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Rationale & Objective: Measurement of residual
kidney function is recommended for the adjustment
of the dialysis prescription, but timed urine collec-
tions are difficult and prone to errors. Equations to
calculate residual kidney function from serum
concentrations of endogenous filtration markers
and demographic parameters would simplify
monitoring of residual kidney function. However,
few equations to estimate residual kidney function
using serum concentrations of small solutes
and low-molecular-weight proteins have been
developed and externally validated.

Study Design: Study of diagnostic test accuracy.

Setting & Participants: 823 Chinese peritoneal
dialysis (PD) patients (development cohort)
and 826 PD and hemodialysis patients from
the Netherlands NECOSAD study (validation
cohort).

Tests Compared: Equations to estimate residual
kidney function (estimated clearance [eCl]) using
serum creatinine, urea nitrogen, cystatin C,
β2-microglobulin (B2M), β-trace protein (BTP), and
combinations, as well as demographic variables
(age, sex, height, and weight). Equations were
developed using multivariable linear regression
analysis in the development cohort and then tested
104
in the validation cohort. Equations were compared
with published validated equations.

Outcomes: Residual kidney function measured as
urinary clearance (mCl) of urea nitrogen (mClUN)
and average of creatinine and urea nitrogen
clearance (mClUN-cr).

Results: In external validation, bias (difference
between mCl and eCl) was within ± 1.0 unit for all
equations. Accuracy (percent of differences
within ± 2.0 units) was significantly better for
eClBTP, eClB2M, and eClBTP-B2M than eClUN-cr for
both mClUN (78%, 80%, and 81% vs 72%;
P < 0.05 for all) and mClUN-cr (72%, 78%, and 79%
vs 68%; P < 0.05 for all). The area under the curve
for predicting mClUN > 2.0 mL/min was highest for
eClB2M (0.853) and eClBTP-B2M (0.848). Results
were similar for other validated equations.

Limitations: Development cohort only consisted of
PD patients, no gold-standard method for residual
kidney function measurement.

Conclusions: These results confirm the validity
and extend the generalizability of residual kidney
function estimating equations from serum
concentrations of low-molecular-weight proteins
without urine collection.
Residual kidney function is associated with morbidity
and mortality in patients with chronic kidney failure

treated by peritoneal dialysis (PD).1-5 Guidelines recom-
mend regular assessment of residual kidney function in PD
patients to adjust the dialysis prescription.6 Residual kid-
ney function is generally quantified as measured clearance
(mCl) using timed urine collections of small solutes, such
as mCl of urea nitrogen (mClUN) or mCl of the average of
urea nitrogen and creatinine (mClUN-cr).

6-8 However,
timed urine collections are difficult and prone to errors.
Therefore, estimated clearance (eCl) from serum concen-
trations of endogenous filtration markers without urine
collection, as routinely performed in earlier stages of
chronic kidney disease,9 could simplify clinical practice.

In principle, eCl from serum concentrations of small
solutes would not be expected to perform well in dialysis
patients, due in part to extrarenal elimination of the solutes
during dialysis.10 Serum concentrations of low-molecular-
weight proteins (LMWPs), such as β-trace protein (BTP
[molecular weight, 23-29 kDa], β2-microglobulin (B2M
[molecular weight, 11.6 kDa]), and cystatin C (molecular
weight, 13.3 kDa), could be useful for eCl because LMWPs
are eliminated by glomerular filtration as efficiently as
small solutes, but less efficiently by dialysis.7,11-19

Prior studies have developed estimating equations for
residual kidney function using serum concentrations of
small solutes or LMWPs,10,20-23 but only the study by Shafi
et al10 included an external validation cohort. In that study,
estimating equations were developed in a small cohort of
dialysis patients in the United States (Residual Kidney
Function [RKF] Study) and validated in hemodialysis (HD)
and PD patients in the Netherlands Cooperative Study on
the Adequacy of Dialysis (NECOSAD).10 Equations using
BTP, B2M, and cystatin C levels were more accurate than
equations using small solute levels, but to our knowledge,
they have not been evaluated in other populations.

Residual kidney function estimating equations could be
of particular interest in countries with a high prevalence of
PD patients and limited resources, such as China, to
simplify medical treatment and reduce costs.24 The aim
of our study was to assess the validity and generalizability
of residual kidney function estimating equations using
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LMWPs without urine collections. We developed equa-
tions using serum concentrations of small solutes and
LMWPs in a large Chinese cohort of prevalent PD patients
(Guangzhou PD Study), validated the equations in
NECOSAD, and compared them with the residual kidney
function estimating equations previously developed by
Shafi et al.10

METHODS

Study Design

This is a cross-sectional study for the development and
internal validation of residual kidney function estimation
equations in a Chinese PD cohort and external validation in
a European HD and PD cohort. The study was approved by
the Institutional Review Board (IRB) of the First Affiliated
Hospital of Sun Yat-sen University (IRB approval no.
[2013] 051), the Tufts Medical Center IRB (no. 10890),
and medical ethics boards involved in NECOSAD. The
study adheres to the ethical principles of the Declaration of
Helsinki. All patients who took part in these studies gave
their written informed consent.

