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A B S T R A C T

Many existing energy system models rely on input data available at country-level, or at the level of adminis-
trative divisions. However, there is usually no correlation between the distribution of data such as solar ra-
diation, wind speed, and electrical load on one hand, and the administrative divisions on the other hand. The
goal of the research is to measure the impact of the shape of model regions on the results of system optimization
models. A novel clustering methodology for high-resolution data is presented and applied to define new regions
for an energy system model which optimizes expansion planning and unit commitment. The new model regions
take into account the bottlenecks in the transmission system and their effect on the expansion of renewable
energy sources. We compare the obtained energy mixes, new capacities, and curtailment levels against a model
using administrative divisions. The results show discrepancies between the models in the case of a high share of
variable renewable energy, and quantify the impact of the distribution of load, wind and solar resources on
energy system models. Possible applications of the new model regions are discussed to emphasize their utility for
modelers and policy-makers.

1. Introduction

The electricity system in Europe is increasingly relying on decen-
tralized generation from variable renewable energy sources. The con-
ventional power plants that used to be conveniently located next to load
centers are being replaced with wind and solar power plants in areas
with high renewable potential. This trend is set to continue if the
decarbonization targets are to be achieved without relying heavily on
nuclear and hydro power generation.

The increased reliance on geographically distributed, time-depen-
dent renewable energy generation requires a deep understanding of the
spatial and temporal distribution of wind and solar resources, and their
eventual correlation with load patterns [1]. This is helpful to determine
the system flexibility requirements, such as the need for new trans-
mission lines or for storage devices. Thanks to improvements in the
processing power, it is now possible to solve multi-regional optimiza-
tion problems with various wind and solar potentials. The advantage of
using a high number of model regions has been quantified in previous
studies [2]. However, the definitions of the model regions has been
mostly dictated by the political boundaries of countries and their ad-
ministrative subdivisions, especially if the models span over many
states or support policy-makers on an international level [2,3]. The lack
of diversity in the shape of model regions might be partly due to the fact
that the input data of energy system models are usually available on the

level of administrative divisions, and are seldom readily available to be
used in another spatial configuration.

One way of achieving a higher flexibility in the definition of regions
is to first obtain or generate high resolution data using geographic in-
formation systems (GIS), and them cluster them into categories or
groups, depending on certain trends in the data set. The generation of
high resolution data is a critical research topic that has been addressed
by previous studies. In this analysis, we assume that high resolution
data is readily available and we focus therefore on the clustering step.

Since Lloyd [4] published the k-means algorithm as a clustering
technique, other variants have been developed to accommodate a wide
range of user requirements, as explained by Jain and Dubes [5]. For
spatial clustering, it is possible to use such algorithms and add con-
tiguity constraints to them, as done by Adam et al. [6] in their analysis
of the pan-European electricity system for 2050. But as data analysis
developed and GIS became more common, new algorithms specific to
spatial clustering emerged, such as the max-p regions algorithm by
Duque et al. [7]. Despite these developments, the ability of spatial
clustering algorithms like max-p regions is still limited to small data sets
with hundreds of data points. The novelty of our work resides in the
clustering of high resolution spatial data (tested with ∼ 108 data points)
into contiguous regions that can be used in energy system optimization
models. We apply the method in the case of Europe to compare the
results of the models in 2015 and in 2050 under the constraint of a 95%
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CO2 emissions reduction.
Hence, we structured our analysis in the following way. First, we go

through the clustering method used to obtain the new regions in Section
2. The obtained clusters are described qualitatively and quantitatively

Fig. 1. Paper workflow.

Fig. 2. Clustering methodology steps as applied to the load raster map.
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in Section 3. Then, in Section 4, we introduce urbs, the open-source
model framework used for the optimization of the energy system of
Europe. The input data and the assumptions for the models are de-
scribed in the same section. Finally, we analyze the results of the op-
timization in Section 5, followed by a conclusion and a discussion of
possible applications. An overview of the paper workflow is shown in
Fig. 1.

