality (2.14) holds or

because no location is available for customer i. To provide a repair mechanism,

we implement a backtracking-branching procedure.

Algorithm 2 illustrates the di�erent steps of the constructive heuristic with back-

tracking. The initial solution s0, only containing the depot nodes, is added to the

solutions set S, which contains all partial solutions that could not be pruned due

to infeasibility (see Algorithm 2 lines 1-2). We randomly remove a customer i1

from the set of not yet assigned customers Ina, and add customer i1 who will

be served in the preferred location l1 to route rk0 (see lines 3-7). To increase

diversity, and thus to �nd potentially better solutions, we start the entire heuris-

tic multiple times (line 3) and perform the subsequent steps for several κ values

(line 8).

While not all customers have been assigned, we calculate the regret measure for

inserting every remaining customer i ∈ Ina in partial solution sh (lines 9-11). If

for all remaining customers a positive regret measure exists, i.e. every customer

can be inserted in the partial solution sh, the best insertion position is determined.

The set of not yet assigned customers Ina and the solution set S are then updated

(lines 12-16).

However, if for at least one customer no positive regret measure exists, i.e. this

customer cannot be inserted in the partial solution, this solution becomes in-

feasible. We then remove sh, the partial solution which was earlier added to

the set of partial solutions S, and return to pred(sh), the predecessor of sh.

To proceed to another solution from pred(sh), we store the deleted customer-

location-start time tuple and the corresponding route rk as tuple 〈ih, lh, Th, rkh〉
in a list of forbidden insertions F(pred(sh)) of the partial solution pred(sh)

(lines 17-20). The next insertion will then be the best customer-route combina-

tion with respect to regret measure (2.16) such that the corresponding customer-

location start time route tuple is not contained on forbidden list F(pred(sh)), i.e.

(i∗, r∗k) = arg max
i∈Ina

{
∆gκ(i,R) | (i, l(gκ(i,R)), T (gκ(i,R)),R) /∈ F(pred(sh))

}
.

If again no feasible successor exists, i.e. the regret measure is 0 for at least one

customer, we return to pred(sh)'s predecessor, for which we forbid the corre-

sponding customer-location start time route tuple which would lead to pred(sh)

again. The procedure generates a search tree in a depth-�rst search manner.
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Finally, solution sbest having the minimal objective function value is returned

(line 26). A graphic example of the backtracking mechanism is provided in Fig-

ure 3.

Algorithm 2 Construction phase

1: initialize partial solution s0 with rk = [〈0, 0, 0〉, 〈n+ 1, 0, T 〉] ∀ k ∈ K; Ina = I
2: set S = {s0}
3: while max number of restarts not reached do

4: randomly select i ∈ Ina; set Ina = Ina\ {i}
5: if ∆gκ(i,R) > 0 then

6: s1 ← add tuple 〈i1, l1(g(i,R), t1(g(i,R))〉 to position m1(g(i,R)) in route

rk0 ∈ R of s0

7: set S = S ∪ {s1}
8: for each regret κ do

9: while Ina 6= ∅ do
10: sh ← select last inserted partial solution in S
11: compute regret measure for all not inserted customers

12: if ∆gκ(i,R) > 0 ∀ i ∈ Ina then

13: (i∗, r∗k)← arg max
i∈Ina

{∆gκ(i,R)}
14: sh+1 ← add tuple 〈i∗h+1, lh+1(g(i∗, r∗k)), th+1(g(i∗, r∗k))〉 to

position mh+1(g(i∗, r∗k)) in route r∗kh+1
, i.e. r∗k =

[〈0, 0, 0〉, . . . , 〈i∗, l(g(i∗, r∗k)), t(g(i∗, r∗k))〉, . . . , 〈n+ 1, 0, T 〉]
15: Ina = Ina\ {i∗}
16: set S = S ∪ {sh+1}
17: else

18: set S = S\ {sh}
19: return to predecessor of pred(sh)
20: set predecessor's forbidden list F(pred(sh)) = F(pred(sh)) ∪

{〈ih, lh, Th, rkh〉}
21: end if

22: end while

23: end for

24: end if

25: end while

26: sbest ← argmins∈S
{
fmod(s)

}
return: sbest

During our �rst computational tests of the construction heuristic, we made the

following observation: Returning to the direct predecessor of an infeasible partial

solution does generally not correct the solution as desired, especially if only a few

customers are left to insert. Many iterations of backtracking are needed, until a

feasible solution is found. The reason is that an insertion in�uences the insertion

position of every subsequently inserted customer. Thus, customers being inserted

earlier have greater in�uence on the structure of the solution than customers

inserted later. If poor insertion decisions have been made early, it is unlikely to

correct these tens of iterations later by backtracking. Therefore, once a partial

solution becomes infeasible, we do not backtrack to its immediate predecessor but
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Figure 3 Example for backtracking in the constructive phase

to one of the �rst n, e.g. n = 5, customers inserted. By doing so, we generate

high quality solutions while saving much computational time.

2.4.3. Operators and update functions

The algorithmic behavior of an ALNS depends heavily on (a) the destroy oper-

ators Ω− and repair operators Ω+ employed, i.e. the neighborhoods that can be

searched, and (b) the updates of the operator weights, i.e. how fast the ALNS

adjusts the probabilities of selecting a certain operator. In our hybrid ALNS, the

updates of the penalty terms in the objective function also play a crucial role. In

this section, we describe how our update procedures work and what operators we

use. The focus lies on newly developed operators employing speci�c properties of

the VRPTW-FL, such as multiple locations.
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Update operator weights

To adjust the likelihood of selecting a speci�c operator, we follow the approach

of Ropke and Pisinger (2006a). Initially all operators j ∈ Ω+|− get assigned the

same weight wj, e.g. 1, and the probability ρj of selecting an operator j is:

ρj =
wj∑|Ω|
i=1wi

(2.17)

For a given number of iterations, the success of the operators is measured by a

score πj with j ∈ Ω+|−. We distinguish four cases: (1) if a new global best solution

is found, the score is raised by σ1; (2) if a new and not yet visited solution is

found with a better objective function value than the current solution, the score

is raised by σ2 < σ1; (3) if a new and unvisited solution did not improve the

current solution but is still accepted, the score is raised by σ3 < σ2; and (4)

if a new solution is found, but this solution has already been visited in prior

iterations, the score remains unchanged. Once a certain number of iterations

has been reached, the operator weights are updated according to the recorded

scores πj and the counter θj (cf. Equation (2.18)). The counter θj measures how

often the operator has been applied.

wupdated
j = wj · (1− r) + r · πj

θj
(2.18)

Reaction factor r controls how fast the weights adapt to the success in the last

iterations.

Update objective penalty terms

In the augmented cost function (2.13), penalty terms are used to penalize feasibil-

ity violations. We dynamically adjust these penalties depending on the frequency

of the violation in the past and the severity of the violations. This approach of

dynamically adjusting objective function weights follows the GLS employed in

Voudouris and Tsang (1999) and will be described in the following.

Let fj be a speci�c feature, e.g. the non-assignment of customer i1, and indicator

function Ij(s) is 1, if solution s has feature fj, and 0 otherwise. Each feature fj,

i.e. the violation of a speci�c constraint, is associated with a constant cost value

cj and a dynamically adjusting penalty value pj for the objective function. All

penalty values are set to 0 initially, i.e. pnai = ptwi = ppredi = 0 ∀ i ∈ I. After

a certain number of iterations, the penalty values are updated for a prede�ned
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number of features yielding the highest utility value as de�ned in Equation (2.19),

where sh is the current solution at iteration h.

u(sh, fj) = Ij(sh) ·
cj

1 + pj
(2.19)

The utility function is used because (a) updating all violated features equally

would not change the direction of the search and lead to very similar solutions,

and (b) updating only the penalties of features with the highest cost would bias

the algorithm towards penalizing high cost features. The denominator 1+pj coun-

teracts the latter since an increasing penalty pj reduces the utility value. Note

that while Voudouris and Tsang (1999) update the penalties once the heuristic

is stuck in a local minumum, we update the penalties after a certain number

of iterations, which is similar to updating the operator weights in an ALNS (cf.

�2.4.3).

Destroy operators

A very useful property of the ALNS is that it can incorporate a multitude of

neighborhoods to address speci�c characteristics of the problem at hand, and

thus a multitude of destroy and repair operators have been developed (see Ko-

vacs et al. (2014) for a good overview). In this section, we describe the destroy

operators applied, and in the subsequent section the repair operators applied. As

the VRPTW-FL is a generalization of the VRPTW (see �2.3.2), all operators

are also applicable for the VRPTW. The e�ectiveness of the procedures will be

shown in the computational study in �2.5.3. The operators used are largely taken

from the literature, and adapted to the problem setting with �exible delivery lo-

cations. Furthermore, we present seven additional operators speci�cally designed

to deal with �exible delivery locations. The operators we took from the litera-

ture and the corresponding sources are: random destroy, worst destroy (Ropke

and Pisinger, 2006a), simpli�ed Shaw (proximity) destroy, cluster destroy, his-

tory based destroy (neighbor graph destroy, request graph destroy) (Ropke and

Pisinger, 2006b), related (Shaw) destroy (Shaw, 1998), and random route destroy

(Mancini, 2016).

For the VRPTW-FL, the customer-locations are very important. Therefore, we

introduce four operators speci�cally addressing the spatial arrangement of ser-

vice locations: location related destroy, cluster k-means destroy, zone destroy,

and subroute destroy. In addition, we use a modi�ed time related destroy and in-
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troduce a start time �exibility destroy. For all operators incorporating some kind

of relatedness, we �rst remove one customer-location tuple randomly and then

determine the relatedness with regards to this tuple to remove further tuples.

Time related destroy In the time-related destroy operator, we select those

customers i and j which have a strong relation to each other with respect to

possible service times. We measure relatedness Dtime(i, j) between two customers

as follows:

Dtime(i, j) =
T(

α1 · T̄i,j + α2 · |Ti − Tj|
) , (2.20)

where T̄i,j is the average time di�erence between all possible start times of i and j:

T̄i,j =

∣∣∣∣ai + bi
2
− aj + bj

2

∣∣∣∣ , (2.21)

and |Ti−Tj| is the time di�erence between the start times of customers i and j in

the current solution. At �rst, one customer i is removed at random, and then the

n − 1 customers who are most related to i are removed. This logic also applies

to the other related destroy operators.

Location related destroy Similar to the time related destroy, this operator

removes vertices, which are very similar in terms of their locations (cf. Equation

(2.22)). The location relatedness Dloc(i, j) between two customers i and j is the

number of common possible service locations divided by the number of locations

available for the customer with less location �exibility (min{|Li|, |Lj|}).

Dloc(i, j) =
|Li ∩ Lj|

min{|Li|, |Lj|}
(2.22)

Location and time related destroy We also use the weighted combination of

the location related destroy and the time related destroy:

Dloc,time(i, j) = β1 ·Dloc(i, j) + β2 ·Dtime(i, j). (2.23)

If β1 = 0 the operator is equal to the time related destroy, if β2 = 0 the operator

is equal to the location related destroy.

Cluster destroy k-meansWhile Ropke and Pisinger (2006b) describe a cluster

destroy based on the minimum spanning tree algorithm by Kruskal (1956), we

introduce a cluster destroy based on the very popular k-means clustering. The
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goal of k-means clustering is to partition a set into k disjoint subsets, such that the

sum of the squared deviations (distances) from the positions xj of all elements j

in the clusters Si to the clusters' centers µi is minimal. Mathematically this is:

min
k∑
i=1

∑
j∈Si

(xj − µi)2 . (2.24)

For a recent overview of clustering algorithms and a more detailed description

of k-means clustering, see Jain (2010). Depending on the underlying real-world

application, it might not be possible to calculate geometric center for a subset of

points. For therapist routing we use the modi�ed Equation (2.25):

min
k∑
i=1

∑
j∈Si

(
tlj ,lcenterj

)2

. (2.25)

minimizing the travel time from the most centrally located location lcenterj to all

other locations lj in the cluster. Once the clusters have been generated, clusters

are randomly selected and all customers in the selected clusters are removed until

the desired number of removals has been performed. The number of cluster k can

be set arbitrarily.

Zone destroy Similar to the simpli�ed Shaw destroy, the zone destroy operator

randomly selects one customer i with his/her location li. We then remove all

customers, who could be assigned to one location within a given distance around

location li. If the number of removed customers is below n, we increase the

distance around li until n customers have been removed. Thereby, we do not

only consider customers who are already close to one another but also customers

who are currently served in another location but could also be served in the

zone.

Subroute destroy A customer-location tuple is randomly selected and then,

starting from this tuple, a virtual route of length n is constructed in a greedy

fashion. Afterwards, all tuples in this virtual route are removed from the existing

routes in the temporary solution.

Start time �exibility destroy In the hospital setting, customers have very

di�erent time window lengths. Outpatients generally have �xed appointments

and thus a �xed start time, and some of the inpatiens have quite large time

windows. The start time �exibility destroy �rst removes those customers who

30



2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

have the most �exibility in terms of possible start times. These customers are

more likely to �nd another insertion position, while customers with �xed start

times might already have a good position in the current solution.

Repair operators

To reinsert the removed customers, we employ two types of repair operators,

namely greedy repair and κ-regret repair operators with κ ranging from 2 to 6.

For the κ-regret repair, the same regret measure is used as in the construction

heuristic (cf. Equation (2.16) in �2.4.2).

2.4.4. Implementation details

During the execution of the algorithm, feasibility must be checked frequently.

Testing for capacity violations is computationally expensive; however, it does not

have to be done for all customer-location combinations. Because of the start

time windows and the service duration, we know for some customers that serv-

ing them in a speci�c location will never lead to a capacity violation, since not

enough other customers exist, who could be served in this location at this speci�c

time. Therefore, to accelerate the algorithm, we determine in a preprocessing

step all locations and corresponding time intervals which could have capacity vi-

olations. During the execution of our heuristic, we only test location capacity for

those customer-location combinations which could potentially lead to capacity

violations.

