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ABSTRACT
Taxi trajectories from urban environments allow inferring various information about the
transport service qualities and commuter dynamics. It is possible to associate starting and
end points of taxi trips with requirements of individual groups of people and even social
inequalities. Previous research shows that due to service restrictions, boro taxis have typical
customer destination locations on selected Saturdays: many drop-off clusters appear near the
restricted zone, where it is not allowed to pick up customers and only few drop-off clusters
appear at complicated crossing. Detected crossings imply recent infrastructural modifications.
We want to follow up on these results and add one additional group of commuters: Citi Bike
users. For selected Saturdays in June 2015, we want to compare the destinations of boro taxi
and Citi Bike users. This is challenging due to manifold differences between active mobility
and motorized road users, and, due to the fact that station-based bike sharing services are
restricted to stations. Start and end points of trips, as well as the volumes in between rely on
specific numbers of bike sharing stations. Therefore, we introduce a novel spatiotemporal
assigning procedure for areas of influence around static bike sharing stations for extending
available computational methods.
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1. Introduction

Human mobility in urban environments is complex
and dynamically changing. One possibility for gaining
more insights on urban human mobility is analyzing
data from tracked entities, namely daily urban traffic
participants. Vehicle movement trajectories of urban
vehicle fleets can help predicting periodical travel time
variations (Keler and Krisp 2016a) or classifying traffic
congestion events by intensity (Keler, Ding, and Krisp
2016). Due to the massive size of data generated by
vehicle or bicycle fleets, often only extracts are used in
many analyses. In case of tracked taxis, these extracts
might consist of the spatiotemporal positions, where
events occur: a customer leaves or enters the taxi.
These positions can reveal numerous useful informa-
tion about operational effectiveness of the fleet (Zhang
and He 2012; Zhang, Peng, and Sun 2014), driving
behavior (Li et al. 2011), or the location-dependent
service demand.

Our idea is to define hotspots of trip destination
points of tracked taxis of a taxi fleet and tracked
bicycles of a bicycle-sharing service. We apply our
techniques for trips on selected Saturdays in
June 2015 in NYC. By inspecting the spatiotemporal
distribution of generated destination hotspots, we can
gain various insights on the two different travel
modes and their specific groups of users (or even

commuters). One important part of the latter is the
connection of every generated destination hotspot to
the origins or starting points of individual trips. The
contribution of this paper consists of introducing
a novel spatiotemporal assigning procedure for areas
of influence around static bike sharing stations.
Depending on the number of users, we aim to repre-
sent the space influenced by this specific mobility
service by a new form of bike sharing station activity
representation and visualization. For reasons of eva-
luation, we intersect those varying areas with boro
taxi hotspots based on Keler (2018) and use these
intersection areas for reasoning on possible relation-
ships of the two modes. This enables associating
commuter destinations of different mobility services.

2. Mobility analyses in urban environments

Mobility in urban environments has specific proper-
ties that are different from minor cities and rural
areas (Miller, Wu, and Hung 1999). There are differ-
ent modes of transport, private and public, that cause
various different movement patterns of many indivi-
dual traffic participants. Especially the public trans-
port in urban environments shows a variety of
possibilities including taxi services, trains, tramways,
subways, buses, and bike sharing services. Besides
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predefined lines or routes of train, subway and bus
services, there are the services as taxi and bike sharing
that may represent a more precise (spatially) destina-
tion of a certain passenger. Extracted trajectories of
taxis can benefit mobility analyses by including infor-
mation on the precise start and destination points of
a taxi trip and additionally the taxi driver strategies
for collecting customers. Analyzing taxi trajectory
data has a relatively long tradition (since the early
2000s) and finds usage in many different research
domains. Far less tradition have trajectory and OD
pair analyses of active mobility modes
(Grigoropoulos et al. 2019). The latter not only
imply bicycling, but also using scooters, segways,
e-bikes, pedelecs, and, of course walking. To
a different extent, we can deduct the general flows
on a higher level by using OD pair data from specific,
often city-restricted, bike sharing services. Previous
work on analyzing station-based bike sharing data,
especially the CitiBike BSS in NYC, focusses on prov-
ing the importance of spatial and temporal effects on
the service itself (Faghih-Imani and Eluru 2016) or
differentiate between CitiBike stations and hubs
(Gordon-Koven and Levenson 2014). The basics of
vehicle trajectory and OD pair analyses and the dif-
ferences to the ones focussing on bicycle-generated
data are outlined in the following subsections.

