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Abstract: Stability analysis in physical human-robot interaction requires consideration of
human feedback behavior. In unpredictable scenarios, where voluntary cognitive feedback is
too slow to guarantee desired task execution, the central nervous system relies on intrinsic and
involuntary reflexive feedback. In this work, we present a method for the estimation of the
combined effects of intrinsic and involuntary reflexive feedback in multi-joint arm movements,
termed involuntary impedance. We apply external force perturbations that are specifically
designed to evoke feedback jerk, which can be isolated by application of a high pass filter, and
limit the duration of the estimation interval to guarantee the exclusion of voluntary feedback.
The isolation of the feedback behavior is validated in simulation and the estimation of the
involuntary impedance components is evaluated in an experiment with human participants.
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1. INTRODUCTION

Technological advancements in the area of cyber-physical
and human systems are enabling robotic assistance through
physical human-robot interaction (pHRI). Possible areas
of application include, but are not limited to, industrial,
domestic, and medical domains. During pHRI, unstable
interaction behavior must be avoided to guarantee safety
and comfort of the human. Therefore, it is necessary to
incorporate human behavior in the control design process.

During execution of a desired motor task, joint torques
produced by the neuromuscular system are composed of a
feedforward and a feedback component (Tee et al., 2004).
The feedback component counteracts deviations due to
unpredictable dynamics, which may be caused by external
perturbations (Gomi and Kawato, 1997), incorrect internal
models (Franklin and Wolpert, 2011), and neural noise
(Slifkin and Newell, 1999). It consists of effects of intrinsic
viscoelastic properties, involuntary reflexes, and voluntary
cognitive feedback (Gomi and Osu, 1998). As voluntary
cognitive feedback possesses the longest delays, it may
be insufficient to guarantee desired task execution in
unpredictable scenarios (Franklin and Wolpert, 2011).
In such situations, the central nervous system (CNS) must
rely on intrinsic and involuntary reflexive feedback.

These two feedback components can be modeled by the
mechanical impedance components damping and stiffness
(Dolan et al., 1993). Due to the length- and velocity-
tension relationships of muscle fibers, both depend on joint
angles, angular velocities, and muscle activations (Mussa-
Ivaldi et al., 1985). The dependency on muscle activations
enables a priori cognitive modulation by the CNS (Darainy
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et al., 2007). The analysis of such cognitive modulation
strategies in experiments that emulate realistic pHRI may
provide valuable insights for the control design process.
However, it first requires an estimation method, which is
compatible with the limited interval, in which only the
intrinsic and involuntary reflexive feedback are active, and
which is applicable to tasks that emulate pHRI.

Gomi and Kawato (1997) perform impedance estimation
in multi-joint arm movements by application of external
force perturbations and least squares estimation in a
280 ms interval. A similar method is used by Erden and
Billard (2015) to estimate impedance in a 250 ms interval
during manual welding with a robot. Burdet et al. (2000)
use position perturbations with constant deviations to
exclusively estimate stiffness in a 60 ms interval that starts
120 ms after perturbation onset. A similar method is
used by Darainy et al. (2007) to estimate stiffness in a
50 ms interval that starts 250 ms after perturbation onset.
Piovesan et al. (2013) use a time-frequency analysis that is
only applicable to free, unfettered movements to estimate
impedance 135 ms after perturbation onset. In summary,
to the best of the author’s knowledge, previous methods
either exclusively estimate stiffness, do not guarantee
exclusion of voluntary feedback, or are confined to free,
unfettered movements that are unable to emulate pHRI.

In this work, we present a method for the estimation of
the combined effects of intrinsic and involuntary reflexive
feedback in multi-joint arm movements, which we term
involuntary impedance. External force perturbations are
applied to evoke deviations during two-dimensional point
to point arm movements. These force perturbations are
designed such that the jerk frequency content of the
evoked feedback behavior lies outside the jerk frequency
content of the unperturbed movements. Consequently,
the feedback behavior can be isolated by application of
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a high pass filter to the jerk of the perturbed movement.
We limit the duration of the estimation interval in order
to guarantee the exclusion of voluntary feedback and
estimate the involuntary impedance components by least
squares analysis. The isolation of the feedback behavior is
validated with a simulated model of the human arm and
the estimation of the involuntary impedance components
is evaluated in an experiment with human participants.

The remainder of this paper is structured as follows:
Section 2 contains the formulation of the involuntary
impedance estimation problem. The proposed method is
introduced in Section 3. The isolation of the feedback
behavior is validated with simulated data in Section 4 and
the estimation of the involuntary impedance components
is evaluated with experimental data in Section 5.

2. PROBLEM SETTING

We model the human arm as a two-link system that is
constrained to movement in the horizontal plane:

τ int = Mq(q)q̈ + C(q, q̇)− τ ext , (1)

where q is the 2 degree of freedom (DoF) arm configuration
in joint space, Mq is the inertia matrix, C represents the
Coriolis and centrifugal forces, τ int are internal torques
and τ ext are external torques (Gomi and Kawato, 1997).

The internal torques τ int are produced by the muscle
tensions m, which depend on the muscle lengths λ, the
respective derivatives λ̇, and the muscle activations a:

τ int = Jm(λ)Tm(λ, λ̇,a) . (2)

The muscle tensions m are transformed to joint space by
the muscle Jacobian Jm(λ), which contains the muscle
length λ dependent muscle moment arms.