Participants
The Guangzhou PD Study was used for equation devel-
opment and internal validation. It consists of prevalent
patients treated by continuous ambulatory PD (CAPD)
from the First Affiliated Hospital at Sun Yat-Sen University
in Guangzhou and affiliated outpatient dialysis units be-
tween January 2013 and December 2015. Inclusion
criteria were 18 years or older and treatment with CAPD
for 3 or more months. Exclusion criteria were critical
illness or major surgery at the time of study enrollment,
active bleeding within the previous 3 days before enroll-
ment, advanced stage of malignancy, peritonitis within 4
weeks before enrollment, untreated clinical disorders of
the thyroid gland, and medications that significantly
affect tubular secretion of creatinine. We further excluded
patients with missing demographic data, missing samples
on 24-hour urine and dialysate collections, and anuric
patients (ie, urine output of 0 mL/d).

After completion of data collection, we randomly
divided the study population into a development data set
(two-thirds of patients) and an internal validation data set
(one-third of patients). NECOSAD was used for external
validation of the equations. It is a large multicenter cohort
of incident HD and PD patients older than 18 years
recruited from 38 dialysis units in the Netherlands be-
tween January 1997 and January 2005.2,25,26 The present
analysis includes 826 patients at 3 or 12 months after
dialysis initiation with stored specimens and available data
for residual kidney function.

Test Methods
The reference test is mCl of small solutes (urea nitrogen
and creatinine) and the index tests are equations for eCl
based on serum concentrations of small solutes, LMWPs
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(BTP, B2M, and cystatin C), demographic variables (age
and sex), and body size (height and weight). Because
clinical laboratories might not be able to assay all 3
LMWPs, we developed single-marker and multiple-marker
LMWP equations.

Clearance Measurements

In both study populations, mCl of small solutes was
ascertained as UV/P, where UV is urine solute excretion
rate (urine solute concentration × urine volume) and P is
plasma (serum) solute concentration. mClUN was
expressed as mL/min and mClUN-cr was expressed as mL/
min/1.73 m2 body surface area. In Guangzhou PD Study
patients and NECOSAD PD patients, samples from 24-hour
collections of dialysate and urine and a serum sample were
obtained before a routine visit to the PD clinic. In
NECOSAD HD patients, all urine during the interdialytic
interval was collected, and blood samples were drawn at
the end of the preceding HD session and directly before
the next session, with the mean of these 2 values used for
clearance calculations.27 Aliquots of all specimens were
stored at −80�C until analyses were performed.

Filtration Marker Assessment

Small Solutes
For the Guangzhou PD study, urea nitrogen and creatinine
measurements were performed at the University of Min-
nesota Advanced Research and Diagnostic Laboratory,
Minneapolis, MN (Table S1). Serum and urinary urea
nitrogen were measured on the Roche Cobas 6000 using a
standardized enzymatic method. Serum and urinary
creatinine were measured using an isotope-dilution mass
spectrometry–traceable enzymatic method on the Roche
Cobas 6000. In NECOSAD, urea nitrogen and creatinine
(mainly using the alkaline picrate method) had previously
been measured at the local laboratories.10 Earlier analyses
in NECOSAD had shown that the method of creatinine
measurement had a negligible effect on creatinine con-
centrations and that the interlaboratory variation at low
ranges of creatinine measurements is low.

Low-Molecular-Weight Proteins
For both studies, LMWP measurements were performed at
the University of Minnesota Advanced Research and
Diagnostic Laboratory, Minneapolis, MN (Table S1). In the
Guangzhou PD Study, BTP was measured using an
immunonephelometric assay. B2M and cystatin C were
measured using an immunoturbidimetric method. In the
NECOSAD cohort, all measurements were performed using
an immunonephelometric assay.10

Analyses in the Guangzhou PD Study

Development Data Set
For both mClUN and mClUN-cr, our goal was to develop
an equation containing only small solutes (eClUN-cr)
that could readily be used in clinical practice without
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measurement of additional filtration markers, 3 single-
marker LMWP equations (eClBTP, eClB2M, or eCl of
cystatin C [eClcys]), and 1 multiple-marker LMWP equa-
tion. Small solutes were considered for inclusion in
equations containing LMWPs, and demographic charac-
teristics and body size were considered for inclusion in
all equations.

We prespecified a process for equation development
similar to methods published previously.9,10,28 We trans-
formed serum concentrations of filtration markers and
mCls to natural logarithmic scale to stabilize variance. We
used least squares linear regression and analysis of variance
to assess linearity between the filtration markers and
clearances. In case nonlinearity was detected, we deter-
mined the optimal number and location of breakpoints for
spline functions for each filtration marker. For the small-
solute equation, we forced urea nitrogen level, creatinine
level, age, and sex into the equation. For the single-marker
LMWP equations, we forced urea nitrogen level, creatinine
level, age, and sex into the equation. For the multiple-
marker LMWP equation, we evaluated all three 2-marker
combinations and one 3-marker combination. At each
step we retained a variable if it was significant in the
model and improved (reduced) the root-mean-square
error (RMSE; standard deviation of the mean difference
between mCl and eCl) of the model by ≥2% compared to
the model without the variable (a lower RMSE implies
better model fit).