2.1 Computing with taxi trajectories

Data coming from taxi fleets in urban environments
finds usage in numerous industrial and university
projects as Dmotion, CrowdAtlas or T-Drive. The
purpose of these analyses is often finding geographi-
cal contexts for the patterns of different dynamics
(Castro et al. 2013).

Besides this, computer science has numerous
examples, where taxi trajectories serve as test data
for evaluating the computational efficiency of differ-
ent machine learning techniques, as extended techni-
ques of clustering, regression, and outlier detection.
Apart from knowing spatiotemporal clusters of taxi
trip destinations, it is possible to infer traffic situa-
tions based on the travel patterns of selected vehicles.
This is possible by segmenting the data into episodes
in the way of a time series or by applying extended
clustering techniques for spatiotemporal data as the
spatiotemporal DBSCAN (Birant and Kut 2007).

Due to the often-immense size of daily data
extracts resulting from thousands of tracked taxi dri-
vers, often only abstracted movement information is
available for analysis. This abstracted movement
information is in many cases an extraction of move-
ment points with specific attributes. It is possible to
extract only those movement positions, which have
an instantaneous velocity value of zero (Liu and Ban
2013). These points are useful for distinguishing

between free-flowing traffic and traffic congestion,
parking vehicles or vehicles influenced by travel
delays.

Keler, Krisp, and Ding (2017a) present another
possibility of point extraction, where taxi trajectory
intersection points are extracted. The resulting points
are mainly situated at road intersections and reveal
travel time variations and can even indicated the type
of transportation infrastructure, mainly in the way
how many elevation level appear at selected road
intersections.

The possibly most frequently used type of taxi
movement data extracts are the points where cus-
tomer pick-ups and drop-offs occur. When tracking
the whole taxi fleet, it is possible to infer functional
zones of customer popularities or areas of interest.
Taxi customer pick-up and drop-off points that
form reasonably shaped clusters for selected time
windows. There are different pick-up and drop-off
hotspot clusters for the same time windows that are
spatially distinguishable. Additionally, Yue et al.
(2009) inspect the number of extracted points
per hour in a temporal variation diagram for
seven days. When comparing the number of pick-
up and drop-off points for hour of the day, Weng
et al. (2009) propose a loaded time rate diagram,
which shows the hourly proportion of vacant taxis
to the ones loaded with a customer. This allows
estimating the peaks of the taxi service, where
most taxi customers are available in the investiga-
tion area. Apart from density-based points cluster-
ing, Krisp et al. (2012) use k-means for hourly time
windows. The number of clusters k results from
visual inspection of the point distributions for all
time windows. Visual inspection of the results
appears in a space-time cube with hourly units on
the time axis z.

Overall, we can say that origins and destinations of
taxi trips deliver useful information on the taxi service
and might indicate the rush hours of an investigation
area. There are multiple possibilities to detect and
represent the origin and destination hotspots.
Especially, representing origins and destinations of
vehicle trips in an understandable way is challenging
in many ways. This might be, especially in comparison
to station-based bicycles, a dynamic component that
may changeover time, as general popularity of trip
destination locations can change. Bike sharing stations
are implemented, visible and non-displaceable, which
means that the service is based on the knowledge of
spatial locations of these stations.

2.2 Analyzing origins and destinations of vehicle
and bicycle trips

Numerous approaches focus on the analysis of taxi
trip origins and destinations. These time-stamped
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positions might represent the interest of a large group
of taxi users, together with daily commuters.

