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Figure 1: Prof. Richard Feynman lecturing on modes to undergraduates in 1962 (a) and his summary on
the topic on the blackboard (b) [1].
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Abstract

Exterior problems describe effects in not entirely closed areas. They are an essential field of acoustics in

which, for example, unwanted environmental noise from technical equipment needs to be minimized or

the exterior noise of vehicles is optimized. In addition, the radiated sound power outdoors is usually used

to describe sound sources. Since experimental investigations are often expensive and associated with

uncertainties, the use of numerical methods is becoming increasingly important. Despite considerable

technical and methodological developments in recent years, the calculation of exterior acoustic problems

is still very expensive in terms of time and memory requirements and there is a substantial need to

develop efficient methods and algorithms for these problems.

Modal superposition is a well-established and efficient mathematical concept applied in structural

dynamics and interior acoustics. However, the transfer to exterior acoustics is complex due to the

specific mathematical properties of the systems resulting from the boundary conditions. With the

frequency-dependent acoustic radiation modes (ARM) and the frequency-independent normal modes

(NM), two modal quantities have been documented in the literature that potentially provide a benefit

in efficiency compared to conventionally used harmonic analysis. While ARM based on the boundary

element method (BEM) are already widely investigated and used in practice, NM based on the finite

and infinite element method (FEM, IFEM) are relatively new and the relationship to ARM is not well

understood.

The present dissertation addresses these knowledge gaps and contributes to a deeper understanding

of modal quantities in exterior acoustics. Tools and criteria are developed to determine physically

relevant modes for the efficient numerical solution of these problems. For the first time, ARM are

determined based on the frequency-independent system matrices of FEM and IFEM in order to create

the same calculation basis for both modal methods. Their properties and dependencies on the underlying

numerical approaches are analyzed in depth and experiences are made for a good balance between

efficiency and accuracy. Appropriate models are used to investigate the nature and acoustic significance

of the modes, thus developing a deeper understanding of their physical effects. It is described how the

modes belong to different groups and criteria and methods for the identification and classification of the

different types and their acoustic effects are developed on the basis of mathematical properties of the

corresponding eigenvalues and eigenvectors.

Based on the proposed and tested tools, this work presents essential innovations and findings on ARM

and NM for the efficient solution of exterior acoustic problems. For the primarily investigated NM and

simple radiator geometries with cavities it is shown that, with a considerably reduced modal basis, a

very high accuracy (relative error of the sound power compared to harmonic analysis below 1%) can be

achieved in wide frequency ranges.
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Kurzfassung

Außenraumprobleme beschreiben Effekte in nicht vollständig geschlossenen Gebieten. Sie sind ein

wesentliches Aufgabengebiet der Akustik, in dem beispielsweise unerwünschter Umgebungslärm techni-

scher Anlagen minimiert oder die Außengeräusche von Fahrzeugen optimiert werden sollen. Darüber

hinaus wird zur Beschreibung von Schallquellen in der Regel die abgestrahlte Schallleistung im Freien

herangezogen. Dementsprechend aufwändig und unsicherheitsbehaftet gestalten sich häufig messtech-

nische Untersuchungen, sodass die Verwendung numerischer Verfahren vermehrt in den Fokus rückt.

Die Berechnung akustischer Außenraumprobleme ist trotz erheblicher technischer und methodischer

Entwicklungen in den vergangenen Jahren noch immer sehr zeit- und ressourcenintensiv und es besteht

ein hoher Bedarf zur Entwicklung effizienter Methoden und Algorithmen für diese Probleme.

Modale Superposition ist ein in strukturdynamischen und Innenraum-akustischen Problemstellungen

etabliertes und effizientes numerisches Lösungsverfahren. Allerdings gestaltet sich deren Übertragung

auf den akustischen Außenraum aufgrund der spezifischen mathematischen Eigenschaften der Syste-

me infolge der Randbedingungen aufwändig. Mit den frequenzabhängigen acoustic radiation modes

(ARM) und den frequenzunabhängigen normal modes (NM) sind in der Literatur zwei modale Größen

dokumentiert, die gegenüber der klassischerweise verwendeten harmonischen Analyse potentiell einen

Effizienzvorteil liefern können. Während die ARM auf der Basis der Randelementemethode (BEM)

bereits vielfältig untersucht und praktisch eingesetzt werden, sind NM auf der Grundlage von Finite und

Infinite Elemente Methode (FEM, IFEM) sowie die Zusammenhänge zu den ARM wenig erforscht.

Die vorliegende Dissertation befasst sich mit diesen Wissenslücken und trägt zu einem tieferen Verständ-

nis modaler Größen in akustischen Außenraumproblemen bei. Zur Ermittlung physikalisch relevanter

Moden für die effiziente numerische Lösung der Außenraumakustik werden Werkzeuge und Kriterien

entwickelt. Hierfür werden erstmals ARM auf Grundlage der frequenzunabhängigen Systemmatrizen

von FEM und IFEM bestimmt, um für die beiden modalen Verfahren die gleiche Berechnungsbasis

zu schaffen. Es werden die Eigenschaften und Abhängigkeiten der modalen Verfahren von den zu-

grundeliegenden numerischen Methoden tiefergehend analysiert und Erfahrungswerte für eine gute

Balance zwischen Rechenaufwand und Genauigkeit generiert. Anhand geeigneter Modelle werden

die Beschaffenheit und die akustische Bedeutung der Moden untersucht und so ein tiefergehendes

Verständnis ihrer physikalischen Effekte entwickelt. Es werden Gruppenzugehörigkeiten beschrieben

und Kriterien und Verfahren zur Identifikation und Klassifizierung unterschiedlich gearteter und wirkender

Moden anhand mathematischer Eigenschaften der Eigenwerte und -vektoren entwickelt.

Zur effizienten Lösung akustischer Außenraumprobleme stellt diese Arbeit mit den vorgeschlagenen

und erprobten Werkzeugen wesentliche Neuerungen und Erkenntnisse zu ARM und NM vor. Für die

schwerpunktmäßig untersuchten NM und einfache Strahlergeometrien mit Kavität wird gezeigt, dass

mit einer stark reduzierten modalen Basis in weiten Frequenzbereichen eine sehr hohe Genauigkeit

(relativer Fehler der Schallleistung gegenüber harmonischer Analyse unter 1%) erzielt werden kann.
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CHAPTER 1

Introduction and Outline

In which the physical and mathematical problem is defined and motivated in an engineering context,

the related literature is classified and the scientific contribution and objectives of the current work are

presented.



1 Problem Formulation and Motivation

In many practical applications in acoustics, free-field conditions apply, i.e. a sound source or the area

of interest is not or only partially enclosed by reflective boundaries and sound energy emerges from

the system towards infinity. Examples are turbine noise from airplanes, rooms with open windows, and

sound radiation from trains or cars on the track. These conditions must also be created if only the

characteristics of an acoustic radiator are of interest regardless of its reflecting environment, e.g. for the

determination of the sound power of a machine, or if only direct sound paths to a receiver are desired as

for recording purposes. Within the scope of this dissertation these problems are referred to as exterior

acoustic problems. A distinction can be made between full-space and half-space problems. While in

the first case the sound source is completely surrounded by a non-reflective outer boundary as one

can assume approximately for aircraft in high altitude, the half-space problem denotes a semicircular or

semispherical domain in which the even ground is (fully) reflective. This assumption is valid for stationary

sound sources or vehicles in outdoor environments. The present work deals with the sound pressure in

fluids. Solid structures are considered as obstacles in the fluid-filled domain. Fluid-structure interaction,

material inhomogeneities as well as flow phenomena are not considered in this work.

The sound power P is a source-describing energy-related quantity, which refers only to the total radiation

of sound by the source, but not to its directionality, the environment or the receiver location. It is often

the objective to minimize this quantity for noise control purposes [2]. According to the ISO standard

3745 [3], measurements of the sound power have to be conducted in an anechoic chamber that mimics

free-field conditions with the help of porous, highly-absorbing walls. The sound pressure p at a certain

point, i.e. the immission, is the consequence of the emission of sound from sources, vibrating surfaces,

or reflections by obstacles or in the surrounding room. Mathematically, the spatial sound pressure field

can be described by the Helmholtz equation as a function of a harmonic frequency. In order to solve

this equation uniquely, boundary conditions need to be specified at the surfaces of the obstacles and

at the ground in half-space problems. Another condition at infinity is required in order to satisfy the

requirements of the free-field environment. Arnold Sommerfeld calls it the condition of radiation [4,

p. 189], whereupon

“the sources must be sources, not sinks, of energy. The energy which is radiated from the

sources must scatter to infinity; no energy may be radiated from infinity into [...] the field.”

Since acoustic measurements are often associated with a considerable effort and uncertainties and

since laboratories and equipment are expensive and often not available, it is desirable to simulate and

predict the acoustic behavior of products emitting sound early in the design phase. Thus, it is the subject

of extensive research and development. The utilization of efficient methods and algorithms allows the

control and optimization of the radiated sound power during the development of virtual prototypes [5, 6].

There are many suitable numerical methods in the field of computational acoustics with a number of

advantages and disadvantages, and their use must be carefully weighed depending on the problem.
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Problem Formulation and Motivation

Besides accuracy, the related computational costs in storage and time are crucial. In particular, inversions

of large-scale matrices in a wide range of frequencies are expensive, so that approaches of model order

reduction (MOR) can make a major contribution in terms of efficiency. This includes a reduction of the

size of a discrete system or the approximation of the model by an appropriate substitution model [7, 8].

One common MOR technique in structural mechanics and interior acoustics is the concept of modal

decomposition. Here, the dynamic behavior of the system is approximated by the superposition of

linearly-independent, orthogonal vibration patterns, so-called mode shapes [9–11]. Depending on the

frequencies and the location of excitation of the system, the total vibrational behavior is often dominated

by only a few modes and can thus be reconstructed with a reduced computational effort when they are

known a priori. For numerical models, the modal decomposition can be mathematically conducted by

solving an eigenvalue problem to obtain the eigenvalues and eigenvectors with the latter representing the

mode shapes. In the literature, modes in (room) acoustics are often restricted or understood as standing

waves in finite, bounded domains [12]. However, if the boundary or the domain is partially absorbent, i.e.

damping occurs, the complex-valued eigenvectors partially consist of both standing waves and traveling

waves [13]. In a similar way, standing and radiating wave forms are found for modal quantities in exterior

acoustic problems [14, 15].

Two types of modal methods applied to exterior acoustics are considered within the scope of this

dissertation: frequency-dependent acoustic radiation modes (ARM) and frequency-independent normal

modes (NM). While on the one hand much research has been published on ARM [14], on the other

hand, little is known about NM in exterior acoustic problems [16]. Although several studies have

already proven applicability of the normal modes approach [15, 17–19], there is still a lack of physical

understanding and knowledge about the individual contribution of single modes to the total superimposed

solution [16]. Furthermore, the relationships to ARM and the underlying numerical methods have not yet

been sufficiently investigated.

The main objective of this dissertation is the enhancement of computational techniques for the efficient

prediction of the radiated sound power of sound sources and the sound pressure field around them

under free-field conditions. For this purpose, NM and ARM are further investigated and compared to

each other. In particular, the NM approach is refined and gradually brought to practical application.

This dissertation is structured as follows: Following the literature review in the subsequent Sec. 2, three

central research questions will be formulated in Sec. 3 of the first chapter. Chapter 1 then concludes with

the objectives of the attached publications to address the research gaps. The second part, Ch. 2, deals

with the physical principles and methods used and refined in this work. In the subsequent Ch. 3, the

main results and developments of the attached publications and the respective individual contributions

of the candidate are presented. Chapter 4 is dedicated to the discussion of the novelty of the present

work with reference to the literature and occasionally provides a look at possible future research. The

appendix finally contains the three publications of the author.
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Introduction and Outline

2 Literature Overview

The literature references, which serve as a foundation for this work, are structured thematically. First,

an overview of available numerical methods for the calculation of exterior acoustic problems is outlined

and a decision is made and justified as to which method is suitable within the scope of this work.

Subsequently, modal methods are put into the context of exterior problems in acoustics and the two

techniques examined in this thesis are reviewed. Finally, possible practical applications of the considered

methods and the requirement for developing efficient algorithms in this context are discussed.

2.1 Numerical Techniques in Exterior Acoustic Problems

With the introduction of computer-aided, numerical methods in the engineering sciences, new possibilities

arose in the field of technical acoustics. Numerical or computational acoustics is a field of application

of numerical mathematics and describes the approximate calculation of solutions of acoustic wave

phenomena with the help of algorithms and computers. At the center of numerical methods is the

solution of differential equations, whereby a continuous problem, which may not be solved analytically or

only with considerable effort, is discretized and then solved approximatively. Lloyd N. Trefethen defines

numerical analysis in his essay published in 1992 [20]. He resolutely contradicts the presumption that

“numerical analysis is the study of rounding errors” and instead provides a courageous motivation from a

mathematician’s point of view [20, p. 5]:

“[. . . ] our central mission is to compute quantities that are typically uncomputable, from an

analytical point of view, and to do it with lightning speed.”

The scope of this dissertation addresses acoustics in fluids neglecting flow and fluid-structure interaction,

underlying the Helmholtz equation for the description of the spatial sound pressure field.

In the following, state-of-the-art numerical methods for the solution of exterior acoustic problems are

reviewed and discussed with regard to their suitability for the calculation of the modal quantities being

considered. An essential requirement is thus the provision of frequency-independent system matrices.

2.1.1 Boundary Element Method (BEM)

A widely used method in numerical acoustics is the boundary element method (BEM), which is suitable

for both interior and exterior acoustic problems. Hereby, Green’s function is the fundamental solution

of the underlying Kirchhoff-Helmholtz integral equation and implicitly fulfills Sommerfeld’s radiation

condition [21]. Hence, BEM is attractive for exterior problems because the complexity of the problem can

be reduced: Instead of the entire, infinitely large volume domain, only the limiting surfaces of obstacles

need to be considered. The resulting system matrices are therefore usually small compared to the
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corresponding discretization of the entire or a truncated fluid domain. This is the case with the finite

element method (FEM) in combination with suitable free-field boundary conditions. However, BEM

matrices are frequency-dependent and dense in contrast to sparse and frequency-independent system

matrices in FEM, which significantly increases their memory requirements and reduces their performance

during mathematical operations such as matrix inversions. The application in large systems is thus

strongly restricted.

Conventional BEM for exterior acoustics suffers from the phenomenon of irregular frequencies. These

are derived from the solutions of the interior sound-soft bounded (Dirichlet) problem (cf. Ch. 2, Sec. 1.1)

and can be found as non-physical resonances in the exterior domain. The effect is due to non-unique

solutions of the underlying boundary integral equation and can be mitigated by application of the Burton

and Miller method [22, 23] or CHIEF (combined Helmholtz integral equation formulation) [24, 25].

Moreover, numerical damping is a recently revealed effect for BEM problems that attenuates the sound

pressure solution in a non-physical way. It was observed and studied for acoustic interior problems by

Marburg [26]. Baydoun et al. [27] and Marburg [28] get to the bottom of the effect, provide a quantification

of the phenomenon and relate it to the pollution effect widely known in FEM [29–31].

A quasi-periodic BEM formulation is utilized in the example of Helmholtz-resonators and periodic noise

barriers by Fard et al. [32, 33] and by Ziegelwanger et al. [34] by application of the fast multipole

method. Fast multipole BEM allows the application of iterative solvers in order to generate system

matrices that are as sparsely populated as possible [35, 36]. Fischer and Gaul [37] use the approach

for coupled systems with fluid-structure interaction (FSI) and FEM for the simulation of the structural

part. Czygan and von Estorff [38] previously described FSI coupled problems by the combination of

BEM and nonlinear FEM for effects, such as material nonlinearities or large displacements of obstacles

in unbounded fluid-filled domains. Moser et al. [39] present an adapted BEM formulation for an infinite

boundary element, which allows the modeling of infinite surfaces by introduction of special mapping

functions on the basis of the infinite element method (IFEM).

Reference is made to the textbooks of Ciskowski and Brebbia [40] and Kirkup [41] as well as editions by

Wu [42], von Estorff [43], and Marburg and Nolte [44] for more in-depth information on the method.

Due to the frequency dependence of the system matrices generated by the BEM, it is applicable for

acoustic radiation modes (cf. Sec. 2.2.1), but not for normal modes (cf. Sec. 2.2.2) that fall within the

scope of this work. Therefore, it is not considered except for comparison purposes.

2.1.2 Finite Element Method (FEM)

Probably the most common numerical method in acoustics is the finite element method (FEM), the basics

of which are presented in numerous textbooks [21, 43, 45, 46]. The method has its origin in structural

mechanical analysis in aircraft construction in the middle of the 20th century when it was derived from
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the stiffness method [47, 48]. Clough [49] showed the convergence of the method to analytical solutions

by reducing the size of finite elements to which he gave the method’s name. The universal applicability

of the method ensured rapid dissemination beyond mechanical engineering. This was further reinforced

by the development of capable computer technologies. In the 1960s, Craggs [50] and Gladwell [51]

published first works in the context of engineering acoustics. The field of application of FEM in acoustics

is now very broad. The method is used for structure-borne sound, for airborne sound and even for

coupled problems, to name a few examples.

Different formulations of FEM vary primarily in the choice of the discretization method. The most common

is probably the (Bubnov–)Galerkin scheme [21, 52]. A thorough derivation of the method will be given in

Chapter 2.

One of the weaknesses of FEM is its poor suitability in the high frequency range, which remains a subject

of current research [53–55]. The failure of the method at high frequencies with small wavelengths results

from a too coarse sampling of physical quantities. This is due to the number of nodes per finite element

(i.e. their polynomial order for interpolation) and their relative size in comparison to the wavelength.

Although explicitly described in the context of BEM, Marburg’s [56, 57] recommendation to use boundary

elements of quadratic or even higher order is applicable to finite elements as well. He also proposes

rules of element design in computational acoustics.

Harari et al. [58] provide a comprehensive cost comparison between FEM and BEM. Von Estorff [59]

presents an overview of procedures that reduce the computational effort and time in numerical acoustics.

For instance, this includes the simplification of geometries, improved element formulations, and acoustic

transfer functions.

In the case of sound-hard reflecting outer boundaries of the computational domain, the system is

regarded as an interior problem as it is often the case in vehicle and room acoustics. This also includes

the treatment of partially or completely absorbing surfaces such as seats, carpets or absorber elements

on ceilings, which can be represented by the concept of boundary admittances or impedances as

demonstrated by Anderssohn and Marburg [60, 61].

The efficient and numerically stable calculation of wave propagation for exterior problems turns out

to require special handling: An infinitely large exterior volume cannot be completely discretized and

simulated by using a volume-related technique as FEM. To remedy the situation, an artificial boundary is

typically introduced to reduce the unbounded free field to a finitely extended computational FE domain

around the area of interest. Either absorbing conditions are directly applied to the envelope of the finite

element domain or beyond in the form of an additional layer attached to it. They face the challenge of

avoiding spurious reflections at the artificial outer boundary of the FE domain. The works of Tsynkov [62],

Shirron and Babuška [63], and Thompson [54] each give a thorough overview of procedures for the

treatment of exterior Helmholtz problems. Three examples of such methods are artificial absorbing

boundary conditions (ABC), perfectly matched layers (PML) and the infinte element method (IFEM).
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These methods are reviewed in the following.

2.1.3 Artificial Absorbing Boundary Conditions (ABC)

The concept of absorbing boundary conditions (ABC) takes up the lack of a missing free-field boundary

condition inherent in FEM. An infinitely large, unbounded medium is artificially truncated. The inner

part, which encloses the region of interest, is discretized by finite elements, while the envelope of this

computational domain undergoes a special numerical treatment.

ABC are generally classified in local and non-local non-reflecting absorbing boundary conditions. A

slightly outdated but still comprehensive overview on these is provided by Givoli et al. [64]. Selected

review articles to be referenced here were published by Givoli [65], Tsynkov [62] and Hagstrom [66].

Reference for further information is still made to a book by Givoli [67], to the third chapter in Ihlenburg’s

book [52] and Givolis contribution to an edition [68].

Low order (local) absorbing boundary conditions, now often regarded as classical ABC, include the two

well-known formulations by Engquist and Majda [69] and by Bayliss and Turkel [70]. Local conditions

are generally not fully non-reflective at the truncated boundary. Their accuracy can be increased

including higher-order derivatives, which substantially raise computational costs and the complexity of

implementation [63, 71]. (Local) ABC of higher order, on the other hand, do not only provide improved

accuracy, but can also be implemented in practice up to any desired order. These formulations do

not contain any higher-order derivatives at all, but the price to pay is the need to introduce auxiliary

variables [72–74]. The first high-order ABC was devised by Collino [75]. A review on such can be found

in Ref. 76. Rabinovich et al. [77] present a comparison of high-order ABC and perfectly matched layers.

Levin et al. [78] present a time-reversed algorithm with a second-order Engquist-Majda ABC for the

identification of obstacles using wave propagation.

Non-local ABC can be regarded as exact boundary conditions for non-reflecting radiation. The disadvan-

tage of these methods is the fact that all degrees of freedom on the truncated boundary and not only

the neighbors (as in the standard FEM) are coupled to each other, leading to dense blocks in the linear

system matrices. Moreover, this boundary condition involves an infinite series. It has to be truncated for

its numerical use so that the accuracy of the solution can be adjusted by the number of terms of the

finite series. The Dirichlet-to-Neumann (DtN) boundary condition is probably the most widely used exact

non-local ABC [79, 80]. It relates the unknown field quantity and its derivative, here sound pressure and

fluid particle velocity, and can be interpreted as an impedance boundary condition (BC) in the context of

acoustics [68, 81]. The inversion, admittance BC, is known as Neumann-to-Dirichlet map (NtD). Unlike

the local ABC, the shape of the boundary curve can only take on simple geometries.

For ABC, the frequency independence of the system matrices required for the calculation of normal

modes can only be achieved with research and development of specific auxiliary variables [82]. At the
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same time, losses of desirable mathematical properties are expected, which is why the approach cannot

yet be considered for the numerical analysis in this work, but in principle, the application is conceivable.

2.1.4 Perfectly Matched Layers (PML)

Another approach to satisfy physically meaningful radiation and decay of sound pressure in exterior

problems is to surround a truncated domain of finite elements by an artificially damping layer of finitely

extended perfectly matched layers (PML). The term perfectly matching refers to their property of non-

reflecting transition of acoustic waves into the outer computational domain, where the waves are

attenuated rapidly. However, since the PML domain is truncated at a finite distance, reflections occur at

its outer boundary, which are usually negligible due to the exponential decay of the sound waves inside

the PML [83]. Lassas and Somersalo [84] proved exponential convergence of the numerical solution

obtained by PML towards the exact solution as the thickness of the PML layer increases.

PML was first introduced by Berenger [85] in the field of electromagnetics. First applications in exterior

acoustics can be ascribed to Turkel and Yefet [86] and to Harari et al. [87]. It is an advantage of PML

that they can be used for rectangular, circular and even elliptical domains [88].

Teixeira and Chew [89] present a review on extensions of the PML for general orthogonal curvilinear

coordinates and for general media. The two book chapters by Bermúdez et al. [83, 90] provide a

thorough survey and review of the method and related publications in the field.

The technique is widespread and implemented in many commercial software packages. It has been

used for verification purposes within this work, for which the reported accuracy [83] is sufficient. The

system matrices generated by PML are generally frequency-dependent, which leads to more complicated

equations and the loss of favorable mathematical properties of the system matrices in case of time-

domain implementations [89, 91]. According to the present state of the art, the method is not yet feasible

for the calculation of NM without additional developments.

2.1.5 Infinite Element Method (IFEM)

An artificial layer of radially extented infinite elements is attached to the envelope of a truncated circular

or elliptical FE domain. Unlike absorbing layers, the IFE domain is not artificially dissipative, but rather

extents the numerical discretization to an infinite boundary [92]. The basis functions of these elements

contain polynomial and exponential functions. They fulfill Sommerfeld’s radiation condition to ensure

physically meaningful decay of the sound waves while propagating towards infinity. The polynomial

interpolation in circumferential direction is inherited from the discretization of the adjoining FE region.

Two essential formulations of the technique differ in the definition of the basis functions, namely the two

concepts of Bettess–Burnett and Astley–Leis. Early formulations from the 70s of the twentieth century
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were published by Bettess [93] and Bettess and Zienkiewicz [94]. Zienkiewicz et al. [95] adjust the

decay rate and integration procedure for 2D problems and obtain high accuracy for several examples.

Burnett [96] further develops the approach by introducing 3D, spheroidal infinite elements for the efficient

modeling of acoustic fields surrounding obstacles of virtually any practical shape. The Bettess–Burnett

IFEM formulation generates symmetric, but frequency-dependent system matrices.

The second essential formulation by Astley is initially known as wave-envelope elements [97–100]. The

weighting functions of the variational statement within the method, known as test functions, are divided

into either conjugated or unconjugated [92]. This property refers to the relationship of the complex-valued

basis and test functions. In the conjugated case, the complex arguments of the exponential functions in

both terms are of opposite sign and cancel out each other during multiplication in the integrals. This

ensures frequency-independence of the system matrices, but leads to asymmetry due to the different

choice of basis and test functions. The conjugated Astley–Leis infinite elements are characterized by

an additional geometric factor in the test function [92], which satisfies the variational formulations by

Leis [101]. Astley further distinguishes between separable and mapped infinite elements [92].

Demkowicz and Gerdes [102] have proven convergence and reliability of conjugated and unconjugated

approaches. Further studies by Shirron and Babuška [63] and Ihlenburg [103] have shown that the

stability of the solution of the unconjugated Burnett elements in the exterior domain is low, but they

provide a more accurate solution in the inner finite element region compared to Astley–Leis elements,

which, however, are more efficient in the exterior.

Comparative works and review articles have been published by Bettess [104], Gerdes [105–107] and

Astley et al. [108, 109].

Both formulations were adapted to respective coordinate transformations to apply the infinite elements

to 3D, ellipsoidal computational domains, such as by Burnett and Holford [110, 111] or by Astley [112].

Recent developments deal with the improvement of stability and conditioning of the infinite element

schemes. Astley and Coyette [113] investigate how the choice of radial basis functions influences the

condition number of the system matrices. This effect is illustrated for three formulations: the Bettess–

Burnett formulation, the conjugated Burnett formulation and the Astley–Leis formulation. Building

on the work by Shirron and Babuška [63], Astley et al. [114] introduce Legendre polynomials for

the radial interpolation, thereby increasing the orthogonality of the matrices, which perform much

better compared to Lagrange polynomials in terms of conditioning. Dreyer and von Estorff [115, 116]

proceed analogously and successfully introduce Jacobi polynomials for radial interpolation. They

underpin improved robustness and performance of iterative solvers, employed in practical exterior

acoustic problems with an improved formulation compared to the standard Astley–Leis infinite element

scheme [117]. Dreyer [118] and Petersen [119] deal in great detail with the numerical properties and

efficiency of adaptive finite and infinite element methods in their dissertations. Biermann et al. [120]

discuss the pollution effect for high frequencies and suggest higher-order FE shape functions and related
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p-FEM concepts with Bernstein polynomials in combination with Krylov subspace methods for iterative

solvers.

The property of static system matrices of the Astley–Leis scheme makes the method particularly suitable

for problems in the time domain, which is thoroughly presented by Astley et al. [121]. Van Ophem et

al. [122] apply model order reduction of a fully-coupled, exterior vibro-acoustic model for time-domain

simulations and preserve the stability of the full model while reducing the amount of degrees of freedom

significantly. They use this procedure in a time-reversal technique for identifying sound sources and

scatterers in exterior problems [123].

The use of the IFEM in media with a fluid flow is discussed in the works of Eversman [124], Hamilton

and Astley [125] and Retka et al. [19].

Hohage et al. [126] and Nannen et al. [127] introduce another type of infinite element that is derived

from a pole condition as radiation condition. It states that a transformation of the exterior solution

belongs to the so-called Hardy space, a mathematical class of functions, which leads to purely outgoing

waves. A further formulation by Shirron and Dey [128] for elongated, slender structures reduces or

entirely eliminates the need of finite elements in the immediate vicinity of radiators and instead allows

the infinite elements to be applied directly to any convex surface. They present both a conjugated and

an unconjugated formulation. Yang et al. [129] present a frequency-independent IFE method for the

treatment of semi-infinite spaces for soil-structure interaction which, however, does not seem to be

further documented in the literature and which requires adaptation for application to exterior acoustic

problems.

Due to the fact that both the FEM and the Astley–Leis IFEM provide frequency-independent system

matrices, the combination of them is chosen for the numerical implementation in the present work and

will be dealt with in more detail in the survey of methods in Chapter 2.

2.2 Modal Methods

Both in the experimental and in the numerical analysis of dynamic and acoustic systems, vibration

modes are an essential approach for their description, analysis and solution.

Ewins [9, p. 27] describes the term vibration modes in his book on experimental modal testing as

“[. . . ] the various ways in which the structure is capable of vibrating naturally, i.e. without

any external forcing or excitation, and so these are called the ’natural’ or ’normal’ modes of

the structure.”

In the context of discrete systems and their numerical computation, modal analysis requires the solution

of an eigenvalue problem containing the matrices that describe the system. Depending on the formulation

and definition of the problem, the eigenvalues obtained generally express the natural frequencies of
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the respective modes. In damped systems, the complex eigenvalues also contain informations about

their damping behavior. The eigenvectors of the eigenvalue problem represent the orthogonal, linearly

independent mode shapes, which Ewins describes in his book.

For the calculation of the dynamic properties of weakly damped solid structures, the tool of modal

superposition, i.e. the approximation of the overall dynamic behavior by the weighted sum of a number

of modes, is frequently used for linear systems. As a rule of thumb, it can be assumed that all modes

with resonance frequencies up to twice the highest frequency of the interested range can be taken

into account for vibrating solids in order to obtain a sufficiently accurate approximation [130]. The

computational effort of the modal superposition is hardly of any significance compared to the solution of

the eigenvalue problem, for which efficient algorithms have been developed in past decades regarding

miscellaneous problems [131].

Since structural-dynamic problems can be calculated relatively quickly according to the current state of

the art, Marburg [6] argues that more efficient algorithms are required for the calculation of acoustics in

fluids for sound radiation and the calculation of the sound power. In a combined FE/BE model, Merz

et al. [132] have efficiently minimized the radiation of sound power over a wide frequency range while

performing a structural optimization in the example of a submarine. As the solution must be determined

separately for each frequency, in harmonic analysis the calculation is particularly expensive in a wide

frequency range. The Padé-via-Lanczos approximation offers a possible solution by combining frequency

interpolation and model order reduction [133–135].

Although the concept of modes is often associated with standing waves, eigenvectors in unbounded

domains can also be interpreted as mode shapes of the fluid. Depending on the excitation and frequency,

they are more or less pronounced during modal superposition of the field quantity. For exterior acoustic

problems, however, the use of modal methods is less straightforward compared to interior acoustics and

for structural dynamics. The calculation of eigenvalue problems becomes more challenging because the

boundary conditions may lead to a loss of favorable mathematical properties of the system matrices,

such as sparsity and symmetry. In addition, it is discussed in the literature that spectra are continuous

for exterior problems and radiation, but may also contain discrete eigenvalues, so-called trapped

modes [136–140]. One type of vibration mode for unbounded problems in acoustics is based on Hardy

space infinite elements as described in the works by Hein et al. [141] and Hohage et al. [126]. By

application of the complex scaling method with frequency-independent PML coefficients, Hein et al. [142]

and Koch [143] were able to implement a PML formulation for the calculation of exterior modes. This was

specifically used for acoustical duct–cavity systems with non-reflecting ends by Hein et al. [144, 145]

and Duan et al. [146].

