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Abstract

The volumeofmass spectrometry-deriveddata is currently growing rapidly thanks to
newacquisitionmethods andever fastermass spectrometers. A largenumberof so�-
ware tools to process this deluge of data exist, butmany are limited to a small part of
the completeanalysis or are specialized inonly answering certain experimental ques-
tions. Only a few programs are able to handle all aspects of a detailed analysis and
at the same time allow access to all data in order to address further and specialized
questions.

In recent years the field of mass spectrometry has also experienced a shi� away
from simply detecting the absence or presence of a protein in a cell to performing
comparisons in the abundance of proteins between the normal state of a biological
system and the e�ect of disease or a given substance; or to monitoring the changes
in protein abundance over time. This proteomequantification requiresmethods that
are very accurate and precise.

The aim of this PhD project was to cra� a program that would be able to sup-
port this change and perform the necessary accurate and precise quantification. It
should be easy to use and should bring together raw data and its interpretation into
one place. This tool would build on and extend existing computational methods to
process mass spectrometry data and make them available to the wider mass spec-
trometry community, allowing researchers toanswerquestions that hadnot yetbeen
possible.

Following a general introduction to the topic, the second part of this thesis out-
lines the development of this tool, isobarQuant. It highlights its structure, layout and
fundamental aspects of how it works; showcasing the processing and extraction of
acquired raw data up to the point of the Mascot search and then further describes
the internalization of the search output adjacent to the acquired data. Details about
how it performs isobaric tag- based quantification are given and explanation is given
as to how it can circumvent issues associated with that type of quantification.

The third part of this thesis describes how the isobarQuant tool is used and its
capabilities extended to enable accurate and precise quantification in five di�erent,
non-dividing cell types using a peptide-ion based (SILAC) approach. The methods
developed to enable this are presented: the use of an exact isotope model for the
peptidequantification and theoptimizationof filtering basedonanovelmetric (prior
ion ratio), alongsideothers, to achievemaximumcoveragewith highest accuracy and
precision. This resulted in a publicly-available catalog of more than 9,600 protein
half-lives in four human and onemurine primary cell type and permitted the investi-
gation into the longevity of protein complexes andhowthis varies across thedi�erent
cell types.

The fourthpart of this thesismakesuseof themain isobarQuantoutput to investi-
gate and profile the changes in peptide fragmentation brought about by the addition



of the TMT isobaric quantification tag. The change in fragmentation patterns is dis-
cussed in the context of how it can a�ect the score output from the Mascot search
engine. Additionally, a new way of revealing potentially co-eluting peptides is sug-
gested as well as an improvement to the existing H-score algorithm



Zusammenfassung

Das Volumen an massenspektrometrischen Daten wächst rapid dank neuer Akqui-
sitionsmethoden und immer schneller werdende Massenspektrometer. Derzeit ex-
istiert eine Vielzahl von Programmen, die diese Datenmenge prozessieren können.
Dennoch beschränken sich viele nur auf einen kleinen Teil der kompletten Analyse
oder sind auf bestimmte experimentelle Fragestellungen zugeschnitten. Nur wenige
ProgrammekönnenalleAspekteeinerdetailliertenAnalysebewältigenundgleichzeitig
denZugri�aufalleDatenermöglichen, umweiterführendeundspezialisierteFragestel-
lungen zu adressieren.

Die Massenspektrometrie hat sich in den letzten Jahren stark weiterentwickelt
undderSchwerpunktverlagerte sich im laufederZeit vondereinfachen Identifizierung
zur Quantifizierung einzelner Proteine. Tiefere Einblicke in die Auswirkungen von
Krankheiten oder einer bestimmten Substanz auf die Proteinabundanzen in einem
biologischen System oder das Verfolgen von Änderungen der Proteinmenge über die
Zeit erfordern eine sehr akkurate und präzise Quantifizierung.

Ziel dieser Arbeit war es, ein Programm zu entwerfen und zu implementieren,
das diese Entwicklung unterstützt und die erforderliche akkurate und präzise Quan-
tifizierung ermöglicht. Es sollte einfach zu bedienen und vielseitig einsetzbar sein,
sowiedieRohdatenundErgebnissedereinzelnenAnalyseschritte strukturiert zugänglich
machen. Das Programm sollte auf bestehende Techniken aufbauen und diese, wenn
notwendig, erweitern. Zugleich sollte das Programm als Open-Source-Lösung an-
deren Forschern zur Verfügung stehen, und somit helfen, Fragen zu beantworten, die
bisher außer Reichweite waren.

Nach einer allgemeinen Einführung in das Thema der Massenspektrometrie und
der Datenauswertung, beschä�igt sich der zweite Teil dieser Arbeit mit der Entwick-
lung des Programms isobarQuant. In diesem Teil werden die Struktur und die grund-
sätzlichen Aspekte und Funktionsweisen von isobarQuant erklärt. Es wird dazu de-
tailliert indieExtraktionder erfasstenRohdaten, die IdentifikationmitMascotunddie
Quantifizierungmit einemselbstentwickeltenAlgorithmuseingegangen. Abschließend
erörtert dieses Kapitel auch die Aggregation der identifizierten und quantifizierten
Peptide zu Proteinen und die damit einhergehenden Probleme.

Der dritte Teil dieser Arbeit beschreibt die akkurate und präzise Quantifizierung,
diedurch isobarQuantermöglichtwird. HierwerdendieentwickeltenMethodenbeschrieben,
die esmir erlaubt haben, einen Katalogmitmehr als 9.600 Proteinhalbwertszeiten in
vier menschlichen und einem murinen Primärzelltyp zu erzeugen, welcher verwen-
detwurde, umdie Langlebigkeit vonProteinkomplexen unddie Variabilität zwischen
den verschiedenen Zelltypen zu charakterisieren.

Im letztenTeilwird auf die VeränderungderPeptid-fragmentierungdurch isobare
Marker eingegangen und diskutiert, welchen Einfluss diese auf die Identifizierung
durch Mascot haben. Zudem wird gezeigt, wie isobarQuant verwendet wurde, um
eineneueMethodezurAufdeckungpotenziell co-eluierenderPeptideundeineVerbesserung
des H-Score-Algorithmus zu entwickeln.
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1 - Introduction

Part I

Introduction & Objectives

1 Principles of data acquisition bymass spectrometry

In the last two decades, mass spectrometry (MS)-based proteomics has become a
standard workhorse technology used in most core facilities at universities and re-
search organizations throughout the world. The term ‘proteome’ was first used in
1995 and is attributed to Marc Wilkins to describe the full (or potential) complement
of proteins expressed in a cell of the microorganismMycoplasma genitalium,1 where
fewer than 100 proteins were extracted. Today it is routinely possible to identify in
excess of 5000 proteins in a single, MS experiment, leading some scientists to argue
that the global analysis of proteins and their function is far enough advanced to allow
us to understand how cells function2. Mass spectrometry has of course been around
for far longer. Thomson3 and Aston4 first used it in the determination of mass-to-
charge ratios of electrons and later in the determination of isotopes of neon, chlorine
and bromine. Throughout the 20th century its application was broadened, the pio-
neeringwork ofMcLa�erty in the characterizing of chemical entities by relating spec-
tra to structure5 and even the first attempts at identitying amino acids using mass
spectrometry6. Itwasn’t, however, untilmethods to ionizepeptideshadmaturedand
the availability of better and faster computational power and improved instrumenta-
tionbecameavailable thatmass spectrometry started to revolutionize theproteomic
space.

1.1 Mass spectrometry-based proteomics

Mass spectrometry-based proteomics can be roughly divided into two camps, de-
pending on the desired throughput and biological questions to be answered. The
first, known as top-down proteomics, aims to preserve whole proteins in their na-
tive state and environment, possibly even keeping protein complexes together. The
second, bottom-upproteomics, works by firstly denaturing and then cutting the indi-
vidual proteins into constituent peptides using a proteolytic enzyme. These protein
pieces are then measured and re-assembled computationally to reveal the proteins
in the original sample. Although the situation is slowly changing, the former is much
less widespread within the proteomics community than the latter, which is predom-
inant in proteomics labs throughout the world and was the setting in which this PhD
was carried out. A brief description of both follows.

1.2 Top-down proteomics

Top-down proteomics has been around for many years primarily in the form of 2D-
gel analyses, but top-downmass spectrometry (and a subset of it known as as native
mass spectrometry, where proteins are analyzed in their ’native’ state), which en-
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ables the analysis of intact proteins and proteoforms using amass spectrometer has
recently been gaining some traction within the community. Its main limitation had
been the requirement for high accuracy and high resolution instrumentation for the
determination of the charge state of, for instance, a 20kDa protein which may carry
up to 30 charges. It has been shown to be possible using an linear trap quadrupole
(LTQ)-Orbitrap7, but traditionally was the preserve of the fourier transform ion cy-
clotron resonance (FT-ICR) instruments (see section 3). The advantagesmainly come
from the ability to elucidate functions that would otherwise bemissed by bottom-up
proteomics (seenext section 1.3). This includesdetectionofmodifications that are re-
moved or scrambled during peptide sample preparation (for example, S-thiolation8);
the highlighting of functional relationships (for example, cross-talk) between post
translational modification (PTM)s on the same protein molecule9,10 and the identi-
fication and quantification of distinct proteoforms (proteins sharing large swathes
of identical amino-acid sequence) that would have been convoluted by proteolytic
digestion. Additionally, this bird’s-eye view of the proteome is used in the determi-
nation of protein complex members11 and in gaining insight into the stochiometry
of proteins in the given sample. Despite these advantages andmainly because of the
original requirement for highly specialized equipment, top-downmass spectrometry
still inhabits a small niche relative to the muchmore popular bottom-up approach.

1.3 Bottom-up proteomics

Bottom-upproteomics concerns itselfwith thedenaturedandproteolytically-cleaved
subunits of the proteome known as peptides. These peptides are generally more
amenable tomass spectrometry than complete proteins, not only becausemeasure-
ment of their smaller size has a lower inherent absolute error, but also because they
will have a much less complex mass distribution. Their smaller size also means they
are much more readily solublized and separated. When cleaved with trypsin, the re-
sultant peptides are highly suitable formass spectrometry because the terminal argi-
nine or lysine residues are protophilic and encourage good ionization of all peptides,
which should contain at least one such residue. Routine analysis of entire proteomes
is single mass spectrometry experiments is really only possible using a bottom up
approach where the proteome is firstly denatured into proteins and then digesting it
into peptides, separating these using chromatography (both online and o�line) and
then further breaking these peptides into fragments within the mass spectrometer.
These peptide ’puzzle pieces’ which are more easily handled can then be reconsti-
tuted following mass spectrometry analysis. It is this ’reconstitution’ which was the
primary focus of the work carried out during this project. A typical sample workflow
from bench tomass spectrometric acquisition (following a biochemical or biological
experiment and potentially a sample enrichment step) is described below.
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protease name cleavage specificity
Arg-C C-term; arginine
Asp-N N-term; aspartic acid

Chymotrypsin C-Term; phenylalanine, leucine, tryptophan, tyrosine
Lys-C C-Term; lysine
Glu-C C-Term; aspartic acid, glutamic acid

Table (1): Table of enzymes and their amino acid specificity. Inmost cases the presence of proline in the subsequent
position a�er the given residue will prevent cleavage

1.3.1 Sample preparation & separation by chromatography

1.3.1.1 Proteolytic digestion To break proteins into the smaller parts need for
high-throughputmass spectrometry, proteases areused. Aprotease typically cleaves
at the peptide bond within proteins. The most widely used for the mass spectrom-
etry friendly reasons mentioned above, is trypsin which cleaves on the carboxy ter-
minus of all arginine and lysine residues, unless the subsequent residue is proline12.
Other proteaseshavedi�erent cleavage specificities andmaybeused insteadof, or in
concert with, trypsin to yield peptides that might otherwise not be suitable for mass
spectrometry analysis. A selection of the commonest enzymes used in mass spec-
trometry experiments and their residue specificity is given in table 1.

The peptide mixture resulting from a proteolytic digestion of proteins in typical
mass spectrometry experiment (containingmany hundreds of proteins) is still highly
complex and could not just be injected into amass spectrometer. The peptidesmust
be further separatedbasedon theirphysico-chemicalproperties. This isusuallyachieved
using liquid chromatography (LC), either with a direct feed into the mass spectrom-
eter (online) or prior [and orthogonal to] the second, online, LC separation step (of-
fline). There are several typical methods to separate peptides that are complemen-
tary to the online LC step and include strong anion exchange chromatography (SAX)
or strong cation exchange chromatography (SCX)13, isoelectric focusing (IEF)14 or hy-
drophilic interaction chromatography (HILIC)15. It is at this stage that further enrich-
ment and purification steps may be required to increase the abundance of a specifi-
cally desired type of peptide; for instance, peptides carrying PTMsmay be of high bi-
ological interest, but exist at sub-stochiometric levels, leading to their beingmasked
by other, more abundant signals. A number of di�erent techniques have been devel-
oped toenrich forpeptidescontainingparticularPTMs: forexample forphosphorylation16,17,
acetylation18 or ubiquitination19.

Thehighperformance liquid chromatography (HPLC) system feedingdirectly into
the mass spectrometer achieves separation of peptides by passing them through an
immobilized porous substance with which the peptide will interact to varying de-
grees, depending on its physico-chemical properties. The porous substance is re-
ferred toas thestationaryphaseand thepeptides (and the liquid theyare transported
in) is referred to as the mobile phase. Depending on howmuch each component in-
teracts with the stationary phase, a di�erent amount of time will be taken for it to
pass through the system (the retention time). Ideally this timewould always be same
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for an identical peptide. In HPLC the stationary phase is also referred to as packing
and o�en consists of so-called C18 material present within a column of typically be-
tween 10 and 25 cms in length measuring approximately 30 mm in diameter. The
’18’ denotes that there are hydrocarbon chains with 18 carbon atoms bonded to the
silica particles inside the column and it provides a very hydrophobic environment;
the more hydrophobic the mobile phase (and the peptides) the longer they inter-
act with the C18 material and hence the longer their retention time will be. During
the course of the run the solvent of the mobile phase can be changed from less to
more hydrophobic (from an aqueous acid to an organic solvent, for example), which
changes thepropensityof thepeptides for themobilephase fromlowtohigh, thereby
altering (and decreasing) their retention time.

The eluate (fluid containing the peptides) coming o� the LC column is at atmo-
spheric pressure and feeds directly into the next destination on its journey: themass
spectrometer; but before that it must first be ionized.

1.3.2 Instrumentation and principles

Because a mass spectrometer fundamentally measures mass-to-charge ratio (m/z),
all analytes must be ionized (i.e. carry a charge) in order to be recorded. The ioniza-
tion of the analytes is the first of the threemain tasks performedby amass spectrom-
eter. Traditional ionization techniques in mass spectrometry included electron ion-
ization and chemical ionization and were used for small molecules that are volatile
and thermally stable20, however, these harsh techniques were not suitable for the
analysis of biomacromolecules such as proteins and DNA which do not readily va-
porize. This problem was overcome during the 1980s and 1990s with the advent of
so-called ‘so� ionization’ techniques like electrospray ionization (ESI)21 and so� laser
ionization, alsoknownasmatrix-assisted laserdesorption/ionization (MALDI)22which
do allow generation of gaseous ions from non-volatile macromolecules.

1.3.2.1 MALDI MALDI uses a laser energy absorbing matrix to create ions from
large molecules with little or no in source fragmentation. MALDI is a three-step pro-
cess. First, the sample ismixedwith a suitablematrixmaterial and applied to ametal
plate. Second, a pulsed laser irradiates the sample, triggering ablation and desorp-
tion of the sample andmatrix material. Finally, the analyte molecules are ionized by
being protonated or deprotonated in the hot plume of ablated gases and are subse-
quently accelerated into the mass spectrometer.

1.3.2.2 ESI The ESI technique is themost common in proteomic mass spectrom-
etry because it can be coupled directly to the HPLC where the flow of peptides at
low concentration is directly infused into the mass spectrometer via a narrow nee-
dle. ESI works by applying a very high voltage between the needle and the detec-
tor orifice, which separates the charges at the surface of the electrolytic solution,
causing the meniscus to deform into a cone. This Taylor cone forms as soon as a
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Figure (1): MALDI schematic taken from ref.23 with permission. Sample is mixed with matrix material and applied to
a plate. This is then irradiated by a laser to ablate the sample whosemolecules are ionized and accelerated towards
to the mass detector.

critical electric field is reached and leads to the ejection of a jet of liquid ions of the
same charge sign originating at its apex. This aerosol jet is unstable and breaks apart
into small droplets from which the solvent progressively evaporates, leading to yet
smaller droplets. Once the droplets reach the Rayleigh limit they explode into a spray
of charged ions heading towards the detector entrance. This is illustrated in figure 2.
The use of an even smaller needle is given the term nanoESI. Typically ESI produces
ions with a charge of +2 and above while MALDI usually yields ions with a single pos-
itive charge.

The ionized analyte is now subject to the second task of the mass spectrome-
ter: it is separated out according to them/z of the constituent ions. These ions (their
m/z and intensity) are recorded by a detector within the analyzer and computation-
ally conduced into amass spectrum. There are five di�erent kinds ofmass analyzers,
grouped according to the mode they operate in. Hybrid instruments, as the name
suggests, have more than one in-built analyzer and take advantage of the di�erent
benefits of each type of analyzer. The mass analyzer’s primary function, as stated
above, is to separate the peptides based on their m/z. They may enable the selec-
tion of an appropriate m/z range for subsequent fragmentation, and can also per-
form the fragmentation andmeasurement (detection) of the resulting fragment ions
themselves. Peptide fragmentation and tandem mass spectrometry is discussed in
greater detail in the following section (1.3.3).

1. time-of-flight (TOF) analyzers. Here the analyzer is a chamber under vacuum
that itself contains no electric fields. Following ioniziation, the peptides are
accelerated by an electric field into the analyzer. The ions dri� through the an-
alyzer with the kinetic energy obtained from the potential energy of the elec-
tric field. Assuming that all ions obtain the same energy, the ions of lesserm/z
will have greater velocity than ions of greaterm/z. Therefore, as ions traverse
the analyzer, they separate out according to theirm/z. A detector is positioned
at the end of the analyzer to measure the arrival time of ions. TOF analyz-
ers are o�en, but not always coupled to MALDI ion sources. The quadrupole
time-of-flight (QTOF) instrument is coupled to a standard LC systemwith anESI
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Figure (2): Taylor cone and electro-spray formation taken from ref.24 with permission. The cone forms because of
charge separation of the electrolytic solution which in turn deforms its meniscus. When a critical electric field is
reached an aerosol jet is formed. This unstable jet breaks apart into ever smaller droplets as the solvent evaporates
which then head towards the entrance of the detector

source25. A recent develpment in theTOF technology sphere comeswith the in-
troduction of the trapped ion mobility spectrometry (TIMS)-TOF instrumenta-
tionwhere the ionization source is nanoESI26 ando�ers additional information
about the three dimensional structure of ions being acquired, .