2. Spatial clustering

The goal of the spatial clustering is to create contiguous clusters
with maximum data homogeneity within each one of them. These
clusters are used afterwards as model regions in an energy system op-
timization model.

Since Fischer [8] laid the groundwork for the taxonomy of spatial
clustering problems, several algorithms were developed to either de-
crease the running time or to optimize the clustering process. One of the
main problems with the existing spatial clustering algorithms is their
inability to handle data with huge resolution. Therefore, a new ap-
proach is adopted in this paper, which applies two existing algorithms
(k-means++ and max-p regions) in a three-step process. A short de-
scription of the process is provided below. The inputs and outputs of the
clustering are also presented for the case of Europe.

2.1. Clustering method

The clustering method introduced in this section is a multi-stage
process involving the k-means++ and max-p regions algorithms. A
formal description of the process is provided in Appendix A. The code is
also available as open source [9].

The core of k-means++ is the standard k-means algorithm devel-
oped by Lloyd [4] which assigns each data point to the nearest centroid
of k initial clusters. Arthur and Vassilvitskii [10] enhanced the k-means
algorithm by choosing the initial centroids such that they are as far
away from each other as possible. The algorithm is fast and capable of
handling a big amount of data, but it does not produce spatially con-
tiguous regions. If a contiguity constraint is added in the cost function
of the distance minimization, the algorithm generates compact clusters
with the shape of Voronoi polygons with the respective centroids at
their centers. Enforcing a strict contiguity constraint would lessen the
importance of the data homogeneity within each cluster. Hence, k-
means++ cannot be applied solely to achieve the desired outcome of
the study.

The spatial contiguity and the data homogeneity within clusters are,
on the other hand, the strengths of the max-p regions clustering algo-
rithm [11]. The algorithm is one of the first mixed-integer program-
ming (MIP) spatial clustering algorithms developed for the p-regions
problem [7]. It clusters data of n regions into p contiguous clusters
where every cluster satisfies a minimum threshold value, such as the
minimum solar energy potential that should exist in every cluster. The
information lost due to clustering is minimal because the algorithm
produces the maximum number of clusters that can be achieved in re-
gard to the set threshold value. That number is unknown, but it in-
creases if the threshold value decreases. With proper understanding of
the data variance, the number of output clusters can be known to be
within a certain range. The contiguous shapes of the clusters depend
only on the input data and are not necessarily compact. Moreover, it is
well implemented in python in the pySAL library [12] and in GeoDa
[13], which makes it user-friendly. The main drawback for max-p re-
gions is the inability to handle huge data. According to Duque et al. [7],
the max-p regions problem algorithm has computational complexity of
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constraints,

where n is the number of data points to be clustered. This corresponds
to a complexity of O n( )3 according to the Bachmann––Landau notation.
Hence, if the number of areas increases, the problem becomes

intractable [7]. Therefore, max-p regions cannot handle our input data
without decreasing its resolution drastically.

Our approach combines the strengths of both algorithms to achieve
the desired outcome:

1. Starting with rasters of ∼ 108 data points, we apply the “divide and
conquer” principle to split the data into 100 equally-sized rasters
that can be processed in parallel (see Fig. 2a and b).

2. We then cluster the data of each raster part (at most ≲ ⋅1.27 106

numerical data points) using k-means++, as exemplified in Fig. 2c
and d. In order to determine the number of clusters ki for every map
tile ai, we first search for a reference area ar which has the highest
product of relative standard deviation σ σ/r max and relative size
(number of valid data points) n n/r max. The elbow method [14] was
used to determine the number of clusters kr for ar . Second, for each
tile ai, the number of clusters ki was calculated using the following
expression:

⎜ ⎟= ⋅⎛
⎝

+ ⎞
⎠

k k n
n

σ
σ

0.7 0.3 .i r
i

max

i

max (1)

We end up with ≲ 100 clusters for each map part. This step is fast (∼
3 h for all tiles) and leads to the largest data compression (down to 1
cluster for ∼ 15000 data points in the case of load).