Two types of modes in exterior acoustics are considered in this paper. These are on the one hand the

frequency-dependent acoustic radiation modes and on the other hand frequency-independent normal

modes. Both concepts are reviewed below. To calculate normal modes, frequency independence of the
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system matrices is a fundamental condition. According to the above review of numerical methods for

the treatment of exterior acoustic problems, the Astley–Leis IFEM is found to be the most appropriate

method.

2.2.1 Frequency-Dependent Modes—Acoustic Radiation Modes (ARM)

With his research on the radiation operator in the quadratic form of the sound power, Borgiotti [147] laid

the foundation for acoustic radiation modes in the 1990s. He decomposed an operator equivalent to

the acoustic impedance matrix into orthogonal functions of the fluid particle velocities at the surfaces

using singular value decomposition. By distinguishing between velocity distributions with high and low

radiation efficiencies, Borgiotti presented a first approach of model order reduction. Photiadis [148]

studies the frequency-dependence of the radiation modes in exterior acoustics and describes how the

weakly radiating modes correspond to subsonic surface wave numbers, whereas efficiently radiating

modes correspond approximately to supersonic wave numbers. Since only the real part of the acoustic

impedance matrix (containing the sound pressure and the fluid particle velocity) is important for calculat-

ing the sound power, Sarkissian [149] subjects this to an eigenvalue analysis and thus obtains ARM

according to the present, most common definition. She recognized that the impedance matrix has to be

symmetric and further discovered a directly proportional relationship between ARM eigenvalues and

radiation efficiency. Cunefare [150] demonstrates that the most powerful radiating modes are already

formed with a small number of degrees of freedom (DOF). Additional DOF would primarily reveal modes

with a neglectible contribution to the total radiation of sound. Elliott and Johnson [151] show for the

sound radiation of a panel, that around 99% of the sound power is determined by only a small number of

modes. In order to retain the high accuracy of the approximation at higher frequencies, however, the

number grows as the frequency increases.

In their work on convergence and sensitivity of ARM with respect to small fluctuations of the velocity

excitation, Cunefare and Currey [152] came to the conclusion that efficiently radiating modes converge

quickly and are comparatively insensitive to disturbances. Chen and Ginsberg [153] consider both real

and imaginary parts of the acoustic impedance matrix for modal analysis for an estimation of the reactive

part of the sound power. Cunefare et al. [14] observed a grouping behavior of the radiation efficiencies

or ARM eigenvalues as functions of the frequency. Within these groups, the corresponding eigenvectors

represent multipoles of the same order, respectively.

Peters et al. [154] show that although the impedance matrix must be symmetric to determine ARM as

widely described in literature [153], it is often generated asymmetrically in practice. They found that this

is due to a discretization error of the collocation BEM, which decreases by refining the mesh. Finally,

they propose an operation to produce symmetry of the real matrix.

Due to the frequency-dependency of the acoustic impedance matrix, it follows that for each discrete

frequency, a single eigenvalue problem has to be solved and the modal superposition has to be conducted.
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The orthogonality of the eigenvectors with respect to the matrix is only given for the respective frequency.

Since modal analysis is conducted irrespective of excitations, it is sufficient to carry out these calculations

only once per geometry assuming the surface shape of the radiator remains unaffected. For changes

within the structure and varying velocity boundary conditions on the surfaces, a quick estimation of

the expected radiation behavior can be made for a large number of scenarios as shown by Kuijpers et

al. [155] and Kessels [156]. By structural optimization a so-called weak radiator could be constructed

by Naghshineh et al. [157]. The structural particle velocity distribution on its surface was optimized in

certain target frequencies in such a way that the vibration patterns resemble those of mode shapes with

low radiation efficiencies.

Studies by Peters et al. [158] are dedicated to the modal decomposition and reduction of ARM in FE/BE

coupled systems considering fluid-structure interaction. In a sequel [159], they additionally apply Krylov

subspace-based model order reduction (MOR) techniques for the efficient calculation of the fluid-loaded

structure. Based on the ARM, Marburg et al. [160] determine surface contributions to the radiated sound

power, which they compare to the acoustic intensity. Wu et al. [161] apply fast multipole BEM for an

iterative and efficient computation of the radiation modes in the example of a baffled plate. Liu and

Maury [162] provide an overview and scope of far-field and near-field ARM and present an improved

numerical method, the pressure-velocity method, of the latter modes. Ji and Bolton [163] introduce

structure-dependent radiation modes (s-modes) and differentiate these from the conventional acoustic

radiation modes (a-modes), providing that s-modes additionally consider frequency-independent normal

modes of the structure. The dependence of the modes on frequency and geometry is the subject

of the work of Liu et al. [164]. They also investigate an inverse method based on radiation modes,

in which these are used to reconstruct and describe the surface motion of a source [165]. Jones et

al. [166] address the lack of experimental verifications of ARM and comparisons with other sound power

measurement standards over wide frequency ranges.

The eigenvectors of the acoustic radiation modes are limited to degrees of freedom at surfaces of

fluid-loaded obstacles and do not permit a view on the sound pressure distribution in the medium beyond

the boundaries. This is different for the normal modes considered below.

2.2.2 Frequency-Independent Modes—Normal Modes (NM)

The concept of normal modes underlying this work mainly originates from three works by Marburg [16, 17]

and Marburg et al. [15]. The first part [17] introduces the method in the example of a one-dimensional

duct with Robin boundary conditions (cf. Sec. 1.1 in Ch. 2) and presents an analytical and a numerical

solution as well as an eigenvalue analysis. A first outlook towards reduced modal superposition is given

by testing three sorting criteria. For the second part of this series [15], the authors have applied the

Astley–Leis IFEM for 2D examples. They use a state-space formulation for the solution of the resulting

quadratic eigenvalue problem, which is described by Ruge [167] and by Tisseur and Meerbergen [168],
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and provide a workaround for the problem of singular matrices in case of circular domain shapes [100].

Besides well-known multipole mode shapes (e.g. monopoles, dipoles, quadrupoles), cavity modes

are found in the case of a open box structure and compared with those of the corresponding closed

cavity [15]. In contrast to ARM (cf. Chen and Ginsberg [153]), NM multipoles do not appear in groups

with always the same number of modes. The third part of the publication series [16] focuses on the

determination of modal sound pressure and sound power contributions. The sorting criteria are refined

compared to the first tests and comprehensive investigations for different load cases are presented.

Since normal modes have to be calculated only once for a set of frequency-independent system matrices,

the concept seems to be particularly suitable for optimization, if the surface of the radiator remains

unchanged and the fluid can be reconstructed by simple matrix-vector operations for varying velocity

excitations at the surfaces. Another publication by Marburg et al. [169] can be considered as part four of

the above series and takes advantage of this strength. They demonstrate the potential of the application

of normal modes in exterior acoustic problems for optimization of a finite beam with the aim to minimize

its radiated sound power. The superimposed modes were selected by their individual sound power

contribution. Although the results were promising, the performance of the method is not yet competitive

in comparison to the classical harmonic analysis since all modes have to be calculated in advance to find

identify their specific contribution to sound radiation. From a practical point of view, it can be deduced

that the objective must clearly be to identify the most contributing modes a priori.

In the example of a three-dimensional model of a recorder as a long, slender and hollow object, Fuß et

al. [18] use an iterative Arnoldi eigenvalue solver to calculate selected weakly-damped normal modes

in the proximity of the imaginary axis. Retka and Marburg [19] take flow into consideration by coupling

the Galbrun equation to the FEM/IFEM approach and solve the quadratic eigenvalue problem for the

orthogonal NM using the example of a duct with openings on both sides under free-field conditions.

In more general terms, the following two works are related to the discussed concept to some extent. By

application of the HELS (Helmholtz equation least squares) method, Wu [170] reconstructs the acoustic

pressure field radiated from vibrating structures. He superimposed eigenfunctions to obtain the sound

pressure in the free field and found HELS to be effective in the low-to-mid frequency range. Astley

and Hamilton [171] investigate the stability of IFE schemes for transient wave problems by solving an

eigenvalue problem. They discuss the singularity of the mass matrix in the case of circular FE domains,

but do not use the eigenfunctions in order to reconstruct the acoustic pressure or sound power solution.

Goursaud et al. [172] use FEM in combination with a PML technique where the coefficients do not

depend on the frequency to determine normal modes in exterior acoustics. As the numerical results are

found to be very sensitive with regard to mesh refinements and in order to distinguish spurious from

physical modes, the pseudospectrum [173] is computed to identify poles as the physical eigenvalues.

This dissertation mainly focuses on the further development of this technique and the comparison to the

already extensively researched frequency-dependent ARM.
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3 Research Questions

This work contributes to the ongoing research in the field of numerical analysis of exterior acoustic

problems by means of modal methods. The following research questions arise from the scientific state

of the art and form the basis for this work:

1. How can the modes in exterior acoustics be physically interpreted and what dependencies exist

towards the underlying concepts and among each other?

2. Which characteristics, relationships and affiliations are inherent in the normal modes and which

roles do they play within the continuous spectrum of exterior problems?

3. Which criteria can serve the modal reduction of normal modes for the efficient and accurate

solution of applied time-harmonic problems in exterior acoustics?

Three publications are attached to the dissertation to address these central questions.

Publication A

A good compromise between the accuracy of the solution and the requirements for computing resources

includes the need to know under which conditions the numerical solution converges and which influence

input parameters and discretization methods have on the results. For the two considered types of modes

in exterior acoustics ARM and NM, little is known so far about the influence of the properties of finite and

infinite elements. In particular, the literature does not document any experience with acoustic radiation

modes based on the infinite element method, which was accomplished in this work. The influence of

the FE mesh size and of the IFE radial polynomial interpolation on the matrix condition and eigenvalue

convergence of ARM and NM is examined in this article. The practical example of a recorder in cross

section is used to compare both methods and to discuss the physical significance of the modes in

exterior acoustic problems.

Publication B

The properties of the eigenvalues and eigenvectors of the normal modes are currently widely unknown.

Also their respective contribution to the reconstruction of the exact sound pressure or sound power

solution during modal superposition is not yet sufficiently clarified, which is investigated in this publication

for the purpose of an efficient calculation. This includes studies on the position of the eigenvalues in the

complex plane, the role of complex conjugated partners and purely real eigenvalues and eigenvectors.

Furthermore, the similarities and differences of left and right eigenvectors are discussed. Together they

form the orthogonal basis of the normal modes and obviously play different roles in the composition of

the solution for sound pressure and sound power. Two similar models are used to distinguish between

interior and exterior modes. One of the models has a specially designed cavity whose interior resonance

frequencies are roughly known to the authors in advance, so that the eigenvalues can be easily assigned.

Furthermore, the authors develop a mathematical criterion for categorizing the NM eigenvectors into
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inner, outer and mixed mode shapes. The criterion refers to their sound pressure distribution within

the FE domain. For two load cases in the form of surface velocity excitations, different selections of

modes from these groups are discussed with respect to the resulting global relative error after modal

superposition.

Publication C

The infinite element method is rarely described in the literature for 2D problems and especially for

elliptical and half-space computational domains. Hence, there is insufficient experience with the basic

requirements and benefits of their calculation, which is studied and discussed in this article using the

example of acoustic meta-atoms. The concept of frequency-independent NM is introduced for their

analysis and targeted design, whereby the dependencies of the approach on the underlying numerical

methods are further investigated. A relationship between the elliptical domain shape and the eigenvalues

is found, which may lead to an improved assignment of converging trapped modes within the continuous

exterior spectrum and thus to a better understanding and criteria for efficient modal superposition. The

NM approach is used to illustrate and interpret the underlying physics of sound insulation by finite sonic

crystal noise barriers and meta-atoms, their components. The analysis of absorbing boundary conditions

(boundary admittance) using NM contributes to a deepened insight into the physical effects involved.

Furthermore, an iterative eigenvalue solver is tested with which it is possible to determine eigenvalues

for modal superposition in a specific search space, so that the sound pressure solution can be efficiently

and repeatedly determined using reduced modal bases, for example in an optimization procedure.
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CHAPTER 2

Methods

In which the modal methods and numerical tools used in this work are presented, the underlying physical

principles are introduced and special aspects such as the two-dimensional formulation of the infinite

elements, elliptical computational domains and symmetric half-space problems are described.



1 Fundamental Equations

The sound pressure p̃(x, t) is a location- and time-dependent field quantity in fluids. It describes the

fluctuation around the significantly greater ambient (average or equilibrium) atmospheric pressure of the

medium p0 due to sound waves. If these fluctuations are oscillations in the frequency range audible to

humans and of appropriate magnitude, one can perceive them as sound. The total pressure is defined

here as the sum of atmospheric pressure and sound pressure ptotal = p0 + p̃.

The sound pressure and thus all sound events are governed by the acoustic wave equation, a linear partial

differential equation of second order. Its derivation can be found in textbooks such as Möser’s [12] and

Ihlenburg’s [52] or in editions by Marburg and Nolte [44], and by Kaltenbacher [174]. In its homogeneous

form without source terms it can be written as follows

∇
2 p̃(x, t) =

1
c2

f

∂ 2 p̃(x, t)
∂ t2 x ∈Ω⊂ Rd (1.1)

with d being the space dimension of the domain Ω and c f being the speed of sound in the fluid. It is

derived from three fundamental equations of continuum mechanics [21, 175]:

1. the balance of mass, which states that the mass as an integral of density over volume does not

change over time,

2. the balance of momentum (Newton’s 2nd law) saying that the time rate of change of the

momentum of a body is equal to the sum of external forces acting on its surfaces, and

3. a material law (constitutive equation), which relates density perturbation and sound pressure to

the speed of sound as a material parameter.

In linear acoustics, comparatively small fluctuations of the field quantities around the much greater

ambient quantities are assumed. This applies to sound pressure p̃, but also to density pertubation ρ̃ and

fluid particle velocity ṽ. Excluding the ambient quantities implies that v0 = 0, i.e. the fluid is at rest.

The transition to the frequency domain is achieved with the application of a time-harmonic approach

and the separation of variables for the sound pressure. This results in an expression that consists of a

function of the spatial sound pressure distribution and an exponential function of frequency and time

p̃(x, t) = ℜ{p(x)e−iωt}, (1.2)

where i is the imaginary unit with i2 =−1 and ω = 2π f is the angular frequency of the sound pressure

oscillation with f being the frequency. Finally, the real part of this product is formed, since the physical

quantity sound pressure is a real number. The imaginary part could also be used. This approach is

referred to as time-harmonic, which refers to pure tones, i.e. sinusoidal oscillations of a frequency. Any

sound pressure field can be understood as a superposition of the partial sound pressure fields of all
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harmonic frequencies. The sign in the expression of the exponential function indicates the rotational

direction of the complex position vector and therefore the direction of the traveling wave. The choice

here is minus resulting in waves propagating outwards, which is consistently applied throughout the

entire work.

Inserting the time-harmonic approach of the sound pressure field Eq. (1.2) into the wave equation

Eq. (1.1) provides the transition to the frequency domain. The Helmholtz equation is obtained, which

describes the spatial sound pressure field at a frequency f

∇
2 p(x)+ k2 p(x) = 0, x ∈Ω⊂ Rd (1.3)

with the wave number k = ω/c f = 2π f/c f being the ratio of the angular frequency and the speed of

sound in the fluid.

A distinction is basically made between closed interior and unbounded exterior acoustic problems. Both

are schematically illustrated in Fig. 1.

~n

~n
Γ

Γ

Ω
Ωc

Ωc

a)
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Γ

Ω
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b)

Figure 1: Schematic model domains Ω, complementary domains Ωc, boundaries Γ and outward normal
vectors~n for: a) interior problems and b) exterior problems.
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1.1 Boundary Conditions

The solution of the Helmholtz equation Eq. (1.3) requires the specification of boundary conditions (BC).

There are three fundamental types for such boundary value problems, for which further details can be

found in textbooks [21, 175, 176]:

• Dirichlet BC (first type or essential BC): the sound pressure is explicitly prescribed at the boundary

as

p(x) = pD(x), x ∈ Γ⊂ Rd−1, (1.4)

where in the homogeneous case pD = 0, the boundary is considered as sound-soft reflecting.

• Neumann BC (second type or natural BC): the normal derivative of the sound pressure towards

the boundary is prescribed. It is derived from the linearized Euler equation transferred to the

frequency domain, which establishes the relationship between complex sound pressure p and

(normal) fluid particle velocity v f

1
iωρ0

∂ p
∂n

(x) = v f (x), x ∈ Γ⊂ Rd−1. (1.5)

If the coupling to an adjacent structure is non-dispersive and the fluid particle velocity equals

the structural particle velocity vs(x) = v f (x), the boundary is considered to be fully (sound-hard)

reflecting.

• Robin BC (third type, admittance/impedance BC): the sum of both first and second type BC

applies to the boundary. In acoustics, this is often expressed in terms of acoustic admittance Y (x)
or impedance Z(x) = Y−1(x)

Y (x)p(x) = v f (x)− vs(x), x ∈ Γ⊂ Rd−1. (1.6)

In the specific case that Z(x)→ ∞, which is equivalent to Y (x) = 0, the boundary is sound-hard

reflecting so that this in turn amounts to a Neumann BC. If Z(x) = 0, i.e. Y (x)→ ∞, the Robin BC

changes to a sound-soft Dirichlet BC.

Acoustic boundary impedance or admittance are functions of the frequency and depend on the

incident angle of the acoustic wave, whereby in the context of the Helmholtz equation only their

normal components are considered. They are often normalized with respect to the factor ρ0c

so that Z̃ = Z/(ρ0c) and Ỹ = ρ0cY are dimensionless and then named specific impedance or

admittance, respectively.

In the context of this work, sound-hard boundaries on the surfaces of inner obstacles are assumed.

The boundary condition for the free-field behavior in infinity is provided by Sommerfeld’s radiation
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condition [4, 52, 177–179], a Robin type BC at infinity, which acts uniformly in all directions

lim
r→∞

rα

(
∂

∂ r
− ik

)
p(r) = 0, (1.7)

where r =
√

x2 + y2 + z2 is the radial distance to the origin of a source point and α = (d−1)/2 with d

being the space dimension. The Sommerfeld condition is often stated in the literature in two steps written

in the Bachmann–Landau or Big O notation as

p(r) =O
(
r−α
)
,

(
∂

∂ r
− ik

)
p(r) = O

(
r−α
)

for r→ ∞.
(1.8)

The first expression (decay condition) denotes the decay rate of the Helmholtz equation in p(r) in the

direction of infinity, i.e. the sound pressure magnitude |p(r)| is asymptotically bounded above by r−α

(up to a constant factor). The second expression (radiation condition) is equivalent to Eq. (1.7) and

describes that the left-hand side is required to decay faster than r−α , or, in other words, it is asymptotically

dominated by r−α [180]. It can be shown though, that the decay condition is superfluous in the formulation

of the exterior boundary value problem, since any function that satisfies both the Helmholtz equation

and the radiation condition automatically satisfies the decay condition [52, 179, 181, 182].

It follows from Sommerfeld’s radiation condition that the sound pressure p(r) decays in the two-

dimensional case (d = 2) with 1/
√

r [63], since the acoustic energy of the wavefront is distributed

along the growing circumference of the circle with radius r. In the three-dimensional case (d = 3), p(r)

decays faster with 1/r. Here the sound energy is distributed on the spherical shell of radius r during

the propagation of the wave front. For one-dimensional problems (d = 1) such as ducts without lateral

expansion, there is no decay at all if the fluid is considered undamped.

Due to their property to provide frequency-independent system matrices, the finite element method

(FEM) in combination with the Astley–Leis infinite element method (IFEM) is used in this work to fulfill

the radiation condition. They are described in detail in the two following sections.

2 Finite Element Method (FEM)

The aim of the finite element method is to numerically discretize and solve continuous problems,

in particular, partial differential equations. The analytic solution is represented by superimposing

known functions to determine function values for discrete coordinates on grid points. The model or

computational domain Ω is therefore divided into a number of small elements Ωel , e.g. triangles,

quadrilaterals, tetrahedra or hexahedrons, which together span a mesh that mimics the continuous

shape of the area. The mesh nodes serve as data points for element-wise polynomial interpolation of
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the underlying physical quantity. They can be understood as degrees of freedom (DOF) of the system.

Numerical models of Helmholtz problems need to resolve the oscillatory behavior of the exact solution,

which is characterized by the wave number k. The accuracy of the discrete FE approximation compared

to the continuous (exact) solution is often measured by means of a fixed number of elements per

wavelength [52, 57]. From this, a maximum element edge length can be derived to the highest frequency

of interest. The literature often mentions a "rule of thumb" of at least six finite elements per wavelength

with quadratic (2nd-order) or higher-order polynomial interpolation functions [56, 183]. Figure 1 shows

examples of finite element meshes with quadrilateral and triangular elements Ωel for the discretization of

a fluid-filled domain Ω. In this work, isoparametric finite elements are considered, i.e. geometry and

physics are equally discretized [46].

Ω

a) b) c)

Figure 1: Example geometry Ω for an interior problem (a); meshed geometry with two different element
types: (b) quadrilateral and (c) triangular elements Ωel .

Applying the finite element method to the Helmholtz differential equation Eq. (1.3) finally returns a system

of linear equations, which is often found in a similar form in the field of mechanical engineering and

convenient in further handling:

(K− ikD− k2M)p = f, (2.1)

with the discrete and frequency-independent system matrices for mass M, damping D and stiffness K
and the vector p = [p1(x), . . . , pN(x)]T that includes (nodal) sound pressure values pi at the N data

points of a discrete mesh of finite elements. Applying Robin BC, the right-hand side f contains the

boundary mass matrix ΘΘΘ and a vector vs with nodal structural particle velocities at boundaries of the

computational domain. A sound pressure field other than zero can therefore only be expected if a surface

oscillates with a structural particle velocity. The treatment of source terms or incident plane waves in the

inhomogeneous Helmholtz equation is not covered here. The procedure is described in the attached

publication [C].
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A detailed description and derivation of the FEM can be found in numerous textbooks [21, 45, 46, 52, 174].

The basic idea and the essential steps to get from the Helmholtz equation Eq. (1.3) to the system of

linear equations Eq. (2.1) are briefly outlined below.

2.1 Derivation and Discretization

In the first step of the finite element method, the Helmholtz equation Eq. (1.3) is transformed into

a residual or weak formulation. For this purpose, a weighting function, called test function χ(x), is

multiplied to Eq. (1.3) and integrated over the whole domain Ω

∫

Ω

χ
[
∇

2 p+ k2 p
]

dΩ = 0, (2.2)

requiring this equality to hold for all test functions in the H1 test function space (Hilbert space) instead of

Eq. (1.3) for all points in Ω. This relaxes the requirements of the differential equation such that equality

is only required in an integral sense by minimizing the weighted residual [52]. The weak form reduces

the steadiness requirements for the physical variables by shifting the derivation operators to the test

function, resulting in weaker constraints on derivation. For this and all subsequent equations, spatial

dependency of all functions is implied (i.e. p = p(x)).

The Laplace operator can be resolved by the vectorial equivalent of the product rule. As a result, the

divergence operator div u = ∇ ·u enters the weak formulation and yields

∫

Ω

∇ · (∇pχ)dΩ−
∫

Ω

∇p ·∇χdΩ+ k2
∫

Ω

pχdΩ = 0. (2.3)

In the second step, Gauß’s theorem (divergence theorem) is used to resolve the divergence operator. It

relates the flux of a vector field through a boundary Γ to the behavior of the field inside the boundary [184]

∫

Ω

∇ · (∇pχ)dΩ =
∫

Γ

~n · (∇pχ)dΓ =
∫

Γ

∂ p
∂n

χdΓ

= iωρ0

∫

Γ

(v f χ)dΓ = iωρ0

∫

Γ

((Y p+ vs)χ)dΓ.

(2.4)

The equation includes the normal derivative of the sound pressure at the surface Γ. A relationship to the

fluid particle velocity is given by the linearized Euler equation Eq. (1.5). According to Eq. (1.6), it can be

substituted by structural particle velocity and boundary admittance times sound pressure.

Substitution in above equation yields

∫

Ω

∇p ·∇χdΩ− iωρ0

∫

Γ

(Y pχ)dΓ− k2
∫

Ω

pχdΩ = iωρ0

∫

Γ

(vsχ)dΓ, (2.5)
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where all terms that contain the unknown acoustic pressure p are on the left-hand side and the term on

the right-hand side denotes an excitation by a structural particle velocity vs at a boundary Γ. It should be

noted that all quantities still are continuous functions of the position vector x: p = p(x), χ = χ(x), v f =

v f (x), vs = vs(x) and Y = Y (x). They are discretized in space in the next step by using N polynomial

functions called basis functions ϕϕϕ(x) = [ϕ1(x), . . . ,ϕN(x)]T with N being the number of degrees of

freedom in the mesh or of a single finite element if the discretization is conducted element-wise. This

gives the following expressions with the superscripts of ϕϕϕ and ϕ indicating that for each quantity different

basis functions can be chosen, although the basis functions used in this work are the same for all

variables

p(x) =
N

∑
i=1

ϕ
p
i (x)pi = [ϕϕϕ p(x)]T p, (2.6)

Y (x) =
N

∑
k=1

ϕ
Y
k (x)Yk =

[
ϕϕϕ

Y (x)
]T Y, (2.7)

χ(x) =
N

∑
j=1

ϕ
χ

j (x) = ϕϕϕ
χ(x), (2.8)

vs(x) =
N

∑
l=1

ϕ
vs
l (x)vsl = [ϕϕϕvs(x)]T vs. (2.9)

The sound pressure pi, and in the same way the other physical quantities, are no longer functions of x,

but represent the discrete value (here: sound pressure) at node i (for Lagrangian basis functions which

take the value one at the element nodes). The polynomials of the basis functions as functions of x
interpolate continuous curves between the discrete data points.

Discretization procedures usually differ in the way they relate test and basis functions. In FEM the

Bubnov–Galerkin method (classical Galerkin method) is often used, where the test function is equal to

the basis function [46].

The approximations Eqs. (2.6) to (2.9) are substituted in the weak formulation Eq. (2.5) and after

rearranging it results in

∫

Ω

[
N

∑
i=1

∇ϕ
p
i pi

]
·
[

N

∑
j=1

∇ϕ
χ

j

]
dΩ− iωρ0

∫

Γ

[
N

∑
k=1

ϕ
Y
k Yk

][
N

∑
i=1

ϕ
p
i pi

][
N

∑
j=1

ϕ j

]
dΓ

−k2
∫

Ω

[
N

∑
i=1

ϕ
p
i pi

][
N

∑
j=1

ϕ
χ

j

]
dΩ = iωρ0

∫

Γ

[
N

∑
l=1

ϕ
vs
l vsl

][
N

∑
j=1

ϕ
χ

j

]
dΓ,

(2.10)

where constant terms as pi and vsl can be extracted from the integrals. The FEM matrices of the system

of linear equations Eq. (2.1) can be formed as follows

mi j =
∫

Ω

ϕiϕ jdΩ, (2.11)

θ jl =
∫

Γ

ϕ jϕldΓ, (2.12)

ki j =
∫

Ω

∇ϕi ·∇ϕ jdΩ, (2.13)

di j = ρ0c
∫

Γ

ϕi
(
ϕϕϕ

T Y
)

ϕ jdΓ

=
∫

Γ

ϕi
(
ϕϕϕ

T Ỹ
)

ϕ jdΓ (2.14)
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with the mass matrix M = [mi j], the stiffness matrix K = [ki j], and the boundary mass matrix ΘΘΘ =
[
θ jl
]
,

all of them being sparse, frequency-independent and real, where i, j and l indicate rows and columns of

the matrices. M and K are symmetrical and have a band structure. In contrast to these two matrices, the

boundary mass matrix ΘΘΘ may not be square but rectangular, depending on the type of implementation.

The symmetry property and the band structure are thus also no longer given. This circumstance is a

result of the fact that when applying a normal structural particle velocity to a boundary, the contribution

of each surface finite element that shares a node with others must be provided with its own DOF for this

node. For this purpose, additional DOFs were introduced in the code for this work, leading to additional

columns in the boundary mass matrix and just as many more rows in the vector for the structural particle

velocities.

In the case of a non-zero, complex (normalized) boundary admittance Ỹ = ρ0cY , a complex-valued

damping matrix D = [di j] 6= 0 exists. It is symmetric and sparse, but not Hermitian (meaning that it is not

equal to its own conjugate transpose). For simplicity’s sake, this work does not consider Y as a function

of the frequency, so that D also remains independent of f . A more realistic treatment is described by

Marburg and Hardtke [185].

It should be noted that the basis functions ϕi(x) shown here are polynomial functions of the global

position vector x = [x,y,z]T . A major strength of finite elements is that they can, even deformed to a

certain degree, be transformed from the global coordinate system to a rectilinear reference element in a

natural coordinate system with the local element nodes being positioned between 0 and 1 or between -1

and 1, respectively. The use of these natural coordinates makes the derivation of polynomials—they are

often called shape functions Ni(ξξξ ) of the local coordinates ξξξ on the reference element—much easier

and leads to the definition of a set of standard or parent elements. The shape functions are usually

Lagrangian polynomials.

This local, unified consideration of all finite elements can contribute to a substantial acceleration and

reduction of computational effort in the element-wise solution of the integrals to the assembly of the

system matrices in Eqs. (2.11) to (2.14). The coordinate transformation is not discussed further here,

since it is described in detail in the literature [52]. Only this much is to say that it is carried out by means

of the Jacobian matrix and its determinant.

The concept of FEM has been developed for the numerical discretization of problems on bounded

domains [52]. Problems on unbounded domains involve a domain decomposition and introduction of

an artificial boundary, on which the FE discretization can be coupled to a discrete representation of the

analytical solution in different ways. Infinite elements can be attached that ensure impedance matching

at the transition in a manner typical for Lagrangian shape functions [100]. The method is described in

the following section.
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3 Infinite Element Method (IFEM)

The treatment of exterior acoustic problems requires the fulfilment of Sommerfeld’s radiation condition

(cf. Sec. 1.1). In the present work, the mapped (and conjugated) Astley–Leis infinite element method

(IFEM) is used for this purpose. Its essential steps are described in this section, mainly on the basis of

selected works by Astley et al. [92, 98–100] and by Shirron and Babuška [63]. The interested reader is

referred to the literature for further information, see Sec. 2.1.5 in Ch. 1.

The formulation of the infinite elements is much reminiscent of that of the FEM shown in the previous

section. The solution of the Helmholtz equation is obtained by approximation of the acoustic pressure

using suitable basis functions. These must ensure the smoothness of the physical field quantities on

the envelope of the inner domain, represent their wave character and fulfill the Sommerfeld radiation

condition. The weighting or test functions contain an exponential term, which is complex-conjugated to

the one of the basis functions and eliminated in the product of the two. This property of the Astley–Leis

infinite elements eliminates the frequency dependence of the trial solution [92]. The same system of

linear equations as in FEM Eq. (2.1) is derived that contains frequency-independent system matrices.