2. Quadrupole analyzer. A quadrupole mass analyzer consists of four metal rods
arranged in parallel to which direct current and radio-frequency voltages are
applied. Gas-phase ions entering the mass analyzer follow a corkscrew tra-
jectory along the axis of the quadrupole, the radius of this trajectory depends
on the m/z of the ion and the o�set voltage for the field. The voltage applied
can therefore be used to select the m/z range of the ions that are allowed to
pass through the quadrupole region. All ions outside this range will not go
through and hencewill not be detected. Ions of increasingm/z can be detected
by sweeping the radio frequency voltages on the quadrupoles.

3. The FT-ICR analyzer. This analyzer contains a cyclotron that accelerates parti-
cles to high energies. The ions rotate around a strong magnetic field (up to 9
Tesla) andwhen an electric field oscillating at, or near, the cyclotron frequency
of the trapped ions is applied, it excites the ions into a larger orbit where they
may bemeasured as they pass detector plates on opposite sides of the trap, or
expelled if outside the required m/z. Their cyclotron frequency is then trans-
formed using a Fourier transform to yield the m/z and intensity values. The
resolution and accuracy of this type of analyzer is extremely high.
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4. Ion trap analyzers. As thename suggests these analyzers trap ions in a confined
space. They can be divided into three groups: the 3D ion, (or quadrupole ion-
QIT-, or Paul-) trap, the linear ion-, linear ion trap (LIT)- (or Penning-) trap and
theOrbitrap,which is covered in the sectionbelow. TheQIT is like aquadrupole
(above) but with two of the rods forming the endcap electrodes, the third is
formed into a ring and the fourth is collapsed to the middle. The ions are cap-
tured by being alternately compressed and expanded along the x-axis (which
runs from the source to the detector). Ions enter from the source through one
of the endcaps and them/z of interest is selected by applying the correct volt-
age while all other ions are ejected. A collision gas is applied to the ions and
their kinetic energy is increased, which leads to fragmentation of the parent
ions into smaller ions. These smaller, fragment ions can then be read out se-
quentially by scanning through a range of voltages at the detector. quadrupole
ion trap (QIT)s have poor resolving power and su�er from poor accuracy and
have a limited dynamicmass range. They are however quite sensitive. LITs im-
prove on QITs by having a simpler construction: four parallel electrodes which
trap a larger number of ions.

5. Orbitrap: The idea of the Orbitrap mass analyzer was conceived in the year
2000 by Alexander Makarov27 and was later published by his group at Purdue
University in200528 andrepresented the firsthigh resolution, highmass-accuracy
mass spectrometer at apricea�ordablebya standardproteomics laboratory29.
It is ultimatelybasedonan ion trapdesigndatingback to the 1920sbyKingdon30

and then in the 1980s by Knight31with the main principle of the Orbitrap fo-
cusing on trapping ions in a constant radial electrostatic field generated by an
outer electrode. Makarov exploited the oscillatingmotion of the ions along the
central electrode. Them/z value of the ions is calculated using a Fourier Trans-
form, based on the frequency with which they oscillate along the central spin-
dle. The Orbitrap is similar in resolution and accuracy to FT-ICR instrumenta-
tion but does not require any magnets to hold the ions and has no radio fre-
quency to initiate their motion.

1.3.2.3 Hybrid instrumentation Itmakes logical sense to try combine theadvan-
tages of the di�erent types of analyzers and ion guiding devices into one instrument
depending on the aims of the manufacturer whether that be highest resolution and
accuracy, improved speed and accuracy or creation of a compact, versatile and af-
fordable machine. Usually themost important driver is the cost which, in the case of
tandem mass spectrometry translates to having a lower resolution first stage (MS1)
mass analyzers, with a high resolution second analyzer (for MS2) tomeasure product
ions.

The source of all of the data that was used for the development of the methods
presented in this PhD thesis has been from the Orbitrap-hybrid family of instrumen-
tation.
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Figure (3): Depiction of the Thermo Fisher Scientific Orbitrap (taken from ref.24 with permission). Ions move in a
spiral fashion around the spindle-shaped central electrode and separate out along the axis according to theirm/z.
Them/z of the di�erent ions can be determined from their frequencies of oscillation following a Fourier transform

The two main instruments featured in this report are the Q-Exactive, which was
released in 201132 and built on the successes of the earlier Orbitrap instruments. The
otherworkhorse instrumentwhichprovideddata for thisproject is theOrbitrapVelos33

whichwas released in 2009. Themain improvements between the twowere in terms
of scan speed / cycle time and in the resolution of the Orbitrap. The Q-Exactive op-
erates exclusively in higher energy dissociation (HCD)mode (acquiringMS Scans and
MS/MS spectra in the Orbitrap). The Velos is able to use either Orbitrap or the ion
trap for the acquisition of MS/MS spectra (in HCD or collision induced dissociation
(CID) modes respectively).

1.3.3 TandemMass Spectrometry Experiments

Analyzing and recording the m/z of intact ions eluting from the LC column can pro-
vide a good deal of information about the analytes present in the sample. However
this information may not be enough to unambiguously map the recorded ion onto
a specific peptide sequence. This is particularly true with complex samples where
several di�erent peptide sequences occur within the tolerance (or resolution) of the
mass spectrometer for a single given ion or when modification of one or more of
the peptide’s amino acid residues alters the expected mass. In order to correctly se-
quence the peptide, further analysis steps are necessary. Firstly, themass analyzer is
instructed to select m/z of ions of interest until a minimum abundance threshold is
met. The collected ions corresponding to the desiredm/z are then fragmented into
smaller ions. The resultantm/z’s and intensities of the fragment ions are recorded by
the detector via one of the ways described for the first step. This second step, where
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(a) The Q-Exactive Mass Spectrometer from Thermo Fisher Scientific

(b) The LTQ Velos Mass Spectrometer from Thermo Fisher Scientific

Figure (4): Schematic of two of the workhorse instruments featured in this report taken from ref.34
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the sequence information is obtained, is referred to as TandemMSorMS/MSwith the
second, fragment ion spectrum being referred to as the MS/MS or the MS2 spectrum.
The first and the second MS acquisitionmay be separated in either space (a di�erent
analyzer is used to acquire the second spectrum) or in space (in that analysis occurs
in the sameanalyzer but subsequent to the first acquisition). It is possible to continue
the cycle of fragmentation and analysis of generated products for further rounds of
fragmentation for as long a time as there are su�icient ions to collect and fragment.
This kind of acquisition is referred to as MSn. O�en fragmentation is halted a�er the
third iteration and, combined with the synchronous precursor selection on specific
instrument types, has been shown to mitigate the problem of co-isolating peptides
in isobaric quantification35–37 (see section 1.4.2.3).

1.3.4 Peptide fragmentation

Inmost cases, peptide fragmentation occurs along the peptide backbone and results
in regular fragments along the length of the peptide. If the fragment is from the N-
terminal part of thepeptide itwill be referred to as an a-, b- or c-ion, dependingwhich
peptide bond is broken. If the fragment is from the C-terminal part of the peptide it
is the named x-, y-, or z-ion. A subscript notation will denote the residue of the pep-
tide. An example is shown in figure 5. Apart from these backbone fragments it is
possible to find internal fragments, where double backbone (or peptide) fragmen-
tation has occurred and immonium fragments, where a single residue side chain is
identified surrounded by an a-type and a y-type fragmentation. This standard nam-
ing convention was established by Roepstro� and colleagues38. Fragmentation can
occur spontaneously (and simultaneously) during the ionization step, but this is not
usually desired inmass spectrometry proteomics and is another reason for choosing
the so� ionization technique. The main means to perform the fragmentation is in a
dedicated, separate part of themass spectrometer and there are several methods to
do this, which are discussed below.

1.3.4.1 CID CID or collision associated dissociation (CAD) is performed in a dedi-
cated part of the mass spectrometer, referred to as a collision cell. Upon entry into
the collision cell the ions are acceleratedwith an electrical potential, which increases
the ions’ kinetic energy. This leads to an increase in the number of collisions with an
inert gas such as heliumor nitrogenwhich has been introduced to the cell. Following
a collision the kinetic energy is converted to internal energy and initiates bond dis-
ruption. The resultant fragments have a lowerm/z and are no longer excited by the
applied electric potential and are thus not further fragmented.39 This phenomenon
may lead toproblems in the analysis of labilemodifications, such asphosphorylation
because the weak bonds are preferentially broken. CID generates predominantly b-,
and y-type ions. CIDperformed in aquadrupole ion trap typically su�ers from the low
m/z cut o� which would normally render it unsuitable for MS2 based isobaric label-
ing (see section 1.4.2.3). Aworkaround for thiswas foundbySchwarz and co-workers,
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termed Pulsed Q Collision Induced Dissociation (PQD)40,41, however this has largely
been superseded by either HCD fragmentation42 which does have this limitation or
by usingmultinotch MS335. In Triplequad (QqQ) instruments the collision cell is typi-
cally the second quadrupole.

1.3.4.2 HCD HCD 42 is also known as is high energy CID or beam-type CID or origi-
nally higher-energy C-trapdissociationworks inmore or less the sameway as CIDbut
with higher collision energies. It is performed in a dedicated collision cell and works
with high resolution ion detection, and increased ion fragments with no low mass
cut o�. In spite of its name, HCD is still referred to as a ’low energy’ collision induced
dissociation (less than 100 eV)43. HCD and yields not only b- and y-type ions, but is
also rich in a-ions and immoniumand internal fragments44. This large range of di�er-
ent fragment ions types is brought about because the higher energy allows fragment
ions to further decay into smaller components. This fact and the lack of a low mass
cut o� renders HCD to be highly suited to MS2-based quantification strategies.

1.3.4.3 ECD electron capture dissociation (ECD)45 typically involves a multiply-
protonated molecule interacting with a free electron to form an odd-electron, radi-
cal, ion. Liberationof theelectric potential energy (neutralizationof one ionic charge)
results in fragmentation of the product ion. This method of fragmentation o�en re-
quires additional hardware to standard instrumentation set up. It is primarily used
to generate c- and z-type ions complementary to the typical b- and y-ions produced
by CID (HCD). The nature of this type of fragmentation preserves labile PTMs such as
phosphorylation and glycosylation and can be useful in PTM site localization.

1.3.4.4 ETD electron transfer dissociation (ETD)46 also creates predominantly c-
and z- type ions and also keeps modifications and amino acid side chains intact. It
does not have the requirement of ECD of an ultra-high vacuum and is amiable to LIT
instrumentation. The electron donor reagent anions required for the creation of the
radicals is typically fluoroanthene obtained by external chemical ionization source
which is injected into the center of the LIT and then mixes with the protonated an-
alytes. This method generally requires higher charge states than the typical +2 ions
following tryptic proteolysis so a di�erent enzyme might be used. As for ECD this
method is complementary to CID andmay require additional instrument hardware.

An important aspect of peptide fragmentation is that the ions collected by the
analyzer for fragmentation during the first acquisition will not necessarily be of one
exact m/z but rather of a range of di�erent m/z’s within a window, and so may con-
sequently contain more then one peptide. Thus the fragment ions may contain the
products of fragmentation of more than one parent ion. The abundance (intensities)
of the di�erent product or fragment ions detected and their role in determining the
peptide sequence of the precursor ions selected by the MS1 analyses lies at the heart
of many of the algorithms described later on (section 1.5.1). and is a fundamental
aspect of mass spectrometry-based proteomics.
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Figure (5): Example of peptide fragment notation (taken from ref.47). a-, b- and c- fragments are formed if the charge
is retained on the N-terminus and x-, y- and z- fragments formed if the charge lies on the C-terminus. The subscript
number corresponds to the position of the break counting from the respective terminus.

1.3.5 Twomodes of peptide fragmentation

As sketched out above, proteomic mass spectrometry works by first scanning and
measuring ionized entities eluting from the LC column, selecting an m/z range and
then fragmenting the corresponding ions and subsequently measuring the product
m/z’s. There are two main modes of acquisition to obtain the product ions: Data de-
pendent and data independent acquisition. As the name suggests, data dependent
acquisition depends on the first MS1 scan to find the most abundant ion species and
then collects ions corresponding to the givenm/z range and subsequently fragment
them, while data-independent acquisition, which is independent of the MS1 ion in-
tensities, simply divides up the MS1 scan into regions of m/z and sequentially frag-
ments all ions present for each given region.

1.3.5.1 DDA data dependent acquisition (DDA) mode is also known as ’shot gun
mode’ becauseof its inherent stochastic naturewhich is likened to the ’quasi-random
firing pattern of a shotgun’. It is currently themost frequently used acquisitionmode
in proteomic mass spectrometry. Owing to the fact that this mode records and uses
precursor ions of a knownm/z, this value is available to the downstream analyses to
limit the number of potential peptides matching to the derived fragment ions (see
section on fragment matching and peptide search engines 1.5.1). There are a num-
ber of other DDA modes which operate at the MS1-scan level, but which use a pre-
defined list of masses to fragment within a given retention time window. These tar-
geted modes may also include further information (transitions) to select particular
fragment ions. These can be particularly useful when performing quantification of
analytes in a label freemanner since it is possible to be certain, even in independent
runs, that the intensityof the samepeptideand fragmentarebeingmeasured. The in-
dividual signals can be integrated over the LC run and if required compared between
runs to give a ratio of abundance in two ore more conditions.
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1.3.5.2 DIA Data independent acquisition (DIA) describes the instrument set up
when a set of constantmass ranges independent of the peptides analyzed in the MS1
scan is isolated for fragmentation. This method presents quite a number of chal-
lenges with regard to the development of robust data analysis tools. The multiple
peptides in each m/z window are fragmented resulting in complex MS/MS spectra
which requiredi�icult deconvolution. Essentially, allMS/MSspectra fromallMS1 ions
are acquired irrespective of abundance in the first scan. Having this fully comprehen-
sive and correspondingly large amount of datamay o�er some advantages over DDA
in situationswhere large sample cohorts are tobequantitatively compared, for exam-
ple in exploratory analyses looking at well-known sample types such as in plasma or
urine. It has also been claimed that DIA can identifymore peptide to spectrummatch
(PSM)s than the theoretical number of MS/MS spectra that can be sequentially ac-
quired in a DDA run, because nothing is missed out48, this also means that di�erent
questions can be asked of the data and computationally analyzed as many times as
required until an answer is found. DIA has shown a lot of potential and is already gen-
erating some interesting results. For now, this method remains outside the scope of
this PhD thesis and will not be discussed further here.

1.3.5.3 Targeted A thirdmode, Targeted (DataDependent)Acquisition,whichmay
be categorized as a subset of DDA and is fundamentally very similar to it. Following
the MS1 scan, only peptide m/z’s identified within the scan and present on a user-
defined ’wish-list’ within the given matching retention time window are selected for
fragmentation. Thismethodaims toenrich for lower-abundantprecursors thatmight
not otherwise be selected for fragmentation. It is a way to circumvent the problems
associatedwith thewide range of peptide abundances eluting at the same time from
the LC column. Several di�erent targeted approach (TA)methods exist depending on
the type of instrumentation in use. multiple reactionmonitoring (MRM) and selected
reaction monitoring (SRM) are very similar and are largely performed on triple quad
instruments and parallel reaction monitoring (PRM) on (mainly) trap-types of instru-
mentation.

The three methods described are all summarized in figure 6.

1.4 Methods for quantifying proteins

In its first twenty years, proteomics was a qualitative science whose primary focus
was on reconstructing a catalog of proteins present in a sample at the time of acqui-
sition. In the last decade mass spectrometry-based proteomics has become more
powerful thanks to the addition of a further dimension: quantification. It is now not
only possible to say whether a protein is present or absent in a biological system but
also by howmuch. To a certain degree this had been possible previously by counting
the number of PSMs for one protein in a single experimental run and comparing it to
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Figure (6): Three modes of selecting analytes for fragmentation. Figure taken from ref.49 with permission. The red
squares indicate them/z region selected for fragmentation. Panel (a) describes data-dependent acquisition, where,
over time, narrow precursor windows are selected based on the intensity within the MS1 scan and a time-limited
exclusion list of precursors preivously fragmented. Panel (b) illustrates a data-independent approach where the
entirem/z range is sampled via widem/zwindows over a longer retention time duration. Panel (c) shows a targeted
acquisition approach where, over specific retention times, a narrow m/z range (containing a peptide of interest)
is selected for fragmentation. This aim to mitigate problems associated with the large dynamic range of peptides
eluting from the LC column.

the number for the same protein in a di�erent run but this was subject to a battery of
problems and issues.

Several new techniques and approaches coupled with improvements in instru-
mentation and LC set-ups have helped bring quantification of proteins bymass spec-
trometry into a routine operation. Quantification in proteomics has two approaches:
absolute and relative quantification. The former aims to establish true amounts (as
in copy number per cell or actual concentration) of a given protein within a sample,
while the latter aims to uncover the ratio or change in protein abundances between
two or more samples.

1.4.1 Absolute quantification

In theDDA approach of bottomupproteomics, absolute protein quantification is typ-
ically achieved by obtaining a regression function between the raw signal generated
in an experiment and a known quantity of a spiked-in protein. Silva and colleagues
observed that the top three most intense peptides remained constant within a co-
e�icient of variation of +/- 10%50 and used this value to estimate absolute protein
abundance in a sample (see also section 2.3.3.1). A very similar approach, named
intensity-basedabsolutequantification (iBAQ),was takenbySchwannhäusser et al.51

to use the intensity of all peptides associated to a protein, but to normalize these by
the number of possible MS-visible peptides. An alternative approach; the proteomic
’ruler’ uses the MS1 signal from histone proteins (proportional to the amount of total
DNA), which is dependent on the number of cells to estimate the copy number of a
protein per cell52.

1.4.2 Relative quantification

Performing relative quantification is easier than absolute quantification due mainly
to how the instruments detect ions. This means the read-out of a such a quantifica-
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tion experiment is a fold change in abundance across samples. This kind of quan-
tification can be further divided into two types: label free and labeled, where the
label refers to the addition of a chemical label to induce a mass shi� which distin-
guishes peptides originating from di�erent conditions. Label free aims to estimate
the change in peptide abundance from di�erent mass spectrometry runs, usually by
assessing the relative precursor intensities.

1.4.2.1 Label-free quantification The label free approach is in essence the sim-
plest: One directly compares the abundance of peptides in one sample run with the
abundance of the same peptides in one or an infinite number of other sample runs.
The relativeabundancemaybeestimatedusingmethodssuchas spectral counting53,
where one counts the number ofMS/MS events triggered for a given peptide; spectral
counting normalized by protein length or number of observable peptides54, which
is the same as the previous approach but tries to normalize for di�erences in pro-
tein length; or by the integration of ion intensities (either precursor or fragment ions)
over the chromatographic profile of the run(s) analyzed55. All of these methods re-
quire multiple (sequential) acquisitions and highly reproducible sample preparation
and handling. Although ions observed in an MS1 scan are generally proportional to
peptide abundance in the the given sample(s), absolute signal intensities can vary
depending on a number of factors such as small di�erences in the chromatography,
slight changes in instrument performance and variations in peptide ionization e�i-
ciency. This leads to high variability and increased numbers of missing data points
from one run to the next.