For example, Jahnke et al. (2017) proposed a geo-
visual analytics application, where taxi traveler hotspots
are detectable. These hotspots base on the temporal
variations of taxi trip origins and destinations, together
with a spatiotemporal association with points of interest
(POIs). The aim of such an application is studying the
taxi traveler’s activity. In a similar way, Ding et al.
(2016a, 2016b) focused on transportation hubs as air-
ports for detecting further details of the taxi service via
interactive pie charts, which represent taxi origin and
destination points for each weekday with different col-
ors together with size variations based on the varying
numbers. The most reasonable form of this representa-
tion is an origin-destination matrix for selected days of
the week, which is a form of an adjacency matrix with
nodes as origins and destinations and weight values
assigned to the connecting arcs.

On a different level of public transport, bike-sharing
services gain increasing popularity since the early 2000s.
Bicycles are frequently used in urban environments,
especially in eastern and southeastern Asian cities.
Besides private bicycle owners, there are bicycle fleets
coming from different companies introduced as bike-
sharing services. Similar to car sharing services, there is
the option of having free-floaters or station-based ser-
vices. In case of station-based services as in most of the
cities in USA, origins and destinations are already
known. Bike sharing services mostly rely on
a reasonable distribution of bike sharing stations and
trips occur between specific stations. The distribution
of incoming and outgoing bicycle users can vary with
time of the day and weekday and show typical commuter
movements as well as detectable movement of tourists.
The available data of tracked cyclists imply besides user
anonymization via user identification, very detailed
information of each trip. There are accurate origin and
destination coordinates, together with trip lengths, type
of user (subscriber or guest), or even age of the user.

2.3 Properties of urban transportation
infrastructures and its influence on mobility
patterns

There are numerous approaches of distinguishing
between modes of urban traffic participants based
on the change of the underlying movement para-
meters (Shafique and Hato 2016). The data input
consists of tracks generated by smartphone users.
One important topic towards the establishment of
smart cities and intelligent transportation systems
(ITS) are multimodal routing applications. The con-
ception of such applications is motivated by assigning
the spatial positions of transport mode changes.
These positions are switching points and often the

important stations of subways, buses, and car-sharing
services.

Spatiotemporal pattern consists in many cases of
movement descriptions of individual moving objects.
Additionally, there is the possibility of describing
movement of temporally changing surfaces, such as
surfaces of air quality. The latter might be associated
with road networks and introduced as weights allow-
ing to route on a network based on the best air
quality (Karrais, Keler, and Timpf 2014).

Additionally, there were attempts to connect sta-
tic geographic data with movement data of moving
entities in the way of creating semantic trajectories
(Yan 2009), intersecting complicated crossings with
traffic congestion for inferring traffic bottlenecks
(Keler, Krisp, and Ding 2017b). Other approaches,
which combined static and dynamic geodata, con-
sist of map matching movement positions onto
road segments (Zhao et al. 2012) or inferring the
road network based on vehicle trajectories (Ahmed
et al. 2015). Besides polyline representations of
road segments, it is possible to extract their nodes
or street intersection points. Local knowledge of
specific mobility services can enrich specific road
representations in the way of defining typical
operational patterns on parts of the road. The
usage of boro taxi destination points, for example,
for relating with complicated crossings of a road
network can benefit the understanding of specific
functions of the urban road network (Keler and
Krisp 2016b). In particular, boro taxi operating
areas with a restriction in customer pick-ups, as
in the southern part of Manhattan, have more
densities at the border to the restriction zone.
Patterns of active mobility users are far more com-
plex, since infrastructures of all available modes are
possible. Amini, Twaddle, and Leonhardt (2016)
showed this with an example of left turning of
bicyclists at a signalized intersection in Munich:
there are three main trajectory clusters that are
characterized as (1) the expected bicycle left turn
using bicycle infrastructure, (2) the pedestrian left-
turn using (often illegally) pathways of pedestrians,
and, (3) the vehicle turn as a partition of bicyclist
participate within car traffic on the road segments
assigned for vehicles. Resulting from this, we can
say that exact routes between bike sharing stations
have much more variations than between vehicle
ODs, and, that the specific investigation area con-
tributes to the number of accessible variations of
routes of active mobility users. Despite this, the
possibility of mode changes within transits in
urban environments are much more definite for
the case of station-based bike sharing services,
since hotspots of trip origins and destinations
have fixed locations of physically built stations.
Keler (2018) shows that this is more complex for
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the transit between and from taxi services and the
subsequent association with other mobility services
or modes of transport.

