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OUTLOOK 

Even though researchers have made great strides in elucidating disease-causing genes (e.g., 

driver genes in cancer), the determination of the complete set of such genes is still an ongoing 

challenge.  In the case of complex diseases which are a consequence of multiple underlying 

factors, the search for biomarkers is even arduous. Furthermore, it is now accepted that genes 

may not act in isolation to promote disease development, but rather, multiple genes work in 

tandem. These multiple gene (or protein) interactions bring about the diverse molecular 

processes that manifest as pathological (or disease) phenotypes. For example, in cancer and 

diseases of the nervous system, network subnetworks have been found to influence disease 

progression. Additionally, isoform switching (IS) - the differential expression of alternatively 

spliced gene products in healthy and in disease, has been shown to promote tumorigenesis. IS 

has thus been termed a cancer hallmark. IS often results to (i) translation of protein variants - 

proteoforms, that may be differentially expressed in healthy and disease states, and (ii) the loss 

or gain of protein domains (structural and functional) mediating protein-protein interactions. 

Consequently, this can lead to the re-wiring of the interactome. Quantitating the differential 

expression of genes (or transcripts) and proteins in different cell types, tissues or organs will 

potentially enhance our knowledge and understanding of the biology of complex diseases. 

Indicators of the phenotypes between healthy and disease states are termed disease biomarkers 

and are used to monitor disease phenotypes as well as develop therapeutic targets. However, 

complex diseases such as cancer and Alzheimer’s disease arise as a result of the combination 

of both inheritable and environmental factors, therefore, the determination of the complete sets 

of biomarkers has proven to be challenging. 

 

The ability to obtain high throughput data using next-generation sequencing (NGS) was a big 

step towards understanding the cancer complexity and heterogeneity. Recently, the integration 

of NGS data with biological network information (e.g. protein-protein interaction networks, 

PPINs) has been suggested as a novel way of studying complex diseases to discover inherent 

biomarkers. As such, PPINs have played a vital role in our understanding of the behavior of 

complex diseases as well as the development of new therapies. While minimal studies have 

incorporated isoform expression data in studying complex diseases at the PPIN level, few have 

studied the effect of alternative splicing on patient-specific protein-protein interaction 

networks. The research discussed in this thesis starts by describing how differential isoform 

expression between cancer and healthy states may result in edgetic perturbations in cancer 

(Chapters 1 and 2). The study further sought to find if the proteins involved in the above-

mentioned perturbations may be crucial in promoting cancer initiation and growth, 

classification of cancer types and subtypes, or act as potential targets for cancer therapy 

development (Chapter 2). 

 

Equipped with the tools emerging from the genomics revolution, it is now possible to determine 

perturbations that link inherent molecular states to pathological or physiological states through 

the reverse engineering of protein (or gene) interaction networks. Computational tools are now 

able to utilise domain-domain interaction data to resolve condition-specific interaction 

networks from RNA-Seq data by accounting for the domain content of the primary transcripts 

expressed. In this work, we used The Cancer Genome Atlas (TCGA) RNA-Seq datasets to 

generate patient-specific pairs of protein-protein interaction networks (interactomes) 

corresponding to both the tumor and the healthy tissues across multiple cancer types. The 

comparison of these interactomes provided a list of patient-specific edgetic perturbations of the 

interactomes associated with the cancerous state. To the best of our knowledge, this is the first 

time it can be shown that using patient-specific PPIN derived from corresponding mRNA 
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expression profiles of healthy and cancer patient samples is a novel way of identifying patient-

, cancer-type and subtype as well as pan-cancer edges susceptible to perturbation during tumour 

growth. We found that among the identified perturbations, select sets are robustly shared 

between patients at the multi-cancer, cancer-specific and cancer sub-type specific levels. 

Interestingly, the majority of the alterations do not directly involve significantly mutated genes, 

nevertheless, they strongly correlate with patient survival. Our findings are freely available at 

EdgeExplorer: http://webclu.bio.wzw.tum.de/EdgeExplorer - Chapter 2, and are a new source 

of potential biomarkers for classifying cancer types. We envisage that the information in 

EdgeExplorer will complement the available transcriptomics, proteomics as well as clinical 

cancer data, and help oncologists and other biomedical researchers to further understand the 

cancer microenvironment. Collectively, our analyses show that the diverse proteins driving 

edgetic perturbations in cancer are essential biomolecules in tumorigenesis and could be used 

in cancer disease monitoring and in developing new cancer therapies for clinical use. Our 

findings present an integrated omics and protein-protein interaction network approach for the 

computational identification of pan-cancer, cancer type and subtype specific biomarkers with 

potential clinical prognostic relevance. Additionally, the robustness and reproducibility of our 

approach show that our framework can be readily applied to other complex diseases. 

 

In a nutshell, the first part of this thesis (Chapters 1-2) highlights a framework to identify 

network biomarkers in cancer by determining (i) how domain changes associated with 

alternative splicing rewire the PPIN and, (ii) how the proteins significantly involved in such 

network rewiring events may be novel cancer biomarkers. The second part of the thesis 

(Chapter 3) highlights how different brain cell types uniquely secrete proteins, and we identify 

how the cell type specific secreted proteins interact with each other. These secreted proteins 

are crucial molecules in the manifestation of diseases of the nervous system. This chapter was 

a close collaboration with Johanna Tüshaus, a PhD student of Professor Stephan 

Lichtenthaler’s group at the German Center for Neurodegenerative Diseases (DZNE). 

 

 

Keywords: Isoform switching, edgetic perturbations, biomarker discovery, cancer, network 

rewiring, cell type specific protein (mRNA) expression. 
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ZUSAMMENFAFSSUNG 

Auch wenn die Forscher bei der Aufklärung krankheitsverursachender Gene (z.B. Treibergene 

bei Krebs) große Fortschritte gemacht haben, ist die Bestimmung der vollständigen Sets 

solcher Gene vor allem bei komplexen Krankheiten immer noch eine ständige 

Herausforderung. Des Weiteren ist inzwischen anerkannt, dass Gene nicht isoliert wirken 

dürfen, um die Krankheitsentstehung zu fördern, sondern dass vielmehr mehrere Gene 

zusammenwirken, um die verschiedenen molekularen Prozesse zu bewirken, die sich als 

pathologische (oder Krankheits-) Phänotypen manifestieren (z.B. bei Krebs und Erkrankungen 

des Nervensystems). Darüber hinaus kommt es häufig zum Isoform-Switching - die 

unterschiedliche Expression von alternativ gespleißten Genprodukten im Gesunden und in der 

Krankheit, einem kürzlich charakterisierten Kennzeichen von Krebs, führt oft zu: (i) 

Translation von Proteinvarianten - Proteoformen, die in gesunden und kranken Zuständen 

unterschiedlich exprimiert werden können, und (ii) Verlust oder Gewinn von (strukturellen und 

funktionellen) Proteindomänen, die Protein-Protein-Interaktionen vermitteln, und damit die 

Neuverdrahtung des Interaktoms. Die Quantifizierung der differentiellen Expression von 

Genen (oder Transkripten) und Proteinen in verschiedenen Zelltypen, Geweben oder Organen 

wird unser Wissen und Verständnis der Biologie komplexer Krankheiten potenziell erweitern. 

Indikatoren für die Phänotypen zwischen gesundem und krankem Zustand werden als 

Krankheitsbiomarker bezeichnet und dienen der Überwachung von Krankheitsphänotypen 

sowie der Entwicklung therapeutischer Ziele. Komplexe Krankheiten wie Krebs, Alzheimer 

und Herzerkrankungen entstehen jedoch durch die Kombination von sowohl vererbbaren als 

auch Umweltfaktoren, und daher hat sich die Bestimmung der vollständigen Sets von 

Biomarkern als schwierig erwiesen. 

 

Der Fortschritt zur Gewinnung von Hochdurchsatzdaten mittels Next-Generation Sequencing 

war ein großer Schritt zum Verständnis der Komplexität und Heterogenität von Krebs. Neulich 

wurde die Integration von Omics-Daten mit Informationen aus biologischen Netzwerken (z.B. 

Protein-Protein-Interaktionsnetzwerken, PPINs) als eine neuartige Möglichkeit zur 

Untersuchung komplexer Krankheiten vorgeschlagen, um inhärente Biomarker zu entdecken. 

Daher spielen PPINs eine wichtige Rolle für unser Verständnis des Verhaltens komplexer 

Krankheiten sowie für die Entwicklung neuer Therapien. Während nur wenige Studien 

integrieren Isoformen-Expressionsdaten in die Untersuchung komplexer Krankheiten auf 

PPIN-Ebene, haben aber die wenigesten die Auswirkung des alternativen Spleißens auf 

patientenspezifische Protein-Protein-Interaktionsnetzwerke untersucht. Die aktuelle Arbeit 

beginnt mit der Beschreibung, wie die differentialle Expression der Isoformen zwischen Krebs 

und gesunden Zuständen zu edgetischen Störungen bei Krebs führen kann (Kapitel 1 und 2). 

Weiter, untersucht die Arbeit ob die an den oben genannten Störungen beteiligten Proteinen, 

für die Förderung der Krebsentstehung und des Krebswachstums, für die Klassifizierung von 

Krebsarten und -subtypen oder als potenzielle Ziele für die Entwicklung der Krebstherapie von 

entscheidender Bedeutung sind (Kapitel 2). 

 

Ausgestattet mit den Werkzeugen der Genomik-Revolution ist es nun möglich, durch Reverse 

Engineering von Protein- (oder Gen-) Interaktionsnetzwerken Störungen zu bestimmen, die 

inhärente molekulare Zustände mit pathologischen oder physiologischen Zuständen verbinden. 

Computational Tools sind jetzt in der Lage, Domäne-Domäne-Interaktionsdaten zu nutzen, um 

zustandspezifische Interaktionsnetzwerke aus RNA-Seq-Daten aufzulösen, indem der 

Domäneninhalt der exprimierten primären Transkripte berücksichtigt wird. In der in dieser 

Dissertation beschriebenen Arbeit verwendeten wir die RNA-Seq-Datensätze des 

Krebsgenom-Atlas (TCGA), um patientenspezifische Paare von Protein-Protein-
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Interaktionsnetzwerken (Interaktomen) zu generieren, die sowohl dem Tumor als auch dem 

gesunden Gewebe über mehrere Krebsarten hinweg entsprechen. Der Vergleich dieser 

Interaktome lieferte eine Liste patientenspezifischer Kantenstörungen der Interaktome, die mit 

dem Krebszustand assoziiert sind. Nach unserem besten Wissen kann damit zum ersten Mal 

gezeigt werden, dass die Verwendung patientenspezifischer PPINs, die aus entsprechenden 

mRNA-Expressionsprofilen gesunder und Krebspatientenproben abgeleitet werden, eine 

neuartige Methode zur Identifizierung von Patienten-, Krebs-Typ- und Sub-Typ- sowie Pan-

Krebs-Rändern ist, die während des Tumorwachstums für Störungen anfällig sind. Wir stellten 

fest, dass unter den identifizierten Störungen ausgewählte Sets robust zwischen Patienten auf 

den Ebenen Multi-Krebs, krebsspezifisch und krebssubtypspezifisch aufgeteilt sind. 

Interessanterweise betrifft die Mehrzahl der Veränderungen nicht direkt signifikant mutierte 

Gene, dennoch korrelieren sie stark mit dem Überleben der Patienten. Unsere Ergebnisse sind 

frei verfügbar unter EdgeExplorer: http://webclu.bio.wzw.tum.de/EdgeExplorer - Kapitel 2, 

und stellen eine neue Quelle potenzieller Biomarker zur Klassifizierung von Krebsarten dar. 

Wir gehen davon aus, dass die Informationen in EdgeExplorer die verfügbaren 

Transkriptomik-, Proteomik- und klinischen Krebsdaten ergänzen und Onkologen und anderen 

biomedizinischen Forschern dabei helfen werden, die Krebsmikroumgebung besser zu 

verstehen. Insgesamt zeigen unsere Analysen, dass die verschiedenen Proteine, die die 

Kantenstörungen bei Krebs verursachen, wesentliche Biomoleküle bei der Tumorentstehung 

sind und bei der Überwachung von Krebserkrankungen und bei der Entwicklung neuer 

Krebstherapien für die klinische Anwendung eingesetzt werden könnten. Unsere Ergebnisse 

präsentieren einen integrierten Omics und Protein-Protein-Interaktionsnetzwerk-Ansatz für die 

rechnergestützte Identifizierung von Pan-Krebs, krebstyp- und subtypspezifischen Biomarkern 

mit potenzieller klinischer prognostischer Relevanz. Zusätzlich zeigt die Robustheit und 

Reproduzierbarkeit unseres Ansatzes, dass unser Rahmenwerk ohne weiteres auf andere 

komplexe Krankheiten anwendbar ist. 

 

Insgesamt beleuchtet der erste Teil dieser Arbeit (Kapitel 1-2) einen Rahmen zur 

Identifizierung von Netzwerk-Biomarkern bei Krebs, indem bestimmt wird, (i) wie 

Domänenveränderungen, die mit alternativem Spleißen verbunden sind, den PPIN neu 

verdrahten und (ii) wie die Proteine, die signifikant an solchen Netzwerk-

Umverdrahtungsereignissen beteiligt sind, neuartige Krebs-Biomarker sein können. Die 

identifizierten Kandidaten-Biomarker sollten bei der experimentellen Validierung der 

Biomarker, der gezielten Therapie und der Krebsüberwachung in Zukunft von großer 

Bedeutung sein. 

 

Im zweiten Teil der Dissertation (Kapitel 3) heben wir kurz hervor, wie verschiedene 

Hirnzelltypen auf einzigartige Weise Proteine sezernieren, und identifizieren, wie die 

zelltypspezifischen sezernierten Proteine miteinander interagieren oder entscheidende 

Moleküle bei der Manifestation von Erkrankungen des Nervensystems sind. Dieses Kapitel 

war eine enge Zusammenarbeit mit Johanna Tüshaus, einer Doktorandin der Gruppe von 

Professor Stephan Lichtenthaler am Deutschen Zentrum für Neurodegenerative Erkrankungen 

(DZNE). 

 

Schlüsselwörter: Isoform-Switching, edgetische Störungen, Entdeckung von Biomarkern, 

Krebs, Netzwerk-Neuverdrahtung, Expression von zelltypspezifischem Protein (mRNA). 
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Figure 1: A schematic depiction of the clonal selection in cancer. During tumor initiation, 

progression, and metastasis, an estimated 10 years is required to achieve the 1-cm tumor needed 

for clinical diagnosis. During this period, genetic instability results in metastatic variants such 

that metastases occurring closer to the time of diagnosis are smaller and less heterogeneous as 

compared with those that occurred much earlier. This is contrasted with tumors having less 

genetic instability; these develop metastases late during tumor progression, are small in size at 

diagnosis, and have less heterogeneity. Regardless of the timing of metastases, if a 1-cm tumor 

is left untreated, then a lethal tumor volume, occurs within 10 doubling times, which calculates 

to 3 years. Adapted with modifications from Talmadge, 2007. 

 

Figure 2: A schematic depiction of the importance of cancer biomarkers. Cancer biomarkers 

can be used for prognosis: to predict the natural course of a tumour, indicating whether the 

outcome for the patient is likely to be good or poor (prognosis). Biomarkers can help doctors 

to decide which patients are likely to respond to a given drug (prediction) and at what dosage 

the drug might be most effective (pharmacodynamics). Adapted with modifications from 

Sawyers, 2008. 

 

Figure 3: A schematic depiction of alternative splicing processes as a source of diversification 

in the expressed transcripts and protein isoforms in cells. In this image, a gene with 4 exons 

may undergo different alternative splicing events such as exon skipping or intron retention to 

yield different types of transcripts. 

 

Figure 4: A diagrammatic depiction of the TP53 gene and its isoform by Surget et. al1. The 

human TP53 gene encodes twelve different isoforms and consists of eleven exons (A), and 2 

promoters (P1: proximal promoter, P2: internal promoter). In B, p53 (canonical transcript), 

p53 and p53  isoforms together with known TP53 domains (TAD1, TAD2, PXXP, DBD, 

OD, Neg and NLS) are shown. MW: molecular weight, kD: kilo Dalton. 

 

Figure 5: A diagrammatic depiction of the oncogenes and TSGs derived from TCGA data and 

the pathways they affect. Adapted from Sanchez-vega et al, 2018. 

 

Figure 6: A diagrammatic depiction of the proportion of cancer as a result of mutations. 

Sporadic mutations (somatic) are responsible for the majority of cancer types, followed by 

familial cancer types that are as a result of low penetrance mutations coupled with 

environmental and lifestyle factors. Inherited cancer types account for up to 10% of all cancer 

types. 

 

Figure 7: Mutation burden in 20 tumor types and relative contribution of different mutational 

processes. For each tumor type, samples were divided into deciles on the basis of their mutation 

burden. The median mutation burden is shown as a dot plot (substitutions and small indels); 

orange bars denote the median burden of all samples. AML - acute myeloid leukemia (Top). 

The mean percentage contribution of different mutation signatures is depicted by stacked bars 

(Bottom). Adapted with modifications from Martincorena, I. & Campbell, P. J, 2015. 
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Figure 8: What do cells require to become oncogenic? Six vital biological processes must be 

evaded by cells and form abnormal proliferative cancer cells. Adapted from Hanahan & 

Weinberg, 2000. 

 

Figure 9: A more realistic disease model is one in which considers multiple sources of 

perturbations at the network level, e.g., a combination of genetic and environmental 

perturbations affecting the molecular states of networks.  a - Classic genetic association 

approaches seek to identify variations in DNA that correlate with disease state or with 

quantitative traits associated with disease. The attraction of this approach is the identification 

of the genetic causes of disease. b- Changes in DNA on their own do not lead to disease but, 

instead, lead to changes in molecular traits that go on to affect disease risk. By layering in 

molecular phenotypes as intermediate phenotypes, causal relationships between genes and 

disease can be established directly. c -Disease gene networks sense constellations of genetic 

and environmental perturbations. Adapted with modifications from Schadt E, 2009.  

 

Figure 10: The different experimental and computational methods used in characterizing, 

detecting, and predicting protein-protein interactions. Adapted from Gonzalez et. al, 2012. 

 

Figure 11: The advantage of using the PPIN to infer cancer biomarkers is the ability to couple 

the analysis with multiple other OMIC datasets of patient clinical characteristics. 

Consequently, it is now likely that more personalized, accurate and rapid disease gene 

diagnostic techniques will now be devised. Adapted from Ozturk et. al, 2018.  

 

Figure 12. Healthy and cancer PPINs significantly differ in size in 11 out of 13 cancer types 

(p-value <0.05). The density plots indicate the distribution of paired cancer and healthy PPIN 

sizes for individual cancer types (A-M) and across cancer types (N). The vertical dashed lines 

indicate the mean sizes of cancer PPINs (red) as compared to corresponding healthy PPINs 

(green). For BRCA, LUSC, PRAD, KIRP, KIRC, KICH, COAD, LIHC, HNSC and STES 

healthy PPINs were larger than the corresponding cancer PPINs but the difference was not 

significant in KIRP. For THCA and BLCA (green label), cancer PPINs were larger than the 

corresponding healthy PPINs, but the difference was not significant in BLCA. 

  

Figure 13. Bar plots indicating the number of edgetic perturbations obtained as a result of gene 

expression changes or domain changes that come about after isoform switches between cancer 

and healthy states. Sky blue: edgetic gains as a result of more genes being expressed in the 

cancer state, dark brown (left of zero intercept): edgetic gains as a result of isoform/domain 

changes (left of zero intercept). Light brown: edgetic losses as a result of the depletion of genes 

in the cancer state (right of zero intercept), light green: edgetic losses as a result of 

isoform/domain changes (right of zero intercept). 

 

Figure 14. An example showing the consequences of domain changes between the cancer state 

and healthy state in patients diagnosed with BRCA. The protein structures of both (P0DP23) 

CALM1 and (P62140) PP1CB were obtained from PDB while those of DST were modelled 

using the ensemble transcript sequences in SWISS-MODEL and visualized in PyMol. 

Following an isoform switch from ENST00000370765 (in healthy) to ENST00000244364 (in 

cancer), the protein Q03001 (DST) gained the domain PF13499. The consequence is the gain 

of interactions with the genes PPP1CB and CALM1.  

 

Figure 15. A two-dimensional scaling projection of the enriched Biological processes (A), 

Cellular Components (B) and Molecular functions (C) for proteins involved in cancer-specific 
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edgetic gains after REVIGO pruning (dispensability value < 0.005). Dispensability of a term 

represents both the degrees of redundancy and enrichment. The lower the dispensability of a 

term, the least redundant and more significant a term is. The axes show the distribution of the 

GO terms based on their semantic similarities. The bubble color reflects the degree of 

significance (p-value) with blue color indicating a higher significance than the red color. The 

richly colored bubbles in the foreground represent GO terms with a dispensability value of < 

0.005. The bubble sizes indicate how often a GO term occurs, the bigger the size the more 

frequent the term is. 

 

Figure 16. Two-dimensional scaling projections of the enriched Biological processes (A), 

Cellular Components (B) and Molecular functions (C) for proteins involved in cancer-specific 

edgetic losses after REVIGO pruning (dispensability value < 0.05). Dispensability of a term 

represents reduced redundancy and a high degree of enrichment. The lower the dispensability 

of a term, the least redundant and more significant a term is. The axes show the distribution of 

the GO terms based on their semantic similarities. The bubble color reflects the degree of 

significance (p-value) with blue color indicating a higher significance than the red color. The 

richly colored bubbles in the foreground represent GO terms with a dispensability value of < 

0.005. The bubble sizes indicate how often a GO term occurs, the bigger the size the more 

frequent the term is. 

 

Figure 17. KEGG pathways differentially enriched between the proteins engaged in edgetic 

gains and those involved in edgetic losses. The dot colour reflects the degree of significance 

(p-value) with red colour indicating a higher significance than the blue colour. The dot sizes 

indicate how often a KEGG pathway term occurs. The bigger the size, the more frequent the 

term occurs. 

 

Figure 18. Cancer types share multiple perturbation patterns: Dendrograms based on edgetic 

gains (A), edgetic losses (B) and both edgetic gains and losses (C) across cancer types. Gained 

edges revealed 2 main clusters (A) with sub-clusters consisting of (i) BRCA, BLCA and STES, 

(ii) LUAD and LUSC, (iii) COAD and KICH, (iii) LIHC and PRAD, and (iv) KIRC and KIRP. 

Lost edges identified 2 main clusters (B) with additional sub-clusters consisting of (i) KICH, 

KIRP, and KIRP, (ii) LUAD and LUSC, (iii) COAD, HNSC and BRCA, (iv) STES, BLCA 

and THCA. Clustering of both edgetic gain and loss patterns revealed 3 main clusters (C) 

consisting of (i) LIHC, KICH, KIRC, KIRP, (ii) PRAD, STES, BLCA, THCA and (iii) LUAD, 

LUSC, COAD, BRCA and HNSC. The Approximately unbiased AU (green) and Bootstrap 

probability BP (red) scores indicate the likelihood of observing the obtained clusters. The 

clusters within the red rectangles with AU scores of >99% were observed after multiscale 

bootstrap (n= 10000). The edge # below the AU and BP values gives the edge count within the 

tree. The height indicates the similarity or dissimilarity between any two observations: the 

lower the height of the fusion between two observations, the more similar they are. 

 

Figure 19. A screenshot of the EdgeExplorer portal. The EdgeExplorer portal provides a 

resource to the scientific community to easily query proteins of interest to find out if they are 

involved in edgetic perturbations in 13 different cancer types. 

Figure 20. Edgetic perturbations in cancer. Assuming a global PPIN with 9 edges 

interconnecting 9 nodes and using cancer and healthy patient-specific mRNA expression 

profiles, for each patient (P1, P2 and P3) perturbed edges in cancer can be identified by 

comparing the healthy and the corresponding cancer PPIN. Significantly Mutated Genes 
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(SMGs) may be involved in perturbation of edges directly interacting with them, or those 

interacting with their perturbed neighbors (secondary neighbors). 

Figure 21: Signalling to and from the early secretory pathway. (A, B) ER, ERESs and Golgi 

complex with the different signalling cascades that are either directed towards these organelles 

(A, yellow), or emanating from them (B, green). Autochthonous Golgi signalling pathways are 

shown in blue. Stimuli that trigger signalling to the secretory pathway (A) or the cellular 

responses elicited by signalling from the secretory pathway (B) are shown in yellow or green, 

respectively. The long black arrows indicate direction of transport along the secretory pathway. 

Adapted from Farhan et. al., 2011. 

Figure 22: MS-based proteomics approaches. The top part of the image shows the bottom-up 

MS approach, while the bottom part of the image shows the top-down approach. Adapted from 

Chait et. al., 2006. 

Figure 23: Diagram showing the distribution of the data prior and after normalisation. Data 

normalisation was achieved via variance stabilisation. For the missing data, a two-step 

imputation approach (knn and left-shifted Gaussian distribution) was undertaken. Here we need 

to update with your stepwise procedure from Perseus. 

Figure 24: Protein coverage ranged from approximately 450 to 750 proteins per sample. A total 

of 995 proteins were detected in at least 5 of the 6 replicates across the brain cell types. 

Microglia cell-type had the highest protein coverage while Astrocytes had the lowest coverage. 

 

Figure 25A: PCA analysis. The secretomes of the cell types segregated based on component 1 

and component 2, which accounted for 44.9% and 19% of the variability, respectively.  

 

Figure 25B: UMAP (Uniform Manifold Approximation and Projection) plot showing brain cell 

type clusters based on log transformed raw LFQ intensities of quantified proteins. This 

indicates that the secretomes of the four cell types differ from each other. 

 

Figure 26: Heatmap of the top 50 differentially expressed proteins (Bonferroni p.adj < 0.05) 

across the 4 cell types from hierarchical clustering. The rows represent the differentially 

expressed proteins and the columns represent the cell types (and their replicates). The colours 

in the Heatmap represent log-scaled (z-scores) expression levels with blue indicating the 

lowest expression, white indicating intermediate expression, and red indicating the highest 

expression. The rows represent the differentially secreted proteins and the columns represent 

the cell types with their replicates. The colors represent log-scaled protein levels with blue 

indicating the lowest, white indicating intermediate, and red indicating the highest protein 

levels. Proteins significantly differentiated in one cell type with respect to the other 3 cell 

types were analysed with regard to their biological function via GO and KEGG pathway 

enrichment analysis. 

 

Figure 27: Correlation matrix showing the relationship between the different brain cell types. 

All replicates of a cell types showed higher correlations (>0.7) as compared to replicates from 

other cell types. The matrix shows the Pearson correlation coefficient (red indicates a higher, 
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blue a lower correlation) and the correlation plots of the log2 LFQ intensities of the secretome 

of astrocytes, neurons, microglia and oligodendrocytes processed with the iSPECS method. 

 

Figure 28A: Comparison of the biological processes enriched across brain cell types. The dot 

colour reflects the degree of significance (p-value) with red colour indicating a higher 

significance than the blue colour. The dot sizes indicate the number of proteins in our analysis 

were clustered in a particular GO term. The bigger the size of the dot, the more the number of 

proteins. 

 

Figure 28B: Significantly downregulated processes were observed only in Neuron and 

Microglia cell types. The dot colour reflects the degree of significance (p-value) with red colour 

indicating a higher significance than the blue colour. The dot sizes indicate the number of 

proteins in our analysis were clustered in a particular GO term. The bigger the size of the dot, 

the more the number of proteins. 

 

Figure 29A: Comparison of the molecular functions enriched across brain cell types. The dot 

colour reflects the degree of significance (p-value) with red colour indicating a higher 

significance than the blue colour. The dot sizes indicate the number of proteins in our analysis 

were clustered in a particular GO term. The bigger the size of the dot, the more the number of 

proteins. 

 

Figure 29B: Significantly downregulated molecular functions in brain cell type. The dot 

colour reflects the degree of significance (p-value) with red colour indicating a higher 

significance than the blue colour. The dot sizes indicate the number of proteins in our analysis 

were clustered in a particular GO term. The bigger the size of the dot, the more the number of 

proteins. 

 

Figure 30A: KEGG pathways significantly enriched across brain cell types. The dot colour 

reflects the degree of significance (p-value) with red colour indicating a higher significance 

than the blue colour. The dot sizes indicate the number of proteins in our analysis were 

clustered in a particular GO term. The bigger the size of the dot, the more the number of 

proteins. 

 

Figure 30B: Significantly downregulated KEGG pathways. The dot colour reflects the degree 

of significance (p-value) with red colour indicating a higher significance than the blue colour. 

The dot sizes indicate the number of proteins in our analysis were clustered in a particular GO 

term. The bigger the size of the dot, the more the number of proteins. 

 

Figure 31: Interacting proteins between secreted CSF proteins and the cell lysate proteins 

detected by Sharma et.al. We found a total of 711 unique interacting pairs, with all the proteins 

secreted with a cell type having interacting partners with proteins in the lysate of the other cell 

types. CSF proteins from the Neuron and the proteins from the neuron cell lysate had the 

highest number of interacting pairs (115 interactions), while those between CSF Astrocytes 

and proteins from the Oligodendrocytes cell lysate were the least (2 interactions). 

 

Figure 32. List of proteins detected in murine CSF and the iSPECS glyco-secretome resource 

which have human homologs that are linked to brain disease based on the DisGeNET database. 

Relative protein expression in the brain cell secretome is indicated with black showing the 

highest and white the lowest abundance. Colored gene names indicate cell type-specific 

secretion.  
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CHAPTER 1: GENERAL INTRODUCTION AND 

LITERATURE REVIEW 

1.1 Complex diseases 

Current understanding of many human diseases and how best they can be treated is hampered 

by the complexity of the underlying human molecular system in which they are manifested2,3. 

On the contrary, the genes and mutations responsible for simple Mendelian disorders are easily 

identifiable. Diseases with complex underlying molecular systems are referred to as complex 

diseases and are as a result of a plethora of changes in the DNA of the diseased as well as a 

broad range of environmental factors and an individuals’ lifestyle2,4. For example, it is known 

that cigarette smoking is a major risk factor for nasopharyngeal cancer (NPC) especially for 

young smokers: compared with never smokers, current smokers and ever smokers had a 59% 

and a 56% greater risk of NPC, respectively5. Complex diseases include cancer, 

Neurodegenerative diseases, Diabetes and Schizophrenia among others. Due to the multiple 

factors at play in the pathobiology of complex diseases, a network view of these factors (e.g., 

proteins within the interactome) has been fronted as one of the most suitable approaches to 

decipher how we may have a better understanding of complex diseases and relevant 

bioinformatics tools are consistently being developed to reveal multiple proteins and the 

pathways they affect6,7. Another aspect of complex diseases is their heterogenous nature which 

then prompts the identification of biomarker proteins or genes at the patient level8.  In this 

thesis, we shall delve deeper into the discovery of cancer biomarkers at the protein interaction 

network level and briefly highlight a new method of quantitating the secretome while using the 

mouse brain cell types.  

1.2 Cancer 

Cancer, a leading global health burden, is a complex molecular disease that involves abnormal 

proliferation of cells with the potential to metastasise to other healthy tissues and organs9. 

Cancer metastasis may result in deregulation of multiple cellular functions and pathways 

leading to the death of cancer patients9.  This year, it is estimated that roughly 1,800,0000 new 

cases of cancer will be diagnosed in the USA, and about 600,000 deaths are projected to 

happen10. In Germany alone, about 440,000 new cases of cancer are expected each year11. For 

the effective diagnosis and treatment of cancer, a better understanding of the disease is 

necessary. While the scientific community has advanced our understanding of cancer, efficient 

cancer treatment regimens are still required to counter the number of deaths associated with 

cancer. The consistent and rapid growth of the field of genomics has propelled our 

understanding of cancer, resulting to a common consensus that dynamic changes in the genetic 

material (DNA) within our cells result to cancer, i.e., cancer is a disease of the genome12–14. 

Cancer can be traced from the clonal expansion of a single abnormal tumor cell that have the 

ability to produce metastatic colonies15,16, Figure 1. 
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Figure 1: A schematic depiction of the clonal selection in cancer. During tumor initiation, 

progression, and metastasis, an estimated 10 years is required to achieve the 1-cm tumor needed 

for clinical diagnosis. During this period, genetic instability results in metastatic variants such 

that metastases occurring closer to the time of diagnosis are smaller and less heterogeneous as 

compared with those that occurred much earlier. This is contrasted with tumors having less 

genetic instability; these develop metastases late during tumor progression, are small in size at 

diagnosis, and have less heterogeneity. Regardless of the timing of metastases, if a 1-cm tumor 

is left untreated, then a lethal tumor volume, occurs within 10 doubling times, which calculates 

to 3 years. Adapted with modifications from Talmadge, 2007. 

 

In 1914, the observation of chromosomal aberrations in cancer cells was among the first links 

between mutation and cancer9. The causal involvement of somatic mutations in cancer was 

later on supported by the discovery that multiple carcinogenic substances can also be 

mutagenic17. Substantive evidence came from studies that showed the introduction of DNA 

fragments from cancer cells into non-cancer healthy cells led to malignancy, and also from the 

identification of the responsible mutations linked to the transformation of the DNA9. This 

research then led to the discovery of the first oncogenes, whose mutations resulted to a gain of 

function that promotes transformation into cancer. At the same time, studies on hereditary 

cancers led to the discovery of tumor suppressor genes18, which are normally inactivated by 

either germline or somatic mutations. Mutations are brought about by replication errors or by 

DNA damage that is either incorrectly repaired or left unrepaired. DNA damage may result 

from exogenous factors (chemicals, ultraviolet (UV) light, and ionizing radiation), or from 

endogenous factors (e.g., reactive oxygen species, aldehydes, or mitotic errors), or from 

enzymes involved in DNA repair mechanisms or genome editing, among others19. More saw, 

viruses and endogenous retrotransposons may bring about insertions of new DNA sequences 

in the genome20. Such changes in the genetic material of an individual cancer genome can now 

be accurately determined via multiple massively parallel sequencing technology platforms. 

 

1.3 Next generation sequencing (NGS) technologies and genomics. 

NGS is the deep, high-throughput, in-parallel DNA sequencing technology developed after the 

Sanger DNA sequencing method. NGS technologies resulted to a paradigm shift in the field of 

genomics, facilitating fast and cost-effective acquisition of genome-scale sequence data with 
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exquisite resolution and previously unmatched accuracies, together with bioinformatics tools 

for their analysis21–24. DNA sequencing technology was first developed by Frederick Sanger 

and Walter Gilbert and were based on either the Sanger sequencing approach (chain-

termination method)25, or the Maxam and Gilbert chemical degradation method26. Afterwards, 

first automated DNA sequencers were developed by Applied Biosystems Instruments who 

coupled the Sanger method together with fluorescent dye-terminator reagents27. Afterwards, 

these sequencers were enhanced by the introduction of computers to gather, store and analyze 

the generated sequenced data. With time, NGS technologies surpassed the conventional Sanger 

sequencing technique due to their ability to perform massively parallel sequencing (up to 

hundreds of millions of sequence reads) of short DNA fragments. For this, NGS technologies 

have become considerably cheaper, require significantly less DNA and are more accurate and 

reliable compared with Sanger sequencing. Additionally, NGS technologies have considerably 

increased the throughput data to several orders of magnitude as compared to Sanger 

sequencing21. NGS technologies include RNA-Seq which is used to measure transcript/Isoform 

expression level, and Chip-Seq which is used to study protein-DNA interactions. While there 

exists multiple NGS platforms and manufacturers21,23 (e.g. Illumina, Oxford Nanopore, Pacific 

biosciences and Thermofischer), they all have similar sequencing steps where: 

 

I. DNA samples to be sequenced are randomly fragmented. 

II. Platform-specific adaptors are added to the flanking regions of the DNA to produce a 

library of arrays.  