During motor task execution, the muscle activations a
consist of a feedforward term aFF, a feedback term aFB,
and a neural noise term aN (Franklin et al., 2008):

a = aFF + aFB + aN . (3)

The feedback muscle activations aFB consist of multiple
components produced at different delays after the onset of
unpredictable dynamics (Franklin and Wolpert, 2011):

aFB =







0 ∀ ∆t ∈ [0, δr]

aFB,r(λ, λ̇) ∀ ∆t ∈ ]δr, δv]

aFB,r(λ, λ̇) + aFB,v(θ) ∀ ∆t > δv

, (4)

where aFB,r and aFB,v represent reflexive and voluntary
feedback muscle activations, δr and δv are the associated
delays, and ∆t = t − t0 is the time after the onset of the
unpredictable dynamics at t = t0. In the interval ]δr, δv],
there are only reflexive feedback muscle activations aFB,r,
which are affected by neural conduction delays. The fastest
reflexive feedback is the short-latency stretch reflex with
a delay δr,s in the order of 10 − 40 ms (Matthews, 1991).
As cognitive feedback adaptation is not yet possible in this
interval, the reflexive feedback muscle activations aFB,r

only depend on the muscle lengths λ and the respec-
tive derivatives λ̇. For ∆t > δv, there are also voluntary
feedback muscle activations aFB,v, which depend on task-
specific input parameters θ (Todorov and Jordan, 2002).
Feedback of sensory information to the CNS is subject to
neural conduction and receptor dynamics delays. In case of
proprioceptive sensory information for motion perception,

these delays are in the order of 100 ms. The conduction
delay of a descending motor command to the arm muscles
is approximately 15 ms (Merton and Morton, 1980). Thus,
the minimum delay δv is in the order of 115 ms.

Analogous to the muscle activations a, the internal torques
τ int are composed of a feedforward term τFF, a feedback
term τFB, and a neural noise term τN (Tee et al., 2004):

τ int = τFF + τFB + τN . (5)

The feedback term τFB is composed of restoring torques
towards the desired behavior (Lakatos et al., 2011):

τFB =







τFB,i ∀ ∆t ∈ [0, δr]

τFB,i + τFB,r ∀ ∆t ∈ ]δr, δv]

τFB,i + τFB,r + τFB,v ∀ ∆t > δv

, (6)

where τFB,i, τFB,r, and τFB,v are intrinsic, reflexive, and
voluntary feedback torques, respectively (Tee et al., 2004).

In this work, in order to guarantee the exclusion of
voluntary feedback torques τFB,v, we limit the duration of
the impedance estimation interval Test. According to (4),
the voluntary feedback muscle activations aFB,v depend
on the task-specific input parameters θ. Because of the
goal-directed nature of the point to point movements,
it is assumed that these parameters are predominantly
determined by the joint angles q. Due to the design of the
perturbation, the onset of the perturbation is followed by
an interval of duration Tdev, in which the evoked feedback
behavior does not yet possess noticeable deviations. Thus,
in this work, the delay of the voluntary feedback muscle
activations aFB,v is assumed δv,dev = δv + Tdev and the
duration of the estimation interval Test = δv,dev. Due to
the various delays δr of the reflexive feedback torques τFB,r

and the short duration of the interval, in which only the
intrinsic feedback torques τFB,i are active, differentiation
of the respective contributions is difficult (Tee et al., 2004).
Therefore, we summarize the effects of both terms in the
involuntary feedback term

τFB =

�

τFB,i ∀ ∆t ∈ [0, δr]

τFB,i + τFB,r ∀ ∆t ∈ ]δr, Test]
. (7)

This approach is common to impedance estimation studies
and similarly applied to significantly longer estimation
intervals than the one in this work (Gomi and Kawato,
1997; Burdet et al., 2000; Erden and Billard, 2015).

For small deviations, the feedback behavior evoked by the
force perturbations can be described by a linearized model.
As deviations in our work are in line with those in existing
studies (Dolan et al., 1993; Burdet et al., 2000; Darainy
et al., 2007), we are able to derive a linearized model
by first order Taylor series expansion of (1) about the
unperturbed states q∗, q̇∗, q̈∗, τ ∗

int, and τ ∗

ext:

∆τ int =
∂τ int

∂q̈
∆q̈ +

∂τ int

∂q̇
∆q̇ +

∂τ int

∂q
∆q +

∂τ int

∂τ ext

∆τ ext ,

(8)

where all variational variables indicated by a ∆ symbol
represent the deviations from the unperturbed states, e.g.,
∆q = q∗ − q. Inserting (1) into (8) yields

∆τ int = Mq(q)∆q̈ +
∂C(q, q̇)

∂q̇
∆q̇

+

�

∂Mq(q)

∂q
q̈ +

∂C(q, q̇)

∂q

�

∆q −∆τ ext . (9)
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a high pass filter to the jerk of the perturbed movement.
We limit the duration of the estimation interval in order
to guarantee the exclusion of voluntary feedback and
estimate the involuntary impedance components by least
squares analysis. The isolation of the feedback behavior is
validated with a simulated model of the human arm and
the estimation of the involuntary impedance components
is evaluated in an experiment with human participants.

The remainder of this paper is structured as follows:
Section 2 contains the formulation of the involuntary
impedance estimation problem. The proposed method is
introduced in Section 3. The isolation of the feedback
behavior is validated with simulated data in Section 4 and
the estimation of the involuntary impedance components
is evaluated with experimental data in Section 5.

2. PROBLEM SETTING

We model the human arm as a two-link system that is
constrained to movement in the horizontal plane:

τ int = Mq(q)q̈ + C(q, q̇)− τ ext , (1)

where q is the 2 degree of freedom (DoF) arm configuration
in joint space, Mq is the inertia matrix, C represents the
Coriolis and centrifugal forces, τ int are internal torques
and τ ext are external torques (Gomi and Kawato, 1997).

The internal torques τ int are produced by the muscle
tensions m, which depend on the muscle lengths λ, the
respective derivatives λ̇, and the muscle activations a:

τ int = Jm(λ)Tm(λ, λ̇,a) . (2)

The muscle tensions m are transformed to joint space by
the muscle Jacobian Jm(λ), which contains the muscle
length λ dependent muscle moment arms.