3. Data sets of the case study - borotaxi and
Citi Bike in NYC

Our case study implies the abstraction of spatiotem-
poral destination points of two different urban public
transport services into daily destination hotspot poly-
gons: boro taxi and CitiBike. These abstractions are
the destination hotspots of both services.

For the boro taxi service, we cluster the destination
points of all tracked boro taxis for the whole day with
specific parameter values resulting from previous spatial
and visual data analysis. The CitiBike hotspots emerge
from all available bike-sharing stations of the inspected
time period. The spatial extents of Citi Bike destination
hotspots result from a formula of calculating the radii of
radial polygons around the stations based on the abso-
lute number of incoming cyclist for whole days.

3.1 Boro taxi trajectories

Boro taxis operate since 2013, after inspecting the
results of yellow taxi GPS data1 analyses: 95% of all
taxi customer pick-ups occurred within Manhattan and
the remaining 5% in the outer boroughs. Having
a cheaper license, boro taxi drivers are not allowed to
pick up any customers at the two airports or in
Manhattan (below East 96th and West 110th Streets).

The boro taxi data sets come from the NYC Taxi &
Limousine Commission (TLC)2. Every record consists
of 20 attributes and represents one trip. It includes taxi
trip records from all boro taxi trips and has very
detailed information on travel times and routes. We
select boro taxi data from the four Saturdays in
June 2015. Keler and Krisp (2016b) show that it is
possible to represent typical destinations of boro taxi
users by density-based clusters. These users come in
large part from the outer boroughs of NYC, outside of
Manhattan. Most of the trips appear in the evening,
one indicator that social events attract people to come
to Manhattan. From the data partitions, we extract start
and destination points and focus on the latter for
inferring customer drop-off hotspots. Additionally,
there is a possibility of associating boro taxi drop-off
hotspots with road segments (as for example from the
OpenStreetMap project) or, based on the previous,
complicated crossings (Keler and Krisp 2016b).

3.2 Citi Bike trip data

The second data set of moving entities comes from
a bicycle-sharing service in NYC: Citi Bike, intro-
duced in 2013 and sponsored by Citigroup3. The
service has fixed docking stations with recently

(2017) 603 location in the whole city. Therefore, the
location of cluster centroids is already given. The
important information here are spatiotemporal den-
sities and their variations.

We extract only the Saturdays from a total number
of 941,219 bike trips for June 2015. In total, there are
around 320 visited stations in this period. The data
sets have 11 attributes and each record represents one
Citi Bike trip. Besides trip duration, there is no infor-
mation on the trip length. Additional information
comes from attributes including gender, year of
birth and user type. The last mentioned allows dis-
tinguishing between subscribers, who are annual
members, and customers, who have only a 24-h pass.

4. Methods for destination hotspot
generation

We use for our approach the method by Keler and Krisp
(2016b) for extracting boro taxi drop-off hotspots. The
two main components of this technique are applying
OPTICS (Ankerst et al. 1999) for the density cluster
generation, and subsequently using the gift wrapping
algorithm (Jarvis 1973) for convex hull generations. The
selection of useful input parameters bases on previous
inspection of drop-off point reachability and on appear-
ances of the local transportation infrastructure. One
example for the latter is the selection of search distance
Epsilon based on the maximum street width in Time
Square of 102 feet. A diagram in Figure 1 shows this
technique (apple green box), together with the hotspot
generation forCiti Bike destinations (blue box). The latter
is considered the main contribution of this work, since
the difficulty of defining hotspots of active mobility users
relies on associating urban space that implies not only
vehicle roads, but as well, pathways, bike lanes, green
areas, and buildings.

Besides the two mentioned approaches for destina-
tion hotspot polygon generation, there is a third
approach, which is pictured by the white box in
Figure 1. It is the base for further reasoning, mainly
by intersecting the hotspot polygon products.
Afterwards, it is possible to intersect the resulting
dual hotspots with polygons representing compli-
cated crossing. These polygons are coming from
OSM road network extracts by applying the techni-
que of Krisp and Keler (2015).

