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High-throughput, non-invasive phenotyping is promising for evaluating crop nitrogen (N)
use efficiency (NUE) and grain yield (GY) formation under field conditions, but its
application for genotypes differing in morphology and phenology is still rarely
addressed. This study therefore evaluates the spectral estimation of various dry matter
(DM) and N traits, related to GY and grain N uptake (Nup) in high-yielding winter wheat
breeding lines. From 2015 to 2017, hyperspectral canopy measurements were acquired
on 26 measurement dates during vegetative and reproductive growth, and 48 vegetation
indices from the visible (VIS), red edge (RE) and near-infrared (NIR) spectrum were tested
in linear regression for assessing the influence of measurement stage and index selection.
For most traits including GY and grain Nup, measurements at milk ripeness were the most
reliable. Coefficients of determination (R²) were generally higher for traits related to maturity
than for those related to anthesis canopy status. For GY (R² = 0.26–0.51 in the three years,
p < 0.001), and most DM traits, indices related to the water absorption band at 970 nm
provided better relationships than the NIR/VIS indices, including the normalized difference
vegetation index (NDVI), and the VIS indices. In addition, most indices including RE bands,
notably NIR/RE combinations, ranked above the NIR/VIS group. Due to index saturation,
the index differentiation was most apparent in the highest-yielding year. For grain Nup and
total Nup, the RE/VIS index MSR_705_445 and the simple ratio R780_R740 ranked
highest, followed by other RE indices. Among the vegetative organs, R² values were
mostly highest and lowest for leaf and spike traits, respectively. For each trait, index and
partial least squares regression (PLSR) models were validated across years at milk
ripeness, confirming the suitability of optimized index selection. PLSR improved the
prediction errors of some traits but not consistently the R² values. The results suggest the
use of sensor-based phenotyping as a useful support tool for screening of yield potential
and NUE and for identifying contributing plant traits—which, due to their expensive and
cumbersome destructive determination are otherwise not readily available. Water band
.org January 2020 | Volume 10 | Article 16721
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and RE indices should be preferred over NIR/VIS indices for DM traits and N-related traits,
respectively, and milk ripeness is suggested as the most reliable stage.
Keywords: phenomics, smart farming, remote sensing, nitrogen use efficiency, yield prediction, red edge, water
band indices, breeding
INTRODUCTION

Spectral high-throughput sensing has gained increasing attention
for efficient assessment of genotypic performance of plant
breeding material (Furbank and Tester, 2011; Araus and
Cairns, 2014). Various authors have stressed the suitability of
using reflectance data measured earlier in the season for the
estimation of grain yield (GY). This would enable plant breeders
to focus on a limited set of promising genotypes for further
rating, thus even making yield determination of dismissed lines
unnecessary (Garriga et al., 2017). Besides GY, GY formation, its
mechanisms, and the contribution of plant organs were less
frequently addressed with spectral methods, especially for the
discrimination of genotypes. However, a better understanding of
these mechanisms could facilitate plant breeders to target specific
traits (Acquaah, 2007), such as leaf area and nitrogen (N)
concentration for increasing assimilation, and spike and culm
characteristics for increasing the sink and storage size for
assimilates, respectively (Schnyder, 1993; Feng et al., 2016).

The contribution of plant organs as sink or source for
assimilates and N differs both between genotypes and between
growth stages, so that their potential use as traits for indirect
selection differs during the grain-filling phase (Barmeier and
Schmidhalter, 2017; Prey et al., 2019b; Prey et al., 2019c).
Evaluating the variation of these traits in breeding lines can
provide valuable complementary information for plant breeders
for optimized selection of N use efficiency (NUE), notably GY and
grain N uptake (GNup). Additionally, estimating the translocation
of dry matter (DM) and N from vegetative organs would
contribute to the understanding of promising strategies of the
temporal DM and N acquisition (Slimane et al., 2013; Prey et al.,
2019a; Prey et al., 2019b) However, the determination of such
traits is expensive and cumbersome, thus requiring low-cost
robust high-throughput techniques (Nguyen and Kant, 2018).

Such spectral methods need to be optimized in terms of the
selection of suitable spectral bands, growth stages for
measurements, and spectral models. For GY, different spectral
vegetation indices (SVI) were compared for the in-season
estimation in durum (Aparicio et al., 2000; Royo et al., 2003),
spring barley (Rischbeck et al., 2016; Barmeier et al., 2017), or
wheat (Tucker et al., 1980; Raun et al., 2001; Freeman et al., 2003;
Moges et al., 2004; Babar et al., 2006a; Babar et al., 2006b; Babar
et al., 2007; Prasad et al., 2007a; Prasad et al., 2007b; Gizaw et al.,
2016a; Gizaw et al., 2016b). A number of these studies that were
often conducted in warm or drought-prone environments
strengthened the suitability of band combinations from the
near-infrared (NIR) spectrum, including the water absorption
band around 970 nm (Babar et al., 2006b; Gutierrez et al., 2010b;
Gizaw et al., 2016a; Rischbeck et al., 2016; Becker and
.org 2
Schmidhalter, 2017; Garriga et al., 2017) due to the relation of
canopy water mass with biomass and water status with
assimilation, respectively, as well as the lower saturation of
these bands.

In contrast to GY, GNup and the underlying traits of the
formation of GY and GNup were rarely assessed with spectral
methods. Barmeier and Schmidhalter (2017) evaluated the
spectral estimation of organ-level DM and N uptake (Nup)
traits at anthesis and dough ripeness in spring barley and
recommended the R780_R670 simple ratio index for DM traits
to overcome the saturation of the normalized difference
vegetation index (NDVI). The DM and Nup of leaf blades
followed by those of culms were mostly better predicted than
those of spikes and leaf sheaths. Using red edge (RE)-based SVIs
in winter wheat breeding lines grown in small plots, Frels et al.
(2018) found mostly weaker but significant relationships with
DM and Nup at anthesis and maturity as well as with N harvest
index (NHI), N utilization efficiency (NutEff), N uptake
efficiency (NupEff), and post-anthesis N uptake (PANup).
These authors recommended the RE Maccioni index and
identified the early grain filling stage as the most promising.
Testing many SVIs for predicting GY, GNup, and NUE traits,
Pavuluri et al. (2015) confirmed related indices such as the
R780_R740 (Mistele et al., 2004) and found better correlations
under reduced N fertilization, that was ascribed to the lower
saturation in thinner canopies. Various studies found SVIs to be
highly heritable (Babar et al., 2007; Prasad et al., 2007a; Frels
et al., 2018) or to be related to QTLs associated with GY (Gizaw
et al., 2016a), thus to be used as promising indirect selection tools
if sufficient correlations are found early enough in the season.
Most studies that assessed traits related to N status in response to
N fertilization predominantly agree on the usefulness of RE
bands for vegetative N concentration (NC) (Mistele and
Schmidhalter, 2008a; Li et al., 2010), Nup (Mistele and
Schmidhalter, 2008b; Mistele and Schmidhalter, 2010; Li et al.,
2013; Guo et al., 2017; Prey and Schmidhalter, 2019a), N status,
biomass, and LAI (Hansen and Schjoerring, 2003), as well as
grain NC and Nup (Li et al., 2014; Prey and Schmidhalter,
2019b), due to the shift in the RE reflection as indicator for the N
status. RE indices were also found useful for the estimation of
biomass traits due to their higher sensitivity in dense canopies
(Pavuluri et al., 2015; Frels et al., 2018). Band combinations in
the visible range were recommended to be useful for pigment-
related traits (Peñuelas et al., 1995; Gitelson et al., 2002; Hansen
and Schjoerring, 2003).

Besides SVIs, multivariate analysis such as partial least
squares regression (PLSR) holds the advantage of including
more spectral information than SVIs, but may be affected by
overfitting, so that more calibration data may be required
January 2020 | Volume 10 | Article 1672
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(Mehmood et al., 2012; Overgaard et al., 2013) Comparing SVIs
and PLSR, improvements were found for biomass and NC but
not for chlorophyll concentration and LAI (Hansen and
Schjoerring, 2003). Similar GY predictions were found from
PLSR and best SVIs for spring barley (Barmeier et al., 2017).
These authors reported improved RMSE values by PLSR but
similar coefficients of determination for estimating organ-level
traits (Barmeier and Schmidhalter, 2017). While SVIs can be
derived from both multi- and hyperspectral data, the potential
improvements by multivariate analysis are restricted to
hyperspectral data, which comes at the price of more expensive
sensors, being less convenient to use in practice, for example on
UAV-based platforms (Oehlschläger et al., 2018). Therefore, the
benefit of PLSR for traits of NUE and yield formation remains to
be evaluated for wheat.