III. The library is then amplified via PCR (e.g., emulsion PCR or bridge PCR) prior to their 

detection. 

IV. The amplified fragments are then sequenced by synthesizing the complimentary strand 

(e.g., via sequencing by synthesis or sequencing by ligation). 

V. Base incorporation events are then detected (e.g., via image capture of fluorescent dye 

or light emission signal). 

 

The resultant sequenced data is in the form of millions of reads (roughly 75-400 base pairs) 

and a throughput of between 1- 600 GB from a single run based on the platform used. 
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Table 1: A summary of NGS platforms as depicted by Levy & Myer23 .  

Manufacturer Amplification Detection Chemistry Url 

Commerial 

Illumina Clonal Optical Sequencing by 

synthesis 

http://www.illumina.

com 

Oxford Nanopore Single 

molecule 

Nanopore Nanopre http://www.nanopor

etech.com 

Pacific biosciences Single 

molecule 

Optical Sequencing by 

synthesis 

http://www.pacb.co

m 

Thermofischer Ion 

Torrent 

Clonal Solid state Sequencing by 

synthesis 

http://www.thermofi

sher.com/us/ 

en/home/brands/ion-

torrent.html 

Precommercial 

Quantum 

Biosystems 

Single 

molecule 

Nanogate Nanogate http://www.quantum

biosystems.com 

Base4 Single 

molecule 

Optical Pyrophosphorolysis http://base4.co.uk 

GenepSys 

(GENIUS) 

Clonal Solid state Sequencing by 

synthesis 

http://www.genapsy

s.com 

QIAGEN 

(GeneReader) 

Clonal Optical Sequencing by 

synthesis 

http://www.qiagen.c

om 

Roche Genia Single 

molecule 

Solid state Nanopore http://geniachip.com 

Postcommercial 

 

Helicos BioScience 

(Heliscope) 

Single 

molecule 

Optical Sequencing by 

synthesis 

- 

Roche 454 (GS 

FLX) 

Clonal Optical Sequencing by 

synthesis 

http://www.454.com 

 

Dover (Polonator) Clonal Optical Sequencing by 

ligation 

- 

ThermoFisher 

Applied Biosystems 

(SOLiD) 

Clonal Optical Sequencing by 

ligation 

http://www.thermofi

sher.com/us/en/ 

home/brands/applied

-biosystems. html 

Complete 

Genomics 

Clonal Optical Sequencing by 

ligation 

http://www.complet

egenomics.com 

 

Table 1: (-) indicates that no URL is available. Precommercial platforms have not been 

formally launched; post-commercial Platforms are no longer commercially available. 

 

 

 

 

 

 

 

http://www.illumina.com/
http://www.illumina.com/
http://www.nanoporetech.com/
http://www.nanoporetech.com/
http://www.pacb.com/
http://www.pacb.com/
http://www.thermofisher.com/us/en/home/brands/ion-torrent.html
http://www.thermofisher.com/us/en/home/brands/ion-torrent.html
http://www.thermofisher.com/us/en/home/brands/ion-torrent.html
http://www.thermofisher.com/us/en/home/brands/ion-torrent.html
http://www.quantumbiosystems.com/
http://www.quantumbiosystems.com/
http://base4.co.uk/
http://www.genapsys.com/
http://www.genapsys.com/
http://www.qiagen.com/
http://www.qiagen.com/
http://geniachip.com/
http://www.454.com/
http://www.thermofisher.com/us/en/home/brands/applied-biosystems.html
http://www.thermofisher.com/us/en/home/brands/applied-biosystems.html
http://www.thermofisher.com/us/en/home/brands/applied-biosystems.html
http://www.thermofisher.com/us/en/home/brands/applied-biosystems.html
http://www.completegenomics.com/
http://www.completegenomics.com/
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1.4 The Advent of cancer genomics 

 

After the realization that cancer is a disease of the genome and the introduction of next 

generation sequencing technologies (NGS) coupled with the development of sophisticated 

bioinformatics and data analysis software, the era of cancer genomics was born28. The 

invention of high-throughput genomic technologies e.g., microarrays and NGS brought about 

the unprecedented insights into the complexity of cancer genomics. For example, Veer et. al., 

used microarrays derived from 117 patients to classify breast carcinomas based on gene 

expression variation patterns. They performed hierarchical clustering on expression data from 

both cancer and normal breast tissues and were able to determine that breast cancer patients 

had varying outcomes and treatment responses based29. Another study by Ahr et. al., using 

microarrays was able to discover breast cancer patients with high disease recurrence rates, and 

their results correlated with the conventional tumor staging30. With the introduction of NGS 

technologies, it was possible to obtain the DNA sequences of individual cancer genomes. This 

realization has not only revolutionized the scientific approach to the studies of omics data but 

has also heralded a paradigm shift in genomic and personalized medicine research in cancer. 

For instance, the ability of NGS to provide an unbiased view of the whole genome is vital in 

studying the cancer genome which is often consists of de novo genetic aberrations31–33. With 

NGS, the possibility to discover copy number variations, mutations (single nucleotide 

polymorphisms -SNPs), gene expression signatures and epigenetic changes in cancer was 

realized. These discoveries have not only led to the identification of novel diagnostic and 

prognostic cancer biomarkers but also the development of the early cancer drugs34,35. A 

continuing process is the search for such biomarkers at the patient level, cancer subtype level 

or even across multiple cancer types which is necessary for drug repurposing purposes36–39.  

 

 

 
 

Figure 2: A schematic depiction of the importance of cancer biomarkers. Cancer biomarkers 

can be used for prognosis: to predict the natural course of a tumour, indicating whether the 

outcome for the patient is likely to be good or poor (prognosis). Biomarkers can help doctors 

to decide which patients are likely to respond to a given drug (prediction) and at what dosage 

the drug might be most effective (pharmacodynamics). Adapted with modifications from 

Sawyers, 2008. 

 

 

 



CHAPTER 1: GENERAL INTRODUCTION AND LITERATURE REVIEW 

 6 

 

1.5 RNA-Seq, tissue- and patient-specific expression of isoforms, genes and proteins in 

cancer. 

 

With the advent of massively parallel sequencing platforms for NGS, the design and 

implementation of genetic studies protocols dramatically altered. RNA-seq is the most utilized 

NGS application, especially due to its coverage in determining the RNA expression content 

(transcriptome) of biological samples (e.g., tissues). Transcription involves making a copy of 

a gene to produce a precursor mRNA and processing the precursor mRNA to remove the 

intronic regions while fusing the exonic regions to produce a mature messenger RNA or the 

transcript. The transcriptome is the entire collection of transcripts available in a cell at a given 

time point. Transcripts serve as the link between an individuals’ genotype and the observed 

phonotype. RNA-Seq includes the determination of RNA expression levels and alternative 

splicing events with highly reproduceable accuracies. Being a powerful tool for revealing the 

complexity of all transcriptional activities (within coding and noncoding regions), RNA-Seq is 

extensively used in biomedical research, clinical medicine, and in drug discovery experiments.  

 

Precursor mRNAs may be processed in a plethora of ways to produce various transcripts via 

alternative splicing. Additionally, recent research shows that alternative splicing brings about 

expression of various transcripts as well as protein isoforms from a single gene – Figure 1 as 

depicted from El Marabti & Younis40. Furthermore, the alternative splicing events reflect a 

tissue-specificity or more importantly may occur in a disease related manner as is now known 

in cancer, and differential isoform expression or usage (isoform switching) is now considered 

a hallmark of cancer41–43.  A gene can thus give rise to more than one transcript. For instance, 

a large number (up to 94 %) of human genes have multiple transcripts or undergo alternative 

splicing events44,45.   

 

 
 

Figure 3: A schematic depiction of alternative splicing processes as a source of diversification 

in the expressed transcripts and protein isoforms in cells. In this image, a gene with 4 exons 
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may undergo different alternative splicing events such as exon skipping or intron retention to 

yield different types of transcripts. 

 

The total collection of transcripts present in a cell at any given time therefore depends on the 

biological function and the physiological state of that cell. Profiling the transcriptome of a cell 

or tissue can then provide crucial molecular insights in the observed phenotype of the cell under 

study. In cancer, microarrays were previously extensively utilized to generate gene expression 

profiles of various cancer types. This allowed the classification of tumors, the prediction of 

overall patient survival and patient responses to therapy46,47. Microarrays have fast been 

replaced by NGS approaches since NGS studies can narrow down the analysis to the isoform 

level and reveal novel isoforms or even isoform usage in cancer. Bourdon, J.-C. et al, 

investigated the effects of alternative splicing events in the tumor suppressor gene TP53 and 

found that p53 mutant breast cancer patients expressing the TP53 isoform had a low cancer 

recurrence and better prognosis (similar to breast cancer patients expressing the wild type p53) 

than patients expressing other p53 isoforms48.  

 

 

 
 

Figure 4: A diagrammatic depiction of the TP53 gene and its isoform by Surget et. al1. The 

human TP53 gene encodes twelve different isoforms and consists of eleven exons (A), and 2 

promoters (P1: proximal promoter, P2: internal promoter). In B, p53 (canonical transcript), 

p53 and p53  isoforms together with known TP53 domains (TAD1, TAD2, PXXP, DBD, 

OD, Neg and NLS) are shown. MW: molecular weight, kD: kilo Dalton. 

 

Also, Nagane. M. et al, while using the human glioma cell line (U87MG) found out that the 

expression of deltaEGFR (EGFR isoform variant without exons 2, 3, 4, 5, 6 and 7) enhanced 

the tumorigenicity of glioblastomas49. Presently, the quest for precision medicine (or 

personalized medicine) in cancer dictates that an individuals’ cancer genome be sequenced to 
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facilitate the accurate diagnosis, subtyping, and appropriate treatment remedy for that patient. 

This is envisaged to improve the clinical outcome for cancer patient. National Cancer Institute 

of the National Institutes of Health, USA, coined the term “personalized medicine” to refer to 

a form of healthcare that considers a patients’ genetic information (expressed genes or proteins) 

and their environment in order to prevent, diagnose and treat the cancer type the patient has 

been diagnosed with. Because of heterogeneity in cancer, the overlay of a personal genome 

with the personal medical record of cancer patients has the potential to improve patient survival 

prediction, monitor disease progression, and to allow for a more pro-active therapeutic 

strategy50. NGS technology has brought about genome-guided clinical care. This strategy 

focuses on an individual patient's genomic markers (for example, sequencing a patients’ 

genome and determining the set of markers such as Single nucleotide polymorphism -SNPs) 

to help ascertain if a patient may to respond to a given therapy, avoid toxic side-effects from 

certain drugs that may likely not work, and adjust the pharmacological dosage of medications 

so as to optimize their efficacy and safety. Genetic variations (e.g., SNPs and copy number 

variants) in humans are recognized as an important determinant of the variability in drug 

responses across patients diagnosed with a particular disease51–54. 

 

1.6 Cancer genes: oncogenes and tumor suppressor genes. 

 

Of utmost importance in cancer studies is the search for genes that are involved in tumor 

initiation and its development. Such genes mainly carry mutations, and often, the mutations 

are somatic in nature but can also be germline (inherited) mutations. Two different classes of 

genes – tumor suppressor genes (TSGs) or oncogenes – are the major targets for mutations and 

variations during the molecular evolution of various cancer types55–57. Based on whether the 

mutations are dominant or recessive at the cellular level, cancer genes can be classified as either 

oncogenes (e.g., KRAS, BRAF, EGFR) or tumor suppressors (e.g., TP53, PTEN, BRCA1/2)58. 

Oncogenes possess dominant mutations: a single altered allele is sufficient to initiate cancer. 

Tumor suppressor genes bear recessive mutations: both alleles need to be changed. Oncogenes 

often show gain‐of‐function mutations while TSGs carry loss‐of‐function mutations. The 

protein products of oncogenes include transcription factors, chromatin remodelers, growth 

factors, growth factor receptors, signal transducers, and apoptosis regulators59. Oncogenes are 

altered in ways that render them permanently active or active when they are not supposed to. 

Around 80% of detected cancer mutations occur in tumor suppressor genes56and t. TSGs 

normally act to inhibit inappropriate cell growth and division, stimulate apoptosis, and repair 

DNA. In many tumors, these genes are lost or inactivated by genetic or epigenetic alterations, 

including non-synonymous mutations, insertion or deletions of variable sizes, and epigenetic 

silencing. After the onset of sequencing technologies and cancer genomics, many research 

groups and consortia delved into cancer genomics research, with The Cancer Genome Atlas60 

(TCGA) being at the forefront in generating cancer patient sequence data to reveal important 

genes, proteins and pathways that could be linked to cancer61.  
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Figure 5: A diagrammatic depiction of the oncogenes and TSGs derived from TCGA data 

and the pathways they affect. Adapted from Sanchez-vega et al, 2018. 

 

 

1.7 Significantly mutated genes, underlying pathways and targeted therapy in cancer. 

 

Oncogenes or tumor suppressor genes that harbor significant mutations are termed as cancer 

driver genes. These mutations are often somatic in nature, i.e., they occur in genes after 

conception and cannot be passed onto the next generation of offspring, unlike germline 

mutations62–65. Germline mutations account for 5-10% of cancer - Figure 4, with the mutations 

in disease causing alleles showing complete penetrance. Complete penetrance is the 

phenomenon where all the individuals diagnosed with a particular cancer type harbor the 

disease-causing mutation. Somatic mutations result to the majority of the known cancer types.  

Cancer driver gene products are vital for tumor initiation and progression, and provide growth 

advantages to cancer cells. TCGA analyses together with other research utilizing the TCGA 

datasets (e.g. the catalog of somatic mutations in cancer - COSMIC66) revealed the genes 

driving cancer in several tissue types analyzed; a consensus list of 299 genes with KICH having 

the fewest driver genes (2) and UCEC with the most driver genes (55)67. Somatic mutations 

accumulate during an individuals’ lifetime, with the majority of these mutations being 

unnoticeable. However, some of the mutations, especially those occurring in the protein coding 

regions68, can alter crucial cellular functions resulting to cancer.  
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Figure 6: A diagrammatic depiction of the proportion of cancer as a result of mutations. 

Sporadic mutations (somatic) are responsible for the majority of cancer types, followed by 

familial cancer types that are as a result of low penetrance mutations coupled with 

environmental and lifestyle factors. Inherited cancer types account for up to 10% of all cancer 

types. 

 

 

 
Figure 7: Mutation burden in 20 tumor types and relative contribution of different mutational 

processes. For each tumor type, samples were divided into deciles on the basis of their mutation 

burden. The median mutation burden is shown as a dot plot (substitutions and small indels); 

orange bars denote the median burden of all samples. AML - acute myeloid leukemia (Top). 

The mean percentage contribution of different mutation signatures is depicted by stacked bars 

(Bottom). Adapted with modifications from Martincorena, I. & Campbell, P. J, 2015. 
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Cancer driver genes affect a plethora of molecular functions that manifest into a cancer 

phenotype. Hanahan & Weinberg, termed these molecular functions or pathways as “cancer 

hallmarks”, and they consisted of six biological processes that were seen to be vital for 

oncogenesis14. They suggested that a cell must first acquire the capability to self-sufficiently 

grow and become insensitive to antigrowth cell signals. Such a cell should then evade apoptosis 

while having a limitless replicative potential which would promote sustained angiogenesis, 

with the consequence of invading adjacent tissues and metastasis - Figure 7. 

 

 
 

 

Figure 8: What do cells require to become oncogenic? Six vital biological processes must be 

evaded by cells and form abnormal proliferative cancer cells. Adapted from Hanahan & 

Weinberg, 2000. 

 

1.8 PPINs act as sensors and critical drivers of human diseases.  

Knowledge on the function and molecular characteristics of individual proteins exists, 

however, proteins rarely act alone; they connect with several others and build networks 

(PPINs), which play important roles in cellular functions69,70. Protein-protein interactions 

(PPIs) are significant players in cellular functions and pathways by possessing and transmitting 

necessary information within these molecular systems2. Analyzing PPINs could lead to the 

unravelling of complex molecular relationships in living systems and understanding today’s 

complex diseases such as cancer.  
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Figure 9: A more realistic disease model is one in which considers multiple sources of 

perturbations at the network level, e.g., a combination of genetic and environmental 

perturbations affecting the molecular states of networks.  a - Classic genetic association 

approaches seek to identify variations in DNA that correlate with disease state or with 

quantitative traits associated with disease. The attraction of this approach is the identification 

of the genetic causes of disease. b- Changes in DNA on their own do not lead to disease but, 

instead, lead to changes in molecular traits that go on to affect disease risk. By layering in 

molecular phenotypes as intermediate phenotypes, causal relationships between genes and 

disease can be established directly. c -Disease gene networks sense constellations of genetic 

and environmental perturbations. Adapted with modifications from Schadt E, 2009.  

 

 

In 2006, Sam et. al., showed that the associations between diseases are directly correlated to 

their underlying PPINs, thus providing insight into the underlying molecular mechanisms of 

phenotypes and biological processes disrupted in related diseases71. Afterwards, the task of 

studying, identifying and modelling the complex dynamics of biological molecular systems so 

as to describe various human diseases gathered immense interest, and this was also aided by 

advances in the design of computational tools to analyse complex networks. PPIs can either be 

determined computationally or experimentally. Experimental determination of PPIs is 

achieved via the use of yeast two hybrid (Y2H) systems or mass spectrometry to detect physical 

binding or interaction between proteins, whereas computational (“in sillico”) determination 

involves using gene context analysis studies such as gene fusion, gene neighbourhood and gene 

co-occurrences or phylogenetic profiles72–77.  
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Figure 10: The different experimental and computational methods used in characterizing, 

detecting, and predicting protein-protein interactions. Adapted from Gonzalez et. al, 2012 

 

 

While the pharmaceutical industry has invested heavily in cancer drug research and 

development, there still exists low numbers of new drug approvals or the translation of single 

biomarkers to the clinic. It is henceforth critical to question whether the single molecule (e.g 

targeting a single driver gene in cancer) targeted drug discovery approach is the most efficient 

in combating cancer. Beadle and Tatum’s “one-gene/one-enzyme/one-function” hypothesis78 

has now been disapproved in the context of cancer, as evidenced by the early work of Sharma 

et. al. To counter complex systemic diseases such as cancer, intervention at the biological 

networks may be advantageous than the use of single target intervention approaches. As such, 

systems medicine (network pharmacology) approaches have lately been fronted as being highly 

promising, because they address the ability of targeting multiple proteins or the networks 

involved in causing the disease. 
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Figure 11: The advantage of using the PPIN to infer cancer biomarkers is the ability to couple 

the analysis with multiple other OMIC datasets of patient clinical characteristics. 

Consequently, it is now likely that more personalized, accurate and rapid disease gene 

diagnostic techniques will now be devised. Adapted from Ozturk et. al, 201879.  

 

A paradigm shift in the analysis of PPIN in cancer was observed after 2010 when Vandin et. 

al., developed HotNet80: A novel algorithm that was used to identify significantly mutated 

pathways (subnetwork biomarkers) in cancer. HotNet assumes a mutation to be a ‘heat source’ 

on the network, the heat is then allowed to diffuse across edges, thus spreading its influence 

across the network dependent on the topology. After diffusion, the network can then be 

partitioned to reveal ‘hot’ regions that are likely driver pathways enriched for the influence of 

the said mutation. The advantage of this approach is that it naturally penalizes highly 

interconnected regions of the network (the heat must be divided across large numbers of edges) 

where mutation influence will appear more concentrated at random. Later, an improved version 

HotNet281 was developed, and it proposed an “insulated” heat diffusion model to incorporate 

edge direction. This allowed the algorithm to capture a sense of effects as either being upstream 

or downstream of causal mutations, and a damping factor that can be tuned to emphasize local 

topology over distant network regions. Several other algorithms to decipher cancer pathways 

have since been developed: MUFFIN, Multi-Dendrix, MEMo, TieDIE82–85. Understanding 

prognosis in cancer is important for clinical decision making; a tumor may be slow in 

progressing to malignancy, and patients may be over-treated (as is common for ductal 

carcinoma in situ and prostate tumors), whereas another tumor may be very aggressive and 

thus require aggressive clinical intervention. Another vital aspect of prognosis is post-treatment 

tumor progression monitoring due to inter-tumor and inter-patient heterogeneity. 

Consequently, Individual somatic mutations or overexpressed genes/proteins have limited 

value as biomarkers. An alternative is the use a panel of biomarkers; however, this comes with 

the risk of potential overfitting as there is a large number of possible combinations to 
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explore86,87. Networks have since been applied to optimize selection of relevant biomarkers 

and have even been used directly as biomarkers themselves. When using the PPIN in 2013, 

Sharma et. al., discovered how human Sirtuin (a group of proteins implicated in numerous 

biological pathways) work within subnetworks and modules which are enriched in multiple 

diseases such as cancer88. Additionally, Chuang et. al., mapped differentially expressed genes 

in breast cancer patients on the PPIN and discovered subnetwork biomarkers that could 

distinguish metastatic from non-metastatic breast tumors89. In brief, Chuang et al found at least 

one cancer susceptible gene (e.g, TP53, PIK3CA, BRCA1) in various subnetworks, and these 

results were comparable with previous results from Van de Vijver et.al.,  and Wang et. al90,91. 

While these studies have already found genes and PPI subnetworks strongly associated with 

cancer, none considered alternative splicing and the isoform specific preferences at the patient 

specific level. As mentioned earlier on, alternative splicing generates multiple proteins that 

may have different functions and structures from a single gene. The resulting splice variants 

play significant roles in cancer as alternative splicing can be deregulated through alterations in 

core spliceosomal components, in an accessory splicing factor or through genomic mutations 

in splicing motifs. Because of these splice variants, the cell may gain the ability to escape 

apoptosis92, a key hallmark in cancer progression41. Furthermore, metabolic pathways may be 

affected due to a switch between antagonistic gene isoforms causing proliferation or affecting 

tumor suppressors93.  
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1.9 OBJECTIVES 

The work discussed in this thesis focuses on the identification of edges (connections between 

interacting proteins) whose interacting protein partners are involved in tumorigenesis. Such 

proteins that are involved in cancer progression are crucial in tumor monitoring, prognosis and 

in the development of therapy targets.  As already mentioned, the use of a group of proteins (or 

genes) within a network has gained impetus in characterizing critical biomolecules at play in a 

variety of complex diseases, especially in cancer. Targeting of such a group of proteins with 

functional relevance in cancer and other complex diseases promises new paradigms in the 

treatment of such diseases.  

 

In cancer, for example, tumor diversity across patients diagnosed with a particular cancer type 

has brought about the advent of precision oncology. In this thesis we sought to utilize publicly 

available patient data from TCGA to infer how the cancer interactome is modulated following 

tumorignesis.  Use of patient centric data might provide an even more selective targeting of 

only specific components of the interactome in the quest for identifying druggable proteins at 

the network level. This work focused therefore on the rewiring of the cancer interactome to 

pursue a more selective identification of biomarkers at the patient-, cancer subtype, cancer type 

as well as multi cancer levels. Such biomarkers were identified and then characterized for their 

modulating properties in promoting oncogenesis via survival analysis. 

 

We also sought to find the effects of SMGs on the cancer interactome: are SMGs responsible 

for the bulk of edgetic perturbations observed? SMGs have been consistently shown to be 

important cancer biomarkers and several of them have been used in the design of therapeutics. 

Such an analysis is crucial in revealing SMGs and their interacting partners that are 

significantly rewired at the interactome level and thus provide further insight in the 

determination of the complete set of cancer biomarkers.  Coupling advanced NGS data with 

PPIN data could bolster the discovery of novel biomarkers that will facilitate quick cancer 

diagnosis, monitoring, and development of correct therapies for clinical use.  
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CHAPTER 2: EDGETIC PERTURBATION 

SIGNATURES REPRESENT KNOWN AND 

NOVEL CANCER BIOMARKERS. 

Parts of this chapter have been published in: Kataka, E., Zaucha, J., Frishman, G., Ruepp, A. 

& Frishman, D. Edgetic perturbation signatures represent known and novel cancer 

biomarkers. Sci Rep 10, 1–16 (2020). 

 

Dmitrij Frishman and I conceived the project and I implemented the bioinformatics analyses. 

Goar Frishman, Andreas Ruepp and I undertook the biological annotation of the protein 

biomarkers. Jan Zaucha, Dmitrij Frishman and I interpreted the results and wrote the paper.  

 

ABSTRACT 

Recent computational tools leverage domain-domain interaction data to resolve the condition-

specific interaction networks from next-generation sequencing (RNA-Seq) data accounting for 

the domain content of the primary transcripts expressed. In the work described in this thesis, 

we used The Cancer Genome Atlas RNA-Seq datasets to generate 642 patient-specific pairs of 

interactomes corresponding to both the tumor and the healthy tissues across 13 cancer types. 

The comparison of these interactomes provided a list of patient-specific edgetic perturbations 

of the interactomes associated with the cancerous state. We found that among the identified 

perturbations, select sets are robustly shared between patients at the multi-cancer, cancer-

specific and cancer sub-type specific levels. Interestingly, the majority of the alterations do not 

directly involve significantly mutated genes, nevertheless, they strongly correlate with patient 

survival. Our findings, which are freely available at EdgeExplorer: 

http://webclu.bio.wzw.tum.de/EdgeExplorer, are a new source of potential biomarkers for 

classifying cancer types, and the proteins we identified as significantly being involved in 

edgetic perturbations are potential anti-cancer therapy targets. 

 

2.1 INTRODUCTION 

2.1.1 PPINs in Cancer 

Cancer, a leading global health burden, is a complex molecular disease that involves abnormal 

proliferation of cells with the potential to metastasise to other healthy tissues and organs. To 

accurately diagnose and treat cancer, better understanding of its molecular pathology and the 

players involved is required. Indicators of the phenotypes between healthy and disease states 

are termed disease biomarkers and are used to monitor disease phenotypes as well as develop 

therapeutic targets. Research from large-scale cancer consortia (e.g. TCGA) have greatly 

enhanced our knowledge of cancer. Even though central cancer genes responsible for 

tumourigenesis (driver genes) are known, determination of the complete set of cancer type (or 

subtype specific) and pan-cancer biomarkers at the network level is a central problem in tumour 

research. Cancer involves the accumulation of somatic mutations68 and epigenetic 

modifications94, which drive the cells into the malignant state. Recurrent mutations implicated 

http://webclu.bio.wzw.tum.de/EdgeExplorer
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in tumorigenesis affect highly connected proteins within the protein interaction network95,96 

and are enriched at the interaction interfaces97,98 and phosphorylation sites37 signifying their 

role in rewiring protein interactions99. For this reason, cancer has been described as the disease 

of the interactome100. Analyzing PPINs could lead to unraveling complex molecular 

relationships in living systems and understanding today’s most complex diseases such as 

cancer. Indeed, the network of protein-protein interactions (PPI) has repeatedly allowed for the 

extraction of molecular features predictive of various phenotypic traits relevant to cancer – the 

so-called disease biomarkers101.  

 

PPINs have been proven to be important in cancer research, as perturbations in these networks 

can be associated with disease states. For example, Cui et al. have identified putative 

interaction-disrupting mutations occurring at the interfaces of protein complexes and 

demonstrated that their presence is prognostic of poor survival102. In another study, Li et al.87 

developed the “OncoPPI” network of protein-protein interactions (PPIN) relevant to lung 

cancer, identifying biomarkers that can inform therapeutic decisions according to the drug 

sensitivity in certain conditions87. Nevertheless, the physical disruption of interaction sites by 

somatic mutations is only one mode of perturbing the interactome. Another relevant cellular 

process is regulating the expression (and thereby the local molecular concentration) of the 

interacting proteins103; this has been utilized in mining the network of protein-protein 

interactions to identify modules of differentially expressed genes serving as robust biomarkers 

indicative of breast cancer metastasis89 or stratifying patients from several breast cancer 

subtypes104. Furthermore, the phenomenon of “isoform switching”, i.e. altering the major splice 

variant of the gene that is favorably expressed within the cell, has been implicated in driving 

tumorigenesis and several such switches have been identified as biomarkers predictive of 

patient survival41. Interestingly, the majority of isoform switches that we observed across most 

of the cancer types could not be explained by somatic mutations in the same genomic locus 

suggesting that they usually arise through other complex molecular mechanisms105. In the case 

of multi-domain proteins, isoform switching can lead to the loss or gain of a domain responsible 

for mediating the interaction, thus perturbing the interactome. Recently developed 

computational tools leverage domain-domain interaction data in order to match transcriptomes 

to condition-specific interactomes, accounting for the major isoform of the protein that is 

expressed within the cell106,107. This allows comparing the healthy and cancer tissue 

interactomes from the same patient and identifying both the lost and the gained interactions 

(edgetic perturbations).    

 

In this study, we analyzed all samples from The Cancer Genome Atlas for which both the 

healthy and cancer tissue RNA-Seq data was available, thus generating the first large-scale set 

of patient- and condition-specific interactomes along with the corresponding tumor-specific 

edgetic perturbations. Crucially, in contrast to recurrent somatic mutations that are typically 

present in only a small proportion of patients, many of the edgetic perturbations are consistently 

shared between the vast majority of patients across multiple cancer types, while other sets of 

perturbations are shared explicitly between patients in a given cancer type or sub-type. We 

show that in most cancer types the malignant tissue interactome is smaller than the interactome 

of the corresponding healthy tissue – the only significant exception to this trend was thyroid 

carcinoma (THCA). Interestingly, even though a considerable number of significantly mutated 

genes are cancer driver genes, they are not directly involved in a majority of the identified 

perturbations. Our results show high reproducibility of the perturbed co-occurring network 

biomarkers within patients of a cancer type (and subtype) and some shared network biomarkers 

across multiple cancer types. Furthermore, we found known (e.g. TP73, NTRK1, and CDC25C) 

and novel cancer biomarkers at the multi-cancer, cancer type and cancer subtype levels. These 
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findings are a new source of robust biomarkers for detecting or classifying cancer types, may 

potentially point to new anti-cancer therapy targets and, owing to the extensive literature 

annotation we performed, they are also a comprehensive publicly available resource ready for 

experimental validation studies. We corroborate the relevance of the identified targets by 

demonstrating their strong correlation with overall patient survival and report the previously 

gathered insights on their role in tumorigenesis. The main goal of this work was to adopt the 

publicly available paired patient data from TCGA in order to assess patient specific 

interactomes, describe PPIN patterns specific to a cancer type, subtype or those that are multi-

cancer, and enumerate molecular processes arising due to the activities of proteins bringing 

about differential PPIN in cancer.  

 

Furthermore, we undertook a detailed search from scientific publications to find how the 

proteins involved in these processes may be linked to cancer initiation, progression or in cancer 

treatment responses. An advantage in this kind of research which focuses on a patients’ genetic 

profile, is technology advancement in respect to high throughput data generation in 

biomedicine. This has allowed researchers to comprehensively characterize genomic, 

transcriptomic, proteomic, lipidomic and metabolomic changes in various cancer types108,109. 

These multiple omic data types allow the understanding of the “geno-pheno-envirotype” 

(geneome-pheneotype-environment) relationships and the complex biological mechanisms 

involved in tumorigenesis and other complex diseases. Although developing efficient 

computational methods for integrating multi-omics data is challenging, the analysis of these 

heterogeneous data could lead to the capturing of a more accurate picture of the biological 

processes associating, for example, cancer recurrence and development with the 

transcript/isoform expression110. Furthermore, addition of clinical/phenotype data with 

information such as cancer subtypes or tumor stages could be of great relevance in finding 

significant associations applicable in personalized medicine.  
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2.2 RESULTS 

2.2.1 Cancer PPINs are smaller than healthy PPINs in the majority of cancer types  

We analyzed 642 paired cancer and healthy PPINs covering 13 cancer types derived from the 

global protein interaction network using patient-specific mRNA expression profiles. First, we 

used PPIXPress106 to construct cancer and healthy patient-specific PPINs. Next, using the 

Wilcoxon singed-rank test we tested the hypothesis that PPINs are disrupted during 

tumorigenesis by comparing the number of binary interactions observed in the healthy and the 

corresponding cancer PPIN for all patients with a given cancer type. Our results show that 

cancer PPINs are smaller than their corresponding healthy PPINs in 11 cancer types out of 13, 

and the difference is insignificant only in KIRP (Figure 12: A-K and M).  

 

 

 

 
 

 

Figure 12. Healthy and cancer PPINs significantly differ in size in 11 out of 13 cancer types 

(p-value <0.05). The density plots indicate the distribution of paired cancer and healthy PPIN 

sizes for individual cancer types (A-M) and across cancer types (N). The vertical dashed lines 

indicate the mean sizes of cancer PPINs (red) as compared to corresponding healthy PPINs 

(green). For BRCA, LUSC, PRAD, KIRP, KIRC, KICH, COAD, LIHC, HNSC and STES 
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healthy PPINs were larger than the corresponding cancer PPINs but the difference was not 

significant in KIRP. For THCA and BLCA (green label), cancer PPINs were larger than the 

corresponding healthy PPINs, but the difference was not significant in BLCA. In the remaining 

2 cases (Figure 12: J and L) cancer PPINs are larger than the corresponding healthy PPINs, but 

the difference is only significant for THCA (p-value < 0.05). Across all cancer types, cancer 

PPINs were significantly smaller than the corresponding healthy PPINs (p-value < 0.05, Figure 

1N). The mean PPIN size for cancer and healthy samples was 175,888 and 178503, 

respectively. Similar results (apart from BLCA) were observed when using the randomized 

PPIN – Supplementary figure 1.  

While gene expression signatures have become the mainstay of cancer research, information 

about global transcriptome shifts between cancer and the corresponding healthy states is only 

beginning to emerge. In line with our findings, Danielsson et al.111 reported a reduction in the 

number of expressed genes in the course of malignant transformation. Distorted gene 

expression in cancer has been associated with genetic instability (e.g. chromosomal gains and 

losses112) and epigenetic control112–113. Anglani et al.114 reported that gene co-expression 

networks associated with pancreatic, cervical, gastric and non-small cell lung cancers exhibit 

losses of connectivity compared with healthy samples while colorectal cancer exhibits more 

gains in connectivity. We also find that edgetic losses prevail in STES (a type of gastric cancer) 

and in both LUSC and LUAD (non-small cell lung cancer subtypes), Table 2. In contrast to 

Anglani et al.114 we found that colorectal cancer experienced more edgetic losses than gains, 

probably because our cohort consisted of only colon cancer (but not rectal cancer) patients. 