4.1 Boro taxi drop-off hotspot generation

The apple green box in Figure 1 shows the definition
of boro taxi drop-off hotspots with two calculation
steps: OPTICS (Ankerst et al. 1999) and gift wrapping
algorithm (Jarvis 1973). Ordering Points To Identify
the Clustering Structure (OPTICS) is a density-based
clustering algorithm, which has the two parameter
MinPts and Epsilon for computing an unknown
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number of density-based clusters for daily data parti-
tions. The minimum number of points MinPts is
selected as 2, and the search distance Epsilon bases
on the maximum street width at Time Square with
the value of 31.0896 m or 102 feet. We convert every
computed OPTICS cluster, except the noise cluster,
of every Saturday into convex hulls by using the gift
wrapping algorithm by Jarvis (1973). After applying
both algorithms with the mentioned parameter values
on the four boro taxi data partitions of Saturdays in
June 2015, we receive varying numbers of drop-off
hotspots as listed in Table 1.

The number of records in Table 1 is equal to the
number of boro taxi customer drop-off points. By
visual inspection of the spatial distribution of the
resulting boro taxi drop-off hotspots, certain areas
of NYC are showing hotspots with spatially large
extents. These large hotspots are located near the
border of the yellow taxi-operating zone, where it is
restricted for boro taxi drivers to pick-up customers,
as in Figure 2 for the 27th of June 2015.

Figure 2 pictures these patterns in northern
Manhattan and near the Williamsburg Bridge for
the 27th of June. These spatially extended hotspots
are detectable for all inspected data partitions of
selected Saturdays. Findings in Keler and Krisp
(2016b) show that besides this typical boro taxi beha-
vior of leaving customers at the restricted zone, there
is a fast leaving the zone behavior in the southern
part of Manhattan. These patterns are more difficult
to obtain via visual inspection, since there are small
hotspots in southern Manhattan that imply higher
drop-off point densities.

In general, the difficulty of defining taxi destina-
tion hotspots, especially in an urban environment,

Figure 1. Workflow of the two methods for generating trip destination hotspots of the services boro taxi and city bike.

Table 1. Total number of boro taxi data records for Saturdays
in June 2015 together with the resulting total numbers of
drop-off hotspots.
Inspected Saturday in NYC 06 June 13 June 20 June 27 June

Number of records 72,824 69,539 67,045 74,861
Number of drop-off hotspots 5006 4919 4769 5233

Figure 2. Map view of boro taxi destination hotspots for the 27th of June 2015.
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originates from defining suitable parameters for spa-
tiotemporal clustering.

4.2 Citi Bike destination hotspot generation

Citi Bike data has origin and destination points of
320 specific stations in NYC. This allows adapting
a suitable scale for analysis by respecting the spatial
extent and distribution of the Citi Bike stations. The
taxi drop-off hotspot generation and Citi Bike desti-
nation hotspot generation are generally different.
This difference results from (a) the different traffic
interaction patterns of active mobility users in com-
parison to vehicle drivers, (b) the more often used
sidewalks by bicyclists, and, (c) the higher proportion
of restricted areas accessible by vehicles than by
bicycles.

Our idea is to introduce circular polygons with
size variations dependent on the number of incoming
bicyclists per day. Following the idea of having
whether (1) different infrastructural elements that
are being used (which is not always the case in
NYC), (2) same infrastructural elements are being
used differently (as riding along lane markings or
usage of pedestrian paths), and, (3) bicycle parking
possibilities are less strict observed (and allow the
bicyclist to park in various spaces). Therefore, we
do not rely on GNSS observations (as the case of
boro taxi data) that show locations on highway seg-
ments, but, especially in connection with the 3rd

point, we imply that any given transport infrastruc-
ture of all travel modes might serve as hotspot areas
for bicycle usage. The technique for Citi Bike destina-
tion hotspots implies the definition of a surface area
of influence for each hotspot. After several visual
inspections of the incoming numbers of cyclists, one
principle is designed of how to compute these surface
areas of influence for each bicycle station. The num-
ber of Citi Bike trip destinations at a station is then
eightfold the number of m2 for each hotspot. Citi
Bike hotspot radii r (in meters) are calculated as the
following:

r ¼ 8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nend � 1 m2ð Þ

π

r

After applying the formula on all 320 stations in
NYC for the 6th of June, great variations are detect-
able between the areas of influence or destination
hotspots of the individual stations, which is pictured
in Figure 3. Every Citi Bike destination hotspot
mostly influences at least one road intersection and
sometimes intersects or nearly intersects neighboring
destination hotspots. It is to mention that the larger
hotspots also influence more than one road inter-
section and parts of different road segments.