2.5. Computational study

In this section, we investigate the performance of our algorithm. In particular,

we describe in �2.5.1 how the data used in our computational experiments has

been generated, and in �2.5.2 we detail how we adjusted the parameters of our

algorithm. We evaluate our newly introduced algorithm features in �2.5.3. In

particular, we investigate the value of (a) the backtracking procedure in the con-

struction phase, (b) the GLS, and (c) the newly introduced destroy operators.

Finally, we compare our heuristic to current hospital planning in �2.5.4. In addi-

tion to evaluating the solution quality, we also study the value of �exibility, i.e.

how solutions change depending on di�erent cost functions for customer travel

times. Thereby, we are able to trade o� customer and vehicle travel times. Fi-

nally, in �2.5.5, we show the performance of our algorithm for the VRPTW on

the Solomon benchmark instances (Solomon, 1987).
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Our algorithms were coded in JAVA using Amazon Corretto 11 as JDK and

executed on a Windows 10 platform employing an Intel Core i7-4790 CPU @

3.60GHz with 16 GB of RAM.

2.5.1. Data and instance generation

Since no benchmark instances exist for the VRPTW-FL, we created instances

based on data provided by a cooperating hospital. To account for di�erent prob-

lem sizes and to ensure reliability of our results, we developed an instance gener-

ator to create generic problem instances.4 Three components de�ne an instance:

(a) the network layout representing the hospital, (b) the demand scenario repre-

senting customers (treatments), and (c) the �eet of vehicles representing thera-

pists.

Network layout We distinguish three layouts, which are de�ned by the number

of buildings B ∈ {1, 2, 6} and the number of �oors per building F ∈ {1, 3, 6}.
Each �oor has a certain number of rooms (locations) R ∈ {6, 7, . . . , 10} drawn
from a discrete uniform distribution. One of the buildings contains the therapy

centers, which has a capacity between 2 and 6. The capacity at the ward rooms

is always unlimited since patients cannot be scheduled to other patients' ward

room. The travel time between two buildings is drawn at random from the set

{10, 15, 20} minutes. The travel time between neighboring �oors is assumed to

be 5 minutes, and the travel time between two rooms on the same �oor is either

5 or 10 minutes.

Demand scenarios We distinguish six demand scenarios having 20, 40, 60,

80, 100 and 120 treatments. A 10% probability exists that the patient is an

outpatient, i.e. he/she can only be treated in a therapy center and the start

time for the treatment is �xed. Ten percent of the patients are bedridden, i.e.

the patient must not be moved and can only be treated in his/her room at the

ward. However, these latter patients have a rather wide start time window of

90 minutes. The remaining patients are regular inpatients, of which 50% have

location �exibility, i.e. the patient can be treated at the ward and in the therapy

centers; however, a preference for one location exists, generally the ward room.

The start time window length of these patients varies between 30 and 45 minutes.

Thirty percent of the patients receive multiple treatments (2 or 3) in one day.

4The problem instances are available in JSON format upon request from the author.
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Every treatment job has a duration of 10 to 45 minutes and requires a certain

skill level. We assume hierarchical skills ranging from 1 (lowest) to 3 (highest).

The probabilities that a job requires a certain skill are 60%, 30% and 10% for

skills 1, 2 and 3, respectively.

Vehicles We use a heterogeneous �eet, since therapists di�er in their skills as

well as their shift patterns. The skills are the same as for the jobs; however, the

probabilities of having skill 1, 2 and 3 are 10%, 60% and 30%. A therapist has

a regular (long) shift with 80% probability. Otherwise, the therapist has a short

shift with 50% probability of being a morning or evening shift. We assume that

therapists start and end their shifts in the break room (depot), which is 5 minutes

away from the therapy centers.

Final instance set We generate two sets of data: a training set and a test set.

The training set is used to pre-test the features of the heuristic and to tune its

parameters, and the test set is used for the numeric study. Each set consists of

5 · 3 · 6 = 90 instances, as we create �ve instances for each combination of the

three layouts and six demand scenarios.

2.5.2. Hyper-parameter optimization

The performance of the ALNS strongly depends on how its parameters are ad-

justed, e.g. how many customers are removed in each iteration, how many parallel

pairs of destroy and repair operators are evaluated, and how often the operator

and penalty weights are updated. Ideally all combinations of reasonable pa-

rameter values are tested on training data, and the combination with the best

performance is selected and applied to the test data. Evaluating all combinations

is practically impossible. Therefore, we change only the value of one parameter in

prede�ned steps while keeping the other parameters �xed. Once the best param-

eter value has been determined, the next parameter is tested, again keeping the

other parameters �xed. This process could be repeated as many times as wanted.

However, generally it is stopped after all parameters have been processed once

(cf. Ropke and Pisinger, 2006a). We also stopped after one iteration, and our

�nal parameters used in the numeric studies in �2.5.3 and �2.5.4 are stated in

Appendix C.

2.5.3. Evaluation of algorithmic features

We have introduced three essential features for the ALNS: backtracking in the

construction heuristic, a GLS to penalize violations of constraints, and new de-
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stroy operators speci�cally tailored for a problem structure, where multiple ser-

vice locations exist for customers. For each feature, we �rst evaluate the bene�t

of the individual features by comparing the performance of the heuristic with

and without the feature, and then we evaluate the performance of all features

combined.

Value of backtracking

Our backtracking mechanism adds a look-ahead perspective to the construction

heuristic to alter unsatisfactory decisions during the insertion process (cf. �2.4.2).

To evaluate the value of backtracking, we compare the construction heuristic in-

cluding backtracking to a version without backtracking, i.e. the best solution

generated by the greedy and κ-regret insertions with κ = {2, 3, . . . , 6}. For back-
tracking, we allow stepping back to the �rst �ve inserted customers with the

following probabilities 1.0, 0.6, 0.3, 0.2 and 0.1, i.e. a 10% probability exists to

step back to the �fth customer, and if this is rejected, we step back to the fourth

customer with a probability of 20%, etc. These probabilities are independent of

one another, i.e. for each stage to which we can backtrack, a new random number

is drawn if backtracking was rejected in the prior stages.

The result of the comparison of the construction heuristic with and without back-

tracking can be found in Table 2. For each combination of layout (B, F ) and

demand scenario (|I|), we display the average values over �ve instances and three

runs for the objective function value f(s∗) of the best solution found s∗, the num-

ber of not assigned customers in that solution |Ina(s∗)|, the number of precedence
violations |Ipred(s∗)|, the percentage of feasible solutions nfeas, and the number of

backtrackings nbt.

By enabling backtracking, the solution quality after the construction phase could

be increased substantially. On average, the objective function value was improved

by 2.4%, the numbers of not assigned customers by 70.2%, and precedence vio-

lations were completely eliminated. The fraction of instances for which feasible

solutions were found increased by 45.5% up to 89%. The number of backtrackings

used per instance averaged at 112.24.
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Value of ALNS+GLS

We tested a standard ALNS working on objective function (2.15) against an

ALNS working on objective function (2.13), which dynamically adjusts penaliz-

ing infeasibilities. Since both version use di�erent objective functions, we use

the development of the best feasible solution as the metric for fair comparison.

Figure 4 shows the development for all runs on a logarithmic scale. For each

iteration the gap to best known solution states how far the best feasible solution

of the current run is apart from the best feasible solution over all runs for the

same instance. The ALNS with GLS is able to get into much better regions of the

solution space and is able to improve feasible solutions even in later iterations.

Figure 4 Comparison of ALNS (above, blue lines) and ALNS+GLS (below, orange lines). Thin lines represent
the percentage gap to the best feasible solution found over all runs. The bold lines represent the average
percentage gap.

Table 3 shows the percentage gaps after n iterations. The gap between the two

algorithms increases with increasing number of customers. The gap also increases

slightly with the number of iterations, from 21.15% at n = 10, 000 to 27.77% at

n = 50, 000.

Value of new operators

To speci�cally tackle the underlying problem structure, we have developed several

new neighborhoods (cf. �2.4.3). We investigated their impact by analyzing the

probability of selecting a speci�c operator over time. The more successful a

certain operator has been in earlier iterations, the more likely it will be selected

in later iterations. The results for the destroy operators are given in Figure 5 and

the results for the repair operators are given in Figure 6. The graphics are both
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Table 3 Achieved gap reduction in percent after n iteration by using ALNS+GLS compared to ALNS. Each
row represents the average values of all �ve instances per setting, each ran three times.

|I| B F ∆gap
n=10,000 ∆gap

n=20,000 ∆gap
n=30,000 ∆gap

n=40,000 ∆gap
n=50,000

20 1 6 9.96 9.87 9.97 9.59 9.98

2 3 5.04 4.26 3.95 3.75 3.65

6 1 6.17 6.05 5.96 5.75 5.21

40 1 6 22.21 26.70 27.34 27.59 28.23

2 3 19.56 20.48 19.90 19.42 19.50

6 1 8.01 9.40 9.66 9.46 9.52

60 1 6 16.44 24.18 27.85 28.25 32.12

2 3 20.25 22.47 22.77 23.15 23.82

6 1 14.22 22.46 23.42 25.30 26.90

80 1 6 26.46 32.11 31.78 32.42 33.09

2 3 25.26 29.48 32.69 33.32 33.64

6 1 21.70 25.80 27.59 27.81 28.55

100 1 6 46.44 52.12 54.76 55.34 55.97

2 3 23.21 28.13 29.38 29.94 30.30

6 1 20.61 24.26 24.75 25.46 25.48

120 1 6 39.35 49.02 53.06 54.67 55.52

2 3 29.83 36.84 38.49 39.44 39.97

6 1 26.01 34.39 36.52 37.18 38.45

Avg. 21.15 25.45 26.66 27.10 27.77

organized in the same way. Each tile highlights the selection probability for one

operator averaged over all instances and all runs.

Most of the operators generally used in the literature perform well and most of our

newly developed operators can add additional value. The k-means clustering is a

valid alternative to clustering based on Kruskal's minimal spanning trees. Only

the subroute destroy fails consistently with a probability of being used below

1%.

To our surprise, the location-related and location-and-time-related destroy opera-

tors did not perform well. A possible explanation might be, that the location that

is shared most by customers is the therapy center. The therapy center, however,

is capacitated which limits the amount of customers, which can be placed in this

neighborhood.
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Figure 5 Probabilities of selecting the destroy operators over 50, 000 iterations. Each subplot displays the
average probability of an operator over the 90 instances. Black thin lines represent operators from the
literature. Blue thick lines represent our operators. Light gray lines represent the operators which are not the
focus of the subplot. Above average performance is displayed by solid line segments while dotted lines
represent under average performance.

Figure 6 Probabilities of selecting the repair operators over 50, 000 iterations. Each subplot displays the
average probability of an operator over the 90 instances. Black thin lines represent operators from the
literature. Light gray lines represent the operators which are not the focus of the subplot. Above average
performance is displayed by solid line segments while dotted lines represent under average performance.

With the exception of the subroute destroy, all the averaged results are close

together. The main reason is that the individual performance equals out over

90 instances repeated three times. However, performance in the individual runs

varies signi�cantly. To present a typical example, Figure 7 displays the distribu-

tion of the individual runs for the location-related destroy.

The solution qualities of the ALNS with and without the new operators are

similar. However, we observe for bigger instances (100, 120 customers) slightly

better performance when using the new operators. The number of unscheduled

customers decreases from 2.79 to 1.03 (−36.92%) and the ratio of feasible solutions

found increases from 93.33% to 95.5% (+2.27%).
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Figure 7 Distribution of the probability developments over time for the location-related destroy. Thin gray
lines represent the individual runs, while the bold black line represents the average over all runs.

Value of all features

After having tested the algorithmic features individually, it is important to ex-

amine how the features interact when used together. The results of testing a

standard ALNS against one with backtracking in the construction, GLS and new

operators are displayed in Table 4.

Signi�cant improvements are achieved when using all features. In 98% feasible

solutions are generated (+4.3% over standard ALNS). The objective function

value was improved by 24.9% mainly be consistently reducing the number of

unscheduled customers (−99%). The number of precedence violations was also

reduced by 32.5%, however in the standard ALNS it is already at a very low level

of 0.02 violations per run.

2.5.4. VRPTW-FL applied to hospital-wide therapist scheduling and routing

After investigating the algorithmic features in the last part, this part focusses on

the hospital case and the value our ALNS can add to current planning practice.

VRPTW-FL compared to manual planning

To compare our ALNS to current hospital planning, we use the sequential alloca-

tion heuristic (SAH) as described in Gartner et al. (2018). According to Gartner

et al. (2018) this approach resembles manual planning. The central idea of the

SAH is to separate customers with �xed start times, which are assigned �rst,

from those with �exible start times, which are assigned later. Sorting is used to
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2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

facilitate assignment of customers to good tours, e.g. vehicles are sorted in order

of increasing shift start times and customers are sorted by earliest start time.

The results for the SAH and our ALNS are given in Table 5. Our approach clearly

outperforms the SAH by increasing the ratio of feasible solutions found by 29%

up to 98%. Our ALNS leaves almost no customers unscheduled and reduces the

number of precedence violations by 97.9%. Reducing precedence violations is

highly relevant for practice because in most cases, medical reasons exist for those

precedence relations.

Value of flexibility

Being able to assign customers to di�erent locations provides more �exibility for

the planner. Flexibility can be used to adjust the plan to the speci�c situation.

E.g., if many outpatients are waiting for an appointment, a hospital might want

to use therapists as e�cient as possible, while in other cases hospitals want to

avoid that patients walk unaccompanied from the ward to the therapy center and

thus would be willing to accept travel times of therapists. In order to consider

di�erent situations, we evaluated four cost functions for assigning patients to a

location di�erent from the preferred location: (a) no costs, (b) small constant

costs of 1 unit, (c) costs equal to the distance between preferred location and

assigned location (tr,l), and (d) costs equal to this distance squared (tr,l)
2.

Table 6 summarizes the results for the di�erent cost functions. As expected,

as changing locations becomes more expensive, more patients are treated in the

preferred locations, which leads to longner travel distances for therapists. In

particular, when comparing the extreme cases costs of 0 and costs of (tr,l)
2, the

average ratio of patients treated in the preferred location increases by 255% from

37.8% to 96.2%, and the travel costs of the therapists increase by 224% from 71.4

to 160.04.