3. The output of k-means++ is a raster for each tile, which we poly-
gonize into a shapefile.

4. For each tile ai, we run the max-p algorithm. We define the threshold
of the max-p algorithm as a function of relative standard deviation
and relative number of valid data points, as described in the fol-
lowing equation:
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where thri is the threshold for tile ai and A, B, and C are three global
parameters for the complete data set. We determine A, B, and C
through regression so that:

• if a tile has the smallest ni and the smallest σi, it will be split into at
most two clusters;

• if a tile has the largest ni and the largest σi, it will have a very low
threshold so that it may retain all of its parts from k-means++;

• if a tile has the smallest size but the highest standard deviation, its
threshold will be average.

Despite a limited data compression (the total number of clusters is
almost halved), this step lasts ∼ 3 h for all the tiles.

5. After applying the max-p algorithm to every tile ai, we merge all the
tiles together again to get the full map of Europe (see Fig. 2f). The
total number of clusters at this stage is ≲ 1800 in all three maps,
which can be clustered at the next step.

6. max-p algorithm is applied on the whole map to obtain the final map
shown in Fig. 2g. In this study, we chose a target number of 28
regions to match the number of countries in Europe that are usually
used as model regions. In order to obtain exactly 28 regions at the
end, we varied the threshold through trial and error. The algorithm
required 5–8 h for the clustering of ∼ 1800 data points.

2.2. Clustering input

As mentioned before, the method used in this analysis is applicable
on raster data sets with a high resolution, which cannot be clustered
with standard methods. In the following we will use three rasters of
Europe in 15 arcsec resolution: one for the wind potential (expressed in
kWh/kWp), one for the photovoltaic (PV) potential (in kWh/kWp), and
one for the load density (in MWh/pixel/a) [15]. The rasters for the solar
and wind potentials and their corresponding model regions after the
clustering are displayed in Fig. 3. For the load distribution map, please
refer to Fig. 2a and g.
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3. Results of the spatial clustering

Before using the clusters to create energy system models, we analyze
them qualitatively and quantitatively by describing them and com-
paring them to each other and to regions delimited by national borders.

3.1. Qualitative description

The outputs of the clustering process have different characteristics
that might impact the results of the energy system optimization. The
Load map is characterized by small, stretched out regions in the densely
populated areas of Central Europe, between Northern Italy and the
Netherlands, and by large regions in the periphery (Scandinavia,
Iberian Peninsula, Eastern Europe). The Solar map is mostly made of
equally sized regions that have the shape of horizontal bands, since the
solar potential highly correlates with the latitude. Regarding the Wind
map, we observe that the shapes of the clusters are affected by the

elevation (Northern Spain, Norway) and by the distance to the shore,
with many distinct clusters along the coast and others that are mostly
continental.

3.2. Information loss

Clustering is used in this study to summarize the large amount of
information contained in the high resolution maps into homogeneous
groups. The compression of data leads inevitably to loss of information
at the different stages of the algorithm, as displayed in Table 1. The
largest data compression occurs after running k-means++. The com-
pression ratios at that stage are affected by the maximum number of
clusters kr , which was determined using the elbow method for the
largest and most diverse region, and by the sizes and standard deviation
of the tiles. Choosing a higher kr will lead to more clusters. Despite the
high ratios, the information loss at this stage is not critical for the solar
and wind potential maps, because the full-load hours do not variate a

Fig. 3. Input rasters and output regions produced by the clustering process.
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lot within a small radius, as reflected in the low coefficients of variation
(below 0.04 for the solar potential map). However, for the load map,
small urban settlements with high load densities are dissolved with
their surrounding areas, and the coefficients of variation may exceed 20
in northern Scandinavia. Increasing the number of k-means clusters
(above the optimum number derived from the elbow method) might
preserve the contrast between urban and rural areas until the next
stage, but it would lead to longer computation times for the max-p al-
gorithm running on all tiles.