The application of spectral phenotyping depends on the wheat
type and environment (Gizaw et al., 2016b). Therefore, the
assessment of the influence of measurement conditions
regarding growth stage and plant phenology is essential. Yet,
often only few growth stages were evaluated for GY, focusing on
the period from booting until early grain filling. Several studies
reported increasing correlations until milk ripeness (Freeman
et al., 2003; Babar et al., 2006a; Gutierrez et al., 2010b;
Christopher et al., 2014; Becker and Schmidhalter, 2017). While
relationships peaked at anthesis in a rain-fed trial, they increased
until maturity under irrigated conditions but were generally lower
due to saturation effects in denser canopy (Aparicio et al., 2000).
Under water-limited conditions, heading, anthesis (Aparicio et al.,
2000; Becker and Schmidhalter, 2017) and stem elongation-
heading (Pavuluri et al., 2015) were useful stages. Though year-
specific differences were substantial, Frels et al. (2018)
recommended the early grain filling stage for NUE traits, but a
similar evaluation under high-yielding conditions is missing.

In contrast to the variation driven by altered N application,
the detection of variation between genotypes is likely to be more
affected by the influence of varying morphology, shifted
phenology, and differing contributions of indirect DM and N
traits to GY and GNup. Moreover, even if the methods are also
promising in high-yielding environments (Gizaw et al., 2016b),
many of the studies on spectral GY prediction were conducted
on spring wheat (Babar et al. 2006a; Babar et al., 2007; Gutierrez
et al. 2010a; Sultana et al., 2014) or in environments with low
yield potential. This limits the transferability to high-yielding
winter wheat, given that weaker relationships were often
reported from irrigated trials or denser canopies compared to
drought-stress trials (Aparicio et al., 2000; Babar et al., 2006a;
Becker and Schmidhalter, 2017; Frels et al., 2018). Moreover, the
optimized selection of SVIs depends on the availability of
suitable sensors—characterized by band number, narrowness,
and placement—and measurement stages (Thenkabail et al.,
2000; Prey and Schmidhalter, 2019b).

The present study, therefore, tested the performance of 48
SVIs for the estimation of GY, GNup, and 45 further organ- and
plant-level DM and N traits from hyperspectral passive proximal
canopy sensing acquired from leaf development until dough
ripeness over three years in a high-yielding West-European
Frontiers in Plant Science | www.frontiersin.org 3
environment, based on a previous evaluation of the included
DM and N reference traits (Prey et al., 2019b). The questions
addressed are (i) the detectability of reference traits, (iii) the
influence of optimized selection of specific SVIs, (iii) the
selection of optimum growth stages for measurements, and (iv)
the use of PLSR in comparison to SVIs.
MATERIALS AND METHODS

Field Experiments and Plant Sampling
The field experiment was conducted over three years from 2014/
2015 to 2016/2017 for evaluating traits with influence on NUE
and yield formation in a diverse population of winter wheat
double haploid breeding lines. The population's parents
consisted of elite cultivars and breeding lines provided by
regional plant breeders. The population had undergone pre-
selection, which removed genotypes peculiar in terms of extreme
flowering date, plant height, and disease susceptibility. The trials
comprised 75 lines in two replicates in 2014/2015, 75 lines in four
replicates in 2015/2016, and 32 selected lines representing the
overall yield variation in 4 replicates in 2016/2017. In addition,
three high performance cultivars were included as references.
The plot width was 1.5 m, and the plot length was 6.5 m. The trial
was located approximately 25 km North of Munich (48.406 N,
11.692 E). The soil consisted mainly of homogeneous Cambisols
of loamy clay. The precipitation in the main wheat growing
period from October to August was 714 mm in 2014/15, 746 mm
in 2015/16 and 690 nm in 2016/2017. During the grain filling
period in 2015, heat and lack of precipitation caused moderate
drought stress whereas grain filling in 2016 was influenced by
fungal pathogens. The preceding crop was winter wheat in the
first and second year and grass-clover in the third year.

Biomass sampling was conducted at anthesis (Zadoks growth
stage 6), and at physiological maturity (stage 9). Sampling dates
were determined for each genotype by visual scoring. For
sampling at anthesis, 20 randomly selected spiked culms were
cut directly at stem base in 2015 and 30 culms in 2016 and 2017,
and at maturity 30 culms in 2015 and 50 culms in 2016 and 2017,
respectively. The plants were manually separated into leaf blades,
stems including leaf sheaths, and spikes. In 2016, only a subset of
34 genotypes was separated into vegetative organs. At maturity,
spikes were threshed. Plant samples were oven-dried at 50°C
until constant weight was reached and DM weight was
determined by weighing. N concentration (NC) of the plant
material was analyzed by means of NIR spectroscopy in a Foss
Rapid Content Analyzer for leaves and spikes and in a Bruker
Vector 22/N for the remaining organs. Final GY per plot was
determined using a combined harvester. Spike density per plot
was calculated by dividing GY per area by yield per spike.
Nitrogen uptake (Nup) was calculated by multiplying DM with
NC. Further indirect traits related to yield components, DM and
N translocation and N uptake and utilization efficiency were
calculated (Table 1). Reference traits were categorized into DM
and N traits (Prey et al., 2019b). Moreover, these are either direct
traits, which were directly retrieved from plant sampling either at
January 2020 | Volume 10 | Article 1672
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anthesis or maturity like DM per ha, NC or Nup, or indirectly
derived DM and N traits, which were predominantly calculated
using data from both sampling dates or from different plant
organs (Table 1). See Prey et al. (2019b) for details on the plant
sampling, descriptive statistics and correlations of the plant
traits. Plant height had been included in the analysis of the
reference traits, but was not considered in the spectral analysis
since it is easily assessable from height sensors (Barmeier et al.,
2016), which were not available on all measurement dates.

Spectral Measurements
Spectral measurements were conducted using the PhenoTrac 4
multi-sensor platform during various growth stages throughout
4

the season (Table 2). In 2015, measurements were performed on
only four dates, in 2016 on 12 dates and in 2017 on 10 dates, with
the highest frequency during the grain filling phase due to the
more rapid canopy development and the expected better
relationships with maturity traits. The PhenoTrac 4 is equipped
with a hyperspectral bidirectional passive point sensor
spectrometer (tec5, Oberursel, Germany), measuring at a
nominal resolution of approximately 3.3 nm between 300 and
1000 nm. The measurement distance was approx. 80 cm above
the canopy. Measurements were registered at a frequency of 5 Hz
together with the GPS coordinates from the TRIMBLE RTK-GPS
(real-time kinematic global positioning system; Trimble,
Sunnyvale, CA, USA). See Kipp et al. (2014) and Erdle et al.
(2011) for further description of the sensor system.

Selection of Vegetation Indices
SVIs were selected from the literature based on previous work
that identified useful applications of the indices, and from an
Index-database (https://www.indexdatabase.de; Henrich et al.,
2012). The indices were grouped by the included spectral ranges
(visible light [VIS], the extended RE, and NIR), with the VIS <
700 nm, RE: 700–765 nm and the NIR > 765 nm (Table 3;
Supplementary Figure 1). Prior to index calculation, the spectra
were smoothed using a five-band moving average filter (Mistele
and Schmidhalter, 2010) in order to remove spectral noise.
However, comparisons with unsmoothed data suggested little
influence of spectral noise on the trait/index relationships.

Statistical Analysis
For each sampling stage, each SVI was tested in simple linear
regressions with DM and N-traits using mean values per
genotype as averaged across the replicates. Data analysis was
conducted in R (version 3.4.; R Core Team, 2017), using the lm-
function. The coefficient of determination (R²) was used to
compare the linear relationships. Broad-sense heritability (H²)
was calculated for the SVIs for each measurement date using the
lmer function as H² = Vg/(Vg+Ve/nR), where V denotes the
variance component for the effects of genotype (Vg) and of the
residual variance (Ve), and nR the number of replicates (nR = 2
in 2015 and nR = 4 in 2016 and 2017).