Figure 8 displays this causal relationship grouped by the di�erent demand scenar-

ios (number of customers). When costs are (tr,l)
2, deviating from the preferred

locations is avoided whenever possible, only in cases of limited capacity in the

therapy center an alternative location is assigned. Increasing the cost for alterna-

tive locations from 0 to 1 does only have a very small impact on the travel costs

of therapists. For costs of 1, location preferences are almost entirely neglected,

i.e. patients will be scheduled to alternative rooms although this only slightly
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2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

Table 6 Value of �exibility. For each setting we state the distance travelled by therapists and the fraction of
treatments in preferred locations. Four di�erent location cost functions are evaluated: no costs (0), small
constant costs of 1, cost equivalent to the distance between preferred location and location of treatment tr,l,
and costs equivalent to the squared distance (tr,l)

2. Each row represents the average values of all �ve instances
per setting, each ran three times.

|I| B F distance therapists frac. preferred locations

0 1 tr,l (tr,l)
2 0 1 tr,l (tr,l)

2

20 1 6 28.60 28.87 55.73 65.80 0.29 0.34 0.82 0.96

2 3 29.60 29.60 47.00 69.27 0.37 0.45 0.71 0.93

6 1 32.33 32.87 47.00 68.40 0.40 0.44 0.71 0.98

40 1 6 70.73 74.47 95.60 113.27 0.53 0.62 0.85 0.94

2 3 64.53 65.33 86.67 106.07 0.60 0.64 0.84 0.96

6 1 71.40 72.80 86.47 102.93 0.65 0.71 0.86 0.97

60 1 6 75.50 77.08 123.08 139.67 0.48 0.56 0.87 0.94

2 3 60.80 63.27 113.67 136.80 0.36 0.48 0.86 0.97

6 1 77.53 79.47 115.47 155.00 0.46 0.53 0.80 0.97

80 1 6 73.53 78.20 149.53 175.53 0.34 0.47 0.85 0.94

2 3 80.07 83.33 163.07 187.13 0.32 0.42 0.89 0.97

6 1 80.80 85.13 138.87 178.47 0.34 0.45 0.83 0.98

100 1 6 92.93 97.33 193.00 226.13 0.30 0.41 0.88 0.97

2 3 82.47 87.80 163.60 201.13 0.30 0.46 0.85 0.97

6 1 85.17 88.83 157.08 205.50 0.30 0.42 0.81 0.97

120 1 6 101.67 106.20 219.87 258.80 0.27 0.37 0.86 0.96

2 3 87.40 87.80 188.73 246.20 0.27 0.38 0.82 0.97

6 1 90.07 95.20 193.07 244.67 0.24 0.36 0.82 0.96

43



2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

improves the travel distances of the therapists. In our opinion, a good trade-o�

in hospital planning is to use location costs equivalent to the distance between the

preferred location and the assigned locations. However, this might not generalize

to other routing contexts with very di�erent underlying network structures.

Figure 8 Travel costs of therapists (vehicles) in blue and fraction of treatments in preferred locations in orange
for di�erent location costs (0, 1, tr,l, (tr,l)

2). Each line groups the results for di�erent instances sizes (20, 40,
. . . , 120 customers).

2.5.5. ALNS on Solomon instances

To show the general capabilities of our algorithm, we evaluated its performance for

the VRPTW on the well-known Solomon benchmark instances (Solomon, 1987).

Note that we did not tune our parameters for the Solomon instances, instead we

used the parameters obtained by tuning for the hospital instances as described

in �2.5.1. The results for the 29 instances of the �rst class with relatively narrow

time windows is given in Table 7. Considering that our algorithm is not tuned

for these instances, it performs well. For the 25-customer instances, we reach

optimality in all cases, for 50 customer in 7, and for 100 customers in 2 cases.

The optimality gaps are larger than e.g. in Vidal et al. (2013), which is expected

as our algorithm was developed to cope with the very distinct properties of the

VRPTW-FL.

2.6. Conclusion and future work

The VRPTW-FL is a relevant and highly complex problem. Considering multiple

possible service locations in routing problems receives increasing interest in the

VRP community and to the best of our knowledge we are the �rst to address

location capacities in the service locations. The VRPTW-FL occurs in scheduling

physical therapists for which we have developed our solution approach. We built
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2 The Vehicle Routing Problem with Time Windows and Flexible Delivery Locations

Table 7 Performance of our ALNS on Solomon benchmark instances. The types are clustered (C), random (R),
partially random/clustered (RC), optimum is the optimal solution, ALNS is the average result achived by the
ALNS over �ve runs, gap is the relative gap between ALNS and the optimal solution, and n optimal states
how often the optimal solution was found for each instance.

type customers optimum ALNS gap n optimal

C 25 190.59 190.59 0.0 9 / 9

50 361.69 373.83 0.03 5 / 9

100 826.70 944.36 0.14 1 / 9

R 25 463.37 463.37 0.0 12 / 12

50 766.13 777.02 0.02 2 / 12

100 1173.61 1258.68 0.08 0 / 12

RC 25 350.24 350.78 0.0 6 / 8

50 730.31 736.14 0.01 0 / 8

100 1334.49 1444.39 0.09 0 / 8

on an ALNS framework and enhance it with several innovative ideas, i.e. (a) a

backtracking procedure in the construction phase to correct poor assignment of

customers to vehicles, (b) a guided local search that dynamically adjusts how

infeasibilities are penalized, and (c) new neighborhoods exploiting the underlying

problem structure.

We evaluated the algorithm on a set of generic instances designed to represent dif-

ferent hospital layouts and di�erent demand scenarios. Our computation results

show that the developed enhancements add value to better solving the VRPTW-

FL. We generated insights how di�erent cost functions for assigning customers to

location di�erent from the preferred location a�ect the overall planning. These

insights can be used by hospital managers to decide which cost function to be

used depending on their healthcare system and/or customer preferences.

We believe that VRPTW-FL and related problems will receive more attention

in near future. Savelsbergh and Woensel (2016) describe these problems as an

opportunity in city logistics and we believe that for many applications location

capacities become a limiting factor, e.g. limited parking space availabilities are

so far completely ignored in the OR literature.
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3 Exact Branch-Price-and-Cut for a

Hospital Therapist Scheduling

Problem with Flexible Service

Locations and Time-dependent

Location Capacity

3.1. Introduction

The shortage of quali�ed personnel is a crucial challenge for health care systems

worldwide (WHO, 2016). In aging societies, like most western and some Asian

ones, demand for health services increases faster than its supply. Employing

available health workers as e�ciently as possible is the only short-term solution

to mitigate the negative e�ects of understa�ed health care systems.

In this context, we study the hospital-wide therapist scheduling and routing prob-

lem (ThSRP), a daily scheduling problem arising at almost every hospital (Gart-

ner et al., 2018). According to the health care planning matrix by Hans et al.

(2012) the ThSRP can be classi�ed as an o�ine operational resource capacity

planning problem. On a daily basis, a hospital planner assigns therapists to

treatments, treatments to rooms, and start times to treatments. The therapists

have di�erent shift patterns (morning, evening, or regular shift) and levels of

quali�cation. Shift and quali�cation de�ne the type of treatment therapists are

available and quali�ed for. Treatments have a known duration and a start time

window, in which service must begin. If a patient receives multiple treatments in

the same day, precedence relations may exist between them, i.e. the preceding

treatment must be �nished before the succeeding treatment can start. For most

patients, multiple treatment locations exist, i.e. patients can receive service at

a central therapy center (TC) or at the ward in which they are staying. There

are two noteworthy exceptions: outpatients can only be treated at the TC, and

bedridden patients can only be treated at the ward since they must not be moved.
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and Time-dependent Location Capacity

TCs are capacitated, i.e. only a limited number of patients can be treated at a

time. Thus, for the TCs the hospital planner must ensure location availability

at all times. However, wards can be seen as uncapacitated as no patient will be

scheduled to another patient's ward room for treatment.

Current hospital planning is a manual and time consuming task leading to unsat-

isfactory results. Every morning before the treatments start, a hospital planner

is spending roughly an hour generating the schedule for the ongoing day. For the

hospital planner, it is already di�cult to generate feasible solutions and frequently

the resulting schedules leave some patients unserved. To facilitate planning, we

develop an exact algorithm to solve realistic hospital instances. While in tradi-

tional scheduling approaches, the routing of the therapists would be an indirect

result, we are addressing the routing decisions explicitly, which has practical

as well as theoretical advantages. In large hospitals, therapists are spending a

considerable part of their working time traveling between treatment locations.

Minimizing traveling gives more time to treat patients, which can be used on a

tactical level to increase the number of appointments scheduled per day. However,

a hospital might have preferences for treating patients in speci�c locations and

these preferences can con�ict with minimizing traveling. Therefore, we associate

a certain cost with treating a patient in a speci�c location, and minimize these

location costs together with the traveling.

We model the ThSRP as a Vehicle Routing Problem with Time Windows

(VRPTW), heterogeneous �eet, operations and resource synchronization, and

�exible service locations. Precedence relations between treatments are consid-

ered by operations synchronization, and resource synchronization is needed to

model the time-dependent location capacity that acts as a renewable resource.

As this paper focuses on routing, we will occasionally fall back on the VRP ter-

minology, i.e. instead of treatment and therapist, we use customer and vehicle,

respectively. For other applications of routing in hospitals, see e.g., Beaudry et al.

(2010); Hanne et al. (2009), and Schmid and Doerner (2014).

We solve the ThSRP by branch-price-and-cut (BPC), in which we address the

synchronization constraints using one of the following two alternatives: (1) We

branch on the time windows of the treatments to alter the possible start times such

that a violation cannot occur in subsequent branches, or (2) we add combinatorial

Benders cuts to forbid the reoccurrence of the current solution by specifying which

combinations of arcs must not appear together. Branching on start time windows
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received little attention over the past 25 years. However as we will show, it

holds the potential of being a valuable building block of solving complex routing

problems. To avoid unnecessary branching steps, we use additional branching

strategies to break symmetry at higher levels and we discuss strategies to correct

infeasible solutions.

Our contribution is threefold: (1) We model the ThSRP as a VRPTW with

�exible delivery locations and synchronization constraints, which are properties

relevant to other VRP variants as well; (2) we develop an exact BPC algorithm

for the ThSRP to solve realistic hospital instances, which can be used to derive

better schedules with less manual work for hospital planners; and (3) we show

that time window branching can be a valid alternative to adding cutting planes

when addressing synchronization constraints in a BPC framework.

The remainder of this work is structured as follows. In �3.2, we give an overview

of the related literature focusing on VRPs. A formal de�nition of the problem is

presented in �3.3. We describe the details of our BPC algorithm in �3.4, including

speci�cs of the graph structure of the pricing problem, the branching strategies,

and the cuts. In �3.5, we evaluate the performance of the proposed algorithm

and some of its features, and show the robustness of the method against changing

inputs. We conclude in �3.6.

3.2. Literature

The literature review focuses on VRPs as our main contributions are related

to routing problems. First we will give a brief overview of routing related ap-

plications in health care contexts, and then we speci�cally focus on the three

components that distinguish our problem from traditional VRP and VRPTW:

(a) �exible service location, (b) time-dependent location capacity, and (c) prece-

dence relations. For general literature on VRPs see e.g., Toth and Vigo (2002b,

2014) and Vidal et al. (2020). A very recent overview of exact BPC methods for

VRPs is given in Costa et al. (2019).

Health care related routing applications are numerous and range from transport-

ing patients to hospitals (Nemati et al., 2016; Lim et al., 2017) over routing of

bloodmobiles (Gunpinar and Centeno, 2016) to distributing pharmaceutical prod-

ucts to health care facilities (Kramer et al., 2019). A signi�cant share of the heath

care literature related to routing is concerned with home care applications, which
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are reviewed in Cissé et al. (2017) and Fikar and Hirsch (2017). Only few papers

study routing in hospitals. Hanne et al. (2009) and Beaudry et al. (2010) develop

a heuristic to solve a routing problem with �xed locations and dynamically arriv-

ing transportation requests. Schmid and Doerner (2014) present a metaheuristic

for an integrated planning problem combining scheduling and routing of patients.

The ThSRP is studied in Gartner et al. (2018) who present an insertion heuristic

and an exact algorithm. The exact algorithm solves a scheduling problem after

relaxing the routing constraints, and if the routing constraints are violated in the

optimal solution, a cutting plane is added and the problem is solved again. To

the best of our knowledge, this is the only exact algorithm for the ThSRP so

far.

In the remainder of this review, we will focus on routing problems showing simi-

larities to the ThSRP in terms of modeling and methodology. In the literature, we

found two types of problems involving �exible service locations: (1) Beasley and

Nascimento (1996) introduced the vehicle routing-allocation problem, in which

multiple possible service locations exist for customers. These locations are un-

capacitated and customers can also be left unserved. Practical applications are,

e.g. routing mobile clinics in rural areas or designing postal collection routes.

(2) Reyes et al. (2017) introduced the VRP with roaming delivery locations in

which parcels are delivered to di�erent locations depending on the time of the

day. A branch-and-price algorithm for this problem is developed in Ozbaygin

et al. (2017). Locations are not capacitated and the structure of the time win-

dows di�ers from our case as di�erent locations have distinct and non-overlapping

time windows. When time windows are not distinct for di�erent locations of

the same customer, the VRP with roaming delivery locations is known as the

GVRPTW. Recently, Yuan et al. (2020) developed a branch-and-cut algorithm

for a GVRPTW in the context of last-mile delivery.

The stream of literature sharing most similarities with our problem is the VRP

with synchronization constraints. An overview of VRPs with synchronization is

given in Drexl (2012), and recent applications are e.g., Fink et al. (2019) and Liu

et al. (2019).

According to the taxonomy of Drexl (2012) our time-dependent location capacities

belong to resource synchronizations. Generally, tours in VRPs are independent

of one another, i.e. a change within one tour does not a�ect another tour. How-

49



3 Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations

and Time-dependent Location Capacity

ever, when resource synchronization is present, a change within one tour could

potentially change all other tours.