Currently, the first run of the max-p algorithm has the lowest data
compression ratios. It is possible to alter the threshold values by setting
different constraints for the regression that determines the parameters
A, B, and C. Higher thresholds lead to less clusters for each tile, which
can speed up the second run of max-p for the whole map. However, the
quality of the final maps will be lower in this case. Hence, we chose the
constraints so that we obtain as many clusters after the first run of the
max-p algorithm as we can process in a reasonable amount of time
(below 8 h).

3.3. Homogeneity and contrast

By design, the final solar and wind clusters should be overall more
homogeneous with respect to the solar and wind potentials than in-
dividual countries. This is for instance visible in Fig. 4, which depicts

the PV full-load hours of a sample of data points for each region (blue
lines, sorted by the median of the regions) and for all Europe (black line
in the background). The median values for each region, whether a
country (top) or a solar cluster (bottom), are shown in red. Fig. 4 shows
that the new clusters have smaller value ranges, are of similar sizes, and
their medians lie almost always on the black curve of the sorted FLH
values in Europe. Hence, the clustering method splits Europe in
homogeneous regions of equal sizes, that can be represented by their
median values without sacrificing too much accuracy. This is not the
case for the map using country borders, where countries with very good
locations for solar projects are misrepresented by their low median
values.

In all three maps, the coefficients of variation are usually smaller
than for the map of countries (with respect to the data type chosen for
the clustering), both for the extremes and on average. It varies between
1.14 and 3.56 for the load clusters (countries: 1.23–6.05), between 0.01
and 0.09 for the solar clusters (countries: 0.01–0.15), and between 0.11
and 0.50 for the wind clusters (countries: 0.12–0.59). The improved
homogeneity may have a positive impact on the robustness of the
modeling of energy systems with high shares of solar and wind power
supply. In fact, model regions are usually represented by one or a few
points with particular FLH values, for which time series are generated.
Therefore, it is crucial that these points (best, upper 10%, median, etc.)
summarize the quality of the region without distortion.

In addition to homogeneity, higher contrast between the regions
may be desired for some applications. By clustering the load map so
that the regions satisfy a minimum total load, we created clusters of
high load densities in Central Europe and low load density on the
periphery. The load densities are plotted against the area of the regions
in the case of countries (crosses) and load clusters (filled circles) in
Fig. 5. Compared to countries, the load clusters have more distin-
guishable regions on the extremes (large area and low density, or small

Table 1
Evolution of the number of valid data points over the clustering process.

Map Input k-means++ max-p 1 max-p 2

Solar ∼ ⋅36.7 106 3490 1853 28
Wind ∼ ⋅36.7 106 2792 1780 28
Load ∼ ⋅36.7 106 2347 1340 28

Fig. 4. Solar FLH values within regions (blue lines), sorted in descending order by their median value (red circles), plotted against the sorted values for Europe (black
line in the background). The top figure corresponds to the countries, the bottom one to the solar clusters.
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area with high density), which can be useful for studies that investigate
the energy system of high-demand regions (e.g. cities) surrounded by
load-demand regions (e.g. countryside).

Whether these topological differences have a measurable impact on
energy system optimizations can be determined by running an experi-
ment using energy system models. The procedure of the experiment
used in this study is explained in the next section.

4. Energy system optimization

In order to quantify the impact of the choice of regions on energy
system optimizations, we build models using the regions of Figs. 2g, 3b
and 3d. We first describe the modeling framework, then provide in-
formation about the data and the assumptions used in this experiment.

4.1. Expansion planning models with urbs

We use the open-source modeling framework urbs to generate the
models for our analysis. The created models co-optimize capacity ex-
pansion as well as hourly dispatch of generation, transmission, and
storage from a social planner perspective. The optimization goal is to
minimize the costs of expanding and operating the energy system in-
cluding the annualized capital costs, the fuel costs, as well as other fix
and variable operational costs. Major inputs are the hourly time series
for the load and the capacity factors of renewable energy sources. Other
important input data include the existing infrastructure (grid, power
plants, storage) which can eventually be built in the models. Techno-
economic parameters cover costs for investments, maintenance, fuels,
and emissions. Finally, restrictions can be set such as maximal capa-
cities for grid/generation expansion or a limit on the CO2 emissions.