During motor task execution, the muscle activations a
consist of a feedforward term aFF, a feedback term aFB,
and a neural noise term aN (Franklin et al., 2008):

a = aFF + aFB + aN . (3)

The feedback muscle activations aFB consist of multiple
components produced at different delays after the onset of
unpredictable dynamics (Franklin and Wolpert, 2011):

aFB =







0 ∀ ∆t ∈ [0, δr]

aFB,r(λ, λ̇) ∀ ∆t ∈ ]δr, δv]

aFB,r(λ, λ̇) + aFB,v(θ) ∀ ∆t > δv

, (4)

where aFB,r and aFB,v represent reflexive and voluntary
feedback muscle activations, δr and δv are the associated
delays, and ∆t = t − t0 is the time after the onset of the
unpredictable dynamics at t = t0. In the interval ]δr, δv],
there are only reflexive feedback muscle activations aFB,r,
which are affected by neural conduction delays. The fastest
reflexive feedback is the short-latency stretch reflex with
a delay δr,s in the order of 10 − 40 ms (Matthews, 1991).
As cognitive feedback adaptation is not yet possible in this
interval, the reflexive feedback muscle activations aFB,r

only depend on the muscle lengths λ and the respec-
tive derivatives λ̇. For ∆t > δv, there are also voluntary
feedback muscle activations aFB,v, which depend on task-
specific input parameters θ (Todorov and Jordan, 2002).
Feedback of sensory information to the CNS is subject to
neural conduction and receptor dynamics delays. In case of
proprioceptive sensory information for motion perception,

these delays are in the order of 100 ms. The conduction
delay of a descending motor command to the arm muscles
is approximately 15 ms (Merton and Morton, 1980). Thus,
the minimum delay δv is in the order of 115 ms.

Analogous to the muscle activations a, the internal torques
τ int are composed of a feedforward term τFF, a feedback
term τFB, and a neural noise term τN (Tee et al., 2004):

τ int = τFF + τFB + τN . (5)

The feedback term τFB is composed of restoring torques
towards the desired behavior (Lakatos et al., 2011):

τFB =







τFB,i ∀ ∆t ∈ [0, δr]

τFB,i + τFB,r ∀ ∆t ∈ ]δr, δv]

τFB,i + τFB,r + τFB,v ∀ ∆t > δv

, (6)

where τFB,i, τFB,r, and τFB,v are intrinsic, reflexive, and
voluntary feedback torques, respectively (Tee et al., 2004).

In this work, in order to guarantee the exclusion of
voluntary feedback torques τFB,v, we limit the duration of
the impedance estimation interval Test. According to (4),
the voluntary feedback muscle activations aFB,v depend
on the task-specific input parameters θ. Because of the
goal-directed nature of the point to point movements,
it is assumed that these parameters are predominantly
determined by the joint angles q. Due to the design of the
perturbation, the onset of the perturbation is followed by
an interval of duration Tdev, in which the evoked feedback
behavior does not yet possess noticeable deviations. Thus,
in this work, the delay of the voluntary feedback muscle
activations aFB,v is assumed δv,dev = δv + Tdev and the
duration of the estimation interval Test = δv,dev. Due to
the various delays δr of the reflexive feedback torques τFB,r

and the short duration of the interval, in which only the
intrinsic feedback torques τFB,i are active, differentiation
of the respective contributions is difficult (Tee et al., 2004).
Therefore, we summarize the effects of both terms in the
involuntary feedback term

τFB =

�

τFB,i ∀ ∆t ∈ [0, δr]

τFB,i + τFB,r ∀ ∆t ∈ ]δr, Test]
. (7)

This approach is common to impedance estimation studies
and similarly applied to significantly longer estimation
intervals than the one in this work (Gomi and Kawato,
1997; Burdet et al., 2000; Erden and Billard, 2015).

For small deviations, the feedback behavior evoked by the
force perturbations can be described by a linearized model.
As deviations in our work are in line with those in existing
studies (Dolan et al., 1993; Burdet et al., 2000; Darainy
et al., 2007), we are able to derive a linearized model
by first order Taylor series expansion of (1) about the
unperturbed states q∗, q̇∗, q̈∗, τ ∗

int, and τ ∗

ext:

∆τ int =
∂τ int

∂q̈
∆q̈ +

∂τ int

∂q̇
∆q̇ +

∂τ int

∂q
∆q +

∂τ int

∂τ ext

∆τ ext ,

(8)

where all variational variables indicated by a ∆ symbol
represent the deviations from the unperturbed states, e.g.,
∆q = q∗ − q. Inserting (1) into (8) yields

∆τ int = Mq(q)∆q̈ +
∂C(q, q̇)

∂q̇
∆q̇

+

�

∂Mq(q)

∂q
q̈ +

∂C(q, q̇)

∂q

�

∆q −∆τ ext . (9)
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According to (2), the variational internal torques ∆τ int

depend on λ, λ̇, and a. Due to the limited duration of the
estimation interval Test, the variational muscle activations
∆a = a∗ −a can only consist of reflexive feedback muscle
activations aFB,r. With ∆a = f(λ, λ̇) and λ = Jm(λ)q,
first order Taylor series expansion of (5) yields

∆τ int = −Dq(q, q̇,a)∆q̇ −Kq(q, q̇,a)∆q (10)

with joint damping Dq and stiffness Kq defined as

Dq(q, q̇,a) = −
dτFB

dq̇
, Kq(q, q̇,a) = −

dτFB

dq
. (11)

Due to inclusion of the reflexive feedback torques τFB,r,
according to the terminology established in Latash and
Zatsiorsky (1993), the matrices in (11) represent apparent
impedance components. In this work, in order to highlight
the exclusion of the voluntary feedback torques τFB,v,
we refer to them as involuntary impedance components.
For simplicity, we refer to the individual matrices Dq and
Kq as joint damping and stiffness instead of involuntary
joint damping and stiffness. Combining (9) and (10) yields

∆τ ext = Mq(q)∆q̈ +

�

∂C(q, q̇)

∂q̇
+Dq(q, q̇,a)

�

∆q̇

+

�

∂Mq(q)

∂q
q̈ +

∂C(q, q̇)

∂q
+Kq(q, q̇,a)

�

∆q . (12)

The elements of the partial derivative term that includes
the inertia Mq are O(q̈ sin q) and the elements of the
Coriolis and centrifugal forces C are O(q̇2) (Gomi and
Kawato, 1997). Considering the limited duration of the
estimation interval Test, we assume that the contributions
of the terms are negligible compared to those of the joint
damping Dq and the joint stiffness Kq (Dolan et al., 1993).
Inserting these assumptions into (12) yields