If location capacity is considered in the VRP literature, these capacities generally

do not a�ect the routing decisions of the vehicles, i.e. vehicles simply wait at

the location until the resource becomes available again. An example is log truck

scheduling studied by Hachemi et al. (2013) and Rix et al. (2015). In this forestry

application, log-loaders can only load one truck at a time, and if the loader is in

use, other trucks have to wait. In the VRP with location congestion (Lam and

Hentenryck, 2016), vehicles are synchronized with regard to e.g., parking lots and

forklifts. Dynamic scheduling of automated guided vehicles at airports is studied

by Ebben et al. (2005) with scarce resources being docks for (un)loading and

parking space. If the resources are unavailable, vehicles wait at the destination,

or begin their tours later.

Recently, limited availability of recharging and refueling has been studied in

electric-VRPs (E-VRPs) and green VRPs (G-VRPs), cf. Keskin et al. (2019)

and Froger et al. (2019) for E-VRPs, and Bruglieri et al. (2019) for G-VRPs. In

Keskin et al. (2019), vehicles wait until charging becomes available. In contrast,

in Bruglieri et al. (2019) and Froger et al. (2019) the time-dependent location ca-

pacity is a central part of the routing decision. The problems the latter authors

study are, from the routing literature, those which are closest to the ThSRP. As in

our case, it is not known in advance which tasks will be needed to be synchronized

and the synchronization a�ects the routing decisions.

In E-VRPs and G-VRPs, refueling between two customer visits is possible. In

Froger et al. (2019) (E-VRP), refueling happens at a charging station (CS)

equipped with a number of charging points, and in Bruglieri et al. (2019) (G-

VRP), alternative fuel stations with multiple fuel pumps can be visited. Examples

of alternative fuels are e.g., methane and electricity. Froger et al. (2019) include

more speci�cs of recharging e.g., non-linear charging functions, and vehicles do

not need to recharge to full capacity when visiting as a CS.

Both works consider capacity at the level of the charging points. Each charger has

a capacity of 1, i.e. exactly one vehicle can recharge at a time. However, there can

be multiple charging points at a CS. In each work, two formulations are presented:

one based on virtually cloning the CSs, and one based on aggregating subsets of

arcs to paths. The main di�erence between these works and ours is that in their
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case, charging is capacitated and charging enables visiting additional customers.

However, the service locations of the customers itself are not capacitated, neither

do �exible service locations exist. In ThSRP, enforcing capacity at the service

location has in�uence on the decision where to serve a customer. Another central

di�erence is the importance of time windows in our case. Time windows are not

considered in Froger et al. (2019), and Bruglieri et al. (2019) only discuss adding

time slots at CSs, which could be reserved, however these are not time windows

at service sites.

The third distinctive component of the ThSRP are the precedence constraints,

which belong to operations synchronization according to the taxonomy of Drexl

(2012). This type of synchronization is more common in the VRP literature than

resource synchronization. It occurs e.g., in dial-a-ride problems, and in pickup-

and-delivery problems (see e.g., Mitrovi¢-Mini¢ and Laporte, 2006; Groër et al.,

2009; Hachemi et al., 2013).

Table 8 summarizes the properties of the most related routing problems. Only few

papers consider �exible service locations or time-dependent location capacities.

Precedence relations and time windows were either not or not much studied in

these works. To the best of our knowledge, we are the �rst to address all four

aspects combined in one problem.

Table 8 Overview of VPRs related to the ThSRP.

Br Fr Be Re/Oz Our work

Flexible service locations X X X

Time-dependent location capacity X X X

Time windows (X) X X

Precedence relations X

(Br) Bruglieri et al. (2019); (Fr) Froger et al. (2019); (Be) Beasley and Nascimento

(1996); (Re) Reyes et al. (2017); (Oz) Ozbaygin et al. (2017).

Outside of the VRP domain, operations and resource synchronization naturally

occur in resource-constrained project scheduling problems (RCPSP). See Brucker

et al. (1999) for an overview of RCPSPs and De Reyck et al. (1999) particularly

for precedence relations. In fact, Gartner et al. (2018) model a similar ThSRP

on a less granular level as a multi-mode RCPSP.
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3.3. Set-covering formulation

In this part, we reformulate the compact model (2.1)-(2.11) as a set-covering

model using Dantzig-Wolfe decomposition (see e.g., Lübbecke and Desrosiers,

2005). The ThSRP can formally be described as follows. A set of treatments

(customers) I must be covered by a set of tours Ω. A binary parameter αi,l,r

indicates if treatment i in location l is part of tour r. The set of tours Ω can be

broken down to Ωs,q ⊆ Ω containing only tours, which are available to therapists

(vehicles) with shift type s ∈ S and at least quali�cation q ∈ Q. Parameter |Ks,q|
states the number of available therapists of shift type s and quali�cation q, and

decision variable γs,q holds the number of active therapists. A detailed description

of how the tours are generated is given in �3.4.1.

A treatment i requires a service time si, and can begin in starting time win-

dow [ai, bi] with ai ≤ bi. We de�ne i0 and in+1 to be dummy treatments for

leaving and entering the depot. In the ThSRP, the depot corresponds to the

break rooms, in which therapists stay when they are not on duty. Between two

treatments i and j a precedence relation (i, j) ∈ P can exist, i.e. service of i

must be �nished before service of j can be started. Let L be the set of locations

including the depot. Treatment i can be performed at locations l ∈ Li ⊆ L.
Locations l ∈ Lbounded ⊆ L have a capacity limit of Ql. The travel time between

locations l1 and l2 is denoted by tl1,l2 . Binary parameter βl,t,r controls if location l

is occupied at time t by tour r, and by parameter Ti,l,r we denote the start time

of treatment i in location l in tour r.

The objective is to minimize costs cr over all tours r, which includes costs c
travel
l1,l2

for

traveling between locations l1, l2 ∈ L and costs clocationi,l for treating i at location l.

The latter is relevant to model that hospitals might have preferences for one

location over the other. Decision variable λr is equal to 1 if tour r ∈ Ω is selected

in the solution, and 0 otherwise. With the de�nitions above, the set-covering

formulation of the ThSRP can be stated as:

min
∑

(s,q)∈S×Q

∑
r∈Ωs,q

cr · λr (3.1)

subject to∑
(s,q)∈S×Q:i∈Is,q

∑
r∈Ωs,q

∑
l∈Li

αi,l,r · λr ≥ 1 ∀ i ∈ I (3.2)

∑
r∈Ω

βl,t,r · λr ≤ Ql ∀ l ∈ Lbounded, t ∈ T bounded
l (3.3)
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(
Ti,li,r + si + tli,lj − Tj,lj ,r′

)
· αi,li,r · αj,lj ,r′ · λr · λr′ ≤ 0 ∀ r, r′ ∈ Ω, (i, j) ∈ P

(3.4)∑
r∈Ωs,q

λr = γs,q ∀ (s, q) ∈ S ×Q (3.5)

λr ∈ {0, 1} ∀ r ∈ Ω (3.6)

0 ≤ γs,q ≤ |Ks,q| ∀ (s, q) ∈ S ×Q (3.7)

Objective (3.1) minimizes the cost over all selected tours. Assignment constraints

(3.2) ensures that each treatment i is done at least once. Location capacity

constraints (3.3) guarantee for every capacitated location l and for every time

point t that the capacity limit Ql is not exceeded. The set of critical time points

t ∈ T bounded
l is determined in a preprocessing step. Precedence constraints (3.4)

establish that preceding treatments are �nished before the succeeding treatments

start. Constraints (3.5) compute the number of active therapists. Lastly, the

variable domains are de�ned in (3.6) and (3.7).

3.4. Branch-price-and-cut algorithm

To solve the set covering formulation in �3.3, we would need to generate all possi-

ble tours Ω. As generating all tours is practically impossible, column generation

(CG) is used and embedded in a branch-and-cut framework to yield an exact BPC

algorithm (cf. Vanderbeck and Wolsey, 1996; Barnhart et al., 1998; Desaulniers

et al., 2005). The idea behind CG is to start with a reasonably small subset of

tours Ω′ ⊆ Ω in a so-called restricted master problem (RMP), restricted because

it contains only a subset of tours. Then, the RMP is solved and its dual solution

is used to generate new promising tours in a pricing problem (PP). Since a col-

umn represents a tour, we use these terms interchangeably. The PP aims to �nd

new tours with negative reduced cost (RC). If new tours are found (RC< 0), they

are added as columns to the RMP, and if no new columns are found (RC≥ 0),

CG terminates and a valid lower bound for the minimization problem was found.

Details on the PP are given in �3.4.1.

If CG terminates and if λr ∈ N0 for all r ∈ Ω′, an optimal solution for the original

problem has been found. However, if at least one non-integer variable λr /∈ N0

exists, branching is needed. Traditionally, branching on the number of vehicles

(therapists) and branching on arcs connecting customers (treatments) is used for

VRPs (cf. Feillet, 2010). We use both strategies and introduce three additional

branching strategies before branching on arcs: (a) Branching on the type of thera-
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pist performing a treatment, (b) branching on the service location of a treatment,

and (c) branching on aggregated therapy arcs. The branching strategies are de-

scribed in detail in �3.4.2. To tighten the dual bound, we add limited-memory

subset-row cuts (lm-SRCs) introduced by Pecin et al. (2017b), and we propose

location-capacity cuts (LCC) to exclude combinations of treatments that will re-

sult in a capacity violation of a speci�c service location. Details of the cuts are

given in �3.4.4.

To solve the problem, we �rst relax the synchronization constraints for the loca-

tion capacity (3.3) and the precedence relations (3.4) in the original formulation

(3.1)-(3.7). The resulting RMP (3.8)-(3.12) is equivalent to the set covering for-

mulation of the heterogeneous VRPTW. The di�erence, however, is that if we

have found an integer feasible solution, we still need to check if the solution is also

feasible for the synchronization constraints (3.3) and (3.4). If yes, the original

problem was solved successfully, and if not, we present two approaches to elimi-

nate infeasibilities: (a) by branching on start time windows (see �3.4.2), and (b)

by adding combinatorial Benders cuts (see �3.4.4). A schematic overview of our

BPC framework is displayed in Figure 9.

min
∑

(s,q)∈S×Q

∑
r∈Ω′s,q

cr · λr (3.8)

subject to∑
(s,q)∈S×Q:i∈Is,q

∑
r∈Ω′s,q

∑
l∈Li

αi,l,r · λr ≥ 1 ∀ i ∈ I (3.9)

 ∑
r∈Ω′s,q

λr

− γs,q = 0 ∀ (s, q) ∈ S ×Q (3.10)

λr ≥ 0 ∀ r ∈ Ω′ (3.11)

0 ≤ γs,q ≤ |Ks,q| ∀ (s, q) ∈ S ×Q (3.12)

Note that an alternative to relaxing the precedence constraints would be to leave

the constraint in RMP, which then results in a signi�cantly more complicated PP

with linear node costs. This approach is pursued in He et al. (2019) who build

on the work of Ioachim et al. (1998).

3.4.1. Pricing problem

To generate new columns for the RMP, we solve |S ×Q| PPs, each corresponding

to a speci�c therapist type. The PPs, also called subproblems, correspond to

elementary shortest path problems with resource constraints (ESPPRC) and aim
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Figure 9 Schematic overview of our BPC framework.
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at �nding new feasible tours r ∈ Ω with negative RC. Let π
(3.9)
i and π

(3.10)
s,q be

the duals associated with constraints (3.9) and (3.10) of the RMP, respectively.

Then solving the ESPPRC is equivalent to the following minimization problem

for a given shift type s ∈ S and quali�cation q ∈ Q:

min
r∈Ωs,q

c̄r = cr −
∑
i∈Is,q

∑
l∈Li

αi,l,r · π(3.9)
i − π(3.10)

s,q (3.13)

The ESPPRC is modeled on graph a G = (V ,A) with vertex set V and arc set A.
The de�nition of the node set V di�ers from classical VRPs (cf. Feillet et al., 2004;

Irnich and Desaulniers, 2005). Instead of having only one node vi per treatment

for a customer� we have |Li| nodes vi,l, one for each possible service location

l ∈ Li for a treatment of a customer. We de�ne node v0 to represent the depot

and the subset of nodes without the depot is denoted by V ′ = V \{v0}. Figure 10
displays an example of how the complexity of graph G increases in our problem

compared to the VRP.

i1

i2 i1

i2 i1

l1

l2

l3

i1

i2

Figure 10 Arc (i1, i2) in the VRP (left) expands into a subgraph in the ThSRP (right).

An individual start time window is assigned to each node, i.e. even nodes rep-

resenting the same treatment i might have di�erent time windows. Since a node

contains location information, time window tightening might a�ect nodes belong-

ing to the same treatment i but di�erent location l, di�erently, and branching

on time window presented in �3.4.2 a�ects the time windows of the nodes rather

than the ones of the treatments.

56



3 Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations

and Time-dependent Location Capacity

For arc set A ⊆ V × V , we have (vi,l, vj,r) ∈ A with vi,l, vj,r ∈ {V : i 6= j} if and
only if treatment i can be serviced at location l before treatment j is served at

location r. The costs c̄vi,l,vj,r along an arc (vi,l, vj,r) ∈ A are de�ned in (3.14).

Travel cost is de�ned between location l, r ∈ L and costs for servicing in location

r ∈ L are considered for the head node. The dual π
(3.10)
s,q associated with the

convexity constraint (3.10) is also subtracted at the depot node v0.

c̄vi,l,vj,r = ctravell,r + clocationj,r − π(3.9)
i (3.14)

We solve the ESPPRC by using a dynamic programming labeling algorithm start-

ing from the source v0 and iteratively extends partial paths to new nodes vi,l ∈ V
until it reaches the sink vn+1 = v0. Relevant information of the partial paths

is stored in label Lv associated with the nodes of the graph. Speci�cally, Lv

contains the following information: the parent label id, the cumulated RC, the

earliest arrival time at the node, and a binary vectors stating which treatments

can still be done. In order to not enumerating all paths, a dominance criterion is

applied to discard non-useful labels. For further details on labelling algorithms,

we refer the reader to Feillet et al. (2004), Irnich and Desaulniers (2005), and

Irnich (2008).