Each model solves a linear optimization problem that is written in
Pyomo using gurobi. Major outputs include the installed capacities
(generation, grid, storage) and the hourly operation of the system. The
models also provide the emissions, the costs, and the marginal costs at
each region. The source code for urbs and an extensive description can
be found on GitHub [16].

4.2. Data and assumptions

The main assumptions and data sources used to conduct this ana-
lysis are described below. The data pre-processing is automated in order
to ensure a uniform model generation process.

Geographic coverage. The analysis covers the 28 countries of the
European Union, excluding Malta and Cyprus and adding Norway and
Switzerland.

Representation of time. We use the second weeks of January, April,
July, and October to represent the full year of 2015. The time resolution

is 1 h.
Model regions. We use four models based on: country borders (later

referred to as Countries), regions with homogeneous wind potential in
terms of full-load hours (Wind), regions with homogeneous solar pho-
tovoltaic potential (Solar), and regions with similar total electricity
demand (Load).

Load time series. Hourly time series for each country [17] are dis-
aggregated into sectoral load time series based on typical sectoral load
profiles [18]. Sectors are distributed geographically based on land use
types [19]. Load is aggregated again for the new model regions. The
same load time series are used in 2015 and 2050.

Renewable time series. Wind and solar hourly capacity factor time
series are generated by combining MERRA-2 radiation, temperature
and wind speed data [20] with maps of land use, elevation, and pro-
tected areas. Among the suitable locations in each region, we pick the
time series of the pixel with the median full-load hours for onshore
wind and solar PV, and at the top 10% for offshore. We use a uniform
correction factor lower than 1 for each technology in order to match the
wind and solar generation of Europe in 2015 approximately. Identical
time series were used in 2050. A new version of the code for generating
the time series and the input rasters for wind and solar is available open
source [21].

Commodity prices.We assume the same prices in 2015 and 2050. The
prices are constant over the year and respect the merit order of power
plants observed in 2015. For more information, see the inputs files for
the urbs models [15].

Conventional power plants. Power plants in operation in 2015 [22]
were allocated to the regions based on their coordinates, then ag-
gregated based on their types. In 2050, none are still existing. New
capacities for nuclear are not allowed to exceed the levels of 2015.
Missing power plant characteristics were filled with own assumptions.

Renewable power plants. Installed capacities in each country in 2015
were collected from IRENA [23] then distributed geographically based
on technical potential maps (wind and solar), land use types (others),
and a randomness factor. There are no pre-existing capacities in 2050.
New capacities for hydro and biomass are not allowed to exceed 2015
levels.

Transmission lines. Transmission lines are extracted from GridKit
[24]. Based on their lengths and voltage levels, a transmission capacity
is assigned to them. Only connections between different regions are
considered.

Economic parameters. Investment, fix and variable costs for most
power plant types are derived from ETRI [25].

CO2 emissions. There are no limits for 2015. For 2050, we assume a
95% reduction compared to 2015. No CO2 certificate price are used.

5. Results of the optimization

In this section, we discuss the results of the energy system optimi-
zation for 2015 and for 2050 using different regions within Europe.