This between-run variability can be mitigated by combining and measuring all
samples together into a single run. Here the addition of stable isotopes of elements
such as 13C, 15N, 18Oand 2H, incorporated into the samples in labeling steps upstream
of the acquisition, allow the peptides from the separate starting conditions to be dif-
ferenciated. The peptides behave largely identically in terms of their chemical and
liquid chromatography properties, di�ering only in their mass or in a series of their
fragment ions. This enables the corresponding intensities to be distinguished in the
same MS1 or MS2 scan and quantified relative to one another or a single channel.

1.4.2.2 MS1 labeling Among the first MS1 labeling developments was isotope-
codeda�inity tags (ICAT).Hereheavyand lightpeptidealternativesarecreated through
biotina�inity tags linked to the thiol reactivegroupof cysteine-containingpeptides56.
Despite its success, this approach was clearly limited because cysteine is compara-
tively rare leading to a large number of peptides going unlabeled; alternative chem-
ical labeling methods, based on 18O57 and dimethyl labeling58,59 then followed suit.
These chemical labeling approaches could, however, only account for di�erences in-
troduced a�er the labeling step and deuterated peptides were subject to small shi�s
in their chromatographic profiles. This led to the development of metabolic labeling
methods which aimed at reducing variability introduced during sample preparation.
One example of this is stable isotope labeled amino acids in culture (SILAC)60 where
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in one biological system naturally occurring amino acids (arginine and lysine) are
entirely replaced by synthetic versions fully labeled with13C and15N isotopes. These
‘heavy’ labeled peptides are compared to naturally occurring ‘light’ amino acids to
yield a duplex quantification method, which can be extended to triplex mode by re-
ducing the numbers of incorporated isotopes from fully labeled 13C615N2-lysine and
13C615N4-arginine to 13C6-lysine, 13C6-arginine and 15N4-arginine residues. In theory
it should be possible to extend SILAC to a 5-plex mode but overlaps in the isotopic
distributions of the di�erent labels start to present limitations.

A trulymetabolic strategy, where full replacement of naturally occurring nitrogen
atomswith 15N isotopes is anotherMS1-labeling alternative. This is used inplants and
somehigher eukaryoteswhere the heavy nitrogen is supplied in the culturemedium.
However, since themass shi� introduced by 15N labeling a�ects the amino acid com-
position of all residues in the peptide (to di�ering degrees), knowledge of the pep-
tide sequence is essential to calculate the expected mass di�erence between a la-
beled and unlabeled partner, which complicates subsequent data analysis. This is
one likely reason why 15N metabolic labeling is not so frequently used in proteomic
experiments.

The Super-SILAC61 approach is an extension to SILAC which aims to provide ad-
ditional ’plexing capability by using a set of synthetic, isotopically labeled standard
references in a series of binary comparisons across a large set of experiments. Each
sample’s comparison to the common reference yields a ratio. The ratios of all the ref-
erences can thenbeused tonormalize the ratios to then find theoverall ratiobetween
the di�erent samples. Drawbacks include the need formultiple acquisitions (and the
associated variability); considerable bioinformatic analysis time; under-sampling of
the proteome and the extra analysis time spent examining and fragmenting redun-
dant precursors from the reference in the acquisition of every mix. Such a ratio of
ratios approachwill be a�ected by both the abundance of the reference and themea-
sured sample(s) themselves.

Because of its early combination of samples, SILAC is the most accurate quanti-
tative MSmethod currently available, whichmakes it suitable for assessment of rela-
tively small changes in peptide and protein amounts. A discussion around this and a
new computation so�ware method to analyze these samples is presented in part III
of this thesis.

Ametabolic labelingmethodwhich promises to increase themultiplexing capac-
ity for MS1 labeling was introduced by the Coon lab in 2013. Neucode62 utilizes the
neutron mass deficit (the fact that nuclear binding energy is di�erent for isotopes
of di�erent elements63, resulting in tiny mass shi�s) to build labels with millidalton
(mDa) mass di�erences. The distinct backbone fragments can be distinguished from
each other in a dedicated high resolution (480, 000 @ 400 m/z) quantification scan
following a typical MS1 scan performed at standard resolution, where these di�er-
ences remain undetectable, resulting in reduced sample complexity with only a sin-
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Figure (7): Three di�erentmethods of relative quantification taken from ref.49 with permission. Panel (a) highlights a
label free method where somemeasure of the peptide abundance is compared between two separate acquisitions.
Panel (b) showsanMS1-basedquantificationapproachwhere,within a singlemass spectrometry acquisition run, the
abundanceof twopeptide species di�ering by a knownmass shi� is compared. Thismass shi�maybe introducedby
a number of di�erent methods. Panel (c) exemplifies an isobaric mass tag approach where, within a single tandem
mass spectrum, the abundance of several di�erent peptide species may be determined by reporter ions of known
masses resulting from fragmentation of the precursor peptide.

gle tandem spectrum from two or more parent ions. The extra scan takes longer and
the procedure can only be performed on high resolution mass spectrometers and
would be beholden to the same problems as other MS1 methods.

1.4.2.3 MS2 labeling The second major approach to perform quantification in
mass spectrometry is via isobaric labeling of peptides. Here a chemical reagent is
covalently bound to peptides at the N-terminus and (usually) at the amine group of
lysine residues. These labeled peptides are not only identical in terms of mass but
also regarding their physico-chemical properties and behavior during separation on
the liquid chromatography column. This results in all conditions being represented
by a single MS1 feature: their di�erences are only revealed upon fragmentation. At
this point the tag dissociates into its two component parts: a charged reporter ion
and the balancer group (usually still attached to the peptide). Thanks to the arrange-
ment of stable isotopes of nitrogen and carbon within the tag, the reporter ions will
di�er slightly in mass and can then be used for relative quantification. The twomain
methods using this approach are isobaric tag for relative and absolute quantifica-
tion (iTRAQ)64 available in a four and eight-plex capability and TMT65,66 which, using
the classic TMT moiety, encodes up to eleven di�erent samples. During the writing
of this thesis a further TMT-capability with a di�erent structure was announced at
ASMS 2019 (https://www.asms.org/conferences/past-conference). This TMTpro tag
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increases the number of possible quantification channels to sixteen. The chemical
reagents are typically small (< 310 Da) and result in fragment ’reporter ions’ in the re-
gionof theMS/MSspectrumbetween 117and 134Da (inclusive) andareadded to sam-
ples following (tryptic) digestionandprior to the samplesbeingmixedandmeasured.
Whilst the method o�ers many benefits over MS1 methods (the labels can be added
to any sample irrespective of source, which is not possiblewithmetabolic labels, and
allowscomparisonof ahighernumberof conditions inoneexperimentwith fewmiss-
ing values), it can su�erwhen the reporter ions in theMS/MS spectrumoriginate from
one or more di�erent precursor peptides. This phenomenon, dubbed ’ratio com-
pression’, was described by Bantsche� et al.67 and separately by Ow et al.68, in the
context of iTRAQ isobaric labeling. Several solutions have been put forward for this
problem, which is discussed in more detail in the Chapter II, section 1.3. A relatively
new extension to the idea of isobaric tagging (in part to circumvent the problems of
ratio compression) was published by Winter et al.69. With the EASI-tag solution, the
balancer group attached to the peptide-fragment (which is therefore specific for the
givenpeptide) is used forquantification rather than the low-mass reporter ionswhich
are devoid of any peptide information. This could potentially completely overcome
theproblemsassociatedwith ratio compressionasonlypeptide-specifc reporter ions
are quantified. Howeve, the resolution at the higherm/z is lower, meaning that for a
set of TMT-labeled samples, only six quantification modes would be possible.

All quantificationmethods have their associated advantages anddisadvantages. The
decision regarding which method of quantification should be based on the (biolog-
ical or medical) question being asked; the availability and type of sample and the
number of conditions to be compared. To a large extent, this thesis focuses on pro-
viding a so�ware solution for the processing of data to accomplish both absolute and
relative quantification of MS1 and also MS2 types.

1.5 Bioinformaticandcomputationalmethodsemployed in theprocess-
ing of mass spectrometry data

The nature of the data coming o� a mass spectrometer means that very little mean-
ingful interpretation is possible without the intervention of a number of computa-
tional processing steps, this is compounded by the volume of the data recorded in
each acquisition. Interrogating this would not be possible without computational
support. Here I describe some of the methods required on the journey from the ac-
quired, raw spectrum to the peptide and later, protein with the possible addition of
post translation modifications and quantification. One could view this as the exact
reverse of the journey that the sample took fromprotein to peptide to spectrum. This
voyage-in-reverse aims to put the pieces back together to view a snapshot of the con-
ditions in a cell or set of cells at a given time point under a specific condition.
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1.5.1 Extracting information from tandemMS spectra and peptide searching

1.5.1.1 Fromspectrum topeptide The result ofmost DDAmass spectrometry ex-
periments is a list of precursormasses anda tandemMS/MS spectrumcorresponding
to them/z of the ions yielded by fragmentation of the given precursor and their cor-
responding intensities. These fragment ions can be used in conjunctionwith the pre-
cursormass to provide evidence for the composition of the peptide that was present
in the original mix. For a given mass in a complex peptide mixture, the number of
potential matches to proteolytic peptides in a large proteome is usually is too high
to rely solely on a peptidemass fingerprintingmethod70–72 (where a single precursor
mass maps onto a single peptide sequence within the mass tolerance of the mass
spectrometer), hence it is necessary to include the masses of the fragment ions to
increase the chance of a correct match. This combined e�ort (precursor and frag-
ment ions) is the basis for the spectral matchingmethods presented here and can be
divided into three main categories:

1. Spectra are matched to peptides generated from a protein sequence database
which is digested in silico and the fragment ions series are calculated.

2. Spectra are matched to a library of pre-measured, validated, consensus MS2
spectra.

3. De novo andmachine learning approaches.

A fourth category consists ofmethodswhich combining aspects of each of the above.

1.5.1.2 Database searching Themostwidely used spectrummatchingmethod is
sequence database searching. Here an experimental tandemmass spectrum is com-
pared to a set of theoretical spectra generated from an in silico proteolytic digest of a
protein sequence. All spectra of the same precursor mass, within a given tolerance,
are scored in terms of similarity against the experimentally obtained spectrum. The
‘winner’ is usually the best scoring spectrum and is taken forward to represent that
precursor identification. The construction process starts with the theoretical digest
of the sequence database. This is configured by the user and should reflect the con-
ditions underwhich the samplewas prepared. The enzyme used for proteolysis is se-
lected along with the number of incomplete cleavages allowed. This determines the
rules used to create the peptide strings forming the basis for building the theoretical
spectra. The user must also supply a (limited) number of possible post-translational
modification, the amino acid specificity and whether they should be applied to all
occurrences of the given amino acid. This will influence the mass of the peptide and
the modeled fragmentation patterns. The second step decides them/z of the peaks
to include in the theoretical spectra. This can vary according to which type of frag-
ments are expected be present, the type of mass spectrometer being simulated and
its inherent fragmentation properties and is also determined by the user to some ex-
tent. Depending on the desired complexity of the final model one can, at this stage,
also consider applying rules to describe the fragmentation properties of component
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amino acids in the peptide sequence (for instance water or ammonia losses, mobile
protons etc). The intensities of the peaks are next built into the model and fall into
three categories of complexity73:

1. UT spectra (uniform theoretical spectra): all peaks have the same intensity

2. FT spectra (fragment theoretical spectra): the peak height varies depending on
fragment type

3. RT spectra (residue theoretical spectra) di�erent intensities assigned based on
(learned) statistics about the fragment type, its position in the spectrum, and
other fragmentation biases74,75.

The construction of theoretical spectra is performed for the peptides resulting from
an in silico proteolytic digest of all proteins in the query database (according to user
preference) and stored, usually indexed in some way to the peptide along with any
additional information such as its neutral mass, the number of miss cleavages, and
any given fixed or variable modifications. With most search engines, all candidate
proteolytic peptidesmatchingwithin a givenmass tolerance of the precursorm/z are
firstly selected. Theyare thencompared to thecorresponding theoretical spectraand
a similarity score is recorded. There aremany di�erent types of scoring scheme pub-
lished, with non-probabilistic approaches including counting matching peaks76,77,
spectral correlation functions where the goodness of fit of the acquired fragment
ions is compared to the model78–81, rank based scoring82 and finally probabilistic
scoring83,84, where matching might also take into account them/z and the intensity
of the acquired fragments, potentially penalizing unexpected, high intensity peaks.
The score is then related to the probability that themodel used could have arisen by
chance alone from the search database used. This overall process is summarized in
figure 8.

Extensionof sequencedatabasesearch: PTMlocalizationandopensearches One
of the most important, and possibly underestimated, shortcomings of the sequence
database search approach are the limitations presented by PTMs. The addition of
a single PTM to a residue means that all theoretical fragment ions a�er the a�ected
residue are shi�ed by themass of the PTM. If the PTM is not ’fixed’ (i.e. does not a�ect
all residues) thena second set of potential fragments (those containing themass shi�
as well as those without the modification) is added to the list of possible fragments
to match to the observed fragments for that peptide. This increase in search space
is then applied to all instances of the given amino acid in all peptides. With multiple
potential PTMs of a kind on each peptide, and withmany tens of potential PTMs, it is
clear to see that searchingwithmanyPTMscanquickly lead tovery long search times.
Secondly there might not be enough experimental evidence to actually localize the
PTM to one particular residue within the peptide. This has led to the creation of sev-
eral re-scoring methods which use the presence of specific fragment ions to localize
the modification to one residue and provide a score76,86–88 These solutions greatly
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Figure (8): From fragment to protein. The path of spectral matching from ref.85. A comparison between one or more
theoretical fragment ion spectrum and an observed tandem spectrum yields some kind of similarity score. Usually
the peptide corresponding to the best-scoringmatch is assigned to the acquired spetrum. An expectation valuemay
also be calculated to illustrate the probability of the given match arising by chance from the database used.
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improve the situation but cannot improve the situation if the underlying spectra are
of poor quality. Of greater importance than the localization of amodificationwithin a
peptide is the issue of unanticipated modifications. It has been estimated that up to
one third of spectra remain unassigned because of unexpected modifications89, i.e.
thosewhich are not added to the search space in order to prevent explosion in possi-
bleMS2 fragment series to be compared (described above). There are twomainways
to mitigate this problem: The first solution is to perform a subsequent ‘data depen-
dent’ search. Here a second round of searching takes place limiting the peptide or
protein [sequence] space to those peptides (or proteins) that were identified in the
first round90,91, but greatly increasing the numbers of potential modifications. The
underlying assumption of both approaches is that the unmodified forms of peptides
or proteins found during the first round are also likely to be present in the sample in
one or several modified forms, but at levels substoichiometric to their ’bare’ coun-
terparts. In the ModifiComb approach, a comparison is made between all high confi-
denceassignedpeptides and the remainingunmatched spectra fromthe sameacqui-
sition file. The delta change inmass (ΔM) between a high confidence peptide and the
unassigned spectrum is noted and the theoretical fragment ions of the assigned pep-
tide (with the addition of fragments corresponding to the given ΔM) are compared to
the fragment ionsof theunassignedspectrum. If thenumberofmatched fragments is
above a given threshold, the previously unassigned peptide is considered matched
and the ΔM between its precursor and that of the assigned peptide corresponds to
a modification. Since fragments (plus those corresponding to ΔM) were included in
the theoretical fragment ions, a possible location of the modification might also be
obtainable. In the Mascot Error Tolerant search approach, a new search database is
created containing only proteins identifiedwith high confidence from the first round,
which is used to search the unassigned spectra with a long list of potential modifica-
tions. Because only a limited number of peptide or proteins are searched the addi-
tional search spacebrought aboutby the increasedmodifications is stillmanageable.
The second solution is described by the ‘open search’ approach. Here, the user per-
forms just one search, setting a very large precursor tolerance i.e. ± 500 Da, but a
small fragment ion tolerance. Whilst this does not reduce the search space for the
candidate peptides, the second step (where theoretical fragment ions are compared
to those observed) can bemuchquicker. Themain advantage of this approach is that
it does allowpeptides tobe identifiedwhichwouldhavebeenotherwisebeenmissed
with the tighter precursor tolerance search. Recently a newmethod to substantially
increase the speed of open searching has been introduced92(by linking the individ-
ual fragment ions to their parent spectra through a high-performance index) which
promises to ameliorate the PTM search space problem.

Theadvantageof sequencedatabase searching is its relative simplicity: assuming
youhave a source for protein sequence information itwill be possible tomatch ahigh
percentage of the acquired spectra with a good level of confidence. However, if your
species of interest is not well annotated or you are interested in a large number of
potential PTMs you may need to look to other methods. The sequence database is
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veryo�en thebasis for thenext twoapproacheswhich, on thewhole, rely onprevious
peptide to spectrummatches to validate the experimentally acquired spectra which
they use.

1.5.1.3 Spectrummatching The second method of obtaining PSMs from experi-
mentally acquired spectra is via a spectral library. The principle idea here is that the
fragmentation pattern of a peptide acquired under a given condition should be ex-
actly reproduced when the peptide is fragmented at any given point in the future as-
suming it is acquired under the same conditions. It should then be possible tomatch
the newly-acquired spectrum to this peptide fingerprint, thereby quickly revealing
the peptide sequence. In reality, this fingerprint is slightly di�erent between runs
and it is therefore necessary to use a consensus spectrum built out of many high-
quality, manually validated experimental spectra of the same peptide andmodifica-
tion status. The consensus spectra are stored in a library linked to the parent mass.
The libraries are o�en built from dedicated peptide-finding shotgun experiments for
a specific biological system or tissue type or, more recently, a vast set of synthetic
peptides93. It may also be desirable to build a spectral library from repositories of
raw spectra; attempts to build a centralized spectral library such as those at NIST94,95

through PeptideAtlas96 or PRIDE97,98 have been running since 2006. It is important
to consider that libraries should ideally only be built from data acquired under the
sameor very similar conditions to thoseunderwhich theexperimental spectraareac-
quired. There are several di�erent search engines compatible with spectral libraries.
Examples include spectraST99, X!hunter94 and Bibliospec95. Mascot version 2.6 also
o�ers a spectralmatching facility in addition to its standarddatabase searching capa-
bility. Owing to the relatively small search space, spectralmatching should be orders
ofmagnitude faster than database or de novo searchingmethods and because all the
features of the consensus spectrum are utilized it should also be more precise.

The scoring methods generally work by using a dot product to compare the sum
intensities within a given m/z bin, hence there is more weight placed upon similar
intensities rather than di�erences between theoretical and acquiredm/z. This is the
main di�erence from the database searching methods. Experimental data are o�en
pre-processed prior to searching to remove noise based on arbitrary thresholds or
the topN (number of) peaks. Significance is given to the matches in ways similar to
database searching.