During this procedure, the matrices of the FEM are supplemented by new rows and columns for additional

degrees of freedom and information is added to existing entries. A further domain of infinite elements is

attached to the outer boundary of a spherical (space dimension d = 2: circle or ellipse) or spheroidal

(d = 3: sphere or ellipsoid) FE domain. The general setup for d = 2 is depicted in Fig. 1 for full-space

and half-space problems. The latter may be used whenever the obstacle is on or near a reflecting

surface subjected to normal admittance boundary conditions or to reduce the computational costs if the

problem is symmetrical along a mirror axis [186].

Øx

y

0Γs

Γa

Γ∞

ΩFE

ΩIFE

a)

Γ

Γa

Γ∞

x

y

0

rFE

rIFE

b)

Figure 1: Schematic of two-dimensional (d = 2) problems in exterior acoustics: a) full-space and b)
half-space FE and IFE domains of radii rFE and rIFE .
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3.1 Mapping Concept

The infinite elements are directly connected to the outer boundary of the FE domain and extend the

fluid perpendicular to it longitudinally in a radial direction to infinity. Their shape is rectangular for

two-dimensional problems (d = 2). The outer edge of the FE area is thus a line, regardless of whether

triangular or quadrilateral finite elements are used. In the three-dimensional case (d = 3), the procedure

of the method is completely analogous as the shape of the infinite elements is prismatic. However, the

shape of the base faces depends on the type of surface elements of the FE domain. If this is discretized

with tetrahedra, the base of the infinite elements is triangular. For hexahedra in the FE region, the

prismatic infinite elements have a quadrilateral base.

Fig. 2 illustrates the shape of the elements and the principle of the underlying coordinate transformation

in the example d = 2. This is, analogous to that of the finite elements, based on the projection of the

elements onto a normalized unit element in a system of natural coordinates, which again significantly

simplifies the solution of the integrals [52]. Marques and Owen [187] provide the basis for the coordinate

0 x

y
A

BD

C

t

s

a(t)

2a(t)

∞

FE

IFE

a)

0 s

t

(−1,−1) (1,−1)

(1,1)(−1,1)

A′ B′

C′D′

a(t) 2a(t) ∞

b)

Figure 2: Mapping concept for infinite elements: a) a single element (blue framed) in global cartesian
coordinates x, y; b) transformed element in natural coordinates s, t with � being mapping
nodes A−D or A′−D′ and ◦ representing variable nodes.

transformation. As it can be seen in Fig. 2, the space between the outer envelope of the FE domain

and infinity is mapped to a local space between -1 and 1. The local (natural) coordinate for this is s.

The extension of the element in circumferential direction is also mapped to the interval -1 to 1. In this

work, the coordinate is referred to as t, whereby for the sake of simplicity only two-dimensional problems

with a single circumferential interpolation function are considered. Their numerical treatment, e.g. in

integration, is analogous to that of one-dimensional FE line elements.

The transformation rule by Marques and Owen [187] for the geometry of an infinite element in physical
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coordinates x is given as follows

x≈Ma(s)
n

∑
i=1

Ni(s)xa,i +M2a(s)
n

∑
i=1

Ni(s)x2a,i (3.1)

with Ni(s) being the Lagrangian shape functions and two corresponding mapping functions

Ma(s) =−
2s

1− s
and M2a(s) =−

1+ s
1− s

. (3.2)

The mapping nodes with coordinates xa,i and x2a,i are positioned at distances a(t) (s = −1) from the

origin (corresponding to the radius of the outer envelope of the FE domain) and 2a (s = 0), as shown

in Fig. 2 in the form of rectangular markers. It follows that s = 1 for r→ ∞ considering the underlying

relationship

s = 1− 2a(t)
r

. (3.3)

The radius a(t) is approximated by the sum of Lagrangian shape functions times the nodal radii ai using

the standard FE discretization on the envelope.

The actual infinite element is delimited by discrete interpolation points, called variable nodes, on the

square in the system of natural coordinates (see Fig. 2 in the form of circular markers). They are

(preferably equidistantly) positioned between s = [−1,1[, where the nodes on the surface of the FE

domain (r = a and s =−1) are always part of the infinite elements and there are no variable nodes at

infinity (r = ∞ and s = 1) [92]. The contributions of their associated degrees of freedom are added to the

corresponding entries of the system matrices.

3.1.1 Two-Dimensional Elliptical IFEM

Elliptical FE domains are desirable if the radiator is of elongated, slim shape and if computer resources

can be saved by an adapted form of the computational domain. An ellipse at the origin with foci at x =± f

satisfies the equation

x2

a2 +
y2

b2 = 1 (3.4)

with the semi-major axis a and the semi-minor axis b and f 2 = a2−b2 (see Fig. 3).

The coordinate transformation for 3D ellipsoidal infinite elements is well documented in the literature,

such as by Burnett and Holford [96, 111] and by Astley et al. [99, 109, 112]. A distinction is usually

made between prolate and oblate ellipsoids in which each two of the half-axes of the ellipsoid are of

equal length and one, either the longest or the shortest, differs. The two-dimensional system of elliptical

coordinates (ρ,φ) is derived from the three-dimensional set of equations published by Burnett and
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0
x

y elliptical in-
finite element

ρ = const.

Γa (ρ = a)

<
φ

<

ρ

a

b

• •
− f + f

Figure 3: Geometry of elliptical infinite elements and coordinate system with iso-surfaces of ρ and φ .

Holford [110], who developed a general transformation for ellipsoids with arbitrary half-axis ratios

x = ρ cosφ , (3.5)

y = (ρ2− f 2)1/2 sinφ (3.6)

with ρ being the elliptical radial coordinate and φ being the elliptical angular coordinate. The reverse

transformation can be solved numerically, e.g. by using the Newton-Raphson method. The relationship

between natural and physical coordinates as described in the previous section remains valid.

Analogous to the procedure in FEM, the coordinate transformation is incorporated into the integrals of

the system matrices in the form of the Jacobian matrix and its determinant. The procedure is described

in Refs. [52, 96].

3.2 Derivation and Discretization

The considered boundary value problem in exterior acoustics is formed by the Helmholtz equation in the

fluid and by boundary conditions on the surfaces of inner obstacles (cf. Sec. 1.1 and Fig. 1). Analogous

to the FEM in interior problems, the Helmholtz equation is reformulated in a weak form (Eq. (2.3)), the

boundary conditions are introduced with the Gaussian theorem (Eq. (2.4)) and finally substituted in the

weak form (Eq. (2.5)). For exterior problems, however, Sommerfeld’s radiation condition from Eq. (1.8) is

also taken into account via the Gaussian theorem. This yields

∫

Ω

∇p ·∇χdΩ− iωρ0

∫

Γs

(Y pχ)dΓ− k2
∫

Ω

pχdΩ−
∫

Γ∞

[
ikp−o

(
r−α
)]

χdΓ = iωρ0

∫

Γs

(vsχ)dΓ (3.7)
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with p = p(x) and χ = χ(x) being the sound pressure and the test function, and vs = vs(x) and Y = Y (x)
being the structural particle velocity and the boundary admittance, which are not part of the exterior

domain and thus not considered for the IFEM. α = (d− 1)/2 contains the space dimension d. The

domain Ω approximates infinite extension for r→∞ and the integral term in the equation above vanishes

for an appropriate choice of p and χ that satisfy the radiation condition. The trial solution for the

approximation of the sound pressure is given by

p(x,ω)≈
n

∑
i=1

pi(ω)ϕi(s, t,ω) = p(ω)ϕϕϕ(s, t,ω), (3.8)

where pi are the nodal sound pressure values obtained from the solution of the system of linear equations

Eq. (2.1) and ϕϕϕ(s, t,ω) = [ϕi(s, t,ω)] are basis functions of s and t defined as

ϕi(s, t,ω) = Ii(s, t)e−ikµ(s,t). (3.9)

The frequency-dependent basis functions are constructed utilizing an interpolation function Ii(s, t) and

an exponential function containing the imaginary number i, the wave number k and a phase term µ with

µ(s, t) = a(t)
1+ s
1− s

. (3.10)

The interpolation function consists of the product of two polynomials for radial Ps(s) and transverse Pt(t)

interpolation and a geometric factor to satisfy Sommerfeld’s radiation condition. It vanishes at infinity

for s = 1 and, in contrast to the case d = 3, it is framed by a root for d = 2 [63]

Ii(s, t) =

√
(1− s)

2
Pt

j(t)P
s
k (s). (3.11)

All combinations j,k of the two polynomial functions Pt
j(t) (FE interpolation at the infinite element

base) and Ps
k (s) (radial interpolation) are numbered via the index i for the corresponding interpolation

function Ii(s, t). In accordance to the hat shape of Lagrangian shape functions—in the corresponding

node they always take the value 1 and at all other data points the value 0—exactly the value 1 is required

at the transition to the standard FE discretization.

Lagrangian Astley–Leis elements lead to a high matrix condition for high polynomial degrees. Astley

et al. proposed Legendre polynomials as an alternative [113, 114]. Von Estorff et al. [116] and Dreyer

et al. [115] prove the poor suitability of Lagrange polynomials of high orders and achieve better matrix

conditions with Legendre and Jacobi polynomials. A detailed description of those is given by Dreyer [118]

and in the attached publication [A]. For polynomials other than Lagrange, an additional shift may be

required to meet the transition condition [115]. The circumferential interpolation in t-direction is inherited

by the FE discretization at the envelope.

The given form of the basis functions resembles the Atkinson–Wilcox expansion [52, 178, 188], a
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fundamental solution to the exterior Helmholtz problem and a series of terms of the form r−n with n ∈ N+

or r−n/2 for space dimension d = 2 (cf. [63, 95]). The expression is apparent in the form of the coordinate

transformation in Eq. (3.3). In connection with the preceding geometric factor in Eq. (3.11), this means

that infinite elements of the radial order m are able to represent the radiation behavior of acoustic

multipoles of the order m−1 [100].

The test functions χ(s, t,ω) of the Astley–Leis IFEM use the complex conjugates of the basis functions

with an additional geometric weighting factor D(s) = (a/r)2 = (1− s)2/4, which is the major difference to

the Bettess–Burnett formulation, where a Bubnov–Galerkin scheme is used, i.e. basis and test function

are identical. The test functions according to Astley and Leis are given by

χ(x,ω)≈
(

1− s
2

)2 n

∑
i=1

pi(ω)ϕ∗i (s, t,ω) = D(s)p(ω)ϕϕϕ∗(s, t,ω), (3.12)

where the ∗-operator indicates complex conjugation. The product of the complex conjugated exponential

terms in the basis functions and in the test functions leads to the elimination of the frequency-dependence

in the weak formulation. The obtained stiffness, damping and mass matrices of the system are thus

independent of frequency (under the assumption of a fluid without damping or thermal losses).

By inserting the expressions of the trial and test functions Eqs. (3.8) and (3.12) into the weak formulation

Eq. (3.7), a system of linear equations is derived in the same form as for the FEM in Eq. (2.1) with the

following integral expressions for the element matrices K = [ki j], D = [di j] and M = [mi j]:

ki j =
∫

Ω

[(Ii∇D+D∇Ii) ·∇I j]dΩ, (3.13)

di j =
1
c f

∫

Ω

[DIi∇µ ·∇I j− IiI j∇D ·∇µ−DI j∇Ii ·∇µ]dΩ, (3.14)

mi j =
1
c2

f

∫

Ω

[DIiI j (1−∇µ ·∇µ) ·∇I j]dΩ, (3.15)

where c f is the speed of sound in the fluid. It is important to note that M is singular for circular or

spherical domain shapes [100].

4 Normal Modes (NM)

The homogeneous form of the discrete system of linear equations in Eq. (2.1) can be understood

as a quadratic eigenvalue problem (QEVP) [168]. Based on a state-space linearization proposed by

Ruge [167], Marburg et al. [15] introduce the concept of normal modes to exterior acoustic problems

on the basis of frequency independent FE and IFE system matrices (cf. literature overview Sec. 2 in
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Chapter 1). The linearized eigenvalue problem (EVP) to be solved is:

(
A︷ ︸︸ ︷[

M 0
0 −K

]
−κ

B︷ ︸︸ ︷[
0 M
M D

])
z︷ ︸︸ ︷[
−ikp

p

]
=

[
0
0

]
(4.1)

with the eigenvalues κ =−ik, the eigenvectors z and the hypermatrices A and B of the size 2N×2N. A

left-sided and a right-sided EVP results from the asymmetry of K and D [15, 100]

(A−κB)xz = 0 and yT
z (A−κB) = 0, (4.2)

where the index z denotes that the eigenvectors x and y are of the size 2N×1 and must be truncated

for the entries in the lower half that are associated to the sound pressure, cf. vector z. Eq. (4.2) can be

rewritten in terms of the modal matrices Y and X, which diagonalize A and B such that α j and β j can be

found on the resulting diagonals with κ j = α j/β j being the jth NM eigenvalue

YT
z AXz = diag(α1, . . . , α2N−δ ) and YT

z BXz = diag(β1, . . . , β2N−δ ) (4.3)

The rank deficiency δ results from the circumstance that in the case of circular FE domains, M is singular

for IFE DOF [100]. Fur that purpose, Marburg et al. [15] propose a subdivision of the mass matrix into

FE and IFE DOF. Empty rows and columns are removed from the hypermatrices and the EVP can be

solved.

Marburg [17] proposes a scaling of the eigenvalues with the factor c f /2π that leads to a form in

which ℑ{κ j} corresponds to the resonance frequency of the jth mode and ℜ{κ j} represents a damping

term.

4.1 Modal Sound Pressure and Sound Power

The modal sound pressure solution of the NM approach is provided by Marburg [16, 17] for right-hand

side excitations f = iωρ0ΘΘΘvs in the form of a fluid particle velocity vs on the surfaces of obstacles

p =−
2N−δ

∑
m=1

yT
ΓmfΓ

αm + ikβm
xm. (4.4)

The index Γ indicates that only boundary DOF are considered in the scalar product with the excitation f
and since this is only defined on the surfaces of scatterers.

Modal sound power contributions Pm can be derived from substitution of the sound pressure according
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to Eq. (4.4) in the discrete form P = 0.5ℜ
{

pT
Γ

ΘΘΘΓΓv∗
Γ

}
[16]

P =−1
2

ℜ

{
1

iωρ f

2N−δ

∑
m=1

yT
Γ,mfΓ

αm + ikβm
xT

Γ,mf∗Γ

}
. (4.5)

5 Acoustic Radiation Modes (ARM)

The determination of the acoustic radiation modes is based on the eigenvalue problem of the real and

symmetric acoustic impedance matrix ZR [154]. This can be derived from the discretized quadratic form

of the sound power in terms of vectorial fluid particle velocities at the surfaces Γ of the radiator [189]:

P =
1
2

ℜ

{∫

Γ

p(x)v∗f (x)dΓ(x)
}
≈ 1

2
ℜ{pT

ΓΘΘΘΓΓv∗Γ}=
1
2

vT
Γℜ{Z}v∗Γ =

1
2

vT
ΓZRv∗Γ, (5.1)

where discretizations according to Eqs. (2.6) and (2.9) are applied. The index Γ indicates that only

degrees of freedom on the surface of the obstacle(s) are considered. Chen and Ginsberg [153] prove

that the vectorial velocities are excluded from the real part operator in the quadratic form. They also

present a modified ARM concept based on the quadratic form of sound pressure instead of velocities

and introduce reciprocity relations to correlate the two sets of surface responses. They show that the

(appropriately scaled) eigenvalue magnitudes indicate the radiated modal sound power.

Z is often calculated from the frequency-dependent BEM matrices G and H by rearranging the well-known

relation HpΓ = GvΓ to pT
Γ

and substituting it in the above discrete expression of the sound power [154].

According to Peters et al. [154], the symmetry of the real impedance matrix is not necessarily given and

therefore may have to be produced, for which they present a suitable approach.

In this work it could be demonstrated by the author [A, M6] that the acoustic impedance matrix can also

be obtained on the basis of the discretization by FEM and IFEM. This can be done by splitting up the

discrete system of linear equations Eq. (2.1) into degrees of freedom (DOF) in the fluid (subscript ◦),
those at the surface of the inner obstacles (Γ) and mixed DOF

[
AΓΓ AΓ◦

A◦Γ A◦◦

][
pΓ

p◦

]
= iωρ f

[
ΘΘΘΓΓ ΘΘΘΓ◦

ΘΘΘ◦Γ ΘΘΘ◦◦

][
vΓ

v◦

]
=

[
fΓ

f◦

]
. (5.2)

The transposed sound pressure vector at Γ follows as

pT
Γ = iωρ f vT

Γ

[
ΘΘΘΓΓ−AΓ◦A−1

◦◦ ΘΘΘ◦Γ
]T [AΓΓ−AΓ◦A−1

◦◦ A◦Γ
]−T

. (5.3)

This leads to the acoustic impedance matrix ZA, whose real part has to be symmetrized.

Furthermore, the author [M6] shows that the real part of the symmetrized normal modes impedance
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matrix can be used for the calculation of the ARM

ZNM = iωρ f ΘΘΘ
T (YΓdiag(Fm)XT

Γ

)
ΘΘΘ, (5.4)

where XΓ and YΓ are the NM modal matrices for boundary DOF and Fm = 1/(αm + ikβm) is a frequency-

dependent factor that can be found in the NM sound pressure solution Eq. (4.4).

Regardless of the underlying method (BEM, FEM/IFEM or similar), the acoustic impedance matrix

is frequency dependent and therefore its eigenvalue problem must be solved for each frequency.

The resulting ARM eigenvalues λ j(ω) are thus functions of the frequency. Their corresponding right

eigenvectors illustrate the vibration modes on the surfaces of the radiators.
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CHAPTER 3

Major Results of Attached Publications

In which the main results and novelty character of the attached publications are summarized. Further-

more, the candidate’s individual contribution to the three articles is indicated.

• Analyses of convergence and basic requirements of modal quantities in exterior acoustics. It is

presented how ARM and NM can be determined on the same basis of finite and infinite elements.

The impact of the choice of mesh size, interpolation polynomials and their degree is investigated.

The results are compared for both methods. Moreover, their physical meaning is illustrated by a

practical example. (Publication A).

• Development of a criterion to identify cavity modes and exterior multipole modes. The properties

and relevance of NM are evaluated by means of the sound pressure distribution of the eigenvectors

and their individual frequency-dependent contribution to the radiated sound power, where the

position of the eigenvalues in the complex plane is of particular interest. The differences between

left and right eigenvectors are elaborated. The quality of reduced modal bases is measured by the

relative error of the superposed sound power. (Publication B).

• Application of the normal modes approach in the practical context of finite sonic crystal noise

barriers and acoustic meta-atoms in free field. The potential for the reduction of computational

effort through half-space and elliptic domain shapes is discussed for 2D IFEM and NM, while the

resulting errors serve to estimate prerequisites for the analyses. It is shown how the NM approach

can contribute to the dimensioning and design of meta-atoms and sonic crystals without the aim to

optimize an array. (Publication C).



Publication A

Infinite Elements and Their Influence on Normal and Radiation Modes in Exterior
Acoustics

This article addresses the influence of the finite element mesh, the choice of polynomials for the radial

interpolation of the infinite elements as well as their degree on normal modes and acoustic radiation

modes in exterior acoustics. It contributes to the application of modal methods under free-field conditions

by providing empirical knowledge for the balancing of computational costs and accuracy for the sound

pressure and sound power solution. Three types of polynomials for the radial interpolation of the

infinite elements are considered, which are discussed in the literature: Lagrange, Legendre and Jacobi

polynomials. It is confirmed that the condition of the dynamic stiffness matrix becomes very poor for

Lagrangian polynomials for degrees greater than or equal to eight, whereas the other polynomials show

a much better condition even for higher polynomial degrees.

A novel approach is presented to determine the acoustic impedance matrix Z (and thus also ARM)

based on FEM and IFEM instead of on the basis of the commonly used boundary element method.

Consequently, both ARM and NM can be calculated on the same basis and comparability of the results

is achieved. The convergence of three significant cavity modes (trapped modes) is examined in detail in

the example of a recorder cross-section and it is found that the eigenvalues for both modal methods each

converge to different values for IFEM polynomials of even and of odd degree. The assignment of the

eigenvalues is achieved by means of the modal assurance criterion (MAC) to match the corresponding

eigenvectors. The eigenvalues of the acoustic radiation modes converged only close to their resonance

peaks, whereas in the frequency ranges besides them the eigenvalue curves are virtually identical for

all polynomials and all polynomial degrees from two to twenty despite the large differences in matrix

condition numbers. No clear tendency, however, is found for convergence of eigenvalues from above or

below. The comparison of normal modes and acoustic radiation modes is in very good agreement with

the eigenfrequencies for the investigated mode shapes.

With regard to a balanced relationship between computational effort and accuracy, this paper provides

insights into which degree of discretization and which orders of interpolation polynomials are essentially

required for computations of ARM and NM in exterior acoustic problems using FEM and Astley–Leis IFEM.

On the basis of the chosen example, the reader is given an impression of the physical characteristics

and significance of the eigenvectors.
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Publication B

Normal Modes and Modal Reduction in Exterior Acoustics

The work offers the reader an in-depth study of the characteristics of normal modes in exterior acoustics.

It aims to analyze the role of cavity and multipole modes as well as of purely real and complex eigenvalues

and -vectors for the radiation of sound. The assignment of NM eigenvalues in the complex plane to

groups is presented, for which purpose a model with a duct-like cavity is considered, whose resonances

are roughly known in advance. The investigations illustrate how the continuous spectrum of the exterior

space appears in the form of discrete eigenvalues in lines as a result of the discretization by IFEM and

modal decomposition by NM.

A novel approach is presented to the reader to distinguish between NM by their sound pressure

distribution in the eigenvectors, which is concentrated either at the outer boundary of the FE domain or in

the inner region at the surfaces of inner obstacles. The criterion developed for this purpose (eigenvector

distribution ratio) forms the basis for a reliable distinction and thorough analysis of the spectrum. Left and

right eigenvectors are studied, which result from the asymmetry of the IFE matrices and which together

form the orthogonal basis of NM. The modal assurance criterion (MAC) is used to determine that both

are virtually identical for the degrees of freedom in the FE domain, but differ for the degrees of freedom

of the infinite elements. For cavity modes, however, both eigenvectors are also virtually identical in the

IFE domain. It could also be observed that left eigenvectors radiate much further into the surrounding

free field than their respective counterparts. In addition, the two oscillate in opposite phase to each other.

Within this work, criteria for the identification of physically relevant modes are developed and the accuracy

of reduced modal bases are measured by the superimposed radiated sound power level (SWL). It is

described how modal SWL contributions behave as functions of the frequency and it is shown that those

modes of complex conjugated partners with negative imaginary parts are mainly responsible for the

emission of sound in the region of the cavity resonance frequencies. The publication presents an error

estimation for reduced modal bases during superposition for two load cases to induce different modes.

Therefore, a velocity excitation is applied inside the cavity and on the outer surface of the radiator,

respectively. It becomes apparent that relative SWL errors of less than 1% can be achieved in wide

frequency ranges, where purely real modes suffice approximately for external excitations but fail around

the resonance frequencies of the cavity. This becomes particularly clear with the internal excitation for

which cavity resonances dominate the SWL spectrum. These are found to be very well represented by

the complex cavity modes with negative imaginary parts.
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Major Results of Attached Publications

Publication C

Analysis of Scattering by Finite Sonic Crystals in Free Field With Infinite Elements and
Normal Modes

This publication introduces Astley–Leis infinite elements and NM for both harmonic and modal analysis

of the sound insulation by finite sonic crystal noise barriers—arrays of (locally) periodically arranged

scatterers—and their components in free field. To verify the method and to determine the minimum

requirements and maximum efficiency for discretization and accuracy, convergence and error studies are

presented for the first time on elliptical IFE domains in 2D. It is found that the coordinate transformation

leads to a local error maximum for aspect ratios close to 1.4 for all frequencies and meshes and that the

requirements for counterbalancing errors due to elliptical domains by a higher-order radial polynomial

interpolation of the infinite elements are growing with increasing frequency. The article shows that

individual NM eigenvalue magnitudes of exterior multipole modes behave indirectly proportional to the

half-axis ratios of the underlying elliptical FE domains. Their convergence suggests the presence of

trapped modes—discrete eigenvalues in the continuous spectrum of the exterior space.

In the example of a circular and a c-shaped obstacle, the insertion loss of single meta-atoms is measured

and the sound insulating effect of the cavity can be assigned to the first and the two higher-order

Helmholtz resonator modes. The article describes that the mitigation of sound pressure also involves

an amplification at another frequency with the result that both effects have to be weighted. The largest

sound insulation is actually not achieved at the resonance frequencies of the cavity, respectively, but

the eigenfrequencies rather seem to approximate the inflection points of the curve. It is shown that

the application of a boundary admittance inside the cavity, e.g. to model absorption or as a result of

contamination by dust or soil, results in a reduced sound insulation by the resonator. By considering

narrow, elliptical as well as half-space FE domains, the potential for increasing efficiency of the approach

is studied.

The idea of this article is to present the NM concept as an appropriate and novel tool for the investigation,

design and optimization of the acoustic properties of locally periodic, finite sonic crystals and arbitrarily

shaped meta-atoms without being embedded in a periodic arrangement but isolated in free field. The

underlying, sound-insulating effects, e.g. Bragg scattering and absorption by Helmholtz resonators, are

studied and the individual contribution of single modes is illustrated to derive specific acoustical and

numerical optimization measures.
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Individual Contributions of the Candidate

1 Individual Contributions of the Candidate

Publication A

The author conceived and conducted the analyses including the coding. He evaluated and discussed

the results and wrote the article.

Publication B

The research question of this article was derived by the author from preliminary work by the co-author.

Designing the model, developing the eigenvector distribution ratio, carrying out criteria for grouping

modes and modal reduction is the author’s contribution. This also includes planning and performing the

studies, developing the code and writing the article.

Publication C

The investigations on half-space problems, the c-shaped meta-atom, the boundary admittance and

sonic crystals were planned and carried out by the author and recorded in the article. The preceding

manuscript of a co-author with fundamental studies on meta-atom level has been substantially revised

by the author and in the peer-review process.
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CHAPTER 4

Discussion

In which the novelty that has been generated by this work in the field of numerical and modal methods in

exterior acoustics is outlined. It is discussed with reference to the literature by addressing the research

questions posed in the introduction.



Discussion

This dissertation provides novel scientific contributions to the Astley–Leis infinite element method (IFEM)

and to both acoustic radiation modes (ARM) and normal modes (NM) in exterior acoustics.

In order to answer the research questions derived from the problem definition and literature review in the

introductory Ch. 1, tools for numerical calculations and subsequent scientific studies were developed.

This includes a 2D IFEM code and interfaces to software for geometry and FE mesh generation as

well as for providing the FEM system matrices. For reasons of efficiency, the functionality for handling

half-space and elliptical computational domains was also developed.

The scope of this work covers 2D problems in order to keep the computation time and memory require-

ments low. For fundamental studies on the modes in exterior acoustics, the complete modal basis must

first be determined before individual eigenpairs could a priori be filtered. However, this limitation is not a

disadvantage, since most statements that are valid in 2D are usually also valid for later application in 3D

problems and are at the same time easier to visualize and interpret.

During the studies on the influence of infinite elements on modes in exterior acoustics, several interesting

observations were made. It could be confirmed for two-dimensional problems that the condition of

the system matrices also becomes very large and leads to errors in the sound pressure solution with

Lagrangian polynomials greater than or equal to the eighth order for radial interpolation of the IFEM [A].

So far, this has only been discussed for one- and three-dimensional problems [113–115]. For the first

time, it could also be shown for 2D problems [A] that, as described by Astley et al. [109], Legendre

polynomials resolve this problem and can be used for higher polynomial degrees with a significantly

lower condition number of the matrix. The results of Dreyer [118] and Dreyer et al. [117] on the

advantages of using Jacobi polynomials could also be confirmed in 2D [A]. They are a generalized form

of Legendre polynomials which resemble the form of the IFE interpolation function by the specific choice

of exponents [A]. On the other hand, it was observed that the effort for the calculation of the element

integrals considerably increased with Legendre and Jacobi polynomials compared to standard Lagrange

polynomials, which requires efficient algorithms for a practical implementation. This applies in particular

for highly repetitive analyses, e.g. parameter studies, optimization and uncertainty analyses [M9].

In this dissertation, experiences with elliptical IFE domains in 2D have been documented for the first

time and detailed error analyses have been published [C]. For ellipsoidal domains in 3D, the IFEM has

been described in the works of Burnett and Holford [110, 111] and Astley [99]. It could be observed [C]

that the error for elliptical computational domains strongly increases compared to circular domains with

a slightly elliptical shape. At a ratio of about 1.4, it showed a flat maximum, which is apparently due to

numerical inaccuracies of the coordinate transformation [C]. As expected from experiences in 3D [190],

it could be shown that the accuracy of the sound pressure solution in exterior space coincides with the

radial interpolation order of the infinite elements [A]. With increasing frequency, the global relative error
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could be lowered, however, it resulted in higher demands on the polynomial degree [C].

Since half-space problems and the propagation of sound waves over impedance planes in exterior

acoustic problems are suitable for many practical applications and in order to increase the efficiency of

symmetric problems [117, 186, 191, 192], experiences were generated by this work using 2D IFEM [C].

The presented results and experiences could be used for an applied study on finite sonic crystal noise

barriers and their components, acoustic meta-atoms [193]. Both were analyzed using FEM/IFEM for the

first time [C]. It could be shown that this approach is very well suited for their calculation and design. The

advantages of considering finite arrays in the free field compared to infinite, periodic arrays have been

worked out. Especially at the edges of real noise barriers, diffraction effects lead to a deterioration of

the mitigation of sound, which has to be considered in practical application [194, 195]. In the literature,

Floquet-Bloch periodicity boundary conditions are often applied to the boundaries of a unit cell in which

the analysis is conducted and the behavior is generalized to the infinite, periodic arrangement [196, 197].

A characteristic of these arrays are so-called stop bands, which are frequency ranges with complete

sound insulation of incident acoustic waves. They can be visualized in dispersion curves [198, 199].

In contrast to them, finite sonic crystal noise barriers do not exhibit stop bands with complete sound

isolation. Frequency ranges with high insertion losses were found to be in good agreement [C] compared

to arrays of the same design in a waveguide in Ref. [198].

The procedure described in this thesis [C] allows the investigation and acoustic design of the meta-atoms

independently of their environment and its influences, such as the lattice width of the sonic crystal array

or its pattern (triangular, square, honeycomb lattice [200, 201]). With the separate consideration of the

components and the arrays in free field, this thesis presents IFEM as a suitable tool for the analysis

of both sonic crystals and acoustic meta-atoms and for the calculation of a realistic insertion loss. In

addition, individual defects in the array that are not subject to any periodicity condition could be examined.

In publication [C], the method was used to calculate the insertion loss of an individual meta-atom with

absorbing admittance boundary conditions to break down the underlying effects to the minimum level.

This is a novelty since in other studies [202, 203], boundary admittances are investigated in infinite sonic

crystal lattices, but not individually at meta-atom level. By means of all these investigations, this work

deepened the knowledge about two-dimensional Astley–Leis IFEM in exterior acoustic problems.