Since each PP is called frequently, we apply the following acceleration techniques:

time window tightening (Desrochers et al., 1992; Kontoravdis and Bard, 1995),

bidirectional search (Righini and Salani, 2006), decremental state-space relax-

ation (Boland et al., 2006; Righini and Salani, 2008), heuristic pricing as long as

negative RC columns can be found (Desaulniers et al., 2008), and adding buckets

of multiple task-disjoint columns to the RMP in each pricing step (Desaulniers

et al., 2002).

3.4.2. Branching

Our branching strategies serve two purposes: �rst we branch to reach integrality,

and second we branch to enforce the previously relaxed synchronization con-

straints. To reach integrality, we use �ve branching strategies applied in the

following sequence:

1. branching on the number of therapists (see �3.4.2),

2. branching on the types of therapists to perform a treatment (�3.4.2),

3. branching on possible service locations of treatments (�3.4.2),
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4. branching on aggregated arc-sets (�3.4.2), and

5. branching on arcs (�3.4.2).

While branching strategies (1) and (5) are commonly used for VRPs, we introduce

strategies (2), (3), and (4) to break fractional �ows on a higher levels than in (5).

When integrality is reach and if the precedence or location capacity constraint

are violated, we branch on start time windows to forbid a reoccurrence of the

violations. Branching are applied in the following arbitrarily chosen order:

6. branching on time windows to ensure precedence (�3.4.2),

7. branching on time windows to ensure location capacity (�3.4.2).

The search tree is explored using a best-�rst strategy. We are always applying

strategies (1) to (5) to reach integrality, however instead of applying strategies

(6) and (7) to reach feasibility with respect to the location capacity and prece-

dence relation constraints, we could alternatively use combinatorial cuts as well

(see �3.4.4). In the following, we will describe the seven branching strategies in

detail.

Branching on the number of therapists.

Desirable properties of branching are: (a) a balanced branching tree, i.e. that

the remaining problems in each branch are approximately equally complex, and

(b) branching strategies are used such that the size of the tree does not grow ex-

cessively. For routing problems, branching on the number of vehicles (therapists)

can often have a signi�cant positive in�uence on the tree size (Costa et al., 2019).

Let fs,q be the fractional number of therapists of type (s, q) in the optimal solution

at a branching node, then two branches are generated: (1) forcing γs,q ≤ bfs,qc
and (2) forcing γs,q ≥ dfs,qe. E.g., if γs,q = 1.667, then the two branches are:

(1) γs,q ≤ 1 and (2) γs,q ≥ 2. This branching is implemented through updating

the lower and upper bounds of γs,q instead of adding cuts to the RMP. If several

therapist types (s, q) with fractional �ows exist, we branch �rst on the type of

therapist (s, q) with most fractional �ow as calculated in Equation (3.15).

argmin
(s,q)∈S×Q

= |0.5− (fs,q mod 1)| (3.15)
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Note that branching on the number of vehicles alone is not su�cient to gener-

ate integer solutions, instead addition branching strategies are needed, e.g. arc-

branching as used in Desrochers et al. (1992).

Branching on the types of therapists.

If a treatment is serviced by therapists of di�erent types in an optimal solution

of the current linear relaxation, we branch on the set of therapists, which can

perform the service. Let Si × Qi be the set of therapist types that can perform

treatment i. If |Si × Qi| ≥ 2, this set can be indexed and split in half. For

both subsets, we generate a branch. To balance the branching tree, we split

Si × Qi such that both halves account roughly for a �ow of 0.5. We de�ne the

point µi, at which we split the set of therapist types as the last element that

remains in subset 1 for treatment i. This split point µi is determined by using

the formula (3.16), with fk being the cumulated �ow of therapist type k covering

treatment i.

µi = argmin
n={1,...,|Si×Qi|}

∣∣∣∣∣0.5−
n∑
k=1

fk

∣∣∣∣∣ (3.16)

As each PP corresponds to a speci�c therapist type, we can impose the branching

decisions by simply removing nodes from graph G that can no longer be covered

by the speci�c therapist type.

Branching on the locations.

When |Li| > 1 for a treatment i, it can happen that, in an optimal solution,

treatment i is serviced by an integer number of therapists of the same type, but

in more than one location. In this case, we branch on the set of possible service

locations. Equivalently to �3.4.2, we split Li such that the �ow in the remaining

halves is as close as possible to 0.5. The split position µi, i.e. the last location

that is part of location subset 1, is determined by the following formula:

µi = argmin
n={1,...,|Li|}

∣∣∣∣∣0.5−
n∑
k=1

fk

∣∣∣∣∣ (3.17)

Branching on arcs flows.

Desrosiers et al. (1984) introduced branching on arc �ows for the VRPTW and it

has become the most popular branching strategy ever since (Costa et al., 2019).
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The idea is that an arc a ∈ A with fractional �ow fa in the optimal solution

at a branching node, must be part of the solution in one branch (fa = 1), and

must not be part of the solution in the other branch (fa = 0). Compared with

standard VRPTWs, the graph G in our PP contains more edges as multiple nodes

exist per treatment (cf. �3.4.1). Thus, if we would apply pure arc branching, we

would need more branching steps than traditional VPRTWs require. Therefore,

we �rst branch on aggregated arc-sets, and once the �ows on the aggregated arcs

are integral, we continue by branching on arcs a ∈ A as de�ned for graph G.

Branching on aggregated arc-sets. Let vi be an aggregation set of all nodes

belonging to the same treatment i, i.e. vi =
⋃
l∈Li vi,l, and let (vi, vj) be an ag-

gregated arc connecting two nodes vi and vj. Branch 1 enforcing that aggregated

arc (vi, vj) cannot belong to the solution, is constructed by removing all arcs

(vi,l, vj,r) ∈ A : l ∈ Li, r ∈ Lj connecting any node in vi to any node in vj, and

deleting all columns r ∈ Ω′ containing any of these arcs. Branch 2 enforcing that

arc (vi, vj) is used in the solution is constructed by removing all arcs (vi′ , vj) ∈ A
such that i′ 6= i and i′ 6= i0, and all arcs (vi, vj′) ∈ A such that j′ 6= j and

j′ 6= in+1 from the PPs with i0 and in+1 being the dummy treatments for leaving

and entering the depot.

Branching on arcs of the PP. If the �ow of all aggregated arcs is integer,

however still fractional �ows exist on the original arcs A of the PP, we branch on

those as well. Branch 1 enforcing that arc (vi,l, vj,r) cannot belong to the solution

is constructed by removing arc (vi,l, vj,r) from the PPs. Branch 2 enforcing that

arc (vi,l, vj,r) is used in the solution is constructed by removing all arcs (vi′,l′ , vj,r) ∈
A such that (i′ 6= i ∧ i′ 6= i0) ∨ l′ 6= l, and by removing all arcs (vi,l, vj′,r′) ∈ A
such that (j′ 6= j ∧ j′ 6= in+1) ∨ r′ 6= r.

Branching on time windows.

Once an integer feasible solution is reached, we check if this solution is also feasible

for the precedence constraints and location capacity constraints. If the solution

is infeasible for the original problem, we branch on the start time windows of the

treatments such that the same violation If the solution is infeasible, we branch on

the start time windows of the treatments such that the same violation is prevented

from reoccurring. Note that violations involving the same precedence relation or

capacity violations of the same location can still occur after branching on time

windows, however only at a di�erent time. Branching on start time windows
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belongs to branching on resource windows and has been applied in the context

of vehicle routing e.g., in Desrosiers et al. (1986) and Gélinas et al. (1995).

Branching on time windows to ensure precedence. A precedence relation

(i, j) ∈ P ensures that treatment imust have been �nished before treatment j can

start, i.e. Ti + si + tli,lj ≤ Tj. As our algorithm works on nodes vi,l representing a

combination of treatment i and location l, we consider start time Ti,l associated

with the node. Therefore, a precedence relation violation occurs if Ti,l+si+ tl,r >

Tj,r with l ∈ Li and r ∈ Lj. In that case, we branch on the start time windows of

nodes vi,l and vj,r. In branch 1, the start time window of node vi,l is adjusted such

that service must start slightly earlier, and in branch 2, the start time window of

node vi,l is adjusted such that service must start slightly later. Since i and j are

part of a precedence relation, j must also start later in branch 2, i.e. the time

window of node vj,r is adjusted as well. Figure 11 illustrates the resulting branches

and the updates of the time windows TW associated with the nodes. Note that

0

1 2

TWi,l = [ai,l, dTi,l − 1e] TWi,l = [dTi,le, bi,l]
TWj,r = [bTj,r + 1c, bj,r]

bra
nch

1 branch 2

Figure 11 Example: resulting branches for branching on time windows to ensure precedence relations.

we discretize time by ceiling/�ooring the start times Ti,l observed in the optimal

solutions, otherwise the branching would not be guaranteed to terminate.

If a column contains a node vi,l ∈ V and the start time of that node is outside of

the updated time window TWi,l, then the column is deleted from Ω′. If the time

windows can no longer be adjusted, because ai,l = bi,l for any node vi,l ∈ V , then
node vi,l is removed from the PP and all columns containing vi,l are removed

from Ω′. However, treatment i can still be served in the remaining locations

r ∈ Li \ {l}. If no further location exists for i, infeasibility was proven and the

current branching node can be pruned. If more than one precedence violation

exists, we �rst branch on the largest violation in terms of time units as given in

(3.18).

argmax
vi,l,vj,r∈V:

(i,j)∈P

(
Ti,l + si + tli,lj − Tj,r

)
(3.18)
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Branching on time windows to ensure location capacity. A location ca-

pacity Ql is violated if more than Ql patients are scheduled to receive treatment

in parallel at location l. An example of capacity violations is displayed in Figure

12. The upper part displays the time periods during which the treatments are

in execution, and the lower part displays the cumulated capacity usage. Since

all treatments are assigned to location l, we omit index l and write Ti, ai and bi

instead of Ti,l, ai,l and bi,l, etc. Let T be the set of start times Ti for all treat-

ments i in an integer feasible solution, then ql(T , t) = {∀i ∈ Il |Ti ≤ t ≤ Ti + si}
is a function returning the set of treatments, which are in process at time t in

location l. The capacity limit is Ql = 2, and a capacity violation occurs between

time points t = 6 and t = 10. These are actually two violations: the �rst be-

tween t = [6, 9] by treatments {i1, i3, i4}, and the second between t = [9, 10] by

treatments {i1, i2, i3}.

time

∣∣ql(T , t)∣∣

0

1

2

3

Ql = 2

time

i4 s4

a4, b4, T4

i3 s3

a3 b3T3

i2 s2

a2 b2T2

i1 s1

a1 T1 b1

aviol{1,3,4} bviol{1,3,4}

νl{1,3,4} νl{2,3,4}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 12 Example: location capacity violation.

At a branching node, we only branch on one violation at a time and choose �rst

the violation with the longest period of resource excess. We de�ne an arbitrary

time point τ , at which we split the violation. Without loss of generalization,

we assume for the example that the violation is split in half, i.e. τ is de�ned

as τ = (aviol + bviol)/2 with aviol and bviol being the bounds of the violation. We

generate two branches for each treatment i involved in the violation and adjust the

start time windows of the treatment-location nodes: (1) such that the treatment

starts either early enough that service is done before τ , i.e. bnewi = dτ −si−1e, or
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(2) that service starts later than τ , i.e. anewi = dτe. The node is deleted from the

PP, if the time windows cannot be adjusted, i.e. (ai+si > dτ−1e)∨(bi < dτe).

The branches resulting from the �rst violation {i1, i3, i4} in Figure 12 are given

in Figure 13. In branch 1, the �rst treatment i1 cannot start so early that the

violation is prevented (a1 + s1 > τ), therefore node v1,l is removed from graph G.

In branch 2 however, treatment i1 can start later than τ , and thus the earliest

start time of v1,l is adjusted by setting a1,l = 8. In branch 3, treatment i3 can start

so early that the violation is prevented, therefore the latest start time of v3,l is

set b3,l = 2. Branch 4 acts equivalently to branch 2, and branch 5 equivalently to

branch 1. Branch 6 is a special case. A later start is not possible for treatment i4

and node v4,l would have to be removed from the PP. However, node v4,l has

already been removed in branch 5 and thus the resulting PPs in branch 5 and

branch 6 would be identical. Therefore, branching node 6 is not generated.

0

i1 i3 i4

1 2 3 4 5 6

V = V \ {v1,l} a1,l = dτe
= d7.5e
= 8

b3,l = dτ − s3 − 1e
= d7.5− 5− 1e
= 2

a3,l = dτe
= d7.5e
= 8

V = V \ {v4,l} v4,l

already
removed

ea
rl
ie
r later

ea
rl
ie
r later

ea
rl
ie
r later

Figure 13 Example: resulting branches for branching on time windows to ensure location capacity.

If a node has been deleted from the PPs, columns r ∈ Ω′ that contain it are also

removed from the RMP. Columns are removed as well if the start time of a node is

outside of the updated time windows. Note that our branching strategy reduces

the capacity violation by one unit at a time. Therefore, if capacity is violated by

more than one unit, multiple branching steps might be needed to fully eliminate

the violation.

3.4.3. MIP to correct infeasible solutions

Even if an integer feasible solution of the RMP does not ful�ll the synchronization

constraints (3.3) or (3.4), we can possibly transform this solution into a feasible

one. The start time windows of the treatments [ai, bi] may leave a leeway δi to shift

start times such that the violations are eliminated. However, within each tour,

the sequence of the nodes and the nodes itself must be prevailed. Otherwise,

the costs of the tours could change and thus, the solution would no longer be

guaranteed to be optimal for the current linear relaxation. Figure 14 displays
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an example of a precedence violation that can be corrected. If the start time of

treatment i in tour 1 is shifted to the left and the start time of treatment j in

tour 2 is shifted to the right, the violation is eliminated. The leeways to shift

start times are denoted by δi and δj. Note that the leeways within a tour are

interdependent, i.e. adjusting the start time of one treatment might change the

leeways of the neighboring treatments as well.

time

Tour 2 sj tli,lk
aj , Tj bj

sk
δj

Tour 1 sh tlh,li si
ai bi, Ti

δi

violation

time

Tour 2 sj tli,lk
aj Tj , bj

sk

Tour 1 sh tlh,li si
ai Ti bi

Figure 14 Example: Adjust start times to avoid precedence violation of treatment i and j.

