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Background: For Glioblastoma (GBM), various prognostic nomograms have been 
proposed. This study aims to evaluate machine learning models to predict patients’ 
overall survival (OS) and progression‐free survival (PFS) on the basis of clinical, 
pathological, semantic MRI‐based, and FET‐PET/CT‐derived information. Finally, 
the value of adding treatment features was evaluated.
Methods: One hundred and eighty‐nine patients were retrospectively analyzed. We 
assessed clinical, pathological, and treatment information. The VASARI set of se-
mantic imaging features was determined on MRIs. Metabolic information was re-
tained from preoperative FET‐PET/CT images. We generated multiple random 
survival forest prediction models on a patient training set and performed internal 
validation. Single feature class models were created including "clinical," "pathologi-
cal," "MRI‐based," and "FET‐PET/CT‐based" models, as well as combinations. 
Treatment features were combined with all other features.
Results: Of all single feature class models, the MRI‐based model had the highest 
prediction performance on the validation set for OS (C‐index: 0.61 [95% confidence 
interval: 0.51‐0.72]) and PFS (C‐index: 0.61 [0.50‐0.72]). The combination of all 
features did increase performance above all single feature class models up to C‐indi-
ces of 0.70 (0.59‐0.84) and 0.68 (0.57‐0.78) for OS and PFS, respectively. Adding 
treatment information further increased prognostic performance up to C‐indices of 
0.73 (0.62‐0.84) and 0.71 (0.60‐0.81) on the validation set for OS and PFS, respec-
tively, allowing significant stratification of patient groups for OS.
Conclusions: MRI‐based features were the most relevant feature class for prognostic 
assessment. Combining clinical, pathological, and imaging information increased 
predictive power for OS and PFS. A further increase was achieved by adding treat-
ment features.

www.wileyonlinelibrary.com/journal/cam4
mailto:
https://orcid.org/0000-0003-2679-9853
https://orcid.org/0000-0002-6544-8151
https://orcid.org/0000-0002-5233-1536
http://creativecommons.org/licenses/by/4.0/
mailto:jan.peeken@tum.de


   | 129PEEKEN Et al.

1 |  INTRODUCTION

Glioblastoma multiforme (GBM) constitutes the most fre-
quent primary neuronal malignancy. Despite intensive ef-
forts in research, the success of current therapy regimens 
remains limited with low two‐year survival rates of 16.9%.1 
We know that clinical parameters such as younger age, high 
Karnofsky‐performing status (KPS) indices, and female 
gender correlate with a favorable outcome.2-8 Several ap-
proaches finding molecular determinants of outcome to pre-
dict treatment response have been published. However, few 
have reached clinical relevance.9-11 MGMT‐promoter meth-
ylation status and mutational status of IDH appear to carry 
prognostic value.11-14

MRI constitutes the standard imaging modality for pre‐
therapeutic staging, treatment planning and follow‐up diag-
nostics. Over the years, multiple prognostic relevant semantic 
properties have been identified. Proposed features quantify 
the different composites of the tumor (eg, enhancement or 
edema), or classify characteristics such as multifocality or in-
vasion of brain areas.3,4,15-17 MRI‐based quantification of the 
extent of resection emerged as prognostic factor.2,18

Based on such qualities, the VASARI (Visually Accessible 
REMBRANDT [Repository for Molecular Brain Neoplasia 
Data] Images) feature list was defined by the REMBRANDT 
consortium aiming to standardize the reporting of gliomas. 
Inter‐observer agreement appeared to be high in all but three 
imaging features.19 Multiple publications have shown that 

VASARI features predict patient outcome, and correlate with 
mutational status and gene expression patterns.20-22

In recent years, metabolic PET images utilizing amino 
acid‐based tracers gained clinical relevance. For instance, 
parameters obtained from static [18F]‐fluoroethyl‐l‐tyro-
sine (FET) PET/CT were shown to inherit prognostic value 
predicting survival and progression independent of MGMT 
promoter methylation and clinical factors.23 Moreover, 
FET uptake variables significantly correlated with WHO 
grading.24,25