1.5.1.4 De novo and machine learning approaches It is possible to obtain PSM
predictions without any existing knowledgebase. This is third type of PSM determi-
nation that will be discussed. De novo sequencing is method that relies solely on
the information contained within the acquired MS/MS spectrum to determine the
sequence of the peptide. This technique potentially allows to identify spectra that
mightbeabsent fromasearchdatabaseorequally enablesdiscoveryofapost-translational
modification that might not anticipated a priori. It works by building a ‘ladder’ of
mass di�erences between pairs of peaks in the MS/MS spectrum which, within tol-
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erance, specify the mass of an amino acid. Such a ladder is built for at least the N-
and C-terminal fragment series. The simplest form of de novo sequencing, known as
the ‘naive approach’, builds the ladders by sequentially breaking down (and subse-
quently scoring) the residues froma list of candidatepeptide sequenceswhichmatch
the precursor within a given mass tolerance. To keep the list of candidate peptides
short enough to traverse in polynomial time, it is either limited to shorter peptides
(of lower mass) or those matching within a very high mass accuracy. This approach
is implemented in a commercial so�ware PEAKS100 where a limit of 10,000 subset
peptides is set. The spectra are then scored based on the peak abundance, mass er-
ror and fragment complementarity. The second and most commonly-implemented
type of de novo sequencing is the ‘spectrum graph approach’. Here each spectrum is
transformed into a directed acyclic graph through which the optimal path (ladder) is
found, usually via dynamic programming algorithms, to sequence the peptide. Each
peak in the spectrum is assigned to a vertex and the vertices are connected by edges
if they di�er bymass of an amino acid. The edgesmay beweighted according to peak
intensity or intensity rank. Examples of this typeof algorithm includePepNovo101 and
Lutefisk102. They use a variety of di�erent scoring methods including model-based
probability and simple ion abundance and mass tolerances. The main disadvantage
of this approach is the requirement of good quality MS/MS spectra. A poor spectrum
can result in a completelymissed peptidematch if it containsmissing peaks or is very
noisy. Therefore, mass spectra originating fromhigher accuracymass spectrometers
lead to better de novo predictions, but the matching is still complicated by the fact
that the fragmentation of precursor ions is not always complete andmay depend on
theprecursor abundanceor the energyused for fragmentation. CIDmight su�er from
missing ions in the lower and upper m/z region of the spectrum and a study by Chi
and colleagues argues that HCD fragmentation o�ers some optimism in this regard
since HCD spectra do not have this limitation, comprise high accuracy fragment ions
innearly complete ion series andalso yield abundant internal and immonium ions103.
They also state that it is possible to use combine data from ETD/HCD fragmentation
of the same precursor, leading to improved results and published a tool, pNovo+, to
perform this. However, the disadvantage desribed above remains and, coupled with
the fact that de novo sequencing never links directly to a protein sequence, spawned
thedevelopment of combinedpeptidematching /denovomethods. Here, a short tag
is generated by the de novo approach and then used for searching within a database
and is exemplified by the GutenTag74 or UniNovo104 approaches. In their Meta-SPS
approach Guthals et al.105 claim to have circumvented this issue by combining CID /
HCDandETD fragmentationof long, overlappingpeptidesobtained throughmultiple
enzymatic digests.

The othermethod of searching (to bementioned only briefly here) is the applica-
tionofmachine learningmethods topredict andor score spectrumtopeptidematches
o�en without the need of a theoretical sequence database. MS2PiP106,107 is a tool to
predict the intensities of the most important fragments based on a random forest
machine learning approach using a large set validated peptide to spectrummatches.
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It forms the basis for a search-engine-like tool which compares the intensity infor-
mation in the predicted spectra with those recorded in the experimental spectra to
sensitively identify true PSMs108. Other similar methods are also starting to appear
in the literature109,110and promise to add a further dimension to the techniques avail-
able to match experimental spectra to theoretical peptide sequences. It is of course
possible to combine di�erent aspects of these techniques.

On thewhole the sequence database search currently o�ers themost practicable
solution forhigh throughputproteomicsworkflows. Asa result, it has seen the largest
number of applications developed. Its main drawback is the limitation of only find-
ing peptides and PTMs which are present in the search database and defined in the
search parameters. The reduced search space approach can still be used formost ap-
plications; projects requiring detailed analysis of specific PTMs or the emerging field
of proteo-genomic analyses should also include other approaches such as de novo
sequencing and certainly machine learning approaches.

1.5.2 Estimating peptide false discovery rate

Gauging the level of confidence one can place in the PSM matches and filtering the
data accordingly is an essential part of the post-spectrumassignment process, which
alsoenablesone tocompare resultdataoriginating fromdi�erent labsanddatawhich
has been processed using di�erent post acquisition methods. The concept was first
introduction by Benjamini andHochberg111 andwas adapted for proteomicswith the
publication of the target-decoy approach112. Here, the first step is to create a set of
known false-positive PSMs which mirrors as accurately as possible the properties of
the target database, but which does not exist in the target space, e�ectively the null
model. The score distribution of these generated ’decoy peptides’ will follow that of
the false positives. There are a number of ways to generate the decoy sequences, the
commonest being to simply reverse the target protein sequences. However, some
find this unsatisfactory since the mass distribution of the decoy sequences does not
exactly mirror that of the target sequences because of the shi� in location of enzyme
cleavage sites. To counteract this, some argue that one should reverse or random-
ize the sequence within the proteolytic peptides, keeping the C-terminal residue the
same so that the same peptide distribution is maintained. However, several studies
have shown this does not lead to significantly di�erent results113,114. There are two
strategies for performing the searches: the first and most popular is to concatenate
the decoys to the target search database and set up a ’competitive’ search between
targets anddecoys and the second is toperform twoseparatedatabase searches (one
against targets and one against decoys). Both methods have their drawbacks and
somestudieshave reportedbothmethods tobe tooconservative in their falsediscov-
ery rate (FDR) estimation113,115,116. These inaccuracies can be countered by correcting
for the competition e�ect117and more recently by other methods such as averaging
theFDRa�erusingdi�erentdecoydatabases118 . Other estimationmethodsare avail-
able but the FDR approach, owing mainly to its great simplicity has been the most
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Figure (9): FDR estimation using combined search strategy, where all acquired tandem MS spectra are searched
against a database containing both targets and decoy protein sequences and thereby compete to be the top hit.The
FDR is calculated by applying a score threshold and summing the total number of targets and decoys with scores
above that threshold. The desired FDR can be used to select the corresponding score threshold. Taken from ref.120
with permission.

widely adopted in proteomic mass spectrometry workflows. Once the global FDR is
set, filtering data can take place to remove all hits below the score associated with
a particular FDR , or q-value115. The method described here is particularly suited to
search database strategies but can also be applied to spectral library searching119

Theabovemethod seeks to identify a global FDR relative toagivenpeptidewithin
the whole data set. It does not give any confidence value to an individual peptide to
spectrum match. The post-error probability also known as local FDR can be calcu-
lated in a similar way to the global FDR and the two terms are indeed related115.

The speed with which a search is performed is critical to its acceptance by the
community as well as its scalability to perform in high throughput pipelines. In se-
quence database searching, the speed is dependent on the search space and com-
plexity of scoring, with the former being themost influential. The search space is de-
terminedby the number of comparisons between the acquired spectrumand all can-
didate spectra. It increases with the size of the search database, decreasedmatching
precursor tolerance and with a greater number of post-translational modifications
(why thenumber suppliedby theuser shouldbe limited). Notonly is the search speed
decreased but the false positive and possibly also the false negative rate increases. It
can be solved to a certain degree by simply increasing computational power but also
by building ‘smarter’ algorithms. Having accurately identified peptides with the re-
quired level of confidence, the next part of the puzzle attempts to take these protein-
parts and re-create the original proteins present in the sample.
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1.5.2.1 Post-searchprocessing Followingon from the stepsoutlinedabove, a list
of PSMs is generated, each with an associated q-value and posterior error probabil-
ity (PEP). At this point it is still possible to extract more information from these data,
for example by combining the results of several search engines121–123or by feeding the
results into a machine learning apparatus. Percolator124, a semi-supervised learning
approach, attempts to investigate the features of the high-confidence target peptides
within the given run. These are then weighted for their influence on score. The fea-
tures and weights can be applied to the PSMs discarded due to the given FDR cut o�
and re-scored to ’rescue’ missed PSMs. It was shown that up to 17% more spectra
can be correctly assigned using this method. Combination of the results of di�er-
ent search databases can be achieved using online tools such as PeptideShaker121,
IPeak125, SearchGUI126 or Ursgal127 (see also section 1.5.6).

1.5.3 Protein inference

In the context of a typical peptide-centric MSworkflow the PSMs gained above corre-
spond to stretches of amino acids resulting from the proteolytic cleavage of proteins
which were present in the starting mixture prior to being separated by one or more
subsequent methods. The result of this is a set of peptide sequences each with a
score, a mass and in most cases very little additional information about their origin.
The task is now to use them to reconstruct the original set of proteins present in the
startingmixture as accurately as possible. This undertaking is far from simple. Firstly,
the lack of experimentally derived information relating to the intact protein and the
possibility that one peptide sequence may map onto one or several highly similar
protein sequences o�en results in a large number of shared or degenerate peptides.
Secondly not all proteins in the original sample will have been present at equimolar
abundancesmeaning that the peptides ofmore abundant proteins are likely to dom-
inate over, or mask, those of lower abundance128, and a mass spectrometer running
in DDAmode is more likely to select the more intense precursor signals for fragmen-
tation (see 1.3.5.1). Thirdly, not all proteolytic peptides have an equal chance of being
detected by the mass spectrometer. These di�erences in their intrinsic detectability
depend both on ionization e�iciency (the fraction of gas-phase ions generated from
the total number ofmolecules) as well as other factors, such as ion transmission e�i-
ciency and detector response. Fourthly, the di�erence in length of di�erent proteins
means that thenumberofproteolyticpeptides isnotequaland it ispossible that large
parts of a protein’s amino acid sequencemay simply not be conducive to proteolytic
digestion by the enzyme being used. The combination of these factors complicates
the task of protein inference.

1.5.4 Determination of protein false discovery rates

The determination of protein false discovery rate and control of the uncertainty of
protein assignments is much more of a challenge than at the level of PSM. This is
mainly because we are dealing with assemblies of peptides, each with its own indi-
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vidual q-value and the fact that a protein makes the same contribution to the total
protein distribution irrespective of the number of peptides it contains. This can be
made worse by the fact that any errors coming from the PSM level will propagate up
to the protein identification level. There is also the problem that true positive PSMs
will map exclusively to the smaller subset of proteins present in the biological sam-
ple than the randomlymatching decoy peptides. This can result in a protein FDR that
is overestimated andmuch larger than the PSM-FDR and which deteriorates with in-
creasing size of the dataset. The MAYU algorithm129attempted to correct for this over
estimation by modeling the number of false positive protein identifications using a
hypergeometric distribution. Its parameters are estimated from the number of pro-
teindatabase entries and the total number of target anddecoyprotein identifications
made. The protein FDR is then estimated by dividing the number of expected false
positive identifications (expectation value of the hypergeometric distribution) by the
total number of target identifications. This goes some way to ameliorate the prob-
lem but has been improved on by Savitski et al. in the ’picked protein’ approach130.
Here the overestimation of decoy proteins is prevented by pairing decoy and target
sequences from the same source accession. In cases where both (target and decoy
sequences) are identified in the dataset, only the best-scoring member of the pair is
kept and the ’classic’ target-decoy search strategy (TDS) approach is applied.

1.5.5 Degenerate peptides and spectra

A peptide is described as degenerate if its amino acid sequence is shared with one
or more other proteins. It can o�en arise because alternative splicing of exons from
a single gene lead to alternative protein products sharing a large amount of homol-
ogy across their sequences or equally as the result of di�erent gene products from
the same gene family or possibly, if it is a short peptide (less than seven amino acids)
due to random matching. In any case, the peptide sequence is ambiguous and one
cannotmakeany inferenceabout the its origin. Figure 10 showsaproteinwith several
isoforms and a large region of shared sequence. A degenerate spectrum can match
to more than one PSM within the tolerance of the instrument it was measured on
and may also come about because of residues of identical mass such as isoleucine
and leucine or possibly asparagine / aspartate or glutamine / glutamic acid on a low-
resolution instrument. It has been reported that these confounding peptides can
be ignored for protein inference131, but to improve accuracy this degeneracy must
be taken into when performing protein inference, usually increasing the number of
potential proteins a peptide could have originated from. An overview of the protein
inference problem was first given by Nesvizhskii and Aebersold132 in 2005 who con-
comitantly put forward a standard nomenclature to exhaustively describe all di�er-
ent peptide grouping scenarios (see Fig. 11) which, combined with Occam’s razor ap-
proach (also advocated by the same authors in ref.128) can provide a minimal list of
explanatory protein identifiers for all peptides observed in the experiment. This list is
at the lowest possible level of complexity (parsimonious) and presents the user with
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a conclusive set of proteins that were present in the sample and yields a consistent
measure of the number of proteins identified in the experiment. However, this min-
imal list with a strict implementation of Occam’s razor represents a limited view on
the data: a researcher interested in a specific protein which is only present as a sub-
set protein identification will miss their protein of interest. Therefore, the authors
suggested listing all inconclusively identified proteins in addition to theminimal list.
The converse to the minimal list above is referred to as the maximal explanatory set
of proteins73 or the optimistic model133 and refers to the list of all proteins explain-
able by the observed set of peptide sequences. It is based on a set of theoretical pep-
tides derived from the search database and the optionally also parameters used in
the search (for instance, the number of missed cleavages or selected modifications).
This set of proteins represents all possible alternative hypotheses, rejecting no pos-
sibility and ultimately leaves the decision as to which protein(s) were present in the
original sample to the downstream user. A scan of the literature surrounding pro-
tein inference since the review by Nesvizhskii reveals that many algorithms o�ering
di�erent ways to derive explanatory protein lists have been published. Most are still
heuristic but come equipped with scores to assess the confidence of the inference
madeandmanygiveanestimationof theFDR (or theexpectedproportionof ‘wrongly
inferred’ proteins) amongst the significant hits. In a recent publication, The and co-
workers state that thesemethods di�er mainly in how they deal with the degenerate
peptides134 and are divisible into three groups: inclusion, exclusion and parsimony.
An inclusion method infers the presence of any protein which links to an identified
peptide ina similarway to themaximal explanatory setmethod; anexclusionmethod
which entirely removes any shared peptides to base protein inference entirely on
the peptides unique to one protein; and parsimony as described in the original sug-
gestion by Nesvizhskii and Aebersold. They tested representative algorithms from
each of the three ways to treat shared peptides, using five di�erent scoring methods
to infer proteins acquired from three di�erent protein mixtures. Finally, they con-
clude that inference procedures excluding shared peptides provide more accurate
estimates of errors compared tomethods that include information from shared pep-
tides, while still giving a reasonable performance in terms of the number of identified
proteins. However, they did not include large protein groups in their assessment.
The discussion regarding protein inference is therefore far from over. Serang states
that the field of computational proteomics should move away from heuristics and
approach problems such as protein inference formally131. He says that using more
complex models in mass spectrometry will introduce a greater computational bur-
den but that should not dissuade us frommodeling the process as accurately as pos-
sible: using, for example, prior information about the proteins present in the sam-
ple or regarding peptide detectability, a sentiment echoed by Li et al.135who support
potentially exploiting peptide detectability predictions and better estimates of pro-
tein/peptide quantity using a Baysian approach136.

The stochastic nature of DDA MS experiments leads to a probable overlap in pro-
tein identification of 70-80% from one experiment to the next, assuming that exper-
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Figure (10): Illustration of a protein family: a set of highly degenerate (overlapping) peptides, none of which are
unique to any single protein,means that one can at best record that the protein family is identified in the experiment
or at worst that no unambiguous identification is possible. Taken from ref.132 with permission.

imenters follow a standard operating procedure (SOP) and use instrumentation at
peak performance137. This may still result in proteins being ’missed’ in one experi-
ment, but could potentially be solved by the approaches described by Li and Serang
or possibly by re-inferring proteins based on peptides from both / all experiments.
This is the current approach taken by so�ware like MaxQuant138. It might also be suf-
ficient to just group peptides by their annotated / associated genes. Many algorithms
try to answer the unanswerable: without additional information gained from further
experimental validation, it is impossible to accurately reconstruct the set of proteins
that was present in the original mix. Depending on what the desired outcome of an
experiment is, the level of protein grouping should be adapted and, in specific cases,
two types of explanatory set reported. The boundaries for the discussion of protein
grouping would again be changed if the constituent peptides carried more informa-
tion. This information could, for example, take the form of a quantification ratio (as
was already suggested by Nesvizhskii in 2005). For now, the burden is on the user to
decide, within the context of the biological question, which level of protein inference
should be sought and how false positives should be dealt with.

1.5.6 Data workflows.

The steps outlined above cover only part of the entire flow of data from its acquisi-
tionon themass spectrometer throughseveral conversion steps, filteringofpeptides,
protein inference, to peptide andprotein quantification, with relevant quality control
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Figure (11): A suggestion of six definitions for peptide grouping scenarios taken from ref.132 with permission.
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(QC) of data at each step. Thedestinationof the journeyof thedata is to create anout-
put which is simple for biologists and experimenters to interpret and which provides
a simple interface to any downstream tools and which has the necessary links back
to the original conditions thatwere present prior to the acquisition of data. There are
currently a number of tools and workflows which are available for processing Mass
Spectrometry data. A list of example so�ware covering a large part of the end-to-end
data workflow is given below:

1. MaxQuant138 is a self-contained, closed-source, freelyavailable so�ware. Itwas
originally published only for Windows but was recently also made available
for a Linux operating system139. It has its own in-built search engine (Perseus)
which was released as part of comprehensive workflow-based data analysis
platform140 andwas later also given command line functionality. It has an easy
to use with a graphical user interface. It o�ers in-built data visualizations for
QC and the main output(s) are text files.

2. TPP141 is available for Linux, Windows and macOS. It first of all converts di�er-
ent vendor formats into a HUPO standard extensible markup language (XML)
format (mzML - http://www.psidev.info/mzML), which is then fed to the next
part of the workflow where an array of di�erent (external) search engines or
spectral libraries map the experimental spectra to peptides. It then performs
peptide quantification followed by protein assignments. The outputs are visu-
alized via a web browser.

3. OpenMS142 is a suite of so�ware tools, written in C++ with bindings to Python.
It runs under Windows, Linux and macOS. Its workflows are constructed in a
similar way to KNIME143 and there is currently an initiative to combine these
tools.

4. Proteome Discoverer144 is a commercial so�ware provided by Thermo Fisher
Scientific. It is similar to pipeline pilot and KNIME in that it operates on a node-
systemwhereusers canbuildupworkflowsbyslotting together individualnodes
which performmanipulations on the data before passing it to the next node. It
is closed source and commercial, requiring a license to design workflows but
several user licenses are free.

5. Skyline145 describes awhole suite of so�ware running on aWindows operating
systemprimarily for building quantitativemethods using SRM /MRM, PRM, DIA
andDDAwithMS1 and subsequent analysis of the resultingmass spectrometer
data.