A central concern of this dissertation is the investigation and further development of modal quantities

in exterior acoustics. The focus is on the frequency-independent NM, which—in contrast to ARM

being state-of-the art in exterior acoustics [152]—have been little investigated so far. The work of

Marburg [16, 17] and Marburg et al. [15] forms the basis of the research by introducing the NM concept

to exterior acoustics, however, several knowledge gaps remain. One of these is the dependence of

NM on the formulation and parameters of the Astley–Leis IFEM. It could be shown in Ref. [A] that the

choice of Legendre or Jacobi polynomials for radial interpolation has no noticeable influence on the NM

eigenvalues and -vectors compared to commonly used Lagrange polynomials (at least for orders smaller
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than or equal to eight). Their failure for higher orders is a criterion for exclusion, especially when using

elliptical or ellipsoidal FE computational domains with an increased need for radial interpolation [112],[C].

For further studies on the influence of the IFEM on NM, this dissertation provides convergence studies of

their eigenvalues with increasing order of radial interpolation to provide empirical values for the numerical

requirements of the method [A]. For the first time, it could be shown that two different NM eigenvalue

convergences were obtained for even and odd polynomial degrees. By describing the distribution of the

eigenvalues in the complex plane in more detail and discussing the differences between even and odd

polynomial degrees [A],[B], the work of Marburg et al. [15] could be supplemented.

With the specific selection of models, a contribution to the physical interpretation of the NM could be

made in Refs. [A],[C], which up to now have been mostly investigated on the basis of simple, theoretical

models [15, 16, 19]. Fuß et al. [18] and Retka [204], however, used NM to study the physics of a

3D recorder in free field, which was taken up and further investigated in this work in 2D [A]. Three

representative mode shapes, which are effective in different regions within the hollow body, were used

to illustrate the tone (=eigenfrequency) generation in the recorder in a simplified form by neglecting

flow effects [204]. The applicability of the method was thus practically motivated by analyzing mode

shapes regarding their physical relevance. In a second example, finite sonic crystal noise barriers

and the associated acoustic meta-atoms were investigated using the technique [C]. The advantages

over harmonic analysis of the problems were highlighted, which, as described above, have not been

calculated by IFEM in the free field so far. Diffraction effects at the ends of the finite lattice could be

described and visualized by NM. They subsequently cause the sound insulating effect of the crystal to

vary and weaken spatially. The normal modes of a single c-shaped meta-atom in free field have been

investigated and it was possible to prove the Helmholtz resonator mode to be responsible for its sound

insulation besides two additional higher-order cavity modes [C]. For all three, this was demonstrated by

the insertion loss (IL) as a function of the frequency and it was also shown that the highest effectiveness

might not be observed in the cavity’s natural frequencies (cf. Fard et al. [33]) but rather approximately

at the inflection points of the IL curve, which has an ascending and a descending peak around these

frequency points [C]. The described approach determines the acoustic effectiveness of arbitrarily shaped

meta-atoms in the free field, e.g. Matryoska-type [198, 205], Mie-type [206, 207] meta-atoms or shapes

optimized with regard to their acoustic properties [208, 209]. They could thus be investigated and

designed completely independent of the embedding in a periodic array.

In the example of a single c-shaped meta-atom under free-field conditions, it was demonstrated that

an absorbing admittance boundary condition inside the cavity weakens the effect of amplification and

attenuation of IL around the resonance frequencies [C]. The NM eigenfrequencies slightly increase with

the introduction of the boundary admittance. However, an additional sound mitigation other than that

around the cavity resonance frequencies could not be observed in the considered frequency range. Since

other studies on absorbing surfaces of sonic crystal arrays describe an additional benefit [202, 203],

further research on this aspect is desirable. Further research and development is still crucial for an
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advanced understanding and efficiently superimposed solution of completely fluid-structure coupled

modal problems under free-field conditions [6].

Since NM eigenvectors can be visualized in the entire exterior domain, physical effects in the fluid

could be illustrated and the complex-valued eigenvalues and -vectors could be related to their acoustic

effect, e.g. in the form of a frequency-dependent insertion loss [C]. In the example of sonic crystals with

c-shaped meta-atoms, eigenvectors could subjectively be assigned to groups of modes of the same

operating principle. Modes within such a group resonated at slightly different frequencies, in which, for

instance, individual resonators or groups of resonators oscillated, but never all of them at the same time.

They together provided sound insulation across a certain frequency range. This behavior is observed in

a similar way for modes of rotor blades in other studies [210, 211].

So far, no studies have been published on normal modes in exterior acoustics for half-space problems.

Their suitability and potential for memory reduction in computational analysis in case of symmetric

problems could be demonstrated [C]. Another novelty is the calculation of NM for elliptical domain

shapes [C]. At a first glance, these have the advantage compared to circular shapes that they save DOF

within the FE domain due to their slim shape, which could closely approach the obstacle. However, this

advantage might be canceled out by the greatly increased requirements for the radial interpolation order

of the infinite elements. It became apparent that advantages and disadvantages of elliptical domains

have to be weighed up depending on the problem, since no general statement could be made so far.

Elliptical domains do not have a singular mass matrix [100] compared to circular domains used so far (cf.

Marburg [16]), which affects the properties of the state-space matrices in the NM eigenvalue problem.

This could be useful for the selection of suitable eigenvalue solvers in future studies.

For a number of NM eigenvalues in elliptical domains a direct relationship to their semi-axis ratio could

be found [C]. This finding is very useful for the identification and assignment of NM, e.g. for convergence

studies and assigning modes to groups, because the modal assurance criterion (MAC) [212] is only

suitable for the matching of eigenvectors within unchanged domain shapes, as it was applied in [A].

The second research gap outlined in the introduction poses the question of the roles of modes within the

continuous spectrum of the exterior acoustic field. The mathematically continuous exterior spectrum [181]

was modeled and discretized using FEM and IFEM and decomposed into discrete eigenvalues. The

existence of discrete eigenvalues in the continuous spectrum for exterior problems (trapped modes)

could be shown e.g. by Jones [136] and Hein et al. [142]. The structure of the complex plane of NM

eigenvalues observed by Marburg et al. [15] and further investigated in [A][B] shows traces of lines,

curves and point clouds in which the eigenvalues seem to be grouped. Using the eigenvector distribution

ratio introduced in publication [B], mode shapes could be sorted according to their sound pressure

distribution within the computational domain: eigenvectors with a concentration of sound pressure along

the surfaces of inner obstacles, with a concentration at the envelope of the FE domain and mixed

forms [B]. The first group of eigenvectors reliably reveals the internal resonances of obstacles with

45



Discussion

cavities, while modes with a strong sound pressure distribution at the transition of FE and IFE domains

are multipoles. This criterion might be the basis for a more detailed, refined grouping according to

multipole groups. Within each multipole group, eigenvalues could be assigned to each other for variable

domain shapes via the above described ratio of eigenvalues and semi-axes [C]. It was assumed that

these particular modes could be identified as converging trapped modes using this criterion, which,

however, has to be confirmed in future research. With an increasing radial interpolation order, the

number of multipoles that are not subject to this property grows [C]. This could indicate that they are

non-physical and do not contribute to the actual sound radiation, which would need further investigation.

The analysis of the position and distribution of groups of normal modes in the complex plane is required

for the a priori determination of physically relevant modes and their targeted calculation. Following the

example of Marburg [16], the sound power solution of a radiator with one cavity was analyzed for a purely

external and a internal surface velocity excitation [B]. Low-order cavity modes could thus be identified as

essential for the modally superposed sound pressure or sound power solution. The presented findings

could be supplement to the considerations on sorting criteria presented by Marburg in Ref. [16] and

Marburg et al. [17]. Besides the ascending sorting by eigenvalue or modal sound power contribution to

the overall sound power, these were two approaches according to a term Fm, which is related to the NM

eigenvalues (cf. Eqs. (4.4) and (5.4)). Furthermore, Marburg [16] considered the difference between

modal and actual frequency as a sorting criterion. Taking into account the clustering presented in [B],

these criteria could be used much more efficiently, since a preselection and reduction of the modal basis

by means of iterative eigenvalue solvers is possible. With regard to the modal sound power contributions

shown in [B], this becomes apparent in a meaningful representation in the complex plane. Here, it

was revealed for the first time that the sound radiation of the NM cavity modes is mainly caused by the

complex conjugated partners with negative imaginary parts. It could be shown that the global relative

error of a modal basis reduced to these modes leads to promising results in a wide frequency range.

However, the addition of exterior multipole modes is essential [B]. Unpublished studies by the author

showed with promising results for simple geometries that considering modes from the groups of low

multipole orders and the first up to ten cavity modes could be sufficiently accurate. Further empirical

evidence is to be collected and documented in future research work.

This work compared NM left and right eigenvectors and visualized them in the IFE domain for the

first time [B]. It could be shown that both were virtually identical in the FE domain. For cavity modes

with a very high concentration of the sound pressure around inner obstacles of the FE domain (cf.

eigenvector distribution ratio), this also applied in the IFE domain. For multipoles it could be observed

that the left eigenvectors radiate significantly further into the free field than their respective counterparts.

Furthermore, they oscillated in phase opposition to each other [B].

In addition to cavity and multipole modes, a number of non-physical mathematical artifacts, namely

spurious modes [213] were computed, due to the overdetermination by the state-space linearization

and high-order interpolation polynomials. They were characterized by the fact that their eigenvectors
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showed subjectively random and irregularly distributed sound pressure values. Apparently, these did

not substantially contribute to the physical effect of sound radiation [B]. The identification of these

non-relevant modes was, to a certain extent, quite reliably done by the eigenvector distribution ratio. For

the solution of the quadratic eigenvalue problem of a displacement-based Helmholtz equation, Bermúdez

et al. [214] presented lowest-order Raviart–Thomas finite elements, which did not produce spurious

modes compared to ordinary finite elements. Whether this or similar approaches could help to suppress

spurious modes in the sound-pressure-based exterior acoustic problem could be the subject of future

research.

With the improved knowledge of the distribution of eigenvalues in the complex plane and with the help of

iterative solvers, eigenvalues could be determined specifically in certain regions of the complex plane.

Fuß et al. [18] used an iterative Arnoldi eigenvalue solver for a 3D problem to determine weakly damped

NM eigenvalues along the imaginary axis. With the knowledge gained from [B], the search region in the

complex plane could be narrowed down and their approach could possibly achieve even better results.

In this dissertation, the Matlab solver eig (based on the QZ algorithm) was used for full ARM and NM

eigenvalue problems, while alternative techniques are often not available due to the properties of the

hypermatrices (e.g. asymmetry). Furthermore, the software libraries SLEPc and PETSc [215, 216] were

used for the iterative solution of the linearized NM eigenvalue problem. Depending on the problem (e.g.

circular or elliptic domain shape), different libraries and methods are suitable or not, while in this work [C],

good experience could be made with the direct solver preconditioner PCLU based on LU factorization in

combination with KSPPREONLY [217].

As with most related studies, this work focused on NM in 2D exterior acoustic problems with the exception

of the work of Fuß et al. [18] in 3D. It is assumed that the majority of the results and methods used

could be transferred to realistic 3D problems. An exception are unpublished criteria developed by the

author for the identification and grouping of multipoles, which are based on the eigenvector distribution

ratio [B]. These are based on the analysis of zero crossings and the distribution and amplitudes of

the sound pressure minima and maxima of the eigenvectors along the outer, circular FE boundary. A

similar analysis is not conceivable for three-dimensional problems, but the analyses of the complex plane

provided information about the position and grouping of the NM cavity and multipole modes, which is

most probably still valid for 3D problems and needs to be verified in further research.

The scientific novelty that this work contributes to the ARM was presented in the first attached publi-

cation [A]. For the first time, it could be shown that ARM can be calculated on the basis of FEM and

IFEM [M6][A], whereas they are usually calculated using BEM in most other studies [14, 154]. Therefore,

the investigations on the influence of the infinite elements on ARM in terms of radial polynomial order and

type of interpolation polynomial also represent a novelty. Analogous to NM, two different convergences of

ARM eigenvalues for even and odd polynomial degrees could be observed. In the prior publication [M6],

it was shown that ARM could also be determined using the real part of the NM impedance matrix

(requiring a symmetrization according to Peters et al. [154]). These ARM showed very good agreement
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with those of calculations using BEM or using FEM/IFEM. Moreover, for the ARM eigenvalues based

on BEM, non-physical resonance frequencies (irregular frequencies) could be observed in [M6], whose

peaks could be minimized to a negligible level by using the Burton–Miller formulation [23, 218].

The main motivation for research on modal methods in exterior acoustics is the need to develop efficient

algorithms and procedures for accelerated solutions in the unbounded fluid [6]. Compared to harmonic

analysis, modal methods have the advantage that they can simplify and reduce the numerical model

(ideally to a minimum of complexity) while providing a sufficiently accurate solution. This procedure is

state of the art in structural dynamics and interior acoustics [9, 219, 220]. Depending on the application,

harmonic analysis is sometimes more, sometimes less suitable when using FEM and Astley–Leis IFEM

with their frequency-independent system matrices compared to the frequency-dependent BEM [59]

or other methods [54]. Even though the efficiency of harmonic analysis with FEM and IFEM was not

measured against them, it appeared that the advantage of frequency independence could possibly often

be compensated by the higher number of DOF compared to BEM. This effect becomes particularly clear

in elliptical domains with a higher demand on the radial interpolation of the IFEM [C]. Future research

could address the lack of experiences on the performance of harmonic analyses and of the two modal

methods in exterior acoustics and complement them with comparisons to other MOR techniques [8].

A central research question posed at the beginning highlights the lack of experience in comparing ARM

and NM and their physical interpretation. By calculating ARM on the basis of the NM impedance matrix,

they could be connected and the knowledge of their relationship deepened [A][M6]. The essential

similarities and differences between the two modal quantities were demonstrated [A]. In accordance

to other studies [14, 15], it could be shown that both methods result in cavity modes and groups of

multipole modes [B]. The limitation of ARM eigenvectors to the surfaces of inner obstacles results in a

different view of the multipoles compared to the normal mode shapes whose oscillation can be illustrated

in the entire fluid. However, even these differ in detail in their appearance from those which Prieto [221]

determines on the basis of FEM and a frequency-independent PML [172], which opens up several new

research opportunities. For the cavity modes, a direct comparison is possible, e.g. using MAC [212]. The

physical interpretation of sound radiation using NM could be enhanced by the experience gained from

the examples of tone generation in the recorder [A] and finite sonic crystals [C], where various physical

effects could be visualized, e.g. Bragg scattering and Helmholtz resonator effects. Numerous other

practical applications of the two modal methods are conceivable in the field of vehicle acoustics for the

simulation of pass-by sound or the calculation of equipment or engine noise under free field conditions

with the aim to reduce computational effort in comparison to commonly used harmonic analysis [117].

For a large-scale industrial application of the methods, however, their efficiency has to be increased.

The present work provides a further important contribution to this.
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Acoustic radiation modes (ARMs) and normal modes (NMs) are calculated at the surface of a
fluid-filled domain around a solid structure and inside the domain, respectively. In order to compute
the exterior acoustic problem and modes, both the finite element method (FEM) and the infinite
element method (IFEM) are applied. More accurate results can be obtained by using finer meshes
in the FEM or higher-order radial interpolation polynomials in the IFEM, which causes additional
degrees of freedom (DOF). As such, more computational cost is required. For this reason, knowledge
about convergence behavior of the modes for different mesh cases is desirable, and is the aim of this
paper. It is shown that the acoustic impedance matrix for the calculation of the radiation modes
can be also constructed from the system matrices of finite and infinite elements instead of boundary
element matrices, as is usually done. Grouping behavior of the eigenvalues of the radiation modes
can be observed. Finally, both kinds of modes in exterior acoustics are compared in the example of
the cross-section of a recorder in air. When the number of DOF is increased by using higher-order
radial interpolation polynomials, different eigenvalue convergences can be observed for interpolation
polynomials of even and odd order.

Keywords: Infinite element method (IFEM); normal modes; acoustic radiation modes.

1. Introduction

The discretization and calculation of an acoustic exterior problem involves the problem

of an infinite, unbounded domain with a nonreflecting boundary condition at the out-

side of the fluid-filled domain. Finite elements are only applicable for the discretization

This is an Open Access article published by World Scientific Publishing Company. It is distributed under
the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is
permitted, provided the original work is properly cited.
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of inner, circumscribed domains and imply reflecting outer borders. Two approaches have

been established in order to calculate acoustic exterior problems numerically: Perfectly

matched layers (PML)1 and the infinite element method (IFEM).2,3 The method of conju-

gated Astley–Leis infinite elements is applied by the authors, since these elements provide

the frequency-independent system matrices of stiffness, damping and mass on the basis of

the corresponding FE matrices. These system matrices are required for further investiga-

tions in modal decomposition. The IFEM implies the Sommerfeld radiation condition,2,4

which provides a nonreflective boundary condition and decay to zero of the sound pressure

at infinity. The sound pressure field in the radial direction in the domain with the infinite

elements is interpolated by polynomials such as Lagrange polynomials, Legendre polynomi-

als or Jacobi polynomials, which lead to differences in the matrix condition number of the

discrete, global system matrices.5,6

The subject of this paper is the investigation of the influence of the choice of finite

elements and the polynomial type for infinite element interpolation in the radial direction

as well as the choice of the order of these polynomials on modes in exterior acoustics. The

authors consider acoustic radiation modes (ARMs)7–9 and normal modes (NMs),10–12which

are based on eigenvalue problems of the acoustic impedance matrix ZR and of a state-

space formulation consisting of the discrete system matrices of stiffness, damping and mass,

respectively.

The concept of radiation modes can be traced back to investigations of radiating velocity

distributions carried out by Borgiotti7 and Photiadis8 and eigenvalue analysis of the real

part of the impedance matrix performed by Sarkissian.9 Cunefare and Currey13–15 focus

on the grouping behavior of the eigenvalues and radiation efficiencies. This line of research

is further explored by Peters et al.16 who investigate the symmetry characteristics of the

real impedance matrix. Recent studies by Wu et al.17 investigate fast multipole BEM and

iterative methods for efficiently and accurately calculating the ARMs and the radiation

efficiencies in the example of a baffled plate. Marburg et al.18 apply ARMs in order to obtain

surface contributions to the radiated sound power, which they compare to the acoustic

intensity. Liu and Maury19 focus on improvements to the ARMs in the near field of vibrating

structures.

ARMs are regarded as frequency-dependent modes, because they have to be calculated

separately for each frequency as opposed to NMs, which are obtained by solving of a single

frequency-independent eigenvalue problem. The concept of NMs is extensively presented

by Marburg et al.10–12 Investigations of search algorithms for NM eigenvalues were carried

out by Fuß et al.20 with the example of a recorder as a long, slender and hollow object. By

solving the Galbrun equation with an application of infinite elements, Retka and Marburg21

solve the state-space eigenvalue problem for a duct with a thin wall and openings on both

sides, while taking flow into consideration.

In the context of this paper, the authors will calculate the acoustic impedance matrix ZR

from FEM and IFEM system matrices rather than the boundary element method (BEM)

as is suggested in the literature.16,22 Recent studies on BEM in exterior acoustics were
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published by Ramesh et al.23 and Marburg.24,25 The method is also applied for eigenvalue

analysis in the exterior acoustic problem by Zheng et al.26

The convergence of the infinite elements was shown by Demkowicz and Gerdes27,28 and

proves the reliability of the approach, but there have been no studies yet on the influence of

the infinite elements on modes in exterior acoustics. This paper will first give an overview of

the formulation of the infinite elements and of the suitability of the considered polynomials

as radial interpolation functions. Following this, both modes in exterior acoustics are sum-

marized. In the simple example model of a circle in an unbounded domain, the reliability

of the ARM approach is validated, using FEM and IFEM instead of BEM. Subsequently,

the model of a cross-section of a recorder is considered.

Both ARMs and NMs are compared to each other and the influence of different radial

interpolation polynomials and of different FE mesh sizes on the modes is discussed and

interpreted. Afterwards, their convergence behavior is investigated as the degree of the

radial interpolation polynomial is increased. Here, the convergence of the NM eigenvalues

is obtained by application of the Modal Assurance Criterion (MAC).29 Two different con-

vergences are observed for even and odd orders of the interpolation polynomials for both

ARM and NM eigenvalues.

2. Infinite Element Formulation

2.1. Acoustics and discretization of the unbounded domain

The spatial sound pressure field p(x) in a fluid-filled domain can be described by the

Helmholtz equation

∇2p(x) + k2p(x) = 0, x ∈ Ω ⊂ R2, (1)

where k = ω/cf is the wave number with the angular frequency ω = 2πf and the speed of

sound in the fluid cf . At infinity the nonreflective Sommerfeld radiation condition causes

the sound pressure to decay to zero.2,4 On the surface of an obstacle, the normal fluid

particle velocity vf (x) is assumed to be equal to the structural particle velocity vs(x). In

other words, the coupling of the fluid and the structure is nondispersive.

Applying the finite element method (FEM) and IFEM leads to a discrete system of

linear equations30

(K− ikD− k2M)p = iωρfΘvs = f , (2)

where ρf is the density of the fluid, K, D and M are the system matrices for stiffness,

damping and mass and Θ is the boundary mass matrix, which was given by Marburg and

Nolte30 in discrete form

Θ =

∫

Γ
Φ(x)ΦT (x)dΓ(x). (3)
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The basis functions Φ(x) are required for the discretization of the sound pressure and the

structural velocity at the surface of a solid structure in the fluid-filled domain

p(x) =

N∑

l=1

φl(x)pl = ΦT (x)p, (4)

vs(x) =
N∑

l=1

φl(x)vs,l = ΦT (x)vs. (5)

In the finite element domain, typical linear or quadratic Lagrangian basis functions as

described by Ihlenburg4 are applied.

The subsequent considerations use the concept of the so-called (mapped and conjugated)

Astley–Leis infinite elements in reference to works by Astley et al.2,3,31,32 as well as by

Shirron and Babuška.5 These elements are attached to the outer boundary of the finite

elements to extend the fluid to infinity in the radial direction. The coordinate mapping is

given in detail by Marques and Owen.33 Here, it is sufficient to state that the global radial

coordinate r is related to the local radial coordinate s by

a(t)

r
=

1− s

2
, (6)

where a(t) is the radius of the circular boundary line between the FE and IFE domains as

a function of the elementwise, local transverse coordinate t. Both s and t are defined in the

range [−1, 1]. In the mapping in Eq. (6), the local radial distances s = −1, s = 0 and s = 1

correspond to r = a(t), r = 2a(t) and r = ∞ in the global space, respectively.

The frequency-dependent basis functions are constructed using an interpolation function

Il(s, t) and a phase function µ(s, t), both of which are functions of the mapped coordinates

s and t

φl(s, t, ω) = Il(s, t)e
−ikµ(s,t), (7)

where the phase function is given by

µ(s, t) = a(t)
1 + s

1− s
. (8)

The interpolation function contains the product of the radial P s(s) and transverse P t(t)

polynomial functions and a geometric factor to satisfy the Sommerfeld radiation condition.

According to Shirron and Babuška,5 the interpolation function in the two-dimensional case

is defined as

Il(s, t) =

√
(1− s)

2
P t
lt(t)P

s
ls(s), (9)

such that l = 1 . . . ntr · nrad, where lt = 1 . . . ntr is an index for the transverse interpolation

polynomials and ls = 1 . . . nrad is an index for the radial interpolation polynomials.

Investigations by von Estorff and Dreyer et al.6,34 prove poor suitability of Lagrangian

polynomials for higher orders and achieve better performance with Legendre and Jacobi

polynomials. This was shown by calculating the condition number of the dynamic stiffness
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matrix A in the system of linear equations in Eq. (2)

A(ω)p(ω) = (K− ikD− k2M)p(ω) = f(ω). (10)

Solving for the column vector p gives the unknown nodal pressure values pk, which can be

used to construct a continuous trial solution p̄(x, ω)

p̄(x, ω) ≈
N∑

k=1

pk(ω)φk(s, t, ω) = p(ω)Φ(s, t, ω) (11)

with the infinite element basis functions φk(s, t, ω) that are given in Eq. (7).

For conjugated Astley–Leis elements,31 the test functions q̄(s, t, ω) use the complex

conjugates of the basis functions with an additional geometric weighting factor (a/r)2 =

(1− s)2/4 such that

q̄(x, ω) ≈
(
1− s

2

)2

p(ω)Φ∗(s, t, ω). (12)

Taking the complex conjugates of the basis functions in the trial and test functions leads to

the canceling of the frequency-dependent exponential term in Eq. (7) when the variational

statement is formulated. The obtained stiffness, damping and mass matrices of the system

are thus independent of frequency.

2.2. Choice of radial polynomials

Whereas in early infinite element concepts35,36 solely Lagrangian polynomials were used

for the radial interpolation functions, Legendre and Jacobi polynomials were found to be a

good alternative in terms of improved matrix conditioning and performance.3,5,6

2.2.1. Lagrange polynomials

Lagrange polynomials are often applied as shape functions in FEM and were used in early

concepts of Astley–Leis infinite elements, but led to ill-conditioned system matrices due to

oscillatory behavior at high radial orders.6 They are given by

P s
j (s) =

∏

k=1...N
k �=j

s− sk
sj − sk

(13)

and satisfy the condition that P s
j (si) = δij , where δij is the Kronecker delta. The transition

at the boundary between FE and IFE domain is thus compatible.

2.2.2. Legendre polynomials

In order to improve the stability of the infinite element concept, Legendre polynomials P s
i (s)

are applied such that they are orthogonal with respect to the product
∫ 1

−1
P s
i (s)P

s
j (s)ds = µiδij , (14)
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where µi is a given constant. To ensure compatibility with the adjacent Lagrangian-

discretized FE domain, the application of a shift pattern as described by Shirron and

Babuška5 is required.

2.2.3. Jacobi polynomials

As a generalization of the Legendre polynomials, Jacobi polynomials P s
i (s) were introduced

by Dreyer and von Estorff6 as radial interpolation functions for infinite elements. They are

orthogonal with respect to the product

∫ 1

−1
(1− s)α(1 + s)βP s

i (s)P
s
j (s)ds = µiδij (15)

and depend on the choice of the parameters α and β. The product of trial and test func-

tions in the variational statement in the two-dimensional case is of the same form as the

orthogonality relationship of the Jacobi polynomials when α = 1 and β = 0

Φi(s, t)Φj(s, t)
∗ = Ii(s, t)e

−ikµ(s,t)Ij(s, t)e
+ikµ(s,t) ∼ (1− s)

2
P s
i (s)P

s
j (s), (16)

which matches well with the orthogonality property.34 The same shift pattern as for Leg-

endre polynomials is applied.

2.2.4. Shift pattern for polynomials

The radial interpolation functions have to adapt to the Lagrangian finite-element interpola-

tion. Therefore, the first radial polynomial is chosen to satisfy P s
1 (−1) = 1 on the boundary

between the FE and IFE domains where s = −1. The remaining polynomials have to vanish

at the infinite element base P s
i (−1) = 0 with 1 < i ≤ N by application of a constant shift

as suggested by Shirron and Babuška5

P s
i (s) =





0, i = 1,

P̄ s
i (s) + 1, i = 2n, n ∈ N,

P̄ s
i (s)− 1, i = 2n+ 1,

(17)

where P̄ s
i (s) denotes the unshifted polynomial for radial interpolation. The constant shift

is required if Legendre or Jacobi polynomials are chosen.

3. Normal and Acoustic Radiation Modes in Exterior Acoustics

3.1. Normal modes

Starting from the discrete, linear system of equations in Eq. (2), NMs can be found as the

eigenvectors of the state-space formulation

(A+ ikB)z = r (18)
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with rT = [0,−f ] = [0,−iωρfΘvs], where the hypermatrices A and B are constructed from

the stiffness, damping and mass matrices

A =

[
M 0

0 −K

]
, B =

[
0 M

M D

]
and z =

[
−ikp

p

]
. (19)

From the asymmetry of the stiffness and damping matrices, left and right eigenvectors are

obtained11

(A− κB)xz = 0 and yT
z (A− κB) = 0, (20)

which can be written in terms of the modal matrices Y and X, which diagonalize A and B

YT
z AXz = diag(α1, . . . , α2N−δ), (21)

YT
z BXz = diag(β1, . . . , β2N−δ). (22)

On the resulting diagonals, αj and βj can be found, the ratio of which is defined to be the

jth NM eigenvalue κj = αj/βj . Applying an additional scaling of cf/2π leads to a form in

which the imaginary part of κj corresponds to the resonance frequency of the jth mode.10

The real part of the NM eigenvalues represents a damping term.

3.2. Acoustic radiation modes

The eigenvalue problem of the real part of the frequency-dependent and symmetric

impedance matrix Z leads to the eigenvalues λj and their corresponding right eigenvec-

tors as mode shapes at the surface of solid structures, known as ARMs.9 The acoustic

impedance matrix can be derived from a quadratic form for the sound power in terms of

the nodal velocity vector22

P = 0.5vT
Γ�{Z}v∗

Γ. (23)

This is derived from the discrete formulation by means of the sound pressure and the

structural velocity11

P = 0.5�{pT
ΓΘΓΓv

∗
Γ}, (24)

where the subscript Γ ranges over the degrees of freedom (DOF) associated with the sur-

face of the structure. The calculated sound power thus depends only on the choice of the

impedance matrix Z, which is often calculated from the boundary element method (BEM)

matrices G and H.22 The relationship HpΓ = GvΓ is rearranged for pT
Γ and then substi-

tuted into the discrete expression for the sound power in Eq. (24), so that the real part

of the acoustic impedance matrix can be found in the inner of the product of the nodal

velocity vectors as given in Eq. (23). Peters et al.16 show that ZR = �{Z} is required to be

symmetric or — if not the case — can easily be symmetrized.

In this paper, the acoustic impedance matrix is obtained by fully inverting the system

matrix A constructed by FEM and IFEM. The discrete system of linear equations (2)

is subdivided into the DOF on the boundary of the solid structure (marked with the
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subscript Γ) and those associated with the fluid (marked with the subscript ◦)
[
AΓΓ AΓ◦
A◦Γ A◦◦

][
pΓ

p◦

]
= −iωρf

[
ΘΓΓ ΘΓ◦
Θ◦Γ Θ◦◦

] [
vΓ

v◦.

]
=

[
fΓ

f◦.

]
. (25)

Written out in full and considering that there is no structural velocity in the fluid (i.e.

v◦ = 0) gives

AΓΓpΓ +AΓ◦p◦ = −iωρfΘΓΓvΓ, (26)

A◦ΓpΓ +A◦◦p◦ = −iωρfΘ◦ΓvΓ. (27)

Solving the latter equation (27) for the sound pressure in the fluid p◦ leads to

p◦ = A−1
◦◦ [−iωρfΘ◦ΓvΓ −A◦ΓpΓ], (28)

which is then substituted in Eq. (26) and rearranged, so that

[AΓΓ −AΓ◦A−1
◦◦ A◦Γ]pΓ = −iωρf [ΘΓΓ −AΓ◦A−1

◦◦ Θ◦Γ]vΓ. (29)

This expression has to be rearranged in order to substitute pT
Γ in the equation for the

discrete sound power in Eq. (24). It follows that the vector transpose of the nodal sound

pressure values on the surface is given by

pT
Γ = −iωρfv

T
Γ [ΘΓΓ −AΓ◦A−1

◦◦ Θ◦Γ]T [AΓΓ −AΓ◦A−1
◦◦ A◦Γ]−T . (30)

Chen and Ginsberg37 have shown that the vectors of nodal velocities are extracted by the

real part operator in the quadratic form of the sound power in Eq. (23), so that ZR is given

by

ZR = �{Z} = �{−iωρf [ΘΓΓ −AΓ◦A−1
◦◦ Θ◦Γ]T [AΓΓ −AΓ◦A−1

◦◦ A◦Γ]−TΘΓΓ}. (31)

As mentioned above, this impedance matrix is often calculated with the BEM with ZR =

�{H−1GΘ}, e.g. as done by Peters et al.16

4. Model and Numerical Implementation

4.1. Circle

The purpose of calculating this first model is to prove the reliability of the chosen approach

using ARMs. The air surrounding a circle of diameter 0.2m is built and meshed with

COMSOLMultiphysics using triangular Langrangian finite elements of quadratic order. The

air has a density of ρf = 1.3 kg m−1 and a speed of sound of cf = 340ms−1. After application

of FEM and IFEM, the system matrix A is obtained, which is subdivided (Eq. (25)) and

rearranged in order to calculate the acoustic impedance matrix from Eq. (31). The results

of the eigenvalue problem of ZR are presented in Sec. 5.1.