∆τ ext = Mq(q)∆q̈ +Dq(q, q̇,a)∆q̇ +Kq(q, q̇,a)∆q .
(13)

In order to facilitate transfer to pHRI and applicability to
our apparatus, we express (13) in Cartesian space:

∆uext = M(x)∆ẍ+D(x, ẋ,a)∆ẋ+K(x, ẋ,a)∆x (14)

∆uext = J−T(q)∆τ ext , (15)

M(x) = J−T(q)Mq(q)J
−1(q) , (16)

D(x, ẋ,a) = J−T(q)Dq(q, q̇,a)J
−1(q) , (17)

K(x, ẋ,a) = J−T(q)Kq(q, q̇,a)J
−1(q) , (18)

where x is the arm endpoint configuration, uext are the
external endpoint forces, M , D, and K are the endpoint
inertia, damping, and stiffness, and J(q) is the Jacobian.
As the endpoint inertia M describes the relationship
between an external force acting on the arm endpoint
and the resulting acceleration, it is an apparent inertia.
For simplicity, in this work, we refer to it as inertia.

The considered problem consists of the estimation of the
involuntary impedance components M , D, and K in a
limited estimation interval [0, Test]. This is to be achieved
given the perturbed observations {x, ẋ, ẍ, uext}, which are
evoked by force perturbations, and requires the estimation
of the variational dynamics ∆x, ∆ẋ, ∆ẍ, and ∆uext.

3. INVOLUNTARY IMPEDANCE ESTIMATION

This section presents the successive steps necessary for the
estimation of the involuntary impedance components.

3.1 Variational dynamics

According to the minimum jerk principle (Flash and
Hogan, 1985), the CNS optimizes the endpoint trajectory
of the arm in a point to point movement by minimization
of the total endpoint jerk. In this work, we capitalize on
the effects of the minimum jerk principle by designing the
perturbation jerk in such a way that the jerk frequency
content of the evoked feedback behavior lies outside the
jerk frequency content of the unperturbed movements.
Thus, we are able to estimate the feedback behavior
in the form of the variational jerk ∆

...
x by applying an

appropriately configured high pass filter to the jerk of
the perturbed movements. In order to achieve maximum
flatness of the pass band, i.e., minimum attenuation of the
variational jerk ∆

...
x , we use a Butterworth high pass filter.

The cut-off frequency fc,HP is defined in accordance with
the frequency content of the jerk of the unperturbed and
perturbed movements. The filter is applied bi-directionally
to guarantee zero phase distortion. The high pass filtered
jerk

...
xHP provides the estimated variational jerk ∆

...
x̂ and

the estimated variational kinematics ∆¨̂x, ∆ ˙̂x, and ∆x̂ are
obtained by integration. Due to the limited duration of
the estimation interval Test, high estimation accuracy is
achieved despite integration drift effects.

As the apparatus in our experiments is controlled by
an admittance control scheme, the estimated variational
external forces ∆ûext can be calculated with

uext = upert − (uadm +Mhandleẍ) , (19)

uadm = Madmẍ+Dadmẋ , (20)

where upert is the perturbation force and uadm is the
force applied to the admittance. The matrix Mhandle is the
handle inertia, and the matrices Madm and Dadm are the
admittance inertia and damping. Inserting (20) into (19)
yields the estimated variational external forces

∆ûext = upert − (Madm +Mhandle)∆¨̂x−Dadm∆˙̂x , (21)

which complete the necessary variational dynamics for the
estimation of the involuntary impedance components.

3.2 Perturbation design

The perturbation jerk must be designed in such a way
that it meets two essential requirements. Its frequency
content must lie outside the frequency content of the jerk
of the unperturbed movements and it must be smooth
enough to guarantee minimal distortion due to kinesthetic
rendering and data processing. In order to fulfill these
requirements, we divide the duration of the perturbation
Tpert into three equally long sections, each of duration
Tp = Tpert/3 and design the normalized perturbation jerk
u̇p through concatenation of multiple sinusoidal functions:

u̇p =































1

2
sin

��

tp,1
Tp

+
3

2

�

π

�

+
1

2
∀ tp,1 ∈ [0, Tp]

sin

�

(
tp,2
Tp

+
1

2
)π

�

∀ tp,2 ∈ ]0, Tp]

1

2
sin

��

tp,3
Tp

+
3

2

�

π

�

−
1

2
∀ tp,3 ∈ ]0, Tp]

, (22)

in which tp,1 = t− t0, tp,2 = tp,1−Tp, and tp,3 = tp,2−Tp.
Fig. 1 presents the normalized perturbation jerk u̇p and
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Fig. 1. Normalized perturbation jerk u̇p and force up.

the integrated normalized perturbation force up, which is
scaled in order to obtain the perturbation force

upert = Apertup[cosφpert, sinφpert]
T , (23)

where Apert and φpert are the amplitude and angle.

3.3 Involuntary impedance components

The involuntary impedance components M , D, and K
depend on x, ẋ, and a. In this work, due to the limited
duration of the estimation interval Test, we assume that
they are constant for ∆t ∈ [0, Test] and approximate them
by the involuntary impedance parameters M , D, and K.
This approach is common to impedance estimation studies
and similarly applied to significantly longer estimation
intervals than the one in this work (Gomi and Kawato,
1997; Lakatos et al., 2011; Erden and Billard, 2015).
Concatenation of the elements of M , D, and K in the
vector of unknown parameters

ζ =
[

M11,M12,M21,M22, D11, D12,

D21, D22, K11, K12, K21, K22

]T
(24)

allows expression of (14) by the identification model

Aζ = b , (25)

where A is the observation matrix and b is the output
vector. For an estimation interval of N samples

A =
[

XT(1), XT(2), . . . , XT(N)
]T

, (26)

b =
[

∆û
T
ext(1),∆û

T
ext(2), . . . ,∆û

T
ext(N)

]T

, (27)

and the matrix of independent variables

X =
∂(M∆¨̂x+D∆˙̂x+K∆x̂)

∂ζ
. (28)

Considering (25) - (28), the estimated vector of unknown

parameters ζ̂ is given by the least squares solution

ζ̂ = (ATA)−1ATb . (29)

Due to the limited duration of the estimation interval Test,
which implies a limited duration of the perturbation Tpert,
the perturbation does not possess sufficient richness of
frequency components to guarantee persistent excitation
(Söderström and Stoica, 1989). A common approach for
the compensation of the consequences of a non-persistent
excitation is the a priori estimation of the body segment
parameters (BSPs) (Gomi and Kawato, 1997; Darainy
et al., 2007; Lakatos et al., 2011), which only marginally
influences the accuracy of the estimation of the impedance
parameters (Gomi and Osu, 1998). A comparison of nine
different methods for the estimation of BSPs is presented

in Piovesan et al. (2013). As such a comparison exceeds the
scope of this work, we use realistic anthropometric data
(Franklin et al., 2007) and inverse dynamics to a priori

calculate the estimated inertia M̂BSP.