Originally, prognostic models aiming at predicting pa-
tients’ survival or progression were often based on statis-
tical models. For example, a recently published model by 
Gittleman et al26 predicted survival on the basis of age, gen-
der, MGMT‐promoter methylation status, and KPS. In recent 
years, machine learning (ML) approaches have gained sig-
nificant importance as alternative way for model generation. 
Due to the improvements in handling large datasets with 
many input features, ML‐based methods may lead the way 
to clinical decision support systems (CDSS) as the basis for 
personalized medicine.27

In the present study, we sought to determine the prognos-
tic value of ML‐based models on the basis of multiple input 
feature classes including clinical, pathological, semantic MRI 
features, and FET‐PET/CT measurements. Moreover, we 
analyzed if "multimodal" models combining several feature 
classes and, specifically, the addition of treatment features 
further improve the prognostic performance of ML models.

K E Y W O R D S
biomarker, FET‐PET, glioblastoma, machine learning, MRI, prognostic model, VASARI

Training set (n = 132) Validation set (n = 57)

Age (y) m 58 (min 20, max 85) m 59 (min 24, max 82)

KPS (%) m 80 (min 40, max 100) m 80 (min 40, max 100)

Gender Male: 82 Female: 50 Male: 39 Female: 18

Positive MGMT‐methyla-
tion status

33 (25%) (na: 38 [29%]) 13 (23%) (na: 16 [32%])

Positive IDH1/2 mutation 
status

3 (3%) (na: 55 [42%]) 1 (5%) (na: 21 [37%])

Ki‐67 proliferation index >20%: 32 (24%) 
<20%: 31 (24%) (na:69 [52%])

>20%: 16 (28%) 
<20%: 13 (23%) (na: 28 
[49%])

OS (mo) m 11.9 (min 0, max 75.5) m 11.7 (min 0.3, max 87.4)

PFS (mo) m 4.25 (min 0, max 60.8) m 6.3 (min 0, max 74.0)

Preoperative MRI 124 (94%) 54 (95%)

Postoperative MRI 99 (75%) 46 (81%)

KPS, Karnofsky performance status; m, median; max, maximum; min, minimum; na, not available; OS, overall 
survival; PFS, progression‐free survival.

T A B L E  1  Patient characteristics and 
outcome
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2 |  MATERIAL AND METHODS

2.1 | Patients and study design
In total, 189 patients with GBM treated with radiation ther-
apy (RT) from 2009 to 2016 in our institution were retro-
spectively analyzed. Patients received established first‐line 
therapy after informed consent following the primary diagno-
sis. Patient records were assessed for gender, age, and KPS at 
start of RT (see Table 1). Pathological records were assessed 
for MGMT‐promoter methylation status, IDH1 mutation sta-
tus, and the KI67 proliferation index. Immunohistochemistry 
using an antibody against the IDH1 p.R132H mutation was 
used to test for IDH1 mutations. The MIB1 antibody was used 
to test for the KI67 proliferation index. The Ki67 proliferation 
index was split at the median of 20% dividing high and low 
proliferation groups. Promoter methylation was determined 
using real‐time PCR‐based methylation‐quantification of en-
donuclease‐resistant DNA (MethyQESD) method.28 MGMT 
promoter methylation was defined by promoter methylation 
greater than 8% as described by Reifenberger et al.13

Primary tumor resection with sequential radio(chemo)ther-
apy constituted the first line therapy, which was possible in 
162 patients. 27 patients were primarily treated with RT after 
biopsy. 149 patients received concomitant radiochemotherapy 
following the protocol of Stupp et al11 with radiotherapy (RT) 
up to a total dose of 60 Gy (single dose 2 Gy) and temozolo-
mide (75 mg/m2) (see Table 2 for therapy characteristics). In 
addition to temozolomide, one patient received cilengitide 
and two patients received lomustin. One patient received bev-
acizumab and three patients were additionally treated with 
irinotecan.