Internal Validation Data Set
All equations selected in the development data set were
evaluated in the internal validation data set. Equations were
excluded from further analysis if 1 of the filtration markers
had a nonsignificant coefficient (P > 0.05) or the poly-
nomial form of the filtration marker did not improve the
RMSE of the model by ≥1% compared to the model with
the linear form of the marker. In this case, the linear form
was retained.

Combined Data Set
The remaining equations were refitted in the combined
data set to determine coefficients for the final equations.
The final multiple-marker LMWP equation was selected as
the model with the lowest RMSE.

Analyses in the NECOSAD (external validation)

Data Set

We compared mCl versus eCl graphically by plotting the
residuals of the regression model (difference between
mCl and eCl) against eCl. We defined bias as the median
of the residuals and precision as the interquartile range of
the residuals.9,10,29 As in the study by Shafi et al,10 we
defined accuracy as the percentage of eCls with-
in ± 2.0 mL/min of mClUN and 2.0 mL/min/1.73 m2 of
mClUN-cr, respectively. We acknowledge that the range
of ± 2.0 units for accuracy is wide but considered that a
106
narrower range was not practical given the uncertainty in
the reference test. We also considered a definition of
accuracy based on a relative scale, as is generally used at
higher glomerular filtration rates (GFRs), but concluded
that it was not necessary because the GFR range is nar-
row. We calculated 95% confidence intervals for bias,
precision, and accuracy by bootstrapping with 2,000
replicates.30 We compared accuracy between equations
using the McNemar test for paired data. We compared
the accuracy of each equation between HD versus PD
patients using χ2 test for independent data. We assessed
the area under the receiver operating characteristic curve
(AUC) for estimating mClUN < 2.0 mL/min and mClUN-
cr < 2.5 mL/min/1.73 m2. mClUN > 2 mL/min has been
proposed by the Kidney Disease Outcomes Quality
Initiative (KDOQI) guidelines as a residual kidney func-
tion threshold, below which the treating physician
should perform a thrice-weekly HD regimen.31 The
threshold for mClUN-cr was chosen based on published
literature to compare results.10 The optimal cutoff was
defined as the value with the highest combined sensi-
tivity and specificity (Youden index32). Finally, we
compared the accuracy of the equations developed in
the Guangzhou PD Study with equations previously
published by Shafi et al10 using χ2 test. Analyses were
performed using R, version 3.4.1 (R Development Core
Team). P < 0.05 was considered to be significant. Results
have not been adjusted for multiple testing.
RESULTS

Participants

A total of 1,241 participants were included in the
Guangzhou PD Study. After excluding participants with
missing demographic data (n = 13), missing filtration
marker measurements (n = 248), and anuria (n = 157;
Table S2), 823 participants were selected (Fig S1). Mean
age was 50 years and 63% were men (Table 1). Mean
urinary output was 710 mL/d, mClUN was 2.0 mL/min,
and mClUN-cr was 3.1 mL/min/1.73 m2. All patients were
on CAPD treatment with 4 exchanges per day; total dwell
volume used was 7.7 ± 1.2 L/d. Mean ultrafiltration was
505 ± 595 mL/d. NECOSAD included 826 participants
(587 HD and 239 PD; Table 1). Mean age was 60 years
and 60% were men. Mean urinary output was 897 mL/d,
mClUN was 2.9 mL/min, and mClUN-cr was 3.8 mL/min/
1.73 m2.

Test Results: Correlations Among Clearances and

Serum Concentrations of Filtration Markers

In both studies, B2M level showed the strongest correla-
tion with mClUN (r = −0.56 and −0.69 in the Guangzhou
PD Study combined data set and NECOSAD, respectively)
and mClUN-cr (r = −0.58 and r = −0.75), whereas urea
nitrogen level had the weakest correlation with mClUN
(r = −0.19 and r = −0.24) and mClUN-cr (r = −0.23 and
Kidney Med Vol 1 | Iss 3 | May/June 2019



Table 1. Participants’ Baseline Characteristics in the Guangzhou PD Study and NECOSAD Study

Guangzhou PD
Study (n = 823)