5. Results and discussion

After applying the two techniques for hotspot infer-
ence on selected Saturdays in NYC, we are able to
detect various spatiotemporal patterns. The first data
inspection focuses on the hourly distribution of des-
tination point numbers in both data sets. Figure 4
shows the hourly distribution of Citi Bike destination
points. There are many similarities in the numbers of
all four data partitions until around 10 AM. After 10
AM more variations appear between the hourly parti-
tions. Especially the curve of the 27th appears differ-
ent from the others. Comparing to the Citi Bike trip
distributions on working days there are slightly less
records on weekends. The highest numbers on
Saturdays are usually in the late afternoon.

Figure 5 shows the four curves for the hourly
distribution of boro taxi drop-off points. There are
many similarities of the hourly numbers in the first
half of the day. In general, we can say that there are
more boro taxi drop-offs on weekends as on working
days, especially in southern Manhattan (yellow zone).
Additionally, Figure 5 shows more variations in the
number of drop-offs in the late afternoon and eve-
ning. This appearance might correlate with the num-
ber of possible social events worthwhile to attract
people from outer boroughs.

Both curves of data partitions from the 27th of
June 2015 are outliers, since they differ in shape
from the curves of the three previous Saturdays.
One idea to gain more information from the two
outliers is to relate the two curves in one diagram,

Figure 3. Distribution of Citi Bike destination hotspots for the
6th of June 2015 in central Manhattan, NYC.

Figure 4. Hourly numbers of Citi Bike destination points in
NYC for all Saturdays in June 2015.

6 A. KELER ET AL.



which is pictured in Figure 6. The intention of relat-
ing selected distribution curves is finding eventually
specific mobility patterns.

The two curves in Figure 6 show only similarities
between 10 AM and 3 PM, highlighted via the red
circle. More detailed in appearance (1), the blue Citi
Bike destination points curve exceeds slightly the
apple green curve of boro taxi destinations.
Appearance (1) is a similarity, which might indicate
the typical NYC rush hours on Saturdays.

After 3 PM, Citi Bike destinations are decreasing
and boro taxi destinations are growing until reaching
a peak at around 7 PM. This results in a second
appearance (2), where a great difference in destina-
tion point numbers appears from 6 PM to 8 PM as
pictured via the red arrow in Figure 6. One possible
explanation of this appearance (2) might be
a connection to weather events, which make the
usage of taxis more attractive for usual customers.

By including the general weather information for
the whole city on the 27th of June 2015, raining events
appeared from around 3 PM until the early evening.
This might show the dependency of bicycle usage
attractiveness on weather changes.

In the next step, we inspect the spatial distribution
of both types of hotspots for June 27. Figure 7 shows,
for example, the border of the yellow zone, which is
restricted for operating boro taxi drivers, situated
along East 96th and West 110th Streets. Additionally,
there is the boundary of Citi Bike availability in
central Manhattan, starting from the southern part

of the Central Park. There are only few intersecting
hotspots of both services.

In the southern part of Manhattan, the matching
rate is even less. One reason for this appearance is the
fact that it is economically unfavorable for boro taxi
drivers to drop off a customer in southern
Manhattan, since it is restricted for pick-ups.
Another reason is the high density of Citi Bike sta-
tions in this restriction zone. In the following steps,
we focus partially on the size variations of destination
hotspots and their relation to each other. We inter-
sect the polygon outcomes of both methods and
spatially intersect Citi Bike and boro taxi hotspots.

From 12,752 Citi Bike trips, 4167 (32.6% in ratio)
end at boro taxi hotspots, which include 109 out of
320 Citi Bike stations, as pictured in Figure 8(a).