Overall survival (OS) was determined from the end of RT 
to the time point of death or the time point of censoring (134 

reported deaths). Progression‐free survival (PFS) was cal-
culated from the end of RT to the first sign of progression, 
death or time point of censoring (168 reported progressions or 
deaths), whichever happened first. Progress was defined ret-
rospectively according to MRI‐ and PET‐study reports and/or 
pathological reports. All clinical and molecular data were col-
lected in the Munich Innovative Radiotherapy (MIRO) data-
base. This study was approved by the ethical committee of the 
Technical University of Munich (reference number 466/16).

2.2 | Magnetic resonance imaging
Pre‐ and postoperative MRIs were assessed for availability 
of relevant sequences: T1‐weight (T1w)‐ (or MPRAGE), 
T1w+Gd‐, FLAIR‐, T2w‐ and diffusion imaging with ap-
parent diffusion coefficient (ADC)‐maps (see Table S1 for 
image acquisition parameters). All 27 preoperative features 
and three postoperative features were determined following 
the recommendations of the REMBRANDT consortium by 
a MD with 2 years of experience in radiation oncology (see 
Table S2 for all VASARI features).19 The ADC‐maps were 
used to classify "facilitated," "restricted," and "mixed" dif-
fusion. Before analysis, few features were altered to achieve 
a better patient representation in subgroups (eg, pooling of 
subgroups) or to retain a binary variable (see Table S3).

2.3 | [18F]‐fluoroethyl‐l‐tyrosine (FET) 
PET studies and analysis
FET‐PET/CT scans were performed pre‐operatively using 
a Biograph 16 PET/CT in 68 patients (Siemens Medical 
Solutions USA, Inc., Malvern, PA, USA). Patients were re-
quired to fast for a minimum of 6 hours before undergoing 

Training set (n = 132) Validation set (n = 57)

Primary Surgery 112 (85%) 50 (88%)

Primary Radiation 20 (15%) 7 (12%)

RTCT Yes: 103 (78%) No: 8 (6%) 
(na: 21 [16%])

Yes: 45 (79%) No: 3 (5%) 
(na: 9 [16%])

Adjuvant CT Yes: 88 (67%) No: 13 (10%) 
(na: 31 [23%])

Yes: 41 (72%) No: 4 (7%) 
(na: 12 [21%])

Therapeutic Interval>6 
weeksa

Yes: 32 (24%) No: 79 (60%) 
(na: 21 [16%])

Yes: 37 (65%) No: 13 (23%) 
(na: 7 [12%])

PTV (mL) m: 333.9 (min 29.9, max 701) 
(na: 4 [3])

m: 340.8 (min 57.9, max 862.4) 
(na: 1 [2%])

TD (Gy) m 60 (min 10, max 64) m 60 (min 18, max 60)

SD (Gy) m 2.0 (min 1.8, max 5.0) m 2.0 (min 1.7, max 3.0) 
(na: 2 [4%])

CT, chemotherapy; m, median; max, maximum; min, minimum; na, not available; PTV, planning target volume; 
RT, radiotherapy; RTCT, radiochemotherapy; SD, single dose; TD, total dose.
aBetween surgery and RT. 

T A B L E  2  Therapy characteristics
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scanning to achieve standardized metabolic conditions. 
190 MBq of FET were intravenously administered and a 
low‐dose CT (24‐26 mAs, 120 kV) for attenuation correc-
tion was conducted. 30‐40 minutes after initial injection, 
the 10‐minute PET acquisitions were performed. Static PET 
data were reconstructed by two different methods. PET/CTs 
of 49 patients were reconstructed using filtered back‐projec-
tion employing a Hann filter with a cut‐off frequency of 0.34 
Nyquist into 128 × 128 matrices, with a resulting voxel size 
of 2.1‐2.1 mm and slice thickness of 2.4 mm. In 19 patients, 
an ordered subset expectation maximization algorithm was 
used (200 × 200 matrix, 3 iterations, 21 subsets, resulting in 
a voxel size of 1.6 to 1.6 mm).