In order to overcome the influence of differing growing
conditions as well as of the date-specific index rankings,
indices were quantitatively ranked by their normalized
performance for each trait, adapting the ranking by Frels et al.
(2018). Since the coefficient of determination is range-dependent
but independent of the level of the trait, it represents a bivariate
ranking of the genotypes. Therefore, the R² values were used
instead of the RMSE values. For each trait, the seasonally mean
(Supplementary Equation 1a) and maximum (Supplementary
Equation 1c) R² values of each index were normalized
(Supplementary Equation 1e, f) to the trait-specific seasonally
mean (Supplementary Equation 1b) and maximum
(Supplementary Equation 1d) R² within each year as
calculated from the results of all indices, respectively. Thus, a
value > 1 indicated a comparative advantage of the index for the
trait under consideration. Consequently, both the within-year
mean- and maximum-based rankings (Supplementary Figure 9)
TABLE 1 | List of traits considered for testing relationships with spectral indices.

Trait group Trait name Abbreviation

Dry matter (DM)
[kg DM ha–1]

Total DM at anthesis DM Ant
Leaves DM at anthesis DM leaves Ant
Culms DM at anthesis DM culms Ant
Spikes DM at anthesis DM spikes Ant
Total DM at maturity DM Mat
Leaves DM at maturity DM leaves Mat
Culms DM at maturity DM culms Mat
Chaff DM at maturity DM chaff Mat
Grain DM at maturity
(grain yield [GY])

DM grain Mat

N concentration
(NC) [%]

Leaves NC at anthesis NC leaves Ant
Culms NC at anthesis NC culms Ant
Spikes NC at anthesis NC spikes Ant
Leaves NC at maturity NC leaves Mat
Culms NC at maturity NC culms Mat
Chaff NC at maturity NC chaff Mat
Grain NC at maturity (GNC) NC grain Mat

Nitrogen uptake (Nup)
(kg N ha–1)

Total Nup at anthesis Nup Ant
Leaves Nup at anthesis Nup leaves Ant
Culms Nup at anthesis Nup culms Ant
Spikes Nup at anthesis Nup spikes An
Total Nup at maturity Nup Mat
Leaves Nup at maturity Nup leaves Ma
Culms Nup at maturity Nup culms Ma
Chaff Nup at maturity Nup chaff Mat
Grain Nup at maturity (GNup) Nup grain Mat
Straw Nup at maturity Nup straw Mat

derived DM
traits

Spike density spike density
Grain number per spike GNS
Thousand kernel weight TKW
DM translocation efficiency DMTEff
DM translocation DMT
Post-anthesis assimilation PAA
Contribution of post-anthesis
assimilation to grain filling

CPAA

Total N utilization efficiency NutEff_total
Harvest index HI
Grain N utilization efficiency NutEff_grain

derived N traits Contribution of post-anthesis N
uptake to total N uptake

CPNup

N harvest index NHI
Total N translocation NT
Leaves N translocation NT leaves
Culms N translocation NT culms
Spikes N translocation NT spikes
N translocation efficiency NTEff
Post anthesis N uptake PANup

other Flowering days in June flowering
January 2020 | Volume 10 | Article 1672
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were summed up across the three years for achieving year-
independent rankings (Supplementary Equation 1g, h). These
across-years mean- and maximum- based rank sums were
combined by summing up both ranking sums for a unique
ranking per trait (Supplementary Equation 1i). Considering a
selection of indices that is robust towards date-specific effects as
more important, the mean-based rank sums were double-
weighted. These weighted mean/maximum-rank sums
(WMMRS) were used for identifying one trait-specific
optimum index, irrespective of the R² level achieved.

The selected indices were validated in test set validations
across years by linear regression on the trait-specific WMMRS-
indices and on the NDVI (“NDVI2”) and REIP indices,
considered as widely used “reference” indices, in comparison
to PLSR models. Based on the seasonal evaluation of the SVI-
relationships, calibration and validation was conducted using
milk ripeness measurements (June 25, 2015, June 28, 2016, and
June 21, 2017). Initial PLSR models were fitted on smoothed
spectral data for evaluating influential spectral bands. PLSR
models used for predictions were based on spectra additionally
pretreated by Savitzki-Golay first order derivation due to
significant improvements (not shown). Bands below 370 nm
and above 990 nm were not included due to spectral noise. PLSR
was fitted using the kernel algorithm (Mevik andWehrens, 2007)
Frontiers in Plant Science | www.frontiersin.org 5
in the pls package. The optimum number of components was
determined by minimizing the cross validation RMSE with the
restriction that an additional component further decreased the
RMSE by at least 1%. For both SVIs and PLSR, validation was
conducted cross-wise on the data of both other years, resulting
into each six validation cases.
RESULTS

Heritability of Vegetation Indices
Heritability (H²) estimated for all SVIs was higher in 2016 and
2017 than in 2015 and generally increased in all index groups
with ongoing plant development (Table 3; Supplementary
Table 1). For all measurement dates in 2015, the group of VIS
indices reached the highest H² values, whereas the NIR/RE/VIS
indices yielded similar values in 2016, mostly followed by the
group of RE/VIS indices. In 2016, unlike in most other groups,
the H² of NIR indices was highest (0.90) already at booting and
anthesis, followed by decreasing values until hard dough (0.76).
Though moderate H² values (~0.60) were already reached before
stem elongation, H² mostly exceeded 0.80 only after booting/
anthesis, both in 2016 and 2017. Notably, many indices including
TABLE 2 | Heritability of indices averaged by index groups by measurement dates calculated for all measurement dates.

Date d.a.s. GDD Growth stage Heritability (H²)

NIR NIR_VIS VIS NIR_RE NIR_RE_VIS RE RE_VIS

2015
150424 171 194 Tillering 0.29 0.29 0.53 0.32 0.16 0.27 0.29
150625 233 782 Late milk 0.39 0.69 0.86 0.61 0.70 0.61 0.73
150707 245 978 Soft dough 0.52 0.66 0.85 0.70 0.75 0.72 0.72
150716 254 1101 Hard dough 0.74 0.78 0.92 0.76 0.76 0.76 0.77

2016
160405 175 200 Leaf development 0.59 0.59 0.64 0.56 0.60 0.61 0.59
160411 181 217 Tillering 0.58 0.64 0.70 0.53 0.52 0.56 0.60
160421 191 254 Tillering 0.77 0.78 0.89 0.59 0.62 0.66 0.75
160518 218 385 Stem elongation 0.81 0.50 0.72 0.64 0.68 0.60 0.64
160529 229 487 Booting 0.91 0.66 0.77 0.86 0.86 0.80 0.80
160610 241 615 Anthesis 0.91 0.86 0.91 0.89 0.90 0.86 0.88
160614 245 655 Early milk 0.91 0.88 0.93 0.84 0.91 0.87 0.91
160623 254 766 Milk 0.85 0.83 0.94 0.89 0.90 0.86 0.89
160628 259 839 Late milk 0.84 0.85 0.94 0.91 0.92 0.90 0.89
160708 269 969.5 Early dough 0.78 0.85 0.93 0.89 0.91 0.87 0.87
160710 271 1001 Soft dough 0.83 0.80 0.94 0.88 0.90 0.83 0.83
160719 280 1116 Hard dough 0.74 0.90 0.92 0.90 0.90 0.88 0.87

2017
170331 159 109 Leaf development 0.77 0.77 0.71 0.74 0.75 0.77 0.77
170413 172 167 Tillering 0.70 0.77 0.81 0.77 0.72 0.77 0.77
170517 206 297 Stem elongation 0.85 0.59 0.66 0.82 0.85 0.81 0.69
170525 214 372 Booting 0.82 0.15 0.43 0.83 0.80 0.72 0.45
170608 228 534 Anthesis 0.94 0.91 0.88 0.93 0.94 0.92 0.87
170614 234 609 Anthesis 0.92 0.40 0.65 0.91 0.87 0.80 0.66
170621 241 706 Milk 0.82 0.33 0.65 0.90 0.86 0.79 0.66
170701 251 862 Early dough 0.86 0.72 0.87 0.90 0.93 0.90 0.83
170705 255 915 Soft dough 0.58 0.89 0.94 0.93 0.95 0.94 0.92
170711 261 1017 Hard dough 0.96 0.96 0.96 0.95 0.95 0.95 0.95
January 2020 | Volu
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SVIs are grouped according to the included spectral regions (Table 3; Supplementary Figure 1). See Supplementary Table 2 for heritability values by indices. Dates of are listed as
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TABLE 3 | List of spectral vegetation indices considered in this study.