NECOSAD

Total (n = 826) HD (n = 587) PD (n = 239)
Demographics

Characteristics
Age, y 49.9 ± 14.5 60.2 ± 14.4 63.4 ± 13.3 52.2 ± 14.0
Men 62.8% 60.0% 59.1% 67.8%
White 0% 87.7% 91.8% 77.4%
Body mass index, kg/m2 22.2 ± 3.2 25.1 ± 4.1 24.9 ± 4.2 25.5 ± 4.1
Height, cm 162.9 ± 7.4 171.3 ± 9.9 170.4 ± 9.8 173.6 ± 9.8
Weight. kg 59.1 ± 10.3 73.8 ± 14.2 72.5 ± 14.0 77.0 ± 14.2
Body surface area, m2 1.6 ± 0.2 1.9 ± 0.2 1.8 ± 0.2 1.9 ± 0.2
Total-body water, L 32.9 ± 05.5 38.0 ± 6.7 37.1 ± 6.4 40.1 ± 7.0
Diabetes mellitus 16.7% 21.3% 23.7% 15.5%

Residual kidney function

Urinary output, mL/d 710 ± 538 897 ± 675 826 ± 623 1,069 ± 762
Measured clearances
Urea nitrogen, mL/min 2.0 ± 1.9 2.9 ± 2.1 2.8 ± 2.1 3.1 ± 2.2
Urea nitrogen, mL/min/1.73 m2 2.1 ± 2.1 2.7 ± 1.9 2.6 ± 1.9 2.8 ± 1.9
Cr, mL/min 3.7 ± 3.9 4.6 ± 3.5 4.6 ± 3.7 4.6 ± 3.2
Cr, mL/min/1.73 m2 4.0 ± 4.2 4.9 ± 3.7 4.8 ± 3.7 5.0 ± 3.5
Mean of urea nitrogen and Cr, mL/min 2.9 ± 2.9 3.6 ± 2.6 3.6 ± 2.7 3.6 ± 2.4
Mean of urea nitrogen and Cr, mL/min/1.73 m2 3.1 ± 3.1 3.8 ± 2.7 3.7 ± 2.7 3.9 ± 2.6

Weekly kidney Kt/V 0.6 ± 0.6 0.7 ± 0.5 0.7 ± 0.5 0.7 ± 0.5
Filtration marker serum concentrations

SUN, mg/dL 49.3 ± 15.5 64.9 ± 17.1 66.9 ± 16.7 60.1 ± 17.2
Cr, mg/dL 9.9 ± 3.4 8.7 ± 2.8 8.5 ± 2.7 9.2 ± 3.0
β2-microglobulin, mg/L 29.9 ± 10.5 25.5 ± 9.5 25.6 ± 9.6 25.2 ± 9.3
β-Trace protein, mg/L 8.6 ± 2.9 6.9 ± 2.6 6.8 ± 2.4 7.3 ± 2.9
Cystatin C, mg/L 6.6 ± 1.4 5.1 ± 1.1 5.0 ± 1.1 5.2 ± 1.2
Note: Values expressed as mean ± standard deviation or percent. Conversion factors for units: SUN in mg/dL to mmol/L, ×357; Cr in mg/dL to μmol/L, ×88.4.
Abbreviations: Cr, creatinine; HD, hemodialysis; NECOSAD, Netherlands Cooperative Study on the Adequacy of Dialysis; PD, peritoneal dialysis; SUN, serum urea
nitrogen.
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r = −0.26; Tables S3 and S4). Correlation among filtration
markers was strongest between B2M and cystatin C levels
(r = 0.85 and r = 0.75) and weakest for BTP and urea
nitrogen levels (r = 0.27 and r = 0.20). Adjusting for
clearances moderately attenuated the correlations among
filtration markers (Table S4).

Equation Development in the Guangzhou PD Study

Development Data Set, Internal Validation, and
Combined Data Set
Equation development in the development data set and
internal validation are described in Tables S5 and S6.
Table 2 shows the final equations developed in the com-
bined data set. Performance of the final equations in the
combined data set is shown in Table S7.

Comparison to Published Equations
Coefficients of equations containing similar LMWP
markers in the equations that we developed differ from
equations published by Shafi et al,10 in part due to the
use of spline B2M and the absence of a coefficient for
sex in equations for both mClUN and mClUN-cr and the
Kidney Med Vol 1 | Iss 3 | May/June 2019
presence of a coefficient for creatinine in the single-
marker LMWP equations for mClUN-cr (Table S8). The
performance of equations published by Shafi et al10 in
the Guangzhou PD Study combined data set is shown in
Table S9.

Equation Validation in NECOSAD

Estimating mClUN and mClUN-cr

Bias was within ± 1.0 mL/min and within ± 1.0 mL/
min/1.73 m2, respectively, for all equations (Table 3).
eClB2M and eClBTP-B2M were unbiased across the range of
eCl; other equations overestimated mCl at higher levels
of eCl (Fig 1). Precision was between 1.5 and 2.1 mL/
min for mClUN and 1.8 and 2.3 mL/min/1.73 m2 for
mClUN-cr. Accuracy was nominally highest for eClB2M and
eClBTP-B2M for mClUN (80% and 81%, respectively) and
mClUN-cr (78% and 79%, respectively) and significantly
higher than eClUN-cr for mClUN (72%) and mClUN-cr
(68%; Table 3). Accuracy was similar for HD and PD
patients, except for eClB2M and eClBTP-B2M, which were
more accurate in HD patients estimating mClUN
(Table 4).
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Table 2. Guangzhou PD Study Equations for Estimation of Residual Kidney Function in Dialysis Patients