However, our results are in agreement with those of Cordero et al.115, where a significant 

reduction in colon tumor regulatory networks when compared with healthy samples was 

reported. This observation implies that colon and rectal cancer types are substantially different 

in terms of their network dynamics and should be analyzed separately. 
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Table 2: Characteristics of healthy and cancer PPINs and associated perturbations in 

13 cancer types. 

Cancer 

type a) 

Total 

gained 

edges b) 

Cancer-

specific 

gained edges 

c) 

Total 

lost 

edges d)    

Cancer-

specific 

lost edges 

e) 

Healthy PPIN 

size f) 

Cancer 

PPIN size 

g) 

p-value h) 

THCA 22831 1271 28065 797 175910 177146 0.0004 

BLCA 20739 1463 19030 202 174770 175289 - 

BRCA 22195 1453 25516 712 177033 174658 <2.2e-16 

COAD 10065 566 21024 953 180365 172933 <2.2e-16 

KIRC 18258 462 33005 887 179887 176147 <2.2e-16 

KIRP 17174 1085 27141 1117 178740 178300 - 

KICH 12423 627 27490 1402 182708 176236 1.037e-15 

HNSC 21913 1027 27485 877 181819 177203 1.572e-15 

LUAD 16622 959 21907 259 177980 176455 1.397e-11 

PRAD 17529 684 22468 915 179710 177677 1.275e-08 

LUSC 13108 644 23242 1049 181377 175758 <2.2e-16 

STES 24326 1215 20800 835 177110 174708 3.875e-12 

LIHC 36458 2019 51445 4068 175831 174337 0.001 

a) BLCA-bladder urothelial carcinoma, BRCA-breast invasive carcinoma, COAD-colon adenocarcinoma, HNSC-

head and neck squamous cell carcinoma, KICH-kidney chromophobe, KIRC-kidney renal clear cell carcinoma, 

KIRP-kidney renal papillary cell carcinoma, LIHC-liver hepatocellular carcinoma, LUAD-lung adenocarcinoma, 

LUSC-lung squamous cell carcinoma, THCA-thyroid carcinoma, PRAD-prostate adenocarcinoma, and STES-

stomach and esophegael carcinoma 
b) and d) Total number of all perturbed edges (gains and losses) in a cancer type 
c) and e) Total number of edges only observed to be strictly gained or strictly lost in a cancer type, respectively 
f) and g) Total number of edges observed in all healthy samples and cancer samples of a cancer type, respectively 
h) p value indicating whether PPIN sizes between cancer and corresponding healthy PPINs are different, - 

Indicates non-significant p value (>0.05). 

 

 

2.2.2 Isoform switches and resultant domain changes between cancer and healthy states 

result in edgetic perturbations.  

 

The majority of the identified perturbations across the cancer types resulted from complete-

protein-product losses or gains as a consequence of gene expression changes between the 

healthy and cancer states. Across all cancer types, the cancer state expressed slightly fewer 

genes than the healthy state apart from THCA, BLCA and KIRP (Dataset 1, freely accessible 

in the web portal). Nevertheless, we obtained additional perturbations that were attributed to 

differential isoform expression (resulting in domain composition changes of the majorly 

expressed protein transcript) between cancer and healthy states – as exemplified in Figure 13 

and Figure 14.  
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To test whether our results were brought about by differential gene expression or were due to 

domain changes between the healthy and cancer state, we used the R package BiRewire first 

to generate a randomized network and then analyzed the resulting perturbations. We did this 

by building condition-specific PPINs in two randomly selected cancer types (BRCA and 

BLCA). We were able only to recover the prominent proteins involved in edgetic perturbations 

resulting from the loss or gain of genes in the cancer state (Dataset 2, freely accessible in the 

web portal. See Supplementary figure 2 on how to access the data from the web-portal). These 

results indicate that the edgetic perturbations we obtained were indeed a property of the protein 

interactions and also the expression landscape of the genes. In brief, the cancer state expressed 

slightly fewer genes than the healthy state, resulting in a reduced number of protein products 

available to interact with each other. The consequence of this is manifested in the PPIN, where 

a reduced number of interactions is observed. In BLCA, for example, the mean number of 

interactions in the cancer state was 98224, while the mean in the healthy state was 107387. For 

the obtained perturbations, the proteins involved in these disruptions were still predictive of 

patient survival (Supplementary figure 3). 

 

 

 

Figure 13. Bar plots indicating the number of edgetic perturbations obtained as a result of gene 

expression changes or domain changes that come about after isoform switches between cancer 

and healthy states. Sky blue: edgetic gains as a result of more genes being expressed in the 

cancer state, red (left of zero intercept): edgetic gains as a result of isoform/domain changes 

(left of zero intercept). Light brown: edgetic losses as a result of the depletion of genes in the 

cancer state (left of zero intercept), light green: edgetic losses as a result of isoform/domain 

changes (left of zero intercept). 
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Figure 14. An example showing the consequences of domain changes between the cancer state 

and healthy state in patients diagnosed with BRCA. The protein structures of both (P0DP23) 

CALM1 and (P62140) PP1CB were obtained from PDB while those of DST were modelled 

using the ensemble transcript sequences in SWISS-MODEL and visualized in PyMol. 

Following an isoform switch from ENST00000370765 (in healthy) to ENST00000244364 (in 

cancer), the protein Q03001 (DST) gained the domain PF13499. The consequence is the gain 

of interactions with the genes PPP1CB and CALM1.  

 

Of the latter, most perturbations involved an isoform switch in either one of the interacting 

partners, however, we also identified cases of proteins where across patients of a given cancer 

type, isoform switches in both proteins were responsible for disrupting the interaction – Table 

S1. When using the randomized network derived from BiRewire, we were able to reobtain the 

prominent proteins involved in edgetic perturbations as a result of differential gene expression 

changes between the cancer and healthy state - Dataset 2. Our findings show that the 

transformation from the healthy to the cancer state results in (i) the loss or gain of gene 

expression, which alters the pool of proteins available within the interaction network, and (ii) 

differential isoform and domain expression, which further translates to the loss or gain of edges 

between the available proteins. Standard differential co-expression network analyses cannot 

detect such perturbations, thus making our approach appealing especially in the detection of 

the repertoire of proteins rewiring the interactome. Here, we corroborate a recent study by 

Climente-González et al.116, where the authors suggested that alternative splicing events 

promote tumor growth by, among other ways, remodelling the protein-protein interaction 

network.  
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2.2.3 The identified edgetic perturbations are retained in the protein-abundance filtered 

PPIN 

 

To test whether our approach yields reliable results, we additionally generated patient-specific 

PPINs using a smaller network with nodes constituted by highly abundant proteins (see 

Methods). The majority of the edgetic perturbations identified based on the global PPIN were 

retained within the reduced high-confidence set. For example, all the 134 edgetic losses 

involving the nitric oxide synthase inducible protein (NOS2) where preserved in the BRCA-

specific networks. Other cancer types exhibited only minor variations in the total number of 

edgetic perturbations identified based on the protein-abundance filtered PPIN (see Table S2, 

Dataset 3 and in Dataset 4 for details- freely accessible in the web portal). For instance, among 

the significant edgetic losses in BLCA samples, the protein abundance-filtered PPIN recovered 

one less edgetic perturbation involving the actin alpha skeletal muscle protein (ACTA1) and 

one of its interactors, neurabin-2 protein (PPP1R9B). The protein abundance database (PaxDb) 

does not report any abundance data for the neurabin-2 protein, and the protein is mainly 

undetected in the bladder samples from the human proteome map. The results for these 

comparisons can be found in Table 3, Dataset 3 and in Dataset 4. Due to the modest correlations 

between mRNA and protein expression data117,118, it is still challenging to infer protein levels 

from transcriptome studies. Nevertheless, the majority of our results involve the highly-

abundant proteins, which indicates that these interactions constitute the most relevant processes 

occurring within the cells and corroborates the reliability of the identified perturbations. 
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                 Table 3: The identified edgetic perturbations are retained in the protein-abundance filtered PPIN 

 

 

 

Cancer 

type 

Total number 

of perturbed 

edges using 

global PPIN 

Total number 

of perturbed 

edges using 

protein 

abundance 

filtered PPIN 

Protein 

whose 

interactions 

are 

significantly 

gained 

across all 

patients 

Number of 

gained 

edges 

observed 

using 

global 

PPIN 

Number of 

gained edges 

observed 

using protein 

abundance 

filtered PPIN 

Protein whose 

interactions 

are 

significantly 

lost across all 

patients 

Number of 

lost edges 

observed 

using global 

PPIN 

Number of 

lost edges 

observed 

using protein 

abundance 

filtered PPIN 

BRCA 33485 32829 CDC25C  31 31  NOS2 134 134 

BLCA 29867 29284 HIST2H2AC  77

   

77  ACTA1 95 94 

KICH 30497 29860 HRK  6 6  VTN 69 68 

KIRC 37773 37081 CDKN2A  124 122  ESRRB 82 82 

KIRP 34034 33368 IGF2BP3  72 71  NROB2 47 45 

LUAD 27778 27220 ABCC2  38 37  APOA1 57 55 

LUSC 28641 28048 HIST1H2AE  50 50  USHBP1 93 92 

LIHC 59886 26568 EBF2, 

ZNF23   

1 1  AMHR2 2 2 

PRAD 27112 26568 CENPA  61 61  CACNA1A 75 75 

THCA 33936 33211 ALK  52 52  VEGFD 8 8 

STES 31830 31186 TNFSF11  21 21  HSPA1L 115 113 

COAD 24398 23844 KLC3  57 57  RPL10A 98 97 

HNSC 36343 35620 FOXL2  56 56  PCK1 68 68 



  

 

2.2.4 Significantly mutated genes together with proteins having high degrees of 

connectivity in the PPIN are crucial players in edgetic perturbations of cancer PPINs 

 

Elevated mutation rate is a hallmark of cancer driver genes31,119,120. We analysed the 

involvement of SMGs as well as their first and second network neighbours in edgetic 

perturbations. Leiserson et al. previously suggested that somatic mutations affect subnetworks 

within PPINs via a heat diffusion model where “hot” nodes/SMGs propagate their heat to 

neighbouring nodes81. First, we found that not all SMGs are involved in edgetic perturbations, 

but only a specific number in each cancer type (Supplementary Table Ia,b,c). Also, there were 

significant differences in the proportion of perturbations associated with SMGs and those 

associated with the randomly generated genes having similar node degrees in the PPINs. A 

majority of the perturbations across the cancer types had more instances where the portion of 

the perturbations associated with random genes was more substantial than the proportion of 

perturbations associated with SMGs. This observation was prominent in BRCA, PRAD and 

STES where the portion of the perturbations associated with random genes at both the first and 

second neighbours was significant, while HNSC had no significant differences in the two 

proportions (Supplementary Table Ib). However, a look into the proteins involved in the 

majority of the perturbations associated with the random genes (e.g., SKIP, HIST1H3J and 

EZH2)  revealed that the proteins function in gene expression deregulation in cancer and are 

potential molecules for therapeutic intervention in cancer121–127. With a rise in the interest of 

therapeutic targeting of cancer enabling proteins at the PPIN level, our findings suggest that 

therapeutic targeting of only SMGs involved in edgetic perturbations particularly in BRCA, 

PRAD, STES and HNSC may not yet be a sound idea. However, additional incorporation of 

epigenetic markers engaged in tumourigenesis of these cancer types may be additionally 

beneficial as previously suggested 128. 

Nevertheless, we found that in 9 out of 13 cancer types, edgetic perturbations were associated 

with the SMGs (p < 0.05, S3 Table c) as compared to edgetic perturbations resulting from 

randomly generated genes with similar network topologies. Our findings correspond to those 

of 129–130 who pointed out that somatic mutations occurring at protein interaction interfaces may 

alter protein-protein interaction networks for example by resulting in loss of interactions or 

gain of new interactions. Besides, Cui et al.  while analysing the effects of somatic mutations 

on the PPIN of liver cancer patients found that SMGs significantly rewire liver cancer PPINs 

when compared to random non mutated genes102. In these 9 cancer types listed above, the 

instances showing significant perturbations attributed to the SMGs provide opportunities for 

therapeutic targeting at the PPIN level as is in the case with BH3 like proteins34 . 

2.2.5 Proteins involved in edgetic perturbations affect the overall patient survival and can 

serve as cancer type biomarkers. 

 

To find out whether changes in the expression of significantly mutated genes (SMGs) are the 

leading causes of the observed edgetic perturbations, we compared the proportions of 

perturbations involving SMGs versus those involving randomly generated proteins with a 

similar network degree. Surprisingly, across the majority of cancer types, more perturbations 

could be associated with the randomly selected genes rather than the SMGs (Supplementary 

Table I b-c). For example, when looking at newly gained interactions connected to SMGs in 

comparison to randomly selected genes of similar degrees, only BLCA and LUSC showed 

significant enrichment. While the SMGs in our PPINs tended to be high-degree nodes, only a 
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small number of their interactions exhibited frequent disruptions (in agreement with previous 

reports131), unlike the case for many other genes of a similar degree whose interactions were 

often perturbed. One possible explanation for this is that a majority of the randomly selected 

genes were house-keeping genes occupying more central positions in the PPINs132 and thus 

highly prone to rewiring as detailed by Kim et al133. Also, this can mean that SMGs have subtle 

effects on the PPIN and affect the same interaction partner consistently across patients.  

 

Nevertheless, among the frequently perturbed edges across patients of a cancer type, we found 

multiple SMGs among the perturbed edges in all cancer types except in LIHC (Supplementary 

Table Ia). With a rise in the interest for therapeutic targeting of cancer enabling proteins at the 

PPIN level128, our findings suggest that extending the range of target proteins beyond only the 

SMGs may augment the efficacy of anti-cancer treatments. To gain insight into the possible 

roles the proteins involved in edgetic perturbations may have in tumorigenesis, we used 

SurvExpress (except for KICH whose data is absent in the database) to analyze if the expression 

changes of these proteins could predict overall patient survival (OS) and distinguish between 

patients with longer and shorter lifespans following tumorigenesis. For each cancer type, we 

selected proteins connected by the significantly perturbed edges and randomly chose a similar 

number of proteins from the non-perturbed edges to predict overall patient survival. In all 

cancer types, we found that all the significantly perturbed edges harbor proteins that 

significantly affect patient survival (log-rank p-value <0.05, (Supplementary Table IIa, and 

Figure S4) while the non-perturbed edges did not contain proteins that could predict the overall 

patient survival.  

 

We carried out SurvExpress analysis on all cancer types except in kidney chromophobe 

(KICH) whose survival data is absent in SurvExpress database. To understand the roles these 

proteins play in KICH tumorigenesis, we performed text mining in PubMed using the protein 

identifiers plus the term cancer for each protein involved in significant edgetic perturbations134. 

The results for each individual cancer type are summarized below (and also in the webportal), 

with the corresponding images available in Supplementary figure 3, and Supplementary Table 

II. For the results of the survival analysis using the proteins obtained after network 

randomization, see Supplementary figure 4. 

 

BRCA.  

We found that proteins involved in both edgetic gains and losses (e.g., CDC25C, NOS2, and 

FOXF1) contribute to BRCA tumorigenesis as previously suggested135–136. We further 

observed that most patients showing significant edgetic perturbations were at a higher risk of 

BRCA than those who did not have such edgetic perturbations. For example, the edge between 

the regulator of nonsense transcripts 2 and heparan sulfate 3-O-sulfotransferase 3A1 (UPF2-

HS3ST3A1) was specifically gained in BRCA patients, and all of them (110/110) were 

predicted to be at high risk of BRCA related death (shorter lifespan). Our findings also 

corroborate previous research indicating the cell and tumor specificity of HS3ST3A1 in BRCA 

tumorigenesis137.  

 

LUAD.  

The primary protein involved in LUAD specific edgetic gains, mitochondrial 2-

oxodicarboxylate carrier (SLC25A21, an ornithine decarboxylate carrier), was more significant 

in predicting a majority of LUAD patients as being at a higher risk of LUAD related death than 

any other proteins involved in the other perturbations. Tian et al. have shown the existence of 

elevated levels of ornithine decarboxylate (ODC) and polyamines in lung cancer138 while 
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Kumar et al. have shown that targeting ornithine decarboxylase and related pathways by the 

agent DMFO/Eflornithine prevents tumor and adenocarcinoma formation in mice infected with 

lung cancer139. Since we identified SLC25A21 perturbations as being specific to LUAD, our 

findings suggest that SLC25A21 and three of its interacting partners (PPIE, FBX06, and 

NOSIP) may be essential biomarkers in LUAD and targets for LUAD chemoprevention.  

 

 

LUSC. 

Proteins involved in both edgetic losses and gains may be important in LUSC tumorigenesis. 

For instance, our study indicates that the mediator of RNA polymerase II transcription subunit 

12-like protein (MED12L), a lung cancer marker previously associated with carboplatin-

induced cytotoxicity in cancer patients of African descent140 could be a multiracial lung cancer 

biomarker and specifically vital for LUSC subtype. While our study revealed that LUAD and 

LUSC shared a high proportion of edgetic losses, we also found perturbations harbouring 

proteins distinguishing the two non-small cell lung cancer types. For example, while previous 

research has linked significant mutation of the T-cell surface glycoprotein CD1b (CD1B) 

protein to non-small cell lung cancer types141, our study further suggests that CD1B may be 

more relevant to LUSC.  

 

PRAD.  

Even though there was no data for deceased patients in the PRAD cohort, our analysis revealed 

at least 13 out of 52 patients that showed a higher risk of PRAD related death as a consequence 

of the proteins involved in edgetic perturbations. For instance, we found eight patients carrying 

perturbations affecting the homeobox protein DLX-2 (DLX2) that was explicitly gained in 

PRAD cancer type, as being at a high risk of PRAD related death. DLX2 is a novel epigenetic 

marker used in the identification of PRAD patients for active surveillance142. Also, we found 

an additional patient predicted to be at high risk of PRAD-related death following disruptions 

involving the galectin-9C (LGALS9C) protein. While a recent study identified galectin-9 as an 

anti-cancer agent35, the authors could not confirm if LGALS9C or LGALS9B (galectin-9 like 

proteins) were also anti-cancer agents. Our research suggests otherwise, and implicates 

LGALS9C in tumorigenesis.  

 

KIRC.  

Proteins involved in both edgetic gains and losses appear to be essential in KIRC tumorigenesis 

since a significant number of patients showed a high risk of KIRC-related death 

(Supplementary Table IIb and Supplementary figure 3). Additionally, we discovered KIRC 

specific edge losses involving the bcl-2-interacting killer protein (BIK), which was previously 

reported as a landmark in KIRC oncogenesis143.  

 

KIRP.  

Gene expression changes of the proteins involved in both edgetic gain and loss perturbations 

could predict overall patient survival, and these proteins have already been found to be critical 

in cancer progression. For instance, high levels of expression of the protein ribonucleoprotein 

IMP3 (IGF2BP3) is an indicator of kidney tumors more likely to undergo distant metastasis. 

Moreover, IGF2BP3 is an independent prognostic marker in kidney cancers144. The role of 

ASB14 in cancer is largely unknown; however, some ASB proteins have been shown to be 
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involved in cancer progression (e.g., ASB3, ASB8 and ASB16 in Kidney cancer)145. Our study 

may be the first to link ASB14 to kidney cancer: we found ASB14 and its interactors to be 

prognostic in KIRP (p =1.52e-08, S4 Table and S2 Fig), making it a viable candidate for 

experimental validation given the recent knowledge of the role of ASB proteins in other types 

of cancer. Also, our findings agree with those of Prestin et al. who showed the deregulation of 

the nuclear receptor subfamily 0 group B member 1 (NROB2) protein to be an important step 

in renal cancer progression146. Additionally, edgetic loss between dickkopf-related protein 1 

and MyoD family inhibitor (DKK1-MDFI), proteins involved in Wnt signalling147,148, may 

suggest that deregulation of the Wnt Signalling pathway is a vital event in KIRP. Since DKK1 

is a tumor suppressor149, its perturbation in KIRP may be an indicator of why most patients 

showing this edgetic loss perturbation were at a higher risk of KIRP related death.  

 

COAD.  

Proteins involved in both edgetic gains and losses may be essential in COAD tumorigenesis. 

Our results agree with previous works linking, for instance, overexpression of the melanocyte-

specific protein 1 (CITED1) to reduced patient survival in intestinal tumors150 and the voltage-

gated calcium channel subunit alpha protein (CACNA1A) to patient survival as well as drug 

resistance in colorectal cancer151.  

 

THCA.  

Proteins involved in both edgetic gain and loss perturbations are engaged in THCA 

tumorigenesis. Also, our study revealed probable and, to the best of our knowledge, hitherto 

unknown THCA biomarkers (RAB40A and CSAG1). However, the ras-related protein Rab-40A 

(RAB40A) has been shown to participate in ubiquitination and migration in high-grade breast 

cancer samples152 while the expression changes of the chondrosarcoma-associated gene 1 

protein (CSAG1), a cancer-testis antigen, has been reported to be a signature in some human 

cancer cell lines153. Additionally, other cancer testis antigens are prevalent in thyroid 

malignancies, but their biological roles are still unclear154.   

 

HNSC. 

We found that proteins involved in both edgetic loss and gain perturbations participate in 

HNSC progression. For instance, we found an 11-gene (WNK4, SGK1, KLHL2, HSP90AA1, 

YWAHQ, AKT1, BCL6, CUL3, NEDD4L, STK39, KLHL3) HNSC-specific loss perturbation 

signature with the serine/threonine-protein kinase WNK4 (WNK4) losing interactions with all 

the other 10 genes. WNK4 mutations result in hyperkalemia, cell permeability155 and 

recruitment of claudin proteins which promote metastasis in cancer156. Additionally, cullin 3 

(CUL3) has been linked to HNSC metastasis and drug resistance157. Our study, therefore, 

presents a multi-gene HNSC specific biomarker that may be of use in clinical monitoring and 

therapy decision making 

 

STES.  

Proteins involved in edgetic losses (e.g., HSPA1L) may be more oncogenic than those involved 

in edgetic gains: twice as many STES patients were predicted to be at a higher risk of STES 

related death by the proteins engaged in edgetic losses. The perturbation of the heat shock 

protein (HSPA1L/HSP70-hom) in our analysis supports the current knowledge of the 

deregulation of HSP70 anti-apoptotic family members in gastric cancers. HSP70 proteins are 

pivotal in the folding of proteins or refolding of denatured proteins and have been shown to be 
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prognostic in gastric cancers158. Our study, therefore, additionally supports that HSPA1L may 

also be a therapeutic target for STES.  

 

LIHC.  

Survival analysis revealed that proteins involved in both edgetic gains and losses may 

participate in tumor growth and are essential for patient stratification. Our findings corroborate 

previous research linking increased expression of the protein Wnt-3a (WNT3A) to tumor cell 

proliferation in LIHC159. We found a 14-gene edgetic gain perturbation biomarker consisting 

of WNT3A, HSPA5, LRP6, CANX, TRAF2, FZD2, FZD1, KCTD1, PPP2R1B, PPP2R5D, 

PPP2R5A, PPP2R5B, PPP2R5E, and PPP2R2D. This 14-gene signature presents a biomarker 

for probable therapy targeting via microRNA-195, as previously suggested159. 

 

BLCA.  

Our results suggest that proteins involved in both edgetic gains and losses are essential 

biomarkers in BLCA tumorigenesis and represent candidate BLCA biomarkers. For instance, 

perturbations involving the histone protein HIST2H2AC may be responsible for the epigenetic 

changes in BLCA tumorigenesis. Accumulation of mutations in HIST2H2AC has previously 

been linked to tumorigenesis in cancer160. Additionally, Monteirro et al. have recently 

confirmed that indeed HIST2H2AC may be a biomarker in BRCA161. Since we have already 

shown a close relationship between edgetic gain perturbation in BRCA and BLCA, we tend to 

think that HIST2H2AC may also promote tumor proliferation in BLCA. To our knowledge, 

this study is the first to link HIST2H2AC to BLCA oncogenesis.  

 

KICH.  

To determine if proteins involved in significant edgetic perturbations in KICH play a role in 

oncogenesis, we searched in PubMed for publications linking these proteins to cancer and 

specifically to KICH oncogenesis134. The top gained biomarker in KICH (gained in 25/25 

samples) included a 14-gene signature (HRK, BCL2, BCL2L1, MCL1, ELAVL1, BCL2A1, 

GRPR, CEP250, CDK5, DCLK3, DGUOK, SLC12A5 and NUFIP1) with the activator of 

apoptosis harakiri (HRK) protein gaining interactions with all the other 13 genes. While HRK 

together with other pro-apoptosis BH3-only members of the Bcl2 family have been extensively 

linked to apoptosis162 and possible cancer therapy163, to our knowledge, no study has linked 

them directly to KICH oncogenesis. Our study uncovered deregulation of several Bcl2 family 

members in KICH, and this information may be critical for therapeutic targeting for the only 

clinically approved drug venetoclax in treating leukaemia34. 

 

 

2.2.6 Cancer subtypes exhibit unique edgetic perturbation patterns 

Among the cancer subtypes, we also searched for subtype-specific disruptions 

(Supplimentary Table Ib). We found that subtypes differed in their edgetic 

perturbations and that most of the proteins involved in these network disruptions 

might be responsible for the observed subtype phenotypes. For example, network 

edgetic disturbances involving the ribonucleoprotein IMP3 (IGF2BP3), which 

frequently occurred in ER+, PR+, HER− subtypes, and those involving the m-phase 

inducer phosphatase 3 protein (CDC25C), often observed in ER−, PR−, HER+ 

subtypes, revealed the mutual exclusivity nature of BRCA subtypes. Also, some of 
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the proteins whose edges were specifically perturbed within patients grouped in a 

particular cancer subtype may be novel subtype-specific biomarkers. For example, 

the protein cytochrome P450 1A1 (CYP1A1) is a probable biomarker in Classical 

LUSC subtypes, neuron navigator 2 protein (NAV2) in MSS STES subtypes and the 

apin protein (ODAM) in THCA BRAF-like subtypes. Furthermore, we found 

interacting proteins whose connections were differentially perturbed across cancer 

subtypes. For instance, while PR−/ER− BRCA and KIRP Type1 subtypes shared 

nearly all (71/73) edgetic gain perturbations involving the gene IGF2BP3, KIRP 

Type 1 also had two other edgetic perturbations affecting the IGF2BP3 gene 

(IGF2BP3 -KRT17 and IGF2BP3 -SYT17) suggesting that these proteins may have 

a probable role in the differential mechanisms between BRCA and KIRP 

tumorigenesis. Besides, we discovered biomarkers shared by several subtypes, for 

example, the core components of the nucleosome (HIST1H2AB, 

HIST2H3A and HIST1H3A) in Secretory and Classical LUSC, PRAD SPOP and 

BRCA HER+ subtypes. Somatic mutations in these histone proteins have previously 

been linked to cancer, thus suggesting the relevance of these molecules as candidate 

cancer subtype-specific biomarkers122,164,165. 

2.2.7 Proteins involved in cancer-specific edgetic gains and losses possess distinct 

functional roles. 

 

Based on the perturbation profiles associated with each cancer type, we identified two different 

edgetic events – those occurring in only one patient (patient-specific perturbations) and those 

occurring in at least 2 samples (cancer type perturbations). In the latter, perturbed edges present 

in only one cancer type are cancer-specific perturbations (Supplementary Table III) while those 

present in at least 2 cancer types are multi-cancer perturbations.  

We found that LIHC had the highest number of cancer-specific edgetic gains (2019) while 

KIRC had the lowest number of such gains (462). LIHC and BLCA had the highest (4068) and 

the lowest (202) number of cancer-specific edgetic losses, respectively (Supplementary Table 

III). Overall, LIHC had the highest number of both cancer-specific edgetic gains and losses 

(6087), meaning that LIHC is more susceptible to cancer-specific perturbations (unique 

perturbations) than other cancer types. On the other hand, LUAD had the least number of both 

cancer-specific gains and losses (1218), suggesting that LUAD is least susceptible to cancer-

specific perturbations, and is more likely to share most perturbations with other cancer types.  

7 of the 13 cancer types (COAD, PRAD, KICH, KIRP, KIRC, LUSC and LIHC) had more 

cancer-specific edgetic losses than gains while the rest (THCA, BLCA, HNSC, STES, LUAD 

and BRCA) had more cancer-specific edgetic gains than losses (Supplementary Table III). 

These findings are in line with previously published results, which suggest that the liver has a 

large number of genes showing tissue specific expression166–167, while the lung has a low 

number of such genes168.  

To explore the biological implications of edgetic perturbations we carried out a GO enrichment 

analysis using topGO and then employed REVIGO to group together the enriched GO terms. 

Among the proteins involved in edgetic gains, REVIGO summarized their enriched GO terms 

into 8 biological processes (BP), 14 cellular components (CC), and 51 molecular functions 

(MF) (dispensability value < 0.05 after REVIGO pruning, Figure 15A-15C). 
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Figure 15. A two-dimensional scaling projection of the enriched Biological processes (A), 

Cellular Components (B) and Molecular functions (C) for proteins involved in cancer-specific 

edgetic gains after REVIGO pruning (dispensability value < 0.005). Dispensability of a term 

represents both the degrees of redundancy and enrichment. The lower the dispensability of a 

term, the least redundant and more significant a term is. The axes show the distribution of the 

GO terms based on their semantic similarities. The bubble color reflects the degree of 

significance (p-value) with blue color indicating a higher significance than the red color. The 

richly colored bubbles in the foreground represent GO terms with a dispensability value of < 

0.005. The bubble sizes indicate how often a GO term occurs, the bigger the size the more 

frequent the term is. 

Of these enriched GO terms, 2 biological processes (lysosomal transport and viral process), 5 

cellular components (focal adhesion, retromer complex, nucleoid, ribbon synapse, Flemming 

body), and 8 molecular functions (transcription factor activity- RNA polymerase II 

transcription factor binding, transcriptional activator activity-RNA polymerase II core 

promoter proximal region sequence-specific binding, low-density lipoprotein receptor activity, 

signal transducer activity, downstream of receptor, structural molecule activity, protein 

transporter activity, ubiquitin protein ligase binding, translation regulator activity, histone 
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methyltransferase activity (H3-K27 specific), ubiquitin-protein transferase activator activity) 

had a dispensability value of 0. Our results support previous findings that suggest that 

lysosomal transport and viral processes mediate cell proliferation and apoptosis in cancer 

cells169,170 by targeting cellular components such as the focal adhesions or retromer 

complex171,172.  For the proteins involved in edgetic losses, REVIGO clustered their enriched 

terms into 7 biological processes, 17 cellular components, and 51 molecular functions 

(dispensability value < 0.05 after REVIGO pruning, Figure 16A-16C).  

 

 
Figure 16. Two-dimensional scaling projections of the enriched Biological processes (A), 

Cellular Components (B) and Molecular functions (C) for proteins involved in cancer-specific 

edgetic losses after REVIGO pruning (dispensability value < 0.05). Dispensability of a term 

represents reduced redundancy and a high degree of enrichment. The lower the dispensability 

of a term, the least redundant and more significant a term is. The axes show the distribution of 

the GO terms based on their semantic similarities. The bubble color reflects the degree of 

significance (p-value) with blue color indicating a higher significance than the red color. The 

richly colored bubbles in the foreground represent GO terms with a dispensability value of < 

0.005. The bubble sizes indicate how often a GO term occurs, the bigger the size the more 

frequent the term is. 
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Of these, 3 biological processes (negative regulation of transcription from RNA polymerase II 

promoter, anterior/posterior pattern specification, entry of bacterium into host cell), 3 cellular 

components (focal adhesion, RISC complex, host cell), and 11 molecular functions (see details 

in Dataset 5, transcription factor activity, protein binding, RNA polymerase II transcription 

cofactor activity, transcriptional repressor activity, RNA polymerase II transcription regulatory 

region sequence-specific binding, protein disulfide isomerase activity, protein transporter 

activity, ubiquitin protein ligase binding, translation regulator activity, advanced glycation end-

product receptor activity, ubiquitin-protein transferase activator activity) had a dispensability 

value of 0. These results complement previous work that indicates the importance of pathogens 

and transcription deregulation via the RISC complex during tumorigenesis173–174. On the one 

hand, our results may suggest that proteins involved in edgetic gains may be recruited to 

upregulate cancer cell proliferation and put critical pathways under stress, as previously 

suggested175. On the other hand, edgetic losses appear to cause the deregulation of transcription 

activities as well as the distortion of epithelial cell polarity, an essential process in cancer cell 

transport membranes176. 

2.2.8 Hierarchical clustering of perturbed edges reveals cancer types sharing similar 

perturbation signatures 

 

Cancer hallmarks often cut across cancer types28, we thus sought to find out whether cancer 

types might also share perturbed network edges. To this end we merged all lost and gained 

edges to build multi-cancer loss and gain profiles, respectively. The maximum number of 

cancer types sharing edgetic perturbations (either gains or losses) was 9 out of 13. We found 

82 and 2178 gained and lost edges shared across 9 cancer types, respectively, with the Q9BZD4 

(NUF2) and P04629 (NTRK1) proteins associated with the largest number of perturbations 

(Table 4).  

 

Table 4: Proteins driving pan-cancer edgetic perturbations 

Type of perturbation Gene identifier 

Proteins involved in 

edgetic gain 

perturbations 

Proteins involved in 

edgetic loss perturbations 

NUF2(30), CDC45(23), ZIC2(6), CANPA(3), TICRR(3), NEIL3(6), 

TOPBP1(2) 

 

NTRK1(1787), TDGF1 (23), AVPR2(13), MAPK4(11), PTPN5(12), 

CNTN1(10), CHD5(14), ITLN1(10), PACRPG(20), MYOC(36), 

CA14(36), CAMK2A(39) 

     The numbers in the brackets indicate the total number of edges perturbed at that protein node 

 

For instance, edgetic gains involving the NUF2 protein were observed in all cancer types 

except for COAD, KICH, KIRC and PRAD. Edgetic losses involving the NTRK1 protein were 

observed in all cancer types except for STES, BLCA, LUSC and PRAD. The majority 

(98.78%) of edgetic gains involved 6 proteins, with the NUF2 protein alone being a subject in 

36.58% of the perturbations. Most edgetic losses (98.76%), on the other hand, involved a 

common set of 35 proteins, with the NTRK1 protein being involved in 88.34% of the 

perturbations. Both of these proteins are known cancer drug targets and are now being 

considered as crucial molecules in the development of tumor-agnostic drugs to treat diverse 

cancer types177. Silencing of the NUF2 protein has been shown to hinder tumor growth across 

cancer types178,179 while deregulation of the NTRK1 protein has been successfully targeted by 
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the drug Entrectinib180. Our results, therefore, suggest that the drug Entrectinib may be a choice 

in the treatment regimen of a diverse number of cancer types but may not be beneficial to 

patients diagnosed with STES, BLCA, LUSC (apart from ROS1-positive) and PRAD. A higher 

proportion of the multi-cancer edgetic losses compared to edgetic gains implies that cancer 

progression favors the loss of crucial protein interactions preventing the cell’s safeguards from 

inhibiting malignant proliferation. This phenomenon was also observed in the SMGs, most of 

them were involved in edgetic losses rather than in edgetic gains. A subset of the edgetic losses 

can be attributed to the truncation of proteins leading to the loss of the domains responsible for 

mediating the interaction (Figure 2), while the remaining edgetic losses are due to a complete 

loss of expression of the specific genes, a phenomenon previously implicated in oncogenesis111.  