Index Full name Spectral band
group

Equation Reference (IDB: Index database)

NWI-1 Normalized water index 1 NIR (R970 − R900)/(R970 + R900) (Babar et al., 2006b; Babar et al.,
2007)

NWI-2 Normalized water index 2 NIR (R970 − R850)/(R970 + R850) (Babar et al., 2006b; Babar et al.,
2007)

NWI-3 Normalized water index 3 NIR (R970 − R920)/(R970 + R9200) (Babar et al., 2007)
NWI-4 Normalized water index 4 NIR (R970 − R880)/(R970 + R880) (Babar et al., 2007)
NWI-5 Normalized water index 5 NIR (R970 − R930)/(R970 + R930) (Prey and Schmidhalter, 2019b)
WBI Water band index NIR R900/R970 (Peñuelas et al., 1993)
EVI Enhanced vegetation index NIR, VIS

2:5 ∗
(R864 − R670)

(R864 + 6 ∗R670 − 7:5 ∗R420 + 1)
(Huete et al., 2002)

GNDVI Green NDVI NIR, VIS (R780 − R550)/(R780 + R550) (Gitelson et al., 1996a)
MCARI1 Modified chlorophyll absorption in

reflectance index 1
NIR, VIS 1.2∗(2.5(R800 − R670) − 1.3∗(R800 − R550)) (Haboudane et al., 2004)

MCARI2 Modified chlorophyll absorption in
reflectance index 2

NIR, VIS
1:5 ∗

(2:5 ∗ (R800 − R670) − 1:3 ∗ (R800 − R550))

(((2 ∗R800 + 1)2 − (6 ∗R800 − 5 ∗R6700:5) − 0:50:5)
(Haboudane et al., 2004)

MSAVI Modified soil-adjusted vegetation
index

NIR, VIS (2∗R800 + 1 − (((2∗R800 + 1)2 − 8∗(R800 − R670))0.5))/2 (Broge and Leblanc, 2001)

MSR(MSR670) Modified simple ratio 670 NIR, VIS (R800=R670 − 1)

((R800=R670 + 1)0:5)

(Chen, 1996)

MTVI2 Modified triangular vegetation Index
2

NIR, VIS 1:5 (1:2 ∗ (R800 − R550) − 2:5 ∗ (R670 − R550))

(((2 ∗R800 + 1Þ2 − (6 ∗R800 − 5 ∗R6700:5 − 0:5))0:5)

(Haboudane et al., 2004)

NDVI1 Normalized difference 1 NIR, VIS (R864 − R670)/(R864 + R670) (Cristiano et al., 2010)
NDVI2 Normalized difference 2 NIR, VIS (R780 − R670)/(R780 + R670) (Erdle et al., 2013a; Erdle et al.,

2013b)
NDVI3 Normalized difference 3 NIR, VIS (R900 − R670)/(R900 + R670) (Zhao et al., 2004)
OSAVI Optimized soil-adjusted vegetation

index
NIR, VIS (1 + 0:16) ∗ (R800 − R670)

ðR800 + R670 + 0:16Þ
(Li et al., 2010)

PSSR Pigment specific simple ratio NIR, VIS R800/R500 (Ustin et al., 2009)
R780/R550 NIR, VIS R780/R550 (Takebe et al., 1990)
R780/R670 NIR, VIS R780/R670 (Pearson and Miller, 1972)
WDRVI Wide dynamic range vegetation

index
NIR, VIS (0:1 ∗R780 − R670)

(0:1 ∗R780 + R670)
(Gitelson, 2004)

ARI Anthocyanin reflectance index VIS 1/R550 − 1/R700 (Gitelson et al., 2001)
BGI Blue green pigment index VIS R450/R550 (Zarco-Tejada et al., 2005)
BRI Blue red pigment index VIS R450/R690 (Zarco-Tejada et al., 2005)
PRI Photochemical reflectance index VIS (R531 − R570)/(R531 + R570) (Peñuelas et al., 1995)
VARIgreen Visible atmospherically resistant

vegetation index green
VIS (R550 − R670)/(R550 + R670 − R470) (Gitelson et al., 2002)

NDRE Normalized difference NIR/Red edge
index

NIR, RE (R790 − R720)/R790 + R720) (Barnes et al., 2000)

R780/R740 NIR, RE R780/R740 (Mistele et al., 2004)
NDRE_770_750 NIR, RE (R770 − R750)/(R770 + R750) (Prey and Schmidhalter, 2019b)
R787/R765 NIR, RE R787/R765 (Fava et al., 2009)
LCI Leaf chlorophyll index NIR, RE, VIS (R850 − R710)/(R850 + R680) IDB
Maccioni Maccioni index NIR, RE, VIS (R780 − R710)/(R780 − R680) (Maccioni et al., 2001)
REIP Red edge inflection point NIR, RE, VIS

700 + 40 ∗
( R670+R7802 ) − R700
(R740 − R700Þ

(Guyot et al., 1988)

TCARI/OSAVI NIR, RE, VIS
3 ∗

((R700 − R670) − 0:2 ∗ (R700 − R550) ∗R700=R670Þ
((1 + 0:16) ∗ (R800 − R670)=(R800 + R670 + 0:16))

(Haboudane et al., 2002)

HVI Hyperspectral vegetation index RE R750/R700 (Gitelson et al., 1996b)
R760/R730 RE R760/R730 (Mistele and Schmidhalter, 2010;

Jasper et al., 2009)
RVSI Red edge vegetation stress index RE (R714 + R752)/2 − R733 (Merton, 1998)
VOG1 Vogelmann 1 RE R740/R720 (Vogelmann et al., 1993)
VOG2 Vogelmann 2 RE (R734 − R747)/(R715 + R726) (Vogelmann et al., 1993)
DD Double difference index RE, VIS (R749 − R720) − (R701 − R672) (Le Maire et al., 2004)
MCARI Modified chlorophyll absorption in

reflectance index
RE, VIS ((R700 − R670) − 0.2∗(R700 − R550))∗(R700/R670) (Daughtry et al., 2000)

MND_750_705 Modified normalized difference 750/
705

RE, VIS (R750 − R705)
(R750 + R705 − 2 ∗R445)

(Sims and Gamon, 2002)

MSR_705_445 Modified simple ratio 705/445 RE, VIS (R750 − R445)/(R705 − R445) (Sims and Gamon, 2002)
MTCI MERIS terrestrial chlorophyll index RE, VIS (R750 − R710)/(R710 − R680) (Dash and Curran, 2003)

(Continued)
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Prey et al. Spectral Phenotyping of NUE and Yield
VIS bands were not heritable during booting, later anthesis and
milk ripeness in 2017, whereas most indices with NIR bands still
reached high values (>0.80) on these days.

The Seasonal Trait Assessment
The relationships found between reference traits and SVIs
differed between measurement days and between years, so that
an identification of optimal measurement dates and SVIs is
necessary. Mean and maximum (Supplementary Figure 2)
coefficients of determination (R²) peaked during milk ripeness
and early dough ripeness at the end of June for most traits in
both 2015 and 2016, whereas R² values increased for later
measurement dates in 2017 (Figure 3; Figure 5). In all years
and for most traits, the steepest R² increase was found between
anthesis and milk ripeness, whereas useful relationships were
rarely found during the vegetative phase.

For direct DM and Nup traits and for NC, predominantly
closer relationships were observed for the maturity traits than for
the anthesis traits. Due to the dominant effect of the
measurement date, no clear differences in the date suitability
by trait were found (Supplementary Figure 2). In all years, the
VIS indices represented the weakest index group and their R²
values decreased earlier during grain filling than those of most
other indices (Supplementary Figure 3). In 2016, several indices
with RE bands yielded higher R² values during stem elongation
(May 18) than those of the other groups. In 2017, the
relationships reached from NIR/VIS indices increased later at
anthesis/grain filling than from the other indices.