Markers Covariables Equation
Equations to estimate mClUN, mL/min

UN-creatinine Age, sex 60 × cr-2.271 × UN0.369 × 0.989Age (× 1.536 if male)
BTP 98 × BTP-2.128

B2M For B2M ≤ 24 mg/L: 2 × (B2M/24)-0.678
For B2M > 24 mg/L: 2 × (B2M/24)-2.880

Cystatin C 571 × cys -3.349

BTP-B2M For B2M ≤ 24 mg/L: 16 × BTP-1.02 × (B2M/24)0.159
For B2M > 24 mg/L: 16 × BTP-1.02 × (B2M/24)-2.187

Equations to estimate mClUN-cr, mL/min/1.73m2)

UN-creatinine Age, sex 207 × cr-2.539 × UN0.334 × 0.988Age (× 1.427 if male)
BTP Creatinine 445 × BTP-1.301 × cr-1.274

B2M Creatinine For B2M ≤ 23 mg/L: 39 × (B2M/23)0.144 × cr-1.152
For B2M > 23 mg/L: 39 × (B2M/23)-2.129 × cr-1.152

Cystatin C Creatinine 1,53 × cys-2.082 × cr-1.228

BTP-B2M For B2M ≤ 23 mg/L: 32 × BTP-1.126 × (B2M/23)0.271
For B2M > 23 mg/L: 32 × BTP-1.126 × (B2M/23)-2.133

Note: Coefficients for creatinine are in mg/dL; for BTP, B2M, and cystatin C, in mg/L.
Abbreviations and definitions: B2M, β2-microglobulin; BTP, β-trace protein; cr, creatinine; cys, cystatin C; mClUN, measured clearance of urea nitrogen in mL/min;
mClUN-cr, average measured clearance of urea nitrogen and creatinine in mL/min/1.73 m2; UN, urea nitrogen.
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The AUC to detect mClUN > 2.0 mL/min and
mClUN-cr > 2.5 mL/min/1.73 m2 was highest for eClB2M
(0.85 and 0.88, respectively) and eClBTP-B2M (0.84
and 0.89, respectively (Fig 2; Table S10). Findings
were similar in HD and PD patients (Table S10).
Table 3. Performance of Estimating Equations in the NECOSAD

Variables

Guangzhou PD Stud

RMSEa Biasb

Equations to estimate mClUN (mL/min)

mL/min (95% CI)
UN-creatinine 0.694 (0.656 to 0.730) 0.8 (0.7 to 0.9) 2
BTP 0.630 (0.594 to 0.665) 0.4 (0.3 to 0.5) 1
B2M 0.588 (0.549 to 0.622) 0.7 (0.6 to 0.8) 1
Cystatin C 0.667 (0.626 to 0.702) −0.3 (−0.4 to −0.2) 2
BTP-B2M 0.514 (0.483 to 0.545) 0.5 (0.4 to 0.6) 1
Equations to estimate mClUN-cr (mL/min/1.73 m2)

mL/min/1.73 m2

(95% CI)
UN-creatinine 0.606 (0.569 to 0.642) 0.7 (0.6 to 0.9) 2
BTP 0.550 (0.519 to 0.582) 0.2 (0.1 to 0.4) 2
B2M 0.513 (0.482 to 0.546) 0.5 (0.4 to 0.6) 1
Cystatin C 0.572 (0.536 to 0.607) −0.2 (−0.4 to −0.1) 2
BTP-B2M 0.511 (0.478 to 0.543) 0.2 (0.1 to 0.4) 1
Note: n = 826. All associations between filtration marker and outcome are linear exce
[mClUN-cr] mg/L). UN-creatinine equations also contain age and sex as covariab
covariables.
Abbreviations: B2M, β2-microglobulin; BTP, β-trace-protein; CI, confidence interval;
mL/min; mClUN-cr, average measured clearance of urea nitrogen and creatinine in m
Dialysis; PD, peritoneal dialysis; UN, urea nitrogen.
aRMSE defined as the standard deviation of mean difference between (ln) measur
bBias defined as the median difference between measured and estimated clearanc
cPrecision defined as interquartile range of the differences between measured and
dAccuracy defined as the percentage of estimates within ± 2 units of measured cle
eSignificance level of P < 0.05.
fSignificance level of P < 0.001 for the difference between the accuracy of the cor
gSignificance level of P < 0.05 for difference between the corresponding equation
hSignificance level of P < 0.05.
iSignificance level of 0.01 for the difference between the accuracy of the correspo
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Among LMWP equations, eClB2M and eClBTP-B2M
were more accurate than eClcys to detect
mCLUN > 2.0 mL/min (P = 0.02 and P < 0.01, respec-
tively) and mClUN-cr > 2.5 mL/min/1.73 m2 (P < 0.01
and P = 0.04, respectively).
Cohort