The intrinsic feedback behavior of the endpoint of the
arm possesses spring-like characteristics due to the elastic
properties of the individual muscles. Thus, the intrinsic
feedback forces possess zero curl and the intrinsic stiffness
is symmetric (Shadmehr and Arbib, 1992). The reflexive
feedback forces may possess non-zero curl components,
which can only be caused by heteronymous inter-muscular
reflex arcs (Hogan, 1985). As the resulting antisymmetric
stiffness components are significantly smaller than the
symmetric components, the reflexive feedback behavior
still possesses predominantly spring-like characteristics
(Mussa-Ivaldi et al., 1985). As the estimation intervals in
these studies are significantly longer than the one in this
work, we assume that the stiffness K for ∆t ∈ [0, Test] is

symmetric. With the estimated inertia M̂BSP, the vector
of the unknown parameters ζ reduces to

ζ =
[

D11, D12, D21, D22, K11, K12, K22

]T
, (30)

the matrix of independent variables X reduces to

X =
∂(D∆˙̂x+K∆x̂)

∂ζ
, (31)

and the elements of the output vector bi are

bi = ∆ûext − M̂BSP∆¨̂x, i = 1, 2, . . . , N . (32)

Inclusion in (29) provides the estimated damping D̂ and

stiffness K̂, which, in combination with the inertia M̂BSP,
constitute the involuntary impedance parameters.

4. SIMULATION

We validate the isolation of the feedback behavior with
a simulated, neuromechanical model of the human arm
(Franklin et al., 2007). We use this model in order to
enable comparability with existing studies, in which its
plausibility has been demonstrated (Franklin et al., 2008).
It simulates two-dimensional, transversal movement of a
two-link, six-muscle arm through calculation of muscle
activities and resulting muscle tensions. By simulating
each movement twice, once as an unperturbed and once
as a perturbed movement, we are able to use it to validate
the estimation of the variational dynamics.

4.1 Human arm model

The dynamics of the model are given by (1) and (2) and
the muscle tensions m are composed of two terms:

m = mA +mIMP , (33)

where mA and mIMP represent the muscle tensions due to
the muscle activations a and the mechanical impedance.
The former are assumed to be identical to the motor
commands, i.e., the muscle activations a, as defined in (3).
The muscle tensions due to the mechanical impedance

mIMP = Dmėm +Kmem (34)

with

Dm = Km/12 , Km = K0 +K1a , (35)

where Dm, Km, and em represent damping, stiffness, and
tracking errors with respect to the desired trajectory qd
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the integrated normalized perturbation force up, which is
scaled in order to obtain the perturbation force

upert = Apertup[cosφpert, sinφpert]
T , (23)

where Apert and φpert are the amplitude and angle.

3.3 Involuntary impedance components

The involuntary impedance components M , D, and K
depend on x, ẋ, and a. In this work, due to the limited
duration of the estimation interval Test, we assume that
they are constant for ∆t ∈ [0, Test] and approximate them
by the involuntary impedance parameters M , D, and K.
This approach is common to impedance estimation studies
and similarly applied to significantly longer estimation
intervals than the one in this work (Gomi and Kawato,
1997; Lakatos et al., 2011; Erden and Billard, 2015).
Concatenation of the elements of M , D, and K in the
vector of unknown parameters

ζ =
[

M11,M12,M21,M22, D11, D12,

D21, D22,K11,K12,K21,K22

]T
(24)

allows expression of (14) by the identification model

Aζ = b , (25)

where A is the observation matrix and b is the output
vector. For an estimation interval of N samples

A =
[

XT(1), XT(2), . . . , XT(N)
]T

, (26)

b =
[

∆û
T
ext(1),∆û

T
ext(2), . . . ,∆û

T
ext(N)

]T

, (27)

and the matrix of independent variables

X =
∂(M∆¨̂x+D∆˙̂x+K∆x̂)

∂ζ
. (28)

Considering (25) - (28), the estimated vector of unknown

parameters ζ̂ is given by the least squares solution

ζ̂ = (ATA)−1ATb . (29)

Due to the limited duration of the estimation interval Test,
which implies a limited duration of the perturbation Tpert,
the perturbation does not possess sufficient richness of
frequency components to guarantee persistent excitation
(Söderström and Stoica, 1989). A common approach for
the compensation of the consequences of a non-persistent
excitation is the a priori estimation of the body segment
parameters (BSPs) (Gomi and Kawato, 1997; Darainy
et al., 2007; Lakatos et al., 2011), which only marginally
influences the accuracy of the estimation of the impedance
parameters (Gomi and Osu, 1998). A comparison of nine
different methods for the estimation of BSPs is presented

in Piovesan et al. (2013). As such a comparison exceeds the
scope of this work, we use realistic anthropometric data
(Franklin et al., 2007) and inverse dynamics to a priori

calculate the estimated inertia M̂BSP.