We first compare the results of all models (Countries, Wind, Solar,
Load) to ENTSO-E statistics for the year 2015. Despite using only four
weeks instead of a full year, the models manage to match the energy
mix of Europe with minor discrepancies, as shown in Fig. 6. The models
overestimate the share of nuclear power, but the error is compensated
by an underestimation of coal, gas, and other mixed fuels. Almost no
energy is curtailed (less than 0.1% in all models). Comparing the model
Countries to the three others, we observe negligible differences in the
solar PV generation (relative error between 1% and 5%). However, the
wind generation is overestimated in all three models, with a relative
error ranging from 5% for Solar to 10% forWind. The reason for this lies
in the choice of the representative time slices and in the time series for
renewable generation. First, although the model Countries was cali-
brated to match the energy mix of ENTSO-E using a full-year optimi-
zation,1 this calibration is lost when running a four-week optimization.
The time series happen to be representative for the solar generation in

Fig. 5. The load density in relation to the area of each region in the case of
countries (crosses) and load clusters (filled circles).
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that time frame, but they are not for wind generation. Second, as
mentioned in section 4.2, the renewable generation time series were
determined for a pixel at the median locations for onshore wind and
solar PV, and at the top 10% for offshore wind. Since the shape of the
regions are not the same in the models, the locations of the medians and
the top 10% are also different, which leads to different time series.

The discrepancies between the models widen for the year 2050. Due
to the stringent CO2 emissions constraint, lignite and coal power plants
disappear from the power mixes. The only CO2 emitting technology
which is still allowed is gas, due to its lower specific emissions. The
combined share of hydro power and biomass remains almost constant
in all four cases. On the other hand, the shares of solar PV, onshore and
offshore wind, nuclear, and the amount of curtailment vary con-
siderably between the models.

In the model Countries, the ratio of solar to wind is 1:1.6, the lowest
in all four models. It is also coupled with a higher amount of curtail-
ment (166 TWh compared to 31 TWh for Wind, the lowest value). All in
all, a positive correlation exists between the amount of curtailment and
the ratio of solar to wind. Also, the higher the capacity of solar PV, the
bigger is the installed capacity of battery storage, as shown in Fig. 7.
One possible explanation for this could be the low wind FLH values of
countries in Southern Europe, which have high FLH of solar PV. Yet this
explanation is not sufficient, because an even stronger effect would
have been visible in the model Solar. However, we observe that the
cost-optimal solution for the model regions in Solar is to build less PV
and more onshore wind than in Countries. This counter-intuitive result
could be explained with the shape of the regions: the stretched hor-
izontal bands of the solar cluster have more transmission line connec-
tions to their neighbors than the compact model regions in Countries.
With less transmission bottlenecks, the model Solar can integrate wind
and solar generation better in the North-South direction.

As expected, the model Solar has a higher share of solar PV than
Wind, which has on the other hand a higher share of onshore and off-
shore wind, combined. This is most probably due to the existence of
very favorable locations with high full-load hours of solar PV (in the
case of Solar) and onshore wind (in the case ofWind). The model Load is
characterized by the highest share of offshore wind generation
(379 TWh). Here again, the shape of the regions and their geography
provide a possible explanation. Many of the regions with high load
density lie in Northern Europe, close to the North Sea, an area with very

good conditions for offshore wind power plants due to its shallowness
and high wind speeds. Hence, offshore wind power plants located in
that area operate with high capacity factors and at competitive costs to
cover a high proportion of the electricity demand of the model regions
of Load.

Last but not least, Fig. 7 shows no investment in transmission lines
and a little investment in battery storage, when compared to the large
investments in solar PV and wind. This is due to the way the trans-
mission grid is simplified: There are no transmission constraints within
each region, and interconnections between model regions limit the
amount of electricity that can be traded between them. With only 28
model regions, none of which are designed to reflect transmission
bottlenecks, the limits for electricity transport are usually high and
renewable power generation seems to be easy to integrate with no grid
expansion nor large amounts of storage.

The discrepancy between the models is not limited to the ag-
gregated capacities and energy production values, but affects the geo-
graphic distribution of the power plants as well. Although the urbs
models do not deliver exact locations for the new power plants, it is
possible to draw approximate geographic distribution maps based on
the potential map and a randomness factor. In Fig. 8 we plot possible
distributions of onshorewind power plants based on the results of the
four models, as an example.