y Equations
Shafi et al10
Equations

Precisionc Accuracy (95% CI)d Accuracy (95% CI)d

mL/min (95% CI)
.1 (1.9 to 2.3) 72% (69% to 75%) 75% (72% to 78%)e

.8 (1.6 to 1.9) 78% (75% to 80%)f 81% (78% to 83%)e,g

.7 (1.5 to 1.8) 80% (77% to 83%)f 79% (76% to 81%)g

.0 (1.8 to 2.2) 75% (72% to 78%) 79% (76% to 82%)e,g

.5 (1.4 to 1.8) 81% (78% to 84%)f 81% (78% to 84%)g

mL/min/1.73 m2

(95% CI)
.2 (2.0 to 2.4) 68% (65% to 71%) 68% (65% to 72%)
.1 (1.9 to 2.3) 72% (69% to 75%)h 71% (68% to 74%)
.8 (1.7 to 2.0) 78% (75% to 80%)f 69% (66% to 72%)i

.3 (2.1 to 2.5) 71% (68% to 74%) 72% (69% to 75%)g

.8 (1.6 to 2.0) 79% (77% to 82%)f 75% (72% to 78%)e,g

pt for B2M (2-slope polynomial model, breakpoint for B2M at 24 [mClUN] and 23
les. Of note, equations developed by Shafi et al10 contained in part different

RMSE, root-mean-square error; mClUN, measured clearance of urea nitrogen in
L/min/1.73 m2; NECOSAD, Netherlands Cooperative Study on the Adequacy of

ed and (ln) estimated clearance.
e.
estimated total clearance.
arance.

responding equation and the UN-creatinine equation.
and the UN-creatinine equation published by Shafi et al.10

nding equation and the similar Guangzhou PD Study equation (ie, same row).
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Figure 1. Associations between estimated clearances (eCls) and difference between measured (mCl) and eCl in the total
Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD) cohort (n = 826). Differences between mCls and eCls
are presented on the y-axis; eCl, on the x-axis. The specific markers used in the eCl equations are indicated within the graphs. Pos-
itive differences indicate underestimation of mCl by the eCl; negative differences, overestimation. All associations between filtration
marker and outcome are linear except for β2-microglobulin (B2M; 2-slope polynomial model, breakpoint at 24 [mCl of urea nitrogen;
mClUN] and 23 [mCl or urea nitrogen-creatinine; mClUN-cr] mg/L). Abbreviations: BTP, β-trace-protein; eCl (mL/min), estimated clear-
ance of urea nitrogen in mL/min; eCl (mL/min/1.73 m2), estimated average clearance of urea nitrogen and creatinine in mL/min/
1.73 m2; UN, urea nitrogen.

Original Research
Comparison to Published Equations
In general, the LMWP equations of Shafi et al10 were more
accurate than the small-solute equations of Shafi et al10 for
both mClUN and mClUN-cr (Table 3). Our eClB2M and
eClBTP-B2M equations had similar accuracy to the equations
of Shafi et al10 for mClUN, but were significantly more
accurate for mClUN-cr. Our eClBTP and eClcys equations
were significantly less accurate than the equations of Shafi
et al10 for mClUN, but had similar accuracy for mClUN-cr.
DISCUSSION

We developed equations containing small solutes (urea
nitrogen and creatinine) and LMWPs (BTP, B2M, and
cystatin C) for the estimation of residual kidney function,
assessed as mClUN and mClUN-cr, in a large cohort of
prevalent Chinese CAPD patients and externally validated
these equations in a large European cohort of incident
HD and PD patients. All LMWP equations performed
Kidney Med Vol 1 | Iss 3 | May/June 2019
moderately well in terms of bias, precision, and accuracy
and outperformed the small-solute equation for the
detection of clinically relevant residual kidney function
thresholds. Equation performance was generally similar to
results of Shafi et al,10 except in our data, equations with
B2M appeared to be consistently more accurate than
equations with other LMWP markers. Results were
generally consistent between PD and HD patients. These
results add substantially to the evidence of validity and
generalizability of estimation of residual kidney function
from serum levels of endogenous LMWP filtration markers
without urine collection.

Both small solutes and LMWPs are eliminated by
glomerular filtration, and creatinine and cystatin C are
recommended for use in GFR estimating equations in
patients not treated by dialysis.33 We hypothesized that
LMWPs would be more useful than small solutes to esti-
mate residual kidney function because there is less extra-
renal elimination of LMWPs by dialysis than small solutes.
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Table 4. Performance of mClUN and mClUN-cr Estimating Equations Developed in the Guangzhou PD Study Data Set and in
NECOSAD, Comparing HD Versus PD Patients

Markers Modality Biasa Precisionb Accuracy (95% CI)c

Equations to estimate mClUN (mL/min)

mL/min (95% CI) mL/min (95% CI) P
UN-creatinine HD 0.8 (0.6 to 0.8) 2.1 (1.8 to 2.2) 73% (69% to 76%) 0.4