4.2. Recorder

In this paper, the authors adapt the model of a recorder by Retka et al.20 to the two-

dimensional case. Therefore, a circular fluid-filled domain (ρf = 1.3 kgm−1, cf = 340ms−1)
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Fig. 1. Boundary mesh nodes at the recorder surface.

with a diameter of 0.67m containing the cross-section of the recorder is meshed with COM-

SOL Multiphysics. Three different mesh sizes are investigated, such that 211 nodes on the

recorder surface are shared by all three configurations. These mutual boundary nodes are

depicted in Fig. 1. The meshes will be called coarse, normal and fine. The normal mesh

consists of 1021 finite elements with a maximum element size of hmax = 3.78 cm to ensure

reliable results at about 3 kHz to 4 kHz.38,39 The coarse and the fine mesh consist of 707

and 2102 elements, respectively, with maximum element sizes of hmax = 11.33 cm and

hmax = 2.27 cm. The total numbers of DOF for the sound pressure are 1569, 2197 and 4368

for the coarse, normal and fine meshes, respectively. The FE system matrices of stiffness,

damping and mass are imported to Matlab, where the IFEM and subsequent studies are

implemented. Mapped and conjugated Astley–Leis infinite elements are attached to the 56

(coarse), 56 (normal) and 60 (fine) elements of the outer boundaries of the three different

FE meshes. The Lagrangian interpolation polynomials in the transverse direction inherit

quadratic order from the finite elements along the circular FE–IFE-junction. In this paper,

the influence of the IFEM on normal and ARMs is investigated. For this purpose, the IFEM

system matrices are calculated for different radial interpolation polynomials of varying poly-

nomial degree. Lagrange, Legendre and Jacobi(1,0) as well as Jacobi(2,0) polynomials with

orders of 2 up to 20 are used with the normal FE mesh. In the case of the coarse and fine

meshes, the subsequent investigations are confined to Jacobi(1,0) polynomials, since the same

results are observed for all the radial interpolation polynomials as will be shown in the fol-

lowing results section. The radial interpolation points are positioned equidistantly between

[−1, 1) in the direction of the mapped radial coordinate s, such that the first interpolation

point is located at a = 0.33m on the circular junction of the FE and the IFE domain.

According to the infinite element mapping approach in Eq. (6), the outer interpolation

points in the global coordinate system can be found at the radii rj in [m] for j = 2 . . . 20:

[0.67, 1, 1.33, 1.67, 2, 2.33, 2.67, 3, 3.33, 3.67, 4, 4.33, 4.67, 5, 5.33, 5.67, 6, 6.33, 6.67].

The subsequent considerations are made in the frequency range 1Hz–3000 Hz in fre-

quency steps of 1Hz.

5. Results

5.1. Circle

For the circle in air, the radiation modes of the acoustic impedance matrix are computed

according to the derivation made in Sec. 3.2. In Fig. 2, the nine largest ARM eigenvalues λj

are depicted as functions of the frequency. The largest eigenvalue (λ1: ) corresponds to

a monopole mode and subsequent modes appear as pairs of eigenvalues of equal magnitude,

corresponding to dipoles (λ2 and λ3: ), quadrupoles (λ4 and λ5: · · ), hexapoles (λ6
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0 500 1000 1500 2000 2500 3000

10-5

100
1

2-3

4-5

6-7

8-9

λ
j

Fig. 2. The nine largest radiation mode eigenvalues λj as functions of the frequency, shown in groups of
multipoles.

Fig. 3. ARM mode shapes corresponding to the nine largest eigenvalues λj at 300Hz.

and λ7: · · · · ·) as well as octupoles (λ8 and λ9: · ∗ · ∗ ·), depicted in Fig. 3. The grouping

behavior of ARM eigenvalues or radiation efficiencies in terms of acoustical multipoles has

already been presented by Cunefare et al.15 for three-dimensional problems and by Wu

et al.40

5.2. Recorder

5.2.1. Matrix condition number

As a first step, the condition number of the dynamic stiffness matrix A (cf. Eq. (10)) is

calculated. The condition number κ(A) is given by the ratio of the largest to the lowest
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eigenvalue of the frequency-dependent matrix A and is calculated by power iteration

and inverse iteration, respectively. As shown by Babuška et al.41 Cremers et al.42 and

Dreyer et al.6 the matrix condition increases with the polynomial order, which leads to

ill-conditioned matrices for polynomials of degree > 8 in the case of Lagrange polynomials,

whereas Legendre and Jacobi polynomials provide distinctly better-conditioned matrices.

Tests performed by the authors of this paper have confirmed this observation, although the

choice between the four polynomials had no considerable effect on the modes in exterior

acoustics, as will be shown subsequently.

5.2.2. Influence of infinite elements on radiation modes

The eigenvalues λj and eigenvectors of the frequency-dependent, real acoustic impedance

matrix ZR from Eq. (31) were computed separately for each frequency step. The largest

eigenvalues as a function of the frequency are shown in Fig. 4 for the four polynomials of

degree 20 with the normal FE mesh. All polynomials exhibit virtually identical eigenvalue

curves and do so for each degree of radial interpolation, not only for the 20th order. Despite

the differences in matrix condition, the choice of polynomial for radial interpolation does

not seem to matter for calculating the ARM.

In Fig. 4, the grouping behavior of the exterior radiation mode eigenvalues can be

observed as described by Cunefare et al.15 and by Wu et al.40 and as obtained for the

circle in Sec. 5.1, which is a pure exterior acoustic problem without holes or chambers

with interior modes. These grouped curves are in superposition with interior resonances

in the hollow recorder. This is indicated by single eigenvalues that show resonance peaks

at certain frequencies above which they rapidly decrease, which leads to changes in the

order of eigenvalue magnitudes. The distribution of eigenvalues at each frequency is related

to the share of the corresponding mode shape in the total superimposed pressure field

at the surface of the solid structure, since ARM eigenvalues are related to the radiation

0 500 1000 1500 2000 2500 3000
f [Hz]

10 0

10 5

λ
j

Lagrange
Legendre
Jacobi(2, 0)
Jacobi(1, 0)

Fig. 4. Largest eigenvalues λj of the radiation modes as a function of the frequency for Lagrange, Legendre
and two Jacobi polynomials of radial order 20 with the normal FE mesh. All polynomials lead to virtually
identical eigenvalue curves.
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(a) λ1 at 840Hz

(b) λ1 at 1760Hz

(c) λ1 at 2880Hz

Fig. 5. ARM shapes as eigenvectors of the acoustic impedance matrix corresponding to the largest eigenvalue
at each of the given frequencies.

efficiency σ by λ = ρfcfσ.
16 Three notable peaks can be found for the largest eigenvalue

at approximately 840Hz, 1760Hz and 2880Hz. The corresponding mode shapes — which

can be found as eigenvectors of the acoustic impedance matrix ZR — are depicted in Fig. 5

and show interior modes in the upper middle section (barrel), see Fig. 5(a), in the foot joint

(Fig. 5(b)) and in the windway of the mouthpiece (Fig. 5(c)).

In the following, attention will be restricted to one single type of IFEM interpolation

polynomial in the radial direction, the Jacobi(1, 0) polynomials. As shown before, the

same results for the ARMs are obtained for all considered polynomials. Using the Jacobi(1,

0) polynomials leads to the best-conditioned problem due to the lowest matrix condition

number κ(A). Two further finite element meshes are taken into consideration and the infinite

element system matrices are computed for Jacobi (1, 0) as radial interpolation polynomials

of degree 2 up to 20. The ARM eigenvalues λj with j = 1, . . . , 8 with coarse, normal and

fine FE mesh are depicted in Fig. 6 for a degree of 20. The results show that the coarse and

normal meshes lead to quite similar eigenvalue curves, whereas the fine FE mesh results in

slightly smaller values of ARM eigenvalues.

Close to the eigenvalue resonance peaks it can be observed that each single eigenvalue

converges as the degree of the radial interpolation polynomials increases, as can be seen

in Fig. 7 in the example of the peak in λ1 at about 2880Hz. Polynomials of even and

odd degrees respectively lead to curves that converge to two different eigenvalues. They

do not necessarily approach from opposite sides, but sometimes both from below or from

above. However, away from the resonance peaks, the difference between eigenvalue curves

of low-order polynomials and the curves of the highest-order converged polynomials with

degree 19 and 20 is negligible. This means that the loss of accuracy incurred by reducing

the degree of radial interpolation polynomials only emerges at the modal resonances. In
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0 500 1000 1500 2000 2500 3000
f [Hz]

10-2

100

102

104

λ
j

coarse
normal
fine

Fig. 6. Radiation mode eigenvalues λj for Jacobi(1, 0) interpolation polynomials of degree 20 for coarse,
normal and fine FE mesh.

addition, convergence of the eigenvalues from both sides can be observed, depending on the

FE mesh on which the computation is based. In the example of the peak considered earlier

at about 2880Hz, the eigenvalues obtained from IFEM radial interpolation polynomials

with even degree converge from below for the coarse FE mesh (see Fig. 7(a)), whereas

calculations based on the normal and the fine mesh lead to convergence from above, as can

be seen in Figs. 7(b) and 7(c). The convergence of eigenvalues from odd-degree polynomials

is observed to behave vice versa at this particular resonance. However, at least once, the

curves cross and converge from opposite sides close to the resonance peaks.

5.2.3. Influence of infinite elements on NMs

Transforming the frequency-independent system matrices K, D and M into the state-space

form as given in Eq. (19) leads to the eigenvalue problem in Eq. (18) that yields the NMs as

right eigenvectors. The corresponding eigenvalues κj are complex numbers with frequency

information in the imaginary part and a damping term in the real part. Figure 8 shows the

eigenvalues in the complex plane for all four polynomials at radial interpolation of degree

nrad = 10 and nrad = 20 with the normal FE mesh. The focus is on eigenvalues with a pos-

itive frequency below 3 kHz (neglecting the complex conjugate eigenvalues) whose real part

has comparatively small magnitude (|�{κj}| < 100), which means the considered modes

are weakly damped and thus expected to have a major influence on the radiation of sound.

Clearly, the eigenvalue solution does not depend on the choice of the radial interpolation

polynomial for the infinite elements, since Lagrange, Legendre and both Jacobi polynomials

lead to virtually the same eigenvalues in the complex plane as shown in Fig. 8. Since this

parameter has no influence on the NM eigenvalues, only Jacobi(1, 0) polynomials are taken

into consideration in the following.

Single eigenvalues or a certain number of eigenvalues on a curve can be observed, which

can be recognized in all of the calculations, independent of the number of radial interpolation

points nrad. These eigenvalues are expected to converge as the order of the polynomials
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(a) ARM eigenvalues λj based on coarse FE mesh
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(b) ARM eigenvalues λj based on normal FE mesh

2840 2850 2860 2870 2880 2890 2900 2910
f [Hz]

0.5

1

1.5

2

λ
j

×10 4

coarse
normal
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fine even even degrees

odd degrees
even degrees
odd degrees
even degrees
odd degrees
even degrees
odd degrees
even degrees
odd degrees
even degrees
odd degrees
even degrees
odd degrees
even degrees
odd degrees
even degrees
odd degrees
even degrees

(c) ARM eigenvalues λj based on fine FE mesh

Fig. 7. (Color online) Convergence of ARM eigenvalues λj based on three different FE meshes (coarse
, normal and fine · · · · ·). Polynomials of even and odd degrees are denoted with blue and red

lines, respectively. The black curves — in pairs, one for even and one odd order — denote the converged
eigenvalues of degree 19 or 20 for all FE meshes.
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(a) κj at nrad = 10 (b) κj at nrad = 20

Fig. 8. (Color online) Complex plane with NM eigenvalues for Lagrange, Legendre, Jacobi(2, 0) and Jacobi(1,
0) polynomials, which all give virtually the same eigenvalues depicted as black dots. Radial interpolation
polynomial of: (a) degree 10 and (b) degree 20. The red circles show the three related eigenvalues that were
found for the ARMs in Figs. 4 and 5. The gray circles indicate the variation of the considered eigenvalues
(red circles) between the polynomial degrees 10 and 20.

increases, whereas the additional eigenvalues that appear due to the growing number of

DOF do not converge and are assumed to correspond to spurious modes. This was also

observed by Marburg11 when he investigated NMs in the fluids around an ellipse and an open

box, respectively. The red circles indicate three eigenvalues κa, κb and κc which correspond

to eigenvectors or mode shapes that were found in resonance at approximately 840Hz

(λ1), 1760Hz (λ1) and 2880Hz (λ1) for the ARMs (cf. Fig. 4). Almost the same three

frequencies can be found in the imaginary parts of the three red-marked NM eigenvalues

κ13 = −46.22+819.27i (= κa), κ72 = −98.01+1743.25i (= κb) and κ186 = −38.78+2880.84i

(= κc) in the example of second-order Jacobi(1, 0) polynomials with the normal FE mesh.

This single value in the imaginary part of the complex eigenvalues shows the frequency at

which the respective NM is in resonance, whereas its damping ratio is given in the real

part as described by Marburg.10 The corresponding mode shapes in the fluid around the

recorder — as right eigenvectors of the state space eigenvalue problem — are depicted

in Fig. 9. As expected, the same mode shapes can be obtained in the barrel and in the

mouthpiece of the recorder as for the ARMs in Fig. 5.

Similar to the eigenvalues of the ARMs, the NM eigenvalues differ for radial interpolation

polynomials of even and odd degrees. This means that two different convergent complex

conjugate pairs of eigenvalues are calculated, corresponding to the same mode shape. By

application of the Modal Assurance Criterion (MAC),29 the NM eigenvalues can be tracked

throughout all the calculations. The MAC can be calculated by29

MAC(a,b) =
|aHb|2

(aHa)(bHb)
, (32)

where a and b are eigenvectors or columns of modal matrices and (·)H = (·)′∗ is the

Hermitian transpose (complex conjugate and transpose). The comparison of modal matrices
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(a) κa = κ13 = −46.22 + 819.27i (b) κb = κ72 = −98.01 + 1743.25i

(c) κc = κ186 = −38.78 + 2880.84i (d) Enlargement of the mouthpiece for κc

Fig. 9. NM shapes as right eigenvectors corresponding to given complex eigenvalues ((a) κ13, (b) κ72, (c)
and (d) κ186) for Jacobi(1, 0) polynomials of second-order of radial interpolation, based on the normal FE
mesh.

leads to a MAC matrix, whose maximum value(s) denote(s) the best accordance of two

compared eigenvectors. The positions of the maxima indicate the corresponding eigenvalues

of well-according mode shapes. The eigenvectors that are depicted in Fig. 9 (normal FE

mesh and second-order interpolation polynomials) are compared to each of the remaining

eigenvectors that were calculated with varying polynomial order based on three FE meshes.

To ensure comparability between all modal matrices, eigenvectors are compared, which are

narrowed to the mutual DOF on the recorder surface (211 DOF), cf. Sec. 4.2. Since the

three tracked modes only have notable peaks in the interior and therefore directly at the

surface of the recorder, this is a reasonable reduction.
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Fig. 10. (Color online) Convergence of the eigenvalues κa (�), κb (©) and κc (�) as functions of even (blue)
and odd (red) polynomial order for radial interpolation nrad with three different FE meshes (coarse ,
normal and fine · · · · ·), whose curves are virtually the same.

Figure 10 shows the convergence of the NM eigenvalues κa, κb and κc as the degree of

the radial interpolation polynomials of the infinite elements is increased and considering the

three different FE meshes. It can be seen that the choice of coarse, normal or fine FE mesh

has hardly any effect, neither on the real part nor on the imaginary part of the converging

eigenvalues. As already observed for the ARM eigenvalues, two different convergence curves

of the NM eigenvalues for polynomials of even and odd orders are found.

6. Conclusion

In this work, the authors applied the FEM as well as the IFEM in order to discretize and

calculate the spatial sound pressure field in fluid-filled unbounded domains around an inner

solid structure. The obtained discrete system matrices were used for modal decomposition

into ARMs and NMs. It was shown that the acoustic impedance matrix ZR for the calcula-

tion of the radiation modes can also be determined from the matrices of the finite and the

infinite elements, instead of the boundary element matrices that are usually used. Further-

more, the grouping behavior of exterior multipole eigenvalues was observed in the example

of a circle and a recorder in a fluid-filled unbounded domain. In addition, resonances of

interior radiation mode eigenvalues were found for the hollow model of the recorder. The
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comparison between the ARMs and the NMs shows that both methods provide almost all

the same eigenvectors (mode shapes) with an acceptable agreement for the correspond-

ing frequencies. Radiation mode shapes only refer to the surface of the structure and NM

eigenvectors can be visualized in the whole discretized fluid-filled domain.

The aim of this paper was to investigate the influence of FE mesh sizes as well as differ-

ent IFE radial interpolation polynomials and polynomial degrees on the modes in exterior

acoustics. The investigations show no differences, neither for ARM eigenvalues nor for NM

eigenvalues, between the choice of Lagrange, Legendre or Jacobi polynomials. However, the

matrix condition of the global system matrix A is the best with Jacobi(1, 0) polynomials, so

that further investigations were limited to these polynomials. Variation of the finite element

mesh size has no considerable effect on the NM eigenvalues and has a minor effect on some

of the radiation mode eigenvalues in the whole frequency range. Increasing the degree of

radial interpolation polynomials in the domain of the infinite elements reveals two conver-

gence curves for the ARM eigenvalues for polynomials of even and odd degrees. Differences

in the eigenvalue curves of lower- and higher-order interpolation polynomials mainly emerge

close to the resonance peaks of the eigenvalues rather than over the whole frequency range.

The investigations revealed no clear tendency for convergence of the eigenvalues from above

or below. In order to track NM eigenvalues for different FE meshes and polynomial degrees,

the corresponding eigenvectors were compared to each other by application of the MAC. In

the example of three significant NM shapes, the NM eigenvalues were observed to converge

as the order of the polynomials was increased. Similar to the convergence of the radiation

modes, the authors found two convergences of the NM eigenvalues for polynomials of even

and odd degree.

Future work is planned to further investigate the eigenvalue solver and alternative,

iterative methods to reduce the calculation time. The role of the eigenvalue solver in the

differences in polynomials of even and odd degree has to be clarified. Finally, a modal

reduction is desirable in order to calculate the radiated sound power or sound pressure field

with a reduced number of modal contributions.
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The Helmholtz equation for exterior acoustic problems can be solved by the finite element method in
combination with conjugated infinite elements. Both provide frequency-independent system matri-
ces, forming a discrete, linear system of equations. The homogenous system can be understood
as a quadratic eigenvalue problem of normal modes (NMs). Knowledge about the only relevant
NMs, which — when doing modal superposition — still provide a sufficiently accurate solution
for the sound pressure and sound power in comparison to the full set of modes, leads to reduced
computational effort. Properties of NMs and criteria of modal reduction are discussed in this work.

Keywords: Exterior acoustics; infinite element method; normal modes; modal reduction.

1. Introduction

Exterior acoustic problems comprehend the propagation and distribution of sound pres-

sure in fluid-filled domains of infinite extent. This implies sound sources under free-field

conditions in full- or half-space problems, with or without open cavities. For the descrip-

tion of sound sources, e.g. by means of their radiated sound power, free-field conditions are

required in order to only determine the characteristics of the source and to exclude the

influence of the measurement environment. This also applies for the numerical simulation

of sound radiation, since in the context of virtual prototyping, it is desired for estimating

acoustical properties in the development process. For this purpose, the Sommerfeld radi-

ation condition1 has to be satisfied, according to which the sound pressure decays with a

defined rate and vanishes towards infinity.

The classical finite element method (FEM)2 is restricted to interior acoustic problems in

enclosed computational domains with reflecting or partially absorbing boundary conditions

(ABCs). Givoli et al.3,4 introduce and review the existing high-order local ABCs with the

aim of applying the FEM to exterior acoustic problems. Rabinovich et al.5 compare the high-

order ABCs with perfectly matched layers (PMLs) that were introduced by Berenger6 and

optimized for frequency domain problems by Bermúdez et al.7,8 PMLs ensure nonreflective

This is an Open Access article published by World Scientific Publishing Company. It is distributed under
the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is
permitted, provided the original work is properly cited.
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outer boundaries of the computational domain by attaching additional damped and finite

computational domains to its outer boundary with perfect impedance matching at the

junction. Similar to the PML approach, the infinite element method (IFEM) works with an

outer layer around an inner spherical or ellipsoidal FE domain. Different formulations have

been presented, e.g. by Bettess,9 Burnett10 and Astley.11 The Astley–Leis IFEM formulation

provides frequency-independent system matrices,12,13 which is required for the subsequent

investigations in this work. The radial interpolation of the sound pressure between the outer

FE boundary and infinity can be realized by different polynomials. Using Legendre or Jacobi

polynomials leads to improved matrix conditioning in comparison to conventional Lagrange

polynomials, according to von Estorff and Dreyer et al.14,15

The Sommerfeld radiation condition is also implied in the boundary element method

(BEM),16,17 where an integral equation is found to solve the Helmholtz equation at the

surface of the sound source for the given set of boundary conditions. This leads to discrete

and frequency-dependent, single-layer and double-layer potential matrices that associate

the sound pressure and fluid particle velocity at the boundary.

In order to determine the sound pressure or sound power using one of the above methods,

linear systems of equations have to be solved and matrices have to be inverted for each

frequency of interest separately. This leads to considerable computational effort for studies

with a large number of degrees of freedom (DOFs) in a wide frequency range. A possible

model reduction approach is modal analysis and superposition, in which the solution is

decomposed into modes — or, in mathematical terms, eigenvalues and eigenvectors — which

describe theoretically possible and orthogonal shapes of vibration that can be summed up

or superimposed to the total solution.

The concept of normal mode (NM) was first adapted to exterior acoustic problems by

Marburg et al.18–20 and further investigated by Moheit and Marburg.21,22 They apply the

frequency-independent Astley–Leis IFEM in order to solve a single linearized eigenvalue

problem referring to the works by Ruge23 and Tisseur and Meerbergen.24 The authors

investigate the influence of the mesh and the radial interpolation of the IFEM on NMs and

acoustic radiation modes (ARMs) and compare both kinds of modes in exterior acoustic

problems. Fuß et al.25 use an Arnoldi eigenvalue solver to calculate selected, weakly damped

NMs in a proximity to the imaginary axis iteratively. The modal reduction of ARMs has

been investigated by Kuijpers et al.,26 Kessels27 and Peters et al.28–30 using BEM.

Model reduction is mainly associated with Krylov subspace-based methods such as Padé-

via-Lanczos and Padé-via-Arnoldi. The latter approach has been applied to fluid-loaded

structural modes by Peters et al. in Ref. 30 using a fully-coupled FEM/BEM model, whereas

Baugart et al.31 apply the Padé-via-Lanczos algorithm to FE- and IFE-discretized exterior

problems in order to predict sound power efficiently. Wagner et al.32 describe the concept

of the Krylov subspace approach on the basis of Dirichlet-to-Neumann (DtN) boundary

conditions and IFEs in exterior acoustics with the aim of solving the Helmholtz equation

simultaneously at multiple frequencies.

In this phenomenological work, the authors recapitulate the NMs approach and the

determination of the sound pressure and sound power and investigate the properties of
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eigenvalues and eigenvectors for different geometries and load cases. In particular, the dis-

tinction between pure exterior problems and cavity problems is worked out. Finally, the

errors of the radiated sound power are determined for reduced modal bases with certain

criteria of modal reduction.

2. Method

According to the work by Marburg et al.,18–20 NMs in numerical exterior acoustic problems

can be determined as follows: For the description of the spatial sound pressure field p(x) at

a frequency f , the Helmholtz differential equation is used. It is discretized by the FEM and

the IFEM according to Astley and Leis. The general setup is depicted in Fig. 1.

The resulting discrete system of N linear equations −ω2M− iωD+K = f is solved as

a linearized quadratic eigenvalue problem with 2N × 2N -sized hypermatrices A and B:

A =

[
M 0

0 −K

]
, B =

[
0 M

M D

]
. (1)

This leads to 2N eigenvalues κm corresponding to left and right eigenvectors yz,m and xz,m

due to nonsymmetric system matrices for the IFEs

(A− κmB)xz,m = 0 and yT
z,m(A− κmB) = 0. (2)

The subscript z indicates the twofold length of the eigenvectors as a consequence of the state-

space linearization. The eigenvectors can be column-wisely comprised in modal matrices,

which are indicated by the capital letters in what follows. The orthogonality of the modes

is measured by the product of modal matrices and hypermatrices

YT
z AXz = diag(α1, . . . , α2N−δ) and YT

z BXz = diag(β1, . . . , β2N−δ), (3)

where the ratio of the entries on the diagonals is found as the eigenvalues κm = αm/βm.

The eigenvalues are complex numbers and their real part contains information about the

x

y

0

a R
Γ

Γa

ΓR

ΩFEM

ΩIFEM

Fig. 1. General setup of the FEM/IFEM discretization: sound source as an obstacle (gray) in the fluid-filled
computational domains ΩFEM (radius a) and ΩIFEM (outer radius R).
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damping of the respective mode, whereas their imaginary part indicates its resonance fre-

quency. δ is the rank deficiency of the mass matrix. A circular shape of the FE domain

leads to an empty mass matrix for all DOFs of the IFEs.12 Marburg20 suggested canceling

empty rows and columns, which leads to a system of equations of reduced size 2N − δ.

It is notable that only one single eigenvalue problem has to be solved, since the system

matrices do not depend on the frequency and neither do the eigenvalues and eigenvectors.

2.1. Modal sound pressure and sound power

Up to this point, the eigensolution of the problem is frequency-independent and does not

consider any right-hand-side excitation f , e.g. caused by a structural particle velocity vs(x)

at the boundary of inner obstacles. The discrete sound pressure field can be constructed by

modal superposition of the truncated eigenvectors ym and xm of size N × 1, considering

only those N DOFs that are related to the pressure as shown by Marburg in Ref. 20:

p = −
2N−δ∑

m=1

yT
Γ,mfΓ

αm + ikβm
xm, (4)

where the wave number k = ω/cf is the ratio of the angular frequency 2πf and the speed of

sound of the fluid. The index Γ indicates that only those DOFs in the right-hand-side vector

and in the eigenvectors have to be taken into account that are related to the surface of the

inner obstacles. The modal basis can be reduced if the sum is formed by the given eigenvec-

tors and eigenvalues. In the same manner, the radiated sound power can be superimposed

by a reduced number of modes. The discrete definition of the radiated sound power includes

the discrete sound pressure and the particle velocities at the radiating boundaries20,28:

P = �
{
1

2
pT
ΓΘv∗

Γ

}
, (5)

where Θ is the boundary mass matrix.17 Hence, the sound power PNM is found as the sum

of modal sound power distributions Pm with

PNM = �
{
−0.5

1

iωρf

2N−δ∑

m=1

yT
Γ,mfΓ

αm + ikβm
xT
Γ,mf∗Γ

}
. (6)

The sound power P is called PAinv in what follows, as long as the included sound pressure

vector in Eq. (5) is obtained by full inversion of the dynamic stiffness matrix A according to

pΓ = [A−1f ]Γ = [(−ω2M− iωD+K)−1(−iωρfΘvs)]Γ. (7)

3. Models and Implementation

Three geometries are modeled and the respective FE matrices are computed by using the

commercial software COMSOLMultiphysics r©. The matrices as well as the mesh information

are exported to MATLAB, where the subsequent processing is done. This includes the
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implementation of the IFEM, the computation of the NMs and the radiated sound power

as well as the visualization of the results. All models are two-dimensional problems that

consider a solid structure as a sound-hard obstacle in a circular, fluid-filled FE domain,

where the IFEs are attached to the outer boundary of the FE mesh according to the setup

in Fig. 1.

The first model (a) is an ellipse-like structure with a rectangular insertion over the whole

length of the ellipsoidal obstacle along the x-axis with a height of 0.1m. The two semi-axes

of the halfway stretched ellipses are a = 0.9m and b = 17/30m ≈ 0.57m. The second

geometry (b) is a slight modification of the first one. Here, a part of the inner rectangular

insertion is cut out at the right side with a length of 1.7m. The third obstacle (c) is the

inversion of the second geometry, where the ellipse is removed and only the former cavity

is an inner obstacle in the fluid domain. The geometries and meshes are depicted in Fig. 2.

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Ellipsoidal obstacle

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Ellipsoidal obstacle with rectangular cavity

Fig. 2. Meshes in the fluid-filled domain around the three inner obstacles discretized by FE and IFEs.
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(c) Rectangular obstacle

Fig. 2. (Continued)

The three chosen geometries are motivated as follows: The fluid in the computational

domain is air with a density of ρf = 1.3 kgm−3 and a speed of sound of cf = 340ms−1. In

the case of a closed tube with a length of 1.7m, the undamped eigenvalue problem leads

to eigenfrequencies in 100Hz-steps, starting from the first natural frequency at 0Hz and

corresponding to standing waves along the long side of the tube. In the case of the open

cavity in the exterior acoustic domain, the eigenfrequencies are expected to appear damped

at lower frequencies, but still can be found with roughly the same frequency step from one

eigenfrequency to the next. This helps to better identify cavity-related resonance frequencies

in the solution. In comparison to the ellipsoidal obstacle with the duct-like cut-out (b) and

with these expected cavity modes inside, the ellipsoid (a) and the rectangle (c) are pure

exterior problems. They all have the same IFE discretization and only differ in the inner

area of the FE domain close to the surface of the obstacles, which might reveal similarities

and differences in the spectral solution. In these examples, the role of pure real and complex

eigenvalues and eigenvectors with respect to cavity-related resonances and outer multipole

modes shall be investigated.

All surfaces of the obstacles behave reverberantly in such a way that the boundary

admittance is zero Y (x) = 0 and the particle velocities at the surfaces are the same in

the fluid and in the structure vf = vs.
17 The FE mesh has a maximum element size of

hmax = 11.33 cm in order to ensure at least six elements per wavelength at a frequency

of 500Hz for second-order Lagrangian FEs, which seems to be an appropriate sampling

according to the literature Refs. 33 and 34.

At each of the 84 quadratic line elements at the outer circular FE boundary, an IFE is

attached. Its polynomial order for the interpolation in the transversal direction is inherited

from the corresponding boundary line. For the interpolation in the radial direction, the

authors used 8-order Jacobi polynomials with the two corresponding exponents α = 1 and

β = 0. According to von Estorff et al.14 and Dreyer et al.,15 Jacobi polynomials provide a

much better matrix condition number of the system matrices in comparison to Lagrange

1850029-6

J.
 T

he
or

. C
om

p.
 A

co
ut

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
38

.2
46

.2
.4

8 
on

 0
8/

29
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

June 12, 2018 19:20 WSPC/S2591-7285 130-JTCA 1850029

Normal Modes and Modal Reduction in Exterior Acoustics

Table 1. Number of DOFs of the three geometries.