Seasonal Relationships and Index
Rankings
For assessing the trait detection, the trait-specific index
suitability, and the stability over time, seasonally maximum
(Figure 1; Supplementary Figure 4) and mean (Supplementary
Figure 5) R² values were calculated for each SVI–trait
combination across measurement dates in the individual years.
The groupof directDMtraitswas relatively best assessed, followed
by direct Nup traits, whereas the derived DM traits were the least
estimated (Table 4). The relationships differed more strongly
between traits and years for the groups of derivedDMandN traits.
Mean and maximum R² values by traits were closely related for
most traits, indicating that the comparison of the trait estimation
was not derived from specific dates only. For each trait, the indices
were ranked based on weighted mean/maximum-rank sums
(WMMRS) achieved over the three years (Figure 2). Seasonal
R² values are presented for selected DM and N traits.
Frontiers in Plant Science | www.frontiersin.org 7
Direct DM Traits
NIR indices showed a clear advantage for total DM at maturity
(Mat; WMMRS > 12; average of all indices = 9; Figure 2) and for
grain DM (GY; WMMRS > 14; Figure 2), but performed below-
average for DM of leaves both at anthesis and maturity—traits
RE-based indices and the EVI (WWMRS > 12) were mostly
superior for (Table 4; Figure 3). Noticeably, among the large
group of NIR/VIS indices (n = 15), only few indices reached
superior WMMRS values. Total DM at anthesis was better
estimated in 2015 (WMMRS-index: R760_R730: max. R² =
0.33***; *: p < 0.05; **: p < 0.01; ***: p < 0.001) and 2017 (max.
R² = 0.33***) than in 2016 (max. R² = 0.11***; Table 4). A
pronounced depression with low R² values is visible for booting
in 2016 and for anthesis in 2017 for most traits (Figure 3).
Among plant organs at anthesis, DM of leaves was best detected
with slightly higher (2015 and 2016) or clearly higher (2017: R² =
0.44; EVI) R² values, as was found for total DM at anthesis
(Table 4). While in 2015, indices with RE bands or only NIR
bands performed similarly well during milk ripeness for DM
traits (Figure 3), all indices with only NIR bands (blue lines)
outperformed the other groups on most dates in 2016 and 2017
for total DM and GY. In all years, significant (p < 0.005)
relationships were found for GY (grain DM at maturity;
Figure 3) although the best R² values of the WMMRS-index
NWI-2 (R² = 0.51, 0.26, 0.27) were lower in 2016 and 2017 than
those found for total DM at maturity (NWI-5; R² = 0.41, 0.37,
0.34). For both traits, relationships peaked in all years at milk
ripeness or early dough ripeness, and the water-related NIR
indices (blue lines) excelled the other groups during grain filling
and were more consistent over time. In all years, R² values of the
related water band indices WBI and NWI-1 were almost
identical during grain filling (Supplementary Figure 7). The
NIR/RE indices were generally the second best group but failed at
the dough stages.

N Concentration Traits
Weak relationships were found for all NC traits, especially at
anthesis, and R² values of the WMMRS-indices (Table 4;
Figure 1) differed more from the maximum relationships than
for other trait groups. The R² values found from the WMMRS-
index for grain NC were weak (max. R² = 0.08*) although other
SVIs performed clear ly bet ter in individual years
(Supplementary Figure 4). Relationships with maturity NC
traits were closer than with anthesis NC (maximum R² of
WMMRS-indices for culms: 0.26*** in 2015, 0.18* in 2016 and
0.22** in 2017; for leaves: 0.32***, 0.42** and 0.21**; Table 4).
TABLE 3 | Continued

Index Full name Spectral band
group

Equation Reference (IDB: Index database)

NDVI4 Normalized difference 4 RE, VIS (R750 − R705)/(R750 + R705) (Gitelson and Merzlyak, 1994)
PSRI Plant senescence reflectance index RE, VIS (R680 − R500)/R750 (Sims and Gamon, 2002)
R730/R670 RE, VIS R730/R670 (Mistele and Schmidhalter, 2010)
R760/R670 RE, VIS R760/R670 (Erdle et al., 2011)
Janua
No full names are available for simple ratio indices named by their spectral bands. “R” denotes the reflection in indicated wavebands.
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N Uptake Traits
N uptake traits were best assessed in 2017, while the relationships
were often weaker than for DM traits in the previous years
(Table 4).

Leaf and total Nup were better estimated than the Nup of
other organs. Both in 2015 and 2017, Nup of leaves at anthesis
was best detected from indices of the groups of the RE/VIS, NIR/
RE whereas the PRI was identified as best WMMRS index
(Figures 4 and 5). As for total DM and grain DM, similar R²
curves were observed for total Nup (WMMRS-index R780_740)
and GNup (MSR_705_445; Figure 4), but R² values remained
higher during dough ripeness for total Nup. For both traits, the
group of NIR/RE indices stood out from the others during milk
ripeness notably in 2015 and 2017. The detection of the vegetative
Frontiers in Plant Science | www.frontiersin.org 8
Nup differed more between years than for DM. Notably, maturity
leaf Nup was best detected in 2015 (WMMRS-index R787_R765:
R² = 0.28***; Table 4), whereas culm Nup was best detected in
2017 (WMMRS-index NDRE_770_750: R² = 0.38***). Straw Nup
is an indicator for the remaining, non-harvested Nup. It was
weaker and similarly estimated than total Nup in 2015 and the
other years, respectively (Table 4).

Derived DM Traits
Among the three yield components spike density, thousand
kernel weight and grain number per spike, no consistent
relationships were found with SVIs (Table 4). For the DM
translocation (DMT; R² = 0.20***) and its efficiency (DMTEff;
R² = 0.19***), moderate R² values were found only in 2016. For
FIGURE 1 | Maximum coefficients of determination (R²) calculated across the R² values of the different measurement dates in 2015 by trait/SVI combinations.
Indices are colored according to the included spectral regions (Supplementary Figure 1; from bottom to top): NIR (blue), NIR/VIS (green), VIS (orange), NIR/RE
(light red), NIR/RE/VIS (brown), RE (red), RE/VIS (purple). Refer to Supplementary Figure 4 for results of the other years.
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TABLE 4 | Best trait-specific indices identified based on the weighted mean/maximum rank sums (WMMRS) and their coefficients of determination (R²; *: p < 0.05; **: p < 0.01; ***: p < 0.001) on the optimum dates.

R² (validation) RMSE (Validation)

PLSR WMMRS-
SVI

NDVI2 REIP PLSR WMMRS-
SVI

NDVI2 REIP

814 642 0.18 0.18 0.19 2968 3726 3676
194 178 0.25 0.16 0.18 849 855 825

0.14 0.20 1774 2200
163 197 0.12 647
739 840 0.43 0.36 0.23 0.35 3262 3090 4615 4380
103 128 0.25 0.36 0.22 0.26 429 412 451 411
381 420 0.37 0.35 0.18 0.36 1689 1934 1829 1941
145 178 0.12 522

0.33 0.35 0.20 0.26 1609 1891 2248 2124

0.13 0.24 0.13 0.09 0.48 0.23 0.26 0.25
0.09 0.10

0.14 0.19 0.20 66 77 77
0.21 0.16 0.21 30 37 35

0.14 31

0.37 0.32 0.16 0.31 27 66 71 66
0.10 5

0.17 0.17 0.17 6 9 9

0.27 0.29 0.16 0.30 33 51 56 52
0.17 0.11 0.11 12 17 17

0.06 1043
0.19 0.17 0.14 0.15 1187 1589 1963 1820

0.13 12.69
0.15 0.06

0.11 0.07 0.23 0.24

0.18 62
0.12 0.25 0.17 0.21 30 26 34 32

0.27 0.26 0.15 0.24 5.8 2.8 2.4 2.4

ness measurements, WMMRS-indices, NDVI2, REIP, and PLSR were calibrated in each year
tion cases if the prediction for at least four validation cases was significant (p < 0.05). Refer to
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R² (within years;
rank-based SVI)

Best date

Trait group Trait Rank-based
best SVI

Ranking
(WMMRS)

2015 2016 2017 2015 2016 2017

DM (kg DM ha–1) Total DM at anthesis R760_R730 12 0.33 *** 0.11 ** 0.33 *** 06/25 05/18 07/11 778
Leaves DM at anthesis EVI 13 0.39 *** 0.29 ** 0.44 *** 06/25 06/23 07/11 153
Culms DM at anthesis NWI-5 12 0.18 *** 0.08 0.34 *** 06/25 06/10 07/01
Spikes DM at anthesis NWI-2 12 0.11 ** 0.23 ** 0.18 * 06/25 06/14 06/21 197
Total DM at maturity NWI-5 13 0.41 *** 0.37 *** 0.34 *** 06/25 07/10 07/05 880
Leaves DM at maturity EVI 13 0.37 *** 0.46 *** 0.52 *** 06/25 06/28 07/11 95
Culms DM at maturity R780_R740 13 0.45 *** 0.42 *** 0.29 *** 06/25 06/23 05/17 310
Chaff DM at maturity NWI-3 13 0.18 *** 0.21 ** 0.10 07/16 07/08 06/21 213
Grain DM at maturity (GY) NWI-2 15 0.51 *** 0.26 *** 0.27 ** 06/25 06/28 06/21

N concentration
(NC) [%]