To e�ciently check if an infeasible integer solutions can be corrected, we call a

MIP every time we encounter such a solution. This MIP tries to assign start times

to treatments, such that the tours become feasible for the origin problem (3.1)-

(3.7) including the synchronization constraints. Our MIP is based on the contin-

uous time formulation of the RCPSP presented in Artigues et al. (2003), which

decides on the sequence of activity pairs and models resources as �ows through a

network of activities. In the ThSRP, the treatments i ∈ I correspond to activi-

ties and the capacities of the location l ∈ Lbounded are the resources. One unit of
the resource is consumed if a patient is treated in a capacitated location l. We

distinguish between two sets of treatment pairs (i, j): (1) set W containing all

possible pairs, and (2) set U for which we know that i must start before j. Let Ω∗

be the set of tours used in the integer optimal solution studied and let Pr be the
set of precedence relations within each tour r. Then PΩ∗ =

⋃
r∈Ω∗ Pr is the set

of all intra-tour precedence relations. The precedence relation sets can now be

stated as follows:

W = {(i, j) ∈ i ∈ I ∪ {i0} × j ∈ I ∪ {in+1} | i 6= j} (3.19)

U = P ∪ PΩ∗ ∪
{

(i, j) ∈ W | bi,li ≤ aj,lj
}

(3.20)
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The MIP is formally de�ned as (3.21)-(3.31). Note that the optimization is

stopped, once the �rst feasible solution is found. One feasible solution for this

MIP already guarantees that the involved tours are feasible for the original prob-

lem (3.1)-(3.7).

minTmax (3.21)

subject to

yi,j = 1 ∀ (i, j) ∈ U (3.22)

Tj,lj − (Ti,li + si + tli,lj) ≥M · (yi,j − 1) ∀ (i, j) ∈ W \ U (3.23)

Tj,lj − (Ti,li + si + tli,lj) ≥ 0 ∀ (i, j) ∈ U (3.24)

fi,j,l − yi,j ≤ 0 ∀ (i, j) ∈ W , l ∈ Lbounded (3.25)∑
j∈I∪{in+1}:

j 6=i

fi,j,l = ri,l ∀ i ∈ I ∪ {i0}, l ∈ Lbounded (3.26)

∑
i∈I∪{i0}:

i 6=j

fi,j,l = rj,l ∀ j ∈ I ∪ {in+1}, l ∈ Lbounded (3.27)

Tmax ≥ Ti,li + si ∀ i ∈ I (3.28)

ai,li ≤ Ti,li ≤ bi,li ∀ i ∈ I (3.29)

fi,j,l ∈ {0, 1} ∀ (i, j) ∈ W , l ∈ Lbounded (3.30)

yi,j ∈ {0, 1} ∀ (i, j) ∈ W (3.31)

We use binary variable yi,j to decide if treatment i ∈ I precedes treatment j ∈ I.
Binary variable fi,j,l decides on the �ow of resource l ∈ Lbounded from i to j. Note

that fi,j,l is de�ned as an integer variable in Artigues et al. (2003). However in

the ThSRP, each treatment i has a maximum resource consumption of ri,l = 1.

Objective (3.21) minimizes the makespan Tmax, but alternative objectives would

be possible as we are interested in the satisfaction of the constraints and not

in the objective function value. Constraints (3.22) �x the sequences that are

already implied by the selected tours. Correct separation times between preceding

treatment i and succeeding treatment j are guaranteed by constraints (3.23)

and (3.24). Parameter M is a su�ciently large constant that can be set to

the length of the planning horizon. Constraints (3.25) connect yi,j and fi,j,l,

and ensure that a resource �ow only exists between preceding treatments. For

both, the in�ow (3.26) and the out�ow (3.27), the resource �ow connected to

a treatment must match the resource consumption ri,l of the treatment. The

makespan Tmax is set in (3.28), and variable domains are de�ned in (3.29), (3.30),

and (3.31), respectively.
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3.4.4. Cuts

We use three types of cuts in our BPC algorithm: limited-memory subset-row

cuts to tighten the dual bound (�3.4.4), location capacity cuts to forbid infeasible

assignments of treatments to locations (�3.4.4), and combinatorial Benders cuts

to ensure feasibility for the synchronization constraints if branching on start time

windows is disabled (�3.4.4).

Limited-Memory Subset-Row Cuts.

To obtain a better dual bound optimality cuts can be added to the RMP and

subset-row cuts (SRC) introduced by Jepsen et al. (2008) have been shown to

be very successful in this regard (Costa et al., 2019). We use a 3-SRC of the

following form: ∑
r∈Ω

⌊
1

2
·
∑
i∈C

∑
l∈Li

αi,l,r

⌋
λr ≤ 1 (3.32)

with C ⊆ I ∧ |C| = 3. The intuition behind the 3-SRC is that for certain triples

of treatments C, we know that from the set of tours λr containing at least two of

the treatments i ∈ C (i.e.,
∑
i∈C

∑
l∈Li

αi,l,r ≥ 2), at most one tour can be part of an

integer feasible solution.

SRCs are non-robust cuts, i.e. adding these cuts changes the structure of the PP

(Fukasawa et al., 2006). Speci�cally, an additional resource associated with each

cut must be stored in the labels, which impede e�cient label dominance. Pecin

et al. (2017b) have introduced a limited-memory version of the SRCs (lm-SRCs),

which counteracts the negative in�uence of the SRCs on the label dominance.

Duals are only subtracted if a node memory setM with C ⊆ M ⊆ I is not left

between visiting two nodes associated with i, j ∈ C. Thus, the lm-SRCs are a

weaker version of the SRCs, however, for more labels L, the resource consumption

of SRCs s will be vs(L) = 0, and thus, leading to more dominated labels. Note

that Pecin et al. (2017a) have also introduced a memory set based on arcs rather

than nodes. However, we continue to use node memories as prior tests did not

reveal bene�ts of using arc memories on our instances.

Location-Capacity Cuts.

We introduce a type of feasibility cuts, which we call location-capacity cut (LCC).

For certain subsets of treatments C ⊆ I, we know, because of the start time
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windows, that if these treatments are assigned to the same location l, a location

capacity violation is inevitable, i.e. regardless of how the start times are selected,

the treatments always overlap. For a given location l and subset of treatments C,
the LCCs have the form: ∑

i∈C

βi,l ≤ Ql (3.33)

Figure 15 provides an example of three treatments {i1, i3, i7} that will always

require location capacity of three between time points 5 and 7 if serviced in

location l. Note that, while SRCs are added when CG terminates, LCCs are

time

i7 s7 = 6, TW7,l = [2, 5]

i3 s3 = 3, TW3,l = [4, 4]

i1 s1 = 4, TW1,l = [3, 5]

violation

2 3 4 5 6 7 8 9 10 11

Figure 15 Example: Subset of treatments forming valid location-capacity cuts for location l with capacity
Ql ∈ {1, 2}.

added at a branching node before CG is started. The reason is that new LCCs

can only be found either directly at the root node or after branching has shrunk

the start time windows. As start time windows shrink, the potential overlap

grows. The LCCs are robust, i.e. the cuts do not change the structure of the

PPs and duals associated with these cuts are simply subtracted when a node vi,l

is visited with i belonging to C.

Combinatorial Benders Cuts.

In the literature, the most common approach to address violations of previously

relaxed constraints is to add cuts (cf. Bruglieri et al., 2019; Froger et al., 2019).

Therefore, as an alternative to branching on start time windows, we propose

adding combinatorial Benders cuts to forbid the reoccurrence of solutions violat-

ing synchronization constraints.

In this branch-and-check approach, our BPC framework acts as the Benders mas-

ter problem and the cut separation as the Bender subproblem. Branch-and-check

is a generalization of logic-based Benders decomposition, in which the subprob-

lem is solved whenever a feasible solution of the Benders master problem is found,
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i.e. in our case, a cut is generated whenever an integer feasible solution for the

RMP is found that does not satisfy the synchronization constraints of the original

problem. For details on branch-and-check we refer the reader to Beck (2010), for

details on logic-based Benders to Hooker and Ottosson (2003), and for details on

combinatorial Benders cuts to Codato and Fischetti (2004).

To exclude an infeasible integer solution s, we forbid the reuse of the exact same

arc set A of this solution by adding the following cut:∑
a∈As

xa ≤ |As| − 1 ∀ s ∈ SN (3.34)

where xa is a binary variable indicating whether arc a ∈ A is used in s and SN

is the set of all integer feasible solutions. Expressed in terms of the variables of

model (3.8)-(3.11), the cut can be stated as follows:∑
r∈Ω′

ρs,r · λr ≤ |As| − 1 ∀ s ∈ SN (3.35)

where ρs,r ∈ N0 is the number of arcs a ∈ As from an integer feasible solution

s ∈ SN that column r ∈ Ω′ contains.

We add combinatorial Benders cuts when no new SRCs can be generated. Note

that the combinatorial Benders cuts are valid throughout the entire branching

tree, and thus do not have to be reverted when moving up the branching tree.

3.5. Computational study

This section presents the results of our computational study and is structured as

follows. In the �rst part �3.5.1, we detail our problem instances, and in the sub-

sequent three parts, we investigate various aspects of our BPC algorithm. Our al-

gorithm contains multiple components and cross-testing all possible combinations

is out of scope of this work. Instead, we determined a well-working combination

of components for our algorithm in prior tests, and present computational results

for which each component was individually turned o� to show its added value.

Therefore, unless stated otherwise, our algorithm always uses branching strategies

(1) to (5) to reach integrality, adds lm-SRCs and LCCs to improve the bounds,

and applies the MIP checker to attempt correcting infeasible solutions. In �3.5.2,

we compare the e�ciency of branching on time windows and of using combinato-

rial Benders cuts to eliminate violations of the location capacity and precedence
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Table 9 Notation used in computational study

B Number of hospital buildings

F Number of �oors per building

gap Optimality gap [%]

|I| Number of treatments

LB Lower bound (dual bound)

NBranch
TW prec Number of time window branchings due to precedence violation

NBranch
TW loc Number of time window branchings due to location capacity viola-

tion

NCut
combi Number of combinatorial cuts

NCut
LCC Number of location capacity cuts

NCut
SR Number of lm-SRCs

N infeas Number of instances proven to be infeasible

N inst Number of instances per hospital layout

N inst
Branch Number of instances for which time windows branching was used

N iter Number of processed branching nodes

NMIP Number of successful MIP calls to correct time window infeasible
solutions

Nnon Number of instances, for which no feasible solution was found for
the original problem

Nopt Number of instances solved to optimality

time Runtime [sec.]

UB Upper bound (best feasible solution cost)

relation constraints. The superior approach will be part of the baseline algorithm

for the subsequent tests. In �??, we evaluate the core algorithmic components

of our algorithm by comparing the baseline algorithm to versions without the

speci�c component. The evaluated components are: lm-SRCs, LCCs, and the

MIP to correct infeasible solutions. In �3.5.4, we investigate the robustness of

our algorithm against varying input data. Speci�cally, we modify the capacity

limit of the locations and adjust the number of precedence relations within the

instances.

The notation that we use in the computational study is summarized in Table 9.

Our algorithms were coded in JAVA using Amazon Corretto 11 as JDK and

executed on a Windows 10 platform employing an Intel Core i7-10510U CPU @

2.30GHz with 16 GB of RAM. We used Gurobi 9.0.0 to solve the RMP and the

checker MIP.
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3.5.1. Instances

To the best of our knowledge, only Gartner et al. (2018) have studied the ThSRP.

The authors worked on eight instances, three of which matched the data from

a German hospital. As we needed considerably more data to reliably evaluate

our algorithm and to account for di�erent types of hospitals, we created our

own instances which are available in JavaScript Object Notation (json) format

at https://www.gerad.ca/~guyd/bench-en.html. We consider three hospital

layouts varying in the number of buildings and �oors in each building. The

therapy center is located at one of the buildings. We consider three demand

scenarios with 40, 80, and 120 treatments per day. The daily scheduling problem

decomposes into a morning and evening part and the number of treatments in

each part is divided by approximately two. There are three hierarchical levels of

quali�cation. Therapists work either a regular shift or a short shift. During short

shifts, therapists are only available either in the morning or the evening. For each

combination of layout and demand scenario, we generated �ve instances, which

results in 3 · 3 · 5 = 45 instances in total.

3.5.2. Branching on time windows vs. combinatorial cuts

In this part of the computational study, we compare how well branching on start

time windows and generating combinatorial cuts function to ensure the satisfac-

tion of the relaxed location capacities and precedence relations. Tables 10 and 11

summarize the results for branching on time windows and imposing combinato-

rial cuts, respectively. Each line represents the combination of a demand scenario

(|I|) and hospital layout (combination of number of buildings B and number of

�oors per building F ). Average values are aggregated over ten instances. Note

that the ThSRP decomposes into a morning and an evening problem with ap-

proximately half the number of treatments and thus, instead of �ve instances, we

solve ten instances. For each instance, a time limit of one hour was set, i.e. the

total time limit to solve the original problem was two hours. We display the num-

ber of optimal solutions Nopt, the number of no feasible solution found Nnon, we

provide information about the bounds, runtime and number of iterations, cuts,

and calls of the checker MIP. Nnon is the number of runs in which we could not

�nd feasible solutions within the given runtime limit, and this number should not

be confused with the number of infeasible solutions N infeas.