Analysis of the significantly enriched KEGG pathways affected by the proteins involved in 

multi-cancer edgetic perturbations revealed known pathways181,182 deregulated across cancer 

types - (e.g., hsa05200 - pathways in cancer, hsa04120 - ubiquitin mediated proteolysis), Figure 

17, Table 4, Dataset 3 and Dataset 5.  

 

 

 
Figure 17. KEGG pathways differentially enriched between the proteins engaged in edgetic 

gains and those involved in edgetic losses. The dot colour reflects the degree of significance 

(p-value) with red colour indicating a higher significance than the blue colour. The dot sizes 

indicate how often a KEGG pathway term occurs. The bigger the size, the more frequent the 

term occurs. 
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Additionally, we observed KEGG pathways that were unique only to the proteins involved in 

edgetic gains (e.g. hsa05203 - viral carcinogenesis, hsa03460 - fanconi anaemia pathway and 

hsa03008 - ribosome biogenesis in eukaryotes) or in edgetic losses (e.g., hsa04024 - hsa04022 

cAMP signalling pathway and hsa04024 - cGMP-PKG signalling pathway) (Table 5a-b, and 

Dataset 5).  
 

Table 5a: The unique KEGG pathways affected by the proteins involved in multi-

cancer edgetic gains 

 

KEGG pathway identifier and term 

hsa03460: Fanconi anemia pathway 

hsa03008: Ribosome biogenesis in eukaryotes 

hsa03018: RNA degradation 

hsa00190: Oxidative phosphorylation 

hsa03420: Nucleotide excision repair 

hsa04114: Oocyte meiosis 

hsa03440: Homologous recombination 

hsa04622: RIG-I-like receptor signaling pathway 

hsa05016: Huntington's disease 

hsa00310: Lysine degradation 

hsa05323: Rheumatoid arthritis 

hsa03430: Mismatch repair 

hsa00051: Fructose and mannose metabolism 

hsa04370: VEGF signaling pathway 

hsa03030: DNA replication 

hsa04966: Collecting duct acid secretion 

hsa04730: Long-term depression 

hsa05416: Viral myocarditis 

hsa04960: Aldosterone-regulated sodium reabsorption 

hsa04330:Notch signaling pathway 

hsa04710:Circadian rhythm 
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Table 5b: The unique KEGG pathways affected by the proteins involved in multi-cancer 

edgetic losses 

hsa04728: Dopaminergic synapse 

hsa04922: Glucagon signaling pathway 

hsa04022: cGMP-PKG signaling pathway 

hsa04261: Adrenergic signaling in cardiomyocytes 

hsa05031: Amphetamine addiction 

hsa05030: Cocaine addiction 

hsa00010: Glycolysis / Gluconeogenesis 

hsa00020: Citrate cycle (TCA cycle) 

hsa05020: Prion diseases 

hsa04923: Regulation of lipolysis in adipocytes 

hsa05410: Hypertrophic cardiomyopathy (HCM) 

hsa00970: Aminoacyl-tRNA biosynthesis 

hsa04340: Hedgehog signaling pathway 

hsa01200: Carbon metabolism 

hsa04720: Long-term potentiation 

hsa01130: Biosynthesis of antibiotics 

hsa01230: Biosynthesis of amino acids 

hsa03015: mRNA surveillance pathway 

hsa04921: Oxytocin signaling pathway 

hsa05414: Dilated cardiomyopathy 

hsa04713: Circadian entrainment 

hsa04725: Cholinergic synapse 

hsa04961: Endocrine and other factor-regulated calcium 

reabsorption 

 

Even though intra-tumor heterogeneity offers crucial data during therapeutic decision 

making183,184, biomarkers cutting across multiple cancer types are invaluable in the clinical 

research set up as they shed light on pathways shared across cancer patients and inform on 

inter-tumor heterogeneity185. Such biomarkers may be used as standard assessment 

biomolecules to facilitate the interpretation of laboratory test results in the clinic or help in 

establishing commonly distorted biological pathways in cancer, as suggested by186. Because 

the edgetic gains and losses are responsible for affecting different molecular pathways, we 

considered them separately in clustering cancer types based on the perturbations observed. We 

performed this analysis three times (for edgetic gains/losses separately and considering all data 

together) under the assumption that the majority of gains or losses may have some common 

underlying cause (for example, molecular pathways), which may persist across multiple cancer 

types. Hierarchical clustering of the perturbation patterns using the R package Pvclust 

identified high confidence (p-value < 0.05) cancer clusters based on shared perturbation 

signatures (Figure 18A-18C). Using the random forest algorithm (see Methods), we found sets 

of edgetic perturbation patterns important in grouping cancer types into the identified clusters 

(Figure 18).  
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Figure 18. Cancer types share multiple perturbation patterns: Dendrograms based on edgetic 

gains (A), edgetic losses (B) and both edgetic gains and losses (C) across cancer types. Gained 

edges revealed 2 main clusters (A) with sub-clusters consisting of (i) BRCA, BLCA and STES, 

(ii) LUAD and LUSC, (iii) COAD and KICH, (iii) LIHC and PRAD, and (iv) KIRC and KIRP. 

Lost edges identified 2 main clusters (B) with additional sub-clusters consisting of (i) KICH, 

KIRP, and KIRP, (ii) LUAD and LUSC, (iii) COAD, HNSC and BRCA, (iv) STES, BLCA 

and THCA. Clustering of both edgetic gain and loss patterns revealed 3 main clusters (C) 

consisting of (i) LIHC, KICH, KIRC, KIRP, (ii) PRAD, STES, BLCA, THCA and (iii) LUAD, 

LUSC, COAD, BRCA and HNSC. The Approximately unbiased AU (green) and Bootstrap 

probability BP (red) scores indicate the likelihood of observing the obtained clusters. The 

clusters within the red rectangles with AU scores of >99% were observed after multiscale 

bootstrap (n= 10000). The edge # below the AU and BP values gives the edge count within the 

tree. The height indicates the similarity or dissimilarity between any two observations: the 

lower the height of the fusion between two observations, the more similar they are. 

Clustering of the edgetic gain patterns identified two main groupings: one cluster comprised of 

BRCA, LUSC, LUAD, STES and BLCA, and another one containing KIRP, KIRC, KICH, 
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LIHC, THCA, HNSC, COAD and PRAD (Figure 18A). The proteins participating in the above 

edgetic perturbations present critical biomarkers shared across multiple cancer types. our 

findings are in agreement with Yuan et al.187, who indicated that pan-cancer analyses reveal 

additional biomarkers that may be masked when searching for biomarkers in single tumor type 

studies. The first set consisted of edgetic perturbations affecting the melanoma-associated 

antigen 3 protein (MAGEA3) and the DNA repair and recombination protein RAD54-like 

(RAD54L) (Supplementary figure 5A). These perturbations were observed only in BRCA, 

LUAD, STES and BLCA. Yamada et al. have shown that deregulation of MAGEA3 and other 

cancer testis antigens in BRCA and LUAD maybe a promising route for therapeutic 

targeting188. Our results further suggest that MAGEA3 is similarly deregulated in STES, LUSC 

and BLCA and therapeutic targeting of this protein can also be extended to patients diagnosed 

with these three cancer types. Moreover, the periodic upregulation of RAD54L (a DNA repair 

protein) during the G1/S phase of the cell cycle has been shown to positively correlate with 

cancer proliferation by setting up feedback loops important in rapid cell multiplication 

processes189.  

While the TCGA consortium ranks RAD54L as one of the genes involved in the DNA repair 

pathway in some TCGA cancer types190, our study further suggests that RAD54L deregulation 

may be an indicator of S phase expression in BRCA, LUSC, LUAD, STES and BLCA, 

therefore implicating RAD54L in the proliferation of the above cancer types . The other set of 

the predicted informative perturbations affected the histone-H3 like centromeric protein A 

(CENPA), kinesin-like protein KIF14 (KIF14), RPGR-interacting protein 1 (RPGRIP1), and 

deoxyribonuclease-2-beta (DNASE2B) protein and were observed in KICH, KIRP, KIRC, 

LIHC, PRAD, STES and THCA (Supplementary figure 5B). While CENPA is an epigenetic 

marker in multiple cancer types indicating how aggressive the cancer type is  , the role of 

RPGRIP1 in cancer is not yet clear193,194. As it is a player in ciliopathy and proteasome 

deregulation, our results suggest that additional research should be undertaken to establish the 

oncogenic or tumorigenic role of RPGRIP1 in cancer. Additionally, deregulation of KIF14 and 

DNASE2B via p27 signaling has been observed in multiple cancer types195,196 and may offer an 

opportunity for therapeutic targeting since p27 has been found to be prognostic of therapeutic 

response in cancer197. Our results, therefore, indicate that the proteins prone to gaining new 

interacting partners, while being relatively rare compared to proteins involved in edgetic losses, 

also have a role in cancer progression, may be important disease monitors and are possible 

candidates for therapeutic targeting.  

Clustering of the edgetic loss patterns identified two main clusters: one cluster consisting of 

PRAD, STES, THCA, and BLCA and another cluster consisting of KIRP, KIRC, KICH, 

LUAD, LUSC, LIHC, COAD, BRCA and HNSC (Fig 7B). Here, we also found two sets of 

edgetic perturbation patterns important in distinguishing these cancer types. One set contained 

edgetic perturbations affecting the peripherin-2 protein (PRPH) together with the edges 

connecting the amyloid-beta precursor protein and the serine/threonine protein kinase NIM1 

(APP-NIM1K), and the reelin protein with the very low-density lipoprotein receptor (RELN-

VLDLR) (Supplementary figure 5C). These perturbations were frequently observed in PRAD, 

STES, THCA, and BLCA, suggesting a shared disease mechanism amongst these cancer types. 

Depletion of APP and NIM1K has been found to control the G1 or G2 phase of mitotic cells 

resulting in abnormal cell sizes198,199. The inhibition of proteins involved in the deregulation of 

G1/G2 checkpoint (e.g., WEE1) has been suggested to be a viable option for therapy 

development (e.g., the drug AZD1775/MK1775) against advanced malignancies200. First, our 
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results indicate that the patients having the above perturbations were at an advanced cancer 

stage, and secondly, AZD1775 may be viable in controlling the G1 or G2 phase of abnormal 

mitotic cells in patients diagnosed with advanced PRAD, STES, THCA, and BLCA. Wang et 

al. have previously shown that inactivation of alpha-internexins in gastroenteropancreatic 

neuroendocrine tumors (cancers affecting the pancreas, thyroid glands, gastrointestinal tract 

and partly the bladder) indicated poor prognosis of the patients201. In this study, we specifically 

found deregulation of PRPH/peripherin (an alpha-internexin) via edgetic loss perturbations, 

thus suggesting that it may be indicative of aggressive gastroenteropancreatic neuroendocrine 

tumors and consequently provide direction in therapy decision making as well as in disease 

monitoring. The second set contained high scoring edgetic perturbations affecting the 

neurotrophic tyrosine kinase receptor type 1 (NTRK1) and occurred in KIRP, KIRC, KICH, 

LUAD, LUSC, LIHC, COAD, BRCA and HNSC (Supplementary figure 5D). As already 

mentioned above, NTRK1 is a target for the drug Entrectinib. Our study, therefore, implies that 

the drug Entrectinib is not only beneficial to non-small cell cancer types but may also be 

clinically relevant to KIRP, KIRC, KICH, LIHC, COAD, BRCA and HNSC.  

Finally, to account for all the molecular pathways affected by the edgetic perturbations, we 

performed clustering based on both edgetic gains and losses that yielded 3 main groups 

consisting of (i) LIHC, KICH, KIRC, KIRP, (ii) PRAD, STES, BLCA, THCA and (iii) LUAD, 

LUSC, COAD, BRCA and HNSC (Figure 18C). Here, the random forest algorithm predicted 

3 groups of perturbed edges as being highly discriminant of the cancer types. The first group 

of perturbed edges was observed in LIHC, KICH, KIRC, KIRP and affected the Wnt-7b protein 

(WNT7B), together with a number of edges – e.g., the edge between the homeobox protein 

Hox-B9 and the hepatocyte nuclear factor 3-alpha protein (HOXB9-FOXA1) (S5 Fig E). The 

perturbations affecting WNT7B involved edgetic gains in KICH, KIRP and LIHC and edgetic 

losses in BLCA, BRCA, COAD and STES. No perturbations involving WNT7B were found in 

HNSC, KIRC, LUAD, LUSC, PRAD and THCA. We suggest that WNT signaling may be 

enhanced in KICH, KIRP and LIHC while being depleted in BLCA, BRCA, COAD and STES 

tumor types. WNT7B participates in the deregulation of the beta catenin, c-Jun N-terminal and 

Ca2+ releasing pathways, and its increased expression is critical in cancer development202. For 

example, when up-regulated in BRCA, STES and some types of LIHC (cholangiocarcinoma), 

this abnormal expression correlates to poor prognosis and can be pharmacologically inhibited 

in mice203–206. Our results indicate that both up- and downregulation of WNT7B across cancer 

types may result in edgetic gains or losses at the protein-protein interaction network, and 

further suggest which human cancer types may be candidates for a WNT7B-based targeted 

therapy or disease monitoring (i.e, KICH, KIRP, LIHC, BLCA, BRCA, COAD and STES).  

We also found another grouping of multiple perturbed edges that were crucial in distinguishing 

the cancer types (Supplementary figure 5F). Of these, the edge between the phosphatase and 

tensin homolog protein and sialyltransferase 8F protein (PTEN-ST8SIA6) was predicted to have 

the highest score. This edgetic perturbation involved edgetic losses in BRCA, COAD, HNSC, 

KIRC, KIRP, LIHC, LUAD and LUSC, with an edgetic gain in PRAD, but no perturbations in 

THCA, BLCA and STES. Our study agrees with the current knowledge on the loss of the tumor 

suppressor PTEN, in multiple cancer types57. The loss of PTEN in cancer has been correlated 

to immunosuppression and reduced T cell trafficking in mice melanoma cells207. Our findings 

suggest that PTEN and P13-AKT pathway targeted immunotherapy may be beneficial in 

BRCA, COAD, HNSC, KIRC, KIRP, LIHC, LUAD and LUSC cancer types but probably not 

in THCA, BLCA and STES. Lastly, edgetic perturbations affecting the ciliary neurotrophic 

factor (CNTF), otoferlin (OTOF), and the inhibitor of CDK interacting with cyclin A1 (INCA1) 



 

 42 

proteins together with the edge between cytokeratin-75 and cullin-3 (KRT75-CUL3) proteins 

were also predicted to be crucial in distinguishing the cancer types (Supplementary figure 5G). 

CNTF and INCA1 perturbations were only observed in cluster 3 cancer types and involved 

edgetic losses in all the 5 cancer types in cluster 3. OTOF perturbations affected edgetic losses 

in COAD, HNSC, LUSC and BRCA, edgetic gains in BLCA, KIRP and THCA, but no 

perturbations in KIRC, LIHC, PRAD and STES. Our findings confirm that the above 

mentioned proteins are crucial in tumor progression as previously suggested208–210 and pinpoint 

their important role in tumor progression in BRCA, LUAD, LUSC, COAD, BRCA and HNSC. 

 

2.2.9 Protein nodes rewired across cancer types are involved in tumorigenesis  

We used DyNet algorithm in Cytoscape to find significantly rewired proteins, that is, nodes 

recurrently affected by edgetic perturbations. We selected a node as considerably rewired if it 

had a DyNet score of at least 0.5 (see methodology section)211. In cancer, significantly rewired 

nodes were either perturbed across cancer types or were specific to a cancer type, with some 

being known cancer biomarkers (Table 6, Datasets 3 and 5). Nodes rewired across multiple 

cancers, for example, Q9HBJ0 (PLAC1), Q9BVV2 (FNDC11) and Q5T7N2 (L1TD1) have 

been suggested to influence the growth of tumor cells in various cancer types212–213. 

Furthermore, to better understand the association between the significantly rewired nodes and 

cancer, we used DisGeNET214 in clusterProfiler to search for any gene-disease relationships 

associated with the rewired nodes. We found that most of these proteins were significantly (p 

< 0.05) associated with diseases observed during the onset of cancer (e.g bronchial and lung 

dysplasia) as well as the development of multiple cancer types (Table 7).  
 

Table 6: Top 10 significantly rewired nodes per cancer type across 13 cancer types. 

THCA Q9BVV2**, Q99666, Q8N8A2, P61371, P50549, P50222, Q9Y2A9, Q92608, Q8NCP5, Q5T2W1 

BRCA Q9NQL9, Q9HBJ0**, Q86YZ3, Q76N89, P78337, P48740, P19544, Q96FW1, P04629, P12882 

BLCA Q9HBJ0**, Q96RI1, Q96FV0, Q5VYV7, P61371, P09017, P02675, Q9BVV2**, Q8NEC5 

KIRC P09651, Q12906, P35222, O60341, P46379, P12931, Q13501, Q9BXN2, Q9BVV2**, Q8TBC3 

KIRP Q92905, Q96Q40, Q96AY2, Q86SE5, P35548, O95156, P00533, Q12933, Q9NQA5, Q8WXK1 

LUSC 
Q13547, P78362, Q9HBJ0**, Q96Q40, Q81YR6, Q5T7N2**, P19544, P12882, Q7Z3S9, 

Q96FW1 

LIHC 
Q96FW1, Q9HBJ0**, Q96AY2, Q86SE5, P54289, P18509, P49736, Q9Y577, Q8TAK6, 

Q8NEC5 

PRAD 
Q96Q40, Q5T7N2**, Q9NZM1, Q9ULJ8, Q9BXA6, P62913, P04637, Q69YH5, Q12988, 

P48668 

STES 
Q13616, Q96PN8, Q86YZ3, Q86W54, Q5VU13, Q16769, P50222, Q9NRD1, Q9NZM1, 

Q9H4K1  

COAD P38398, Q9HAT0, Q96PN8, Q86SE5, Q13224, O95661, A6NK59, Q93034, P22681, Q6UXL0 

HNSC 
Q9UQB9, Q9HBJ0**, Q8WXK1, Q81YR6, Q5T7N2**, Q5T2W1, P19544, P05814, Q13618, 

Q9ULJ8 

LUAD 
Q99666, Q76N89, Q5T7N2**, P16520, P04629, Q93034, Q9Y2A9, Q9BVV2**, Q8NB78, 

Q9BX46 

KICH 

P02751, Q9Y2A9, Q9BVV2**, Q99666, Q86SE5, Q76N89, Q5T7N2**, P50549, P11245, 

P06732 

 

** proteins involved in edgetic rewiring in at least 5 cancer types 
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Table 7: Proteins involved in edgetic rewiring are associated with disease 

Disease ID Disease 

Description 

Gene

Ratio 

BgRati

o 

p.adjust geneID  Gene 

Count 

umls:C0346163 Endometrioid 

carcinoma 

ovary 

4/96 16/1738

1 

0.003 1956/7157/1499/448

8 

4 

umls:C1623038 Cirrhosis 12/96 389/173

81 

0.003 1788/10401/1956/23

35/7157/2784/1499/

4488/4171/8988/290

4/10987 

12 

umls:C1112356 Bronchial 

dysplasia 

3/96 6/17381 0.006 1956/7157/4171 3 

umls:C1334708 Metaplastic 

breast 

carcinoma 

3/96 6/17381 0.006 1956/7157/672 3 

umls:C1336084 Squamous 

Lung 

Dysplasia 

3/96 6/17381 0.006 1956/7157/4171 3 

umls:C0684337 Ewings 

sarcoma-

primitive 

neuroectoderm

al tumor 

6/96 76/1738

1 

0.008 1956/4914/7157/749

0/867/1499 

 

6 

umls:C1176475 Ductal 

Carcinoma 

9/96 223/173

81 

0.008 8202/1956/2335/715

7/6714/672/388697/

9971/6795 

9 

umls:C0153579 Malignant 

neoplasm of 

fallopian tube 

3/96 7/17381 0.01 1956/7157/672 3 

umls:C0007133 Carcinoma, 

Papillary 

9/96 233/173

81 

0.01 1956/2335/4914/715

7/10/2784/672/3065/

10987 

9 

umls:C0206629 Pulmonary 

Blastoma 

3/96 8/17381 0.018 1956/7157/1499 3 

umls:C0035335 Retinoblastom

a 

12/96 472/173

81 

0.023 1788/1956/4914/715

7/6714/116/7490/14

99/672/4171/3065/1

0987 

12 

umls:C0851135 In situ cancer 3/96 10/1738

1 

0.03 1956/7157/8988 3 

 

The GeneRatio represents the number of genes from the input (query) gene list that match the 

GO term / Total number of the input (query) genes.  

The BgRatio represents the number of genes in the DisGeNET database associated with a 

disease-gene ID/ number of genes in the DisGeNET database. 

p.adjust: Benjamini Hochberg adjusted p-value 
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2.2.10 Proteins participating in significant edgetic perturbations are implicated across all 

cancer stages 

For a mutated gene to be tumorigenic (i.e. to be a driver gene), it must accumulate mutations 

throughout the life of the cancer cell63–32. Consequently, cancer driver genes are implicated 

from the onset of cancer and progressively increase the survival of the cancer cell as the disease 

progresses. We hypothesised that edgetic perturbations that harbour essential biomarkers may 

play an important role in tumorigenesis and cut across all cancer stages. To determine if this 

phenomenon applied to edgetic perturbations, we searched for the stage distribution of the 

patients that had significantly perturbed edges in their PPINs. In all cancer types, the 

significantly perturbed edges were observed across all stages albeit in varying proportions, 

indicating their probable role from cancer onset and in progression (Table 8). Our results mirror 

those from Li 215 who pointed out that essential cancer biomarkers are active in the entire life 

of a cancer cell. 

 

 

 

Table 8A: Distribution of patient samples harbouring the top lost edges across cancer 

stages. 

Cancer type Sample size(a) Number of 

samples 

grouped in 

Stage I 

Number of 

samples 

grouped in 

Stage II 

Number of 

samples 

grouped in 

Stage III 

Number of 

samples 

grouped in 

Stage IV 

THCA 59 25 6 9 3 

BLCA 19 0 4 7 8 

BRCA 110 18 60 21 2 

KIRC 72 25 11 16 20 

KICH 25 10 8 3 4 

LUAD 58 26 9 12 2 

LUSC 51 24 15 5 1 

LIHC 40 15 7 8 0 

COAD 26 3 13 4 5 

KIRP 32 14 1 12 4 

STES 43 5 16 7 3 

HNSC 43 2 16 7 19 

 

 (a)number of patient samples having significantly perturbed edges. 
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Table 8B: Distribution of patient samples harbouring the top lost edges across 

cancer stages.  

Cancer 

type 

Sample size(a) Number of 

samples 

grouped in 

Stage I 

Number of 

samples 

grouped in 

Stage II 

Number of 

samples 

grouped in 

stage III 

Number of 

samples 

grouped in 

Stage IV 

THCA 59 25 6 9 3 

BLCA 19 0 4 7 8 

BRCA 110 18 60 21 2 

KIRC 72 25 11 16 20 

KICH 25 10 8 3 4 

LUAD 49 26 9 12 2 

LUSC 46 24 15 5 1 

LIHC 38 14 9 9 1 

COAD 26 3 13 4 5 

KIRP 32 14 1 12 4 

STES 43 5 16 7 3 

HNSC 43 2 16 7 19 

 
(a)number of samples having the significantly perturbed edges 
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2.2.11 The EdgeExplorer website 

The EdgeExplorer portal (http://webclu.bio.wzw.tum.de/EdgeExplorer) provides annotations 

for all the cancer-type specific proteins involved in edgetic perturbations (a total of 539 

proteins). We annotated each protein by performing an exhaustive literature search for relevant 

experimental evidence linking it to the specific cancer type; if hits related to that cancer type 

were not found, we broadened the search to include other cancer types. The main advantage of 

the web portal is that it allows for easy browsing of the results and searching for information 

on specific proteins. Moreover, it provides the functionality to download all of the annotated 

data.  

 

 

 
 

Figure 19. A screenshot of the EdgeExplorer portal homepage. The EdgeExplorer portal 

provides a resource to the scientific community to easily query proteins of interest to find out 

if they are involved in edgetic perturbations in 13 different cancer types. 

 

 

 

 

 

 

 

 

 

http://webclu.bio.wzw.tum.de/EdgeExplorer
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2.3 DISCUSSION 

Even with improving knowledge on cancer oncogenesis as well as the development of new 

cancer therapies aided by translation of experimental results from multiple omic data to clinical 

use, cancer remains a leading cause of death worldwide. However, rigorous analysis of the 

incomplete human PPIN can reveal essential biomarkers driving diseases such as cancer. 

Cancer biomarkers are crucial biomolecules because of their use in early disease detection, 

disease progression monitoring and advising treatment regimens, especially in personalized 

therapy. Identification of cellular interconnections perturbed by diseases has long been 

recognized as a promising avenue towards elucidating reliable biomarkers69. Over the recent 

years this general idea was being actively put into practice by using molecular networks to 

study the differences between healthy and diseased states in cancer87, 81, 216. Here, we derived 

642 patient-specific PPINs from patient-specific paired healthy and cancer mRNA expression 

profiles and identified candidate biomarkers significantly involved in distorting PPINs during 

tumorigenesis. In doing so we considered shared patient edgetic perturbation profiles across 

tumors, within a cancer type and further distinguished edgetic perturbation signatures between 

cancer subtypes.  

 

Our approach utilizes the publicly available data of paired cancer and healthy gene expression 

profiles from 13 cancer types and combines them with previously reported cancer-specific 

significantly mutated genes, and binary protein interaction data to identify proteins driving 

significant edgetic perturbations in cancer networks. For the first time, we show that using 

multiple patient-specific PPINs derived from the corresponding mRNA expression profiles of 

healthy and cancer patient samples is a novel way of identifying patient-, cancer-type and 

subtype as well as multi-cancer edges susceptible to perturbation during tumorigenesis.  

 

Furthermore, we were able to reproduce similar perturbed edges for each cancer type when 

using a smaller protein abundance-filtered PPIN (Dataset 3), validating our approach. We 

demonstrate that perturbed edges harbor known and novel cancer biomarkers and that they also 

capture previously reported cancer hallmarks28,217. While the differential expression of genes 

between the cancer and healthy state dictates the availability of proteins that interact with each 

other, we also show that alternative splicing events causing protein domain composition 

changes in the cancer state have effects on the protein-protein interaction network. A gain of 

an interacting domain may result in the gain of a new interaction while the loss of an interacting 

domain may bring about edgetic losses in the cancer PPIN - Figure 3.  

 

We found that the majority of perturbations were not attributed to SMGs either directly as first 

neighbors or indirectly as second neighbors within the PPIN - there were only several cancer 

types that did not follow this trend (Supplementary Table I). One such exception was LIHC, 

and indeed the interactions disrupting mutations of SMGs in this cancer type have been recently 

reported to strongly affect survival, which indicates that our results are in agreement with 

previous findings from Cui et al.102. While our study cannot model the effects of mutations on 

the PPIN as undertaken by Cui et al., our results suggest that any mutations that are prevalent 

in the domains do promote edgetic perturbations and consequently tumorigenesis. 

We also found that cancers exhibit either a high proportion of edgetic losses or a high 

proportion of edgetic gains. We speculate that this may be a downstream effect of a 

deregulation of the components of the spliceosome resulting in a systematic truncation or 

elongation of transcripts during pre-mRNA processing.  

 

However, most cancer types (9) showed more edgetic losses than edgetic gains, resulting in a 

reduction in the size of the cancer PPIN when compared to the corresponding healthy PPIN 
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(Figure 1). We also found multiple biomarkers already validated at multi-cancer, cancer type 

and subtype levels. When considering proteins driving significantly perturbed edges and using 

SurvExpress, our study confirmed most of the proteins as being biomarkers predictive of 

survival while those that did not show any perturbation were not prognostic in cancer. 

Moreover, at the multi-cancer level, known cancer drivers such as CDC45 and NUF2 were 

identified to be involved in edgetic gains while NTRK1, PRPH and MYOC were determined to 

be involved in edgetic losses and may serve as targets for widely applicable therapeutic 

interventions. For instance, Liu et al. showed that knockdown of NUF2 may inhibit 

proliferation of carcinomas and may be a potential target for therapy in cancer178. Furthermore, 

our clustering analysis of the cancer perturbation profiles revealed novel relationships between 

cancer types.  

 

We found that KICH, KIRP, and KIRP, LUAD and LUSC, COAD, HNSC and BRCA, as well 

as THCA, BLCA, and STES shared a more significant proportion of lost edges. Also, BRCA, 

BLCA and STES, LUAD and LUSC shared a higher portion of gained edges. Targeting of the 

proteins shared and perturbed in these cancer types for clinical use could benefit patients 

diagnosed with these cancer types. For example, developing therapy to target UCHL1, the 

protein most rewired across kidney cancers, would be an economical way of treating all kidney 

cancers by targeting the same molecule218. 

At the cancer type level, some of the perturbations we identified, such as IGF2BP3 and DKK1-

MDFI, have already been suggested to be KIRP biomarkers. Our analysis supports the roles of 

these molecules as KIRP biomarkers, as they were among proteins significantly perturbed in 

KIRP and showed prognostic value when their expression changes were analyzed for 

predicting overall patient survival. We also uncovered known biomarkers for specific cancer 

types not yet directly linked to other cancer types. For example, TRIM15 is a tumor suppressor 

in colon cancers219 , however, to our knowledge no study has linked TRIM15 to KICH 

tumorigenesis. We found TRIM15 perturbations among the proteins involved in edgetic losses 

in KICH.  

 

Our study, therefore, suggests that TRIM15 could also be an informative KICH biomarker. We 

also found multiple cancer-specific edgetic perturbation biomarkers such as the SLC25A21 

distortion in LUAD. Most importantly in KICH, our study is also able find perturbations of 

Bcl2 family proteins which are targeted by the only clinically approved drug (Venetoclax) 

targeting a protein-protein interaction34. While previous studies such as Li et al.87 found 

biomarkers at the cancer network level (lung cancer), our study expands on this work to obtain 

cancer subtype-specific markers at the network level. Using our methodology, we identified 

probable subtype-specific biomarkers, including PARVG and XPO4 in PR+ BRCA, MYL1 in 

PRAD, KHDRBS1-DLG2 edgetic perturbation in HNSC, and KLF8 in STES. We also observed 

several cancer subtypes sharing perturbed proteins pointing to probable shared oncogenic 

patterns. Our findings, therefore, suggest that these subtypes could be targeted by similar 

therapies.  

 

Functional and pathway enrichment analysis further revealed that proteins driving edgetic 

perturbations are consistent with the observed cancer phenotype, that is, we obtained known 

canonical oncogenic KEGG pathways involved in viral carcinogenesis, chemical 

carcinogenesis, EGFR tyrosine kinase inhibitor resistance, FoxO signalling, proteoglycans in 

cancer and transcriptional deregulation in cancer. Our analyses show that the diverse proteins 

participating in edgetic perturbations in cancer are essential biomolecules in tumorigenesis, 

that could be used for monitoring disease progression and developing new therapies. This 

integrated analysis is the first to utilize patient-specific PPIN derived from corresponding 
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paired cancer and healthy mRNA expression profiles to decipher essential interactions 

distorted at the multi-cancer, cancer type, and subtype levels. Our findings present an integrated 

multi-omics approach for the computational identification of multi-cancer, cancer type and 

subtype-specific biomarkers with potential clinical prognostic relevance. As OMICS data 

become more complete, our methodology will be of increasing help in determining the full 

extent of protein network distortion across cancer types.   

 

2.4 Conclusion 

 

In summary, our study presents a novel and robust scheme capable of identifying known and 

novel cancer-specific and multi-cancer biomarkers using patient-specific PPIN derived from 

mRNA expression data. Furthermore, the ability to determine uniquely distorted interactions 

whose participants are predictive of patient survival opens up the possibility to computationally 

obtain potential protein biomarkers for specific cancer types and subtypes. We also established 

that SMGs do not bring about the majority of perturbations in cancer PPINs. Additionally, we 

found probable novel biomarkers such as the THCA BRAF-like specific 4-gene signature 

biomarker (ODAM, APP, IKBKG, and TOLLIP). The THCA biomarkers may be essential for 

disease monitoring of THCA subtypes whereas the 14-gene signature (with HRK node 

perturbation) explicitly observed in KICH samples is a candidate for therapeutic targeting. 

Survival and functional enrichment analysis revealed that our candidate biomarkers are indeed 

involved in tumorigenesis. Our user-friendly portal will not only facilitate experimental 

research in the continued quest for druggable proteins at the protein-protein interaction network 

level but will also be essential for researchers to quickly mine and access the proteins involved 

in edgetic perturbations of cancer PPINs. We envisage that subsequent experimental validation 

will demonstrate the applicability of the novel biomarkers generated in this study for making 

informed clinical decisions as well as in developing cancer therapies. In the future, we will 

investigate patient-specific edgetic perturbations and determine proteins and corresponding 

isoforms (and protein domains) responsible for such disruptions.  

 

 

 

 

 

 

 

 
 

 

 

 

 



 

  

2.5 MATERIALS AND METHODS 

2.5.1 Cancer datasets  

We obtained RSEM220 quantified count data for healthy (non-cancer) as well as the 

corresponding cancer patient-specific mRNA expression profiles from the Broad Institute Web 

site (http://gdac.broadinstitute.org/). We further selected datasets with at least 10 paired healthy 

and cancer samples, covering 13 cancer types (Table 9). The corresponding cancer stage-

specific annotated clinical data and subtype annotations were downloaded using the 

TCGABiolinks R package221. Stomach and esophageal carcinoma subtypes were downloaded 

from the supplementary materials of the TCGA consortium paper for STES222 because the 

Broad Institute Web site did not include all the paired samples. The clinical dataset consisted 

of patient samples grouped according to stages I, II, III and IV. TCGA clinical files contain 

important cancer phenotype information, including patient treatment regimen, cancer staging, 

alive/dead status, tumor state, and age (Table 9).  
 

Table 9: Clinical and phenotypic traits of the 639 patients diagnosed with 13 cancer types 

as obtained from TCGA. 

Cancer 

typea 

Sample 

sizeb 

Subtypes SMGs StageI StageII StageIII StageIV Status (D/A)c 

    

BLCA 19 NA 684 0 4 7 8 7 /12 

BRCA 98 3 640 16 60 21 1 24 /74 

COAD 41 2 2580 4 22 7 7 7 /34 

HNSC 43 4 518 2 16 7 19 31 /11 

KICH 25 2 335 10 8 3 4 4 /21 

KIRC 72 4 433 25 11 16 20 25 /47 

KIRP 32 2 344 14 1 12 4 6/26 

LIHC 50 NA 797 18 11 12 1 30 /20 

LUAD 57 3 901 28 13 13 2 22 /37 

LUSC 51 4 496 27 17 6 1 24 /27 

THCA 57 2 508 35 7 11 4 4 /53 

PRAD 51 6 658 NA NA NA NA 0 /51 

STES 43 2 2065 9 21 9 3 5 /38 

b) number of patients with paired healthy and cancer RNA-sequence data 

c) D-Dead, A-Alive  

2.5.2 Global protein-protein interaction network (PPIN)  

We obtained information on 330,557 binary interactions between human proteins from 

BioGRID223 and selected only those interactions whose individual interacting partners have a 

“reviewed” status in UniProt224. The resulting global network consisted of 224,223 human 

binary protein interactions between the total of 15,689 proteins. Based on the assumption that 
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two proteins can only interact if proven to be translated, we further filtered the human 

interactome using protein abundance data. Whole-proteome high-confidence abundance data 

were obtained by combining information from PaxDb225 and The Human Proteome map . Upon 

retaining only the proteins reported as translated (having non-zero abundance values) in both 

proteomics datasets our final PPIN consisted of 216,134 binary interactions involving 15,125 

proteins. Hereafter, the total number of binary interactions in a PPIN is referred to as PPIN 

size. 