Leaves NC at anthesis NWI-3 12 0.09 ** 0.10 0.17 * 06/25 04/05 06/08
Culms NC at anthesis R787_R765 19 0.07 * 0.09 0.23 ** 04/24 06/28 06/08
Spikes NC at anthesis R787_R765 23 0.11 ** 0.08 0.10 04/24 04/21 07/05
Leaves NC at maturity NWI-2 17 0.32 *** 0.42 *** 0.21 ** 07/07 06/14 07/05
Culms NC at maturity DD 11 0.26 *** 0.18 * 0.22 ** 07/07 07/19 07/05
Chaff NC at maturity MCARI1 12 0.10 ** 0.26 ** 0.27 ** 07/07 05/18 07/11
Grain NC at maturity (GNC) R787_R765 15 0.07 * 0.08 * 0.08 07/07 07/10 03/31

Nup (kg N ha–1) Total Nup at anthesis R760_R730 13 0.37 *** 0.14 *** 0.33 *** 06/25 05/18 07/11
Leaves Nup at anthesis PRI 13 0.32 *** 0.31 *** 0.30 *** 06/25 06/23 07/01
Culms Nup at anthesis EVI 12 0.19 *** 0.09 0.16 * 06/25 06/10 07/11
Spikes Nup at anthesis NWI-5 12 0.13 ** 0.20 ** 0.10 06/25 06/14 05/25
Total Nup at maturity R780_R740 13 0.43 *** 0.19 *** 0.36 *** 06/25 07/10 07/05
Leaves Nup at maturity R787_R765 19 0.28 *** 0.19 * 0.14 * 07/07 04/21 05/25
Culms Nup at maturity NDRE_770_750 13 0.13 *** 0.23 ** 0.38 *** 04/24 07/08 07/05
Chaff Nup at maturity DD 12 0.06 * 0.19 ** 0.26 ** 07/16 07/10 07/11
Grain Nup at maturity (GNup) MSR_705_445 13 0.31 *** 0.21 *** 0.37 *** 06/25 06/28 06/14
Straw Nup at maturity NDRE_770_750 15 0.17 *** 0.23 *** 0.37 *** 07/16 07/10 07/05

derived DM
traits

Spike density NDVI3 11 0.16 *** 0.05 * 0.14 * 06/25 06/23 07/05
Grain number per spike Maccioni 14 0.04 0.06 * 0.06 07/16 06/14 04/13
Thousand kernel weight [g] Maccioni 15 0.15 *** 0.07 * 0.12 * 07/16 04/05 07/11
DM translocation efficiency REIP 12 0.03 0.19 *** 0.17 * 07/07 07/08 03/31
DM translocation [kg ha–1] EVI 11 0.08 * 0.20 *** 0.07 04/24 07/08 04/13
Post-anthesis assimilation [kg ha–1] NWI-5 12 0.23 *** 0.34 *** 0.12 * 07/07 07/10 03/31
Contribution of post-anthesis
assimilation to grain filling

PSRI 11 0.05 * 0.28 *** 0.09 04/24 07/08 06/08

Total N utilization efficiency NWI-2 15 0.25 *** 0.12 ** 0.16 * 06/25 07/19 05/17
Harvest index R780_R740 14 0.09 ** 0.10 ** 0.30 *** 07/16 07/10 07/11
Grain N utilization efficiency EVI 12 0.21 *** 0.14 *** 0.21 ** 06/25 07/19 07/05

derived N traits Contribution of post-anthesis N
uptake to total Nup

EVI 12 0.22 *** 0.15 *** 0.05 06/25 07/08 07/11

N harvest index RVSI 14 0.22 *** 0.14 *** 0.28 ** 07/07 07/08 07/11
Total N translocation [kg ha–1] MND_750_705 13 0.42 *** 0.11 ** 0.21 ** 06/25 05/18 07/11
Leaves N translocation [kg ha–1] DD 12 0.42 *** 0.30 *** 0.26 ** 06/25 06/23 07/11
Culms N translocation [kg ha–1] RVSI 11 0.26 *** 0.14 * 0.08 06/25 07/19 07/01
Spikes N translocation [kg ha–1] NDVI4 11 0.14 *** 0.28 ** 0.06 06/25 06/14 05/17
N translocation efficiency MND_750_705 12 0.28 *** 0.26 *** 0.25 ** 07/07 07/19 07/11
Post-anthesis N uptake [kg ha–1] DD 15 0.08 * 0.14 *** 0.10 07/16 07/08 06/08

other Flowering (days in June) MTCI 13 0.32 *** 0.54 *** 0.63 *** 07/16 07/08 07/05

See Figure 2 for WMMRS of all index–trait combinations. For WMMRS-based best indices, best measurements dates are reported. Using milk ripe
and validated in each other year, resulting into six validation datasets per trait. Validation R² and RMSE are reported as averaged from these six valid
Supplementary Table 2 for individual validation results and to Supplementary Table 3 for calibration results.
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post-anthesis assimilation (PAA), the WMMRS-index NWI-5
revealed useful relationships during dough ripeness in 2015
(max. R² = 0.23***) and 2016 (R² = 0.34***), but not in 2017.
In contrast, the harvest index (HI) was spectrally detected only in
2017 from NIR indices from anthesis on (R² = 0.30***). The total
N utilization efficiency (NutEff_total) was best detected by the
NWI-2, however with substantially different seasonal curves in
the three years (not shown). For grain N utilization efficiency
(NutEff_grain), the WMMRS-index EVI provided moderate
relationships (R² = 0.21***, 0.14***, 0.21*** in 2015, 2016, and
2017 respectively), which however turned from positive sign in
2015 to negative in the other years (Supplementary Figure 6).

Derived N Traits
As for the DM harvest index, the best relationships for the N
harvest index (NHI) were found in 2017, but just like for
NutEff_grain, the direction of the relationship was not
consistent (Supplementary Figure 6). In 2015 (WMMRS-
index MND_750_705: R² = 0.42***) and 2017 (0.21***),
Frontiers in Plant Science | www.frontiersin.org 10
N translocation (NT) was better detected than DMT. On the
organ-level, NT of leaves was detected best (DD: R² = 0.42***,
0.30***, 0.26***). Unlike post-anthesis N uptake and its
contribution to total Nup, and in contrast to DMTEff,
N translocation efficiency (NTEff) also yielded moderate
relationships, but the direction of the regression line was not
consistent (Table 4; Supplementary Figure 6; Supplementary
Figure 8). Relations for NTEff peaked later at dough
ripeness than for NT. With NT being in close relationship to
total Nup at anthesis (r > 0.93 in all years; not shown), the
seasonal R² values were similar as for for both traits
(Supplementary Figure 8).

Validation of Index and PLSR Models
PLSR models were compared to the WMMRS-based selected
index, the NDVI2 and the REIP. Due to the year-specific shifts
in the spectral data and the differing seasonality, GY was
substantially overestimated in 2015 (Figure 6). In 2017, GY
predicted from PLSR models was relatively close at the 1:1 line
FIGURE 2 | Weighted mean/maximum rank sums (WMMRS) for all SVI/trait combinations. The column-wise and overall WMMRS-mean is 9. A WMMRS > 9
indicates a comparative advantage of an index for a specific trait. WMMRS values are colored from low (white) to high (green) values. For each trait, the highest value
is highlighted in bold. For a better comparison in the main range, the color shading for WMMRS > 15 is not differentiated. Indices are colored according to the
included spectral regions (Refer to caption of Figure 1 and Supplementary Figure 1).
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whereas the index models resulted in substantial underestimations
and low slope values. Models calibrated in 2017 overestimated GY
in the other years, whereas models calibrated in 2016 over- and
underestimated GY in 2015 and 2017, respectively. For GY, the
WMMRS-index NWI-2 achieved similar R² values of validation
but on average slightly higher RMSE values (RMSE = 1891 kg
ha−1; Table 4; Supplementary Table 2) than the PLSR (RMSE =
1609 kg ha−1), while R² values were higher and RMSE values lower
than from the NDVI and REIP models in all cases. Refer to
Supplementary Table 2 for all validation results and to
Supplementary Table 3 for calibration results.