Branching on time windows performs better than adding combinatorial cuts. In-

deed, with the former strategy, �ve additional instances could be solved to opti-

mality and the average optimality gap is 0.19 lower for time window branching,
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Table 10 Results for branching on start time windows

|I| B F N inst Nopt Nnon LB UB gap time N iter NCut
SR NCut

LCC NCut
combi N

MIP

40 1 6 10 10 0 57.50 57.70 0.00 119.6 1051.9 1139.6 211.0 0.0 21.4
2 3 10 10 0 52.22 52.30 0.00 4.6 5.4 40.7 0.4 0.0 0.1
6 1 10 10 0 50.30 50.40 0.00 9.2 18.2 86.9 3.7 0.0 0.0

80 1 6 10 10 0 85.32 85.70 0.00 116.7 129.1 409.1 0.0 0.0 0.2
2 3 10 9 0 91.35 91.70 0.15 367.7 33.3 345.6 0.0 0.0 0.0
6 1 10 10 0 85.22 85.30 0.00 7.4 1.4 20.0 0.0 0.0 0.1

120 1 6 10 9 1 122.20 122.78 0.00 601.4 78.0 938.6 0.0 0.0 0.0
2 3 10 9 0 115.93 116.40 0.17 422.7 53.2 724.7 0.0 0.0 0.0
6 1 10 10 0 116.41 116.70 0.00 124.0 10.5 172.0 0.0 0.0 0.0

Avg. 87/90 1/90 86.27 86.55 0.04 197.03 153.44 430.80 23.90 0.00 2.42

Table 11 Results for using combinatorial cuts

|I| B F N inst Nopt Nnon LB UB gap time N iter NCut
SR NCut

LCC NCut
combi N

MIP

40 1 6 10 9 0 57.33 57.80 0.49 364.0 515.6 607.4 1.6 208.0 0.1
2 3 10 10 0 52.08 52.30 0.00 5.8 7.6 33.9 1.7 10.3 0.2
6 1 10 8 0 50.10 50.40 0.52 721.6 374.2 435.2 94.6 393.3 0.2

80 1 6 10 9 0 85.29 85.70 0.13 387.5 167.3 345.8 0.0 89.4 0.5
2 3 10 8 0 91.26 92.20 0.76 727.4 93.1 520.3 0.0 18.2 0.0
6 1 10 10 0 85.23 85.30 0.00 8.7 1.7 17.9 0.0 4.8 0.1

120 1 6 10 9 1 122.20 122.78 0.00 658.8 71.8 852.2 0.0 4.9 0.0
2 3 10 9 0 115.87 116.40 0.17 444.8 43.7 625.3 0.0 4.4 0.0
6 1 10 10 0 116.39 116.70 0.00 178.1 10.6 173.2 0.0 4.7 0.0

Avg. 82/90 1/90 86.19 86.62 0.23 388.52 142.84 401.24 10.88 82.00 0.12

which is a relative reduction of 82.6%. Interestingly, branching on time windows

required less time while performing more iterations, which we interpret as that

combinatorial cuts add signi�cant complexity to the RMP that cannot be justi-

�ed by its performance. Therefore, branching on time windows will serve as the

baseline algorithm in the remainder of this computational study.

3.5.3. Value of algorithmic features

We investigate the performance improvements achieved by three of our core algo-

rithmic components: (1) limited-memory subset-row cuts (lm-SRCs), (2) location

capacity cuts (LCCs), and (3) the MIP to correct infeasible solution. To measure

the bene�t of using the speci�c component, we run the baseline algorithm on all

instances with and without the speci�c component.

The results for evaluating the lm-SRCs are given in Table 12. Without lm-SRCs,

10 instances less could be solved to optimality, no feasible solution was found for
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4 additional instances, and the runtime increased by a factor of 3.62. Our results

con�rm the literature and emphasize that lm-SRCs should also be applied to the

ThSRP.

Table 12 Value of limited-memory subset-row cuts

|I| N inst baseline no lm-SRCs

Nopt Nnon gap time NCut
SR Nopt Nnon gap time

40 30 30 0 0.00 44.47 422.40 30 0 0.00 124.73
80 30 29 0 0.05 163.93 258.23 28 0 0.11 356.90
120 30 28 1 0.06 382.70 611.77 19 5 1.17 1660.23

Avg. 87/90 1/90 0.04 197.03 430.8 77/90 5/90 0.43 713.95
∆ -10 +4 +0.39 +516.92

The value of adding LCCs to the RMP are shown in Table 13. The solution

Table 13 Value of location capacity cuts

|I| N inst baseline no LCCs

Nopt Nnon gap time NCut
LCC Nopt Nnon gap time

40 30 30 0 0.00 44.47 71.7 30 0 0.00 44.00
80 30 29 0 0.05 163.93 0.0 29 0 0.05 163.33
120 30 28 1 0.06 382.70 0.0 28 1 0.06 384.43

Avg. 87/90 1/90 0.04 197.03 23.9 87/90 1/90 0.04 197.25
∆ +0 +0 +0.00 +0.22

quality remains and the di�erence in runtime is insigni�cant. However, on av-

erage only 23.9 cuts were added per instance. In a separate run, we decreased

the location capacity of the therapy centers by one unit such that the instances

become more restrictive. Note that reducing the location capacity (Ql is replaced

by Ql−1) leads to higher probability of encountering infeasible solutions. For the

case of reduced capacity, Table 14 shows that adding LCCs yields positive e�ects.

Without LCCs, runtime increases by a factor of 2.28, and for 7 fewer instances

infeasibility could be proved.

The value of calling the MIP to correct infeasible integer solutions, is displayed in

Table 15. On our instances, an improvement could not be identi�ed; the runtime

increases by 2.06% while the solution quality remains. We performed also a

test on instances with reduced location capacity, however the results were very

similar; no improvement in solution quality and same runtime (∆ = 0.003%).

Our explanation is that time windows are not wide enough such that shifting
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Table 14 Value of location capacity cuts with reduced location capacity (Ql − 1)

|I| N inst baseline (Ql − 1) no LCCs (Ql − 1)

Nopt N infeas Nnon gap time NCut
LCC Nopt N infeas Nnon gap time

40 30 15 14 0 0.15 129.83 573.3 15 9 5 0.23 746.40
80 30 25 4 0 0.06 160.83 0.4 25 2 2 0.06 405.47
120 30 28 0 1 0.06 381.27 0.0 28 0 1 0.06 381.87

Avg. 68/90 18/90 1/90 0.09 223.98 191.23 68/90 11/90 8/90 0.12 511.25
∆ +0 -7 +7 +0.03 +287.27

Table 15 Value of MIP to correct infeasible solutions

|I| N inst baseline no MIP

Nopt Nnon gap time NMIP Nopt Nnon gap time

40 30 30 0 0.00 44.47 7.17 30 0 0.00 30.77
80 30 29 0 0.05 163.93 0.10 29 0 0.05 161.83
120 30 28 1 0.06 382.70 0.00 28 1 0.06 386.30

Avg. 87/90 1/90 0.04 197.03 2.42 87/90 1/90 0.04 192.97
∆ +0 +0 +0.00 -4.06

the start times of the treatments could resolve precedence or location capacity

violation. Outpatients e.g., have a �xed start time and cannot be moved within

the tours. However, adding the MIP does not slow down the optimization and

can remain in the framework as it might be bene�cial for others context with

di�erent data.

3.5.4. Influence of instance properties

To investigate how our algorithm behaves if input data changes, we (a) modify the

capacity of the TCs, and (b) gradually reduce the number of precedence relations.

To isolate the e�ects of modi�ed inputs, we speci�cally evaluate the subsets of

instances in which branching on time windows was applied in the baseline runs

(�3.5.2) to eliminate violations of the synchronization constraints.

Table 16 displays the results for modi�ed location capacities. If capacity is in-

creased by one unit (Ql + 1), the runtime, the number of branchings on time

windows, and the number of generated LCCs decreased substantially compared

to the baseline. All instances were solved to optimality in 0.02% of the time

required to solve the baseline. Increasing the capacity limit by another unit

(Ql + 2) changes the results only in details. Capacity is no longer restrictive in

any instance, and the runtime and solution quality remains compared to Ql + 1.
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However, if capacity is reduced by one unit (Ql − 1), complexity increases exten-

sively.

Table 16 Results for changed location capacity

Setup N inst N infeas LB UB gap time N iter NBranch
TW loc N inst

Branch NCut
LCC NMIP

Ql − 1 6 5 79.00 81.00 0.0247 601.83 6663.0 2836.67 1 2805.5 0.50
baseline 6 0 56.67 56.67 0.0000 213.83 1788.5 501.83 6 358.5 35.67
Ql + 1 6 0 55.33 55.33 0.0000 4.50 6.5 0.17 1 0.0 0.17
Ql + 2 6 0 55.33 55.33 0.0000 4.50 6.5 0.00 0 0.0 0.00

To evaluate the in�uence of the number of precedence relations, we generated

two additional scenarios: one in which we reduce the number of precedence rela-

tions by 50% compared to the baseline, and another one, in which we remove all

precedence relations. The −50%-case is generated as follows. For each instance,

we iterate through the list of treatments sorted by their id and only keep every

other precedence relation. The baseline has 5.46 precedence relations per instance

on average, and the −50%-scenario 2.48. Note that if e.g., two instances contain

each 9 precedence relations, in both instances 5 relations are removed. Therefore,

in −50%-scenario slightly more than 50% of the relations are removed (54.58%).

The results are displayed in Table 17. Only small di�erences between the baseline

and the −50%-scenario can be observed for the solution quality and runtime. The

reason is that in one instance1 a precedence relation exists, which is extremely

di�cult to resolve. In fact, over 90% of the time to solve the 7 instances is spent

for this instance and it accounts for over 97% of the time window branchings. If

all precedence relations are removed, the problem becomes an easy one, which

can be solved in 0.07% of the runtime compared to the baseline.

Table 17 Results for changed number of precedence relations

Setup N inst LB UB gap time N iter NBranch
TW prec N inst

Branch NMIP

baseline 7 73.43 73.43 0.0 147.00 176.71 33.57 7 0.43
precedence -50% 7 73.29 73.29 0.0 143.43 174.00 32.71 2 0.43
precedence -100% 7 73.14 73.14 0.0 10.57 3.86 0.00 0 0.00

3.6. Conclusion

We addressed the ThSP and modeled it as a variant of the VRPTW with het-

erogenous �eet, operations and resource synchronizations, and �exible service

locations. We presented a BPC approach that solves realistic hospital instances

1 instance i080-b1-f6-v01-Morning
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in reasonable time. Branching on start time windows and combinatorial Benders

cuts were used to cope with the synchronization constraints, and branching on

time windows was superior. In total, we presented seven branching strategies

serving di�erent purposes and breaking structures on di�erent levels of aggrega-

tion.

Considering location capacity is relevant for real-world applications, also out-

side of the hospital context. We hope that branching on time windows or other

resource windows will help better solving problems involving e.g., capacitated

charging and fuel stations, parking lots, or parcel delivery boxes.
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This chapter summarizes our �ndings and provides directions for future re-

search.

4.1. Summary

We addressed the ThSRP, a relevant problem arising in hospital operation man-

agement, and modeled it as a VRPTW-FL. The VRPTW-FL is a new variant of

the VRPTW with heterogeneous �eet, �exible delivery locations, time-dependent

location capacity and precedence relation, and to the best of our knowledge we

are the �rst to address these properties in one routing problem. In therapist

scheduling, routing decisions are generally not addressed in detail, however travel

times account for considerable fractions of the therapists' working times, espe-

cially in larger hospitals. By addressing the ThSRP as a routing problem rather

than a scheduling problem we are able to plan on a more granular level than

prior works and harness the full �exibility that comes from having �exible service

locations.

To solve the ThSRP we developed both, a metaheuristic and an exact solu-

tion algorithm. In Chapter 2, we proposed a hybrid ALNS framework to solve

the VRPTW-FL heuristically. We started by introducing the speci�cs of the

VRPTW-FL and discussed how our problem relates to other VRP variants. Af-

ter presenting a compact mathematical formulation for the VRPTW-FL, we de-

tailed the speci�c of the underlying graph structure compared to the VRPTW.

The ALNS framework that we built on to solve the VRPTW-FL is enhanced

with several innovative ideas, i.e. (a) a backtracking procedure in the construc-

tion phase to correct poor assignment of customers to vehicles at an early stage,

(b) a guided local search (GLS) that dynamically adjusts how infeasibilities are

penalized in the objective function, and (c) new neighborhoods exploiting the

underlying problem structure.

Backtracking e�ectively improved the feasibility of the constructed solutions. For

45.5% more instances, feasible solution could be generated before starting the
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ALNS. Extending the ALNS with a GLS approach helped the algorithm to tra-

verse the solution space more e�ciently. Good solutions were found already at

early iterations and the quality of the solutions consistently increased through-

out the entire 50′000 iterations of the ALNS. We introduced ten new destroy

operators to exploit speci�cs of the problem structure. The results were mixed.

Some of the operators performed well while other did not yield a bene�t. E.g.,

we showed that k-means clustering is a valid alternative to clustering based on

Kruskal's minimum spanning trees. On the other hand, the subroute destroy did

not work at all. Operators addressing similarities between the sets of available

locations for di�erent customers performed surprisingly poorly on average. How-

ever for individual runs, the location-related operators posed a signi�cant bene�t

to improve the solution quality.

After evaluating the newly introduced components, we tested the ALNS against

current hospital planning as described in the literature. The ALNS outperformed

the logic currently in use by improving feasibility and overall solution costs. We

also evaluated di�erent location cost functions to account for di�erent levels of

preferences to serve customers in a speci�c location. For our instances, a good

choice seemed to be to select location costs equal to the travel times between the

preferred and the assigned locations. In summary, our results suggest that our

algorithm could be used in practice. The structure of the ALNS is very �exible

and additional requirements could be incorporated. If the algorithm should be

used for di�erent application in which even better solution quality and faster

runtimes are required, the ALNS might not be su�cient and it would be advisable

to create a framework similar to the hybrid genetic algorithm as proposed by Vidal

et al. (2013).