PD 1.2 (0.8 to 1.3) 2.1 (1.8 to 2.5) 69% (63% to 75%)
BTP HD 0.2 (0.1 to 0.3) 1.7 (1.5 to 1.9) 79% (76% to 82%) 0.2

PD 0.8 (0.6 to 1.0) 1.8 (1.6 to 2.2) 74% (69% to 80%)
B2M HD 0.6 (0.6 to 0.7) 1.5 (1.4 to 1.7) 82% (79% to 85%) 0.02

PD 0.9 (0.6 to 1.1) 1.9 (1.6 to 2.3) 75% (69% to 80%)
Cystatin C HD −0.5 (−0.6 to −0.3) 1.9 (1.8 to 2.3) 75% (71% to 78%) 0.6

PD 0.1 (−0.2 to 0.3) 1.8 (1.6 to 2.2) 77% (71% to 82%)
BTP-B2M HD 0.4 (0.3 to 0.5) 1.5 (1.3 to 1.6) 84% (81% to 87%) 0.001

PD 0.8 (0.6 to 1.0) 1.9 (1.6 to 2.2) 74% (69% to 80%)
Equations to estimate mCLUN-cr (mL/min/1.73 m2)

mL/min/1.73 m2 (95% CI) mL/min/1.73 m2 (95% CI)
UN-creatinine HD 0.7 (0.5 to 0.8) 2.0 (2.0 to 2.5) 67% (63% to 71%) 0.4

PD 0.9 (0.7 to 1.2) 2.0 (1.7 to 2.4) 71% (65% to 77%)
BTP HD 0.1 (−0.1 to 0.2) 2.0 (1.8 to 2.3) 73% (69% to 76%) 0.9

PD 0.7 (0.5 to 1.0) 2.0 (1.7 to 2.2) 72% (66% to 77%)
B2M HD 0.4 (0.4 to 0.5) 1.8 (1.6 to 2.0) 79% (76% to 82%) 0.2

PD 0.8 (0.6 to 1.0) 2.0 (1.7 to 2.3) 74% (69% to 79%)
Cystatin C HD −0.4 (−0.6 to −0.3) 2.2 (2.0 to 2.5) 71% (68% to 75%) 0.99

PD 0.1 (−0.1 to 0.4) 2.1 (1.8 to 2.5) 72% (66% to 78%)
BTP-B2M HD 0.1 (0.0 to 0.3) 1.8 (1.6 to 2.0) 79% (76% to 82%) 1.00

PD 0.5 (0.3 to 0.7) 1.8 (1.4 to 2.1) 79% (74% to 84%)
Note: Total N = 826; HD, n = 587; PD, n = 239. UN-creatinine equations also contain age and sex as covariables. All associations between filtration marker and mCl
are linear except for B2M (2-slope polynomial model, breakpoint for B2M at 24 [mClUN] and 23 [mClUN-cr] mg/L). P value for the difference of accuracy of the
corresponding equation in HD versus PD subcohort.
Abbreviations: B2M, β2-microglobulin; BTP, β-trace-protein; CI, confidence interval; mClUN, measured clearance of urea nitrogen in mL/min; mClUN-cr, average
measured clearance of urea nitrogen and creatinine clearance in mL/min/1.73 m2; HD, hemodialysis; NECOSAD, Netherlands Cooperative Study on the Adequacy of
Dialysis; PD, peritoneal dialysis. UN, urea nitrogen.
aBias defined as the median difference between measured and estimated clearance.
bPrecision defined as interquartile range of the differences between measured and estimated clearance.
cAccuracy defined as the percentage of estimates within ± 2 units of measured clearance.

Original Research
BTP is produced primarily in the central nervous sys-
tem.34,35 Moderate removal by HD has only been reported
for high-flux HD.12,36 Clearance through PD is unknown.
B2M and cystatin C are produced by nucleated cells.37,38

Compared to BTP, B2M and cystatin C have lower mo-
lecular weight; low-flux HD eliminates neither marker but
both can be removed by high-flux HD and PD.16,36,39-41

Prior studies have shown better performance of LMWPs
than small solutes in estimating residual kidney func-
tion,10,20,21,23 including one study of 160 CAPD patients
in China using cystatin C.22 Comparison of our results with
these studies is limited due to differences in assays for the
filtration markers and absence of external validation,
except in the study by Shafi et al.10 The generally similar
performance of equations previously developed by Shafi
et al10 in a US population of predominantly HD patients
and our study in a Chinese population of CAPD patients is
strong evidence for the validity and generalizability of
these equations. Of note, in contrast to our study, Shafi
et al10 did not detect substantial differences among LMWP
equations. The equations that we developed differ slightly
from the equations of Shafi et al,10 which likely reflects
110
differences in study populations and dialysis modality in
the cohorts used for equation development and equation
development methods.