The intrinsic feedback behavior of the endpoint of the
arm possesses spring-like characteristics due to the elastic
properties of the individual muscles. Thus, the intrinsic
feedback forces possess zero curl and the intrinsic stiffness
is symmetric (Shadmehr and Arbib, 1992). The reflexive
feedback forces may possess non-zero curl components,
which can only be caused by heteronymous inter-muscular
reflex arcs (Hogan, 1985). As the resulting antisymmetric
stiffness components are significantly smaller than the
symmetric components, the reflexive feedback behavior
still possesses predominantly spring-like characteristics
(Mussa-Ivaldi et al., 1985). As the estimation intervals in
these studies are significantly longer than the one in this
work, we assume that the stiffness K for ∆t ∈ [0, Test] is

symmetric. With the estimated inertia M̂BSP, the vector
of the unknown parameters ζ reduces to

ζ =
[

D11, D12, D21, D22,K11,K12,K22

]T
, (30)

the matrix of independent variables X reduces to

X =
∂(D∆˙̂x+K∆x̂)

∂ζ
, (31)

and the elements of the output vector bi are

bi = ∆ûext − M̂BSP∆¨̂x, i = 1, 2, . . . , N . (32)

Inclusion in (29) provides the estimated damping D̂ and

stiffness K̂, which, in combination with the inertia M̂BSP,
constitute the involuntary impedance parameters.

4. SIMULATION

We validate the isolation of the feedback behavior with
a simulated, neuromechanical model of the human arm
(Franklin et al., 2007). We use this model in order to
enable comparability with existing studies, in which its
plausibility has been demonstrated (Franklin et al., 2008).
It simulates two-dimensional, transversal movement of a
two-link, six-muscle arm through calculation of muscle
activities and resulting muscle tensions. By simulating
each movement twice, once as an unperturbed and once
as a perturbed movement, we are able to use it to validate
the estimation of the variational dynamics.

4.1 Human arm model

The dynamics of the model are given by (1) and (2) and
the muscle tensions m are composed of two terms:

m = mA +mIMP , (33)

where mA and mIMP represent the muscle tensions due to
the muscle activations a and the mechanical impedance.
The former are assumed to be identical to the motor
commands, i.e., the muscle activations a, as defined in (3).
The muscle tensions due to the mechanical impedance

mIMP = Dmėm +Kmem (34)

with

Dm = Km/12 , Km = K0 +K1a , (35)

where Dm, Km, and em represent damping, stiffness, and
tracking errors with respect to the desired trajectory qd

IFAC CPHS 2018
Miami, FL, USA, Dec. 14-15, 2018

231



224	 Hendrik Börner  et al. / IFAC PapersOnLine 51-34 (2019) 220–226

replacements
goal

[0, 0.55m]

start
[0, 0.30m]

hand

elbow

shoulder
x1

x2

l1

l2

Fig. 2. Schematic of simulated point to point movements.

at muscle level and the matrices K0 and K1 contain
constant intrinsic stiffness parameters. The feedforward
muscle activations aFF are calculated with the inverse
kinematics and dynamics of a positional data set of 50
two-dimensional point to point arm movements, provided
by the authors of Franklin et al. (2007). The hand is
moved along the sagittal axis from xstart = [0, 0.30]Tm to
xgoal = [0, 0.55]Tm, as illustrated in Fig. 2. The feedback
muscle activations aFB are modeled by Proportional-
Derivative (PD) control that depends on the tracking
errors em, the respective derivatives ėm and a constant
feedback delay δs = 60 ms. The signal-dependent noise aN

is modeled by zero mean Brownian motion.

4.2 Simulation design

For conformity with the behavior observed during our
experiment, we set the duration of the movements to 3 s
and resample the provided positional data set accordingly.
The simulated manipulandum inertia and damping are set
according to the admittance inertia Madm = diag{5, 5} kg
and dampingDadm = diag{15, 15}Ns/m of our apparatus.
The duration of the perturbation Tpert is set to 150 ms.
The perturbation is initiated as soon as the hand reaches
x2 = 0.4 m, which equals a distance of 0.1 m along the axis
of the principal movement (see Fig. 2). The perturbation
amplitude Apert is set to 15 N . Due to the admittance
inertia Madm and damping Dadm, the limited duration of
the estimation interval Test, and the perturbation design,
this evokes maximum deviations within the estimation
interval [0, Test] (reported in mean (std dev): 6.1 (1.8) mm
along x1-axis, 5.9 (1.7) mm along x2-axis) that are in line
with those applied in existing studies (Dolan et al., 1993;
Burdet et al., 2000; Darainy et al., 2007). In order to avoid
small deviations due to perturbations parallel to the axes
of the coordinate system, the perturbation angles φpert are
defined as Φpert = {30, 60, 120, 150, 210, 240, 300, 330} deg.
Each angle φpert is executed 10 times, which results in a
total of 80 individual trials, of which each is composed of
an unperturbed and a perturbed version of the movement.
For conformity with the experiment, the simulated signals
are filtered using a fifth order Savitzky-Golay filter with a
cut-off frequency of fc,SG = 30 Hz.

4.3 Validation of variational dynamics

In order to determine the cut-off frequency fc,HP of the
Butterworth high pass filter, we apply Welch’s method to
calculate the power spectral density estimates (PSDEs) of
the jerk

...
x of the unperturbed and perturbed movements.
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2
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Fig. 3. PSDEs of the principal movement axis jerk
...
x 2.

We use this approximation technique in order to allow
for analogous application to the data of the experiment.
As the unperturbed movements along the lateral axis
are negligible compared to those along the sagittal axis,
i.e., the axis of the principal movement, we focus on the
respective jerk

...
x 2. The mean PSDE results are presented

in Fig. 3. The unperturbed PSDE reaches its spectral peak
at 0.6385 Hz and then decreases rapidly. The perturbed
PSDE possesses almost identical values below a frequency
of approximately 1 Hz. Above this frequency, the PSDEs
diverge and its values are significantly larger than those
of the unperturbed PSDE. Thus, the frequency content
of the jerk of the evoked feedback behavior lies almost
completely above 1 Hz. Furthermore, as the unperturbed
PSDE has already passed its spectral peak and decreased
to −2.913 dB at this frequency, the contributions of the
jerk of the unperturbed movement above this frequency
are marginal. Therefore, we set the cut-off frequency fc,HP

of the high pass filter to 1 Hz and apply it to the jerk of the
perturbed movement to obtain the estimated variational
jerk ∆

...
x̂ . In order to achieve maximum attenuation for the

stop band of the high pass filter, we set the order of the
high pass filter to the highest possible value nHP = 5.