Figure 8(a) shows the 4167 Citi Bike trips that end
in boro taxi hotspots. Green dots show the destina-
tions of Citi Bike trips and yellow their origin. By
visual inspection, it is possible to see selected destina-
tion hotspots, especially in the eastern part of
Manhattan and in Brooklyn. Most of the Citi Bike
trips that end at boro taxi hotspots start in southern
Manhattan. The red connection lines in Figure 8
show that many bike trips occur between
Manhattan and Brooklyn, since the water areas are
not visible. We provide this effect via setting 50%
opacity to the red colored connection lines.

Figure 8(b) shows the boro taxi trips that end
within Citi Bike hotspots. From 51,694 boro taxi
trips, only 343 (0.7% in ratio) end at City Bike hot-
spots. Since it is not allowed to pick-up customers in
the restricted zone, there are no origins in southern
Manhattan. Instead, most of the 343 trips end in
southern Manhattan. The low matching rate is visua-
lized in a more detailed view in Figure 9(a), where the
relative small matched Citi Bike hotspots are pictured
via green circles and the matching boro taxi trip
destinations in yellow.

From 5233 boro taxi polygons, only 103 (2% in
ratio) intersect with Citi Bike destination hotspots,
which are pictured in Figure 9(b). By visual inspec-
tion of Figure 9(b), the spatially larger boro taxi hot-
spots with Citi Bike destinations are in Brooklyn.
These 2% have higher drop-off (boro taxi) and desti-
nation (Citi Bike) point densities.

These observationsmight indicate patterns of possible
transit behavior between boro taxis and Citi Bike
bicycles. This spatiotemporal assigning procedure for
areas of influence around static bike sharing stations is
one attempt for comparing two different mobility ser-
vices (since different travel modes) operating at the same
area within the same time windows. The outcomes of
applying different types of polygon intersecting and
assigning can deliver further insights on local knowledge,
such as complex transit behavior at specific locations.

Figure 5. Hourly numbers of boro taxi drop-off points in NYC
for all Saturdays in June 2015.

Figure 6. Hourly numbers of boro taxi drop-off points (apple
green) and Citi Bike destinations (blue) in NYC for the 27th of
June 2015.
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6. Conclusions

The presented technique allows extracting frequently
visited locations of two different mobility services,
which are then connectable with events.

Furthermore, relating tracked movement of vehicles
and bicycles from two different services allows for-
mulating new insights based on intersecting areas of
influence. Focusing on data extracts of Saturdays

Figure 7. Distribution of destination hotspots for the 27th of June 2015 in central Manhattan with apple-green boro taxi drop-off
hotspots and blue Citi bike destination hotspots (labeled with number of absolute trip destinations).

Figure 8. Connections of origins and destinations of (a) Citi bike trips ending in boro taxi hotspots and (b) boro taxi trips ending
in Citi bike hotspots, for the 27th of June 2015 in NYC.

Figure 9. Descriptive map views on (a) boro taxi trips that end at Citi Bike hotspots, and (b) Citi bike trips that end at boro taxi
hotspots.
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might benefit, for selected investigation areas, the
understanding of how social events influence move-
ment patterns and how to relate them with interests
of defined or known customers or customer groups.
Especially those attributes of Citi Bike records that
reveal further information on user groups, as their
commuting behavior, and, as their average age, can
support further insights on conducted analyses.

Nevertheless, it is challenging to define travel-
mode- and commuter-specific destination hotspots.
One problem here is finding a proper representation
of the results, because information generalization
might hide important details such as specific trip
outliers. Commuters are detectable in the Citi Bike
data, when comparing origins and destinations of
trips on working days between certain stations via
many available approaches. In general, some of
these periodical movements are also detectable on
Saturdays, which may result as the continuation of
the working days. Other types of Citi Bike users are
clearly tourists, which are indicated in the data as not
registered users (user attribute value “customer”
instead of “subscriber”), who usually have a very
long time span of service usage. This results in not
accessible information of the trip durations and spa-
tial configurations of the trajectories.