Geometry DOF FE DOF IFE DOF Total

Ellipsoid (a) 2746 1176 3922
Ellipsoid with cut-out (b) 2840 1176 4016
Rectangle (c) 3404 1176 4580

polynomials. This observation was confirmed by the authors in Ref. 21, however, the influ-

ence on NMs and ARMs was negligible. The number of DOFs in the used meshes is given

in Table 1.

Two different load cases are investigated. In the first case, a structural particle velocity

vs,in = 1ms−1 is applied to the inner left surface of the open duct. The other case is

considered for two geometries, the ellipsoid and the ellipsoid with the cavity. A structural

particle velocity vs,out = 1ms−1 is applied to all outer surfaces of the ellipsoid without

the right surface of the rectangular insertion. Both excitations apply for all frequencies

from 1Hz to 500Hz in 1Hz-steps.

Reference solutions of the radiated sound power were computed by using COMSOL

Multiphysics r© and by applying a circular PML around the inner FE domain with a much

finer mesh. The computation time of the presented method is not yet competitive to com-

mercial codes, since it is not optimized for performance and only efficient if a reduced

number of modes is considered during the modal superposition. Currently, the whole modal

basis is computed in order to investigate the results regarding their characteristics and rele-

vance and makes the approach hardly comparable to the PML approach, where the resulting

radiated sound power is determined directly and efficiently.

4. Results

4.1. Eigenvectors

The NM eigenvectors are found in the whole computational fluid domain including FE and

IFE DOFs. However, in general, the main focus is on the sound pressure distribution at the

mesh nodes close to the inner obstacles, i.e. in the FE domain. Three typical mode shapes

are column-wisely depicted in Fig. 3 in the example of the ellipsoidal with the open duct.

The authors distinguish between modes with the sound pressure mainly concentrated at or

close to the surface of the inner obstacles or inside a cavity, those with the sound pressure

mainly concentrated at the junction between the FE and IFE domains and, finally, those

modes with an even distribution.

In order to distinguish between these three kinds of mode shapes, the sum of certain

eigenvector entries is set in relation to the sum of the remaining entries associated to the

DOFs in the FE domain. In doing so, the concentration of the sound pressure — either at

the surface of the inner obstacles or at the junction of the FE and the IFE domains — can be

compared to the remaining share of the sound pressure distribution in the entire fluid, and

the qualitative distinction can be done automatically to a certain extent. The eigenvectors
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Fig. 3. Three exemplary kinds of NM shapes (one per column) as right eigenvectors x for the second geometry
(b): even sound pressure distribution in the whole fluid domain (left); concentration of pressure peaks close
to the surface of inner obstacles or cavity modes (middle); concentration of sound pressure peaks at the
junction of the FE and IFE domains (right); Eigenvector magnitudes (first row), real parts (second row)
and imaginary parts (bottom row).

were normalized to the length of one for this purpose and called x̂. In mathematical terms,

the eigenvector distribution ratio χm for a certain mode m can be written as

χm =

∑

i

|x̂m,i|
∑

j

|x̂m,j |
with i ∈ Γ and j ∈ Ω\Γ, (8)

where Γ = Γin ∨ Γout includes either the DOFs at the inner boundaries of the obstacles Γin

or at the outer FE boundary Γout.

As mentioned in Sec. 2, the asymmetry of the IFE matrices provides left and right

eigenvectors that are both part of the orthogonal modal basis and are required for the

computation of the modal sound pressure and sound power contributions, see Sec. 2.1.

Examples of left and right eigenvectors are visualized in Fig. 4 for IFE DOFs only, since

both mode shapes are almost the same in the FE domain. The similarity of left and right

eigenvectors can be measured by the modal assurance criterion (MAC), which is presented

in Sec. 4.3. The left eigenvectors show a much more extended radiation pattern in the radial

direction in comparison to the right eigenvectors and are in antiphase to each other.
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Fig. 4. Three examples of right eigenvectors x (left column) and the corresponding left eigenvectors y
(right column) in the IFE domain, each both purely real and colored on the basis of the same color scale,
respectively.

4.2. Eigenvalues

Initially, the NMs are sorted by increasing the magnitude of their eigenvalue κm. This order

is not necessarily the best sequence of significance for the efficient superposition of NMs,

even though weakly damped modes (small �{κm}) at low frequencies (small �{κm}) can be

found in the very beginning in the list of ascending eigenvalue magnitudes. The subsequent

modes might either have a weak damping or become in resonance at low frequencies in

the audible frequency range, which is both an indicator of significance for the radiation of

sound and therefore for the modal superposition of sound pressure or sound power. This

leads to the research question of how a modified sorting algorithm could distinguish between

relevant and nonrelevant modes.

The eigenvalues of the second problem (ellipse with the open duct inside) are depicted in

the complex plane in Fig. 5. With each increment of the number of IFE radial interpolation

points nrad, a new straight line of highly damped eigenvalues comes up, where — at the

same time — the other existing lines of eigenvalues move with a growing absolute angle in

the polar form. As observed by the authors in Ref. 21, an even number for the polynomial

order nrad leads to a line of purely real eigenvalues (cf. Fig. 5 with nrad = 8), whereas odd

polynomial degrees do not induce these eigenvalues.

It can be observed that the eigenvalues are symmetric with respect to the real axis,

which is due to the appearance of complex conjugated eigenvalues with a different sign of

1850029-9

J.
 T

he
or

. C
om

p.
 A

co
ut

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
38

.2
46

.2
.4

8 
on

 0
8/

29
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

June 12, 2018 19:20 WSPC/S2591-7285 130-JTCA 1850029

L. Moheit & S. Marburg

0.5 1 1.5 2

| {
m

}| 104

-1.5

-1

-0.5

0

0.5

1

1.5

{
m

}

104

10-5 100

| {
m

}|

-1.5

-1

-0.5

0

0.5

1

1.5

{
m

}

104

Fig. 5. NM eigenvalues of the cavity problem (second geometry) in the complex plane with linear (left) and
logarithmic (right) scaling of the real axis.

10-6 10-4 10-2 100 102 104

| { m}|

102

103
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{
m

}

m,ellipse

m,cavity

m,rectangle

Fig. 6. Eigenvalues of the three models shown in one complex plane, considering only the positive part of the
imaginary axis with double-logarithmic scaling, neglecting the purely real eigenvalues: ellipsoidal obstacle
(gray deltas), ellipsoidal obstacle with the rectangular cavity (gray nablas) and rectangle (black dots).

their imaginary parts (resonance frequency), corresponding to — more or less — the same

mode shape (cf. Secs. 4.1 and 4.3).

In Fig. 6, the eigenvalues of the three models are only shown in one complex plane

for positive imaginary parts. In particular, most of the highly damped eigenvalues are very

similar for all three problems and seem to be correlated with the properties of the IFEs. This

is not the case for weakly damped eigenvalues whose positions in the complex plane seem to

be more problem-dependent and therefore related to eigenvectors with a significant sound

pressure distribution close to the inner obstacles. In the case of the cavity problem (b),

additional lines of weakly damped eigenvalues at low frequencies can be observed. Some
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of them appear roughly in 100Hz-steps, which was expected by the choice of the 1.7m-

long, duct-like cavity in the ellipse. Another line of cavity-related eigenvalues at higher

frequencies begins with a weaker damping once again. These eigenvalues correspond to

eigenvectors with resonances in the lateral y-direction of the open duct. If no inner obstacle

is placed inside the FE domain, the observations can be confirmed: the highly damped

eigenvalues in lines and a few multipole modes in the FE domain with small real parts of their

eigenvalues can be found in the complex plane, whereas there are no problem-specific mode

shapes.

According to Sec. 4.1, the eigenvectors can be roughly classified by the concentration

of their pressure distribution χ at inner Γin or outer boundaries Γout in relation to the

remaining FE DOFs in the fluid domain, see Eq. (8) and the three examples in Fig. 3. The

corresponding eigenvalues can thus be rated as inner, outer or mixed modes with respect

to their eigenvector distribution ratio. This was done in Fig. 7 in the example of the second

geometry with the eigenvalues in the complex plane and with χ in the third dimension

and additionally colored from blue to red for small to high values of χ. It can be observed

that the higher the real part of the eigenvalues, the higher the distribution ratio of the

eigenvectors at the junction of the FE and the IFE domains (see Fig. 7(a)). The highest

pressure concentration can be found for purely real eigenvalues with a real part in a range

of about 103 to 104. On the other hand in Fig. 7(b), the highest pressure concentration at

the inner obstacle is found for eigenvalues in the middle range of the real axis, where the

cavity-related modes were expected in Fig. 6. The lowest concentration can be observed for

highly damped modes, even though the ratios increase significantly at the very end of the

real axis. In both cases, the behavior is the same for the complex conjugated partners in

such a way that the lower pictures are virtually symmetric with respect to the real axis.
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105

10-5 100 105
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| { m}|
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104

(a) Outer boundary modes (b) Inner boundary modes

Fig. 7. (Color online) Eigenvalues in the complex plane with the ratios of the eigenvector distributions χ (see
Eq. (8)) on the z-axis for the outer FE boundary Γout (left) and inner obstacle boundaries Γin (right) each
with respect to the remaining DOFs; second geometry; each two views of a three-dimensional plot, where
the color indicates the height on the z-axis (blue/small to red/high).
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The authors observed that purely real eigenvalues are associated with purely real eigen-

vectors. This applies in the same manner for complex eigenpairs.

4.3. Modal assurance criterion (MAC )

By means of the MAC35 the similarity of the eigenvectors to each other can be rated in

an interval between zero and one. In previous work, the authors used the MAC in order to

track the eigenvalues in convergence studies with different meshes and increasing orders of

radial interpolation polynomials.21

The MAC values of the left and right eigenvectors of the second geometry are depicted

in Fig. 8(a). Two cases are compared to each other: either only FE DOFs (gray) or all DOFs

(including the FE and IFE domains; red) are considered. Left and right eigenvectors are

almost the same (MAC ≈ 1) according to MAC in the first case. On the other hand, only

a few pairs of left and right eigenvectors are virtually identical, when all DOFs are taken

into account. Here, the MAC values are distributed in almost the whole range between zero

and one. In Fig. 8(b), the MAC value is added in colors (blue/zero to red/one) and to the

third dimension to the complex plane of NM eigenvalues. Obviously, the similarity of left

and right eigenvectors is the best for weakly damped modes, which are primarily related

to large eigenvector contributions at the inner boundary lines (cf. Fig. 7(b)). Accordingly,

the single peaks (with small mode numbers m) of each two modes with a relatively high

MAC value for FE and IFE DOFs (red) in Fig. 8(a) are the cavity modes. For eigenvalues

with a real part larger than 1, the MAC values decrease virtually, logarithmically and with

increasing damping until the values slightly grow for the very highly damped eigenvalues

that do correspond to outer FE boundary modes (cf. Fig. 7(a)). The MAC values are

virtually the same for both complex conjugated eigenvalue partners.
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(a) (b)

Fig. 8. (Color online) MAC of left and right NM eigenvectors in the example of the ellipse with the rectangular
cavity. (a) MAC for FE DOFs only (black; almost one for all modes) and for all DOFs in the FE and the IFE
domains (red) and (b) Complex plane of NM eigenvalues κm with the MAC value in the third dimension
and colored from blue/zero to red/one.
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(a) vs,out = 1ms−1 geometries (a) and (b). (b) vs,in = 1ms−1; geometry (b).

Fig. 9. (Color online) Sound power level Lw and relative error εP with respect to the PML solution for two
different load cases and geometries. Geometry (a): error curves (pink), sound power curves (gray); geometry
(b): error curves (red), sound power curves (black); PML reference curves ( ), full inversion PAinv

in Eqs. (5) and (7) ( ), PNM in Eq. (6) ( · · · · · ).

4.4. Modal sound power

The two different load cases vs,out (for geometries (a) and (b)) and vs,in (for geometry (b))

lead to the radiation of sound power, which is depicted in Fig. 9 in terms of the sound power

level Lw. The sound power is determined by three different approaches for each problem:

PA,inv — full inversion of the dynamic stiffness matrix for the vector of nodal sound pressure

values in Eq. (7) to be substituted into Eq. (5), PNM — full summation of modal sound

power contributions according to Eq. (6) and PPML — a reference solution is computed by

using the commercial FE software COMSOL Multiphysics r© and by applying PMLs.

It can be observed in Fig. 9(a) that the radiated sound power is almost identical for both

geometries and approaches if the structural velocity vs,out is applied to the outer ellipsoidal

surfaces of the obstacles. At the resonance frequencies of the cavity modes, the sound power

level collapses slightly for geometry (b) with the opening, while the relative errors, with

respect to the PML reference solution, increase significantly. However, the relative errors

are less than 1% above 10Hz and differ for both geometries, but do not for the different

approaches, respectively.

If the velocity excitation is applied to the left end of the duct-like cavity (b), the reso-

nances in the tube can clearly be found in the curves of the sound power levels (see Fig. 9(b)).

The relative errors of PA,inv and PNM with respect to the PML solution are virtually the

same and in the order of magnitude of ≈ 10% even though the approximation of the sound

power seems to be reasonable in the whole frequency range.

Each NM has its own contribution to the total radiated sound pressure pm and sound

power Pm (cf. Eqs. (4) and (6)). These two quantities are frequency-dependent and their

modal contribution varies as the frequency changes. This is illustrated in Fig. 10(a) for 1Hz

and for multiple frequencies in Fig. 10(b) in the example of the second geometry and with
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Fig. 10. (Color online) Modal sound power and sound power level contributions Pm and Lw,m of NM
eigenvalues m for geometry (b) and vs,in. (a) Pm at 1Hz in the third dimension of the complex plane
(blue/small to red/high) and (b) Lw,m at frequency steps fi (with increasing brightness) for �{κ} ≤ | ±
750Hz|.

the excitation inside the open duct vs,in. The largest sound power is contributed by NMs

with a real part in a range of about 0.01 o 1000, which are most likely related to inner

boundary modes according to Fig. 7(b). At 1Hz, the sound power share in the complex

plane is virtually symmetric with respect to the real axis (see Fig. 10(a)), i.e. the sound

power contribution of the eigenvalues is almost the same for both complex conjugated part-

ners. In Fig. 10(b), the sound power levels for nine frequency steps fi are only depicted for

positive and negative imaginary parts of κm that are smaller than 750Hz according to the

amount, for the sake of clarity. Five of these frequency steps fi are close to resonances of

cavity modes. Most of the modal sound power contributions seem to increase as the fre-

quency grows (which is emphasized by increasing the brightness of the lines), but only a few

of them — primarily on the negative side of the imaginary axis — show clear peaks in par-

ticular at these resonance frequencies. This leads to an obviously asymmetric modal sound

power level contribution for positive and negative imaginary parts of the complex eigen-

value partners. The differences of the modal sound power contributions of each of the two

complex conjugated partners are depicted in Fig. 11, where the observations in Fig. 10(b)

can be confirmed: The eigenvalue partners differ significantly at their corresponding cavity

resonance frequencies only, where the radiation of sound is mainly due to the modes with

the negative imaginary parts.

Different properties of the eigenvalues and eigenvectors have been discussed so far. With

the aim of modal reduction during the summation process, a number of reduced modal

bases is taken into account in Fig. 12, where the errors relative to PAinv (Eqs. (5) and (7))

are depicted for both vs,out (Fig. 12(a)) and vs,in (Fig. 12(b)) for the ellipsoidal geometry

with the cavity (b). The relative error for the full modal basis is almost equal to zero

over the whole frequency range for both velocity excitations and shown as a red, thick
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Fig. 11. Absolute sound power differences |Pm,±| between 3316 complex conjugated eigenvalue partners m
as functions of the frequency for geometry (b) and vs,in.
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Fig. 12. (Color online) Errors of the superimposed sound power curves (relative to PAinv) for geometry (b)
and both load cases vs,out and vs,in considering the whole modal basis (red, thick line), only modes with
negative imaginary parts ( ), only modes with positive imaginary parts ( · · · · · ), only purely
real modes ( ) and neglecting only the modes with positive imaginary parts ( · · ).

line, respectively. In the case of the outer excitation, the purely real eigenvalues lead to

an acceptable relative error of less than 1%, except in the region of the cavity resonance

frequencies. When considering only complex eigenvalues with only positive or only negative

imaginary parts, respectively, the relative errors are not acceptable for the given geometry

and excitation. In the last case, only the complex eigenvalues with a positive imaginary

part are removed from the whole modal basis, which leads to a better result over the whole

frequency range and less significant error peaks at the resonances in particular. However,

the overall error is much worse in comparison to the purely real modal basis.

If the velocity excitation is applied inside the open duct, the purely real modal basis

performs almost as poorly as the complex eigenvalues with a positive imaginary part, as can

be seen in Fig. 12(b). The relative error is acceptable for frequencies higher than 10Hz for
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the two other methods: the eigenvalues with negative imaginary parts and — even better —

the modal basis without the complex eigenvalues with a positive imaginary part.

Altogether, this leads to the assumption that pure exterior problems are mainly domi-

nated by the purely real eigenvalues, and the cavity modes are due to the complex eigen-

values with a negative imaginary part. Neglecting the eigenvalues with a positive imaginary

part only leads to acceptable results in the given example. However, better performance is

desired and the criteria for reduced modal bases have to be further developed.

5. Conclusion

The sound pressure and sound power due to structural velocities in exterior problems could

be determined by superposition of NMs. The major part of the eigenvalues is not problem-

specific and due to the FE and IFE mesh. It was found that for weakly damped modes, the

sound pressure is mainly concentrated at the surfaces of inner obstacles in the fluid, whereas

highly damped modes have a large pressure distribution at the junction of the FE and the

IFE domains. However, the largest share of radiated sound power is not due to the modes

with the smallest damping coefficient, but it is mainly dominated by cavity resonances. The

authors observed that the sound power peaks at these resonances are due to modes with

a negative imaginary part, whereas the positive complex conjugated partners play a minor

role in the radiation of sound. In order to further reduce the modal basis and — at the

same time — minimize the errors during the modal superposition, additional criteria have

to be developed in future work.
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a b s t r a c t

Acoustic exterior problems are in this paper solved numerically using the Astley-Leis infinite

element method (IFEM). Normal modes can be determined thanks to the frequency indepen-

dence of the system matrices. Convergence properties of the harmonic sound pressure solu-

tion as well as of normal mode eigenvalues are investigated for two-dimensional elliptical

computational domains to estimate the essential requirements of accuracy. A relationship

between the half-axis ratio of the ellipses and the eigenvalues is identified. By solving half-

space problems, symmetry of the computational domains is utilized, which is shown for the

first time for frequency-independent normal modes in exterior acoustics. This paper discusses

applicability of the modes in the example of sonic crystals—periodic arrays of scatterers, in

this context denoted as acoustic meta-atoms—that have recently attracted attention for their

possible use as noise barriers. It can be shown that the sound-insulating effect of finite sonic

crystals and individual meta-atoms in the free field can be related to normal modes in exte-

rior acoustics. With the help of this approach, the absorption by Helmholtz resonators and

due to a boundary admittance inside are studied. This work provides a new point of view and

physical insights into the effects and underlying physics of sound insulation by finite sonic

crystals and acoustic meta-atoms in free field. Although it is not the intention of this article

to optimize the arrays, the method of normal modes in exterior acoustics is presented as an

appropriate and novel tool for their dimensioning and design.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, sonic crystals have gathered much attention in the field of environmental acoustics, e.g. the design of noise

barriers. Sonic crystals are periodic arrays of scatterers, most commonly designed as vertical cylinders. Their charm compared

to standard noise barriers lies in that they are light, easily built and they can be extended or modified with little effort to be

effective in a wide range of the frequency spectrum [1]. Another advantage is that they allow both light and air to pass through

them freely, which ultimately leads to reduced wind loading on the noise barriers [2]. An interesting characteristic of sonic

crystals are so-called band gaps, which are certain frequency ranges with ideally complete noise insulation in case of periodic,

infinite arrangements of scatterers.

By altering their geometry or their arrangement, the effectiveness of sonic crystals can be controlled. Two of the most crucial

factors are their diameter and the spacing between them, where mainly square and triangular lattices are discussed in the

∗
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https://doi.org/10.1016/j.jsv.2020.115291

0022-460X/© 2020 Elsevier Ltd. All rights reserved.



L. Moheit et al. / Journal of Sound and Vibration 476 (2020) 1152912

literature [1,3]. Gupta et al. [4] create a design of a radial sonic crystal with scatterers arranged periodically in the angular

direction around a cylindrical sound source. Perforations or slits along their length can also adjust their range, if positioned

suitably [2]. Krynkin et al. [5] found that increasing the number of slits also increases the frequency of the resonance. Van

der Aa and Forssén [6] considered perforated scatterers filled with porous materials and found that they have both broader

and lower resonance peaks. Chalmers et al. [7] showed that a sonic crystal consisting of c-shaped scatterers has two types

of band gaps; one is attributed to the arrangement of the scatterers (Bragg band gap) and the other to the resonating fluid

inside the scatterer (resonance band gap), which is referred to as meta-atom. Elford et al. [8] refer to the experimental results

of their work and investigated concentric c-shaped (‘Matryoshka’) sonic crystals, whose resonance frequency is found to be

independent of the periodic spacing within a sonic crystal. The resonance peak can be broadened by using multiple resonators

with overlapping individual resonance peaks within a ‘Matryoshka’ scatterer. Montiel et al. [9] have analytically calculated the

scattering sound pressure field and the transmission loss of finite sonic crystals for sound-hard cylindrical and c-shaped meta-

atoms and compared them with numerical simulations. They relate the resonance frequencies of the Helmholtz resonators to

sub-Bragg band gaps. ‘Mie’ type meta-atoms treated by Cheng et al. [10] and Lu et al. [11] indicate that sophisticated designs are

conceivable and practicable and that numerous studies are still ongoing.

Romero-García et al. [12] present a genetic algorithm to create band gaps in predetermined frequency ranges. The optimiza-

tion leads to quasiordered structures. Sigmund and Jensen [13] demonstrate the potential of topology optimization in order to

maximize the relative size of acoustic band gaps of infinitely periodic phononic band gap materials and structures. In the frame-

works of heat conduction and of linear elasticity in infinite, solid structures with periodic perforations, Barbarosie [14] applies

numerical shape optimization techniques to obtain microstructures having extremal properties like good conductivity, high

bulk modulus or high shear modulus. He describes the process of mesh deformation and mesh regeneration and gives several

numerical examples, some of them having practical relevance. A practical example of a finite array and inspiration for sonic crys-

tals noise barriers can be found in the work by Martínez-Sala et al. [15] on the sound attenuation of a sculpture. Experiments on

sonic crystals are for example carried out with timber and bamboo rods with perforations [16,17]. References to review articles

on sonic crystals include Gupta [18] and Miyashita [19].

For the investigation of the sound insulating stop band behavior of infinite periodic structures such as sonic crystals, the

problem is usually reduced to a single meta-atom in a so-called unit cell with Floquet-Bloch boundary conditions [20,21]. The

expression meta-atom is derived from the concept of acoustic metamaterials and describes subwavelength structures, which

are arranged in periodic and infinite arrays [22–24]. Under the assumption of periodicity, the Floquet-Bloch theorem allows the

description of the acoustic properties of the entire structure by analyzing a single unit cell. The considered acoustic Bloch wave

function [25,26] ensures the amplitude and phase change of the acoustic wave when being scattered by the meta-atoms and

traveling from one cell to the next. The resulting destructive interferences in distinct frequency bands are called stop bands. In

the form of dispersion curves, both transmissive frequency bands and stop bands of the periodic sonic crystal can be read [21].

Bradley [26] applies the Floquet theorem to show theoretically and experimentally that acoustic Bloch wave functions exist as

solutions in acoustic waveguides. Sugimoto and Horioka [27] investigate dispersion properties of sound waves propagating in an

infinite waveguide with periodic Helmholtz resonators arranged laterally. They observe stop bands at frequencies where sound

propagation is inhibited by the excitation of the lateral resonators and by Bragg reflections due to their periodic arrangement.

The above described approach using Floquet-Bloch boundary conditions is a very efficient technique for periodic, infinite

structures. However, recent studies on acoustic metamaterials demonstrate that it is not suitable to fully reveal the acoustic

properties, e.g. the transmission loss, of realistic arrays of finite length or with occasional defects that are not subject to peri-

odicity [8,28,29]. This work suggests the method of frequency-independent normal modes (NM) based on the finite element

method (FEM) and the Astley-Leis infinite element method (IFEM) as a novel approach for the investigation and design of more

realistic finite sonic crystal arrays and arbitrarily shaped acoustic meta-atoms under free-field conditions.

There are numerous formulations to numerically approximate the boundary conditions posed by exterior acoustics, i.e. Som-

merfeld’s radiation condition [30,31], among them the boundary element method (BEM) [32,33] and FEM in combination with

perfectly matched layers (PMLs) [34–36]. Quasi-periodic BEM is utilized in the example of Helmholtz-resonators and periodic

noise barriers by Fard et al. [37,38] and by Ziegelwanger et al. [39] by application of the fast multipole method. Conjugated

(Astley-Leis) infinite elements, however, used in this work have the great advantage that, in the same way as FEM, which is well

established in interior acoustics, they provide frequency-independent system matrices and thus allow the solution of a single

frequency-independent (normal modes) eigenvalue problem.

Various authors have published their own formulations of the IFEM, e.g. Burnett and Holford [40,41] and Astley et al. [31,42].

Burnett [43] found the method more efficient than the BEM, due to the local connectivity of degrees of freedom and sparsity.

According to Prieto [44], a frequency-independent PML formulation is also conceivable, but the good absorbing properties get

lost at low frequencies and the PML domain has to be much bigger. With the additionally required degrees of freedom, the

advantage gained is at the same time canceled out again.

Since sonic crystals noise barriers are narrow, longitudinal arrays, this work discusses the potential of elliptical computa-

tional domains to minimize the performance required. The two-dimensional problem of elliptical domain shapes with infinite

elements could yet not be found in the literature and therefore the coordinate transformation is elaborated according to Moon et

al. [45] and Sun [46]. Burnett has introduced new elliptic coordinates to achieve the required convergence [40], which however

were not considered in 2D.

The concept of normal modes is adapted to the application of sonic crystals and acoustic meta-atoms in two-dimensional

exterior acoustics for the first time. The method is described in detail by Marburg et al.: In the first part of the series [47],
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the continuous eigenspectrum of a one-dimensional, infinite waveguide is determined analytically and then, by means of a

formulation provided by Ruge [48], the normal modes are determined as the quadratic eigensolution of the state space matrices,

which are derived as a FE solution of the Helmholtz equation; in the second part [49] the authors describe the two-dimensional

problem, which can be solved numerically with the Astley-Leis IFEM, they provide a solution for the calculation of the eigenvalue

problem in case of circular FE domains that lead to singularities in the IFEM mass matrix, and they describe the presence of

discrete eigenvalues in addition to the continuous spectrum in the exterior solution by means of two descriptive examples; the

third part [50] proposes criteria for modal superposition and measures the sound power error for two different load cases.

Moheit and Marburg [51] further investigate the properties and dependencies of the normal modes on the discretization with

infinite elements, in particular taking up research results on the choice of polynomials for radial interpolation [52]. They find

out that NM eigenvalues converge towards two different values for IFE radial interpolation polynomials of even and odd degree,

respectively. Furthermore, they show that acoustic radiation modes (ARM) can be calculated on the basis of FEM/IFEM and not

as is usual on the basis of BEM (cf. e.g. Ref. [53]) and compare them with NM, which is also the subject of another work by the

authors [54]. This shows that the real, symmetric and frequency-dependent impedance matrix, whose eigensolution represents

ARM, can be constructed on the basis of NM and provides very good results. In Ref. [55] criteria for grouping the modes in

multipole and cavity modes are developed and first promising results in modal superposition are obtained. In particular, it is

found that the contribution of cavity modes to the radiated sound power is primarily due to the complex conjugated eigenpairs

with a negative imaginary part.

Peters et al. [56,57] have illustrated the potential for modal reduction of ARM based on BEM taking into account fluid-

structure interaction and Krylov subspace-based model order reduction (MOR) techniques for the coupled exterior problem, so

that they could also be suitable for the analysis and design of sonic crystals. Compared to NM, however, ARM have the signifi-

cant disadvantage that they are frequency-dependent and hence an eigenvalue problem has to be solved for each frequency of

interest separately.

For the efficient investigation and design of finitely long sonic crystals noise barriers and arbitrarily shaped acoustic meta-

atoms, the authors would like to present with this article the great potential of frequency-independent normal modes in exterior

acoustics. The NM technique introduced here for the first time in this context is an enrichment for research in this field, as it

provides new impressions and physical insights into their principle of operation, modal attenuation and sound insulation in

view of the complex eigenvalues and eigenvectors. The advantage of the treatment of finite arrays over infinitely extended,

periodic arrangements lies in the fact that diffraction effects occurring at the edge can be investigated, which have a considerable

influence on the sound-reducing effect of the barriers. In addition, the investigation of single meta-atoms offers the advantage

over those embedded in periodic arrays that a generalized statement on the efficacy and function of the meta-atoms can be

made.

In the following Sec. 2, the authors briefly recapitulate the underlying theory for the harmonic analysis of incident and

scattered sound pressure and present a well-known discrete system of linear equations as the numerical solution (FEM/IFEM) of

the Helmholtz equation in exterior acoustics. Afterwards, the concept of normal modes is described in its essential aspects. The

subsequent Sec. 3 is dedicated to the investigation of two-dimensional meta-atoms in free field and provides basic knowledge

regarding the behavior and error of the numerical methods for varying meshes, elliptic and half-space computational domains,

which are intended to pre-estimate the requirements for accuracy and computational effort. Basic studies on the relationship of

sound insulation and normal modes are carried out in the example of a c-shaped meta-atom and the influence of an absorbing

layer (boundary admittance) inside the cavity on the solution is investigated. In the next step in Sec. 4, the insertion loss of

a selection of finite 2D sonic crystal noise barriers is simulated and frequency ranges with high sound attenuation are related

to NM eigenvalues and eigenvectors, which can help to reveal and understand the underlying physical effects. Some of the

geometries used are inspired by the work by Elford et al. [8] so that a certain reference can be made to the results already

published.

2. Theoretical background

2.1. Acoustic pressure and velocity distribution of sources and plane waves in exterior acoustics

The homogeneous Helmholtz equation describes the spatial acoustic pressure field p(x) with the harmonic time-dependency

p(x, t) = Re
{

p(x)e−i𝜔t
}

. It is given by

𝛥p(x) + k2p(x) = 0, x ∈ Ω, (1)

where Ω is the fluid-filled domain and k is the wave number, defined as k = 𝜔∕cf , 𝜔 being the angular frequency and cf the

speed of sound in the fluid. By splitting the computational domain Ω into a finite element (FE) and a conjugated infinite element

(IFE) domain according to Astley and Leis [42,58], it can be assured that the system matrices are frequency-independent. This

is ensured by the complex conjugation of the test and the basis functions leading to elimination of a frequency-dependent

exponential term in the product of the two in the variational statement. Eq. (1) is then discretized by means of both methods and

after implementation of appropriate boundary conditions [31,50,52,59] leading to the following discrete system of n equations,

where n is the number of degrees of freedom (DOFs)(
K − i𝜔D − 𝜔2M

)
p = i𝜔𝜌f𝚯vs = f, (2)
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where K, D, M are the frequency-independent matrices for stiffness, damping and mass, respectively, whereby for simplicity’s

sake it is assumed that the boundary admittance Y(x) = (vf (x) − vs(x))∕p(x) included in the FE damping matrix behaves con-

stantly over frequency. 𝚯 is the boundary mass matrix [60], p is the acoustic pressure, i is the imaginary unit, 𝜌f is the density of

the medium and vs is the structural particle velocity of any given obstacle. In the case of non-dispersive fluid-structure coupling

(sound-hard walls), the structural particle velocity vs is equal to the fluid particle velocity vf at the obstacle surfaces with a zero

boundary admittance Y = 0 [60–62].