2.5.3 Patient- and cancer-specific protein interaction networks  

Patient and cancer-specific PPIN were derived from gene expression data by PPIXpress  using 

both PPINs described above. PPIXpress adapts PPINs to specific cellular conditions at the 

isoform level, thus enabling identification of tumor-related alterations missed by gene-level 

analysis. For each tissue type, we filtered the RNA-seq data to only include the genes that were 

consistently expressed across most samples using the EstimateExpression function of the xseq 

R package33. The function fits a mixture-of-Gaussian distributions model on the gene 

expression count data to distinguish between lowly expressed genes (presumed to be 

transcriptional noise) and biologically relevant gene expression (Supplementary Figure 6). 

Furthermore, for an isoform of a selected gene to be considered as expressed, its RSEM value 

was required to be 0.1 or higher. If multiple isoforms of a gene are expressed, the mean 

expression value of all isoforms is selected (running PPIXpress with ‘–g’ option).  

2.5.4 Patient-, cancer-, subtype-specific and multi-cancer perturbed edges 

For each cancer PPIN we retrieved interactions that were not present in the paired healthy PPIN 

(gained edges). Likewise, in each healthy PPIN we identified interactions that were absent in 

the corresponding cancer PPIN (lost edges). Edges occurring in both healthy and cancer PPINs 

were considered non-perturbed. For brevity, lost, gained, and non-perturbed edges were 

assigned the codes 10, 01, and 11, respectively. For each patient, the set of all perturbed and 

non-perturbed edges represents their individual network perturbation profile. To obtain cancer 

type perturbation profiles we merged perturbation profiles of patients diagnosed with a specific 

type of cancer (Figure 20).  
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Figure. 20. Edgetic perturbations in cancer. Assuming a global PPIN with 9 edges 

interconnecting 9 nodes and using cancer and healthy patient-specific mRNA expression 

profiles, for each patient (P1, P2 and P3) perturbed edges in cancer can be identified by 

comparing the healthy and the corresponding cancer PPIN. Significantly Mutated Genes 

(SMGs) may be involved in perturbation of edges directly interacting with them, or those 

interacting with their perturbed neighbors (secondary neighbors). 

Edges that were not observed in one sample but observed in other samples were assigned the 

code 00 in the samples where they were absent, and either 01 or 10 where they were perturbed. 

On a cancer PPIN (Figure 20), an edge can be gained across all patients (strict gains, edges a-

d and b-h), lost across all patients (strict losses, edges b-c and d-e), partly gained or partly lost 

across patients (d-f), non-perturbed in all patients (a-b), or not observed in one patient but 

observed in others (f-g). The list of all the perturbed and non-perturbed edges in a single patient 

constitutes their perturbation profile. The union of all patient profiles diagnosed with a 

particular cancer type is referred to as a cancer perturbation profile. A cancer type perturbation 

profile is a list of lost, gained, and non-perturbed edges in all patients with a particular cancer 

type with their associated codes, as described above. For each cancer type i, each edge j was 

ranked depending on the percentage of samples it was gained (PercGainedi,j) and lost 

(PercLosti,j) in (Dataset 3).  
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In a similar fashion, for each cancer type we merged all edges lost or gained in any of the 

samples and retrieved only those edges that are perturbed at least once in this specific cancer 

type and are observed in at least two samples (for example edges a-d and b-h (gained edges) 

and edges d-e and c-d (lost edges) in Figure 20). Note that edges perturbed in a cancer type but 

observed only in a single patient sample are considered patient-specific. For each cancer with 

a subtype s, we also searched for perturbations unique only to a particular subtype and ranked 

each perturbed edge j depending on the percentage of samples it was gained 

(SubtypePercGaineds,j) and lost (SubtypePercLosts,j) in, with j≥2. Note that a cancer subtype 

perturbation profile is a subset of the corresponding cancer type perturbation profiles involving 

the patients diagnosed with this particular subtype.  

To identify perturbations occurring across multiple cancers, we first merged all edges perturbed 

in each cancer type and then identified only those perturbations observed in at least two cancer 

types. If, instead of the three patients P1, P2, and P3, the perturbation patterns in Figure 20 

corresponded to three different cancer types C1, C2, and C3, edges a-d and b-h would represent 

multi-cancer gained edges while edges d-e and c-d would represent multi-cancer lost edges 

since they are perturbed in more than two cancer types. Also, for each cancer type i, each 

perturbed edge j was ranked depending on the percentage of cancer types it was gained 

(MultiCanGainedij) or lost (MultiCanLostij) in, with i≥2. We then ranked these multi-cancer 

perturbations based on the number of cancer types exhibiting them.  

Finally, we sought to find prominent proteins frequently involved in edgetic perturbations as 

well as frequently perturbed edges at the multi-cancer, cancer type, and cancer subtype levels. 

At the cancer type and cancer subtype levels, proteins were ranked according to the number of 

perturbations they and their first network neighbors are involved in. Note that the perturbations 

associated with the second neighbors of a protein were counted if (i) the protein had at least 

two interacting partners and that the (ii) protein itself was associated with a perturbation. For 

instance, perturbation of edges b-c, c-d and d-e (Figure 20) would give a rank of 3 for node c, 

and a rank of 1 each for nodes b, d and e.  

2.5.5 Identification of PPIN nodes associated with perturbations. 

We next searched for network nodes involved in edgetic perturbations. For each cancer type 

we merged all observed edges in the cancer and the corresponding healthy PPIN and then used 

DyNet211, a Cytoscape227 plugin, to identify the nodes associated with gained or lost edges. 

DyNet compares the nodes and edges present in two networks and then computes a rewiring 

metric score to determine which nodes have been rewired. To consider a node as rewired, we 

used a DyNet rewiring score of ≥0.5 and an edge count of ≥2, which corresponds to selecting 

the nodes with at least a degree (number of interaction partners) of 2 and showing perturbation 

of at least one edge. A single edge perturbation on a 2-degree node (2 interacting partners) 

means 50% of the edges are perturbed and thus have a rewiring score of 0.5.  

2.5.6 Clustering of cancers based on edgetic perturbation signatures 

To understand the relationship between cancers in terms of their perturbation patterns, we used 

unsupervised clustering as implemented in the Pvclust228 R package to group cancers based on 

shared perturbations. Pvclust allows assessing the uncertainty of hierarchical clustering by 

performing multiscale bootstrap resampling and assigning p-values (as percentages) to clusters 

depending on how strong the cluster is supported by data. Pvclust provides two p-values: an 

approximately unbiased p-value (AU) computed from multiscale bootstrap resampling and a 

bootstrap probability (BP) computed by regular bootstrap resampling. High percentage values 
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indicate a strong relationship of the cluster and the data, which may be biologically relevant. 

In our study, a cluster with an AU p-value >0.95 (95%) or the significance level <0.05 was 

selected and kept for further analysis. In order to identify the edges defining the cluster, we 

searched for the edges perturbed across all cancer types within each cluster. 

 

2.5.7 Ranking of perturbed edges in terms of their importance in classifying cancer types 

For the multi-cancer perturbations, after performing hierarchical clustering of the cancer types 

using the perturbed edges as features, we identified the edges appearing in only one cluster. 

Next, we used the random forest algorithm229 to identify the features (perturbed edges), which 

were most informative for attributing cancer types to the detected clusters based on shared 

edgetic perturbations. The Pvclust algorithm is essential in accurately identifying high 

confidence groups in data, and thus we did not face the problem of retraining our random forest 

algorithm to accurately classify cancer types sharing the majority of perturbed edges together. 

Our interest here was only to use the random forest algorithm (using the VarImp function from 

the R package caret230) to rank the features based on their importance in classifying cancer 

types into the groups detected during clustering. The VarImp function outputs feature ranking 

based on their mean squared error (MSE). Features with high MSE scores were then chosen to 

be the perturbed edges (features) having the highest weight in grouping the cancer types into 

the categories identified during clustering. 

 

2.5.8 Identification of Gene Ontology, KEGG pathways and disease-gene relations 

significantly enriched by proteins driving edgetic perturbations 

To understand the biological relevance of the perturbed edges we identified statistically 

enriched Gene ontology (GO) terms and KEGG pathways associated with the proteins involved 

in edgetic perturbations. GO analysis was carried out using the R package topGO231 with 

statistical significance calculated using Fisher’s exact test. GO terms having a p-value of <0.05 

were chosen to be considerably enhanced. Additionally, significant GO terms were clustered 

using REVIGO232 to remove redundancy. Furthermore, a dispensability value (representing 

both the degree of redundancy and enrichment of a GO term) of <0.05 was considered 

significant after the REVIGO pruning step. To avoid statistical bias233 in the enrichment 

analysis of the proteins involved in edgetic losses we used all the genes expressed in cancer as 

the background for comparison. On the other hand, to analyze the GO terms and KEGG 

pathways enriched among the proteins involved in edgetic gains, we used all the genes 

expressed in the healthy (non-tumor) condition as the background for comparison. Disease-

gene relation analysis was performed using DisGeNET214 implemented within the R package 

clusterProfiler234. KEGG pathway analysis was carried out using DAVID235.   

2.5.9 Predicting overall patient survival in cancer 

Disease genes often work in concert and several studies have discovered network modules and 

hubs under attack in cancer95,236,237. To understand the importance of the proteins driving 

perturbations in cancer, we used SurvExpress238 to determine multi-gene cancer signatures and 

to assess their prognostic value for cancer. SurvExpress is a multi-gene cancer biomarker 

validation and discovery tool based on a wide collection of cancer datasets, including TCGA. 

From the ranked lists of perturbed edges in each cancer type, we selected each edge or a group 

of edges lost or gained across the largest number of patients as candidate biomarkers and 

analyzed them in SurvExpress.  
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2.5.10 Implementation of the EdgeExplorer website. 

The EdgeExplorer website resides on a Linux server that provides Apache 2 for web services, 

SQLite for relational database management, and the PHP for server-side scripting services on 

the backend. The portal application further utilizes additional web technologies, among them: 

JavaScript, CSS, and jQuery.  

2.5.11 EdgeExplorer web portal annotations. 

To identify gene-disease relations with experimental evidence, we did manual annotation by 

searching for publications implicating anomalies of each query gene in affecting cancer 

progression or treatment outcomes.  The following annotation rules were followed: 

1.    Search for gene – cancer-type associations in recent experimental papers indexed by 

PubMed, PMC and Google Scholar while using all synonyms of a gene name. If no full text of 

the articles were found, we further searched in the Bavarian State Library database. 

2.    Priority was first given to journal papers with experimental evidence demonstrating the 

association of the exact gene with the particular cancer type in which edgetic perturbations 

were detected. The associations included: gene mutation or differential expression of a gene in 

tumor samples when compared to normal samples, or gene involvement in metastasis, patient 

survival, prognosis, therapy resistance or therapy success. Results reporting findings ased on 

TCGA data were excluded from the annotations unless no other hits were found for that gene 

(see 4).  

3.    If there was no such information, the second priority was given to papers with experimental 

evidence demonstrating the association between the specific gene and a cancer type occurring 

in the same somatic tissue. For example, if there was no information on KIRP but there was 

for KIRC, we report that association. 

4.    Finally, if there was no such information, as a third priority, we checked for gene-disease 

association in The Cancer Genome Atlas to show if indeed our study yields similar results to 

other studies that have previously used TCGA data. 

  

2.5.12 Generation of genes having similar node degrees as SMGs and their associated 

perturbations  

To comprehend whether SMGs were pivotal in edgetic perturbations, we compared the 

proportions of perturbations involving SMGs and those from randomly generated genes with a 

similar degree of interacting proteins. First, we downloaded lists of pan-cancer and cancer 

specific significantly mutated cancer genes from the COSMIC Cancer Gene Census 

(https://cancer.sanger.ac.uk/census)58 and from the TCGA consortium 

(https://cancergenome.nih.gov/publications)67.  

 

The genes amounted to 719 and 299 cancer genes from COSMIC and Bailey et. al, 

respectively, and were classified according to their significance as cancer specific or as pan-

cancer. We considered a gene to be significantly mutated in a certain cancer type if it was 

characterized as either cancer specific or pan-cancer, but affected that cancer type. Finally, in 

each cancer type, a union of the significantly mutated genes from both the above sources were 

considered as cancer specific significantly mutated genes (Dataset 3). To find the number of 

perturbations involving the SMGs, we searched for any perturbed interactions having an SMG 

as an interacting partner. Then, in each cancer type, we merged all the interactions observed in 

both cancer and healthy in all the patients to generate all possible interactions within a cancer 

type. Next, for each cancer type, we determined the degree of each of the proteins within all 

the possible interactions of a cancer type. We used the degree of each SMG involved in any 
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perturbation to randomly query for other proteins having a similar number of interacting 

partners to them (Dataset 3). Finally, we determined the number of perturbations associated 

with the genes having a similar degree to the SMGs. 

 

For each cancer type, the Z-test of proportions239 was used to estimate the statistical 

significance of the extent of edgetic perturbations associated with cancer-specific SMGs 

compared to the extent of edgetic perturbations associated with genes having a similar network 

topology to the SMGs. To do this, we first determined if there were significant differences in 

the proportion of perturbations associated with SMGs and the proportion of perturbations 

associated with randomly generated genes. Then, for each significant difference, we sought to 

find only the cancer types where the proportion of perturbations associated with SMGs were 

significantly larger than those associated with the randomly generated genes. 

2.5.13 Randomization of the PPIN 

To check whether our results were brought about by changes in differential gene expression or 

were due to domain changes between the healthy and cancer state, we used the R package 

BiRewire first to generate a randomized network and then analyzed the resulting perturbations. 

We did this by building condition-specific PPINs in three randomly selected cancer types 

(BRCA, THCA and BLCA). BiRewire has the advantage of rewiring PPINs while preserving 

their functional connectivity and keeping the node degrees intact240. 

2.5.14 Statistical analyses  

All statistical analyses were carried out in the in Python or the R environment. The Wilcoxon 

singed-rank test241 was used to determine if the mean of a healthy and the corresponding cancer 

PPIN sizes differed. For each cancer type, the chi-squared test242 was used to estimate the 

statistical significance of the extent of edgetic perturbations associated with cancer-specific 

significantly mutated genes (SMGs) compared to the extent of edgetic perturbations associated 

with genes having a similar network topology to the SMGs. Unsupervised hierarchical 

clustering using the Ward.D2 method and Euclidian distance243 was used to group cancer types. 

Patient stratification using Kaplan-Meier curves and log-rank test p-values for survival analysis 

were calculated using SurvExpress. For all analyses, p-values < 0.05 were considered 

significant. 
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Abstract  

To understand intercellular communication, it is essential to define the cellular secretome; a 

collection of proteins including soluble secreted, unconventionally secreted and 

proteolytically-shed proteins. Quantitative methodologies to decipher the secretome are 

challenging, because of large cell numbers required and abundant serum proteins interfering 

with the detection of low-abundant cellular secretome proteins. Here, we miniaturized 

secretome analysis by developing the high performance secretome-protein-enrichment-with-

click-sugars method (hiSPECS), which identifies the glyco-secretome. We applied this method 

to provide a cell type-resolved mouse brain glyco-secretome resource. Our data show that a 

surprisingly high number of secreted proteins are generated by ectodomain shedding in a cell-

type specific manner. One example includes the neuronally secreted ADAM22 and CD200, 

which we identified as new substrates of the Alzheimer-linked protease BACE1. Taken 

together, hiSPECS and the brain glyco-secretome resource can be exploited for a wide range 

of applications to study protein secretion and shedding. 

 

 

3.1 Introduction  

 

Most omic quantitative analyses are based on gene expression (mRNA quantification), 

however, few studies have performed such analyses at the protein level (protein quantification). 

At the protein level, fundamental aspects, for example, which proteins exist, where the proteins 

are expressed and in what quantities they are expressed, are not yet fully resolved. To help the 

scientific community resolve these questions, a quantitative proteomic analysis of mouse brain 

secretome was performed using high-resolution mass spectrometry. Briefly, the main aim of 

this project was to generate a quantitative secretome map of the glyco-secretome from different 

cells of the mouse brain using an improved approach termed as, high performance secretome-

protein-enrichment-with-click-sugars - hiSPECS. Dysregulated protein secretion and the 

shedding of signaling proteins have been linked to multiple complex diseases, e.g. diabetes, 

obesity, inflammation, neurodegeneration, and cancer. Even though mice and humans have 

adapted to different environments, mouse models are still an invaluable resource for studying 

biological processes that have been preserved in the course of the evolution of both the rodent 
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and primate lineages, or for the investigation of the conserved mammalian developmental 

mechanisms. Consequently, the identification and quantification of the mouse brain secretome 

not only allows the understanding of the underlying biological processes under physiological 

conditions, but also, may bring forth the molecular basis of complex diseases (e.g., Alzheimers’ 

disease) and identify potential drug targets or biomarkers. To understand intercellular 

communication, it is essential to define the cellular secretome. The secretome constitutes a 

collection of proteins secreted (either unconventionally secreted or also proteolytically-shed) 

into the extracellular environment of a cell, Figure 21. The study of the secretome has recently 

brought about the field of secretomics: a sub-field of proteomics that represents a reliable 

strategy for the characterization and quantification of proteins secreted by a given cell under 

specific conditions244. 

 

 
 

Figure 21: Signalling to and from the early secretory pathway. (A, B) ER, ERESs and Golgi 

complex with the different signalling cascades that are either directed towards these organelles 

(A, yellow), or emanating from them (B, green). Autochthonous Golgi signalling pathways are 

shown in blue. Stimuli that trigger signalling to the secretory pathway (A) or the cellular 

responses elicited by signalling from the secretory pathway (B) are shown in yellow or green, 

respectively. The long black arrows indicate direction of transport along the secretory pathway. 

Adapted from Farhan et. al., 2011. 

 

Current approaches for the experimental detection of proteomic abundances or secretion have 

only revealed a fraction of the proteins expressed in a cell under a particular physiological 

condition. For instance, in 2001, Georgiu et. al., pointed out how difficult it is to conventionally 

detect low abundant plasma proteins due to the presence of more abundant proteins (e.g., 

albumin) that account for up to 80% of the total protein245. In addition, some proteins may only 

be secreted by specialised cell types, or are solely secreted in the course of specific 

developmental stages, or their secretion is only induced in response to cellular specific 

responses, e.g., after tumorigenesis or inflammation246–249. 

 

Since quantitative methodologies to decipher the secretome are challenging, in this study, we 

miniaturized secretome analysis by developing the improved secretome-protein-enrichment-

with-click-sugars method (hiSPECS), which identifies the glyco-secretome. We then applied 
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this method to bring forth a cell type-resolved mouse brain glyco-secretome resource. In total, 

our experiment yielded 1023 proteins, with 995 proteins occurring in at least 5 of the 6 

replicates per sample analysed (neurones, oligodendrocytes, microglia and astrocytes). 

Interestingly, we found high number of secreted proteins were shed in a cell-type specific 

manner. Examples include the neuronally secreted ADAM22 and CD200, which we identified 

as new substrates of the Alzheimer-linked protease BACE1.  

Also, GO and KEGG pathway analyses of the significantly enriched secreted proteins disclosed 

a high abundance of the mouse brain glyco-secretome was related to processes such as such as 

(i) metabolic process, gliogenesis, immune response for the astrocyte secretome, (ii) autophagy 

and phagocytosis for microglia, axon guidance, trans-synaptic signaling, (iii) axonogenesis and 

neurogenesis for neurons and  (iv) lipid metabolic process and myelination for 

oligodendrocytes, thereby representing key cell-type specific biological functions of the four 

main brain cell types at the secretome level. 

 

3.2 Mass spectrometry (MS)-based proteomics. 

MS-based proteomics is the method of choice for protein identification, quantification, and 

characterization. Protein quantitation can be achieved via labelling-based quantitation or via 

label-free quantification (LFQ), with the label-free approaches more preferred250. Presently, 

two prevalent approaches in MS-based proteomics exist: ‘top-down’ and ‘bottom-up’ 

techniques, with bottom-up approach being the most widely used251–254.  

 

 

 
 

 

Figure 22: MS-based proteomics approaches. The top part of the image shows the bottom-up 

MS approach, while the bottom part of the image shows the top-down approach. Adapted from 

Chait et. al., 2006251. 

 

In the bottom-up approach, the proteins of interest are digested in solution with an enzyme, 

and the resulting peptides are then analysed in the gas phase by mass spectrometry. Firstly 

(referred to as “MS” or “MS1”), the masses of the intact peptides are determined; and secondly 

(referred to as “MS/MS” or “MS2”), these peptide ions are further fragmented to provide 

information on the identities and sequences of the proteins as well as any inherent 

modifications. In this way, parallel acquisition of quantitative information on thousands of 
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proteins and post-translational modifications from minute quantities of the input material is 

achieved. In the top-down proteomics experiments, intact protein ions are introduced into a gas 

phase and are then fragmented before being analysed in the mass spectrometer. The result is 

the molecular masses of the proteins and the protein ion fragment ladders. This information 

may then be used to characterise the complete primary structure of the protein. The top-down 

approach thus analyzes intact proteins and enables the identification of different protein forms, 

i.e., proteoforms. A setback of this approach is in its application in proteome-wide analyses 

due to difficulties with protein fractionation, protein ionization and fragmentation in the gas 

phase254. The data generated and used in this experiment was obtained via the bottom-up 

approach. Despite the different approaches, MS-based proteomics workflows involve255: (i) 

proteins extraction from the biological material under study (e.g., a tissue or cell), (ii) 

proteolytic digestion into peptides by site-specific proteases (e.g., trypsin), (iii) high-resolution 

peptide separation (liquid chromatography, also called LC-MS), (iv) peptide ionization (e.g., 

via electrospray ionization - ESI), (v) tandem mass spectrometry analysis (MS2). Label-free 

LC-MS/MS-based proteomics allow accurate peptide peak intensity identification from 

biological samples via Data-dependent acquisition (DDA) or Data-independent acquisition 

(DIA)256,257. In DDA acquisition, the mass spectrometers generate full-scan mass spectra in 

order to determine the molecular weights of the various peptide species present in a sample 

and then acquires MS/MS spectra only on the top “N” most intense peptides. In DIA 

acquisition, all ions of the entire mass range are sequentially isolated within defined and 

broader mass (m/z) windows and then fragmented together. The identification of spectra is then 

achieved via the use of library spectra previously generated from DDA approaches. At the end, 

bioinformatics data analyses are performed to identify or detect the differential expression 

patterns of the proteins secreted or expressed in the biological samples under study. The 

statistical elucidation of the protein expression variation in different biological conditions from 

different cell types, tissues or organs, and delineating the experimental factors that control such 

protein expression and activity are vital in biological and biomedical research. 

 

3.3 The brain cell types. 

The brain consists primarily of Neurons, Microglia, Oligodendrocytes and Astrocytes. Neurons 

function as the primary communication unit of the brain, and come in various shapes, sizes and 

specialties, for instance, motor neurons send and receive messages to muscles within the body 

for the purpose of movement. Microglia, which originate from macrophages, are at the center 

of phagocytosis. The Microglia prune synapses and help to avoid a hyper-connected brain. 

Oligodenrocytes, a type of glial cells, are the insulators of the brain, i.e., they wrap neuronal 

axons with thick fatty layers (myelin) thus helping to shield neurons from shock. A deficiency 

in myelin levels is associated with diseases such as Schizophrenia. Lastly, Astrocytes function 

as supportive layers of the brain. They also assist in clearing wastes between neurons and 

regulate blood flow to the brain. When the communication between astrocytes and neurons is 

interfered with, neurological disorders, depression or dementia can set in258–261. 
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Figure 23: Brain cell types. A cartoon image depicting the 4 main brain cell types. Image 

adapted with modifications from Carpanini et. al., 2019. 

 
  

3.4 Materials and Methods 

3.4.1. Data pre-processing and normalization  

Before normalisation, we selected only the proteins detected in at least 5 of the 6 replicates 

(5/6 or 6/6) in each of the 4 cell types. This yielded a total of 995 proteins from the pool of 

1083 proteins. Data normalisation was achieved via variance stabilisation by employing the R 

package vsn (Figure 24). For the missing protein data, an imputation approach was undertaken  

based on the protocol explained in263. Briefly, a manually defined left-shifted Gaussian 

distribution (shift of 1.8 and scale of 0.3) for the data not missing at random (MNAR). After 

imputation, we did principal component analysis to understand the relationship between the 

cell types. Additionally, we downloaded the mouse protein-protein interaction network (PPIN) 

from BioGRID223 and additional binary interactions data from UniProt224. 
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Figure 24: Diagram showing the distribution of the data prior and after normalisation. Data 

normalisation was achieved via variance stabilisation. For the missing data, a one-step 

imputation approach (left-shifted Gaussian distribution) was undertaken.  

 

3.4.2. Detection of differentially expressed (DE) proteins. 

We employed protein-wise linear models combined with empirical Bayes statistics 

(implemented in the R package Limma264) to detect differentially expressed proteins between 

any two cell types (pairwise comparison) as previously suggested265. Limma has the advantage 

of modelling unequal variances even for experiments with small sample sizes. For a protein to 

be selected as differentially expressed between any two cell types, we set a cut-off p-value of 

<0.05 (Bonferroni corrected) and a log fold-change (LogFC) of 2. The LogFC was set at 2 in 

order to reduce false positives as a result of data imputation.  
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3.4.3. Identification of Gene Ontology, KEGG pathways and disease-gene relations 

significantly enriched by proteins differentially secreted across brain cell types. 

  

To understand the biological relevance of proteins significantly differentiated in one cell type 

with respect to the other 3 cell types, we identified statistically enriched Gene ontology (GO) 

terms and KEGG pathways. We did GO and KEGG pathway enrichment analysis using the 

R package ClusterProfiler234. To avoid statistical bias233 in the enrichment analysis, we used 

all the proteins detected from our mass spectrometry analysis as the background for 

comparison. Statistical significance was calculated using Fisher’s exact test and GO terms 

having a corrected (Benjamini Hochberg) p-value of <0.05 were chosen to be considerably 

enhanced. To determine if the proteins significantly differentiated in one cell type with 

respect to the other 3 cell types are linked to neurodegenerative diseases, we searched for 

curated gene disease associations (GDA) from DisGeNET214. Our search list contained 31 

known diseases of the nervous system. We set the evidence index (EI) to 0.95: an EI of 1 

indicates that all the available scientific literature supports the specific GDA. 

 

3.4.4. Selection of cell type specific proteins and their interactions with cell lysate proteins 

detected by Sharma et. al, 2014.  

 

To identify proteins with cell-type specific upregulation or downregulation, we employed a 

two-step procedure. First, we selected all proteins detected exclusively in one cell-type but 

not the other three cell types. Additionally, in each cell type, we chose proteins whose 

expressions had a fold change enrichment of >10 when compared to the other three cell 

types, as previously done266.  We then searched for interacting partners between the proteins 

specifically enriched in the secretome of a specific cell type and the proteins from the cell's 

lysate as determined by Sharma et al267. First, we downloaded the mouse PPIN from 

BioGRID223 and additional binary interactions data from UniProt224.  

 

3.4.5. Statistical evaluation 

 

All statistical analyses were carried out in Python or the R environment. The moderated t-test 

coupled with empirical Bayes in limma was used to determine the extent of protein differential 

expression across the cell types. Pearson correlation was used to calculate the correlation 

coefficients between replicates of a cell type as well as across cell types. Fisher’s exact test 

was used to identify significantly enriched GO terms and KEGG pathways. 

For all analyses, p-values < 0.05 were considered significant.  
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3.6 RESULTS GENERATED FROM THE BIOINFORMATICS ANALYSES 

3.6.1 Proteins Expression per sample 

Mass spectrometry (LC-MS/MS) analysis of the brain glycol-secretome yielded a total of 1023 

proteins from 4 different brain cell types, namely: Astrocytes, Neorons, Microglia and 

Oligodendrocytes. After removing the proteins that did not fit our selection criteria (protein 

quantification in at least 5 of the 6 replicates of each brain cell type) based on the raw LFQ 

intensity values, we established the protein coverage of the filtered data ranged from 

approximately 450 to 750 proteins per sample replicate. In total, 995 proteins were detected in 

at least 5 of the 6 replicates across the brain cell types. The microglia cell-type had the highest 

protein coverage while the astrocytes cell-type had the least protein coverage. Roughly 234 

proteins were detected across all the cell types, while 377 proteins were detected in only one 

cell type -Figure 25. 

 

 
Figure 25: Protein coverage ranged from approximately 450 to 750 proteins per sample. A total 

of 995 proteins were detected in at least 5 of the 6 replicates across the brain cell types. 

Microglia cell-type had the highest protein coverage while Astrocytes had the lowest coverage.  
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3.6.2 Dimensionality reduction. 

For enhanced visualisation and interpretation of the secretomics data, we used PCA (Principal 

Component Analysis) and UMAP (Uniform Manifold Approximation and Projection) for 

dimensionality reduction. Dimensionality reduction is advantageous while it enables 

researchers to speedily have a data-centric overall view of high-throughput data. While PCA 

has been the algorithm of choice in multiple studies, UMAP and other nonlinear dimensionality 

reduction algorithms have started to be the methods of choice for scientists268,269. On the one 

hand, PCA uses linear relationships of variables to build orthogonal axes that efficiently 

capture the variation inherent in the data with fewer variables. On the other hand, nonlinear 

dimensionality reduction algorithms (e.g., t-Distributed Stochastic Neighbor Embedding270 (t-

SNE) and UMAP) are able to do away with overcrowding of the data representation, wherein 

distinct data (or sample) clusters are represented on an overlapping area. UMAP is a recently 

developed non-linear dimensionality algorithm that offers higher reproducibility, meaningful 

organization of data clusters coupled with faster run times when compared with other 

algorithms271,272.  

 

 
 

Figure 26A: PCA analysis. The secretomes of the cell types segregated based on component 1 

and component 2, which accounted for 44.9% and 19% of the variability, respectively.  
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Figure 26B: UMAP (Uniform Manifold Approximation and Projection) plot showing brain cell 

type clusters based on log transformed raw LFQ intensities of quantified proteins. This 

indicates that the secretomes of the four cell types differ from each other. 

 

 

 

Both PCA and UMAP determined that oligodendrocytes and neurones secreted a higher 

percentage of similar proteins. We also observed a more proteins being shared between 

secreted proteins from the astrocytes and microglia. Similar relationships have previously been 

postulated by Sharma et. al267, thus giving us the confidence to perform further analysis. 
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3.6.3 Correlation between replicates of a sample and across brain cell type samples. 

Inferential statistics such as the calculation of person’s correlation (also known as the product 

moment correlation coefficient) enable a quick determination (generalization) of the 

relationships between samples or populations. To find the linear relationship between any of 

the 4 brain cell types, we computed the pearson’s correlation coefficient (r, determined from 

the r distribution). The pearson’s r ranges between -1 and 1, with -1 indicating a perfect 

negative correlation and 1 indicating a perfect positive correlation. A coefficient of 0 indicates 

no linear relationship between samples. In our dataset, all replicates of a cell types showed 

higher correlations (>0.7) as compared to replicates from other cell types - Figure 27. 

 

 
 

Figure 27: Correlation matrix showing the relationship between the different brain cell types. 

The matrix shows the Pearson correlation coefficient (dark red indicates a higher, light shade 

of red indicates a lower correlation) and the correlation plots of the log2 LFQ intensities of the 

secretome of astrocytes, neurons, microglia and oligodendrocytes processed with the iSPECS 

method. 
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3.6.4 Hierarchical clustering and detection of the cell-type specific secreted proteins 

We employed protein-wise linear models combined with empirical Bayes statistics (using the 

R package Limma264) to detect differentially expressed proteins as previously suggested265. 

While the top significantly differentially expressed proteins revealed distinct secretion of the 

proteins across the different brain cell types – Figure 28, we observed close relations between 

neurons and oligondedrocytes, as well as between astrocytes and microglia. This observation 

is in line with previously available literature266. Proteins significantly differentiated in one 

cell type with respect to the other 3 cell types were analysed with regard to their biological 

function via GO and KEGG pathway enrichment analysis. Table 10 is a summary containing 

the number of differentially expressed proteins from the pairwise comparisons between 

brain cell types. 

 

 

 
 

Figure 28: Heatmap of the top 50 differentially expressed proteins (Bonferroni p.adj < 0.05) 

across the 4 cell types from hierarchical clustering. The rows represent the differentially 

expressed proteins and the columns represent the cell types (and their replicates). The colours 

in the Heatmap represent log-scaled (z-scores) expression levels with blue indicating the 

lowest expression, white indicating intermediate expression, and red indicating the highest 

expression. The rows represent the differentially secreted proteins and the columns represent 

the cell types with their replicates. The colors represent log-scaled protein levels with blue 

indicating the lowest, white indicating intermediate, and red indicating the highest protein 

levels.  
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Table 10: Number of differentially expressed protein between brain cell types. 

 

Cell type comparison Number of up regulated 

proteins 

Number of down regulated 

proteins 

Astrocytes_vs_Microglia 172 167 

Astrocytes_vs_Neurons 181 256 

Astrocytes_vs_Oligodendrocytes 174 241 

Microglia_vs_Neurons 220 293 

Microglia_vs_Oligodendrocytes 190 276 

Neurons_vs_Oligodendrocytes 177 181 

 

3.6.5 Enriched gene ontologies (GO) associated with the mouse secretome 

To explore the biological implications of differential expression across brain cell types, we 

did GO and KEGG pathway enrichment analysis. Generally, the GO analyses of the 

significantly enriched secretome proteins pointed to functional clusters corresponding to well-

known functions of the four different brain cell types: metabolic process, gliogenesis, immune 

response for the astrocyte secretome, autophagy and phagocytosis for microglia, axon 

guidance, trans-synaptic signaling, neurogenesis for neurons and lipid metabolic process and 

myelination for oligodendrocytes (Figures 28, 29 and 30). Our results demonstrate that cell 

function cannot be determined only by a cell´s proteome but also by its secretome. 