The accuracy of the estimated variational dynamics ∆x̂,
∆ ˙̂x, ∆¨̂x, and ∆ûext is assessed with the normalized root
mean square errors (NRMSEs), which are calculated with
the difference of the estimated and the simulated values.
The difference is normalized with the largest value of the
respective variable in the estimation interval of interest,
which is defined by ∆t ∈ [0, 150 ms] for this validation.
The results in Fig. 4 show that the NRMSEs all increase
for increasing ∆t. Nonetheless, the maximum values of
the estimated variational kinematics ∆x̂, ∆ ˙̂x, and ∆¨̂x are
below 7.5% (and in case of ∆x̂ and ∆¨̂x even below 5%).
The results in Fig. 4 also show that the NRMSE of
the estimated variational external forces ∆ûext increases
approximately twice as fast as all the other NRMSEs.
This is plausible, as its calculation in (19) is based on the

estimated variational accelerations ∆¨̂x and velocities ∆ ˙̂x.
Nonetheless, its maximum value at the end of the interval
is still below 15%. For the perturbed movements of the
simulated arm model, a 5% NRMSE in ∆x̂ approximately
corresponds to an error of 0.3 mm and a 15% NRMSE in
∆ûext approximately corresponds to an error of 0.4 N.

In the implementation of the simulated, neuromechanical
model of the human arm, there is no clear distinction
between reflexive and voluntary feedback. Instead, both
are combined in the feedback muscle activations aFB,
which possess a delay of δs = 60 ms. As this delay is much
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Fig. 4. NRMSEs of the estimated variational dynamics.

smaller than the duration of our estimation interval Test,
we cannot validate the estimated involuntary impedance

parameters M̂ , D̂, and K̂ with the simulated intrinsic
impedance components. Thus, we instead evaluate the
performance of this estimation with experimental data.

5. EXPERIMENT

In order to evaluate the applicability to experimental data,
we conduct an experiment with five human participants.
The estimation of the variational dynamics ∆x, ∆ẋ, ∆ẍ,
and ∆uext is performed analogously to the validation with
simulated data. In this section, we focus on the estimation
of the involuntary impedance parameters D and K.

5.1 Apparatus & data processing

The apparatus consists of two linear, orthogonally aligned
single rail stages (Copley Controls Thrusttube Module)
that span a 2-DoF workspace of ±0.15 m and each provide
position data with a precision of 1 µm. On top of the
cart of the upper module, a vertical handle with a 6-DoF
force-torque sensor (JR3-67M25 ) is mounted to measure
horizontal forces. Visual feedback is implemented with the
Psychophysics Toolbox (Brainard, 1997) and shown on a
computer screen mounted behind the apparatus.

Haptic interaction is enabled by the admittance control
scheme defined in (20), where Ma = diag{5, 5} kg and
Da = diag{15, 15} Ns/m. Precise rendering of the position
is ensured by a high gain PD controller, implemented
in Matlab/Simulink and executed on a Linux system
with a RT-preempt real-time kernel. The sample rate is
fs = 4 kHz and inputs to the Thrusttube Modules are
downsampled to 2 kHz to adhere to hardware limitations.
The signals are filtered using a fifth order Savitzky-Golay
filter with a cut-off frequency of fc,SG = 30 Hz.

5.2 Participants & experiment design

A total of five male participants volunteered to take part
in this experiment. All participants were right handed and
had normal or corrected-to-normal vision. The age of the
participants in mean (std dev) was 28.20 (1.79) years at
the time of the experiment. Informed written consent was
obtained from all participants before they took part in the
experiment. The research ethics were obtained from the
ethics committee at the Technical University of Munich.

The participants were seated in front of the apparatus
and instructed to grasp the handle with their right hand.

∆
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Fig. 5. Exemplary set of estimated variational dynamics.

Their arm was supported against gravity and restrained
to movements in the horizontal plane by a sling attached
to the ceiling. The goal of the point to point movement
was displayed on the screen behind the apparatus and
the current cart position was illustrated by a green dot.
The participants were instructed to complete 100 point
to point movements at their own pace. Each perturbation
angle φpert was executed three times. The order of the
perturbation angles was randomized and the 24 perturbed
trials were distributed randomly. The participants were
informed of the general existence of the perturbations and
were instructed to not react to them preemptively.

5.3 Evaluation of involuntary impedance parameters

Due to the design of the perturbation, specifically the
slow rise in acceleration, the onset of the perturbation
is followed by an interval of duration Tdev that does not
possess noticeable deviations. This effect can be observed
in the exemplary set of estimated variational dynamics
in Fig. 5. For an interval of duration Tdev = 35 ms, the
mean (std dev) deviations are 0.028 (0.012) mm along the
x1-axis and 0.030 (0.010) mm along the x2-axis. As these
values are negligibly small, in this work, the delay of the
voluntary feedback muscle activations aFB,v is assumed
δv,dev = δv + Tdev = 115 ms + 35 ms = 150 ms and the
duration of the estimation interval Test = δv,dev = 150 ms.

Table 1 contains the mean (std dev) results of the elements

of the estimated damping D̂ and the estimated stiffness K̂.
As the estimated inertia M̂BSP is calculated a priori based
on inverse kinematics and realistic anthropometric data
from the literature (Franklin et al., 2007), it is not listed.
In both of the estimated matrices, the diagonal elements
are positive and the non-diagonal elements are negative.
This is a result of the transformation from joint space to
Cartesian space via the Jacobian J(q). In the estimated

stiffness matrix K̂, the stiffness element K̂22 is significantly
larger than all of the remaining elements. This is a result
of the definition in (18), which contains both the endpoint
muscle stiffness as well as a geometric stiffness term that

Table 1. Estimation results in mean (std dev).

Damping D̂ [Ns/m] Stiffness K̂ [N/m]

10.98 (4.85) -7.94 (3.26) 110.52 (48.54) -106.05 (62.91)

-8.54 (4.16) 6.75 (4.27) -106.04 (62.91) 313.75 (77.46)
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∆ûext

Fig. 4. NRMSEs of the estimated variational dynamics.

smaller than the duration of our estimation interval Test,
we cannot validate the estimated involuntary impedance

parameters M̂ , D̂, and K̂ with the simulated intrinsic
impedance components. Thus, we instead evaluate the
performance of this estimation with experimental data.