It is noteworthy that the BTP-B2M equations that we
developed did not perform substantially better than the
B2M equations without BTP. In principle, a multiple-
marker LMWP equation would perform better than a
single-marker equation due to a smaller contribution to
error from variation in the non-GFR determinants of each
marker.42 Prior studies in people not treated by dialysis
have shown better performance of a GFR estimating
equation including both BTP and B2M compared to B2M
alone.28,43,44 Possibly the inability to detect improvement
with a multiple-marker equation reflects measurement
error in the reference test (nonsupervised timed urine
collections). Similar findings in the study by Shafi et al10

with more accurate measurements (supervised timed
urine collections) may reflect the limited number of par-
ticipants in the development database in that study.

We anticipate 2 clinical settings in which residual kid-
ney function estimating equations might be useful. First,
they could be used to reduce the frequency of urine
Kidney Med Vol 1 | Iss 3 | May/June 2019



Figure 2. Receiver operating characteristic curves for the diagnostic accuracy of estimating equations to detect urea clearance in
mL/min (ClUN) < 2 mL/min and average clearance of urea and creatinine in mL/min/1.73 m2 (ClUN-cr) < 2.5 mL/min/1.73 m2 in the
Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD) data set (n = 826), respectively. Sensitivity is presented
on the y-axis; specificity, on the x-axis. Equations can be identified by the markers that were used. The area under the curve result for
every equation is presented with confidence intervals in brackets. All associations between filtration marker and outcome are linear
except for β2-microglobulin (B2M; 2-slope polynomial model, breakpoint at 24 measured ClUN [mClUN] and 23 [mClUN-cr] mg/L).
*P < 0.05; **P < 0.01; ***P < 0.001 of the difference between area under the curve of corresponding equation and UN-creatinine
equation. Abbreviations: BTP, β-trace protein; UN, urea nitrogen.
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collections for adjustment of the dialysis prescription,
thereby reducing patient burden and potentially reducing
costs. These considerations may be more relevant for
countries with a high prevalence of PD patients, such as
China. However, the accuracy of equations is not sufficient
to make fine adjustments in PD prescription recommended
by guidelines (eg, a 15% reduction in weekly effluent
volume for each 1–mL/min/1.73 m2 higher mClUN

45).
This suggests that residual kidney function estimating
equations may be most useful as a screening test to
determine whether urine collection for clearance mea-
surement is necessary. Clinical trials will be necessary to
evaluate these strategies.

Second, residual kidney function estimating equations
could be used in settings when urine collection is not
practical, such as in patients with voiding difficulties, but
ascertainment of residual kidney function is important for
medical decision making, such as whether iodinated
contrast media can be administered. Our results suggest
that a single-marker LMWP may be as accurate as a
multiple-marker equation. The differences in accuracy
among LMWPs appears small, so the decision as to which
LMWP to measure would be influenced by the availability
of laboratory methods and costs. Of note, the assays for
BTP and B2M are not standardized, so it will be important
to harmonize laboratory measurement procedures for
application of the equations. Our study has several
strengths. We developed equations in a large data set,
which enabled us to assess the form of variables for the
filtration markers and the need for covariables. We
included patients with minimal urine output, providing a
Kidney Med Vol 1 | Iss 3 | May/June 2019
wide range for serum concentrations of endogenous
filtration markers and allowing application of the equa-
tions to patients with even a low level of residual kidney
function. We assessed 2 small solutes and 3 different
LMWPs, enabling us to test a wide spectrum of currently
available filtration markers. All patients in the development
data set were treated with CAPD; in contrast to HD, stable
serum concentrations of endogenous filtration markers can
be assumed. Because the external validation cohort
included both HD and PD patients, we were able to address
the question of applicability of our equations to both
treatment modalities. The cohorts differed substantially in
terms of age, body size, race, and level of residual kidney
function, which enhances the generalizability of results.
We used the same laboratory as Shafi et al10 for mea-
surement of serum LMWP concentrations, thus eliminating
an important source of bias in comparing estimating
equations from different studies.

Our study also has limitations. The reference tests,
mClUN and mClUN-cr, reflect only small-solute clearances
and may differ from measured GFR. However, standard-
ized methods for assessing other measures of residual
kidney function have not been defined, and few studies of
residual kidney function have included measurement of
exogenous filtration markers for assessment of GFR. As
mentioned, urine collection was not supervised in both
cohorts; therefore, errors in urine collection cannot be
excluded. Modalities other than CAPD and low-flux HD
were not frequently used in NECOSAD, so our results
apply primarily to these modalities. We did not adjust for
clinical conditions that could affect non-GFR determinants
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such as inflammation. This could have had an impact on
equation performance. Finally, we did not have longitu-
dinal data to evaluate the performance of the equations in
detecting change in mCl.

In conclusion, we present equations developed in a
Chinese PD cohort to estimate residual kidney function
from serum concentrations of LMWPs without urine
collection in both European HD and PD patients. These
findings confirm the findings of Shafi et al10 and may have
clinical implications for routine care for dialysis patients.
Studies in other cohorts are necessary to compare the ac-
curacy and clinical utility of these equations. In addition,
future research should evaluate these equations to assess
other measures of residual kidney function.
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