Interestingly, we found that extracellular structure organisation, extracellular matrix 

structural constituent (Figures 29A, 30A and 31A), receptor ligand activity (Figure 30B) to 

be the most frequently enriched term underlining the quality of our secretome library. 
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Figure 29A: Comparison of the biological processes enriched across brain cell types. The 

dot colour reflects the degree of significance (p-value) with red colour indicating a higher 

significance than the blue colour. The dot sizes indicate the number of proteins in our 

analysis were clustered in a particular GO term. The bigger the size of the dot, the more the 

number of proteins. 
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Figure 29B: Significantly downregulated processes were observed only in Neuron and 

Microglia cell types. The dot colour reflects the degree of significance (p-value) with red 

colour indicating a higher significance than the blue colour. The dot sizes indicate the 

number of proteins in our analysis were clustered in a particular GO term. The bigger the 

size of the dot, the more the number of proteins. 
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Figure 30A: Comparison of the molecular functions enriched across brain cell types. The 

dot colour reflects the degree of significance (p-value) with red colour indicating a higher 

significance than the blue colour. The dot sizes indicate the number of proteins in our 

analysis were clustered in a particular GO term. The bigger the size of the dot, the more the 

number of proteins. 
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Figure 30B: Significantly downregulated molecular functions in brain cell type. The dot 

colour reflects the degree of significance (p-value) with red colour indicating a higher 

significance than the blue colour. The dot sizes indicate the number of proteins in our 

analysis were clustered in a particular GO term. The bigger the size of the dot, the more the 

number of proteins. 
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Figure 31A: KEGG pathways significantly enriched across brain cell types. The dot colour 

reflects the degree of significance (p-value) with red colour indicating a higher significance 

than the blue colour. The dot sizes indicate the number of proteins in our analysis were 

clustered in a particular GO term. The bigger the size of the dot, the more the number of 

proteins. 
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Figure 31B: Significantly downregulated KEGG pathways. The dot colour reflects the 

degree of significance (p-value) with red colour indicating a higher significance than the 

blue colour. The dot sizes indicate the number of proteins in our analysis were clustered in 

a particular GO term. The bigger the size of the dot, the more the number of proteins. 

 

3.6.6. Interactions between CSF proteins and cell lysate proteins detected by Sharma et. 

al, 2014. 

In order to unravel the complex network of inter-cellular communication between secreted 

proteins and transmembrane proteins (proteins from the cell lysate as determined by Sharma et 

al267) that may act as potential binding partners, we mapped known interaction partners (from 

UniProt and BioGRID) in a cell type resolved manner. We found a total of 711 unique 

interacting pairs, with all the proteins secreted with a cell type having interacting partners with 

proteins in the lysate of the other cell types (Figure 32 & Table 11).  
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Table 11: Number of protein interactions between CSF proteins and cell lysate proteins 

detected by Sharma et. al. 

 

Celltype in iSPECS data Cell type in Sharma data 

Number of 

interactions 

Astrocytes_iSPECS Astrocytes_Sharma 9 

Microglia_iSPECS Astrocytes_Sharma 84 

Neuron_iSPECS Astrocytes_Sharma 31 

Oligodendrocytes_iSPECS Astrocytes_Sharma 44 

Astrocytes_iSPECS Microglia_Sharma 6 

Microglia_iSPECS Microglia_Sharma 111 

Neuron_iSPECS Microglia_Sharma 36 

Oligodendrocytes_iSPECS Microglia_Sharma 48 

Astrocytes_iSPECS Neuron_Sharma 11 

Microglia_iSPECS Neuron_Sharma 111 

Neuron_iSPECS Neuron_Sharma 115 

Oligodendrocytes_iSPECS Neuron_Sharma 59 

Astrocytes_iSPECS Oligodendrocytes_Sharma 2 

Microglia_iSPECS Oligodendrocytes_Sharma 23 

Neuron_iSPECS Oligodendrocytes_Sharma 16 

Oligodendrocytes_iSPECS Oligodendrocytes_Sharma 5 

 

 

 

 

For example, the protein CD200 is found exclusively in the secretome of neurons and binds to 

its receptor CD200R1, specifically expressed in microglia. CSF proteins from the neuron and 

the proteins from the neuron cell lysate had the highest number of interacting pairs (115 

interactions), while those between CSF astrocytes and proteins from the oligodendrocytes cell 

lysate were the least (2 interactions). This observation suggests the presence of enhanced 

intracommunication between neurones with little intercommunication between neurons and 

oligodendrocytes.  
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Figure 32: Interacting proteins between secreted CSF proteins and the cell lysate proteins 

detected by Sharma et.al.  

 

3.6.7 Mapping of murine CSF proteins to disease association using the DisGeNET 

database. 

From the multitude of the secreted proteins, we found at least 57 proteins being linked to 

neurodegenerative diseases (Figure 33), suggesting the robustness of iSPECS in resolving 

critical brain glycol-proteins. A majority of the proteins were involved in the Alzheimers 

disorder, Schizophrenia and Bipolar disorder. 
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Figure 33. List of proteins detected in murine CSF and the iSPECS glyco-secretome resource 

which have human homologs that are linked to brain disease based on the DisGeNET database. 

Relative protein expression in the brain cell secretome is indicated with black showing the 

highest and white the lowest abundance. Colored gene names indicate cell type-specific 

secretion.  

 

3.6.8 Summary 

 

To sum up, the iSPECS approach miniaturizes secretome analyses under physiological culture 

conditions of cells and tissues. It also provides a highly reproducible and cost-effective way 

for deep secretome identification with cellular resolution. iSPECS enabled us to achieve: (i) a 

cell type-resolved brain glyco-secretome, (ii) further permitted the unravelling of the 

mechanisms involving cell-type specific protein secretion and, (iii) allowed the identification 

of the likely cellular origins of cell type-specifically secreted CSF-proteins. This secretome 

data will be available to the scientific community to complement the available genomic, 

transcriptomic, and proteomic data and thus facilitate further biomedical research. Taken 

together, iSPECS and the mouse brain glyco-secretome resource can be exploited for a wide 

range of applications to study cell-type specific protein secretion and shedding. 
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CHAPTER 4: THESIS SUMMARY 

CHAPTER 4: THESIS SUMMARY 

This thesis aims at providing a better understanding of the major disease-causing proteins 

involved in rewiring the protein-protein interaction network. Our approach has the potential 

application in identifying additional biomarkers that otherwise conventional differential 

expression analysis pipelines do not. Based on the obtained results presented in chapters 2 and 

3, we developed a freely available database for ease of access to biologists and other 

oncologists. We hope that with this freely available online platform, the scientific community 

can easily and speedily access the generated data and allow them to perform further 

experimental validation studies. Additionally, this study highlights the importance of 

alternative splicing in tumorigenesis and how analyses of isoform expression in healthy versus 

cancer tissues lead to finding potential biomarkers that may be important targets in advancing 

the search of personalized cancer therapies. It is crucial at this point to state that, future 

differential expression analysis should put more emphasis on the importance of alternative 

splicing as these splice variants are the sources of the final proteoforms expressed in a particular 

phenotype. 

To sum up, this thesis presents a novel and robust scheme capable of identifying known and 

novel cancer-specific and multi-cancer biomarkers using patient-specific PPIN derived from 

mRNA expression data. Furthermore, the ability to determine uniquely distorted interactions 

whose participants are predictive of patient survival opens up the possibility to computationally 

obtain potential protein biomarkers for specific cancer types and subtypes. We also established 

that SMGs do not bring about the majority of perturbations in cancer PPINs. Additionally, we 

found probable novel biomarkers such as the THCA BRAF-like specific 4-gene signature 

biomarker (ODAM, APP, IKBKG, and TOLLIP). The THCA biomarkers may be essential for 

disease monitoring of THCA subtypes whereas the 14-gene signature (with HRK node 

perturbation) explicitly observed in KICH samples is a candidate for therapeutic targeting. We 

were able to identify multiple protein interactions (edges) whose perturbation may have 

implications in tumorigenesis. Furthermore, we described gene ontologies (GO) and KEGG 

pathways enriched by the above-mentioned group of proteins across cancer types. Survival and 

functional enrichment analysis revealed that our candidate biomarkers are indeed involved in 

tumorigenesis. Last but not least, EdgeExplorer web portal allows for the free access of the 

findings by the scientific community. EdgeExplorer will not only facilitate experimental 

research in the continued quest for druggable proteins at the protein-protein interaction network 

level but will also be essential for researchers to quickly mine and access the proteins involved 

in edgetic perturbations of cancer PPINs. We envisage that subsequent experimental validation 

will demonstrate the applicability of the novel biomarkers generated in this study for making 

informed clinical decisions as well as in developing cancer therapies. In the future, studies 

should also seek to investigate and shed more light on patient-specific edgetic perturbations 

and determine proteins and corresponding isoforms (and protein domains) responsible for such 

disruptions.  

Finally, iSPECS is a cost-effective and reproducible methodology that miniaturizes secretome 

analyses under the physiological culture conditions of cells and tissues. It has the suitability for 

a wide range of applications to study protein secretion and shedding as demonstrated with our 

experimental set-up of the cell type-resolved brain glyco-secretome. Our strategy and approach 

allowed us to not only unravel the mechanisms of cell-type specific protein secretion but also 

to identify the probable cellular origins of cell type-specifically secreted CSF-proteins. The 

collective results, provide a basis to elucidate the complex network of intercellular 

communication in organs, for example, the brain.  
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1. Kataka, Evans., Zaucha, Jan., Frishman, Goar., Ruepp, Andreas. & Frishman, 

Dimitrij. Edgetic perturbation signatures represent known and novel cancer biomarkers. Sci 
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6.1 Abbreviations 

TCGA The Cancer Genome Atlas 

RNA-Seq: RNA Sequencing technology 

iSPECS: improved secr 

SMGs: Significantly mutated genes 

PPI: Protein Protein inetracrtion 

PPIN: Protein Protein Intracrtion Networks 

LUAD Lung Adenoarcinoma 

LUSC Lung Squamous cell carcinoma 

COAD Colon Adenocarcinoma 

BRCA Breast Adenoarcinoma 

HNSC Head and Neck Squamous cell Carcinoma  

BLCA Bladder urothelialc Carcinoma 

STES Stomach Esophegal carcinoma 

THCA Thyroid Adenocarcinoma 

PRAD Prostate Adenocarcinoma 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KIRC Kidney Renal clear cell Carcinoma 

KICH Kidney Chromophobe 

FDR False Discovery Rate 

GO Gene Ontology 

NGS Next Generation Sequencing 

SMGs Significantly Mutated Genes 
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Supplementary Information Legends 

FigureS1: Differences between the number of interactions in the healthy and cancer states for 

BLCA, BRCA and THCA. Healthy and cancer PPINs significantly differ in size even in the 

condition specific networks obtained from the randomised PPIN (p-value <0.05). The density 

plots indicate the distribution of paired cancer and healthy PPIN sizes in BLCA, BRCA and 

THCA. For BRCA and BLCA, the healthy PPIN was larger than the corresponding cancer 

PPIN while for THCA, the cancer PPIN was larger than the corresponding healthy PPIN. 

FigureS2: The EdgeExplorer portal hosts all the Datasets produced in the study. Due 

to their size limitations, we stored them in the portal for ease of access.  

 

Figure S3 (A-M): Kaplan-Meier survival analysis plots of multigene cancer biomarkers 

involved in edgetic perturbations. The x axes indicate the number of days until patient death 

whereas the y axes indicate the probability of patient survival. In all the figures, the green lines 

indicate better survival (longer life-span) after cancer diagnosis while the red lines indicate 

poor survival (shorter life-span) after cancer diagnosis as a result of the proteins involved in 

edgetic gains or losses. In all the cases, the proteins involved in edgteic perturbations predicted 

poor survival of the patients (Logrank test p-value < 0.05), indicating their importance in cancer 

monitoring and prognosis. (i) Overall survival predicted from gene signatures involved in 

edgetic gains across most patients of a cancer type (except for LIHC), (ii) Overall survival 

predicted from gene signatures involved in edgetic losses across most patients of a cancer type, 

(iii) Overall survival predicted from gene signatures involved in edgetic gains across patients 

showing cancer-specific perturbations, (iv) Overall survival predicted from gene signatures 

involved in edgetic losses across patients showing cancer-specific perturbations. The names of 

the prominent proteins with multiple perturbations responsible for the above observations can 

be found in S4 Table and in EdgeExplorer website.  

 

Figure S4 (a - b): Kaplan-Meier survival analysis plots of multigene cancer biomarkers 

involved in edgetic perturbations from the randomised PPIN. The x axes indicate the number 

of days until patient death whereas the y axes indicate the probability of patient survival. In 

both the figures, the green lines indicate better survival (longer life-span) after cancer diagnosis 

while the red lines indicate poor survival (shorter life-span) after cancer diagnosis as a result 

of the proteins involved in edgetic gains or losses. In all the cases, the proteins involved in 

edgetic perturbations predicted poor survival of the patients (Log-rank test p-value < 0.05), 

indicating their importance in cancer monitoring and prognosis. (A) Overall survival predicted 

from gene signatures involved in edgetic gains across most patients in BRCA, (B) Overall 

survival predicted from gene signatures involved in edgetic gains across most patients in 

BLCA.  

 

Figure S5A-G: Top ranked features (edges) from the Random Forest algorithm that 

distinguish cancer types based on the identified groups from hierarchical clustering 

(Figure 5). The x axes indicate the percentage (%) Mean Squared Error (MSE2). 

The higher the %MSE of the feature (perturbed edge), the more important the 

perturbed edge is in identifying a cluster. 

 

Figure S6A-Z: For each plot, the left blue curve represents the lowly-expressed 

genes while the grey curve represents the highly-expressed genes across patients 
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of a cancer type for both healthy and cancer samples, respectively. We used these 

characteristic peaks as a threshold and only kept the genes with an all-samples 

probability score of greater than 0.8 for subsequent analysis 

 

Supplementary Table Ia: The proportions of edgetic perturbations associated with SMGs and 

those associated with random genes with a similar degree significantly differ in size. 

 

Supplementary Table Ib: 9 cancer types show a significantly larger proportion of edgetic 

perturbations associated with SMGs when compared to the proportion of edgetic perturbations 

associated with random genes with similar degrees. 

 

Supplementary Table Ic: Specific cancer SMGs are involved in edgetic perturbations of cancer 

PPINs. 

 

Supplementary Table IIa: Importance of the proteins involved in multiple edgetic perturbations 

or edges frequently perturbed across patients of a cancer type and their significance in 

predicting overall patient survival 

 

Supplementary Table IIb: Proteins involved in subtype and subtype specific edgetic 

perturbations (SubtypePercLost and SubtypePercGained) in 11 cancer types. 

 

Supplementary Table III: Table showing a subset of cancer-specific edgetic perturbations in 

13 cancer types. 

 

Supplementary Table IV: Table showing the protein-protein interactions (711) between 

secreted proteins (iSPECS) and those from the cell lysate (Sharma). The proteins are either 

differentially expressed or their expression is 2.5-fold increased in a cell type compared to the 

other three cell types (termed cell tyope-specific proteins). As- astrocytes, MI- microglia, Ne-

neurons and Ol- oligodendrocytes. 
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Figure S1: Differences between the number of interactions in the healthy and cancer states 

for BLCA, BRCA and THCA. Healthy and cancer PPINs significantly differ in size even in 

the condition specific networks obtained from the randomised PPIN (p-value <0.05). The 

density plots indicate the distribution of paired cancer and healthy PPIN sizes in BLCA, BRCA 

and THCA. For BRCA and BLCA, the healthy PPIN was larger than the corresponding cancer 

PPIN while for THCA, the cancer PPIN was larger than the corresponding healthy PPIN. 
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Figure S2: The EdgeExplorer portal hosts all the Datasets (1-5, shown above in blue 

rectangles) produced in the study. Due to their size limitations, we stored them in 

the portal for ease of access. 
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Figure Ai: BRCA Top Gain Figure Aii: BRCA Specific Top Gain 

 

Figure Aiii: BRCA Top Lost Figure Aiv: BRCA Specific Top Lost 
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Figure Bi: BLCA Top Gain 

Days 

Figure Biii: BLCA Specific Top Gain 
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Figure Biii: BLCA Top Lost 

 

 
Figure Biv: BLCA Specific Top Lost 
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Figure Ci: HNSC Top Gain 

 

Figure Cii: HNSC Specific Top Gain 

 

 

Figure Ciii: HNSC Top Lost Figure Civ: HNSC Specific Top Lost 
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Figure Di: LUAD Top Gain 

Days Figure Dii: LUAD Specific Top 

Gain 

 

 

Figure Diii: LUAD Top Lost Figure Div: LUAD Specific Top Lost 
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Figure Ei: LUSC Top Gain 

 

Figure Eii: LUSC Specific Top Gain 
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Figure Eiii: LUSC Top Lost 

 
 

Figure Eiv: LUSC Specific Top Lost 
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Days 

Figure Fi: KIRP Top Gain 

 

Figure Fii: KIRP Specific Top Gain 

 

 

Figure Fiii: KIRP Top Lost Figure Fiv: KIRP Specific Top Lost 
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Days 

Figure Gi: KIRC Top Gain 

 
 

Figure Gii: KIRC Specific Top Gain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Days 

Figure Giii: KIRC Top Lost 

 

 
Figure Giv: KIRC Specific Top Lost 
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Days 

Figure Hi: COAD Top Gain 

 

 

 

 

 

 

 

 

 

 

 

 

Days 

Figure Hiii: COAD Top Lost 

 
 

Figure Hii: COAD Specific Top Gain 

 

Figure Hiv: COAD Specific Top Lost 
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Days 

Figure Ii: STES Top Gain 

 
 

Figure Iii: STES Specific Top Gain 

 

 

 
 

Days 

Figure Iiii: STES Top Lost 

 

Figure Iiv: STES Specific Top Lost 
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Days 

Figure Ji: PRAD Top Gain 

Days 

Figure Jii: PRAD Specific Top Gain 
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Figure Jiii: PRAD Top Lost 

 

 
Figure Jiv: PRAD Specific Top Lost 
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Figure Li: LIHC Specific Top Gain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Days 

Figure Liii: LIHC Top Lost 

 

 
Figure Liv: LIHC Specific Top Lost 
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Days 

Figure Mi: THCA Top Gain 

Days Figure 

Mii: THCA Specific Top Gain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Days 

Figure Miii: THCA Top Lost 

 

 
Figure Miv: THCA Specific Top Lost 

 

 

Figure S3 (A-M): Kaplan-Meier survival analysis plots of multigene cancer biomarkers involved in edgetic 

perturbations. The x axes indicate the number of days until patient death whereas the y axes indicate the 

probability of patient survival. In all the figures, the green lines indicate better survival (longer life-span) after 

cancer diagnosis while the red lines indicate poor survival (shorter life-span) after cancer diagnosis as a result 

of the proteins involved in edgetic gains or losses. In all the cases, the proteins involved in edgteic perturbations 

predicted poor survival of the patients (Logrank test p-value < 0.05), indicating their importance in cancer 

monitoring and prognosis. (i) Overall survival predicted from gene signatures involved in edgetic gains across 

most patients of a cancer type (except for LIHC), (ii) Overall survival predicted from gene signatures involved 

in edgetic losses across most patients of a cancer type, (iii) Overall survival predicted from gene signatures 

involved in edgetic gains across patients showing cancer-specific perturbations, (iv) Overall survival predicted 

from gene signatures involved in edgetic losses across patients showing cancer-specific perturbations. The 

names of the prominent proteins with multiple perturbations responsible for the above observations can be 

found in S4 Table and in EdgeExplorer website.  
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Figure S4 (a - b): Kaplan-Meier survival analysis plots of multigene cancer biomarkers involved 

in edgetic perturbations from the randomised PPIN. The x axes indicate the number of days until 

patient death whereas the y axes indicate the probability of patient survival. In both the figures, 

the green lines indicate better survival (longer life-span) after cancer diagnosis while the red lines 

indicate poor survival (shorter life-span) after cancer diagnosis as a result of the proteins involved 

in edgetic gains or losses. In all the cases, the proteins involved in edgetic perturbations predicted 

poor survival of the patients (Log-rank test p-value < 0.05), indicating their importance in cancer 

monitoring and prognosis. (A) Overall survival predicted from gene signatures involved in edgetic 

gains across most patients in BRCA, (B) Overall survival predicted from gene signatures involved 

in edgetic gains across most patients in BLCA.  
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Figure A: Set one of important gained edges across cancer types 

 

 

 
 

Figure B: Set two of important gained edges 

across cancer types 
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Figure C: Set one of important egdetic losses 

across cancer types 

Figure D: Set two of important egdetic losses 

across cancer types 
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Figure E: Set one of important egdetic losses and gains 

across cancer types 

Figure F: Set two of important egdetic losses and g 

across cancer types 

 

 
 

 
 

Figure G: Set three of important egdetic losses and 

gains across cancer types 

Figure S5A-G: Top ranked features (edges) from the Random Forest algorithm that 

distinguish cancer types based on the identified groups from hierarchical clustering (Figure 

5). The x axes indicate the percentage (%) Mean Squared Error (MSE2). The higher 

the %MSE of the feature (perturbed edge), the more important the perturbed edge is in 

identifying a cluster. 
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Figure H: Distribution of gene expression data in                 

BLCA cancer samples 

Figure I: Distribution of gene expression data in BLCA 

paired healthy samples 

 

 

 
 

  
 
 

Figure J: Distribution of gene expression data in 

BRCA cancer samples 

Figure K: Distribution of gene expression data in BRCA 

paired healthy samples 
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Figure L: Distribution of gene expression data in 

COAD cancer samples 

Figure M: Distribution of gene expression data in 

COAD paired healthy sample

 

  
 
 

Figure N: Distribution of gene expression data in 

HNSC cancer samples 

Figure O: Distribution of gene expression data in HNSC 

paired healthy samples 
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Figure P: Distribution of gene expression data in 

KICH cancer samples 

Figure Q: Distribution of gene expression data in 

KICH paired healthy samples 
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Figure A: Distribution of gene expression 

data in KIRC cancer samples 

Figure B: Distribution of gene expression 

data in KIRC paired healthy samples 

 

 

 

 

 

  
 
 

Figure C: Distribution of gene expression 

data in KIRP cancer samples 

Figure D: Distribution of gene expression 

data in KIRP paired healthy samples 
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Figure E: Distribution of gene expression 

data in LIHC cancer samples 

Figure F: Distribution of gene expression data 

in LIHC paired healthy samples 

 

 

 

 

 
 

  
 
 

Figure G: Distribution of gene expression 

data in LUSC cancer samples 

Figure H: Distribution of gene expression 

data in LUSC paired healthy samples 
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Figure I: Distribution of gene expression 

data in LUAD cancer samples 

Figure J: Distribution of gene expression data 

in LUAD paired healthy samples 

 

 

 

 

 

  
 
 

Figure K: Distribution of gene expression 

data in PRAD cancer samples 

Figure L: Distribution of gene expression data 

in PRAD paired healthy samples 
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Figure M: Distribution of gene expression 

data in STES cancer samples 

Figure N: Distribution of gene expression 

data in STES paired healthy samples 

 

 

 

 
 

  
 
 

Figure O: Distribution of gene expression 

data in THCA cancer samples 

Figure P: Distribution of gene expression data 

in THCA paired healthy samples 

Figure S6A-Z: For each plot, the left blue curve represents the lowly-expressed genes while the 

grey curve represents the highly-expressed genes across patients of a cancer type for both healthy 

and cancer samples, respectively. We used these characteristic peaks as a threshold and only kept 

the genes with an all-samples probability score of greater than 0.8 for subsequent analysis. 
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Supplementary Table Ia: The proportions of edgetic perturbations associated with SMGs and those associated with random genes with a similar 

degree significantly differ in size. 
 

 

 

 

A: P-value showing if the difference between the proportion of edgetic gain perturbations associated with SMGs significantly diffe rs from the proportion of edgetic perturbations 

associated with random genes at the first degree neighbours.  

B: P-value showing if the difference between the proportion of edgetic gain perturbations associated with SMGs significantly diffe rs from the proportion of edgetic perturbations 

associated with random genes at both the first and second degree neighbours. 

C: P-value showing if the difference between the proportion of edgetic loss perturbations associated with SMGs significantly diffe rs from the proportion of edgetic perturbations 

associated with random genes at the first degree neighbours 

D: P-value showing if the difference between the proportion of edgetic gain perturbations associated with SMGs significantly diffe rs from the proportion of edgetic perturbations 

associated with random genes at the first degree neighbours 

 
 

 

Cancer 

type 

Number of 

edges gained 

as 1st 

neighbours 

of SMGs 

Number of 

edges gained 

as 1st 

neighbours 

of random 

genes 

 

A Number of 

edges gained 

as 1st or 2nd 

neighbours 

of SMGs 

Number of 

edges gained 

as 1st or 2nd 

neighbours 

of random 

genes 

 

B Number of 

edges lost 

as 1st 

neighbours 

of SMGs 

Number of 

edges lost 

as 1st 

neighbours 

of random 

genes 

 

C Number of 

edges lost 

as 1st or 2nd 

neighbours 

of SMGs 

Number of 

edges lost 

as 1st or 2nd 

neighbours 

of random 

SMGs 

 

D 

THCA 254 461 6.06e-15 7741 7282 5.84e-07 334 609 1.69e-19 9788 11057 1.47e-28 

BLCA 759 662 0.009 11046 10818 0.02 626 851 2.35e-09 9695 10191 3.58e-07 

BRCA 638 935 2.44e-14 11627 12997 4.09e-39 553 927 5.86e-23 12385 13776 7.16e-35 

COAD 449 406 0.1 5966 5345 1.13e-18 679 805 0.0008 10533 11817 4.06e-36 

KIRC 215 477 8.69e-24 7001 8001 2.01e-26 380 452 0.012 14418 12681 5.58e-43 

KIRP 154 341 2.53e-17 5402 4567 3.19e-23 233 354 5.12e-07 9048 9168 0.27 

KICH 102 89 0.34 3409 2799 3.93e-19 246 187 0.004 9337 7824 4.43e-44 

HNSC 626 693 0.06 11439 11589 0.15 817 814 0.9 13947 13941 0.9 

LUAD 480 431 0.09 9109 8375 7.49e-16 608 450 1.18e-06 11819 11082 1.12e-06 

PRAD 261 247 0.53 8173 7109 2.1e-30 320 467 1.25e-05 9060 9265 0.05 

LUSC 426 261 1.78e-10 5295 5127 0.03 430 470 0.17 10307 10132 0.1 

STES 160 166 0.74 4685 5067 1.51e-05 182 200 0.35 3827 4868 3.85e-36 

LIHC 1293 1508 3.43e-05 22998 23235 0.06 2161 1705 7.68e-14 32554 30974 3.86e-24 
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Supplementary Table Ib: 9 cancer types show a significantly larger proportion of edgetic perturbations associated with SMGs when compared to the proportion of edgetic 

perturbations associated with random genes with similar degrees. 

 

Cancer 

type 

genes in 

gains 

Number of 

edges gained 

as 1st 

neighbours 

of random 

genes 

 

E 
Number of 

edges gained 

as 1st or 2nd 

neighbours 

of random 

genes 

 

F 
genes 

in 

losses 

Number of 

edges lost as 1st 

neighbours of 

random genes 

 

G 
Number of 

edges lost as 

1st or 2nd 

neighbours 

of random 

genes 

 

H 

THCA 33 461 - 7282 2.42e-06 33 609 - 11057 - 

BLCA 42 662 0.004 10818 0.01 46 851 - 10191 - 

COAD 45 406 - 5345 5.64e-19 65 805 - 11817 - 

KIRC 24 477 - 8001 - 23 452 - 12681 2.79e-43 

KIRP 13 341 - 4567 - 19 354 - 9168 - 

KICH 16 89 - 2799 1.97e-19 18 187 0.002 7824 2.21e-44 

LUAD 34 431 - 8375 3.75e-16 46 450 4.39e-07 11082 8.99e-13 

PRAD 28 247 - 7109 1.05e-30 30 467 - 9265 - 

LUSC 20 261 8.9e-11 5127 0.01 25 470 - 10132 - 

LIHC 44 1508 - 23235 - 45 1705 3.84e-14 30974 1.93e-24 

 

E: P-value showing how significantly large the proportion of edgetic gains associated with SMGs is when compared to edgetic gain p erturbations associated with randomly 

generated genes on the first degree neighbours. 

F: P-value showing how significantly large the proportion of edgetic gains associated with SMGs is when compared to edgetic gain p erturbations associated with randomly 

generated genes on both the first and second degree neighbours. 

G: P-value showing how significantly large the proportion of edgetic losses associated with SMGs is when compared to edgetic loss perturbations associated with randomly 

generated genes on the first degree neighbours. 

H: P-value showing how significantly large the proportion of edgetic losses associated with SMGs is when compared to edgetic loss perturbations associated with randomly 

generated genes on both the first and second degree neighbours -: Indicates no significant differences in the proportion of perturbations associated with SMGs and those 
associated with random genes, or the proportion of perturbations associated with SMGs is not larger than the proportion of pe rturbations associated with random genes 
Genes in gains: number of randomly generated genes with similar degrees to the SMGs and involved in edgetic gain perturbation s. Genes in losses: number of randomly 
generated genes with similar degrees to the SMGs and involved in edgetic loss perturbations.
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Supplementary Table Ic: Specific cancer SMGs are involved in edgetic perturbations of cancer PPINs. 

Cancer 

type 

Cancer 

type 

SMGs 

Gaine

d 

edges 

Number of 

edges 

gained as 

1st 

neighbours 

of SMGs 

Number of 

edges 

gained as 

1st or 2nd 

neighbour

s of SMGs 

SMG 

protein 

products 

involved 

in 

edgetic 

gains 

% of 

gains 

linked 

to 

SMGs 

Lost 

edges 

Number of 

edges lost 

as 1st 

neighbour

s of SMGs 

Number of 

edges lost 

as 1st or 

2nd 

neighbours 

of SMGs 

SMG 

protein 

products 

involved 

in edgetic 

losses 

% of 

losses 

linked 

to 

SMGs 

THCA 35(36) 22831 254 7741 32 33.9 28065 334 9788 32 34.8 

BLCA 52(54) 20739 759 11046 47 53.26 19030 626 9695 42 50.94 

BRCA 49(52) 22195 638 11627 47 52.4 25516 553 12385 46 48.5 

COAD 82(87) 10065 449 5966 54 59.27 21024 679 10533 60 50.1 

KIRC 24(26) 18258 215 7001 24 38.34 33005 380 14418 25 43.7 

KIRP 18(21) 17174 154 5402 19 31.5 27141 233 9048 20 33.33 

KICH 16(18) 12423 102 3409 17 27.4 27490 246 9337 17 34 

HNSC 50(52) 21913 626 11439 46 52.2 27485 817 13947 44 50.7 

LUAD 52(58) 16622 480 9109 39 54.8 21907 608 11819 46 54 

PRAD 39(40) 17529 261 8173 28 46.63 22468 320 9060 30 40.32 

LUSC 34(35) 13108 426 5295 26 40.39 23242 430 10307 28 44.35 

STES 24(27) 24326 160 4685 20 19.26 20800 182 3827 20 18.4 

LIHC 41(49) 36458 1293 22998 44 63.1 51445 2161 32554 46 63.27 

The numbers in the brackets next to the Cancer type SMGs indicate the protein products of the SMGs. 
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Supplementary Table IIa: Importance of the proteins involved in multiple edgetic perturbations or edges frequently perturbed across 

patients of a cancer type and their significance in predicting overall patient survival 

Cancer 

type 

Proteins involved in significant edgetic 

gains 
Proteins involved in significant edgetic losses 

  

Top Gains 
Top cancer-specific 

gains 
Top losses 

Top cancer-

specific losses 

SMGs in edgetic gains or 

losses   Interesting Genes from Survival analysis 

BRCA 

CDC25C**, TDO2, 

DST*** 
UPF2-HS3ST3A1 

ALK, APOB, APP, ASB14, 

AURKC, AVPR2, C1QTNF9, 

CCDC36, DMRT3, ENPP6, ESR2, 

GFAP, HOXD4, HRNR, INCA1, 

KCNA5, LURAP1, MAP1LC3C, 

MASP1, MYH7B, MYOC, 

MYOCD, NOS2**, PPP2R2B, 

USP44 

FOXF1**, 

F8***, 

VWF*** 

AKT1, BAP1, BRCA1, 

EP300, ESR1, FBLN2, 

FOXA1, KRAS, 

MAP3K1, NCOR1, 

NTRK3, PIK3R1, SALL4 

CDK1, DYNLT1, HSP90AA1, MAPK3, 
MARK3, PLK3, HS3ST3A1, CALU, CCT5, 
CCT6A, CDIPT, C17orf79, CUL5, DNAJA1, 
DNAJA3, DNAJC7, EMD, HSPA5, 
LGALS3BP, NAP1L1, PLEC, PPM1B, 
PPP2R1A, PSMA1, PSMA2, PSMA4, 
PSMA6, PSMC5, PSMD14, PSMD2, 
PSMD4, PTBP1, PTGES3, RAC1, RPS18, 
RPS4X, SERPINE1, SLC25A5, STRAP, TCP1, 
UCHL5, YWHAQ, STRBP 
  

HR (84/110) LR 

(26/110) 
HR (110/110, 100%) HR (74/110) LR (34/110) 

HR (75/110) 

LR (35/110) 
  

  

BCAN, 

CATSPER1, 

FOXD4, FOXH1, 

GUCY1A2, 

HIST1H2AB, 

HIST1H2AE, 

HIST1H2BJ, 

HIST2H2AC**, 

HMGA2, KCNJ10, 

LRRC46, MAST1, 

OTX1, SLX4IP, 

TMEM52B, 

LONRF3***, 

RNF146***, 

SH3PB2*** 

DLG1, DLG3, DLG4, 

ERBIN, 

GUCY1A2**, 

GUCY1B1, 

HSP90AA1, HSPA4, 

LIN7A, SNTA1, 

STUB1 

ACTA1**, ADCYAP1, ADRA1D, 

APP, ASB16, AURKC, AVPR2, 

BEX1, BMX, CLEC4G, CMTM5, 

EFHC2, ENPP6, FAM124A 

FOXD3, GPM6A, GRIN2A, ISL1, 

KCNA3, KCNA5, MEFV, MYH7B, 

P2RY12, PRPH, RUNX1T1, 

RXRG, SCN2B, SOX5, STX1B, 

BTB20 

KCNA3, 

FAM124A**, 

PIPOX, 

GNAQ***, 

ADHFE1*** 

ATM, CDKN2A, 

CTNNB1, CUL1, EP300, 

ERBB3, FBXW7, KRAS, 

MDM4, PIK3CA, PSIP1, 

PTEN, RB1, RBM10, 

SPTAN1, TP53, TSC1 

  

CTCFL, EP300, ERCC6, HIST1H3G, INO80, 
MLLT1, NCL, NPM1, PRMT7, RBBP7, 
RNF20, TAF15, TAF1B, DLG3, GUCY1B3, 
LIN7A, ABL1, ABLIM2, ANXA1, BTK, 
CAPZA2, CDH2, CSNK1A1, DNASE1, 
ERBB3, ETV6, HDAC4, LRCH3, MIB2, 
PPP1CA, PPP1R1A, SCIN, SMARCB1, XPO6, 
FAM124A, STAC3, THAP1, ZBTB44, 
ZNF165, ZNF250, ZZZ3 
  

BLCA 
HR (16/19) LR 

(3/19) 
HR (12/19) LR (7/19) HR (18/19) LR (1/19) 

HR (14/19) LR 

(5/19) 
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HOXC9, FOXL2**, 

KHDRBS1***, 

DLG2*** 

CEBPE**  

APP, ASB14, ASGR1, AURKC, 

BMX, CDKL3, FLT3, GDF9, 

GLIPR1L2, INCA1, PCK1**, 

RXRG, TSSK3, TUBB1, USP49, 

WNK4, ZNF396 

WNK4**, 

GOSR2***, 

REPIN1***, 

BCAN*** 

AJUBA, CUL3, EP300, 

FBXW7, HLA-B, 

HUWE1, TP53 

  

CCDC59, DDX52, DNAJC9, ELAVL1, 
HNRNPUL2, IARS, MOV10, NSDHL, 
NUP205, P4HA1, RPLP1, BATF, BATF3, 
E2F1, FOS, JUN, KDM2B, PSAT1, ACTB, 
APP, BAT3, FASN, GNAS, MAGED2, 
NUP62, PSMB1, PSMB4, PSMD12, RPL23, 
RPS6, TCP1, UBR5, WNK4, ABCC2, 
CHCHD2, MMGT1, SLC30A5, SSR1, 
TOMM20 
  

HNSC 
HR (15/42) LR 

(27/42) 
HR (6/42) LR (36/42) HR (15/42) LR (27/42) 

HR (10/42) LR 

(32/42) 

  

LUAD 

ABCC2**, 

AGMAT, CDC25C, 

HPDL, KCNJ10, 

NEIL3, RGS17, 

SGO1, SOX30, 

SPC24, 

SPECC1*** 

SLC25A21** ADRA1D, APOA1**, APP, 

ASB14, ASB16, AVPR2, BEX1, 

BMX, BTNL8, CAV3, CCDC36, 

COLEC10, DNASE2B, ENPP6, 

GATA1, GNMT, HSPB3, IL9R, 

INCA1, L1TD1, MYOC, OLIG1, 

PPARGC1B 

PTPN5, RAB40A, SH3GL2, 

SH3GL3, SLC2A4, TCAP, 

WNT3A 

PPARGC1B**, 

SUPT3H*** 

AKT1, ARID1A, BAP1, 

CTNNB1, CUL3, 

DROSHA, EGFR, 

FGFR2, KRAS, MET, 

PIK3CA, SMARCA4, 

STK11, TP53 

  

ABCC2, CHCHD2, MMGT1, MRPL10, 
SLC30A5, SSR1, TOMM20, TOMM22, 
NOSIP, APOL1, C1QC, DGAT1, GDPD1, 
NLRP1, PDE4B, PLTP, SPEF2, TNS3, 
APOA1BP, UCHL5, ZNRD1, PIAS1, THRB, 
ZFP64.  
  