Semiautomatic analysis of static FET‐PET was performed 
by an experienced nuclear medicine physician (PT), blinded to 
histology and clinical outcome, using Matlab (MathWorks, Inc., 
Natick, MA, USA; Image Processing Toolbox and own code). 
The procedure was performed as described earlier.25 Briefly, 
the images were normalized against background uptake, de-
fined with a region of interest placed into the hemisphere op-
posite to the tumor as proposed by the German guidelines for 
brain tumor imaging.29 Tumor segmentation was conducted by 
placing seed‐points inside the tumor followed by automated re-
gion‐growing, which was limited, by a margin of 1.3 times the 
background activity. If necessary, blocking lines were placed 
manually to prevent the algorithm from growing into surround-
ing anatomic structures with increased PET signal. Maximum 
tumor to brain ratio (TBR), mean TBR, metabolic tumor vol-
ume (MTV), and the product of mean TBR and MTV, which 
was defined as total lesion normalized uptake (TLU), were cal-
culated on floating‐point data (see data in Table S4).

2.4 | Building of ML models
Machine learning modeling and statistical analyses were per-
formed in R (version 3.4.0) (R core team, Vienna, Austria).
For all testing purposes, the data set for each of the seven 

prediction models was randomly split into one development 
subset containing 2/3 of all patients (n = 132) and one inde-
pendent test subset containing 1/3 of all patients (n = 57). 
No data from the independent test subset were used for the 
development of Models 1‐7. As ML technique, the random 
forest algorithm, implemented as an ensemble of decision 
trees constructed from randomly selected features and train-
ing data points, was chosen due to its short training periods, 
the capability of managing incomplete and noisy data, good 
interpretability, and high predictive power.30,31 To predict 
right censored survival outcomes random survival forest 
(RSF) models were developed using the randomForestSRC 
package (R core team).32 The VIMP function was applied to 
calculate feature permutation importance. Altogether seven 
prediction models on the basis of different feature classes 
were trained (see Table 3 for selected features): Firstly, four 
models were generated on single feature classes including 
"clinical" (model 1 (M1)), "pathological" (M2), "MRI‐based" 
(M3), and "FET‐PET/CT‐based" (M4). Secondly, the benefit 
of combining clinical and pathological features (M5) and all 
four feature classes combined (M6) was tested. Finally, treat-
ment features were added to all four feature classes (M7).

2.5 | Performance evaluation
The performance was assessed on the independent patient test 
set. The concordance index (C‐index) served as performance 
estimator. Direct comparison of models was performed using 
the rcorr.cens function of the Hmisc package. For dichotomi-
zation of patient subgroups, the maximally selected rank sta-
tistics method was applied to the training set to determine the 
optimal cut‐off value using the maxstat package.33 The same 
cut‐off value was then used to define high‐risk and low‐risk 
patients in the validation set. Log‐rank tests were conducted 
to test for statistical significance between patient risk groups. 
The area under the receiver operator characteristic curve 
(AUC) was calculated using the survivalroc package.

Model and feature class Features

M1: "Clinical" Age, KPS, Gender

M2: "Pathological" MGMT‐promoter‐methylation, IDH‐mutational 
status, Ki 67%‐PI

M3: "MRI‐based" VASARI features

M4: "FET PET/CT‐based" TBRmax, TBRmean, MTV, TLU

M5: "Clinical/Pathological" M1 + M2

M6: "Clinical/Pathological/Imaging" M1 + M2 + M3 + M4

M7: "Clinical/Pathological/
Imaging" + treatment features

M1 + M2 + M3 + M4 + RTCT, surgery, PTV, 
TD, SD, adjuvant CT, therapeutic Intervala

CT: chemotherapy; KPS: Karnofsky performance status; MTV: mean tumor volume; PI: proliferation index; 
PTV: planning target volume; RT: radiotherapy; RTCT: radiochemotherapy; SD: single dose; TBR: tumor to 
brain ratio; TD: total dose; TLU: total lesion uptake.
aBetween surgery and RT. 