6. Galaxy P146 is not a local but rather a global workflow tool with its roots in ge-
nomic informatics. Galaxy provides a user-friendly, web-based, scalable plat-
formwhere disparate so�ware tools can be integrated into useful workflows. It
is accessible through Jetstream, a cloud-based scientific computing infrastruc-
ture.
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7. Ursgal127 is a tool written in Python running on any platform operating system.
It performs searches for a wide variety of search engines and combines the
results prior to running Percolator124 on the unified results. It supports other
workflowswithin the computationalmass spectrometry space such as the cre-
ation of search databases with decoy peptides using Ursgal127.

8. PeptideShaker121 is an online portal / freely-downloadable Java-based tool for
the interpretation of proteomics identification results. It combines the results
of multiple search engines in an attempt to extract the greatest amount of un-
derstanding from the interpretation of the acquired data. It does not perform
any extraction of raw data, but is able to re-calculate PTM localization scores,
carry out protein re-inference, perform gene ontology (GO) enrichment analy-
ses and create QC plots.

1.6 Mass spectrometry data repositories

The ultimate destination of the results of a mass spectrometry experiment and the
biological interpretation drawn from themwill always depend on the lab where they
were acquired. Fortunately, it is now requisite to deposit the data in large reposi-
tories such as PRIDE98,147 when publishing findings of an experiment whose read-
out is mass spectrometry-based. This not only enables other researchers to access
the raw data and draw their own conclusions from it but it has also enabled some
major mass spectrometry projects, such as the dra� of the Human Proteome148 and
inception of the ProteomicsDB149 to be possible. Other repository members of the
ProteomeXchange150,151 consortium, whose main aim is to globally co-ordinate and
standardize proteomic data submission and dissemination, include Peptide Atlas96

(with a sub-repository PASSEL152 focusing on SRM data), MassIVE (http://massive.
ucsd.edu), JPOSTrepo153, and Iprox154. However it isoutside thescopeof these repos-
itories and databases to capture the final conclusions of the individual biological ex-
periments and any decisionsmade based on them in a controlledway, for this exper-
imenters have to read and interpret the accompanying literature themselves.
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2 Objective and Aim

The main aim of the project described in this thesis was to create an open-source,
freely available so�ware tool that was capable of performing the required steps to
extract, process and visualize the raw output of the Orbitrap family of (hybrid) mass
spectrometers in order to give researchers the possibility to perform isobaric and
MS1-based quantification on a variety of di�erent starting materials in an accurate
andprecisemanner. This should allow very accurate fold changedetermination even
for large ratios. Support forexperiments running innon-quantifiedor label freemodes
should also be provided, though quantification in a label freemode is outside the im-
mediate scope of the tool.

The output of the so�ware should be as accurate and precise as possible, being
robust towards outliers and should include a level of confidence in protein and pep-
tide assignments as well as for the protein quantification. It should be possible for
the user to select the relevant way to group peptides according his or her require-
ments and the nature of the project; and grouping read outs from more than one
mass spectrometry acquisition should not pose any challenge. Detailed information
should be available about how the data in the outputs was derived but this should
not overshadow the results themselves.

The tool should be designed to be fully open-source and freely available to the
community and should incorporate expertise gained inprocessingofmass spectrom-
etry data. The implementation should be designed in such a way as to combine the
raw data with the processed data in single, self-contained file from which text out-
putsmay be generated. The outputs should be as generic and uniform as possible to
allow downstreamprocesses to work, regardless of quantification type. The applica-
tion must run in a command line manner so that it can be built into other pipelines
orworkflowswith ease, and should run equally well on an experimenter’s desktop as
on a large server. The installation should be very simple for all levels of user and the
so�ware should be easy to download and it should work out-of-the-box with little or
no further configuration required. It should be easily extendable to support di�erent
quantification modes.

At the beginning of this PhD project, no single tool was able to deliver, via a com-
mand line, all these objectives and include with it isobaric quantification, coupled
with correction for ratio compression; accurate pulsed SILAC quantification and pro-
vide a single standardized output for direct manual interpretation, with the possibil-
ity to programatically interact with the raw and interpretedmass spectrometry data.

The name of the tool developed by the author to fulfill these objectives is called
isobarQuant.
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Part II

Creation of a stand-alone tool
(isobarQuant) for processing and
quantification of isobaric-tagged peptide
data

1 Introduction & background

Isobaric tagging of peptides occurs post-experimentally, which allows investigators
to performexperiments in as near to physiological settings as possible and then com-
pare up to eleven di�erent conditions in one mass spectrometry experiment. Be-
cause all conditions are analyzed together, the resultant read-out does not su�er
from the disadvantages inherently associated with separate (detached in space and
time) acquisition modes. The e�ectiveness and usefulness of this tagging strategy
had already beenwidely evaluated andwas at the heart of several high profilewhole-
proteomestudies155,156, biomarker research157,158 and inPTMquantification159,160, but
at the time of starting this project there were very few freely-available so�ware tools
available which included dedicated support for isobaric tagging workflows. The in-
tention of isobarQuant was to capture the experience and so�ware requirements for
workingwith isobaric tagsand topublish thisasanopen-source, easily-downloadable
so�ware for the community. This was achieved in 2015161.

The Python programming language was chosen to provide the basis for the iso-
barQuantpackagesince itwasalready familiar andallowscodedevelopment in fewer
steps compared to Java or C++. The interpreted, object-oriented language comes
with a large, comprehensive standard library that has automatic memory manage-
ment. It is quick to prototype in and because it makes use of many libraries written
in C, the decrease in performance that might be expected with an interpreted lan-
guage does not present any issues. The workflow starts with the Thermo .raw file
and terminates with a text-based output of protein fold changes. For ease of devel-
opment isobarQuant was developed primarily as a command-line tool which, owing
to the operating system limitations of the Thermo Fisher Scientific .raw files at the
time of development, would primarily run on a Windows platform and should work
equallywell on a desktop PC, laptop orWindows server. At the time ofwriting it is be-
ing used by at least five research groups across the world and the GitHub repository
(https://github.com/protcode/isob) gets more than ten unique visitors a week.

1.1 .hdf5 file format and PyTables

One of themost important decisions was trying to link raw data with later identifica-
tion and quantification information in a single file, the size of which should, ideally
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not be greater than that of the original file. For this reason, the .hdf5 file format was
chosen as it is high density, can be easily visualized and importantly, specific seg-
ments of the data may be accessed directly, via indexes, from disk as though being
stored in physicalmemory yet residing on theharddrive of a computer or server. This
leads to substantial improvements in performance and allows huge numbers of rows
(up to 2 x 1063) to be stored in one table.

.hdf5 filesareorganized inahierarchicalway,with twoprimary structures: groups
and data sets. As the name suggests, the .hdf5 group is a grouping structure contain-
ing instances of zero ormore groups or data sets, togetherwith supportingmetadata.
A group is further divided into two parts: a group header, which contains a group
name and a list of group attributes and a group symbol table, which is a list of the
.hdf5 objects that belong to the group. The organization of groups can be described
to be similar to a UNIX file system, with ’/’ sitting at the root. A dataset also consists
of two parts: a multidimensional array of data elements and a supporting header
containingmetadata.The header contains information that is needed to interpret the
array portion of the data set and includes the name of the object, its dimensionality,
its datatype, information about how the data itself is stored on disk and further in-
formation used by the library to speed up access to the data set or maintain the file’s
integrity.

There are four essential classes of information in any data set header:

1. Name: a sequence of alphanumeric ASCII characters.

2. Datatype: consists of twocategories atomic (integer, float and, string) and com-
pound (made up of atomic data types)

3. Dataspace: describes the dimensionality of the data set and may be fixed or
unlimited (i.e. extendable)

4. Storage layout: default is contiguous, meaning that data is stored in the same
linear way that it is organized in memory or chunked

It is very easy to extend and update an .hdf5 file with almost any kind of data. In
this regard it is essentially a mini database. At the time of development of isboar-
Quant, the main application programming interface (API) for Python to .hdf5 was
PyTables162. PyTables not only provides the interface to the .hdf5 file type but also
includes support for several python libraries required in the manipulation of large
or vectorized datasets (e.g. numpy and numexpr), data compression (using the Zlib,
LZO,bzip2andBlosc compression libraries) outof thebox. PyTables createsanobject
tree entity in memory which, upon .hdf5 file creation, represents the .hdf5 structure
on disk. This is updated dynamically while the actual data is saved to disk. PyTables
has threemain classes: the node, group and leaf classes, with group and leaf classes
being descendants of the node class. The group class roughly corresponds to the
.hdf5 group described above with the leaf class encapsulating the properties of the
data set (above). Leaves may not contain further groups or leaves and provide the
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result = [row[’col2’] for row in table if ( ((row[’col4’] >= lim1 and row[’col4’] < lim2) or

((row[’col2’] > lim3 and row[’col2’] < lim4]))

and ((row[’col1’]+3.1*row[’col2’]+row[’col3’]*row[’col4’]) > lim5) )]

result = [row[’col2’] for row in table.where( ”’(((col4 >= lim1) & (col4 < lim2)) | ((col2
> lim3) & (col2 < lim4)) & ((col1+3.1*col2+col3*col4) > lim5))”’)]

Figure (1): Two examples of an .hdf5 file query using PyTables. Both queries work fromon-disk data and only require
the line being iterarted over to be loaded into computational memory. The ’table.where’ construct in the second
example uses the in-kernel search facility andwill be faster than the first. Columns in the .hdf5 file table are signified
by ’col’ and limiting conditions are illustrated by ’lim’.

base class for the Table, Array, CArray, EArray, VLArray and UnImplemented PyTables
classes.

1.1.1 Data selection using PyTables

Of critical importance to the success of isobarQuant is the ability to quickly and ef-
ficiently access a specific record (from disk) without the need for loading the entire
contents of its parent table or dataset into memory. Parsing large, unindexed text or
XML files are generally not well-suited to this task. There is a diverse array of possi-
bilities for searching using PyTables and a couplewhich are pertinent to isobarQuant
are outlined here. The simplest type of query is termed a Python selection and is
preformed on a PyTables row object. Here the table is accessed row by row and the
elements are selected according to the criteria given a�er the ’if’. It is still benefi-
cial because only each row is loaded into computational memory at a time but it is
likely to be relatively slow. It may be sped up by using the ’in-kernel’ search facility
of PyTables (which uses the PyTables kernelmodule: an in-built C-module combined
with the numexpr package), which enables the selection to take place before the it-
erator is returned. For selections that return relatively few records compared to the
total number of rows the potential savings are large. This yields an up to ten fold im-
provement andmight also be up to five times quicker than similar queries performed
on a (non-indexed) postgreSQL database163. However, these improvements will not
be as great for datasets which do not fit into dynamic memory at once, but still per-
formover two times faster and are just as easy to implement compared to the regular
statement.

In a similar way to regular relational databases, indexing specific columns can
also increase search speeds because it allows a binary search to be employed rather
than a sequential search as described above. This is implemented in PyTables using
a simple, single command and does not usual take too long to perform. PyTables of-
fers di�erent levels of index optimization according to the requirements. Once again,
compared to a relational database, PyTables can bemuch faster since it is optimized
for read-only or append only tables and puts a lower focus on updates and deletions.
PyTables indexes also require much less disk space. One final feature of PyTables in-
dexing worth mentioning here is use of ’sorted tables’, where one or more columns
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are (re)sorted and stored contiguously on disk. This can o�er speed ups of up to one
hundred fold when compared to an unsorted table with the same syntax as used in
the second example above. Once again the time taken to create a sorted table will
depend on the size of the data being stored and is aimed at tables which are largely
read-only andwill be accessedmany times. The PyTables library is critical to the suc-
cess and performance of any isobarQuant run. There are many factors which will in-
fluence the speed with which the file is generated, how fast it will be accessed and
how large the final output files are, and some of these may be a�ected by external
factors, such as disk type and read/write speed. Using PyTables is an excellent way of
finding the optimal solution.

1.2 Data extraction

TheThermoFisherScientific Xcalibur toolo�ersane�icientmethod forexperimenters
to access the results of theMS runs that have just been acquired. It allows the user to
see meta data relating to how the sample was acquired (what settings and parame-
ters were used) next to the results of those settings and interact with the data as re-
quired. However, at the time of starting this PhD project it was not possible to access
this information using generic so�ware and moreover it was not possible, compu-
tationally, to compare the results of multiple runs. The data extraction and storage
allowing quick access was a key design criterion for isobarQuant. It was desirable
to record as many of the instrument settings and acquisition parameters as possible
adjacent to the results they produced. This concept extends to Mascot search results
and spectrum, peptide and protein quantification. Not all users will be interested
in the entirety of this wealth of information; therefore only the most pertinent data
should be later exported in text format for further analysis.

1.2.1 XIC trace extraction and reassignment of precursors masses

In order to get the best estimate of the precursor peptide mass (and not rely solely
on the value recorded at acquisition time), it is desirable to select extracted ion chro-
matogram (XIC) traces for a range of stable isotopes of a precursor over their elution
profile andmatch them to an expected value. This can give greater confidence in the
precursor masses assigned. It is also beneficial to re-assign the precursor mass to
the monoisotopic mass in cases where the 13C peak was picked for fragmentation.
XIC extraction is also required for the ‘Top 3’50 approach to peptide quantification.

1.2.2 Deisotoping and deconvolution

TheadventofHCD fragmentationand the increase in resolutionandaccuracy that ac-
companied the release of the LTQ-Orbitrap Mass Spectrometer required newways of
processing the tandemmass spectra to get themost out of the information contained
in a spectrum. It had already been shown164–166 that some level of pre-processing of
spectra to remove noise peaks, additional isotope peaks and to spread out the ions
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across the entire spectrum space (via deconvolution) was beneficial for search en-
gines, in particular for Mascot167, which does not necessarily consider all peak inten-
sities in a spectrum when calculating the peptide score. This would be a required
functionality for the isobarQuant so�ware.

1.2.3 Result file merging

An o�line fractionation step prior to acquisition can reduce sample complexity and
leads to improved proteome coverage by increasing dynamic range through a reduc-
tion in duty-cycle overload168 and can also mitigate ratio compression169. However,
merging all files prior to Mascot search can lead to very large, unmanageable Mascot
result files. Itwas therefore a requirement of the so�ware that isobarQuant be able to
perform sample merging of two or more of the resultant .dat files in order to ensure
that all peptides were recovered and that protein inference was correctly performed
to accurately reconstruct the data of the original sample.

1.3 TMT-tagging of peptides and potential pitfalls

As described in themain introduction isobaric tags o�er the possibility to label a high
numberof samples for acquisition in the samemass spectrometry experiment. There
are several aspectswhichmust be taken into accountwhenperforming TMTor iTRAQ
quantification. Reporter ions should be extracted from MS/MS spectra and if neces-
sary re-calibrated against the supplied masses. The level of potential reporter ion
coalescence brought about by high numbers of ions in the Orbitrap should be esti-
mated and accounted for when acquiring data170. Reporter ions with high levels of
coalescence should not be used for quantification. The ability to correct the reporter
ion intensities for mis-estimation resulting from naturally occurring isotopic distri-
butions (from either manufacturer-supplied values or in-house determined experi-
ments) should be included in simple way. It should also be possible to determine the
level ofpeptideco-elutionandcorrect for ratio compression171. A further requirement
was theability tocarryout isobaricpeptidequantificationusing thesynchronouspre-
cursor selection (SPS)35method. It was essential to consider how to include all of the
aspectsmentioned here during the development of the isobarQuant so�ware. It was
also very important that the addition of new quantificationmethods be as simple as
possible, and exclusion of one or more of the full complement of the available re-
porter ions not present any problem.

1.4 Protein inference & protein annotations

The di�iculties associatedwith protein inference andproblems facing experimenters
performing bottom-up proteomicswere discussed at length in themain introduction
(1.5.3). This situation may be exacerbated when it comes to protein quantification:
on one handwewish to keep asmuch information relating to protein fold changes as
possible to increase statistical power but on the other hand, peptides ambiguously
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matching tomore thanoneprotein (group) shouldbeexcluded fromquantificationas
theymight skew the signalwith information that actually relates toadi�erentprotein
(group). One potential way to circumvent this is to group proteinswhich are encoded
by the same gene. The gene information is o�en provided as part of the entry in the
search file used byMascot. This gene information should be correctly recorded at the
right place and then used in the determination of protein groups. The use of a gene
name should also provide a stable identifier which can be used to compare across
experiments, samples or larger cohorts. This also ensures that peptides mapping
to di�erent isoforms of the same gene are not excluded from quantification of that
gene. The isoform-level informationwill not be discardedbut remain available for in-
spection if required. This method of grouping can be switched o� where necessary,
returning the protein inference to the classic one protein-sequence procedure.The
peptides used in the determination of protein sets and for protein inference must be
recorded.

1.5 Protein quantification

There are several proposed ways to perform peptide-based protein quantification.
With the primary focus of the first version of isobarQuant being on TMT quantifica-
tion, the issue of missing values and the need to impute values was less important
(see Part III for a detailed discussion of MS1-based quantification using isobarQuant
and SILAC). It should, of course, be possible to exclude peptides from the protein fold
change calculation if they fail due to defined filter criteria. The level of confidence in
the protein fold change derived from the peptides should also be reported in order
to gauge howwell the value given describes reality.

1.6 FDR estimation at protein and peptide level

As mentioned in the main introduction, it is essential that both peptide and protein
identifications are providedwith an associated level of confidence. The bestmethod
for this is the implementation of a false discovery rate (see 1.5.2). A q-value can be
calculated for each PSM, using the classical TDS approach112 and for the protein iden-
tifications via the ’picked’ protein approach130 (see also 1.5.4).

2 Methods and implementation

Since spectrum to peptide identifications are made using the Mascot search engine,
the workflow splits into two logical parts – the pre-Mascot and post-Mascot work-
flows.

2.1 Pre-Mascot workflow

The starting point for isobarQuant is the .raw file generated by the mass spectrome-
ter. Currently isobarQuant is only set up to deal with files originating from the Orbi-
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Figure (2): Schematic showing the isobarQuant workflow starting with a newly acquired .raw file and ending in pro-
teins and peptides with quantification information attached. The only manual step required is the submission of
.mgf files to the Mascot search engine server. Taken from ref.161 supplementary manual.

trap suite of Thermo Fisher Scientific instrumentation which includes Lumos Fusion,
all types of Q-Exactive and the LTQ-Orbitrap series. isobarQuant interacts directly
with the .raw file, without conversion to an intermediate formatwhich allows the raw
data tobe stored adjacent to anydata processed from it. It terminateswith the gener-
ation of an .hdf5 file containing relevant data extracted and processed from the .raw
file and an .mgf file suitable for Mascot searching. The .hdf5 file plus the result of the
Mascot search (.dat file) are the basis for the second part of the workflow.