 LR (58/58, 100%) HR (55/58) LR (3/58) HR (20/58) LR (38/58) HR (10/58) LR 

(48/58) 

 LUSC  

HIST1H2AB, 

HIST1H2AE**, 

HPDL, NEIL3, 

HECW2***, 

SPECC1*** 

MED12L** ACTN2, AGTR1, APOA1, APP, 

BIRC7, BTNL8, C1QTNF2, 

CCDC36, CD1B, CEBPE, 

CMTM5, DNASE2B, ESR2, 

FAM124B, FOXA3, GATA1, 

GDF9, GFI1B, IL9R 

INCA1, KCNA5, KHDRBS2, 

L1TD1, MAP1LC3C, MYH7B, 

MYOC, NR0B2, P2RY12, 

PACRG, RXRG, SH3GL2, 

TRIM55, TRIM69, TUBB1, 

USHBP1**, USP49, VTN 

CD1B**, 

FAM124B, 

USP22***, 

SUPT3H*** 

ARID1A, CUL3, EP300, 

FAT1, FBXW7, FGFR2, 

KLF5, LEPROTL1, 

NOTCH1, PIK3CA, 

PTEN, RASA1, RB1, 

TP53, USP44 

  

ACO1, ACTR2, BRCA1, CBX4, CBX8, 
CENPA, EIF2AK2, ERCC6, H2AFY, 
HNRNPA2B1, MAPK3, MCM2, MOV10, 
SHMT2, SUZ12, TRIP13, BET1, NGFRAP1, 
C1orf109, C1orf216, CCDC121, CCDC146, 
CCDC148, CCDC87, CEP63, CHCHD3, 
CNNM3, COPS4, CTNNBIP1, DTNB, 
EXOC7, EXOC8, FAM107A, FAM110A, 
FTL, GATAD2B, GCC1, GFI1B, GPSM1, 
HAUS1, HGS, IFT20, ING3, INTS4, 
KIAA0753, KLC3, KLC4, KRT19, LENG1, 
MCM7, MCRS1, MED28, MED4, MRPS23, 
NDE1, NOC4L, PMF1, PRKAA2, SYNJ2BP, 
THADA, THOC1, UBE2W, USHBP1, 
ZFYVE26, ADAM9, CPD, FKRP, ITFG1, 
ULBP3 
  

HR (12/16), LR 

(4/16) 
HR (13/16) LR (3/16) HR (15/16) LR (1/16) 

HR (13/16), LR 

(3/16) 
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ASB14, CCNE2, 

CENPA, E2F2, 

ESCO2, HJURP 

IGF2BP3**, 

MSX2, PBK, 

POLE2, POTEF, 

SGO1 

SKA3, TTK, 

RNF146***, 

SH3PB2*** 

ASB14**, CCNE2, 

MSX2 

POTEF 

ASB5, ATP12A, CALML3, CLNK, 

DKK1, FBN3, FOXI2, FOXN1, 

HEPACAM2, MYOZ2 

NOS1, NR0B2**, PRMT8, 

RALYL, SOX30 

TTR, VSIG2 

DKK1-MDFI, 

REPIN1***, 

BCAN*** 

CUL3, KMT2D, MET, 

RNF2, SMARCB1 

  

CAND1, CDK2, CNBP, COPS5, CRYZ, 
EIF2B2, EPRS, FBXO6, HNRNPA1, 
HNRNPU, IGF2BP3, KRT17, MDM2, 
MRE11A, NDUFAF4, COBRA1, OBSL1, 
RFC4, RPL23A, RPL26L1, RPL37A, RPL38, 
SIRT7, STAU1, UBC, ARF4, GALK1, 
SLC25A5, TUFM, CHRD, ESR1, ESRRG, 
FN1, HDAC1, HDAC3, HNF4G, HNRNPA1, 
IL3RA, KLF6, PLSCR1, PPARG, RBP5, 
SIRT6, SIRT7, SMAD4, SMARCA2, 
SMARCB1, SMARCC1, SNW1, SP2, TRAF6, 
MDFI 
  

KIRP 
HR (17/32), LR 

(15/32) 

HR (3/32), LR 

(29/32)  
HR (13/32) LR (29/32) 

HR (9/32) LR 

(23/32) 

  

KIRC 

CDC25C, CDC45, 
CDKN2A**, EME1, 

CENPA, FASLG, 

KIF14, LGALS9C, 

MCM10, NEIL3, 

SGO1, 
GRAMD2B***, 

GRAMD1C*** 

MLC1** ASB14, BIK, BNIPL, CLNK, 
ESRRB**, FBN3, FOXA3, GRIK2, 

HAP1, OLFM4, RAB40A, SOX30, 

TCAP, USP44 

BIK**, 
VSIG8***, 

SHC1*** 

ELOC, HIF1A, KAT7, 
MAGI1, PIK3CA, RNF2, 

TP53, VHL  

ACLY, ARFIP2, ATR, AURKA, C1QBP, CASC3, 
CCND2, CCNG1, CDC7, CDK11A, CDK4, 
CDK5RAP3, COMMD1, CRELD2, CTBP2, 
DYRK1B, E2F1, EEF2, GGA1, HDAC1, 
HSP90AB1, HSPA8, IQGAP1, NAA38, MCM2, 
MDM2, MIS12, MOV10, MTR, NCL, WHSC1L1, 
ORC4L, PA2G4, PPP1CB, PPP1CC, PRKCA, 
RPP38, SNRPA, SNRPB, TP53, TTF1, TUBB, 
UBE2A, UBE2I, UBE4B, CAV1, DTNB, MYLK, 
SNTA1, ACSL3, ANXA2, ATP2A2, CANX, 
DNAJA1, DNAJB6, EGFR, ERRFI1, GFAP, GNB4, 
GRB2, HNRNPH1, LRPPRC, NCOA3, PHB, 

PPP2CA, PARK2, RPL23, RPS27A, S100A16, 
SEC61A1, SLC25A3, SLC25A5, SLC25A6, 
TNFAIP2, TUBB, UBASH3B, VAPA, BCL2, 
BCL2L2, BIK, SOCS3  

HR (48/63) LR 

(15/63) 
HR (28/63) LR (35/63) HR (43/63) LR (20/63) 

HR (39/63) LR 

(24/63) 
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CST4, OT, KLC3**, 
MAPK15, CCNO***, 

CDKN1A*** 

CITED1** APP, CA14, CACNA1A, CHST8, 
CMTM5, ENPP6, ESR2, FAM90A1, 

FOXH1, GDF9, GFI1B, HAP1, 
HIST1H2AG, HIST1H2AI, HIST1H2AK, 

HIST1H2AL, HIST1H2AM, KHDRBS2, 
MYOC, P2RY12, PPP2R2B, PTH1R 

RPL10L, SCN2B, SH3GL2, SUSD4, 
TAGLN3 

TEX11, TP63, TRIM9, TTR, TUBB1, 
USP49 

ZBTB16** 

FAM184A, 
FOXH1, 

HIST1H2AG, 
HIST1H2AI, 

HIST1H2AK, 
HIST1H2AL, 

HIST1H2AM, 
PDIA2, RIMBP3, 

RPL10L**, 
ATP1B2, CMYA5, 

FBX027, HTR3E, 
ISL2, RIBC1, 

RNF152, TLX2, 
FLT1***, 

SHC1*** 

ACVR2A, AKT1, APC, 
AXIN1, AXIN2, B2M, BAX, 

CTNNB1, CUX1, EIF3E, 
EP300, EPHA7, ERBB3, 

FAT3, FBXW7, GRIN2A, 
HIF1A, KRAS, LEPROTL1, 

MDM2, MLH1, MSH2, 
PCBP1, PIK3CA, PIK3R1, 

PTEN, RSPO2, SALL4, 
SFRP4, SMAD2, SMAD3, 

SMAD4, SRC, TGFBR2, 
TGIF1, TP53, UBR5, USP44, 

ZNRF3  

C3orf19, CCNB1, CD99L2, CENPP, CUL2, KLC3, 
ORC4L, PCMT1, RBBP6, TRIM26, HSPA8, LNX1, 
ANAPC5, ANXA7, BMI1, CDK4, DPM1, EEF1A1, 
HDAC3, HDAC7, IL32, MTDH, MX1, NCOR1, 
PAFAH1B3, PSMD11, SMN2, TERF1, THNSL2, 
TOLLIP, UBE2I, WDR33, CAND1, RPL31, RPL35, 
RPL36, RPL4, RPS21, RPS28, RPS3A, RPS7, TP53  

COAD HR (8/18), LR (10/18,) HR (14/18) LR (4/18) HR (8/18) LR (10/18) 
HR (6/18) LR 

(12/18) 

 STES 

CLEC5A, HOXA9, 

MAPK15, STAC3, 

TNFRSF9, 

TNFSF11**, 
ANK1***, TTN*** 

STAC3** ADCYAP1, AGTR1, APP, ASB16, 

BMX, CAMK2B, CCT6B, EID3, 

ENPP6, ESR2, GPM6A, HSPA1L**, 

PACRG, RXRG, INA, LURAP1, 
SCN2B, SPIN2B, TCEANC, TRIM46, 

TRIM9, TSSK3, USHBP1, SPATA24, 

ZNF396 

HSPA1L**, 

TCEANC, 

SPIN2B, EDA2R, 

CCT6B, USP6, 
ETFBKMT, 

CEP170B*** 

ATR, CDH1, ERBB3, FAT3, 

GRIN2A 

  

B4GALT7, LMO4, MBTPS1, SBF1, SNRNP35, 
TRMT2A, PPARA, AP2M1, ARRB2, BAG4, CBL, 
CDC5L, CEP250, DCUN1D1, PTPLAD1, HSPA1L, 
MAP3K1, MRPS36, NDUFB9, NDUFV1, NFKB1, 
NUCB2, STUB1, TAB1, TBC1D22A, TRAF3IP1, 
TXN2, UBASH3B, XPO1, ZBTB1 
  

 HR (11/37) LR 

(26/37) 

HR (1/37), LR 

(36/37) 
HR (22/37) LR (15/37) 

HR (22/37) LR 

(15/37) 

  

CDC25C, CDCA2, 

CENPA**, DLX2, 

FOXD4, HASPIN, 
HIST3HWBB, SGO1, 

SPC25 CDC25C, 

DIDO1***, RPA1*** 

DLX2** CACNA1A**, SOX30, DRD2, FABP4, 

KCNJ10, KIF5A, CCDC158, 

LGALS9C, FAM90A1, HIPK4, 
CMTM5, RSPH9, TUBB1, SGK2, 

RSPH14  

LGALS9C**, 

BCAR3***, 

HOXC6*** 

ACSL3, DDX5, RAF1, TP53 

  

DGCR6, MSX1, ATG9A, CD47, LGALS9, 

LGALS9C, RRAGB, SLC12A7, SLC38A9 

  

PRAD HR (4/52), LR (48/52) HR (8/52) LR (44/52) HR (13/52) LR (39/52) 
HR (1/52) LR 

(51/52) 

LIHC 

EBF2-ZNF23, 

KANK2***, 

WDR83*** 

WNT3A** AMHR2** 

BMP10**, 

HR***, 

RARB***, 

DDX11***, 

SLAMF7*** 
NONE 

  

FZD1, PPP2R1B, PPP2R5B, TRAF2,  
HSP90AA1 

  

LIHC (conti

nued from 

above cells) 

NS  LR (50/50) HR (1/50) LR (49/50) 
HR (19/50) LR 

(31/50) 
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 THCA 

ALK**, HIPK4, 

RAB40A, PDZK1, 
GRAMD2B***,  

GRAMD1C*** 

RAB40A** VEGFD** CSAG1**, 

ANKS1B***, 
ERBB4*** 

 AKT1, PRKAR1A 

  

ACTB, ACTN4, ALK, BCAR1, BICD2, 

CDK13, CENPF, CORO1C, EIF4B, EPHA1, 
EPHB2, ERRFI1, FLII, GAK, GRB2, 

HSP90AA1, HSPD1, IKBKG, IRF7, IRS1, 

JAK2, JAK3, KRT18, MAP2K7, MAP3K1, 

MAP3K4, MAP3K5, MAPK1, MAPK8IP3, 

MTIF2, MYH10, MYH9, MYO6, PDLIM3, 
PIK3CB, PIK3R1, PLCB2, PLCG1, PRKCQ, 

PTN, PXN, RAB35, RAD17, SHC1, SMC6, 

SOCS1, SOCS5, SRC, STAT3, TNK2, 

TUBB2C, TUBGCP2, ZC3HC1, HSP90AA1, 

ISCA1, LYRM7, PSME3, ZER1 
  

 HR (27/58), LR 

(38/58) 
HR (31/58) LR (27/58) HR (34/58) LR (24/58) 

HR (38/58) LR 

(20/58) 

KICH 

HRK**, SLC12A5, 
BRCA1***, 

OBSCN*** 

IL12B** 
FOXE1, HIST1HIE, MYOC, PLG, 

TRIM15, VTN** 

TRIM15**, PLG, 

SLC22A11, 

ASPH***, 

FBLN7*** 

RNF2, TP53, VHL 

  

(25/25) (24/25) (25/25) (25/25)     

 

The ratios in the brackets indicate the number of patients showing a particular perturbation (in KICH) or the classification of HR and 

LR patients. LR: Low Risk of cancer related death. HR: High Risk of cancer related death.  

** Protein nodes having the highest number of edgetic perturbations.  

Note: All corresponding Survival analysis plots for each of the multi-gene biomarkers are available in Supplementary Figure 3. The 

cox interesting genes were found to exert significant effects on the predicted survival responses than other genes.  

NS: Non-significant survival analysis results. Interesting Genes from Survival analysis: Genes important in discriminating the patients 

based on their probabilities of survival. *** Protein nodes participating in edgetic perturbations due to isoform/domain switches. 
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Supplementary Table IIb: Proteins involved in subtype and subtype specific edgetic perturbations (SubtypePercLost and 

SubtypePercGained) in 11 cancer types. 

 
Cancer 

type 

Cancer Subtype and ratio of samples showing a specific perturbation 
 

BRCA PR+ top 

gains 

PR+ top losses ER+ top gains ER+ top losses  HER+ top gains HER+ top losses PR- top gains PR- top losses 

CFTR (29/29) 

ER- top 

gains                      

IGF2BP3*(

20/20) 

ER- top 

losses  

 

CDC25C* 

(61/61) 

NOS* (61/61) CDC25C* 

(70/70) 

NOS2  

(70/70) 

HIST1H3A, 

IGF2BP3*(13/13) 

CFTR 

 (13/13) 

IGF2BP3* 

(29/29) 

CFTR 

(20/20) 

 

PR+ specific 

gains             

PARVG* 

(24/61) 

PR+ specific 

losses 

XPO4*(21/61)  

ER+ specific 

gains           

SPATS* 

(3/70) 

ER+ specific 

losses                   

PIH1D2* (5/70) 

HER+ specific gains 

(0) 

HER+ specific 

losses ATP6V1B1* 

(2/13) 

PR- specific 

gains CORO6* 

(2/29) 

PR- specific 

losses           

PTN* (2/29) 

ER- specific 

gains                   

GTPBP2* 

(2/20) 

ER- specific 

losses                   

YAF2* 

(2/20) 

 

PRAD SPOP top 

gains                  

HIST2H3A

* 

ERG top gains 

CENPA* 

(22/22) 

Others top 

gains  

HIST2H3A* 

(12/12) 

SPOP top losses                        

TNF* (6/6) 

Others top losses  

CACNA1A* (12/12) 

  

ERG top losses  

 CACNA1A* 

(22/22) 

     

(6/6) 
      

SPOP 

specific 

gains              

TRIM5* 

(3/6) 

ERG specific 

gains  

ADAM2* 

(21/22) 

Others 

specific gains 

ADAM2* 

(9/12) 

SPOP specific 

losses  

 COL2A1* (4/6) 

Others specific losses                

KCNA4-KCNA5 

(8/12) 

  

ERG specific losses  

MYL1* (11/22) 

  
    

  
    

HNSC Atypical top 

gains             

IGF2BP1* 

(6/6) 

Mesenchymal 

top gains  

 IGF2BP1* 

(8/8) 

Basal top 

gains                

FOXL2* 

(10/10) 

Classical top 

gains                   

IGF2BP1* 

(13/13) 

Atypical top losses                         

GDF9* 

(6/6, 100%) 

Basal top losses                       

GDF9* 

(10/10) 

Classical top 

losses GDF9* 

(13/13) 

Mesenchymal 

top losses 

GDF9* (7/8) 

  
  

    
 

                
 

Atypical 

specific 

gains 

Mesenchymal 

specific gains 

Basal specific 

gains 

Classical specific 

gains               

FGF19-FGFR4,   

Atypical specific 

losses 

Mesenchymal 

specific losses  

Basal specific 

losses  

Classical 

specific losses  

   

FEZF1-

GABRR1 

(5/6) 

  

CSAG1*  

(7/8) 

  

CSAG1* 

(9/10) 

KHDRBS1-DLG2  

(11/13) 

  

PRG2* (5/6,) 

  

 F12* (7/8) 

  

 PAK5*  (9/10)  ADIPOQ* 

(9/13) 
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KIRC Cluster 1 top 

gains 

CDKN2A* 

(16/16) 

  

Cluster 2 top 

gains 

CDKN2A* 

(16/16) 

  

Cluster 3 top 

gains 

TP73* 

(15/15) 

Cluster 4 top 

gains CDKN2A* 

(21/21) 

Cluster 1 top losses   

ESRRB* (16/16) 

  

Cluster 2 top losses  

ESRRB* (16/16) 

  

Cluster 3 top 

losses ESRRB* 

(15/15) 

  

  

Cluster 4 top 

losses 

ESRRB* 

(21/21) 

  

   

 

 

Cluster 1 

specific 

gains 

GRIA4*, 

KHDRBS1-

DLG2 

(7/16) 

Cluster 2 

specific gains 

RUFY4* 

(10/16) 

Cluster 3  

 MKL2* 

(5/15) 

Cluster 4 specific 

gains 

PLA2G12B* 

(10/21) 

Cluster 1 specific 

losses 

Cluster 2 specific 

losses               F8-

VWF, EWSR1-

SLC22A24 

Cluster 3 

specific losses 

FHL3-FHL2 

(8/15) 

Cluster 4 

specific losses 

EZH2-

TDRD1 

(9/21) 

   

  AFP-PHB2 (9/16) (10/16) 
 

LUSC Secretory 

top gains 

HIST1H2A

B*    

(5/5) 

  

  

Classical top 

gains  

HIST1H2AB* 

(7/7) 

  

  

Basal top 

gains  

 RPS17* (2/2) 

  

  

Primitive top 

gains  

GNAS* (2/2) 

  

  

Secretory top losses 

NTRK1* 

(5/5) 

  

  

Classical top losses  

GDF9*  (7/7) 

  

  

Basal top losses 

NTRK1* (2/2) 

  

Primitive top 

losses 

NTRK1* (2/2) 

  

  

   

 

 

 

Secretory 

specific 

gains         

PAEP* 

(5/5) 

Classical 

specific gains  

Basal specific 

gains  

Primitive specific 

gains  

Secretory specific 

losses 

Classical specific 

losses  

Basal specific 

losses 

Primitive 

specific losses 

   

MPPED1* 

(7/7) 

RPS17* (2/2) HEPACAM2* 

(2/2) 

 CCDC33* (5/5) CYP1A1*(7/7) VIM* (2/2) POU2F11* 

(2/2) 

 

              
 

LUAD TRU top 

gains               

CACNA1A* 

(15/15) 

PP top gains                        

SGO1* (9/9) 

PI top gains  

GFAP* 

(21/21) 

TRU top losses                        

APOA1* 

(15/15) 

PP top losses                              

APOA1* 

(9/9) 

PI top losses                            

APOA1* 

(21/21) 

    
   

 

      
 

TRU 

specific 

gains               

AMBP-

FHL3 

(6/15) 

PP specific 

gains  

PTTG1-NT5M, 

POU2F1-

HOXB13 

(5/9) 

PI specific 

gains  

TRU specific 

losses                    

BCAR3* (9/15) 

PP specific losses 

MCOLN3-ST7L (7/9) 

PI specific losses                    

POLE2-KLK5 

(12/21) 

  
   

MAST4-

SMAD1 

 

(12/21)   
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STES MSI top 

gains                   

TNFSF11* 

(16/16) 

MSS top gains                 

FOXH1* 

(21/21) 

MSI top 

losses                

SCN2B* 

MSS top losses                       

SCN2B* 

      

(16/16) (21/21) 
 

    
 

MSI specific 

gains                  

KLF8* 

(7/16) 

MSS specific 

gains  

MSI specific 

losses 

SCGB3A1* 

(9/16) 

MSS specific 

losses                     

NAV2* (10/21) 

       

APOC3* 

(11/21) 

   

  
   

KIRP Type 1 top 

gains                     

TP73*, 

IGF2BP3* 

(7/7) 

Type 2 top 

gains             

IGF2BP3*, 

CENPA* 

(16/16) 

Type 1 top 

losses  

CYP1A1* 

(7/7) 

Type 2 top losses                     

NROB2* (16/16) 

       

   

Type 1 

specific 

gains           

PRKCG* 

(5/7) 

Type 2 specific 

gains          

CERS1* 

(13/16) 

Type 1 

specific losses 

KCNG* 

(6/7) 

Type 2 specific 

losses                  

TDRD1* 

(12/16) 

      

 

THCA BRAF-like 

top gains 

RAS-like top 

gains 

BRAF-like 

top losses 

KRT85* 

(34/34) 

RAS-like top 

losses                  

LYPD6* (12/12) 

      

KRT15*, 

ALK* 

ALK*, FATE1* 

(12/12) 

 

(34/34)   
 

      
 

BRAF-like 

specific 

gains           

FTR-

ADCY8 

(31/34) 

RAS-like 

specific gains 

KLK7* (4/12) 

BRAF-like 

specific losses 

ODAM* 

(29/34) 

RAS-like specific 

losses JAKMIP2* 

(8/12) 
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Supplementary Table III: Table showing a subset of cancer-specific edgetic perturbations in 13 cancer types. 

 

Cancer 

type 

Total 

number 

of gained 

edges 

Number of 

cancer-

specific 

gained 

edges 

Total number 

of lost edges 

Number of 

cancer-specific 

lost edges 

Healthy PPIN 

size 

Cancer PPIN size p-valuea 

THCA 22831 1271 28065 797 175910 177146 2.71E-06 

BLCA 20739 1463 19030 202 174770 175289 - 

BRCA 22195 1453 25516 712 177033 174658 9.76E-16 

COAD 10065 566 21024 953 180365 172933 1.49E-09 

KIRC 18258 462 33005 887 179887 176147 8.83E-14 

KIRP 17174 1085 27141 1117 178740 178300 - 

KICH 12423 627 27490 1402 182708 176236 2.98E-08 

HNSC 21913 1027 27485 877 181819 177203 1.92E-11 

LUAD 16622 959 21907 259 177980 176455 1.93E-08 

PRAD 17529 684 22468 915 179710 177677 3.97E-08 

LUSC 13108 644 23242 1049 181377 175758 2.65E-10 

STES 24326 1215 20800 835 177110 174708 1.92E-11 

LIHC 36458 2019 51445 4068 175831 174337 0.004 
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Supplementary Table IV: Table showing the protein-protein interactions (711) between 

secreted proteins (iSPECS) and those from the cell lysate (Sharma). The proteins are either 

differentially expressed or their expression is 2.5-fold increased in a cell type compared to the 

other three cell types (termed cell type-specific proteins). As- astrocytes, MI- microglia, Ne-

neurons and Ol- oligodendrocytes. (-): not enriched, (+): enriched, (1): cell type-specific 

enriched, (0): not cell type-specific enriched. 

 

 
Gene in 

Sharma 

Gene in 

iSPECS 

Enriche

d in 

Astrocy

tes 

Enriched 

in 

Microglia 

Enric

hed in 

Neuro

n 

Enriched 

in 

Oligoden

drocytes 

As_

2.5f

old 

Mi_

2.5f

old 

Ne_

2.5f

old 

Ol_

2.5f

old 

iSPECS Sharma 

Ablim1 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Ablim1 Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Acad10 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Acadm Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Acadvl Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Acox1 Hsd17b10 - - - + 0 0 0 1 Oligodendroc

ytes 

Oligodendrocytes 

Acta2 Lasp1 - + - - 1 0 0 0 Microglia Astrocytes 

Actbl2 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Actr2 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Actr3 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Adcy8 Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Add1 Coro1c - + - - 0 0 1 0 Microglia Neuron 

Add1 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Agap2 Cdc42 - + - - 0 0 1 0 Microglia Neuron 

Agap2 Crmp1 - - + - 0 0 1 0 Neuron Neuron 

Agap2 Ppp1cb - + - - 0 0 1 0 Microglia Neuron 

Agap2 Nptn - - + - 0 0 1 0 Neuron Neuron 

Agap2 Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Agap2 Nlgn3 - - + - 0 0 1 0 Neuron Neuron 

Agap2 Ncam2 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Agap2 Syne1 + - - - 0 0 1 0 Astrocytes Neuron 

Agap2 Nrcam - - + - 0 0 1 0 Neuron Neuron 

Agrn Lamb1 - - - + 0 0 0 1 Oligodendroc

ytes 

Oligodendrocytes 

Ahnak Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Ahnak Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Akap2 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Alox5 Cotl1 - + - - 0 1 0 0 Microglia Microglia 

Amotl1 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Apbb1ip Tln1 - + - - 0 1 0 0 Microglia Microglia 

Apc Mapre2 - + - - 0 0 1 0 Microglia Neuron 

Apc Plau - + - - 0 0 1 0 Microglia Neuron 

Apc Sparc - + - - 0 0 1 0 Microglia Neuron 
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Arg2 Hsd17b10 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Arhgap33 Cdc42 - + - - 0 0 1 0 Microglia Neuron 

Arpc1b Coro1c - + - - 0 1 0 0 Microglia Microglia 

Arpc2 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Arpc2 Uso1 - + - - 0 1 0 0 Microglia Microglia 

Arpc4 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Arpc5 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Arrb2 Ppp1cb - + - - 0 1 0 0 Microglia Microglia 

Arvcf Cdh15 - + - - 1 0 0 0 Microglia Astrocytes 

Arvcf Cdh2 - - + - 1 0 0 0 Neuron Astrocytes 

Asb3 Pcbd1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Aspg Hsd17b10 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Atad2 Hist1h4a - - + - 0 1 0 0 Neuron Microglia 

Atg16l1 Clic1 - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Mat2a - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Hspe1 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atg16l1 Vcp - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atg16l1 Phgdh - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Vasp - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Ahcy - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atg16l1 Grn - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Ppp1cb - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Fkbp3 - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Hspd1 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atg16l1 Ezr - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Nap1l1 - + - - 0 1 0 0 Microglia Microglia 

Atg16l1 Tuba1b - - + - 0 1 0 0 Neuron Microglia 

Atg16l1 Cbln4 - - + - 0 1 0 0 Neuron Microglia 

Atg16l1 Hsd17b10 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atg16l1 Aldh2 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atg16l1 Hspa9 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atg16l1 Farsa - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atg16l1 Lasp1 - + - - 0 1 0 0 Microglia Microglia 

Atp6v0d1 Hsd17b10 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atxn3 Vcp - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Atxn3 Tuba1a - - + - 0 1 0 0 Neuron Microglia 

Bag3 Capza1 - + - - 1 0 0 0 Microglia Astrocytes 

Bclaf1 Fhl1 - + - - 0 1 0 0 Microglia Microglia 
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Bclaf1 Erh - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Bclaf1 Uso1 - + - - 0 1 0 0 Microglia Microglia 

Becn1 (Sept11) - + - - 0 1 0 0 Microglia Microglia 

Bend3 (Sept11) - + - - 1 0 0 0 Microglia Astrocytes 

Blzf1 Uso1 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Braf Hspa9 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Brwd3 Rpl3 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Bsg Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Cald1 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Camk1 Ptpn6 - + - - 0 1 0 0 Microglia Microglia 

Capn2 Tln1 - + - - 1 0 0 0 Microglia Astrocytes 

Casp12 Vcp - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Casp8 Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Casp9 Vcp - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Cav1 Vcp - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Cav1 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Cbl Met - - + - 0 1 0 0 Neuron Microglia 

Cbl Pdgfra - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Cbl Egfr - - + - 0 1 0 0 Neuron Microglia 

Ccdc50 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Ccnb1 Ppp1cb - + - - 0 0 0 1 Microglia Oligodendrocytes 

Cd200r1 Cd200 - - + - 0 1 0 0 Neuron Microglia 

Cd22 Ptpn6 - + - - 0 1 0 0 Microglia Microglia 

Cd2ap Prdx3 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Cd2ap Capza1 - + - - 0 1 0 0 Microglia Microglia 

Cd40 Ube2n - + - - 0 1 0 0 Microglia Microglia 

Cdh13 Adipoq - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Cdk2 Hist1h1c - - + - 0 1 0 0 Neuron Microglia 

Cdkn2a Tuba1a - - + - 0 1 0 0 Neuron Microglia 

Cdkn2a Rpl9 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Cdkn2aip Hspd1 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Cebpb Serpinh1 + - - - 0 1 0 0 Astrocytes Microglia 

Cebpb Sfpq - - + - 0 1 0 0 Neuron Microglia 

Cebpb Hspa9 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Cep131 Ppp2r1a - + - - 1 0 0 0 Microglia Astrocytes 

Cep131 Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Cep290 Tuba1b - - + - 0 0 1 0 Neuron Neuron 

Chn1 Epha4 - - + - 0 0 1 0 Neuron Neuron 

Ckm Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Clint1 Uso1 - + - - 0 1 0 0 Microglia Microglia 
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Clta Vcp - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Clta Uso1 - + - - 0 1 0 0 Microglia Microglia 

Clta Ppp1cb - + - - 0 1 0 0 Microglia Microglia 

Clta Coro1c - + - - 0 1 0 0 Microglia Microglia 

Cltb Ppp1cb - + - - 0 0 1 0 Microglia Neuron 

Cltb Uso1 - + - - 0 0 1 0 Microglia Neuron 

Cltb Coro1c - + - - 0 0 1 0 Microglia Neuron 

Clu Plxna4 - - + - 1 0 0 0 Neuron Astrocytes 

Cntn6 Chl1 - - + - 0 0 1 0 Neuron Neuron 

Cobl Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Cobl Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Cobll1 Dync2h1 + - - - 1 0 0 0 Astrocytes Astrocytes 

Col1a1 Serpinf1 + - - - 0 0 0 1 Astrocytes Oligodendrocytes 

Col1a1 Tgfb1 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Col5a1 Ppp2r1a - + - - 0 0 0 1 Microglia Oligodendrocytes 

Cpeb1 Aplp2 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Cpeb1 Aplp1 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Cpeb1 App - - + - 0 0 0 1 Neuron Oligodendrocytes 

Cpm Coro1c - + - - 0 0 0 1 Microglia Oligodendrocytes 

Cpne2 Rdx - + - - 1 0 0 0 Microglia Astrocytes 

Cpne4 Rdx - + - - 0 0 1 0 Microglia Neuron 

Cpt2 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Csf1r Ptpn6 - + - - 0 1 0 0 Microglia Microglia 

Csnk1e Gpi - + - - 0 0 1 0 Microglia Neuron 

Csnk1e Cps1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Csnk1e Uso1 - + - - 0 0 1 0 Microglia Neuron 

Ctsc Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Cux1 Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Cybrd1 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Cyfip1 Crmp1 - - + - 0 0 1 0 Neuron Neuron 

Cyfip1 Crmp1 - - + - 0 1 0 0 Neuron Microglia 

Cyfip1 Ncan - - + - 0 0 1 0 Neuron Neuron 

Cyfip1 Ncan - - + - 0 1 0 0 Neuron Microglia 

Dab1 Notch1 - - + - 0 0 1 0 Neuron Neuron 

Dab1 App - - + - 0 0 1 0 Neuron Neuron 

Dab1 Lrp2 - + - - 0 0 1 0 Microglia Neuron 

Dab1 Aplp1 - - + - 0 0 1 0 Neuron Neuron 

Dab2 Efnb2 - - + - 0 1 0 0 Neuron Microglia 

Dab2 Ppp1cb - + - - 0 1 0 0 Microglia Microglia 

Dab2 Lrp2 - + - - 0 1 0 0 Microglia Microglia 

Dag1 Egflam - + - - 1 0 0 0 Microglia Astrocytes 

Dbn1 Coro1c - + - - 0 0 1 0 Microglia Neuron 

Dbn1 Ppp1cb - + - - 0 0 1 0 Microglia Neuron 



Supplementary Figures and Tables 

 
lxxi  

Dctn1 Capza1 - + - - 0 1 0 0 Microglia Microglia 

Dctn1 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Dctn4 Capza1 - + - - 0 0 1 0 Microglia Neuron 