T A B L E  3  Machine learning models 
with multimodal feature classes
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3 |  RESULTS

3.1 | Prediction of patients' OS
First, the predictive value of ML models based on single vari-
able classes was tested for OS (see Table 4 for C‐index values 
and confidence intervals of all models). The clinical (M1) and 
pathological (M2) models showed low predictive capability 
in both development (C‐index: M1 0.74 [95% confidence 
interval: 0.67‐0.81], M2: 0.64 [0.58‐0.71]) and independ-
ent test set with no significant difference from random in the 
latter (C‐index: M1 0.59 [0.48‐0.70], M2: 0.49 [0.37‐0.60]). 
With a C‐index of 0.93 (0.87‐1.00), the MRI‐based model 
(M3) had the highest prediction performance on the develop-
ment set, which could be validated, with a reduced C‐index 
of 0.61 (0.51‐0.72) significantly different from random. The 
FET‐PET/CT‐based model (M4) showed high prediction ca-
pacity on the development set (C‐index: 0.93 [0.86‐1.00]), 
which was, however, not reproducible on the validation set 
(C‐index: 0.54 (0.44‐0.65)).

Combining clinical and pathological variables (M5) did 
confer a non‐significant improvement (test‐set, p‐value: 
0.18) above the performance of the clinical model (C‐index: 
development: 0.75 [0.68‐0.82], testing: 0.64 [0.53‐0.75]). 
The combination of all feature classes (M6) did trigger a 
further performance increase (C‐index: development: 0.94 
[0.88‐1.00], testing: 0.70 [0.59‐0.81]) significantly bet-
ter than all single feature class models alone (test‐set: M1 
P = 0.018, M2 P = 0.003, M3 P = 0.044, M4 P = 0.003).

In the final model, treatment features describing the de-
livered therapeutic regimens were added to the model M7. 
This led to a further rise above the best performing com-
bined model (M6) with a C‐index of 0.96 (0.89‐1.00) in the 
development set and 0.73 (0.62‐0.84) in the independent 
test set without reaching significance in direct comparison 
(P = 0.34).

The recently proposed nomogram from the work of 
Gittleman et al26 was tested on the independent test set using 
the 12‐month survival probabilities. It achieved a predictive 
performance with an AUC of 0.64 in comparison with AUCs 
of 0.75 and 0.80 for models M6 and M7.

Next, two risk groups were defined by the predictors of 
the models M6 and M7 using cut‐off points optimized on the 
training set. Kaplan‐Meier survival curves of the validation 
cohort are shown in Figure 1. Both models significantly dis-
cerned high‐risk from low‐risk patients (M6 P = 0.0048, M7 
P = 0.0156).

3.2 | Prediction of patients' progression‐
free survival
The same model categories were developed to predict PFS 
(see Table 4 for C‐index values and confidence intervals). 
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Compared to the survival models, predictive performance 
was lower for the single feature class models clinical M1, 
pathological M2, MRI‐feature‐based M3, and FET‐PET/CT‐
based M4 in the development set (C‐indices of 0.68, 0.63, 
0.73, and 0.80, respectively). On the independent test set, 
prediction performance achieved even further reduced results 
(C‐indices 0.56, 0.50, 0.60, and 0.45 for M1, M2, M3, and 
M4, respectively).

The multimodal models predicted comparably to the best 
single feature class model M3. The combined clinical and 
pathological model 5 achieved a C‐index of 0.70 (0.63‐0.77) 
in the development and 0.61 (0.51‐0.71) in the independent 
test sets, which was non‐significantly compared to the clini-
cal model M1 (test‐set, P = 0.096). The combined model M6 
achieved C‐indices of 0.81 (0.74‐0.88) on the development 
set and 0.68 (0.57‐0.78) on the independent test set signifi-
cantly outperforming the single feature class models M1 
and M3 (M1 P = 0.016, M2 P = 0.196, M3 P = 0.014, M4 
P = 0.233).