If a source is present in the considered domain, the homogeneous Helmholtz equation must be expanded by a term denoting

the source. It is then called the inhomogeneous Helmholtz equation and it is defined as

𝛥p(x) + k2p(x) = −q, (3)

where q is the source, which is assumed to be a sphere of radius R. It is furthermore assumed, that the velocity and acoustic

pressure fields of the domain consist of two components

p(x) = pi(x) + ps(x) (4)

vf (x) = vi
f
(x) + vs

f
(x), (5)

where the superscripts s and i indicate the scattered and incident wave field components, respectively [60,63]. They are also

known as complementary and particular solutions. For a monopole-like spherical scatterer, the incident acoustic pressure and

velocity fields are given by

pi(r) = p0
R

r
eik(r−R) (6)

and

vi
f
(r) = ip0R

𝜌f𝜔

1 − ikr

r2
eik(r−R) 𝜕r

𝜕n
, (7)

where p0 is the constant surface pressure of the spherical source and r is the distance to the source [60].

The case of an incident plane wave field is handled in the same way, which means that equations (4) and (5) still hold. The

incident acoustic pressure and velocity wave fields are now defined as

pi(x) = p0 ei(k·n+𝜙0) (8)

and

vi
f
(x) = p0

𝜌f𝜔
k · n ei(k·n+𝜙0), (9)

where p0 is the amplitude of the incident wave, 𝜙0 is the phase angle and k · n is the dot product of the normal vector n and the

wave number vector k, which indicates the direction of the wave and whose magnitude is the wave number k [60].

The setup of an obstacle in the fluid-filled computational domains of finite and infinite elements as well as the concept of

sources and incident and scattered pressure field is illustrated in Fig. 1.

2.2. Normal modes

The homogeneous system of linear equation (2) can also be interpreted as a quadratic eigenvalue problem. Since the con-

jugated IFEM formulation according to Astley and Leis ensures that the system matrices are independent of the frequency, it

follows that neither the eigenvalues nor the eigenvectors depend on the frequency. Therefore, the eigenvalue problem must

be solved only once. This assumes that the damping matrix for the degrees of freedom in the FE domain does not contain any

frequency-dependent boundary absorption, e.g. in the form of a frequency-dependent boundary admittance. Section 3.4 deals

with this in more detail.

The solutions of the two subsequent equations represent the left- and right-sided normal mode eigensolutions, for which

the reader may refer to the literature for further details [47,49–51,55](
A − 𝜅mB

)
xm = 0 and yT

m

(
A − 𝜅mB

)
= 0, (10)

where

A =

[
M 0

0 −K

]
, B =

[
0 M

M D

]
. (11)

A and B are called hypermatrices and are of size 2 N − 𝛿 × 2 N − 𝛿 with 𝛿 being the number of empty rows and columns in M,

which according to Marburg [49,50] can be canceled to reduce the system of equations. This is applicable only in the case of a

circular FE domain, because then the rows and columns of M corresponding to infinite elements are equal to zero [42]. The mth
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Fig. 1. Incident and scattered pressure field ps due to a point source excitation q or an incoming plane wave field pi around obstacles in exterior acoustics. The fluid is

subdivided into an FE and an IFE domain.

eigenvalue is denoted by 𝜅m, whereas xm and ym represent the corresponding right and left eigenvectors. Both exist due to the

fact that the conjugated IFEM leads to asymmetric matrices K and D.

YT AX = diag(𝛼1,… , 𝛼2n−𝛿) and YT
z

BXz = diag(𝛽,… , 𝛽2n−𝛿), (12)

It is interesting to note that for distinct, complex eigenvalues 𝜅m = 𝛼m∕𝛽m. The diagonalization properties may not be valid for

double-symmetric problems with duplicate eigenvalues that form blocks of ones around the diagonal of the matrix product. A

scaled eigenvalue 𝜅 = c

2𝜋f0
𝜅m is introduced with f0 = 1 Hz being a reference frequency so that the eigenvalues are unitless

and their imaginary parts indicate the eigenfrequencies while their real parts describe the damping of the corresponding modes

[49].

To classify normal mode shapes, Moheit and Marburg [55] develop criteria and roughly differentiate the eigenvectors into

cavity modes and multipole modes. Marburg et al. [49] have previously observed the existence of a group of discrete eigenvalues

in the continuous spectrum of NM in exterior acoustics and thus take up the discussion about so-called trapped modes [64–69],

which Jones [70] has shown to exist as point eigenvalues in the spectrum of the Laplacian operator in unbounded domains using

the theory of unbounded operators. The discretization of the free field by means of IFEM approximates the continuous spectrum

of the exterior domain with discrete NM eigenvalues, which appear in lines in the complex plane [51]. While they move towards

the imaginary axis with increasing mesh fineness, the trapped mode eigenvalues differ in that they converge.

Evans provides evidence for the existence of trapped modes in unlimited two-dimensional acoustic waveguides, once for a

finite strip in the duct and in another work, together with Levitin and Vassiliev, for symmetrical obstacles and indentations in

the waveguide [71,72]. They thus extend the spectrum of situations for which these modes have been proven to exist. Kaplunov

and Sorokin [73] show the presence of a single trapped mode in a one-dimensional infinite waveguide in the form of an elastic

string mounted on an elastic foundation with a concentrated mass rigidly attached to the string.

3. Results at meta-atom level

In the simple example of a two-dimensional, circular cross-section of a cylinder with diameter d = 0.6 m (see Fig. 2a),

the authors’ MATLAB IFEM code is verified and basic studies are evaluated by keeping some variables constant, while gradually

altering others. The circular obstacle is treated as a multipole sound source with a structural normal surface velocity with

the amplitude vs = 1 ms−1 for all frequencies. An analytical solution of the acoustic pressure solution is available [74]. The

verification is required due to the lack of numerical experiences in two-dimensional elliptical infinite elements and their normal

modes. The sensitivity of the solution in regard to certain parameters is tested: nel the number of finite elements per wavelength

(mesh size, Sec. 3.1.1), the size and aspect ratio of the FE domain and the number of IFE nodes in radial direction (Sec. 3.1.2) as

well as the position of the circular obstacle along the x-axis (Sec. 3.1.3). The findings and minimum requirements from these

fundamental studies are incorporated in the investigations on more complex geometries in what follows. This includes the

utilization of the cylinder in a sonic crystals noise barrier in Sec. 4.

For simplicity, models that fall under this category are referred to as the letter C followed by the corresponding aspect ratio

of the domain, e.g. C2.5 refers to a model of a circular obstacle, whose FE domain has an aspect ratio of 2.5 with the horizontal
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Fig. 2. Representation of the three considered meta-atoms: a) C (circle), b) E (ellipsoid with a 1.715 m long open cavity, cf. [55]) and c) M (c-shaped meta-atom, cf. [7]) in

circular, fluid-filled computational domains (gray). Please note that the models shown are not scaled to the same size in relation to each other.

semi-axis a = 2.5 m, while the vertical semi-axis b = 1 m remains constant for all models of type C.

In the next step, the normal modes (see Sec. 2.2) are computed and evaluated using models that are inspired by previous work

of the authors [55] in order to facilitate comparisons and build on preliminary findings and experiences—this model is virtually

a prototype for the investigation of normal modes and trapped-mode frequencies in exterior acoustics with FEM/IFEM and NM.

The obstacle is an ellipse-like structure with a rectangular cavity 1.715 m long, which is a convenient shape, since longitudinal

cavity resonances are found in roughly 100 Hz-steps. The properties of this model are utilized to prove the existence of cavity

modes (trapped modes) as well as multipole modes in exterior acoustics. It is shown in Fig. 2b and abbreviated with the letter

E subsequently. The variables tested are: the aspect ratio of the FE domain, the IFE radial order and the position of the obstacle.

Furthermore, the model E is investigated regarding the estimation and utilization of symmetry effects in half-space problems in

Sec. 3.3 considering a cut-through variation and a mirrored problem.

The third model shown in Fig. 2c, a c-shaped meta-atom, is inspired by the work by Elford et al. [8]. The open ring has an

outer diameter of 13 mm and a thickness of 1.5 mm. The opening on the side preferably facing the incident wave front has

a width of 4 mm. The fluid domain shape remains circular for this model. In accordance with the abbreviations made for the

previous models, the meta-atom will be referred to with the letter M in what follows. As the circle C, the c-shaped meta-atom

M is examined in Sec. 4 in a sonic crystals array.

The idea of this model is the verification that the concept of normal modes is suitable for the investigation, understanding

and design of sonic crystals with complex-shaped meta-atoms (e.g. c-shape, ‘Matryoshka’ meta-atoms [7,8] as well as ‘Mie’ type

meta-atoms [10,11]). Furthermore, the influence of absorbing boundary conditions in terms of boundary admittances on the

insertion loss is discussed in Sec. 3.4.

In contrast to the original work by Elford et al. [8], the modes of the meta-atom are not simulated with periodic boundary

conditions (Floquet-Bloch), but are considered free in space, i.e. without consideration of the periodic effects in the unit cell.

However, this makes the observation independent of the arrangement in the array and only the meta-atom is described indi-

vidually. The resonator frequencies can therefore be determined with normal modes even for very complicated arrangements

without the knowledge of analytical equations.

For all the subsequently used models, the FE domain is two-dimensional. This is equivalent to a sectional plane through

three-dimensional cylinders of infinite height. The elliptical domain form varies in accordance with the chosen aspect ratio. The

obstacle is considered as a hole in the computational domain with non-dispersive, sound-hard boundary conditions, but it is also

imaginable to include solid structures and fluid-structure interaction even for modal analysis. Second-order Lagrangian finite

elements are implemented and Jacobi (with exponents 𝛼 = 1, 𝛽 = 0) polynomials are used for the radial interpolation of the

infinite elements due to their improved matrix conditioning compared to classic Lagrange polynomials [52,75]. It could be con-

firmed that for radial interpolation Lagrange polynomials of order greater than eight lead to large errors. The fluid surrounding

the models is air with density 𝜌f = 1.25 kgm−3 and speed of sound cf = 343 ms−1.

Geometry and mesh are created using COMSOL Multiphysics®. The system matrices are then passed to MATLAB, where the

IFEM has been implemented. The solution of the normal mode eigenvalue problem from Eq. (10) is carried out using the LU

algorithm with the software library SLEPC [76–78], which is based on PETSC [79–82].

3.1. Verification and evaluation of the acoustic pressure field

Within this section, an error measure is defined in order to describe the quality of the numerical solution with respect to an

analytical solution for the circular obstacle C. The error is measured depending on the mesh size (Sec. 3.1.1), the aspect ratio

of the finite element domain (Sec. 3.1.2) and on the position of the obstacle along the x-axis (Sec. 3.1.3). To the best of the

authors’ knowledge, there are no publications on the properties of ellipsoidal computational regions of infinite elements in two
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Fig. 3. e2 in the FE domain in correlation with mesh size (number of finite elements per wavelength nel) for a circular domain (C1) at 500 Hz for monopole n = 0 ( ),

dipole n = 1 ( ) and quadrupole n = 2 ( ) excitations.

dimensions; hence, they are investigated at the beginning for verification and error estimation of the results.

The simulations for the circular obstacle are verified by calculating the L2-norm of the global relative error, which is con-

sidered as a sufficiently accurate error measure from an engineering point of view, although additional care is required for a

mathematically substantiated consideration [83,84]. The error norm is defined as

e2 =

√∑
i|pnum

i
− pan(xi)|2∑

i|pan(xi)|2 , (13)

where pnum
i

is the numerical solution using FEM and IFEM at node i and pan
i

is the analytical solution at position xi, given by [74]

pan(r, 𝜙) = −i𝜌f cf vs

H
(2)
n (kr)

H
(2)′
n (kb)

cos(n𝜙), (14)

where H
(2)
n (x) is the nth-order Hankel function of the second kind, H

(2)′
n (x) is its derivative to x, b is the radius of the circular

source, r is the radial distance of any given point to the surface of the circle, 𝜙 is the angle co-defining its position in polar

coordinates and n is a constant that defines the nature of the multipole source. In the case of a monopole, n is equal to zero, for

n = 1 the circle radiates as a dipole and for n = 2 as a quadrupole etc.

3.1.1. Dependence on mesh size

To quantify the FE mesh size, the number of quadratic elements per wavelength nel is taken into consideration [84,85]. It is

defined as

nel =
cf

fmaxhmax

= 𝜆min

hmax

, (15)

where fmax is the maximum frequency of interest with the minimum wavelength 𝜆min and hmax is the corresponding maximum

edge length of the finite elements during the meshing.

Fig. 3 shows a plot of e2 over nel in the case of C1 at 500 Hz.

For the model, eighth order Jacobian polynomials (with exponents 𝛼 = 1, 𝛽 = 0) are used for the radial interpolation of the

infinite elements and the source is located in the center of the domain.

The study is carried out for monopole, dipole and quadrupole excitations. It is evident that for higher-order multipole exci-

tations, the deviations alter and the radial polynomial order of the infinite elements is required to be increased, where elements

of order m are capable of representing the sound pressure field due to multipoles of order m − 1 [42]. With the choice of the

polynomial order eight, the authors are on the safe side.

Using twelve finite elements per wavelength, the error is about 10−4 for all three excitations considered. However, this is

true only for C1; models with higher aspect ratios produced results of lower quality, while keeping the other variables constant.

3.1.2. Elliptical computational domains

In many practical applications such as long slender obstacles or arrays, an elliptical domain shape can reduce the number of

degrees of freedom in the FE mesh [40,41]. The authors could not find a discussion on sound pressure errors in two-dimensional

elliptical IFE domains in the literature. The transformation between elliptical and cartesian coordinates is abstracted for 2D

infinite elements based on the work of Burnett and Holford [40] in 3D, whose approach slightly differs from the usual transfor-

mation equations (cf. [45,46]) since it was derived specifically to satisfy Sommerfeld’s radiation condition. As Astley and Coyette

showed for three-dimensional problems [86], the error produced by high aspect ratios of elliptical domains can be counter-

balanced by increasing the radial order nrad of the IFE mesh. To investigate the effect the radial order can have on the error,

models C1 to C5 are examined at three different radial orders (8, 16 and 24) and three different frequencies (100 Hz, 250 Hz and
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Fig. 4. e2 for C1 to C5 in the FE domain of radial orders nrad = 8 ( ), nrad = 16 ( ) and nrad = 24 ( ) at (from top to bottom): 100 Hz, 250 Hz and 500 Hz.

500 Hz). The models apply twelve finite elements per wavelength in order to keep the mesh-related error low (cf. Sec. 3.1.1).

The monopole-source (n = 0) is positioned at the center of the domain.

The resulting plots are shown in Fig. 4. Errors exceeding 5% are not plotted for brevity. These high errors occur with growing

aspect ratios if the polynomial order of the infinite elements is too low for the radial interpolation. As the frequency increases,

e2 generally reduces, but obviously higher polynomial degrees are already required for lower aspect ratios, otherwise the error

quickly becomes very large.

It is evident that the performance for models of large aspect-ratios is improved by implementing an IFE mesh of higher

radial order. Furthermore, it is interesting to note that models with aspect ratios C1.4-C1.5 produce local error maxima at all

frequencies and for all radial IFE orders. Neither the number of finite elements per wavelength nel, nor the position of the obstacle

along the x-axis (cf. Sec. 3.1.3) causes a noticeable shift of this error maximum towards other aspect ratios. Furthermore, not

even a larger scaled FE domain leads to a shift of this peak. Instead, such scaling ensures that the error for elliptical half-axis

ratios can be significantly reduced with increasing size of the FE domain. This may lead to the circumstance that the advantage

of elliptical domains is eliminated by the higher number of degrees of freedom required.

Obviously, when introducing slightly elliptical computational domains, the error increases rapidly and momentarily in com-

parison to the circular shape and decreases afterwards for higher aspect ratios until the error grows rapidly as soon as the radial

polynomial interpolation is no longer sufficient to describe the non-reflective decay of the sound pressure. For low frequen-

cies, this effect is more pronounced: The error increases more strongly with slightly elliptical FE domains and decays linearly to

higher aspect ratios. With an increasing frequency, the error grows to a lower extent at the beginning, but already at significantly

smaller aspect ratios, higher polynomial orders are required for the infinite elements.

The authors did not find any evidence of the transformation in elliptical coordinates for two-dimensional problems with

infinite elements in the literature. The chosen transformation is verified using analytical solutions, but still involves a few math-

ematical hitches to deal with, which might cause the observed numerical error at the transition from circular to elliptical domain

shapes.

A possible explanation for the fact that the error is larger at low frequencies compared to higher frequencies might be that

their respective wavelengths and—due to a constant number of finite elements per wavelength nel—also the elements’ edge

length becomes large in relation to the obstacle and the computational domain, while large FE domains generally improve the

quality of the solution. Furthermore, a coarse FE mesh is associated with less infinite elements in the circumferential direction,

which might lead to discretization errors at the transition between FE and IFE domain.

Fig. 5 illustrates the extent to which the IFE radial order can influence the error of C2.The error virtually converged at different

values for all three frequencies: for 100 Hz at about nrad = 8, for 250 Hz at about nrad = 10 and for 500 Hz at about nrad = 12.

The results confirm the observations in Fig. 4 for the half-axis ratio 2:1: With an increasing polynomial order nrad, the error
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Fig. 5. e2 of C2 correlated with the radial order at 100 Hz ( ), 250 Hz ( ) and 500 Hz ( ).

Fig. 6. Error of C1 depending on the position of the obstacle along the x-axis and thus the distance to the FE-IFE-interface at 500 Hz: a) geometric representation; b) the

global relative error e2 grows almost linearly with decreasing distances between the obstacle and the boundary of the FE domain, but at a very low level.

converges to a certain level. A further decrease can neither be achieved by an increase of nrad, nor can it be achieved in a

noticeable way by increasing nel, but only by a larger FE domain.

It is noticeable that with an increasing frequency the error converges on a lower level (which obviously cannot be achieved

for lower frequencies in the considered example), but a clearly higher polynomial order is necessary, from which the error is

sufficiently low. This means that for elliptical computational domains the choice of the polynomial order of the infinite elements

should depend on the considered frequency, although the practical application is likely to be very difficult. Generally speaking,

the higher the frequency, the higher the polynomial order of the radial interpolation must be set.

3.1.3. Position of the obstacle

The correlation between the global relative error and the distance of the obstacle to the FE-IFE interface is examined with the

aim of minimizing the size of the computational domain and investigating the stability of the numerical solution if the obstacle

is very close to the outer boundary of the domain. This is intended to be exploited in widespread sonic crystals to require as

few degrees of freedom as possible in the environment of the array. The model used is C1 with IFE of eighth radial polynomial

order and with 20 elements per wavelength. The surface of the obstacle is vibrating with a monopole excitation at 500 Hz and

the setup of the study is shown schematically in Fig. 6a.

In Fig. 6b, it can be observed that the error of C1 increases almost linearly, but at a very low level as the position of the

obstacle moves from the central position to the outer FE boundary until the obstacle is 1 mm away from the interface.

3.2. Normal modes in elliptical computational domains

For harmonic analysis, the results of the subsequent studies are certainly known or easily accessible, but in this paper the

authors want to further study the sensitivity of normal modes in exterior acoustics with respect to the underlying properties of

finite and infinite element discretization.

This is done for the models E of an elliptical obstacle with a 1.715 m long cavity, see Fig. 2b. The geometry is chosen, since it

is the subject of previous investigations on normal modes in exterior acoustics [55] and fundamental effects, e.g. cavity modes

as trapped modes, can be clearly identified and discussed.

The normal mode eigenvectors can be roughly subdivided into two groups: cavity modes and exterior multipoles [55]. The

cavity modes show sound pressure peaks inside the cavity, which can be considered as a Helmholtz resonator, whereas multi-

poles can be observed along the junction of FE and IFE domain.

In this section, the aspect ratio of the computational domain is varied while keeping the vertical semi-axis of the ellipse

constant at b = 1.5 m. The behavior of the normal mode eigenvalues and eigenvectors is studied. Although the advantage of

narrow, elliptic computational domains, given by their lower number of degrees of freedom, could possibly be eliminated by

the higher demands for radial interpolation, it may nevertheless be useful for certain situations to use elliptical FE domains. In
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Fig. 7. Representation of a complex cavity mode as right eigenvector magnitude in the FE domain for the models: a) E1, b) E1.33 and c) E1.66, respectively. The corresponding

eigenvalues are 𝜅E1 ≈ −3.1 + 142.38i (|𝜅E1| ≈ 142.41), 𝜅E1.33 ≈ −3.13 + 142.36i (|𝜅E1.33| ≈ 142.39), 𝜅E1.66 ≈ −3.16 + 142.41i (|𝜅E1.66| ≈ 142.45).

Fig. 8. Representation of a monopole mode as right eigenvector magnitude in the FE domain for the models: a) E1, b) E1.33 and c) E1.66, respectively. The corresponding

eigenvalues are 𝜅E1 ≈ −0.95, 𝜅E1.33 ≈ −0.71, 𝜅E1.66 ≈ −0.57.

contrast to these, the mass matrix is singular for IFE degrees of freedom in circular problems [42]. This is of great importance for

the choice of an appropriate eigenvalue solver for the normal modes. Three variations of the model E are considered: E1 with a

circular FE domain shape and the two elliptical shapes E1.33 and E1.66.

The mesh has twelve quadratic finite elements per wavelength at 500 Hz. In regard to the proposed study of the general

behavior of modes due to elliptic computational domains, the solution does not necessarily have to converge for a qualitative

analysis and comparison. However, the radial polynomial order of the infinite elements has to be increased in the case of ellip-

tical FE domains according to the observations made in Sec. 3.1.2. For this purpose, Jacobi (1,0) polynomials of 16th order are

chosen for the subsequent studies.

Fig. 7 shows the mode shapes of a complex-valued cavity mode as right eigenvector magnitudes in differently shaped FE

domains E1, E1.33 and E1.66. It can be observed that the modes mostly retain their form and the complex eigenvalues are

comparable for all three aspect ratios, with their magnitude remaining virtually the same. This is true for all uniquely identifiable

complex cavity modes (mixed forms and spurious modes are left out), since the domain shape should not have an influence on

the cavity resonances.

Fig. 8 illustrates a purely real monopole mode for the circular and the two elliptical computational domains. The eigenvalue

decreases and the sound pressure field of the mode appears to change as the aspect ratio increases. However, it is important to

note that eigenvectors are freely scalable and therefore no absolute comparisons can be made. In addition, the greater distance to

the obstacle leads to a higher difference between the minimum and maximum sound pressure, so that the color bar scale varies,

respectively. It is known from earlier works [48,50,55] that a harmonic sound pressure solution in free field can be reconstructed

by modal superposition of the normal mode eigenvalues and eigenvectors. This is independent of the shape of the FE domain.

The fluctuation in the eigenvalues can be predicted relatively accurately by the ratio of the respective aspect ratios:

𝜅Ea

𝜅Eb

≈ b

a
, (16)

where a and b are two arbitrary aspect ratios, e.g. 0.953∕0.714 ≈ 1.33∕1 as for the shown example in Fig. 8. Eq. (16) is tested

and confirmed on the first twenty modes—sorted by means of increasing magnitude—of the models C and E.
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Fig. 9. Representation of a quadrupole mode as right eigenvector magnitude in the FE domain for the models: a) E1, b) E1.33 and c) E1.66, respectively. The corresponding

eigenvalues are 𝜅E1 ≈ −23.88, 𝜅E1.33 ≈ −17.81, 𝜅E1.66 ≈ −14.2.

Fig. 10. The three chosen modes from Figs. 7–9 of the eccentric obstacle in E1.33 as right eigenvector magnitudes in the FE domain.

Fig. 9 shows a quadrupole mode for the three models. The symmetry of the mode in the circular domain is gradually but

slightly lost in the elliptical domains and, once again, the aspect ratios indicate the decrease in the eigenvalues according to Eq.

(16).

Each multipole group contains a number of modes, some of which differ greatly from each other. The more degrees of

freedom a system has, the more multipoles per group can be expected. With increasingly elliptical shape of the FE domain,

the assignment of some of the modes to a group becomes more difficult, since less clear multipoles occur compared to the

circular FE domain. Instead, many of the modes in the elliptic domain are stretched and the sound pressure distribution along

the outer FE boundary is irregular and asymmetrical. Consequently, it is not always possible to establish a direct relationship

between the modes and those of modified domains. Modes that are highly variable and newly formed are likely to belong to the

continuous spectrum of exterior problems. Marburg et al. [49] describe for a similar problem the occurrence of trapped modes,

i.e. discrete eigenvalues in addition to the continuous spectrum, which converge with increasing IFE radial interpolation order,

cf. Sec. 2.2. However, it is not within the scope of this paper to determine and investigate these trapped normal modes in more

detail.

The associated modes are illustrated in Fig. 10 for the eccentric obstacle (shifted by 0.25 m in x- and y-direction, respec-

tively) in E1.33. Since the eigenvalue magnitudes of the shown modes remain almost the same in comparison to those of the

centered obstacle in E1.33 for multipole modes as well as for cavity modes (cf. Figs. 7–9), the assignment is straightforward.

The three eigenvalues of E1.33 with the eccentric obstacle read as follows: 𝜅E1.33,a ≈ −3.1 + 142.35i (|𝜅E1.33,a| ≈ 142.38),

𝜅E1.33,b ≈ −0.71 and 𝜅E1.33,c ≈ −17.81. As expected, the eigenvector of the cavity mode remains virtually unchanged from

the position of the obstacle. The multipole modes in the exterior domain retain their essential character, but the sound pressure

field is slightly influenced by the fact that the obstacle moves to a different position and partially affects the distribution of the

acoustic waves. In modal superposition, this certainly leads to a change in the influence and contribution of individual modes to

the total sound pressure field.

A precise comparison of the eigenvectors, for example by means of the modal assurance criterion (MAC), is not possible, since

the position and number of mesh nodes varies with the modification of the computational domain. However, the eigenvalue

ratio from Eq. (16) can be useful for assigning modes of different domain shapes.
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Fig. 11. Variations of model E for full-space and half-space problems.

3.3. Normal modes for symmetric half-space problems

Many applications in exterior acoustics are half-space problems such as vehicles on roads or railways and noise barriers as

sonic crystals. On the other hand, half-space problems can be used for symmetric geometries in order to save computational

costs. This approach is commonly used in structural dynamics, where the solution can be constructed as a superposition of

symmetric and antisymmetric solutions analogous to the reconstruction of any function from the superposition of even and odd

functions [87,88]. As long as the sound incidence in harmonic analysis has the same symmetry property as the sound pressure

field, as assumed in the context of this work, it is in principle possible to consider only the half space.

In the example of variations of the elliptical structure E, it is investigated how the normal modes are influenced when working

with half-space approximations for symmetric two-dimensional problems in order to estimate the differences in comparison

to the whole computational domain. In all the subsequent examples, the mesh is symmetric, i.e. it remains the same for the

compared full- and half-space problem using twelve elements per wavelength up to the maximum frequency of 500 Hz and 16

radial interpolation points. The four cases depicted in Fig. 11 are investigated.

For the first five cavity modes it could be ascertained that their eigenvalues remain almost the same for all four problems.

The influence of the choice of the IFE radial polynomial order (either nrad = 8, 16 or 24) has hardly any influence on the cavity

mode frequencies. The respective difference between the full-space and the corresponding half-space problem is negligible for

the centered obstacle in Fig. 11a and b as well as for the mirrored problem in Fig. 11c and d, respectively, where the deviation

between the two is slightly higher for the mirrored problem and the fifth cavity mode frequency with a maximum error of about

1%. Due to the presence of a second obstacle and small reflections between the two, the results differ slightly for the centered

and the mirrored obstacles, which amounts to a deviation between approx. 0.1%–0.9% compared to the reference solution E1

(Fig. 11a) with the finest IFE mesh. The error is generally growing as the frequency increases. The general nature and distribution

of the multipole modes are very similar for all variations of E with the particularity that only symmetric modes occur for half-

space problems. The effects of symmetry can be comprehended and exploited as long as the incident acoustic wave is subject to

the same symmetry condition during harmonic analysis.

It is noticeable that, only for the third variation of E (Fig. 11c), each four cavity modes—two modes with each two complex

conjugated partners with the eigenvalues very close to each other—can be found, whereas the other models provide only a single

pair of complex conjugated eigenvalues per cavity mode.

The number of normal modes of the models 11a to 11d reads as follows: 32,553, 16,422, 48,400, 24,387, i.e. the number of

degrees of freedom can be approximately halved by using half-spaces. Since asymmetric modes are insignificant in the case of

symmetrical excitations and good agreement of the cavity modes is achieved across all models, the clear advantage of utilization

of symmetry along the wave direction is taken into account for the investigations in the subsequent section on symmetric c-

shaped meta-atoms and thereafter when considering the sonic crystals in Sec. 4.

3.4. C-shaped acoustic meta-atoms and damping by absorption

The insulating effect and the efficiency of sonic crystals noise barriers depends on their size and on the positioning and the

shape of the meta-atoms in the array. It is known from the literature that the introduction of cavities in the meta-atoms causes

additional effects. In this section, the unbounded sound pressure field around the c-shaped meta-atom M (shown in Fig. 2c) is

decomposed by means of the normal modes and its insulating effect is investigated.

The chosen FE mesh with a maximum element size of approximately hmax = 1 mm ensures twelve quadratic elements

per wavelength at about 28 kHz—which still means more than 8.5 elements per wavelength at a frequency of 40 kHz—and the

polynomial order of the infinite elements is three.

Initially, the surface of the obstacle is sound hard. In a next step, a boundary admittance Y(x) is applied to the structural

surface on the inside of the c-shaped meta-atom in order to investigate the influence of absorbing layers or imperfectly reflecting

walls on damping and resonance frequencies of the normal modes. That could have been used specifically or might be due to

contamination by dust or soil. Furthermore, in their studies on 3D-printed acoustic meta-atoms, Jordaan et al. [23] and Melnikov
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et al. [24] observed that the assumption of non-dispersive, sound-hard boundary conditions does not apply for the material

Polylactic Acid (PLA), from which the meta-atoms in their experimental works are fabricated. The viscoelastic material can be

described well by an equivalent surface admittance. The boundary admittance relates the sound pressure to the difference of

the fluid particle velocities vf and the structural particle velocities vs at the surfaces of the obstacle [60–62]

Y(x)p(x) = vf (x) − vs(x). (17)

The relationship between the boundary admittance and the commonly used absorption coefficient 𝛼 is as follows [89,90]

Y = cos𝜗

𝜌f cf

1 −
√

1 − 𝛼

1 +
√

1 − 𝛼
(18)

with 𝜌f = 1.25 kgm3 being the density of the fluid and cf = 343 ms1 being the speed of sound. As the Helmholtz equation

does not take into account the angle of the incident acoustic waves 𝜗, the boundary admittance is defined only for the normal

component and 𝜗 is assumed to be zero. It follows that the admittance Y0 = 0 is found for 𝛼0 = 0 in the case of sound-hard

walls. In the absorbing case, 𝛼1 = 0.017 leads to a boundary admittance Y1 = 1 × 10−5m2skg1. This value nearly equals

the one found by Melnikov et al. [24] in experiments and thus seems to be a realistic assumption. The frequency-independent

consideration of the boundary admittance serves a fundamental, simplified investigation of the resulting phenomena. A more

realistic approach such as that of Marburg and Hardtke [89] is conceivable, in which the frequency is linearly proportional to

the mass matrix and indirectly proportional to the stiffness matrix when considered individually.