In Chapter 3 of this thesis, we developed an exact BPC algorithm and shifted

the focus stronger towards the underlying healthcare problem, the ThSRP. In

the literature review, we addressed VRPs with synchronizations in detail as these

synchronizations are required to incorporate the location capacity and precedence

constraints in the exact approach. We presented a set covering formulation of the

VRPTW-FL and proposed a BPC algorithm. The most distinct component of

our BPC algorithm compared to traditional exact frameworks for routing prob-

lems is that we relax the location capacity and precedence constraints in the RMP

and consider these constraints later by branching on time windows. It would not

be trivial to process the duals resulting from these two constraints in the pricing

problems (PPs), and by relaxing these constraints we obtain PPs similar to the
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ones for the VRPTW with heterogeneous �eet which we can solve more easily

using standard methodology. Thereby, we shift signi�cant e�ort from solving the

PPs to branching. Thus, branching is at the core of our algorithm and we de-

veloped seven branching strategies to enforce the previously relaxed constraints

as well as additional strategies to break structures at higher levels to avoid gen-

erating unnecessary branching nodes. To tighten the formulation, we employ

limited-memory subset-row cuts and propose location capacity cuts (LCCs). As

an alternative to branching on start time windows to enforce the relaxed location

capacity and precedence constraints, we propose combinatorial Benders cuts.

In our computational study, we showed that branching on time windows performs

better than adding combinatorial cuts. All hospital instances but one were solved

to optimality. Thereby, we could demonstrate the value that considering com-

plicated constraints through branching could have. Branching on time windows

has not been done in the context of vehicle routing for 25 years. However, we be-

lieve branching on resource windows, which time windows are a part of, holds the

potential of elegantly solving routing problems with complicated constraints.

4.2. Future research

This dissertation should encourage other researchers, and we see numerous op-

portunities how this work can be extended.

Additional aspects of the underlying hospital planning problem could be incor-

porated, such as overtime consideration and dynamic break assignments as not

all hospitals have �xed lunch breaks from 12pm-1pm. From an online opera-

tional planning perspective, quick rescheduling during the day might be needed

if patients do not show up or therapists call in sick. Generally, the treatment

durations of physical therapies are known. However when scheduling surgeries,

considering stochastic treatment durations becomes relevant. Furthermore, fair-

ness considerations could be incorporated, e.g. imposing that all therapists have

similar workloads and travel times. Potentially, the VRPTW-FL could be ex-

tended to a multi-day planning problem in which fairness is balanced over the

course of weeks or months.

From a methodological point of view, various extensions are possible as well. The

ALNS was designed to be as generic as possible, however, it could also target the

ThSRP more speci�cally. In the ThSRP, the TCs are the critical component as
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these are the only locations with limited capacity. The usage of the TCs could be

targeted directly in the construction heuristic, but also additional neighborhoods

for the ALNS could be developed.

For the BPC framework, we see three future research directions: (a) further re�ne-

ment of the framework, (b) solving the VRPTW-FL di�erently, and (c) extending

the framework so solve a broader class of routing problems.

Adjusting the time windows of multiple treatments at one branching step could

reduce the number of branchings. However, one has to be very careful that the

resulting subbranches still cover the entire solution space and thus optimality

is guaranteed. However, covering only parts of the solution space in the sub-

branches could still lead to a well-performing math-heuristic. The MIP to correct

infeasible solutions would be more useful if time windows were larger and more

overlapping. However, if time windows get larger, more cycles can exist in the

PPs and thus, the PPs should be approached as a non-elementary shortest-path

problem with resource constraints (SPPRC) instead of an ESPPRC. To solve

the SPPRC e�ciently, ng-routes should be added to obtain partial elementary

(Baldacci et al., 2011). However, incorporating ng-routes would require further

changes to the existing implementation. Concerning the modeling decisions, it

would be possible to leave the precedence constraints in the RMP and solve more

complicated PPs with linear node costs.

The VRPTW-FL could be extended to cover additional applications, such as

E-VRPs with a limited number of chargers at a charging station, or routing

concrete mixers to large construction sites where synchronization between mixers

and concrete pumps is required. In general, all scheduling problems including

routing decisions are a promising area to apply the methods developed in this

thesis.
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A. Notation Chapter 2 (ALNS)

Table 18 Notation ALNS: Sets and indices

δ+ Out-arcs de�ned as δ+(S) = {〈vi,l, vj,r〉 ∈ A : vi,l ∈ S, vj,r /∈ S}

δ− In-arcs de�ned as δ−(S) = {〈vi,l, vj,r〉 ∈ A : vi,l /∈ S, vj,r ∈ S}

δ+
k Out-arcs for vehicle k ∈ K

δ−k In-arcs for vehicle k ∈ K

ρ+ Probability of selecting a repair operator

ρ− Probability of selecting a destroy operator

Ω+ Set of repair operators

Ω− Set of destroy operators

A Set of arcs in graph G

ai Earliest start for serving customer i ∈ I

bi Latest start for serving customer i ∈ I

Cl Capacity of location l ∈ L

clocationi,l Cost for serving customer i ∈ I in location l ∈ L

cna Cost for not assigned customer

cpred Cost for precedence violation

ctravell,r Cost for traveling from location l ∈ L to location r ∈ L

ctw Cost for time window violation

d(·) Destroy method (operator) d ∈ Ω−

f(s) Objective function value of a solution s

fmod(s) Objective function value of a solution s for the modi�ed objective

f simple(s) Simpli�ed version of fmod(s) used during the construction phase

and within ALNS if GLS is not used

G A graph with G = (V ,A)

L Set of locations

Li Set of potential locations for serving customer i ∈ I

Lbounded Set of locations with bounded capacities

I Set of customers

Ik Set of customers that can be served by vehicle k ∈ K

Il Set of customers that can be served in location l ∈ L

I(·) Indicator function
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Notation ALNS: Sets and indices (continued)

Inai (s) Indicator function equal to 1, if customer i is not visited in so-

lution s

Ipredi (s) Indicator function equal to 1, if precedence relation of customer i

is violated in solution s

Itwi (s) Indicator function equal to 1, if time window of customer i is

violated in solution s

K Set of vehicles

Ki Set of vehicles that can serve customer i ∈ I

P Set de�ning the precedence relations between two cus-

tomers (i, j), i.e. service of customer i must be �nished before

service of customer j can start

pna Penalty weight for not assigned customer

ppred Penalty weight for precedence violation

ptw Penalty weight for time window violation

Qk Capacity of vehicle k ∈ K

r(·) repair method (operator) r ∈ Ω+

rk Route of vehicle k ∈ K

S Subset of customers with S ⊆ V

s Some solution

sbest Global best solution

scurrent Currently best solution

sinit Initial solution

si Duration for serving customer i ∈ I

tmin
i,j Shortest travel time from customer i ∈ I to customer j ∈ I

ttravell,r Travel time from location l ∈ L to r ∈ L location

T bounded
l Set of continuous time intervals in which location l ∈ L has

bounded capacity

V Set of vertices (customer-location combination)

vi,l Graph node representing customer-location combination (i, l) for

customer i ∈ I being served in location l ∈ L

Vk Set of vertices reachable by vehicle k ∈ K
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Table 19 Notation ALNS: Decision variables

Ti,l,k Start time of serving customer i ∈ I in location l ∈ L by vehi-

cle k ∈ K

xi,l,j,r,k 1, if vehicle k ∈ K serves customer i ∈ I in location l ∈ L right

before serving customer j ∈ I in location r ∈ L, 0 otherwise
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B. Notation Chapter 3 (BPC)

Table 20 Notation BPC: Mathematical models and cuts

αi,l,r Parameter indicating if treatment i ∈ I serviced in location l ∈
Li is part of tour r ∈ Ω

βl,t,r Parameter indicating if location l is occupied at time t in tour r

γs,q Decision variable storing the n umber of therapists with shift

type s ∈ S and quali�cation q ∈ Q

λr Decision variable being 1, if tour r ∈ Ω is selected in the RMP,

0 otherwise

µi Split position (last element in branching subset 1)

π
(3.9)
i Dual value associated with the assignment constraint of the RMP

π
(3.10)
s,q Dual value associated with the convexity constraint of the RMP

ρs,r Number of arcs from a solution s, which are used in a tour r

τ Time point, at which a time window violation is split

Ω Set of all possible tours in the master problem

Ωs,q Subset of tours in the master problem for shift type s ∈ S and

quali�cation q ∈ Q

Ω′ Set of tours currently in the RMP

Ω∗ Set of tours in the optimal solution of the RMP at a branch-and-

bound node

ai Earliest start of treatment i ∈ I

A Set of arcs in graph G

As Arcs in solution s, which have a positive arc �ow (arcs that are

traversed by therapists)

bi Latest start of treatment i ∈ I

clocationi,l Cost of performing treatment i ∈ I in location l ∈ Li
ctravell,r Cost of traveling between locations l ∈ L and r ∈ L

cr Total costs of a tour r ∈ Ω

c̄r Reduced cost of tour r

c̄vi,l,vj,r Reduced cost of an arc a ∈ A in graph G of the PP

C Subset of treatments involved in a cut

fi,j,l Binary variable deciding on the �ow of resource l ∈ Lbounded

from i to j

fk Flow of vehicle type k
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Notation BPC: Mathematical models and cuts (continued)

fs,q Fractional number of therapists of type (s, q) in the optimal so-

lution

G Graph of the PP

i0 Dummy treatment for leaving the depot

in+1 Dummy treatment for entering the depot

I Set of treatments

Ic Subset of treatments involved in cut c ∈ C

Is,q Set of treatments that can be served in shift s ∈ S with quali�-

cations ≥ q

Ks,q Set of therapists with shift type s ∈ S and quali�cation q ∈ Q

li Location, in which treatment i is performed

L Set of locations

Li Set of potential locations for treatment i ∈ I

Lbounded Set of locations with bounded capacities

M Su�ciently large integer

M Memory set used in lm-SRCs

P Set de�ning the precedence relations between two therapies (i, j),

i.e. treatment i must be �nished before treatment j can start

Pr Set de�ning the precedence relations between two treat-

ments (i, j) within a tour r

PΩ∗ Set containing the precedence relations Pr of all tours r in an

optimal solution, i.e. PΩ∗ =
⋃
r∈Ω∗ Pr

ql(T , t) Function returning the set of treatments that are in execution

at time t in location l

Q Set of quali�cations

Ql Capacity of location l ∈ L

ri,l Consumption of resource l by treatment i

si Duration of treatment i ∈ I

S Set of shifts for therapists

SN Set of integer feasible solutions, not necessarily ful�lling the syn-

chronization constraints

tl1,l2 Travel time between locations l1 and l2
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Notation BPC: Mathematical models and cuts (continued)

tli,lj Travel time between locations li and lj, where li and lj are the

locations, at which treatments i and j are performed

Ti Start time of treatment i

Ti,l Start time of treatment i in location l

Ti,l,t,r Decision variable being 1, if treatment i ∈ I is done at location

l ∈ L at time t ∈ Ti in tour r ∈ Ω

TWi Time window in which treatment i can start

T Set of start times Ti for all treatments i ∈ I in integer feasible

solution.

T bounded
l Set of time intervals, in which location l ∈ L has bounded ca-

pacity

Tmax Makespan

U Set of treatments pairs (i, j), for which i must start before j

starts

v0 Node in graph G representing the depot (outbound)

vi,l Node in graph G for performing treatment i ∈ I in loca-

tion l ∈ Li
vn+1 Node in graph G representing the depot (inbound)

V Set of nodes in graph G

V ′ Set of notes without the outbound depot node V ′ = V \ {v0}

W Set of all possible treatments pairs (i, j)

xa Flow over arc a ∈ A

xi,j Flow from treatment i to j

yi,j Binary decision variable being 1, if treatment i ∈ I precedes

treatment j ∈ I, 0 otherwise
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Table 21 Notation BPC: Instances and computational study

B Number of hospital buildings

F Number of �oors per building

gap Optimality gap [%]

|I| Number of treatments in instance

LB Lower bound (dual bound)

NBranch
TW prec Number time window branching because of precedence viola-

tion was applied

NBranch
TW loc Number time window branching because of location capacity

violation was applied

NCut
combi Number of combinatorial cuts

NCut
LCC Number of location capacity cuts

NCut
SR Number of lm-SRCs

N infeas Number of instances proven to be infeasible

N inst Number of instances per hospital layout

N inst
Branch Number of instances for which time windows branching was

used

N iter Number of processed branching nodes

NMIP Number of successful MIP calls to correct time window infea-

sible solutions

Nnon Number of instances, for which no feasible solution was found

for the original problem

Nopt Number of instances solved to optimality.

time Runtime [sec.]

UB Upper bound (best feasible solution)
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C. Overview ALNS paramters

Table 22 ALNS parameters

ω = 50, 000 Number of total iterations

τ = 100 Number of iterations per segment (number of iterations before

probability update of operators)

r = 0.1 Reaction parameter (roulette parameter)

σ1 = 33 Score if new global best solution was found

σ2 = 13 Score if new and unvisited solution was found with better

objective function value than current solution

σ3 = 9 Score if new and unvisited solution, not better than current

objective value, but still accepted

c = 0.9975 Cooling rate

∆ = 0.05 Deterioration parameters of initial solution; used to calculate

start temperature

Ω = 0.5 Parameter for acceptance of initial solution; used to calculate

start temperature

T start Start temperature T start = − ∆
ln Ω
· f(s0)

tPercent Auxiliary parameter to determine the end temperature

T end End temperature T end = T start · tPercent

cna = 3 Costs of not assigning a customer

ctw = 0.5 Costs of violating a time window by one time unit

cpred = 10 Costs of violating a precedence relation

qlb = 4 Lower bound on number of nodes that are removed from cur-

rent solution

qub1 = 0.4 Auxiliary value to determine upper bound on number of nodes

that are removed from current solution

qub2 = 100 Auxiliary value to determine upper bound on number of nodes

that are removed from current solution

qub Upper bound on number of nodes that are removed from cur-

rent solution. qub = min
{
|I| · qub1 , qub2

}
5 Number of features for penalty update

25 Iterations between penalty updates

1 Penalty initial value

1 Penalty increase if feature is violated
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ALNS parameters (continued)

0.0125 Penalty reduction if feature is not violated

5 Maximum time window violation expressed in time units

0.5 Threshold for time �exibility. Only customers i with bi−ai
T
≤

0.5 are allowed to have time window violations.

15 Upper bound on the number of feasible solution objects that

are stored

100 Number of solutions that are considered when calculating the

request graph. Needed for request graph (historic) destroy

operator.

4 Zone-destroy increase factor

100
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