For GNup, the advantage of the WMMRS-index
MSR_705_445 (average R² from the six test cases = 0.29;
average RMSE = 51 kg N ha−1) was relatively stronger with
respect to the NDVI (R² = 0.20; RMSE = 56 kg N ha−1) but less
evident with respect to the REIP (R² = 0.30; RMSE = 52 kg N
ha−1, Table 4). PLSR reached lower average prediction errors
(RMSE = 33 kg N ha−1) but not higher R² values (R² = 0.27).
Compared for the averaged validation results (n = 6; Table 4),
Frontiers in Plant Science | www.frontiersin.org 11
the WMMRS-indices achieved higher R² values and lower RMSE
values than the PLSR models for 29 and 22 of the investigated 45
traits, for 32 and 27 traits compared to the REIP, and for 41 and
35 traits compared to the NDVI, respectively. The strongest
improvement over the PLSR models was found for leaf DM at
anthesis and maturity (DR² = +0.09 and +0.11, respectively;
Table 4), leaf NC at maturity (DR² = +0.10) as well as total and
leaf NT (DR² = +0.11 and +0.13). In contrast, PLSR was superior
notably for total DM at maturity (DR² = +0.07), harvest index
(DR² = +0.09) and several traits of Nup at maturity.

In addition to optimized PLSR models on derivated spectra,
PLSR models were fitted on non-derivated spectra due to the shift
through derivation for identifying influential wavebands. For GY,
the RE region and the water band beyond about 950 nm showed
highest Variable Importance in Projection (VIP) values (VIP > 1;
Figure 7), whereas the VIS range was not particularly relevant. A
similar pattern was observed for GNup, yet with a higher
importance of the RE and a weaker peak at the water band.
However, nopronouncedRE-peakwas observed forGNup in 2016.
FIGURE 3 | Seasonal coefficients of determination (R²) of selected direct DM traits in the three years for the tested 48 SVI. Index lines are colored according to the
included spectral regions (Supplementary Figure 1; Table 3). Horizontal lines indicate the significance thresholds (p < 0.05), differing between years due to the
differing number of data points. Thick lines indicate R² values of the labeled rank-based best index per trait (Figure 2; Table 4).
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DISCUSSION

The findings corroborate the possibility of early estimation of GY
and GNup in optimum growth stages. Substantial variation in
most traits was identified (Prey et al., 2019b), and many traits
were significant for explaining plant breeders' main target traits
GY, GNup, and grain N concentration (GNC), or are of direct
interest. Sufficient heritability (H²) is essential for using SVIs as
indirect selection tool. Increasing H² values between the
vegetative and grain filling phases are in line with Frels et al.
(2018) and may be due to a stronger genetic determination of the
senescence process compared to the vegetative growth. The lower
H² values in 2015 may be due to the only two replicates in that
year, whereas the overall higher values than those found in a
nearby experiment (Becker and Schmidhalter, 2017) may be
associated with the larger plot size in the present experiment. The
lower H² of NIR/VIS indices compared to the water (NIR)
Frontiers in Plant Science | www.frontiersin.org 12
indices is in line with Babar et al. (2007) and Becker and
Schmidhalter (2017).
Optimum Growth Stages
More measurement dates than in most previous studies were
tested in order to identify reliable growth stages. Overall, the
grain filling phase was found to be relatively most suitable for all
traits, including “post-dictions” of traits related to the anthesis
canopy status. The suitability of the milk ripeness stage is in line
with previous results (Freeman et al., 2003; Babar et al. 2006a;
Gutierrez et al. 2010a; Christopher et al., 2014; Zhang et al.,
2019). In contrast, under conditions of drought/heat-induced
rapid senescence, post-anthesis assimilation is reduced and early
flowering and the translocation of vegetative DM may be an
escape-strategy rather than the stay-green trait (Van Herwaarden
et al., 1998; Inoue et al., 2004). The canopy status at anthesis may
FIGURE 4 | Seasonal coefficients of determination (R²) for selected N uptake (Nup) traits. See the legend of Figure 3 for details.
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FIGURE 5 | Relationships of the rank-based best index MSR_705_445 (R750-R445)/(R705-R445) with GNup on the most suitable measurements dates.
FIGURE 6 | Test set validation results (p < 0.05) across years for GY for PLSR and index models. Cal and val indicate years of calibration and validation,
respectively: 2015 (15), 2016 (16) and 2017 (17).
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then be more indicative than under prolonged maturation,
possibly explaining the relatively better relationships of earlier
dates in drier environments (Babar et al. 2006a; Prasad et al.
2007b; Becker and Schmidhalter, 2017), and the contrasting late
Frontiers in Plant Science | www.frontiersin.org 14
R²-peaks in 2017, the year with the most favorable ripening
conditions. The weak relationships at heading-anthesis are in
line with the sensitivity of the spectral signal to the ear emergence
(Pimstein et al., 2009).
FIGURE 7 | Variable Importance in Projection (VIP) of PLSR models for grain yield and grain nitrogen uptake. See Supplementary Figure 11 for VIP values of all traits.
FIGURE 8 | Relationships of the rank-based best indices with GY and total DM at maturity on the most suitable measurements dates (year/month/day). The index
equations are (R970-R850)/(R970+R850) [NWI-2] for GY and (R970-R930)/(R970+R930) [NWI-5] for total DM at maturity.
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The Potential of Early Estimation of DM
and GY
GY can only be predicted indirectly from spectral readings,
which dominantly detect the leaf area, vegetative biomass,
chlorophyll, and senescence status (Jacquemoud et al., 2009).
The interrelationships of the traits contributing to GY indicated
that the major fraction (56–69% in the three years) of GY was
formed post-anthesis (Prey et al., 2019b). Moderate correlations
were found between GY and total anthesis DM (r = 0.35, 0.43,
0.57***; not shown) in all three years, as well as with most organ-
level DM traits at anthesis. In contrast to DM translocation and
its efficiency, post-anthesis assimilation correlated with GY (r =
0.71***, 0.42**, and 0.69***) in all three years, explaining the
better spectral relationships during grain filling.

The lower R² values in 2016 and 2017 indicate saturation of
the spectral signal in dense canopies (Prasad et al., 2007b;
Pavuluri et al., 2015; Frels et al., 2018). In the present dataset,
the only moderate relationships in 2016 and 2017 still enable to
“half” the population without losing the best-yielding genotypes
—a “culling tool” strategy that would be relevant to plant
breeders (Garriga et al., 2017; Frels et al., 2018) aiming at a
visual evaluation of only relevant genotypes or even non-
harvesting the others. The relationships were in the same range
or closer than in similar studies (Pavuluri et al., 2015; Frels et al.,
2018), even though the levels of DM and GY were substantially
higher in the present study. With regard to plant organs, the best
assessment of leaves is in line with Barmeier and Schmidhalter
(2017), which was ascribed to the nadir position of the sensor,
since leaves dominate the spectral signal.

Water Band and NIR/VIS Indices for DM and GY
In all years, the water band indices were among the best indices for
GY andmostly for total DMbut performed less well thanmost RE-
based and NIR/VIS indices for leaf DM. It may be possible that the
reflection in the water absorption band is influenced by the water,
which is mainly located in culms and—with ongoing grain filling—
in kernels, whereas the leaves' appearance dominantly impact the
VIS and NIR reflection outside the water absorption band
(Haboudane et al., 2004). Given that water band indices ranked
relatively high during the late grain filling stages, it is also
conceivable that there is a better detection of senescence traits.
Total DM (r = 0.90, 0.75, 0.82 in 2015, 2016 and 2017 respectively;
not shown)was dominant for explainingGY, whereas the variation
in the harvest index was significant (r = 0.56***) only in 2016,
explaining the similar index rankings and seasonal patterns for total
DM and GY. In all years, GY correlated closer with total DM than
with theDMofvegetativeorgans (r= 0.75 in2016 and r>0.82 in the
other years; not shown), possibly explaining that the indirect
predictionofGY fromindices optimized for LAIwas less successful.

The constant direction (Figure 8) of the relationships
indicates that genotypes keeping canopy water later in the
season also reached higher DM formation (Gutierrez et al.
2010a). This “stay-moist” trait was relatively better detected
than the stay-green trait, especially in 2017, as seen from the
poor performance of the VIS and NIR/VIS indices this year. In
addition, water band indices were reported to be less prone to
Frontiers in Plant Science | www.frontiersin.org 15
saturation than the NDVI (Sims and Gamon, 2003),
corresponding to their stronger relative advantage in the
highest-yielding year, 2017. The lower ranking of NIR/VIS
indices optimized for LAI (EVI; MCARI1, MCARI2, MTVI2)
for GY suggests that structural information that they are able to
detect is less relevant for GY than the canopy water status. The
present breeding population was morphologically and
phenologically diverse—characteristics known to influence the
spectral signal (Gutierrez et al., 2015) without direct influence on
GY (Prey et al., 2019b). Among NIR/VIS and VIS indices, only
the EVI ranked among the best indices for leaf DM traits, but
failed for GY. It was reported to saturate less for canopies beyond
NDVI values of about 0.80 (Huete et al., 2002), which were
clearly exceeded from tillering to milk ripeness. The group of VIS
indices ranked clearly below the other groups. Only the
VARIgreen reached similar rankings as the NIR/VIS indices, as
previously found for DM traits (Erdle et al., 2011).