A plane incident sound pressure field in positive y-direction with an amplitude of 2 Pa, which is equivalent to 100 dB, is

implemented. A further consideration of asymmetric sound incidence other than along the x- or y-axis is left out in this paper,

since then the utilization of symmetry properties is not possible and since this is also not the subject of the work of Elford et

al. [8], on which the authors strongly rely when choosing their models and studies. The opening of the obstacle is aligned in

the direction of the origin of the wave direction. In order to estimate and measure the sound insulation by a single meta-atom,

the circular (full-space) finite element domain around the obstacle is chosen large (diameter d = 80 mm) in comparison to

the size of the obstacle. A rectangular area (height h = 25 mm, width w = 7.5 mm) is positioned above the meta-atom in its

sound-shadow (center point at x = 0 mm and y = 20 mm), and the sound pressure magnitude is measured and averaged in

this area in order to quantify the efficiency of the obstacle by means of the sound pressure reduction due to the single meta-

atom. The attenuation is termed insertion loss (IL) in what follows. It is the sound pressure level (SPL) difference of the incident

wave i (which is constant in the entire domain if no obstacle is present) and the averaged SPL in the rectangular area behind the

meta-atom

IL = Lpi − Lp (19)

with Lpi = 100 dB for pi = 2 Pa.

The IL of different meta-atoms is depicted as a function of the frequency in Fig. 12 for a circular obstacle (cf. model C with

diameter d = 13 mm) and two variations of the c-shaped meta-atom M with the same outer diameter: one with sound-hard

walls Y0 and another one with the previously introduced boundary admittance Y1 attached to the circular interior wall of the

meta-atom.

It is noticeable that the upper frequency limit of the human hearing ability is exceeded, but since the specifications of the

model are based on the example by Elford et al. [8], who presented their results up to 40 kHz, and interesting effects can be

observed beyond the audible frequency range, a qualitative investigation will be carried out at this point. It can be assumed that

the effects shown also occur for differently scaled models.

A single c-shaped meta-atom in the free field cannot be compared with that within the unit cell as given in Elfords work

considering periodic Floquet-Bloch boundary conditions, because there it is assumed that, depending on the lattice constant,

standing waves occur between the meta-atoms. This assumption is not valid for meta-atoms at the outer edges of the array.

On the other hand, the consideration of a single meta-atom in the free field presented here is to be seen more universally. The

consideration of the interaction of the meta-atoms with each other must then take place on the basis of the normal modes in

the sonic crystals array, cf. Sec. 4.

The dashed curve in Fig. 12 stands for the insertion loss of the circular obstacle C. It shows a slight decrease between about

3 kHz and 5 kHz. Afterwards, the IL increases nearly proportional to the frequency. The meta-atom M shows a similar behavior,

but three distinct insulating effects can be observed around 5 kHz, 21 kHz and 33 kHz. The effects can be assigned to the

resonance frequencies of the cavity normal modes (Helmholtz resonator modes), which will be discussed below. The frequencies

are given in the imaginary parts of the complex NM eigenvalues. Chalmers et al. [7] describe a single resonance band gap around

the first Helmholtz resonator frequency. This work illustrates that in the regions of the higher-order resonator frequencies of a

c-shaped meta-atom in free field or in a finite sonic crystal, a smaller but still considerable sound insulation can be observed on

the basis of the same physical effects.

It is noticeable that the sound insulation is not the largest at the actual resonance frequency of a cavity mode. The eigenfre-

quency rather approximates the inflection point of the curve. It can be assumed that the IL curve of the c-shaped meta-atom M

converges against the one of the cylinder C as the volume of the cavity is reduced towards zero.

Around the cavity resonance frequencies, the IL for the c-shaped meta-atom M shows a rapid increase and decrease (or vice

versa), which can be utilized to insulate an incident sound pressure field if the effects are understood and advantageous in
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Fig. 12. Insertion loss (IL) according to Eq. (19) of the meta-atoms C ( ) and M ( ) for two boundary admittances Y0 and Y1 as functions of the frequency. The

modal resonance frequencies are indicated by vertical dash-dotted lines ( ) for the eigenvalues 𝜅4 ≈ −447.85 + 4557.65i, 𝜅27 ≈ −1314.49 + 21455.45i and

𝜅65 ≈ −2424.58 + 33848.26i. The vertical dotted lines ( ) at about 20,335 Hz and at about 33,863 Hz show the resonance frequencies of two eigenvectors, the

imaginary parts of which are asymmetric with respect to the half-space axis, cf. Fig. 14.

Table 1

Alteration of eigenvalues of insulating modes according to Fig. 13 with two different boundary admittances Y0 and Y1.

Model 𝜅 cavity mode 1 𝜅 cavity mode 2 𝜅 cavity mode 3

Y0 ≈ −447.85 + 4557.65i ≈ −1314.49 + 21455.45i ≈ −2424.58 + 33848.26i

Y1 ≈ −413.45 + 4560.31i ≈ −1274.25 + 21461.39i ≈ −2374.55 + 33858.96i

the specific application. The amplitude and the bandwidth of the insulation due to the c-shaped meta-atoms are larger at low

frequencies, which might be indicated by the damping (real part of the eigenvalues) of the normal modes. The application of the

boundary admittance Y1 weakens the effects and both the rapid increase and decrease of the sound pressure are less distinct in

comparison to the sound-hard problem. The effect is strongly frequency-dependent and diminishes with increasing frequency.

It is already negligible around the third resonator frequency in the case of the small absorption coefficient 𝛼1 = 0.017. At least

in this specific configuration with the c-shaped meta-atom M and the selected absorption 𝛼1, no additional reduction effect by

absorption can be read in the IL curve in the frequency range considered. However, it is conceivable that the reduction effect of

absorber materials can be used specifically to reduce the incident sound pressure in certain frequency ranges, although at the

same time there may be a reduction in insertion loss at other frequencies.

The normal mode eigenvalues of the undamped case Y0 and the damped case Y1 are given and compared in Table 1. Their

real part decreases according to amount while the resonance frequency increases slightly.

The corresponding right eigenvectors or mode shapes illustrate the effect of the sound pressure within the air-column being

in resonance. They can be referred to as the first and the two higher-order (second and third) Helmholtz resonator modes. Their

magnitude, real part and imaginary part can be seen in Fig. 13 (consider the rotated view) in a half-space domain in order to

utilize symmetry of the c-shaped meta-atom.

The sound pressure magnitudes (first row) give the impression that sound energy is trapped within the cavity, where for

the second and even more so for the third resonator mode an interaction with the exterior can be observed. Like a Helmholtz

resonator, the cavity acts like a tuned mass damper. Considering the additional, higher eigenfrequencies, one can speak of a

tuned absorber. It is a well-known phenomenon that strongly attenuated tuned mass dampers do not work as effectively as

weakly attenuated ones, which can be interpreted here from the proportions of the real parts of the eigenvalues.

In the second and third resonator modes, the sound pressure magnitude oscillates with one wavelength each in the y-

direction and, for the third, additionally in the x-direction. Maximum sound pressure magnitudes can be found on the sound-

hard boundary opposite the opening and directly in the opening itself so that it can be assumed that a sound pressure wave of

the appropriate wavelength traveling through the opening excites this mode shape and thus gets caught inside the cavity.

The real and imaginary parts of the eigenvectors (second and third row) represent to some extent a radiative or reflective

behavior.

Two more cavity normal modes are introduced in Fig. 14, which can only be found in full-space computational domains due

to the asymmetric shape of the imaginary part of their right eigenvectors with respect to the y-axis as the mirror axis. These are
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Fig. 13. Three considered insulating normal modes of M1HS (HS = half space, right eigenvectors in the FE domain) from left to right with the corresponding eigenvalues

𝜅4 ≈ −447.85 + 4557.65i, 𝜅27 ≈ −1314.49 + 21455.45i and 𝜅65 ≈ −2424.58 + 33848.26i. Eigenvector magnitude (first row), real part (second row) and imaginary

part (third row). Note that the coordinate system is rotated for presentation reasons.

Fig. 14. Two cavity normal modes of M1 as right eigenvectors (magnitude) whose imaginary parts are asymmetrical with respect to the y-axis as the mirror axis. They

cannot be determined in a half-space computation and are not substantially excited by a plane incident wave along the y-axis (symmetrical mirror axis). In this work they

are called asymmetric modes. The corresponding eigenvalues are ≈ −3.36 + 20335.3i and ≈ −32.03 + 33862.7i.

called asymmetric (cavity) modes in simplified terms in the following.

Even though the resonance frequencies of the two asymmetric modes in Fig. 14 are very close to those of the two symmetric

Helmholtz resonator modes in the middle and on the right of Fig. 13—the similarity is related to the almost rotational symmetry

of the meta-atom, which is only interrupted by the one-sided opening—the noise mitigation effect is mainly dominated by the

symmetric modes in Fig. 13. This can be seen from the harmonic solution for the perpendicular and symmetrical incident sound

pressure (in positive y-direction) in the fluid, in which only the symmetric mode shapes become clearly recognizable. The two
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Fig. 15. Variations of the model S (sonic crystal) in a non-scaled representation: a) 10 × 10-array of meta-atoms C in a circular computational domain S1C10 × 10, b) 10 × 10-

array of meta-atoms C in an elliptical, half-space computational domain S1.33C
HS

10 × 10 and c) 4 × 10-array of meta-atoms M in an elliptical, half-space computational

domain S2M
HS

4 × 10. The fluid is illustrated gray.

asymmetrical modes do not interact with the exterior through the narrow opening, are therefore not significantly excited by

the incident sound wave and are therefore not decisive for the noise-mitigating effect of the resonator.

It is obvious that the normal modes approach can determine and visualize the resonator frequencies and mode shapes very

accurately, even for elaborated concepts such as the ‘Matryoshka’ design suggested by Chalmers et al. [7] and Elford et al. [8] as

well as for the ‘Mie’ design presented by Cheng et al. [10] and Lu et al. [11]. The identification of the cavity modes can be carried

out according to the criteria described by Moheit and Marburg [55].

The modal decomposition allows the clear distinction of the effects which lead to a high level of sound insulation. Here,

no periodicity condition such as Floquet-Bloch in a unit cell is applied and the modal analysis is performed for a single meta-

atom under free-field conditions. This has the advantage that one concentrates solely on the effect of the meta-atom itself. The

interaction of the meta-atoms in finitely large arrays is discussed in the next section.

4. Results at sonic crystals level

Based on the findings from the results at meta-atom level in Sec. 3, the concept of normal modes is introduced in the context

of finite sonic crystal noise barriers in order to provide a different point of view on the problem and form the basis for a thorough

understanding of physical processes and effects.

Sonic crystals are periodic distributions of scatterers such as those of type C or M (cf. Fig. 2), which are embedded in an

array allowing in specific conditions to produce acoustic band gaps (ABGs). These ABGs are frequency intervals where waves

are forbidden to propagate. In this paper, the focus is on finitely long arrays for which the assumption of periodicity is limited

and thus the effectiveness of the ABGs is influenced. The arrays are considered only in 2D in order to keep the computing

requirements low. The view can therefore be understood as a sectional plane in 3D through an array of infinitely high cylinders.

The surfaces of the scatterers are regarded as sound-hard walls.

For the investigations in this section, both the array and the shape of the computational domain are varied. An important

feature of the sonic crystals is the arrangement of their elements, whereby in the scope of this work only square lattices are

studied. The notation 4 × 10 indicates that the sonic crystal noise barrier is an array of four scatterers in the direction of the

wave and ten in the direction perpendicular to it. Only incident plane waves along the x- or y-axis are considered in this work

for the sake of simplicity and the possibility of exploiting symmetry properties. Symmetric problems are carried out using half-

space domains due to the lower effort, cf. Sec. 3.3. The abbreviations for these models start with the letter S, half-space domains

are indicated by the subscript HS.

Two arrays of scatterers (10 × 10 and 4 × 10) are investigated for both meta-atoms C and M. Variations of the models are

depicted in Fig. 15.

Their specifications are inspired by the work of Elford et al. [8], for which experimental results are partly available in the

earlier work of Chalmers et al. [7]. The lattice constant, which is the distance from the center of a scatterer to the center of

the next one, is equal to 22 mm (the corresponding unit cell in Elford’s work has a width of 11 mm), their diameter is 13 mm.

The total depth of the considered barriers is thus 220 mm (ten times the lattice constant) and 88 mm (four times the lattice

constant), respectively. The slender array 4 × 10 is calculated in an elliptical domain. The density of the fluid is 𝜌f = 1.25 kgm3

and the speed of sound is cf = 343 ms1.

According to the findings of the results at meta-atom level and weighing accuracy against computational effort for many

degrees of freedom, infinite elements of radial polynomial order twelve with twelve second-order Lagrangian finite elements

per wavelength at 20 kHz (i.e. hmax ≈ 1.43 mm and still six quadratic finite elements per wavelength at the maximum frequency

40 kHz) are used in the investigation of the sonic crystals. The coarser mesh resolution beyond the audible frequency range is

acceptable in the present case, since on the one hand the results from preliminary investigations in Sec. 3.1 indicate a sufficient
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Table 2

Mesh specifications of the sonic crystal models by means of degrees of freedom (DOF) and the number of finite elements.

Model S1C10×10 S1C
HS

10×10 S2C
HS

4×10 S1M
HS

10×10 S2M
HS

4×10

DOF 289,429 145,075 57,789 156,931 62,553

N. of fin. elements 142,968 71,538 28,432 76,966 30,614

Fig. 16. Sound pressure magnitude distribution in the FE domain for an incident plane wave (traveling in positive y-direction) indicates a high sound pressure insulation at

9060 Hz for S1C10 × 10 (left) and S1C
HS

10 × 10 (right) in the upper shadow of the 10 × 10 array.

accuracy and on the other hand no absolute results are of interest, but qualitative statements should be made. The number of

degrees of freedom (DOF) and finite elements of the models are given in Table 2.

The procedure in this section is structured as follows: In the first step in Sec. 4.1, the noise barriers are subjected to incident

sound pressure fields, resulting from plane waves, which lead to scattering fields as described in the theory Sec. 2.1. The insertion

losses of the barriers are then calculated in a frequency spectrum ranging from 1 Hz to 40 Hz in 1 Hz-steps so that frequency

bands with a low transmission of sound are identified and studied by means of normal mode eigenvalues and eigenvectors,

which will be the subject of the second part Sec. 4.2. This procedure is intended to reveal relationships between the modes in

exterior acoustics and the insulating effect of the noise barriers.

4.1. Harmonic scattering

An incident sound pressure field propagating in positive y-direction is implemented for each of the four models S with a

variation of two different lattices and two different meta-atoms as described above. The amplitudes p0 of the plane waves are

2 Pa (Lp = 100 dB) with the phase angle 𝜙0 = 0. The problems are solved via harmonic analysis by inversion of the frequency-

dependent system matrix according to Eq. (2).

Fig. 16 shows the distribution of the sound pressure magnitude at 9060 Hz in the circular and the half-space FE domain with

cylindrical meta-atoms C in a 10 × 10 array.

The sound pressure distribution is virtually identical in full-space and in half-space and, due to the symmetry of the arrange-

ment and of the incident sound pressure field, the results can be interpreted in the same way while saving computing power.

A significant sound insulation is yielded above the array, which seems to be controlled by the Bragg scattering effect of

standing waves in the array of the scatterers [8]. In the sound pressure field, local maxima occur behind the array as a result

of diffraction and interference, which do not occur with a periodically continued barrier, as there are no boundary effects (cf.

[8]). The local effects are moreover heavily dependent on the frequency of the incident sound pressure field. For that reason, the

noise mitigation by sonic crystals is measured by the insertion loss according to Eq. (19), wherein the difference of the averaged

SPL is formed in a rectangular region behind the array between the case without mitigation measure and that with the barrier.

The rectangular region has a thickness of 25 mm and it extends over the width of the barrier in a distance of 11 mm behind the

last scatterers. The curves of the IL as functions of the frequency are depicted in Fig. 17 with a sampling in 1 Hz-steps.
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Fig. 17. Insertion loss IL for the two arrays 4 × 10 ( ) and 10 × 10 ( ) and both meta-atoms C (black) and M (red): (a) frequency range from 1 Hz to 20,000 Hz

and (b) from 20,000 Hz to 40,000 Hz. Vertical dash-dotted lines indicate the eigenfrequencies of the first and the two higher-order Helmholtz-resonator modes as described

in Sec. 3.4. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

It should be noted that the IL in the three-dimensional is of course considerably lower in the case of finitely high noise

barriers due to the diffraction of the sound waves across the cylinders. For the basic description of the sound-insulating effect

in the x-y-plane, however, the assumption of infinitely high cylinders in the two-dimensional is advantageous.

All four curves tend to show similarly high or low IL in certain frequency ranges, for example between 7 kHz to 9 kHz and

17 kHz–19 kHz. Virtually no sound-insulating effect is provided by all four considered configurations in the frequency range

below approx. 3.5 kHz and in the range from 9.5 kHz to 13 kHz (IL ≈ 0.5 dB). A low mitigation is provided from 27 kHz to

29 kHz (IL ≈ 3 dB–4 dB). The similar behavior indicates that the effectiveness of the array in these frequency ranges does not

primarily depend on the depth of the barrier and shape of the scatterers, but on the distance from each other in the lattice due

to Bragg scattering. This will be referred to later in Sec. 4.2 by means of the modal analysis via normal modes.

The IL curves for the arrays of meta-atoms C and M show completely opposite effects between 3.7 kHz and 5.6 kHz, where

the insertion loss of the array with c-shaped meta-atoms M is much greater than the one with the cylinders C and the other

way round in the range from 21 kHz to 23 kHz. Both frequency ranges are close to the cavity mode resonance frequencies

of the c-shaped meta-atom 𝜅4 at about 4558 Hz and 𝜅27 at about 21,456 Hz, which are depicted and described in Sec. 3.4.

The eigenfrequencies are drawn as vertical dash-dotted lines in Fig. 17. The peak value of the IL is reached for S1M
HS

10 × 10 at

4566 Hz with approximately 33 dB, which is to be justified with the Helmholtz resonator effect of the c-shaped meta-atom at

this frequency.
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Fig. 18. Characteristic mode shapes as right eigenvectors in the FE domain with resonance frequencies in the range of the associated first Bragg-type band gap of the

corresponding periodic array. Corresponding eigenvalues from left to right: 𝜅243 ≈ 102.92 + 8844.85i,𝜅245 ≈ 95.18 + 8854.5i,𝜅267 ≈ 33.37 + 9252.59i,𝜅269 ≈ 40.98 +
9292.39i, 𝜅271 ≈ 37.66 + 9344.87i and 𝜅277 ≈ 19.33 + 9409.02i.

Basically, the IL of the 4 × 10 arrays are only slightly lower than those of the 10 × 10 arrays with occasionally up to 5 dB, but

in some cases even up to 15 dB less IL by 13.8 kHz and by 23.4 kHz. The effect is more pronounced with the c-shaped meta-atoms

M.

The frequency ranges with a high sound-absorbing effect correspond qualitatively with those from the transmission analyses

by Elford et al. [8] for both the circular and the c-shaped meta-atoms in the 10 × 10 array. Deviations can primarily be attributed

to the varying determination of the IL as well as to the circumstance that the region lateral to the arrays is modeled differently

and in this work, diffraction along the outer edge is considered, so that absolute comparability is not possible.

A noise reduction of 10 dB–20 dB can be achieved in wide frequency bands and it is conceivable that the effect can be

greatly increased or the bandwidth can be broaden by the targeted introduction of Helmholtz resonators of different sizes and

lattice widths as well as absorbers. It should be noted, of course, that the two-dimensional problem described is idealized and

overestimates the results compared to reality.

4.2. Modal analysis

For a better understanding of the effects and as a tool for the efficient design and optimization of sonic crystal noise barriers,

this paper proposes the normal modes in the acoustic exterior. Their requirements and specific properties have been considered

in Sec. 3.

In the example of the array S1C
HS

10 × 10, some of the modes are depicted in Fig. 18, which are most likely responsible for the

high sound insulation in the region of the associated Bragg-type band gap around 9060 Hz of a comparable, periodic array.

Its effect is shown in Fig. 16 for the harmonic sound pressure distribution as the sum of incident and scattered sound pressure

field.

In Fig. 18, it can be observed how the sound energy is trapped inside the sonic crystals array at different positions. The first

two shown modes are also in strong interaction with the surrounding fluid, but they are much more damped with respect to the

larger real part of their eigenvalues and thus less excited than the others. With variable grid widths, it is conceivable that the

sound insulating effect can be extended to a wider frequency range.

In what follows, the smaller array S2M
HS

4 × 10 (cf. Fig. 15c) shall be investigated exemplarily by NM to comprehend the

underlying physics of both resonance and Bragg-type band gaps, which, in the case of the finitely extended array, result in finite

sound insulation. The standing wave patterns are less pronounced in this example compared to the large 10 × 10-array due a

stronger interaction with the exterior domain.

The distribution of the eigenvalues in the complex plane can be seen on the right-hand side in Fig. 19 in a cutout only for zero

and positive imaginary parts. The imaginary axis of the complex plane represents the resonance frequencies of the modes, as

discussed in Sec. 2.2. The general structure or distribution of the normal modes in the complex plane is similar to observations

in previous studies by the authors [55], where a rough distinction is made between cavity modes, multipole modes and spurious

modes. The frequency curves of the insertion loss due to the sonic crystal array S2M
HS

4 × 10 (black) and due to a single meta-atom

M in free-field (gray) are depicted on the left-hand side in Fig. 19. Both images are shown side by side in order to compare the

modes and the effect in the form of the IL directly with each other. Horizontal dash-dotted lines ( ) indicate three cavity

eigenfrequencies of the c-shaped meta-atom M under free-field conditions, cf. Fig. 13. Horizontal dashed lines ( ) connect

two further distinctive peaks of the IL with eigenvalues in the complex plane. Selected eigenvalues 𝜅A to 𝜅L are tagged. Their

corresponding mode shapes can be found in Fig. 20. Light gray areas indicate frequency regions with high insertion losses that

can be attributed to associated Bragg band gaps (corresponding eigenvalues are indicated by markers). The corresponding

eigenvalues of the Helmholtz resonator modes and asymmetric cavity modes are depicted as and , respectively.
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Fig. 19. Side-by-side of the insertion loss (IL) of S2M
HS

4 × 10 ( ) and a single meta-atom M in free-field ( ) as functions of the frequency (left) and normal mode

eigenvalues in the complex plane of eigenvalues 𝜅m (right, limited to Im{𝜅m} ≥ 0).

The complex plane is symmetrical with respect to the real axis. All eigenvalues that appear on the positive side of the imag-

inary axis do also exist mirrored with a negative imaginary part. The corresponding complex-valued eigenvectors do therefore

exist twice. The authors showed that the contribution of the two complex conjugated partners to a possible sound radiation by

the scatterers is not identical [55]. The question to what extent the complex conjugated partners contribute to sound insulation

to varying degrees is not to be investigated in the context of this work.

A large part of the determined normal modes are multipoles of different orders [55]. Due to the asymmetry of the arrange-

ment by the one-sided opening of the meta-atoms and by the elliptical shape of the computational domain, some of the

multipole-modes are slightly asymmetrical along the outer FE boundary line, similar to the representation in the preliminary

studies at meta-atom level in Fig. 9.

The three dash-dotted lines in Fig. 19 indicate the eigenfrequencies of the three cavity modes of the single c-shaped meta-

atom as described in Sec. 3.4 and shown in Figs. 12 and 13. The arrangement in the array shifts their natural frequencies and

causes standing wave effects between the meta-atoms. As a consequence, the results of the free-standing meta-atoms are not

directly comparable with those in the sonic crystal. Consequently, the peaks with very high IL do not necessarily occur at the

same frequencies (dashed lines), except for the first Helmholtz resonator frequency, where the peak can still be assigned clearly;

for the two higher ones, the deviation is already very significant.

The effects are described by the modes A, B, G and K (circular marker), which represents only a selection of the associated

modes. In the surrounding frequency ranges, several modes of a similar kind scatter whereby only single, apparently randomly

distributed cavities or small groups of meta-atoms vibrate per mode. Therefore, several modes are required for the entire effect

of the arrangement. The interaction of individual, similar modes of the same group is reminiscent of studies on eigensolutions

of mistuned rotor blades due to imperfect axial symmetry, for example by Ewins [91] and Irwanto et al. [92].

In the same way, multiple eigenvalues can be found for asymmetrical cavity modes as described in the previous section

(cf. Fig. 14). Their eigenvectors are characterized by the fact that they are rotated by 45 and 90◦, respectively, compared to the

modes known as higher Helmholtz resonator eigenfrequencies in Fig. 13. Their corresponding eigenfrequencies lay quite exactly

on only one frequency line at a time, which is virtually equivalent to the respective eigenfrequency of the single meta-atom as

depicted in Fig. 12. This is due to the fact that the modes are weakly damped (small real part) and do hardly interact with the

exterior domain. In one case, these eigenvalues are virtually in line with the frequency at which a particularly high IL is measured

at about 20.35 kHz and once approximately at the level of the third Helmholtz resonator frequency at about 33.85 kHz. The

asymmetric modes differ in frequency from the Helmholtz resonator modes solely due to the one-sided opening of the meta-

atom but are otherwise almost rotationally symmetrical in shape and therefore have almost identical natural frequencies. In the

complex plane in Fig. 19, two examples for asymmetrical cavity modes in the sonic crystals array are found as eigenvalues H

and L (star-shaped marker).

The assignment of the peaks with high insertion loss due to the resonator effect (marked with dashed lines) can be done quite

clearly. The modes of the first and the two higher Helmholtz resonator effects (circular markers) each scatter slightly around

these dashed frequency lines and thus also influence the width of the peaks. Some of the resonator waveforms (especially the

modes B and G) mix with the adjacent so-called Bragg-type effects, in which the sound energy remains trapped within the grid.

Bragg-type band gaps arise from the periodic nature of the crystal [7]. In the case of local periodicity as given here, a high

level of sound insulation in the associated frequency regions can still be attributed to the underlying physical effect of Bragg

band gaps. In order to approach their phenomenon, first, four exemplary frequency bands are selected in which a high IL occurs

(light gray background marking). Using the imaginary parts of their eigenvalues, meaningful eigenvectors are identified, which
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Fig. 20. Normal mode shapes as right eigenvectors in the FE domain (magnitude) corresponding to the eigenvalues 𝜅A to 𝜅L as depicted in Fig. 19.
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contribute to the description of the insulating Bragg effect within the array. The eigenvalues C, D, E, F, I and J are indicated by

diamonds in the complex plane in Fig. 19. The most different patterns and forms can be observed for the eigenvector magnitudes

and it becomes obvious that on the one hand the Bragg-type modes often interact with the resonator modes and on the other

hand their eigenfrequencies depend strongly on the lattice width and the number of zero crossings of the standing waves in the

array. With the introduction of different lattice widths within the array, the frequency ranges with high IL could be specifically

influenced. The knowledge about the normal modes of the single meta-atoms and the whole arrangement can contribute to a

targeted design and optimization of sonic crystals.

5. Conclusions

In this work, it could be confirmed that the IFEM is applicable at circular and elliptical FE domains of various aspect ratios for

the computation of incident and scattered sound pressure fields and for the frequency-independent normal modes. The focus

of this work is on two-dimensional models of sonic crystal noise barriers and their components, which can be referred to as

meta-atoms. The requirements for the FE mesh size and for the IFE radial order, however, are initially examined for simple,

known models and they serve as the basis for the error estimation of the subsequent investigations.

The concept of normal modes is introduced in this field, since the complex eigenvalues and eigenvectors provide informa-

tion on damping and resonance frequencies of modes in exterior domains and offer a new point of view on standing waves,

diffraction and interference effects in the unbounded fluid around and in between the array of scatterers. The modal decom-

position of the exterior sound pressure field around arbitrarily-shaped meta-atoms can be utilized in the process of design and

dimensioning of noise barriers or acoustic metamaterials in general. It could be suggested that the sound insulation is due to

the superposition of a few normal modes in and around the frequency ranges of the associated band gaps of the related periodic

array. Their eigenvectors show standing wave patterns between the acoustic meta-atoms in the array. Obviously, these mode

shapes are responsible for the reflection or withdrawal of sound energy.

The investigations at sonic crystals always focus on the attempt to broaden the bandwidth of sound insulation, for example

by introducing differently scaled and shaped meta-atoms and varying lattice widths in order to overlap the individual effects.

The method of normal modes is presented in this work as a suitable tool for the conception of complex arrays and for a better

understanding of their mode of action.

With regard to the insulating effect of individual c-shaped meta-atoms, it can be concluded that—in contrast to the filled

obstacle—their efficiency is dominated by the first and higher-order Helmholtz resonator modes or cavity modes around their

respective resonance frequencies while the insulation of sound pressure also involves an amplification with the result that both

effects have to be weighted. The effects are softened if a boundary admittance is attached to the interior walls of the c-shaped

meta-atom as could be the case for slightly soiled or elastic materials.

The effects of elliptical domain shapes and half-space problems on the normal modes is estimated, since finite sonic crystals

can be considered as long, slender and symmetric arrays and the number of degrees of freedom can be reduced significantly, if

the domain shape is adapted to the shape of the obstacle(s). It is found that, while the eigenvalues of the complex Helmholtz

resonator or trapped modes remain virtually the same for both circular and elliptical domains, the eigenvalues of exterior mul-

tipole modes change according to the aspect ratios of the compared domains. The number of degrees of freedom can be reduced

significantly by utilization of symmetry in half-space domains, which is shown to have a negligible influence on the cavity

modes.

Summarizing it can be said that elliptic computational domains in 2D should be used with care, since the global relative

error grows considerably compared to circular computational domains and unpredictable effects might occur. Furthermore,

the polynomial order for the radial interpolation of the IFEM has to be strongly increased, so that the advantage of narrow

computational domains may be lost.

Future work should include a further investigation of the physical effects inside the arrays in order to improve and adapt the

design and configuration in regard to unique applications. The computational costs of the method can be reduced by the uti-

lization of model order reduction (MOR) techniques, such as modal reduction. The authors suggested criteria for the distinction

between relevant and non-relevant normal modes in previous work [55], which can be adapted and enhanced in the present

example. It is also interesting to study the collaboration of differently shaped and aligned meta-atoms in sonic crystals and

further develop understanding for the insulating processes of meta-atoms with absorbing or porous layers or integrated mass

damper structures subject to fluid-structure interaction by means of the normal modes approach. More realistic simulations can

be conducted for three-dimensional sonic crystals with cylinders of finite height on an absorbing ground (ellipsoidal half-space

FE domain).
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