Finally, adding therapeutic information to M7 increased 
prognostic performance further up to a C‐index of 0.79 
(0.72‐0.84) on the development set and 0.71 (0.60‐0.81) on 
the independent test set with a significantly better predic-
tion than all other models (M1 P = 0.0013, M2 P = 0.023, 
M3 P = 0.00057, M4 P = 0.0001, M5 P = 0.002, M6 
P < 0.0001). The Gittleman nomogram, which was generated 
to predict survival at 12 months, showed worse prognostic 
capacity with an AUC of 0.67 in comparison with AUCs of 
0.82 and 0.83 for models M6 and M7. Kaplan‐Meier curves 
plotting PFS for patient subgroups separated by the predic-
tion models did not show significant separations for M6 and 

M7 (see Figure 2). For M7, however, there was a trend toward 
significance (P = 0.095).

3.3 | MRI‐based and therapy‐related 
feature dominate OS prediction performance
In order to evaluate the importance of single features for the 
performance of the combined models M6 and M7, the per-
mutation feature importance was assessed (see Table S5). 
Consistent with the observation of model M3 as best sin-
gle feature class model, MRI‐based features were the most 
important features besides patients’ age. In contrast, model 
M7 was dominated by treatment features, such as single and 
total radiation dose, PTV volume and surgery. Besides, the 
feature classes MRI‐based, clinical, and pathological were 
among the 10 best performing features. The most important 
MRI‐based features in both models included "Satellites" and 
"Thickness of CE margin.".

In PFS prediction models, M6 and M7 MRI‐based fea-
tures appeared to be the most important feature class beside 
the known prognostic factors "age," "KPS," "gender," and 
"MGMT" status (see Table S6). Model M7 showed a similar 
feature importance distribution as for OS with treatment fea-
tures providing the most important features. The MRI‐based 
features "deep white matter invasion," "ependymal inva-
sion," "proportion of resection of enhancing tumor," and of 
"edema" were among the 10 most important features in both 
models.

Consistent with the low performance of model M4, FET‐
PET/CT‐based features did not show a high permutation im-
portance for prediction of OS and PFS.

F I G U R E  1  Kaplan‐Meier curves for overall survival showing the performance model 6 (M6) and model 7 (M7) in the internal validation 
cohort. The developed classifiers for overall survival M6 and M7 were used to assign patients to a “high‐risk” and “low‐risk” group in the 
validation patient cohort. The log‐rank test was applied to test for significant separation of survival curves and calculation of P‐values. Model 6 
did divide significantly patient subgroups on the validation test set (P = 0.00458). Model 7 significantly divided high‐risk form low‐risk patients 
(P = 0.0156)



134 |   PEEKEN Et al.

4 |  DISCUSSION

In this work, we have demonstrated the potential of ML‐
based predictive models for the prognostic classification of 
GBM patients. Exploiting the capabilities of RF models to 
deal with large feature numbers and missing data, we as-
sessed the value of certain feature classes and their combina-
tory effect. Moreover, we evaluated the benefit of integrating 
treatment features.

OS prediction was dominated by MRI‐based features hav-
ing the highest single model performance (M3) and showing 
high feature representation in the combined models M6 and 
M7. The feature classes in clinical and pathological models 
showed lower predictive performance. However, clinical and 
pathological were consistently selected for the combined 
models M6 and M7. For both prediction tasks, combining all 
pre‐therapeutic feature classes inside model M6 did increase 
prognostic performance above the best single feature class 
model.

Finally, adding therapeutic information led to a further 
increase in prognostic performance for OS and PFS with a 
higher predictive performance compared to the formerly pro-
posed nomogram by Gittleman et al.26 Kaplan‐Meier survival 
analysis showed a significant separation of high‐risk from 
low‐risk patients for the OS model.