The pre-Mascot workflow of isobarQuant is started with a single command line
parameter where the directory of the .raw files to process is provided. The regular
expression facility of Python’s pathlibmodule is used to find all .raw files located in a
given directory. Each .raw file will be processed internalized in turn, the result being
an .hdf5 file. Dependingon the systemsetup, this couldbe lengthy for a largenumber
of files. Because of this, a multi-thread option was developed to paralellize the work
stream. See section 2.3.5.

2.1.1 Creation of .hdf5 file

A dynamic link library (DLL) written in Python is used as a wrapper to a C++ library
provided by Thermo Fisher Scientific to access .raw files in a Windows environment.
At the time of development this was the only API which was available. This API is
called and relevant data from the .raw file is extractedas required. The first set of data
is the acquisition / instrument parameters such as the order and type of scan events,
the activation type, normalized collision energy used and the detector recording the
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Figure (3): Overview of the PyMSsafe workflow. From top to bottom: the pipeline extracts data from the .raw file,
starting with the acquisition parameters. Next, all spectra in the file are peak-picked and then processed according
to their type (MS1 or MS2). The proportion of total intensity attributable to the precursor and from other peaks is
calculated along with instrument noise threshold. This is stored along with the MS1 header data in a temporary file.
Reporter ionscorresponding to the isobaric labels areextracted, anypotential coalescence ismeasuredand theseare
stored in addition to the rest of the ions in a separate table. For each of MS/MS event, XICs are generated for isotopes
of the precursor based on an averagine model and accurate masses is generated. Taken from ref.161 supplementary
manual
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signal are all written to the .hdf5 file and are stored in several tables according to
type. Secondly all spectrum data is extracted and written to appropriate structures
in the .hdf5 file. According to the information in the .raw file the, distinction is made
between di�erent types of scan events, for example the MS1 survey scan, the linked
MS2 spectrum or multinotch spectrum: these associations are recorded. The type of
spectrum also triggers di�erent data processing steps depending on the acquisition
mode and instrument used. These are described below.

2.1.2 MS2 smoothing and recording of ion intensities

For each MS2 (and, where applicable, MS3) spectrum, the data are smoothed by fit-
tingaGaussianmodeland the intensityof the topofeachpeak is recordedandsummed
for all peaks in the spectrum. The instrument-determined total ion current (TIC) for
the spectrum is stored alongside the summed peak-top intensity values, which are
later divided between the total signal derived from reporter ions and all remaining
ions. More parametric data relating to how the spectrum was acquired, such as trap
fill time, are recorded in the .hdf5 file as well as the number of MS2 scans from the
corresponding MS1 survey scan.

2.1.3 Signal-to-interference and noise threshold extraction

An estimate of the purity of isolated peptide ions can be obtained by integrating the
amount of signal coming from theprecursor (and its isotopes)within them/z rangeof
the given isolationwidth anddividing it by the sumof all ion signalswith the isolation
window172. This signal to interference (S2I) was shown to be improved by incorporat-
ing the S2I value for the proceeding MS1 spectrum by extrapolating the S2I value as a
time-weighted linear combination of both values173:

S2Im = (RTm−RTe)
S2Il − S2Ie

RT l −RTe
+ S2Ie

The Xcalibur so�ware (Thermo Fisher Scientific) applies a cut o� to remove ions
originating from chemical and electronic noise defined as all ions falling below 2.4
standard deviations of all detected signals over several sections of each spectrum173.
This means the S2I estimation for these precursors will be inaccurate and should po-
tentially be filtered away. This precursor intensity to threshold (P2T) is calculated
by dividing the precursor abundance by the corresponding ion noise threshold and
is extrapolated in the same way for each MS2 spectrum as for the S2I value173. The
calculation of S2I and P2T is depicted in figure 4.

The calculation of S2I and P2T are particularly relevantwhenmanaging so-called
ratio compressionwhich is associatedwith isobaric, MS2-based quantificationmeth-
ods. Their use for other purposes remains unexplored (one could use it as a parame-
ter in Percolator for example or as a trigger for 2nd (chimeric) MS/MS detection)

55



2 - isobarQuant Development & Implementation

5 9 9 6 0 0 6 0 1 6 0 2
0

5 0

1 0 0

m /z

in
te
n
s
it
y

Figure (4): Assessment of S2I and P2T. The black bars depict the isotopic distribution of the precursor which was
selected for fragmentationandwhose reporter ionswill be recordedand later used. Red (andgreen) bars showsignal
from the potentially co-eluting peptides. The dashed green line is the limit of detection applied by the instrument.
All signals below this intensity are not recorded. A precursor intensity close to this cut o� is likely to have a poor
estimation of S2I, withmore co-eluting peaks present than is accounted for. The reporter ions of such spectra should
not be used for quantification.

2.1.4 Reporter ion extraction, correction and coalescence estimation

If isobarQuant is set to run in isobaric tagquantificationmode (currentlyTMTor iTRAQ)
each MS2 spectrum is queried for isotopes corresponding to the reporter ionmasses
given in the relevant configuration file. These are inspected for potential calibration
o�sets and assessed for potential coalescing ions as described in ref.170. Here ion sig-
nals are extracted from the MS2 spectrum with a minimum valley between ions (1 %
maximum intensity) to ensure that overlapping signals are detected as separate en-
tities. Next, all extracted ions are filtered to be within a relatively wide tolerance (+ /
- 10mDa for acquisitions in a high-resolution detector or 0.8mDa for low-resolution)
of each expected reporter ionm/z for the given quantification method. The reporter
ions are then analyzed in a similar way to that described by Pachl174 to reveal the
most coherent set of reporter ions. Because them/z range of reporter ions (5.010 Th)
is small, the ions will be equally a�ected by any calibration o�set, but the relative
mass di�erence between them will remain the same. The mass di�erence between
each identified ion and the theoretical m/z of the reporter ions – the seed deltas -
are stored. Each seed delta is applied to the ions, in turn, to match within a narrow
tolerance of 3.16 mDa. The optimum cohort of reporter ions is found that satisfy the
following criteria: a) highest count of reporter ions b) highest total reporter ion area
and c) lowest spread away frommodifiedm/z.

Potential coalescence as described in ref.170 betweenproximal TMT11 reporter ion
pairs (e.g. TMT127 N & TMT127 C) during acquisition in the Orbitrap (o�en resulting
from high (i.e. > 1e6) MSn ion target settings) is estimated by calculating the propor-
tion of intensity overlap between the furthest le� (or right) point in the reporter ion
peak and the integrated intensity of its counterpart reporter ion. The level of overlap
can later be used to filter out data where coalescence has occurred. The values are
stored in a dedicated table in the .hdf5 file and reporter ion intensities aremultiplied
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Figure (5): Depiction of expected (red bars) and actual reporter ions (black peaks) present in the low m/z range of
the MS/MS spectrum for a sample labeled with TMT10-plex reagents. Since the reporter ion masses are known, it is
possible to extract the most coherent set of reporter ions from the spectrum even if the acquired masses are o�set
due to instrument miss-calibration.

with ionaccumulation times (theunit ismilliseconds) toyieldameasureproportional
to the number of ions and is referred to here as ’ion area’.

The reporter ionvaluesare thencorrected for incorporationofnaturally occurring
heavy isotope impurities by removing contaminant signals according to values pro-
vided by the label manufacturer or from separately performed runs of the individual
reporter ions. All quantification data are stored in a dedicated table within the .hdf5
file along with the (MS/MS) spectrum identifier that they were acquired with. This is
later used to link these quantification data back to the appropriate data points such
as peptides from a database search or the precursor ion.

2.1.5 MS1 signal processing

Once all spectra have been processed as described above, isobarQuant attempts to
reassign the precursor m/z using chromatographic peak data. XICs are constructed
for all ions in the precursor ion isotope cluster. Chromatographic peaks are detected
in the XICs and these are linked together to form isotope clusters. The cluster inten-
sity data is compared to the theoretical isotope intensities of an averagine model
with similar m/z. The cluster with the lowest least squares fit is selected to repre-
sent the precursor. The new m/z is calculated from the intensity weighted average
m/z of the top of the monoisotopic peak. The newly-calculated accurate precursor
mass is stored in the .hdf5 file with other MS/MS precursor information such as the
derived and measured S2I values; summed reporter ions; Full width, half maximum
(FWHM) values and area and intensity of the precursor. The bins created during the
XIC extraction step are also recorded in the .hdf5 file. Upon completion, indexes are
built on key columns in the raw tables. The first step of the pre-Mascot workflow is
complete and the .hdf5 file is closed.

2.1.6 Fragment ion deisotoping and deconvolution and .mgf file creation

The second and final part of the pre-Mascot workflow is the creation of an input file
for Mascot searches. This file type is given the nameMascot Generic Format because
it contains data essential for the Mascot search engine (http://www.matrixscience.
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com/help/data_file_help.html#GEN), but is meanwhile a general term used for the
text-based file format suitable for many search engines and also for manual inspec-
tion. MS/MS spectral information is read from .hdf5 file created above and the (frag-
ment) ’ions’ table and ’msmsheaders’ (selected precursorm/z’s) table are queried to
extract the appropriate fragment ion and precursor ion information. In experiments
quantified using isobaric tags in modes where the MS2 spectrum is used for identi-
fication as well as quantification, all reporter ions (determined in 2.1.4) are removed
from the fragment ion peak list, since high-intensity reporter ions can adversely af-
fect the Mascot scoring (at least in earlier versions of the search tool) and should be
removed (this is also discussed in section 3.1). In addition to this, when data have
been acquired in high-resolution, high-accuracy mode, the MS2 spectrum is subject
to a deisotoping and deconvolution step so that all ions with multiple charges are
re-calculated as singly charged ions. This was shown to improve Mascot scores165

and spreads the peaks out to amore even distribution167. Spectra in this formatmay
be useful for other applications or algorithms that match theoretical spectra to ob-
served peaks. The final step combines the deconvoluted ions into a single ion if the
calculatedm/z’s are within the instrument accuracy of the each another, and where
this is the case, the new ion is given an intensity equal to the sumof the intensities of
the combined ions and anm/z equal to the intensity-weightedmeanof the combined
ions. The filtered, shi�ed ions are thenwritten to the .mgf file and the spectrum iden-
tifier is stored in the TITLE field for each spectrum. For historical reasons this di�ers
from other common .mgf formats where the MS/MS spectrum identifier is given on
a separate line. Recording the spectrum identifier here is essential for downstream
workflows which link Mascot results with the raw spectrum they are derived from.
The spectrum identifier is also used to map reporter ion values back to the MS/MS
spectrum they were acquired in.

For low resolutiondata, a simple filter is applied that selects the fourmost intense
ions in a given segment of the MS/MS spectrum. The given segment size varies with
the charge state of the precursor: spectra from +1 and +2 precursors are segmented
every 100 Th and spectra frommore highly charged precursors are segmented every
50 Th.

2.1.7 Mascot search

The .mgf files may now be manually submitted to Mascot via the Mascot Daemon
(http://www.matrixscience.com/daemon.html). isobarQuant is not currently able to
perform this task automatically since itwould require a great deal of configuration for
each user’s individual environment and set up. TheMascot Daemon o�ers a straight-
forward and simple way to interface with theMascot search engine, with simple drag
and drop functionality and selection of stored parameter sets for running searches
according to user preferences. A smaller helper Python script ’getDatFiles.py’ is in-
cluded in the isobarQuant package and can be called via the Mascot Daemon ‘Exter-
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(a) Unprocessed MS/MS spectrum prior to deconvolu-
tion. The +2 charged fragment ions inhabit the lower
half of the m/z space and the isotopic clusters of two
fragments are visible.
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(b) A�er deconvolution all +2 ions carry a charge of
+1 and have moved to a di�erent position within the
MS/MS spectrum and the isotopic clusters have been
reduced to a single peak

Figure (6): Illustration of result of deconvolution of ions in an MS/MS spectrum

nal processes widget’ upon search completion. The user supplied criteria will enable
theMascot daemon to automatically copy the results file to the folder where the pre-
Mascot workflow ran. Merging of .mgf files should not be performed at this stage. If
an o�line 2D-LCpre-fractionationhas takenplace forwhich the results of several .raw
file acquisitionsneed tobemerged, thismerging isperformedduring thepost-Mascot
workflow.

2.2 Post-Mascot workflow

As inferred above, the starting point of the post-Mascot workflow is the results of the
Mascot search in the form of the automatically copied / downloaded .dat file and the
corresponding .hdf5 file created during the pre-Mascot workflow. The raw data can
now be stored directly alongside the interpreted peptide and protein information.
Like the pre-Mascot workflow the post-Mascot workflow is started via the command
line.

2.2.1 Mascot .dat file parsing

The first step of the post-Mascot workflow is to extract pertinent data from the Mas-
cot results file and store this in the .hdf5 file created during the pre-Mascot workflow
above. Firstly, the search settings such as fixed and variable modifications, mass tol-
erances and search database used are recorded and added to the .hdf5 file. The pep-
tide data are QC’d (to remove any peptides containing ’X’ amino acids or failing other
criteria) and filtered so that only the top candidate peptide (and all other peptides
of the same score) and the associated score, modification state, delta to calculated
peptide in Dalton and ppm and other similar Mascot-obtained data are stored per
MS2 spectrum. The protein associations made by Mascot to these filtered peptides
are stored in an additional table within the .hdf5 file where only the single, best scor-
ing, entry per peptide sequence and protein is recorded. This creates a set of data
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Figure (7): View of Matrix Science Mascot daemon interface exemplifying how to set up the getDatFiles.py script to
automatically copy .dat files to a given local directly upon termination of Mascot searches.

withminimal redundancy onwhich to perform protein inference at a later stage. The
presence of high quality peptides can give confidence to protein assignments and
may be useful during the protein inference step. Amark of high confidence for a pep-
tide assigned by Mascot, which awards scores based on the inverse log probability
of a match arising by chance, is when the score di�erence between the given match
and the next best score is at least ten points. This is equivalent to saying the given
peptide is ten times more likely to be correct than the next suggestion. Peptides of
lower quality generally have lower scoreswithmuch smaller intervals between them.
Shorter peptides are also generally less reliable than longer ones for protein infer-
ence. isobarQuant has a default requirement that any protein contains at least one
of thesehigh-qualitypeptideswithaminimal lengthof sevenaminoacids. Suchhigh-
confidence peptides are referred to as hook peptides. This value is calculated for all
peptides in the .hdf5 file. The .dat file results are stored in the same .hdf5 as the ’raw’
data but in a distinct group. It is possible to perform other analyses on these results
and append them to this group in order to highlight the dependency on that partic-
ular search and its associated parameters. The .hdf5 file is closed and indexes are
created on specific columns within the tables.

2.2.2 Protein Inference and peptide FDR calculation

The second step of the post-Mascot workflow is carried out on a single or group of
.hdf5 files depending on themode isobarQuant is running in (merged or unmerged).
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Onepartof this step is thedeterminationofpeptideFDR .This is calculatedby travers-
ing a list of all identified peptide sequences fromall .hdf5 files in descending score or-
der to give a cumulative ratio of decoy to target counts at each score. Peptides map-
ping to both decoy and target proteins are treated as target peptides. These q-values
are stored. Next, isobarQuant (re-)infers protein groups from a good quality subset
of the peptides (and their associated proteins) imported from the Mascot .dat files
into the individual .hdf5 files during the parsing step. This is achieved by removing
those peptides which do not pass the given peptide FDR cut o� (usually set to 1 %),
removing protein groups and associated peptides that contain only low-quality or
repeat peptide identifications and then by applying a principle similar to Occam’s ra-
zor to create protein groupings based on the remaining shared peptides. Any groups
containing completely duplicate (overlapping) peptides are merged together. The
peptide groupings are then scanned in descending order of count of hook peptides,
total score (sum of all constituent peptides), and then count of peptides passing the
FDR threshold. A peptide is marked as ‘novel’ the first time it is encountered and as
non-novel in any groups therea�er. At the end of this scan all groups containing only
non-novel peptides are removed. A ‘novel’ peptide is roughly equivalent to a Mascot
bold-red identification. The protein inference step can be performed on one ormore
.hdf5 files according the requirements of the user via the ’mergeresults’ run-time pa-
rameter. The results of this part of the processing are recorded in a second .hdf5 file
separate from the .hdf5 file created in the pre-Mascot workflow. This ensures that all
results (from protein inference and later quantification) are stored in separate files
and can summarize the outcome of merging of two or more basic .hdf5 files. The
peptide and quantification data is only kept if it is associated with a protein group
determined during this stage. The naming convention used for this result .hdf5 file is
presented in the Results section (section 3).

2.2.3 Gene level grouping

Grouping peptides solely according to their protein accessions can sometimes result
in separate groups which are highly similar but refer to di�erent proteoforms of the
same gene. The high number of shared peptides between two groups can, in many
cases, lead to few peptides being considered unique and consequently few being
used in the quantification of that protein. To circumvent this, and allow researchers
to perform comparisons at gene-level, isobarQuant has the possibility to group pro-
teins according to the genewhich encoded them. Gene information parsed out of the
search results and stored in the .hdf5 proteintable is used to link together identifica-
tions of the same gene under a single generated numeric identifier. The generated
identifiers and concatenated protein accessions, along with the name and protein
descriptions are recorded in the protein table of the results .hdf5 file.
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2.2.4 Protein FDR calculation

isobarQuant implements the ’pickedprotein’ approach130whencalculating theprotein-
level FDR. isobarQuant assumes that the Mascot searches were performed on a con-
catenated FASTA database file; containing both decoy and target proteins merged
proteins together. This method is preferred because performing separate decoy and
target searches can lead to an overly-conservative interpretation of search results175.
Protein groups are firstly divided into two sets – targets or decoys - according to a suf-
fix in the given accession. If the user has created the decoy proteins using the script
providedbyMatrixScience (http://www.matrixscience.com/downloads/decoy.pl.gz),
all target accessions are prepended with the identifier ‘###REV###’ (or ###RND###
for a shu�led [random] decoy database). This decoy ’recognition’ sequence used is
recorded in the configuration. When a protein setmapping to both the target and de-
coy of the same accession are identified, the set with the greatest maximum peptide
score is picked and the other is discarded. This ensures that a potentially large num-
ber of random ‘one-hit-wonder’ decoy matches do not artificially inflate the count
of decoys which would otherwise lead to an overestimation of the protein FDR. Once
this picking procedure is complete, themethod to calculate the protein FDR is carried
out in a way analogous to peptide FDR determination but based on the maximum
peptide score per protein group.

2.3 Protein quantification

There are a number of ways to estimate the abundance of proteins present in sam-
ples obtained under one or more di�erent conditions, which were discussed in the
introduction of this thesis (see 1.4). At this point (and with the first release of the iso-
barQuant package161), the focus is on quantification using isobaric tagging and the
‘Top 3’50method. An alternative to this would have been to calculate the iBAQ of the
proteins as described in ref.51. Part III of this report goes into greater detail about the
development of isobarQuant for MS1-based chemical labeling strategies.