Decr2 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Dhtkd1 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Dlg1 Nrcam - - + - 1 0 0 0 Neuron Astrocytes 

Dlg1 Adam10 - - + - 1 0 0 0 Neuron Astrocytes 

Dlgap1 Nrxn1 - - + - 0 0 1 0 Neuron Neuron 

Dlgap1 Lgi1 - - + - 0 0 1 0 Neuron Neuron 

Dlgap1 Lrrtm1 - - + - 0 0 1 0 Neuron Neuron 

Dlgap1 (Sept11) - + - - 0 0 1 0 Microglia Neuron 

Dlgap1 Syne1 + - - - 0 0 1 0 Astrocytes Neuron 

Dlgap1 Ube2n - + - - 0 0 1 0 Microglia Neuron 

Dlgap4 B4galt1 - + - - 0 0 1 0 Microglia Neuron 

Dnaja3 Hspa9 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Dnajb2 Serpinb5 - - + - 1 0 0 0 Neuron Astrocytes 

Dnm1 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Dock11 Cdc42 - + - - 0 0 1 0 Microglia Neuron 

Dock11 Cdc42 - + - - 0 1 0 0 Microglia Microglia 

Dock9 Cdc42 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Dok1 Phgdh - + - - 0 1 0 0 Microglia Microglia 

Dok1 Ptpn6 - + - - 0 1 0 0 Microglia Microglia 

Dpysl3 Crmp1 - - + - 0 0 1 0 Neuron Neuron 

Dpysl5 Dpys - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Ech1 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Eef1d Coro1c - + - - 0 1 0 0 Microglia Microglia 

Efnb2 Epha4 - - + - 0 0 1 0 Neuron Neuron 

Elavl4 Sfpq - - + - 0 0 1 0 Neuron Neuron 

Elf1 Ephb4 - + - - 0 1 0 0 Microglia Microglia 

Elp3 Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Epha2 Epha4 - - + - 1 0 0 0 Neuron Astrocytes 

Epha3 L1cam - - + - 0 0 1 0 Neuron Neuron 

Epha4 Efnb2 - - + - 0 0 1 0 Neuron Neuron 

Epha7 Chl1 - - + - 0 0 1 0 Neuron Neuron 

Erbb2 Egfr - - + - 1 0 0 0 Neuron Astrocytes 

Ezr Rdx - + - - 1 0 0 0 Microglia Astrocytes 

Fbxl16 App - - + - 0 0 1 0 Neuron Neuron 

Fbxl16 Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Fbxo2 Vcp - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Fbxo21 App - - + - 0 0 1 0 Neuron Neuron 

Fbxw7 Deptor - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Fech Ppp2r1a - + - - 1 0 0 0 Microglia Astrocytes 
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Fhl1 Tln1 - + - - 1 0 0 0 Microglia Astrocytes 

Flii Coro1c - + - - 0 1 0 0 Microglia Microglia 

Flii Ppp1cb - + - - 0 1 0 0 Microglia Microglia 

Flnb Rala + - - - 1 0 0 0 Astrocytes Astrocytes 

Flnb Cd44 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Flnb Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Flnb Capza1 - + - - 1 0 0 0 Microglia Astrocytes 

Flrt2 Fgfr1 - - + - 0 0 1 0 Neuron Neuron 

Flrt3 App - - + - 0 0 1 0 Neuron Neuron 

Flrt3 Fgfr1 - - + - 0 0 1 0 Neuron Neuron 

Fmnl2 Coro1c - + - - 0 0 1 0 Microglia Neuron 

Fmnl2 Coro1c - + - - 0 0 0 1 Microglia Oligodendrocytes 

Fmnl3 Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Fyn Coro1c - + - - 0 1 0 0 Microglia Microglia 

G6pdx Tagln - + - - 0 1 0 0 Microglia Microglia 

Gab1 Met - - + - 0 0 0 1 Neuron Oligodendrocytes 

Gabra1 Nlgn3 - - + - 0 0 1 0 Neuron Neuron 

Gabra1 Nrxn1 - - + - 0 0 1 0 Neuron Neuron 

Gak Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Gak Uso1 - + - - 0 1 0 0 Microglia Microglia 

Gapdh Hsd17b10 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Gcg Hist1h4a - - + - 0 0 1 0 Neuron Neuron 

Gcg Fkbp3 - + - - 0 0 1 0 Microglia Neuron 

Gcg Mdh1 + - - - 0 0 1 0 Astrocytes Neuron 

Gcg Tubb4a - + - - 0 0 1 0 Microglia Neuron 

Gcg Hist1h2bf - - + - 0 0 1 0 Neuron Neuron 

Gcg Grn - + - - 0 0 1 0 Microglia Neuron 

Gcg Stmn2 - - + - 0 0 1 0 Neuron Neuron 

Gcg Phgdh - + - - 0 0 1 0 Microglia Neuron 

Gcg Tuba1b - - + - 0 0 1 0 Neuron Neuron 

Gcg Scg2 - - + - 0 0 1 0 Neuron Neuron 

Gcg Hspd1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Gcg Hspe1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Gcg Pcsk2 - - + - 0 0 1 0 Neuron Neuron 

Gcg Hist1h1c - - + - 0 0 1 0 Neuron Neuron 

Gcg Vcp - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Gcg Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Gcg Mthfd1 - + - - 0 0 1 0 Microglia Neuron 

Gga1 Scg2 - - + - 0 1 0 0 Neuron Microglia 

Gga1 App - - + - 0 1 0 0 Neuron Microglia 

Gga1 Adipoq - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Ghitm Sarm1 + - - - 1 0 0 0 Astrocytes Astrocytes 
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Glud1 Ppp2r1a - + - - 1 0 0 0 Microglia Astrocytes 

Gna11 Coro1c - + - - 0 0 1 0 Microglia Neuron 

Gnb2 Uso1 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Gria2 Cspg4 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Grin1 Pfkl - + - - 0 0 1 0 Microglia Neuron 

Grin1 Cdh2 - - + - 0 0 1 0 Neuron Neuron 

Grin1 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Grin2b Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Grin2b Cdh2 - - + - 0 0 1 0 Neuron Neuron 

Grin2b Rala + - - - 0 0 1 0 Astrocytes Neuron 

Grip1 Fras1 - - + - 0 0 1 0 Neuron Neuron 

Grip1 Cspg4 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Gsta4 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Gstk1 Adipoq - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Gstm1 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Gstm2 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Gstm5 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Gstt1 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Hace1 Tubb4a - + - - 0 0 1 0 Microglia Neuron 

Hace1 Tpm2 - + - - 0 0 1 0 Microglia Neuron 

Hace1 Capza1 - + - - 0 0 1 0 Microglia Neuron 

Hace1 Serpinh1 + - - - 0 0 1 0 Astrocytes Neuron 

Hace1 Coro1c - + - - 0 0 1 0 Microglia Neuron 

Hace1 Fhl1 - + - - 0 0 1 0 Microglia Neuron 

Hace1 Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Hace1 Hspd1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Hace1 Csrp1 - + - - 0 0 1 0 Microglia Neuron 

Hecw1 App - - + - 0 0 1 0 Neuron Neuron 

Hibadh Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Hk2 Pea15 - + - - 0 1 0 0 Microglia Microglia 

Hmg20a Kif20b - + - - 0 0 1 0 Microglia Neuron 

Hmgcl Hsd17b10 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Hmgcs1 Hsd17b10 - - - + 0 0 0 1 Oligodendroc

ytes 

Oligodendrocytes 

Hnrnpk Rpl3 - - + - 0 0 1 0 Neuron Neuron 

Hnrnpk Phgdh - + - - 0 0 1 0 Microglia Neuron 

Hnrnpk Hspd1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Hnrnpk Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Hnrnpk Ugdh - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Hnrnpk Tuba1b - - + - 0 0 1 0 Neuron Neuron 
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Hnrnpk Sfpq - - + - 0 0 1 0 Neuron Neuron 

Hras Hspd1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Hspb6 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Htra1 Tgfb1 - + - - 1 0 0 0 Microglia Astrocytes 

Icam2 Rdx - + - - 0 1 0 0 Microglia Microglia 

Immt Mat2a - + - - 1 0 0 0 Microglia Astrocytes 

Inadl Tuba1a - - + - 1 0 0 0 Neuron Astrocytes 

Inpp5d Tjp2 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Iqcb1 Nap1l1 - + - - 0 0 1 0 Microglia Neuron 

Iqcb1 Sort1 - - + - 0 0 1 0 Neuron Neuron 

Iqcb1 Kpnb1 - + - - 0 0 1 0 Microglia Neuron 

Iqcb1 Glud1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Iqcb1 Tuba1b - - + - 0 0 1 0 Neuron Neuron 

Iqcb1 Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Iqcb1 Nucb1 - + - - 0 0 1 0 Microglia Neuron 

Iqcb1 Map1b - - + - 0 0 1 0 Neuron Neuron 

Iqcb1 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Iqgap1 Cdc42 - + - - 0 1 0 0 Microglia Microglia 

Irak1 Il1rap - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Irak2 Sarm1 + - - - 0 1 0 0 Astrocytes Microglia 

Itga3 Ptprm - + - - 1 0 0 0 Microglia Astrocytes 

Itga5 Ppp1cb - + - - 0 1 0 0 Microglia Microglia 

Itga5 Actr3 - + - - 0 1 0 0 Microglia Microglia 

Itga5 Tpm2 - + - - 0 1 0 0 Microglia Microglia 

Itgb4 Egfr - - + - 1 0 0 0 Neuron Astrocytes 

Itpr3 Hspa9 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Ivd Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Jag2 Notch1 - - + - 0 0 1 0 Neuron Neuron 

Jak2 Ptpn6 - + - - 0 0 1 0 Microglia Neuron 

Jak2 Egfr - - + - 0 0 1 0 Neuron Neuron 

Kalrn Cdh10 - - + - 0 0 1 0 Neuron Neuron 

Kat2a Hist1h4a - - + - 0 0 1 0 Neuron Neuron 

Kat2a Notch1 - - + - 0 0 1 0 Neuron Neuron 

Kat5 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Kat5 Sfpq - - + - 0 0 1 0 Neuron Neuron 

Kcnma1 Capg - + - - 0 0 1 0 Microglia Neuron 

Kcnma1 Actr3 - + - - 0 0 1 0 Microglia Neuron 

Kcnma1 Tagln - + - - 0 0 1 0 Microglia Neuron 

Kcnma1 Sparc - + - - 0 0 1 0 Microglia Neuron 

Kcnma1 Kng1 + - - - 0 0 1 0 Astrocytes Neuron 

Kcnma1 Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 
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Kcnma1 Hspd1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Kcnma1 Lrpap1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Kcnma1 Eno3 - + - - 0 0 1 0 Microglia Neuron 

Kcnma1 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Kcnma1 Apoa1 + - - - 0 0 1 0 Astrocytes Neuron 

Kcnma1 Nudc - + - - 0 0 1 0 Microglia Neuron 

Kcnma1 Glud1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Kcnma1 Vcp - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Kcnma1 Apoh + - - - 0 0 1 0 Astrocytes Neuron 

Kcnma1 Hpx - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Kcnma1 Nucb1 - + - - 0 0 1 0 Microglia Neuron 

Kcnma1 Rcn3 - + - - 0 0 1 0 Microglia Neuron 

Kcnma1 Phgdh - + - - 0 0 1 0 Microglia Neuron 

Kiaa0196 Capza1 - + - - 0 1 0 0 Microglia Microglia 

Kiaa1033 Capza1 - + - - 0 1 0 0 Microglia Microglia 

Kiaa2013 Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Kif13b Icam5 - - + - 0 1 0 0 Neuron Microglia 

Kif5c Cdh2 - - + - 0 0 1 0 Neuron Neuron 

Kifap3 Cdh2 - - + - 0 0 1 0 Neuron Neuron 

Kifc5b Kpnb1 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Kras Coro1c - + - - 0 0 1 0 Microglia Neuron 

Kras Egfr - - + - 0 0 1 0 Neuron Neuron 

Ksr1 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Ksr1 Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Ksr1 Nap1l1 - + - - 0 0 1 0 Microglia Neuron 

Ksr1 Rps3a - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Ksr1 Rpl9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Ksr1 Tubb4a - + - - 0 0 1 0 Microglia Neuron 

Ksr1 Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Ktn1 Cdc42 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Lama1 Lamb1 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Lama1 Ache - + - - 1 0 0 0 Microglia Astrocytes 

Lamc1 Lamb1 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Ldha Hsd17b10 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Ldhb Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Lgals3bp Cps1 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Lgals3bp Uso1 - + - - 0 1 0 0 Microglia Microglia 

Lgals9 Cd44 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Lilrb4 Ptpn6 - + - - 0 1 0 0 Microglia Microglia 
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Lin7c Nrxn1 - - + - 1 0 0 0 Neuron Astrocytes 

Lin7c Sfpq - - + - 1 0 0 0 Neuron Astrocytes 

Lingo1 App - - + - 0 0 1 0 Neuron Neuron 

Lmtk2 Coro1c - + - - 0 0 1 0 Microglia Neuron 

Lnpep Uso1 - + - - 0 1 0 0 Microglia Microglia 

Lrp2 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Lrp6 Igfbp4 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Lrp6 Cdh2 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Lrr1 Sugt1 - + - - 0 1 0 0 Microglia Microglia 

Lrr1 Tuba1a - - + - 0 1 0 0 Neuron Microglia 

Lrrc4c Ntng1 - - + - 0 0 1 0 Neuron Neuron 

Lrrfip1 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Lrrk2 Tubb4a - + - - 1 0 0 0 Microglia Astrocytes 

Lrrk2 Cdc42 - + - - 1 0 0 0 Microglia Astrocytes 

Ltbp3 Tgfb1 - + - - 1 0 0 0 Microglia Astrocytes 

Lyn Coro1c - + - - 0 1 0 0 Microglia Microglia 

Lzts2 Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Lzts2 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Mad2l1 Nap1l1 - + - - 0 1 0 0 Microglia Microglia 

Mad2l1 Cps1 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Mad2l1 Pfkl - + - - 0 1 0 0 Microglia Microglia 

Map1lc3a Map1b - - + - 0 0 1 0 Neuron Neuron 

Mapk14 Egfr - - + - 0 1 0 0 Neuron Microglia 

Mapk8 Sarm1 + - - - 0 1 0 0 Astrocytes Microglia 

Mapk8 Sarm1 + - - - 0 0 1 0 Astrocytes Neuron 

Mapk8ip1 Lrp1b - - + - 0 0 1 0 Neuron Neuron 

Mapk8ip1 Lrp2 - + - - 0 0 1 0 Microglia Neuron 

Mapk8ip1 App - - + - 0 0 1 0 Neuron Neuron 

Mapre3 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Mapre3 Map1b - - + - 0 0 1 0 Neuron Neuron 

Mapt Cand1 - + - - 0 0 1 0 Microglia Neuron 

Mapt Mapre2 - + - - 0 0 1 0 Microglia Neuron 

Mapt Otub1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Mapt Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Mapt Pccb - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Mapt Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Mapt Hspd1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Mapt Pygb - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Mapt App - - + - 0 0 1 0 Neuron Neuron 

Mapt Hsd17b10 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Mapt Tuba1b - - + - 0 0 1 0 Neuron Neuron 

Mapt Vcp - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 
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Mapt Phgdh - + - - 0 0 1 0 Microglia Neuron 

Mapt Pfkl - + - - 0 0 1 0 Microglia Neuron 

Mapt Hist1h4a - - + - 0 0 1 0 Neuron Neuron 

Max Prdx3 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Max Ppp1cb - + - - 0 1 0 0 Microglia Microglia 

Mbp Ptpn6 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Mdm2 Rpl3 - - + - 0 1 0 0 Neuron Microglia 

Mdm2 Rps3a - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Mdm2 Ezr - + - - 0 1 0 0 Microglia Microglia 

Mdm2 Rpl9 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Mdm2 Fkbp3 - + - - 0 1 0 0 Microglia Microglia 

Mef2c Acly - + - - 0 0 1 0 Microglia Neuron 

Mks1 Hist1h4a - - + - 1 0 0 0 Neuron Astrocytes 

Mks1 Hspa9 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Mks1 Tuba1b - - + - 1 0 0 0 Neuron Astrocytes 

Mme Adam10 - - + - 1 0 0 0 Neuron Astrocytes 

Mprip Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Mprip Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Mprip Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Mpzl1 Ppp2r1a - + - - 0 0 0 1 Microglia Oligodendrocytes 

Mycbp2 Hist1h4a - - + - 0 0 1 0 Neuron Neuron 

Mycbp2 Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Mycbp2 Ppp1cb - + - - 0 0 1 0 Microglia Neuron 

Mycbp2 Coro1c - + - - 0 0 1 0 Microglia Neuron 

Mycbp2 Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Myd88 Il1rap - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Myo18a Coro1c - + - - 0 0 0 1 Microglia Oligodendrocytes 

Myo18a Ppp1cb - + - - 0 0 0 1 Microglia Oligodendrocytes 

Myo1b Ppp1cb - + - - 0 0 1 0 Microglia Neuron 

Myo1b Coro1c - + - - 0 0 1 0 Microglia Neuron 

Myo1e Ppp1cb - + - - 0 1 0 0 Microglia Microglia 

Myo5a Ppp1cb - + - - 0 0 1 0 Microglia Neuron 

Myo5a Coro1c - + - - 0 0 1 0 Microglia Neuron 

Nbr1 Map1b - - + - 0 0 0 1 Neuron Oligodendrocytes 

Ncam1 Cntn2 - - + - 0 0 1 0 Neuron Neuron 

Ncam1 Fgfr1 - - + - 0 0 1 0 Neuron Neuron 

Ncoa3 Ptpn6 - + - - 0 1 0 0 Microglia Microglia 

Ndn Cdh4 - - + - 0 0 1 0 Neuron Neuron 

Ndn Cdh5 - + - - 0 0 1 0 Microglia Neuron 

Ndn Otub1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Ndn Lamb1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Ndn Cdh2 - - + - 0 0 1 0 Neuron Neuron 
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Ndn Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Ndn Nucb1 - + - - 0 0 1 0 Microglia Neuron 

Ndufa7 Hsd17b10 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Nexn Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Nfasc Fgfr1 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Nid2 Prelp + - - - 1 0 0 0 Astrocytes Astrocytes 

Nlrx1 Sarm1 + - - - 1 0 0 0 Astrocytes Astrocytes 

Nphp1 Hspa9 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Nphp1 Hist1h4a - - + - 1 0 0 0 Neuron Astrocytes 

Nphp1 Tuba1b - - + - 1 0 0 0 Neuron Astrocytes 

Nphp1 Hspd1 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Nrp2 Sema3f + - - - 0 1 0 0 Astrocytes Microglia 

Ntrk2 Sort1 - - + - 0 0 1 0 Neuron Neuron 

Oat Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Ogg1 Lamb1 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Osmr Egfr - - + - 1 0 0 0 Neuron Astrocytes 

Ostm1 Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Ostm1 Kpnb1 - + - - 0 1 0 0 Microglia Microglia 

Pacsin1 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Pacsin3 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Pacsin3 Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Pacsin3 Tuba1a - - + - 1 0 0 0 Neuron Astrocytes 

Pafah1b2 Nudc - + - - 0 0 1 0 Microglia Neuron 

Pafah1b3 Pafah1b2 - + - - 0 0 1 0 Microglia Neuron 

Palm Coro1c - + - - 0 0 1 0 Microglia Neuron 

Papss1 Apoa1 + - - - 0 0 0 1 Astrocytes Oligodendrocytes 

Papss1 Ppp2r1a - + - - 0 0 0 1 Microglia Oligodendrocytes 

Park2 Map1b - - + - 1 0 0 0 Neuron Astrocytes 

Park2 Egfr - - + - 1 0 0 0 Neuron Astrocytes 

Parp10 B4galt1 - + - - 0 1 0 0 Microglia Microglia 

Parp14 Gpi - + - - 0 1 0 0 Microglia Microglia 

Parva Lims1 - + - - 1 0 0 0 Microglia Astrocytes 

Pawr Pcbd1 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Pcgf2 Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Pdlim5 Tpm2 - + - - 1 0 0 0 Microglia Astrocytes 

Pfn1 Vcp - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Pick1 Lrp1b - - + - 0 0 1 0 Neuron Neuron 

Pkd2 Vcp - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Pkd2 Ppp2r1a - + - - 1 0 0 0 Microglia Astrocytes 

Pkm Hsd17b10 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Pkp2 Uso1 - + - - 1 0 0 0 Microglia Astrocytes 
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Plcb1 Ola1 - + - - 0 0 1 0 Microglia Neuron 

Plcb1 Rpl3 - - + - 0 0 1 0 Neuron Neuron 

Plcb1 Tln1 - + - - 0 0 1 0 Microglia Neuron 

Plcb1 Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Plcb1 Kpnb1 - + - - 0 0 1 0 Microglia Neuron 

Plcb1 Cdc42 - + - - 0 0 1 0 Microglia Neuron 

Plcb1 Rpl9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Plcb1 Sub1 - + - - 0 0 1 0 Microglia Neuron 

Plcd3 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Plk1 Sugt1 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Plxna1 Trem2 - + - - 0 0 1 0 Microglia Neuron 

Plxna2 Sema6b - - + - 0 0 1 0 Neuron Neuron 

Plxna4 Sema6b - - + - 0 0 1 0 Neuron Neuron 

Plxnb3 Sema4c - - + - 0 0 0 1 Neuron Oligodendrocytes 

Plxnd1 Sema4c - - + - 0 0 1 0 Neuron Neuron 

Ppfia3 Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Ppp1r12a Mylk - + - - 1 0 0 0 Microglia Astrocytes 

Ppp1r12a Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Ppp1r12a Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Ppp1r12a Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Ppp1r12a Erh - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Ppp1r12b Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Ppp1r13l Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Ppp2r2b Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Ppp2r2d Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Ppp2r3c Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Ppp2r5c Ppp2r1a - + - - 0 0 1 0 Microglia Neuron 

Prdx1 Hsd17b10 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Prdx5 Hsd17b10 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Prdx6 Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Prkaca Lasp1 - + - - 0 0 1 0 Microglia Neuron 

Prkaca Uso1 - + - - 0 0 1 0 Microglia Neuron 

Prkcdbp Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Prkcz Lasp1 - + - - 0 0 1 0 Microglia Neuron 

Prkg1 Lasp1 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Prss23 Ppp2r1a - + - - 1 0 0 0 Microglia Astrocytes 

Psap Sort1 - - + - 0 1 0 0 Neuron Microglia 

Psen2 Notch1 - - + - 0 1 0 0 Neuron Microglia 

Pten Vcp - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Pten Rps4x - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Pten Capn2 - + - - 0 0 1 0 Microglia Neuron 
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Pten Idh1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Pten Rpl3 - - + - 0 0 1 0 Neuron Neuron 

Pten Map1b - - + - 0 0 1 0 Neuron Neuron 

Pten Acly - + - - 0 0 1 0 Microglia Neuron 

Pten Aldh1a1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Pten Actr3 - + - - 0 0 1 0 Microglia Neuron 

Pten Tuba1b - - + - 0 0 1 0 Neuron Neuron 

Pten Serpinh1 + - - - 0 0 1 0 Astrocytes Neuron 

Pten Hspd1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Pten Slc9a3r1 - + - - 0 0 1 0 Microglia Neuron 

Pten Nap1l1 - + - - 0 0 1 0 Microglia Neuron 

Pten Ugdh - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Ptgs1 Nucb1 - + - - 0 1 0 0 Microglia Microglia 

Ptgs2 Nucb1 - + - - 0 1 0 0 Microglia Microglia 

Ptgs2 Vcp - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Ptpn1 Cdh2 - - + - 0 1 0 0 Neuron Microglia 

Ptprr Ntm - - + - 1 0 0 0 Neuron Astrocytes 

Ptprs Ptprm - + - - 0 0 1 0 Microglia Neuron 

Pygb Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Rab11fip5 Ppp2r1a - + - - 0 1 0 0 Microglia Microglia 

Rab3a App - - + - 0 0 1 0 Neuron Neuron 

Rabl3 Uso1 - + - - 0 1 0 0 Microglia Microglia 

Racgap1 Pak2 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Ralb Coro1c - + - - 0 1 0 0 Microglia Microglia 

Rap1b Coro1c - + - - 0 1 0 0 Microglia Microglia 

Rbpj Fhl1 - + - - 0 1 0 0 Microglia Microglia 

Rbpj Notch1 - - + - 0 1 0 0 Neuron Microglia 

Rcor2 Notch1 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Rin1 Epha4 - - + - 1 0 0 0 Neuron Astrocytes 

Rmi1 Kpnb1 - + - - 0 1 0 0 Microglia Microglia 

Rnf31 Vcp - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Rtn4 Rtn4r - - + - 0 1 0 0 Neuron Microglia 

Rxra Cxadr - - + - 0 1 0 0 Neuron Microglia 

Rxra Sfpq - - + - 0 1 0 0 Neuron Microglia 

Sass6 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Sass6 Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Scai Pfkl - + - - 0 0 1 0 Microglia Neuron 

Sema3a Cntn2 - - + - 0 0 1 0 Neuron Neuron 

Sema3a Plxna4 - - + - 0 0 1 0 Neuron Neuron 

Sema3e Plxnd1 - + - - 0 0 1 0 Microglia Neuron 

Sema4f Plxnb3 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 
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Sema4g Plxnb3 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Sema5a Plxna4 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Sema5a Plxna2 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Sema5a Plxnb3 - - - + 0 0 0 1 Oligodendroc

ytes 

Oligodendrocytes 

Sema5b Plxna2 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Sema5b Plxna4 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Sema6a Plxna4 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Sema6a Plxna2 - - + - 0 0 0 1 Neuron Oligodendrocytes 

Shank3 Mdk - - + - 1 0 0 0 Neuron Astrocytes 

Shank3 Nrcam - - + - 1 0 0 0 Neuron Astrocytes 

Shank3 Syne1 + - - - 1 0 0 0 Astrocytes Astrocytes 

Shank3 Ncan - - + - 1 0 0 0 Neuron Astrocytes 

Shc3 App - - + - 0 0 1 0 Neuron Neuron 

Sidt2 Lims1 - + - - 0 1 0 0 Microglia Microglia 

Slc17a7 App - - + - 0 0 1 0 Neuron Neuron 

Slc26a6 Slc9a3r1 - + - - 1 0 0 0 Microglia Astrocytes 

Slc35b1 B4galt1 - + - - 0 0 1 0 Microglia Neuron 

Slc4a10 Slc9a3r1 - + - - 0 0 1 0 Microglia Neuron 

Slc8a1 Fbln5 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Slc8a1 Fbln5 - + - - 0 0 1 0 Microglia Neuron 

Smarcd3 Notch1 - - + - 0 0 1 0 Neuron Neuron 

Smn1 Glud1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Snap25 App - - + - 0 0 1 0 Neuron Neuron 

Snap25 Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Snca Tubb4a - + - - 0 0 1 0 Microglia Neuron 

Snca App - - + - 0 0 1 0 Neuron Neuron 

Snca Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Snca Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Snca Map1b - - + - 0 0 1 0 Neuron Neuron 

Snca Icam5 - - + - 0 0 1 0 Neuron Neuron 

Snca Ntm - - + - 0 0 1 0 Neuron Neuron 

Sncb Tuba1a - - + - 0 0 1 0 Neuron Neuron 

Sod1 Chgb - - + - 1 0 0 0 Neuron Astrocytes 

Sorbs2 Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Sorbs2 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Sox9 Kpnb1 - + - - 1 0 0 0 Microglia Astrocytes 

Specc1l Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Specc1l Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Srebf1 Pcbd1 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Srgap1 Cdc42 - + - - 0 0 1 0 Microglia Neuron 

Ssh2 Coro1c - + - - 0 0 1 0 Microglia Neuron 

St5 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Stat1 Egfr - - + - 0 1 0 0 Neuron Microglia 
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Stat1 Ptpn6 - + - - 0 1 0 0 Microglia Microglia 

Stmn1 Vcp - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Ston2 Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Ston2 Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Stt3a Sarm1 + - - - 0 1 0 0 Astrocytes Microglia 

Sugct Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Sumf1 Sumf2 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Sun1 Syne1 + - - - 1 0 0 0 Astrocytes Astrocytes 

Suox Hsd17b10 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Sv2a App - - + - 0 0 1 0 Neuron Neuron 

Sv2b App - - + - 0 0 1 0 Neuron Neuron 

Svip Vcp - - - + 0 0 0 1 Oligodendroc

ytes 

Oligodendrocytes 

Syn1 App - - + - 0 0 1 0 Neuron Neuron 

Syn2 App - - + - 0 0 1 0 Neuron Neuron 

Syngap1 Cand1 - + - - 0 0 1 0 Microglia Neuron 

Syngap1 Egfr - - + - 0 0 1 0 Neuron Neuron 

Syngap1 Ncan - - + - 0 0 1 0 Neuron Neuron 

Synj2bp Lrp2 - + - - 0 1 0 0 Microglia Microglia 

Syt1 App - - + - 0 0 1 0 Neuron Neuron 

Syt1 Lrp1b - - + - 0 0 1 0 Neuron Neuron 

Tagln G6pdx - + - - 1 0 0 0 Microglia Astrocytes 

Tfe3 Ahcy - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Tfe3 Vcp - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Tfe3 Rpl3 - - + - 0 1 0 0 Neuron Microglia 

Tfe3 Hist1h4a - - + - 0 1 0 0 Neuron Microglia 

Tfe3 Sfpq - - + - 0 1 0 0 Neuron Microglia 

Tfe3 Idh1 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Tfe3 Tuba1b - - + - 0 1 0 0 Neuron Microglia 

Tfe3 Hspe1 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Tfe3 Acly - + - - 0 1 0 0 Microglia Microglia 

Tfe3 Hspd1 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Tfe3 Rps4x - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Tfe3 Hist1h1c - - + - 0 1 0 0 Neuron Microglia 

Tfe3 Kif20b - + - - 0 1 0 0 Microglia Microglia 

Tfe3 Alpl - + - - 0 1 0 0 Microglia Microglia 

Tfe3 Atic - + - - 0 1 0 0 Microglia Microglia 

Tfe3 Hspa9 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Tfe3 Rpl9 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Tgfb1 Emilin1 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 
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Tgfbr2 Tgfbr3 - + - - 0 1 0 0 Microglia Microglia 

Tgfbr2 Cdh5 - + - - 0 1 0 0 Microglia Microglia 

Thra Sfpq - - + - 0 0 1 0 Neuron Neuron 

Tia1 Mdh1 + - - - 0 0 1 0 Astrocytes Neuron 

Tia1 Hspa9 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Tia1 Otub1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Tia1 Ppp1cb - + - - 0 0 1 0 Microglia Neuron 

Tia1 Glud1 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Tia1 Rps4x - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Tiam1 Cd44 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Tiam2 Cd44 - - - + 0 0 1 0 Oligodendroc

ytes 

Neuron 

Timp2 Pcsk5 - - + - 1 0 0 0 Neuron Astrocytes 

Tln1 Fhl1 - + - - 0 1 0 0 Microglia Microglia 

Tln1 Capn2 - + - - 0 1 0 0 Microglia Microglia 

Tlr4 Cd14 + - - - 0 1 0 0 Astrocytes Microglia 

Tlr4 Ube2n - + - - 0 1 0 0 Microglia Microglia 

Tmem237 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Tmod1 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Tmod1 Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Tmod1 Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Tmsb4x Lims1 - + - - 0 1 0 0 Microglia Microglia 

Tmsb4x Aplp1 - - + - 0 1 0 0 Neuron Microglia 

Tnfaip3 Ube2n - + - - 0 1 0 0 Microglia Microglia 

Tnks1bp1 Capza1 - + - - 1 0 0 0 Microglia Astrocytes 

Tpm1 Rala + - - - 1 0 0 0 Astrocytes Astrocytes 

Tpm1 Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Tpm1 Tpm2 - + - - 1 0 0 0 Microglia Astrocytes 

Tpm1 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Tpm1 Capza1 - + - - 1 0 0 0 Microglia Astrocytes 

Tpm1 Actr3 - + - - 1 0 0 0 Microglia Astrocytes 

Tpm2 Coro1c - + - - 1 0 0 0 Microglia Astrocytes 

Tprn Coro1c - + - - 0 0 0 1 Microglia Oligodendrocytes 

Traf1 Ahcy - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Traf3ip1 Uso1 - + - - 1 0 0 0 Microglia Astrocytes 

Trim59 Capza1 - + - - 0 0 0 1 Microglia Oligodendrocytes 

Trim67 Dcc - - + - 0 0 1 0 Neuron Neuron 

Ttc23 Tuba1a - - + - 1 0 0 0 Neuron Astrocytes 

Ttc23 Sarm1 + - - - 1 0 0 0 Astrocytes Astrocytes 

Ttc23 Sfpq - - + - 1 0 0 0 Neuron Astrocytes 

Ttc23 Erh - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 

Ttc23 Hspa9 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 
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Ttc23 Tuba1b - - + - 1 0 0 0 Neuron Astrocytes 

Ttc23 Egfr - - + - 1 0 0 0 Neuron Astrocytes 

Ttc7a Coro1c - + - - 0 1 0 0 Microglia Microglia 

Tuba1a Uso1 - + - - 0 0 1 0 Microglia Neuron 

Tubb3 Map1b - - + - 0 0 1 0 Neuron Neuron 

Tubb4b Phgdh - + - - 0 0 1 0 Microglia Neuron 

Twf2 Coro1c - + - - 0 1 0 0 Microglia Microglia 

Uaca Ppp1cb - + - - 1 0 0 0 Microglia Astrocytes 

Ube2o App - - + - 0 0 1 0 Neuron Neuron 

Ube2q1 B4galt1 - + - - 0 1 0 0 Microglia Microglia 

Ube2v1 Ube2n - + - - 0 1 0 0 Microglia Microglia 

Unc5b Ppp2r1a - + - - 0 0 0 1 Microglia Oligodendrocytes 

Vasp Lasp1 - + - - 0 1 0 0 Microglia Microglia 

Vav1 Egfr - - + - 0 1 0 0 Neuron Microglia 

Vcl Tln1 - + - - 1 0 0 0 Microglia Astrocytes 

Wdfy4 (Sept11) - + - - 0 1 0 0 Microglia Microglia 

Wdfy4 Cd44 - - - + 0 1 0 0 Oligodendroc

ytes 

Microglia 

Wdfy4 Tpm2 - + - - 0 1 0 0 Microglia Microglia 

Wdfy4 Sort1 - - + - 0 1 0 0 Neuron Microglia 

Wdfy4 Actr3 - + - - 0 1 0 0 Microglia Microglia 

Xpr1 Coro1c - + - - 0 0 1 0 Microglia Neuron 

Zbtb25 B4galt1 - + - - 1 0 0 0 Microglia Astrocytes 

Zbtb7b Hist1h1c - - + - 0 1 0 0 Neuron Microglia 

Zfp36l1 Pcbd1 - - - + 1 0 0 0 Oligodendroc

ytes 

Astrocytes 
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