Multiple previous studies have analyzed the prognos-
tic potential of semantic MRI‐based features alone or in 
conjunction with clinical or pathological features. A sim-
ple model based only on three semantic imaging features 

"volume," "T1/FLAIR‐ratio," and "hemorrhage" achieved 
a 12‐month AUC of 0.67 for survival inferior to the com-
bined models M6 and M7 (AUCs of 0.75 and 0.80, respec-
tively) and similar to the clinical normogram by Gittleman 
et al22 Two further studies could demonstrate an incremen-
tal benefit by combining clinical features with VASARI 
features yielding a C‐index of 0.69, respectively.20,34 In our 
study, model M6 combining MRI‐based features with clin-
ical, pathological and FET PET/CT‐based features showed 
a similar performance of 0.69. This may indicate that clin-
ical and semantic imaging may be sufficient for pre‐thera-
peutic prognostic assessment.

In recent years, quantitative computational imaging fea-
tures ("radiomics") have been shown to add prognostic value 
above clinical and molecular factors in GBM patients.35,36 
Interestingly, a combined clinical and radiomic model 
achieved similar prognostic performances with C‐indices 
of 0.70 and 0.65 for OS and PFS, respectively. A radiomic 
model would have the great advantage of being less opera-
tor‐dependent. However, multiple technical hurdles including 
the dependency of image acquisition parameters, equipment, 
preprocessing, and feature extraction need to be solved before 
safe clinical applications. Until then, semantic imaging fea-
ture may constitute a valuable alternative that is less depen-
dent on technical variances.

It should be noted that this study was performed on the 
basis of a retrospective patient cohort. However, treatment 
regimens were overall rather homogenous with primary ther-
apy following the recommendation of Stupp et al11 in 74% of 
patients. Prognostic performance was tested on an internal 

F I G U R E  2  Kaplan‐Meier curves for progression‐free survival showing the performance of model 6 (M6) and model 7 (M7) in the internal 
validation cohort. The developed classifiers M6 and M7 for progression‐free survival were used to assign patients to a “high‐risk” and “low‐risk” 
group in the validation patient cohort. The log‐rank test was applied to test for significant separation of survival curves and calculation of P‐values. 
No significant separation of PFS curves could be observed for model 6 (P = 0.133). For model 7, there was a separation of survival curve without 
reaching statistical significance (P = 0.0949)
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validation cohort lowering available patients for model gen-
eration. In contrast to the above‐mentioned benefits of ML‐
based models, model generation requires relatively large 
training sets. Limited patient numbers thus foster instability 
of model performances, which may further be increased by 
missing data.

In this study, we analyzed the predictive value of FET‐
PET/CT‐based features in model M4. M4 showed high prog-
nostic performances for both prediction tasks in the training 
set, which could not be reproduced in the independent test 
set. In contrast, previous studies have shown prognostic po-
tential for OS and PFS.23-25 There are two reasons that might 
explain an underestimation of the FET‐PET/CT prognostic 
effect. First, the patient number with available PET data was 
relatively low compared to the total patient number. Second, 
two distinct reconstruction methods were used that may have 
led to inconsistencies in PET measures. A prospective study 
should be performed to evaluate the effect of FET‐PET/CT 
features. In the future, prognostic performance might be en-
hanced by including texture features or dynamic FET‐PET/
CT measures.25,37

Current prognostic models are often based on clinical in-
formation. In recent years, a large number of novel prognostic 
imaging and molecular‐based biomarkers have been identi-
fied.38-41 Incorporating treatment features into a CDSS may 
increase the prognostic efficacy by quantifying the effect of 
partially given or omitted therapies.27

In summary, we demonstrated the applicability of 
ML models for the prediction of patients’ OS and PFS. 
Semantic MRI‐based features for OS and PFS showed rel-
evant prognostic value. The inclusion of treatment data 
further increased predictive performance and may help to 
optimize follow‐up procedures or 2nd line therapy regi-
mens as CDSS.
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