2.3.1 Peptide quantification: S2I correction

The third step in the post-Mascot workflow is applicable toMS2-based quantification
methods and aims to reduce the e�ect of ratio compression when performing down-
stream protein quantification. The reporter ion intensities are corrected by a simple
algorithm using the signal-to-interference measure, S2I, which has previously been
shown to strongly reduce the e�ect of co-fragmentation and produce more accurate
peptide and protein fold changes171. Briefly, it assumes that the level of interference
derived from the MS1-scan(s) [S2I value] should apply equally to the reporter ion sig-
nals coming from co-eluting peptides. This assumption, in combinationwith the fact
thatmost peptides in the sample are present at similar ratios in all conditions,makes
it possible to estimate the amount of signal attributable to the co-eluting peptides
and subtract this from each reporter ion. This is done by normalizing the median
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value of the proportion of total signal for each reporter ion over all peptides to one.
The corrected reporter ion intensities are recorded in a di�erent column in the same
table as the original reporter ion values to facilitate data checking and QC. The user
may decide to leave out this correction step.

2.3.2 Transfer of quantification data

All peptides and associated reporter ions from each .hdf5 file that link to protein sets
determined in 2.2.2 are now recorded in the results .hdf5 file. The reporter ion data is
kept ina tablewhichalsocontains information thatwill laterbeused to filter themde-
pendingonuser criteria. This criteria include flags suchasuniqueness, P2T, S2I, delta
of score from candidate to next Mascot suggestion and q-value. This is the point at
which the resultsofdi�erentmodesofquantification (i.e. isobaric /MS2andmetabolic
/ MS1) converge with the protein groups. Because quantification information associ-
ated to one protein via peptides potentially located across di�erent .hdf5 files, this
part of the processmakes intensive use of the file-indexes created in the earlier steps.
The quantification of proteins from peptides inmanymerged .hdf5 files would prob-
ably not be possible within dynamic memory on a standard desktopmachine.

2.3.3 Performing protein quantification

The fourth processing step in the post-Mascot workflow performs protein quantifi-
cation. Here the quantification values for all peptides linked to each protein group
are extracted from the results .hdf5 file; the filters (as described below) are applied
to these reporter ion values and if there are more than a given number of spectra
with associated reporter ions, a bootstrapped-sum ratio calculation is carried out as
described173. The number of bootstrap iterations is set to 5000 and the result has
three components: the median fold change over all iterations and the positions of
the 0.025 (lower) and 0.975 (upper) quantiles. If the required minimum number of
spectra with reporter ions (default is set to 4) is not attained, a simple sum ratio is
calculated and the upper and lower quantiles are set to -1. In cases where no quan-
tification data is available in the ‘reference’ channel, no fold change calculation is
possible and a value of -1 is recorded (these -1 values are converted later to NA in the
text outputs). In caseswhere no reporter signal is present for that isotopebut a signal
for the ‘reference’ channel is present then the fold change is set at zerowith -1 for the
upper and lower quantile values. At this point the area (intensity multiplied by trap
fill time) of all reporter ions for each channel is summed and recorded. The number
of spectra (PSMs) and unique peptides with associated reporter ions used in the fold
change calculation is also noted in the results .hdf5 file.

2.3.3.1 Top-3 quantification Taking an average of MS1-based signal intensities
has been reported as a good proxy for measuring the absolute protein concentra-
tion in a sample50, or it can at least be used to compare the abundance of a given
protein across independent experiments. It is implemented in isobarQuant as part
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of the post-Mascot workflow. For each protein group, all unique, rank one peptides
passing the FDR cut-o� are selected, andwhere applicable additionally filtered to re-
tain those peptides used for MS2 quantification. The XICs (recorded during the pre-
Mascot workflow) are extracted for these peptides if they were acquired up to 30s
prior to the peak of the XIC. The intensity of the precursor of the best scoring, peptide
charge-statemodstring (PCM) closest to the peak of the XIC is kept and intensities for
di�erent PCMs of the same peptide are summed. Finally, themean of the log10 inten-
sities of the threemost intense ions is recorded and linked to the given protein group
within the results .hdf5 file.

2.3.4 Output generation

There are two types of output produced by isobarQuant. The first, as already men-
tioned in the previous steps, is the .hdf5 file. One .hdf5 file is created and named af-
ter each processed .raw file, there is also one .hdf5 file created for each set of results:
each time thepost-Mascotworkflow is run. If isobarQuant is running inmergedmode
then just one unified results file will be created, otherwise one for each processed
.raw file. These binary files are readable through di�erent APIs (such as PyTables or
Pandas for python or rh5 in R), butmay also be viewed directly using various pure vi-
sualization tools suchasHFD5View (https://www.hdfgroup.org/downloads/hdfview/
) and VITables (http://vitables.org/). The second type of output, the text output, con-
sists of three files (excluding the .mgf files used for Mascot searching): the proteins
output, the peptides output and a summary. Again, if the post-Mascot workflow was
run in non-merged mode, individual outputs will be created for each .raw file pro-
cessed. As the name suggests the protein output reports information on the protein
level giving fold changes, scores and limitedmeta information such as protein name
and gene name. This output can be the basis for downstream analyses using pro-
tein fold changes and associated protein information. The peptides output contains
useful information about the peptides associated with the protein groups. It may be
useful for peptide-specific analyses or to see which peptides led a protein identifi-
cation or quantification and which were excluded. The third text-based output is a
summary giving basic statistics for the individual samples which are processed dur-
ing the isobarQuant run.

2.3.5 Multi-threading

isobarQuant is started with a single command line parameter for the pre- and post-
Mascot workflows. In both cases a single argument is given pointing to the location
of all files to process. In its first implementation the so�ware would traverse this list
of files and process one file a�er another. Since this made ine�icient use of available
computer resources, a multi-threaded option was added. Here, the user specifies
in the configuration how many of the available processors to utilize during the run.
Themultiprocessing module of Python is then used to set up amini-queuing system
into which all the files are fed and redistributed to di�erent cores. Once the queue
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Figure (8): Example of configuration file. (Le�) ’runtime’ and ’logging’ in squared brackets are the section headers
with text before the colon representing the parameter and a�er it, the value of that parameter. Changing this value
and saving the file will a�ect all runs performed a�er the change. The second output (right) shows the same con-
figuration as stored in the configuration file but supplied via the command line (typical for use in a one-o� run).
The section and parameter are merged using a dot and preceded with two dashes (’- -’ ). The value for the given
parameter is given a�er the space.

of files to process is worked o�, isobarQuant returns to single central processing unit
(CPU)mode tocontinue theprocessing. ThenumberofCPUs inusecanbemodulated
to ‘all‘ or only some of the number available; this would be useful if isobarQuant is
running on adesktopPC that is also being used for other, day-to-day tasks. This leads
to a substantial speed up in processing of file onmultiprocessor machines.

2.3.6 Configuration

isobarQuant is designed to be simple to use and run ’out of the box’ for as many dif-
ferent applications as possible. When necessary, configuration of the system to run
with parameters other than those set as ‘default’ settings is done by editing small
text-based configuration files.These follow the standard Python configuration con-
vention in that they are organized in sections which are separated by section head-
ers (indicated by squared brackets). If the parameter change is due to be permanent
the configuration file should be updated and save accordingly. If however a one-o�
change is su�icient the syntax shown in fig. 8 may be used to temporarily overwrite
the stored parameter.

2.4 Comparison toMaxQuant using E. coli dilution series spiked into hu-
man background

At the time of development and publishing of isobarQuant, no so�ware tool was
freely available to perform isobaric quantification including and certainly none were
available tomitigate thee�ectsof ratio compression, hencenobenchmarkingagainst
the performance of other so�ware was performed at the time. As part of this re-
port, however, a comparison against MaxQuant was carried out. The latest (Decem-
ber 2019) version of this so�ware (MaxQuant 1.6.10.43)was downloaded fromhttps://
www.maxquant.org/download_asset/maxquant/latestandused toprocess thesame
raw file as isobarQuant.

2.4.1 Sample preparation

Thecomparisonwasmadeby running thesame file through isobarQuantandMaxQuant
and looking at the di�erence in peptide quantification values. The raw file used for
processing contained data from a dilution series of known concentrations of E. coli
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proteins either spiked into a background of human proteins (labeled and mixed at a
ratio of 1:1 for all labels) or with no human background.

E. coli proteinswere cultured and purified as follows: 50 μL of DH5α competent E.
coli cells (18265-017, Invitrogen, stored at -80C) and plasmid (Reference: EP02538,
D3729 (2), JMJD3 (1142-1682) H1390A; pcDNA3 N-Flag, prepared by dilution of 1μL
in 999μL sterile water to yield (0.8μg/μl)) were thawed on ice. E. coli cells were re-
suspended, and 6.25μl plasmidwas added. The sample wasmixed gently and le� on
ice for 30 minutes. Next, the sample was placed for 40 seconds in a 42°C water bath
and then put on ice for two minutes. 800μl pre-warmed (37°C) super optimal broth
with catabolite repression (SOC) mediumwas added and the sample incubated for 1
hour at 37°Cwith 850 rpm rotation. Finally the samplewas transformed overnight on
lysogeny broth (LB) plates to confer ampicillin resistance. To grow the transformed
E. coli cells, a 5L erlenmeyer flask with chicanes was filled with 300 ml LB medium
containing 100μg/ml ampicillin and placed in an incubator at 37°C for 20 minutes
and then incubated overnight at 37°C under rotation (180 rpm). To ensure bacte-
ria were harvested during the exponential growth phase, they were incubated for a
further three hours following 20 fold dilution with LB-medium when they reached
an OD of 600nm. Cells were harvested by spinning 15 minutes at 3500 rpm, 4°C.
Supernatant was aspirated and cell pellets were suspended in phosphate-bu�ered
saline (PBS) before spinning again for 15 min at 3500 rpm, a�er which they were re-
suspended in 10ml PBS following supernatant removal. Cells were lyzed using 450μl
lysis bu�er containing 4% sodium dodecyl sulfate (SDS) and were placed in a ther-
momixer (Thermo Fisher Scientific) for 3 minutes at 95°C. The sample’s SDS concen-
tration was reduced to 2% by addition of 900μl 50mM Tris andwas then treated with
62μl benzonase solution (SigmaE1014-25KU)with subsequent incubationat 37°Cand
800 rpm for 30minutes. A second round of incubation under the same conditions as
the first, using with half the amount of benzonase solution was carried out for 45
minutes. Lysates were cleared by centrifugation (20,000xg) for 20 minutes at room
temperature and supernatent transfer to fresh tubes. Protein amount, determined
by bicinchoninic acid (BCA) assay was 0.1μg/μL.

Four Human cell lines (HEK293, K-562, HepG2 and placenta) were cultured in-
house onmedium over three days in standard conditions and harvested by spinning
at 3500 rpm, 4°C and then lysed in bu�er containing 4% SDS, with subsequent clear-
ing via centrifugation (20,000xg) for 20 minutes at room temperature. The cell line
lysates were mixed in a 1:1 ratio and final protein amount was determined by BCA to
be 0.56μg/μL.

2.4.1.1 Samplepreparation formassspectrometryandTMT-labeling E. coli sam-
plesweredivided intonine equal aliquots, human samples into six, with eachonebe-
ing labeledwith a di�erent TMT reagent (see 2). Following reduction by dithiothreitol
(DTT) and alkylation with iodacetamidem, samples are prepared for MS analysis via
a gel-free, SP2 approach, using hydrophilic beads to bind proteins, remove contami-
nants and subsequently performproteasedigests; the resulting peptideswere eluted
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126 127N 127C 128N 128C 129N 129C 130N 130C 131
E. coli 0 1 1 0.5 0.5 0.2 0.2 0.1 0.1 1
Human 1 1 0 1 0 1 0 1 0 1

Table (2): Description of dilution series for TMT reporter ions used in comparison between MaxQuant and isobar-
Quant

from the beads and TMT-labeled. This approach is based on trapping of proteins on
the surfaceofhydrophilic carboxy-functionalizedmagneticbeads inexcessoforganic
solvent (via HILIC) as described by Hughes et al.176, but peptides were trapped in 96-
well filter plates rather than via magnetic separation. Proteins were digested with
trypsin and Lys-C overnight and were re-suspended in 10μL water. 10μL TMT reagent
wasaddedand incubated for 1 hour at roomtemperaturewith shakingat 500 rpm. In-
dividual reactionswere quenchedusing 2.5%NH2OH in0.1MHEPESand thenpooled
into a single tube, washed with bu�er and subsequently lyophelized.

The finalE. coli ratioswereobtainedbydilutingabove labeledsampleswithbu�er
to a final volume as given in table 2.

Following the digestion and labeling steps described above, the sample was ac-
quiredusingagradientof 115minutes. Samplesweredried in vacuoandre-suspended
in 0.05 %trifluoroacetic acid (TFA) in water. Of the sample, 50% was injected into an
Ultimate3000nanoRLSC (Dionex, Sunnyvale, CA) coupled toaQExactiveHF-X (Thermo
FisherScientific). Peptideswere trappedona5mmx300µmC18column(Pepmap100,
5 µm, 300 Å, Thermo Fisher Scientific) in water with 0.05 % TFA at 60 °C. Separation
was performed on custom 50 cm × 100 µM (ID) reversed-phase columns (Reprosil)
at 55°C. Gradient elution was performed from 2% acetonitrile to 40% acetonitrile in
0.1% formic acid and 3.5% dimethyl sulfoxide (DMSO) over 105 minutes. Samples
were online injected into a QExactive HF-Xmass spectrometer operating with a data-
dependent top 15 method. MS spectra were acquired using 60,000 resolution and
an ion target of 3x106. Higher energy collisional dissociation (HCD) scans were per-
formedwith 31% normalized collision energy (nCE) at 30 000 resolution (atm/z 200),
and the ion target setting was fixed at 2x105. The instruments were operated with
Tune 3.1 and Xcalibur 4.0.27.10.

2.4.2 Data Processing

2.4.2.1 MaxQuant MaxQuant was set up to process the raw files as follows: Pro-
tein identification and quantification was performed using MaxQuant v 1.6.2.3 us-
ing Andromeda as the search engine. A downloaded version of Uniprot Human and
2018 was applied for matching MS/MS spectra. TMT10 quantification of peptide and
protein abundances was used. Cysteine carbamidomethylation was used as a fixed
modification; methionine oxidation and acetylation at protein N-termini were used
as variable modifications for both identification and quantification. Trypsin/P was
selected as enzyme specificity withmaximumof threemissed cleavages allowed. 1%
false discovery rate was used as a filter at both protein and peptide levels. The in-
built contaminant database was selected and ’reversed protein’ was selected to cre-
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ate decoys. The correction factors (for isotope impurity correction) used were those
supplied by themanufacturer for the corresponding batch of TMT-reagents. All other
parameters were le� at their default setting.

To determine peptide fold changes the peptides.txt, evidence.txt and msms.txt
file outputs ofMaxQuantwere interrogated and joined in aPython Jupyter notebook.
Peptide fold change ratios were determined by dividing the value in the ’Reporter in-
tensity corrected’ column for eachTMT label by the intensity-corrected columncorre-
sponding toTMT127C (baselinedilutionofE. coli samplewithnohumanbackground).
Unless otherwise stated, only fold changesof uniqueE. colipeptideswith aparent ion
fraction (PIF) >0.75 were used for analyses.

2.4.2.2 isobarQuant isobarQuant was used with the settings described in the
sections above. The file supplied to Mascot 2.5.1 for MS/MS searching was essentially
identical to that used for Andromeda, except that it consisted of a pre-concatenated
file comprising Uniprot Human and E. coli (downloaded December 2018) together
with their reverse protein counterparts as decoys. The Mascot search settings were
carbamidomethylationof cysteineandTMT6plexof lysineas fixedmodifications; acety-
lation of proteinN-termini, oxidation ofmethionine andmodification of TMT6plex on
peptideN-termini as variablemodifications. Trypsin/Pwas selectedas enzymespeci-
ficity with maximum of three missed cleavages allowed and a precursor tolerance of
20ppm and fragment ion tolerance of 0.02 Da.

The correction factors used in isobarQuant were based on measured values and
therefore donot just take the isotope impurities of the individual carbon (or nitrogen)
atoms used duringmanufacture into account, but also incorporate any potential ad-
ditive e�ects and cross talk between them. Thesewere determined bymeasurement
of single samples, each labeled with one of the ten individual TMT reporter ions. The
proportion of signal leading to cross-talk in channels other than that used for label-
ing the sample is then easy to calculate. Where thismeasured proportionwas greater
than 1%, it was set to be used by isobarQuant. These determined values are given in
table 3 and are supplied as defaults with the isobarQuant so�ware.

To determine peptide fold changes, the specquant table in the ’result.’ hdf5 out-
put was interrogated directly in a Python Jupyter notebook. Peptide fold change ra-
tios were determined by dividing the value in the ’quant_all_corrected’ column for
each TMT label by the intensity-corrected column corresponding to TMT127C (base-
linedilutionofE. coli samplewithnohumanbackground). Only foldchangesofunique
E. coli peptideswith an S2I >0.75 and otherwise fulfilling all isobarQuant default pep-
tide quantification criteria (P2T >4, FDR<1%, Mascot score >15 and peptide length > 6
amino acids) were analyzed.
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126 127N 127C 128N 128C 129N 129C 130N 130C 131
126 x 0.04
127N x 0.0382
127C x 0.0335
128N 0.0168 x 0.0351
128C 0.0148 x 0.0286
129N 0.0177 x 0.0279
129C 0.0149 x 0.0234
130N 0.0265 0.0175 x 0.0234
130C 0.0329 x
131 0.032 x

Table (3): TMT10 correction factors. Shown here are the default values for TMT10 isotope correction supplied with
isobarQuant. The rows represent the individual reporter ion channels and the amount of isotope impurity identified
in other channels is given as a fraction of the total reporter signal for the values in the row. They are based on actual
measurements of individual TMT10 labels. These values will di�er slightly with each separate batch of TMT reagent.