Normalized Difference Versus Simple Ratio
Equations
For three pairs of spectral bands, a normalized difference index
and a simple ratio version were included each, namely WBI and
NWI-1, GNDVI and R780_R550, as well as NDVI2 and
R780_R670. For most direct and indirect DM traits, the
R780_R550 (on average WMMRS D +0.2) and the R780_R670
(on average D +0.2), ranked slightly higher than the normalized
difference index versions, confirming previous results (Nguy-
Robertson et al., 2012; Yu et al., 2012; Barmeier and
Schmidhalter, 2017).

RE Indices for DM and GY
Most RE-indices ranked higher than the NIR/VIS indices for
most DM traits. The advantage of using wavelengths at the RE,
was attributed to increased sensitivities in dense canopies (Nguy-
Robertson et al., 2012; Prey and Schmidhalter, 2019a). The RE-
indices were also suggested for GY (Pavuluri et al., 2015;
Barmeier et al., 2017; Frels et al., 2018). For most dates, the red
band used by many NIR/VIS indices was left to the position,
where the reflectance difference between plots of maximum and
minimum GY was most negative (Supplementary Figure 10). It
is possible that most NIR/RE and RE indices reached higher
sensitivity by positioning their lower band in this range, whereas
their NIR bands were similarly positioned as those of the NIR/
VIS indices, beyond approximately 760 nm at the “NIR-plateau”
with similar reflectance differences, as supported by the
influential bands in the PLSR models.

Derived DM Traits
No consistently useful estimations were achieved for the yield
components, possibly because these traits were rarely correlated
to GY (Prey et al., 2019b). The mostly lower coefficients of
determination found for DMT compared to NT may be
explained by the stronger variation in DMTEff than in NTEff.
The HI was only well discriminated (R² = 0.30***) in 2017, the
year when HI and total DM correlated negatively, thus indicating
only indirect relationships through the detection of DM.
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Similarly, NutEff_grain showed negative relationships with the
EVI greenness index in 2017 and 2016, but a positive relationship
in 2015. In contrast, the regression of NutEff_total with its best
index NWI-2 did not turn in direction, which is in line with the
NutEff_total's positive correlations with total DM in all years. In
contrast, Erdle et al. (2013a) found good relationships for the HI
at milk ripeness, however for fewer cultivars. For NutEff_grain,
Frels et al. (2018) found good relationships (max. R² = 0.41)
already at heading in one year, but weaker relationships than in
the present study in another year.
The Estimation of N Traits
The usefulness of RE bands for N-related traits is well established
and was related to the rightward-shift of the RE position with
increasing N status (Guyot et al., 1988; Boochs et al., 1990; Guo
et al., 2017) and—as for GY—the higher sensitivity in dense
canopies (Erdle et al., 2011; Zhang et al., 2019). The higher
ranking of most RE, NIR/RE, and NIR/RE/VIS indices may be
associated with the placement of the lower band in the lower RE
at 700–750 nm (Supplementary Figure 10) (Datt, 1999),
whereas the RE/VIS indices use mostly similar red bands as
the NIR/VIS indices. The results are in line with the Maccioni
index that was suggested for GNup and total Nup efficiency
(Frels et al., 2018), the R780_740 for detecting total Nup and for
NUE (Pavuluri et al., 2015), the R760_R730 for spike Nup (Erdle
et al., 2013a), as well as the NDRE_770_750 (Prey and
Schmidhalter, 2019b) and the REIP (Prey et al., 2018) for
GNup—all indices that ranked high for many Nup traits.

The similar best growth stages for predicting GNup just like
for GY is in line with the coupling of both traits (r = 0.86, 0.66
and 0.64 in 2015, 2016 and 2017, respectively; not shown). The
only date- and SVI-specific relationships found within years for
GNC indicate that the formation of GNC was highly influenced
by the year-specific growing conditions. Thus, the negative
relationship (R² = 0.24***) found between the EVI index and
GNC at milk ripeness in 2015 and the positive relationship
between the senescence index PSRI and GNC in 2017 (R² =
0.18***) indicate that due to the GY/GNC antagonism, late
canopy greenness was promoting GY (positive relationship
with EVI, R² = 0.34***), but reducing GNC.

As the HI for GY, the NHI was secondary for explaining
GNup (Prey et al., 2019b), and GNup was therefore closely
correlated with total Nup (r > 0.93 in all years). This explains that
the seasonal R² patterns and the index rankings were
comparable, similarly as reported by Frels et al. (2018). In
contrast to Frels et al. (2018), post-anthesis Nup was not
sufficiently estimated (max. R² = 0.16***), even if it correlated
positively with GNup. However, total N translocation, which was
the dominating fraction for GNup in all years, revealed useful
relationships during grain filling in 2015 and 2017 due to its close
correlations with total Nup at anthesis. The weaker detection of
vegetative Nup at maturity in organs and in the straw than of
total and grain Nup may be due to the low absolute residual Nup,
as well as the differing influence of the organ-level NTEff. The
weak detection of N concentration (NC) traits at anthesis does
not allow the recommendation of optimum indices. At maturity,
Frontiers in Plant Science | www.frontiersin.org 16
moderate NC estimations were possible only for the vegetative
organs but the indices previously optimized for leaf chlorophyll,
TCARI_OSAVI (Haboudane et al., 2002; Huang et al., 2011), and
MCARI (Daughtry et al., 2000), or for NC (R787_R765), ranked
never among the best indices, thus indicating rather
indirect relationships.

Index Validation and PLSR
The comparison of the WMMRS-SVIs to the “reference” SVIs
NDVIs and REIP in the year-to year test set validation models
supports the usefulness of the seasonal rank-based SVI selection.
TheNDVI, which, despite its known limitations, is still widely used,
was clearly outperformed for the vast majority of the traits by the
REIP, the PLSR models, and the WMMRS-indices, confirming the
results observed in the individual years. The relative advantage of
the WMMRS-indices over the REIP was confirmed for GY and
other DM traits, but was less pronounced for most N traits.

The often lacking or weak R²-improvements from PLSR
models indicate that optimized selection of SVIs can compete
with multivariate models and may be preferred in terms of
calibration effort, the transferability to simpler, multispectral
sensors and applicability by breeders. Thus, PLSR suggested
substantial improvements in the calibration (Supplementary
Table 3), which however largely dwindled in the validation
(Table 4). While the relative discrimination will often be
sufficient in phenotyping (Garriga et al., 2017), lower RMSE
values of PLSR for several traits indicate a higher robustness over
year- and growth stage-specific shifts in the spectral data, being
in line with results on barley (Barmeier et al., 2017; Barmeier and
Schmidhalter, 2017). Unlike to the latter study, the year-based
calibrations in the present study were relatively more useful than
pre-evaluated across-years models (not shown), but the
validation results were generally weaker due to testing only on
individual years' data. The influential bands in the PLSR confirm
the RE and water bands to be most indicative.
CONCLUSIONS

For most plant traits including GY and GNup, the milk ripeness
stage was the most reliable under conditions of moderate
terminal heat/drought or pathogen stress, whereas the
relationships were more stable during dough ripeness in the
year with favorable senescing conditions (2017). In contrast,
phenological shifts at heading/anthesis appeared to decrease the
relationship in this phase. NIR-combinations exploiting the
water absorption band at 970 nm were found to be
indispensable to achieve a useful discrimination in GY in
dense canopies, followed by NIR/RE combinations, which
mostly outperformed the NIR/VIS indices including the NDVI.
For GNup, simple NIR/RE indices ranked high and clearly better
than the NDVI. Relationships of indices with GY and GNup
were explained by the detection of total DM and Nup,
respectively, rather than by that of the relative allocation
(harvest index) to the grain. The validation of the selected
indices confirms the usefulness of the rank-based index
selection notably for overcoming limitations of the NDVI. The
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PLSR did not achieve clearly higher R² values, but often lower
estimation errors, thus that it should be preferred for improving
prediction accuracies, whereas optimized SVIs appear sufficient
for a relative discrimination of important traits. GNC was not
reliably predicted. DM and N traits related to maturity canopy
status were detected better than anthesis traits. The screening for
useful band combinations can be used for optimizing sensor
configurations. The results could also be transferred to
multispectral sensors, thus improving the transfer of the
evaluated methods to the application in breeding nurseries.
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