The darker the color in Fig. 8, the more agreement there is between
the models that wind power plants should be built in the area. This
seems to be the case for the coastal areas in Northern Europe and
Norway, the United Kingdom, Estonia and Latvia. There is also a con-
sensus to avoid Northern Italy, Southern Spain, Bulgaria and Central
Sweden. Despite the differences between the models, these results are
considered robust.

6. Conclusion and discussion

In this paper, we argue that creating energy system models with
different shapes for the regions has several advantages. The focus in the
first part was on the clustering methodology that we used to obtain
regions with homogeneous characteristics out of high resolution data.
The method is scalable and we were able to apply it on data sets with
roughly 108 data points to obtain 28 regions. We explained how the
number of clusters at the end of each stage of the algorithm can be
varied, and which impacts this would have on the quality of the results
and on the computation time. For the sake of clarity, the clustering was
conducted using one single characteristic at a time (either similar total
electricity demand, or wind potential, or solar potential). However, it is
possible to use two or more parameters to obtain regions with a com-
bination of characteristics. This could be done in a future study.

The regions created through clustering have inherent properties that
are crucial for certain analyses. For instance, the model based on load
density clusters is suitable for studying the interplay of cities and
countryside, particularly in the power sector. Using regions with dif-
ferent renewable potentials ensures their homogeneity, which is usually
implicitly assumed in energy system models that rely on one or a few
time series per region. We showed that this assumption does not hold
for models using countries as model region, and that clusters based on
wind or solar full-load hours have lower coefficients of variation.
Homogeneous regions are adequately represented through single time
series, which leads to more robust results in energy system optimiza-
tions.

Using countries as model regions is appropriate in many situations,
such as the analysis of policies on a national level. However, energy
system modelers should be able to assess the magnitude of the errors
caused by the choice of the regions. This study provided an example of
an electricity system optimization for Europe for 2015 and 2050.
Whereas the errors in 2015 were minimal, due to the limited share of
renewable power supply, they were higher for 2050, causing dis-
crepancies 5–10% in the energy mix. This example showed some

Fig. 6. Electric energy supply in Europe in TWh according to the urbs model
and to ENTSO-E statistics of 2015.

1 A full-year optimization was conducted using the model Countries for the
purpose of calibration, but its results are not discussed in this paper, because
the focus lies in the relative differences between the models.
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advantages of using other model regions for a complementary analysis.
For modelers, the variation of the regions works as a sensitivity ana-
lysis. It puts the robustness of the model results to the test and helps
visualize their actual impacts on the geography of the energy system. It
can also reveal the weaknesses of the model assumptions. In our ana-
lysis, this was particularly the case of the misrepresentativity of some
renewable time series and of the lack of transmission line congestion
within regions. The clustering algorithm can be used to solve the former
problem, by creating homogeneous areas (either independently or
within political or administrative divisions), for which representative
time series can be generated. As of the modeling of transmission lines,
all our cluster models and the one based on national borders neglected
bottlenecks within the regions, which is not a valid assumption in many
instances. We recommend clustering transmission networks based on
line contingencies, yet we were not able to achieve this due to the lack
of topologically valid open grid data for Europe.

For policy-makers, trying various shapes of regions for the same
study can be a powerful argument in a time characterized by a lack of
acceptance for infrastructure projects, such as transmission lines and
onshore wind power plants. It shows willingness to search for alter-
natives, and overcomes certain modeling weaknesses (e.g. abstraction,
unsubstantiated assumptions, etc.) through a visually appealing sensi-
tivity analysis.
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Appendix A. Pseudocodes

Pseudocode 1: Main Code

Fig. 7. Differences in capacities of power plants, storage units, and transmission lines in GW compared to the capacities in 2015.

Fig. 8. Possible geographic distribution of new wind capacities in 2050. Each
shade of blue corresponds to the distribution of one of the models, so that dark
blues areas are those identified by all models as most likely project locations.
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Pseudocode 2: Split

Pseudocode 3: ElbowMethod

Pseudocode 4: Call-k-means++
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Pseudocode 5: Call-max-p1

Pseudocode 6: Call-max-p2
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