The further findings of this work include also defin-
ing visualization techniques for representing trip desti-
nation hotspots, besides the computational procedure
for station-based bike sharing destination hotspots.

When working with the intersection product of
the two data sets, the technique allows detecting out-
liers or very specific details of trips, especially by
inspecting the time components. This is a critical
issue, since only few boro taxi and Citi Bike trips
relate to each other in our case study. Consequently,
it is important to find a suitable scale for performing
the spatial analysis. One attempt might be inspecting
suitable parameter values for the density-based clus-
tering of boro taxi destinations together with apprais-
ing the radii for the Citi Bike hotspots. The method
of the Citi Bike destination hotspot generation deli-
vers questionable results, since the number of incom-
ing cyclists at a station is generally not dependent on
the surface area of influence at each station.

Figure 3 shows intersecting Citi Bike destination
hotspots, which appear too large for analyses,
whereas the matching results pictured in Figure 9
show that they possibly appear as too small. This
concludes that the hotspot radii need a redefinition.

7. Future work

The presented approach is extendable in many
ways. One direction of future work that would
greatly benefit the quality value of the outcomes
is an evaluation with local knowledge. Local

knowledge is extractable via social media posts
on the service itself, which requires reasoning of
possible indications of local knowledge. This is
difficult to automatize and would require manual
decisions. Another, possibly more reliable, method
to extract local knowledge is via filling in ques-
tionnaires of Citi Bike users or boro taxi drivers.
The knowledge of conditions typical for traveling
in NYC would benefit the understanding of pop-
ular destinations for commuters, tourists, and
locals on weekends.

Another direction of future work would be
applying the same approach on another investiga-
tion area with comparable public transport services.
It would be challenging to find similar or specific
patterns that are investigation-area- and transport-
service-dependent. Further steps that arise from
proposed technique include the inclusion of points
of interest (POIs), and, defining POIs-popularity
measures. Additionally, routing algorithms may
help evaluating travel delays of selected hours
between specified locations. Based on the travel
times and the lengths of the routes, we can estimate
travel delays and eventually associate them with
rush hours and different states of traffic. When
thinking about the purpose of the resulting desti-
nation hotspots, it would be interesting to reason
about the benefit of predicting destination hotspots
of taxis and cyclists (Guo and Karimi 2017).

Another idea is connecting the influence of
a destination hotspot with the underlying transpor-
tation infrastructure for including road network
complexities. By including OpenStreetMap (OSM)
road segments of NYC into our analyses it is pos-
sible to apply the method by Krisp and Keler
(2015) for detecting complicated crossings.
Additional information that may benefit further
findings would be the locations and spatial extents
of pedestrian zones. Based on previous research
(Krisp and Keler 2015; Keler and Krisp 2016b),
we want to estimate the complexity of road inter-
sections and include the results into destination
hotspot analyses as pictured in Figure 10. The two
output polygons of this work are inspected together
with the inferred complicated crossings by the
approach of Krisp and Keler (2015) pictured in
violet. The remaining problem in Figure 10 is find-
ing a suitable scale for spatial analysis. This might
facilitate the connection between destination hot-
spots and transportation infrastructure.

In case the destination hotspots are not intersect-
ing inferred complicated crossings, we can include
enriched information on road intersection complexity
by using the approach of Sladewski, Keler, and
Divanis (2017). All these approaches might be eval-
uated in a VR environment using a bicycle simulator
(Keler et al. 2018). This means evaluation occurs on
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a microscopic level and might include simulated traf-
fic of three groups of traffic participants: pedestrians,
bicyclists and vehicle drivers.

After modeling transport infrastructure, we can
include estimated or measured flows, and, record
for every bike simulator test subject the perception
and accessibility of modeled bike sharing stations.
Trajectories and filled questionnaires of bicycle simu-
lator test subjects traversing NYC transport infra-
structure might benefit evaluating the outcomes of
the previously presented approach.

Notes

1. Background on the Boro Taxi program. NYC Taxi &
Limousine Commission. URL: http://www.nyc.gov/
html/tlc/html/passenger/shl_passenger_background.
shtml; Retrieved 18 December 2013.

2. http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml.

3. https://www.citibikenyc.com/system-data.
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