5. EXPERIMENT

In order to evaluate the applicability to experimental data,
we conduct an experiment with five human participants.
The estimation of the variational dynamics ∆x, ∆ẋ, ∆ẍ,
and ∆uext is performed analogously to the validation with
simulated data. In this section, we focus on the estimation
of the involuntary impedance parameters D and K.

5.1 Apparatus & data processing

The apparatus consists of two linear, orthogonally aligned
single rail stages (Copley Controls Thrusttube Module)
that span a 2-DoF workspace of ±0.15 m and each provide
position data with a precision of 1 µm. On top of the
cart of the upper module, a vertical handle with a 6-DoF
force-torque sensor (JR3-67M25 ) is mounted to measure
horizontal forces. Visual feedback is implemented with the
Psychophysics Toolbox (Brainard, 1997) and shown on a
computer screen mounted behind the apparatus.

Haptic interaction is enabled by the admittance control
scheme defined in (20), where Ma = diag{5, 5} kg and
Da = diag{15, 15} Ns/m. Precise rendering of the position
is ensured by a high gain PD controller, implemented
in Matlab/Simulink and executed on a Linux system
with a RT-preempt real-time kernel. The sample rate is
fs = 4 kHz and inputs to the Thrusttube Modules are
downsampled to 2 kHz to adhere to hardware limitations.
The signals are filtered using a fifth order Savitzky-Golay
filter with a cut-off frequency of fc,SG = 30 Hz.

5.2 Participants & experiment design

A total of five male participants volunteered to take part
in this experiment. All participants were right handed and
had normal or corrected-to-normal vision. The age of the
participants in mean (std dev) was 28.20 (1.79) years at
the time of the experiment. Informed written consent was
obtained from all participants before they took part in the
experiment. The research ethics were obtained from the
ethics committee at the Technical University of Munich.

The participants were seated in front of the apparatus
and instructed to grasp the handle with their right hand.
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Their arm was supported against gravity and restrained
to movements in the horizontal plane by a sling attached
to the ceiling. The goal of the point to point movement
was displayed on the screen behind the apparatus and
the current cart position was illustrated by a green dot.
The participants were instructed to complete 100 point
to point movements at their own pace. Each perturbation
angle φpert was executed three times. The order of the
perturbation angles was randomized and the 24 perturbed
trials were distributed randomly. The participants were
informed of the general existence of the perturbations and
were instructed to not react to them preemptively.

5.3 Evaluation of involuntary impedance parameters

Due to the design of the perturbation, specifically the
slow rise in acceleration, the onset of the perturbation
is followed by an interval of duration Tdev that does not
possess noticeable deviations. This effect can be observed
in the exemplary set of estimated variational dynamics
in Fig. 5. For an interval of duration Tdev = 35 ms, the
mean (std dev) deviations are 0.028 (0.012) mm along the
x1-axis and 0.030 (0.010) mm along the x2-axis. As these
values are negligibly small, in this work, the delay of the
voluntary feedback muscle activations aFB,v is assumed
δv,dev = δv + Tdev = 115 ms + 35 ms = 150 ms and the
duration of the estimation interval Test = δv,dev = 150 ms.

Table 1 contains the mean (std dev) results of the elements

of the estimated damping D̂ and the estimated stiffness K̂.
As the estimated inertia M̂BSP is calculated a priori based
on inverse kinematics and realistic anthropometric data
from the literature (Franklin et al., 2007), it is not listed.
In both of the estimated matrices, the diagonal elements
are positive and the non-diagonal elements are negative.
This is a result of the transformation from joint space to
Cartesian space via the Jacobian J(q). In the estimated

stiffness matrix K̂, the stiffness element K̂22 is significantly
larger than all of the remaining elements. This is a result
of the definition in (18), which contains both the endpoint
muscle stiffness as well as a geometric stiffness term that

Table 1. Estimation results in mean (std dev).

Damping D̂ [Ns/m] Stiffness K̂ [N/m]

10.98 (4.85) -7.94 (3.26) 110.52 (48.54) -106.05 (62.91)

-8.54 (4.16) 6.75 (4.27) -106.04 (62.91) 313.75 (77.46)
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is defined by the internal torques. As the latter are much
larger along the axis of the principal movement, the same
applies to the respective estimated stiffness element.

The results in Table 1 are of the same order of magnitude
as those reported in similar studies (Tsuji et al., 1995;
Tanaka et al., 2003; Erden and Billard, 2015). In all
three of these studies, the estimated damping results are
approximately twice as large as the results in Table 1.
This difference could be caused by the reduced duration of
the estimation interval Test or the damping Dadm supplied
by the admittance control scheme. In Tsuji et al. (1995)
and Tanaka et al. (2003), the estimated stiffness results

are similar to those obtained for the stiffness element K̂11.
In Erden and Billard (2015), they are significantly larger.
This difference is plausible, as the execution of the manual
welding task requires much higher accuracy. In summary,
the comparison with similar studies indicates plausibility
of the results in Table 1 for multi-joint arm movements.

6. CONCLUSION

In this work, we present a method for the estimation of
involuntary impedance during multi-joint arm movements.
We apply external force perturbations to evoke deviations
during point to point arm movements. The perturbations
are specifically designed to evoke feedback behavior that
can be isolated by application of a high pass Butterworth
filter to the jerk of the perturbed movements. The duration
of the estimation interval is limited to guarantee exclusion
of voluntary feedback. The impedance components within
the estimation interval are approximated by impedance
parameters and estimated through least squares analysis.
The analysis of the NRMSEs of the estimated variational
dynamics within the validation with simulated data shows
the accuracy of the isolation of the feedback behavior.
Experimental data of an experiment with five human
participants is used to evaluate the estimation of the
involuntary impedance parameters and demonstrate the
applicability of the method to real data. In future work,
we will apply the proposed method for the estimation and
analysis of involuntary impedance modulation strategies.
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