2.5 Mitigation of ratio-compression for published dataset

As part of their study into plasma proteins Keshishian et al.177 used a spike-in of 97
synthesizedSILACheavypeptides labeled inadilutionseries inorder tomeasure ratio
compression and across 30 patient samples. The heavy peptides were labeled with
either iTRAQ or TMT-6plex or TMT-10plex in several dilution series. This enabled the
authors to assess the level of ratio compression for all three labels by comparing the
obtained ratiosof thepeptide fold changes, acquiredagainst ahighbackground,with
the expected values and entirely without interfering with the experiment itself. The
dataset comprising of 30 raw files labeled with TMT10 was downloaded from the au-
thors’ repository�p://massive.ucsd.edu/MSV000079033/raw/iTRAQ_TMT_Comparison/
Plasma_TMT10/ and processed with isobarQuant as described above in ’mergere-
sults’ mode. Mascot searches were performed with the standard settings as above:
carbamidomethylation of cysteine as a fixed modification and acetylation of protein
N-termini, oxidation of methionine and TMT6plex on peptide N-termini as variable
modifications, but also included a fixed modification for a heavy SILAC modification
on arginine residues and the fixed TMT6plexmodification on lysine was increased to
incorporate themass of heavy SILAC. isobarQuant was slightly modified at this point
to ensure that the reporter ion signals from all acquired MS/MS spectra were used
in the calculation of the ratio compression correction factors, not just those with a
Mascot peptide hit. This was necessary because the vast majority of peptides in the
dataset are from the plasma protein sample (which contribute to the non-specific
background TMT reporter ion signals) using only the values from the heavy peptides
wouldbecounter-intuitive. Followingprocessingwith isobarQuant, thepeptidesout-
put of workflow was loaded into a Jupyter notebook and used to calculate peptide
fold changes against label 128C as the baseline (as in the original publication). The
post-Mascot pipeline of isobarQuantwas run a second timeusing the 30downloaded
files processed in the first round, but this time the parameter ’run_corrects2iquant’
was set to ’no’ in the postMascot.cfg file to turn o� the S2I correction. This allows the
direct examination of the e�ect of isobarQuant’s ratio compression correction.
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3 Results

Themaingoal of isobarQuantprojectwas tocreatea simple, opensource, standalone
command line tool that could encompass the experiences and algorithmic develop-
ments of many experimenters over previous years to perform isobaric quantification
on one or more (merged) datasets. It should be easy to install and to use. The tool
should adhere to the ’rule of thumb’ in computational mass spectrometry that the
processing of the data should not take longer than original acquisition. The appli-
cation should be equally at home on a laptop / user’s desktop or on a larger server
and the outputs it creates should be easily queryable and amiable to downstream
applications.

isobarQuant fulfills these aims and lies at the heart of the thermal proteome pro-
filing (TPP) analysis described in Franken and Mathieson et al.161, it is available on
GitHubvia theURLhttps://github.com/protcode/isob.git orasazip filehttps://github.
com/protcode/isob/archive/master.zip. Its installationand running is very simpleand,
following download, can be described in much less than half a page of text and in
fewer than six steps if Python is already installed (see https://github.com/protcode/
isob/blob/master/QuickStartGuide.pdf).

A more detailed discussion of how isobarQuant was further developed and its
results can be used as the basis for the next two parts of this work (parts III & IV).

For each isobarQuant run the number of output files will depend on the number
of input (.raw) files and whether or not the user requires file merging. For each .raw
file an .hdf5 file and .mgf file will be created. Each of the .mgf files submitted to Mas-
cot will yield one .dat file, which is then internalized into its corresponding .hdf5 file.
The results of the protein inference and quantification will yield at least four further
files (one results .hdf5 file and three .txt outputs). Whilst this may seem to negate
the original aim of having all data in one single file, it is worth stating that the addi-
tional results .hdf5 file is just an aggregation of data contained in each of the original
.hdf5 files and the .txt outputs are available for the convenience of the user to be able
browse the data or for downstream process that do not have any .hdf5 API.

The name of the output files are named according to the following convention:

<directory>_<analysis_type>_<rundate> _<runtime>_[ output _type]

• directory is replaced by the first 25 characters of the data directory name; anal-
ysis_type is ‘merged_results’ when amerged analysis has been performed and
is the .raw file name plus ‘_results’ when each .raw file is analyzed separately

• run date is the date when the processing was carried out in the format YYYYM-
MDD

• run time is the time when the process was run in format HHMM

• output_type is either

1. _proteins.txt: file containsprotein informationandcorrespondingprotein
fold changes. This file can be taken to the next stage.
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2. _peptides.txt: file contains information about the individual peptides and
their reporter ion values.

3. _summary.txt: file contains some statistical information about the runs
performed

4. .hdf5: theunderlying .hdf5 file contains the resultsof the runstartedabove

The filenameconventionwas chosen to include theparent foldernamewithin it since
the folder name is o�en related to the experiment being analyzed. The inclusion of
the date/time stamp in the file name prevents the accidental overwriting of data, es-
pecially if multiple operating parameters are being investigated.

For ease of interpretation and for use in downstreamanalyses, the protein output
of isobarQuant includes gene information so that proteins can be easily grouped and
theproteinFDR isalso includedso thatproteins canbe further filtered if required. The
peptide output also includes a lot of detailed information concerning the acquisition
and identification of the peptide andwhether or not it was used for quantification or
in the determination of the protein group.

The structure of all .hdf5 file outputs enables quick access to data in an encap-
sulated way and the indexing of the .hdf5 file in tandemwith a Python API allow fast
access and in-kernel selection of data to reduce the memory footprint. The .hdf5 file
may be accessed directly by any programming languages that have a suitable API. R,
for example has at least two .hdf5 readers (rhdf5 in the BioConductor Suite or h5 in
theCRAN repository) andmaybeof particular interest for bioinformatic applications.
Identification and quantification information are stored parallel to the raw spectral
data and the parameters used for processing in a single, self-contained, file. A sep-
arate results file is created each time the post-Mascot workflow runs. If result data
(Mascot .dat information) is already contained in the .hdf5 file at the time of running
the post-Mascot workflow, the user is prompted whether the program should over-
write the existing results with new data.

Thewhole isobarQuantpackage ispublishedasanopen-sourceproject completely
free of charge. isobarQuant is started via the command line, allowing it to be easily
incorporated into other workflows if required. It locates files to process according to
user-supplied parameters. On a 4-processor desktopmachine it can run overnight to
completely process more than ten TMT-quantified files.

3.1 isobarQuant for concomitant interrogation of multiple .hdf5 files

The .hdf5 file format allows fast access to the underlying data fromone ormore .hdf5
files. Figure 11 showsaPython /Pandas code snippethighlighting theeasewithwhich
one can extract data for, as an example, building a consensus spectral library. This
process took approximately 100s to extract the required data from ~300 .hdf5 files on
a SATA file system. The timing will, of course, depend on the speed of the file system,
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(a) Snapshot of .hdf5 file showing the results of the
pre-Mascot workflow. On the le� is the list of ta-
bles within the file, on the right an excerpt of the
ions table (where all ions from all MS/MS spectra are
recorded).

(b) Snapshot of the .hdf5 file focusing on the results
of the post-Mascot workflow. The hierarchical struc-
ture is visible on the le� side. The data in table ’pep-
tides’ can be seen on the right where all Mascot-
assigned ranked peptides along with some of their
associated values, such as modifications and score
are given. At the top one can see the indexes associ-
ated with the file which aid in data selection and ac-
cess.

Figure (9): The .hdf5 file a�er the pre- and post-Mascot workflows.

Figure (10): Snapshot of the results .hdf5 file focusing on the proteinquant table at the end of the post-Mascot work-
flow. The long format shows the protein fold changes, upper and lower confidences and the summed quantification
values for 3-4 protein groups. The number of quantified spectra for each channel and quantified unique peptides is
also visible on the right-hand side.The reference label and reporter ion isotope label is encoded by a numeric iden-
tifier (set in the configuration file) in two further columns.
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Figure (11): Code snippets illustrating the ease with which the .hdf5 file can be used for data interrogation. With one
call using Pandas (upper panel) or directly with PyTables (lower panel), all fragment ions for one spectrum are read
from the .hdf5 file. Then the normalized intensity and log10 intensity are calculated, and them/z values are binned
and returned to the function caller.

the disks and the speed of the network between them, but goes some way to illus-
trate that gathering such information becomes a relatively trivial task and could be
performed in any lab without the need for a specialized database, so�ware or hard-
ware configurations. This feature of isobarQuant is further showcased in Part IV of
this report where it was used to profile the e�ect of TMT reporter group on the frag-
mentation of peptides using HCD.

3.2 Comparison between isobarQuant and MaxQuant

At the time of the development and later publication of isobarQuant, the popular
so�ware MaxQuant was unable to perform any isobaric quantification and, at the
time, no other MS so�ware tool was able to measure and correct for ratio compres-
sion. However, in order to make this report as complete as possible, a comparison
was made between MaxQuant and isobarQuant using a serial dilution of E. coli pep-
tides at known concentrations, labeled with TMT10 and spiked into a background
of digested protein from a standard human cell line present at approximately equal

73



2 - isobarQuant Development & Implementation

(a) 1% FDR-filtered E. coli peptides identified by
MaxQuant (blue) or isobarQuant (red)

(b) 1% FDR-filtered human peptides identified by
MaxQuant (blue) or isobarQuant (red)

Figure (12): Counts of 1% FDR-filtered E. coli and human peptides identified in the same single 115 minute run by
either MaxQuant (Andromeda) or isobarQuant (Mascot). The number of E. coli peptides is about one third the total
human peptide count. All decoy and contaminant peptides were discarded and peptidesmapping solely to E. coli or
humanwere tallied. Both so�wares return a high number of shared peptides, with Mascot and isobarQuant yielding
approximately 10%more.

amounts, or completely absent, and labeled with TMT10 reagent see table 2 in Meth-
ods above (2.4). This should allow us tomake a direct comparison between samples
with a high background (and associated ratio compression) and those with none (or
very low) and howwell isobarQuant performs to correct for this.

3.2.1 Comparison using E. coli dilution series spiked into human background

isobarQuant andMaxQuantwere run as described above in themethods section. Re-
taining only peptides passing the 1% FDR filter, the numbers of identified peptides
shared between Mascot and Andromeda are comparable. For both so�wares, the
number of E. coli peptides is approximately one third the numbermapped to human
proteins. Mascot and isobarQuant match around 10% more peptides overall than
MaxQuant and Andromeda (Fig. 12).

Theaccuracyandprecisionofquantificationof isobarQuant ishigher thanMaxQuant
(Fig. 13). In all cases, the median of all fold changes estimated by isobarQuant are
closer to the expected value that themedian calculated byMaxQuant, when data are
filtered using the default values. Here a PIF of >0.75 was used for MaxQuant (result-
ing in a total of 4473 unique, quantifiable spectra), compared tomore stringent filter
criteria employed by isobarQuant [S2I > 0.75, P2T>4, Mascot score >15 andminimum
peptide length of 7 amino acids] to give just under half the number of quantifiable
spectra (2208). This fact still holds when MaxQuant peptides are filtered by themore
stringent isobarQuant criteria. In figure 13a, the e�ect of the presence of the human
background on the E. coli ratios is clear. In all cases, andwith both so�wares, theme-
dian fold changesareo�byanaverageof 0.13 for isobarQuant and0.25 forMaxQuant.
WhenMaxQuant peptides are filtered by the same criteria as isobarQuant, this figure
drops to 0.18 (fig. 13b). For samples with no human background both so�wares per-
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form similarly well. Here themedian fold change for isobarQuant is o� by 0.05 when
averaged over all samples with no human background, while MaxQuant is o� by only
0.06 (with no change when filtering by the same parameters as isobarQuant). It is
interesting to note that both so�wares underestimate the median fold change in all
cases where no human background was present.

3.3 Ratio-compressionmitigation for published dataset

Following thedownloadof30 raw files isobarQuantwasused toprocess the sameraw
files twice, the first time, as per default, with ratio compression correction switched
on and a second time with it switched o� (it is possible to perform this on the same
.hdf5 file containing the internalizedMascot results andquantificationdata). Thedis-
tribution of the fold changes for each pipetted ratio were visualized in a box plot, ar-
ranged in order of spiked in amount. In total, 94 out of the 97 spiked-in peptideswere
identifiedby a total of 4231 PSMs. Of thesePSMs, 3320werequantified andhadanS2I
value > 0.5 and 1988 (46% of the identified total) passed all isobarQuant quantifica-
tion criteria, such as <1% FDR,minimumMascot score of 15,minimumpeptide length
of eight residues, P2T > 4 and for this assessment had an S2I of > 0.75. In all cases,
the median of the ratio-corrected values was closest to the pipetted, spiked-in value
when ratio compression correction was performed (Fig. 14) and for all but one re-
porter ion channel (the 1:1 sample) the closest value to the expected ratio was in the
’high quality’ filtered sample. The best improvement (compared to non-corrected,
loosely filtered peptides, gray boxes, figure 14) was for the 1:10 spiked in corrected
sample where the median fold-change increased from 2.24 to 6.72. With increasing
ratio (higher amount of spiked-in peptide) the IQR also getswider. This phenomenon
seems tobeamplified followingdata filteringandalsoa�er ratio compression correc-
tion, the IQR increasing from 6.29 to 7.78 in the corrected, 1:10 pipetted sample and
from 2.24 to 5.03 in the uncorrected sample. The IQRs of the data from the smaller
foldchangesampleswasmuch lowerandmuchmorecomparablebetweencorrected
and non-corrected, filtered and non filtered data.

3.4 R-based graphical outputs

In addition to the above outputs an R script giving summary information for the files
acquired during the whole run is a useful addition. This is part of the isobarQuant
downloadable package and provides metrics about the performance of the instru-
mentation for each individual run. There are twelve di�erent plots which are sum-
marized in the table below. Example plots may be found in the appendix.

Table (4): Overview of R script output for instrument QC purposes
page in PDF output Output Description

1 Acquisition
overview table

Displays time, date and length of acquisition plus instrument
name
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Table (4): Overview of R script output for instrument QC purposes
page in PDF output Output Description

1 Search results
table

Displays Mascot search result information such numbers of
MS/MS assigned (unique / all) , number of hook peptides and

mean ppm error for precursors
1 Search details table Shows search database used with precursor and fragment ion

tolerance used
2 Log10 TIC

precursor
Distribution of log10 transformed precursor ion intensities

2 Log10 TIC MS/MS Distribution of log10 transformed total ion current intensities for
all fragment ions

2 Log10 TIC MS vs
MS/MS

Log10transformed precursor intensities as function of log10
transformed TIC intensities of MS/MS spectrum

3 Log10 precursor
over precursorm/z

Scatter plot of log10 transformed precursor intensities for
precursorm/z’s

3 Log10 MS/MS over
precursorm/z

Scatter plot of log10 transformed TIC of MS/MS fragment ion
intensities plotted per precursorm/z’s

3 Precursor ppm
delta overm/z

Scatter plot of deviation of precursorm/z from expected values

4 Distribution of
precursor charge

states

Histogram of di�erent precursor charge states recorded
throughout run.

4 Distribution of
MS/MS events per

precursor

Number of MS/MS events triggered from a single MS peak
selected for fragmentation

5 Basepeak
chromatogram

Basepeak chromatogramperminute retention time (RT)of the run

5 Frequency and fate
of MS/MS events

Histogram of frequency of MS/MS events per minute RT bin with
the corresponding success rate encoded by color. Success is

measured as nomatch found by search engine, match to a PSM
andmatch to high confidence (hook) PSM

6 cycle time between
MS1 scans

Density plot of cycle time between consecutive MS1 Scans

7 MS/MS rap fill time Density plot of time taken to fill Orbitrap for MS/MS spectra
8 Mascot Score

Distributions
Mascot score distributions for all rank 1 PSMs shown as a violin
plot overlaid by a box plot, where the interquartile range is

represented by the upper and lower box edges. The median score
value and total number of PSMmatches (n) is given

9 Mascot Score
distributions by
decoy / target

Mascot score distributions for all rank 1 PSMs as above but
divided into target and decoy peptides. Display is a violin plot

overlaid by a box plot, where the interquartile range is
represented by the upper and lower box edges. The median score

value and total number of PSMmatches (n) is given
10 True spectra vs FDR receiver operating characteristic (ROC) curve of cumulative true

positive PSMs at each estimated FDR
11 FDR vs Mascot

score
Plot of cumulative FDR for Mascot scores of PSMs to yield the
corresponding q-value. The q-value equaling an FDR of 1

12 Distribution of P2T Violin and box plot of P2T values
13 Distribution of S2I Violin and box plot of S2I values
14 Distribution of

FWHM
Distribution of FWHM of chromatographic peaks

15 Distribution of
distance MS/MS to

Apex

Distribution of time di�erence between apex of XIC and RT of
triggered MS/MS event

16 Distribution of
noise cut o�s at

m/z 128

Distribution of intensities of instrument noise aroundm/z 128 for
MS and MS/MS over retention times of run

16 Distribution of
noise cut o�s at

m/z 500

Distribution of intensities of instrument noise aroundm/z 500 for
MS and MS/MS over retention times of run

16 Distribution of
noise cut o�s at

m/z 800

Distribution of intensities of instrument noise aroundm/z 800 for
MS and MS/MS over retention times of run
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(a) All peptides quantified and filtered by MaxQuant (red) [4473] and isobarQuant (blue) [2208]. Peptide ratios esti-
mated by isobarQuant are closer to the pipetted values.

(b) The 2208 E. colipeptides sharedbetweenMaxQuant (red) and isobarQuant (blue). Filtering ofMaxQuant peptides
by isobarQuant criteria brings themedian of the fold change ratios closer into line with the expected values and the
IQR of the distributions are narrowed. Center line in box plots is themedian, the bounds of the boxes are the 75 and
25% percentiles i.e., the IQR and the whiskers correspond to the highest or lowest respective value or if the lowest
or highest value is an outlier (greater than 1.5 * IQR from the bounds of the boxes) it is exactly 1.5 * IQR

Figure (13): Box plot of peptide fold changes for E. coli peptides following processing of an identical .raw file with
MaxQuant and isobarQuant. E. coli samples were labeled in a dilution series and half were added to a human TMT-
labeled sample. All human protein was present at the same amount. The pipetted ratio for E. coli is shown on the
lower x-axis label before the slash and the pipetted human ratio is given a�er it. The pipetted (expected) values
shown as dashed green line. Fold changes were calculated by dividing all reporter ion areas by the baseline E. coli
signal with no human background. Fold change ratios with no human background showmuch higher accuracy and
greater precision, though in all cases are over estimated. . The box plots in the upper panel are based on the default
settings for quantification of peptides in either so�ware. In the lower panel, the box plots highlight the di�erences
in fold change between peptides from both so�wares filtered according to isobarQuant filter criteria.
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Figure (14): Boxplots tohighlight thee�ectof ratio compressioncorrection in isobarQuant for theKeshishiandataset.
Red boxes indicate the distribution of measured TMT fold changes a�er correction by isobarQuant and following
filtering to includeonlypeptideswitha recordedS2I valueof 0.75orhigher and fulfillingall otherdefault isobarQuant
quantification criteria. This ’highqua1ity’ set consists of 1988PSMsmapping to94non-redundantpeptides. Thedata
represented in the blue box plots are corrected by isobarQuant but not part of the high-quality set. These are only
filtered for an S2I of greater than 0.5 and yield 1232 quantified PSMsmapping to 94 non-redundant peptides. Green
box plots are data which are not corrected by isobarQuant for the e�ects of ratio-compression but are filtered by the
same criteria high-quality criteria. The gray boxes display the ratios of the non-corrected PSMs, filtered only to retain
all those with an S2I greater than 0.5 (as with the blue box plots). The expected (or pipetted) values are indicated
by the dashed, orange line. The x-axis is marked with the TMT reporter ion channel and under it the spiked-in ratio
with channel 128C as the denominator. The center line in the box plots is the median, the bounds of the boxes are
the 75 and 25% percentiles i.e., the IQR and the whiskers correspond to the highest or lowest respective value or if
the lowest or highest value is an outlier (greater than 1.5 * IQR from the bounds of the boxes) it is exactly 1.5 * IQR
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4 Discussion

With the releaseof isobarQuant theproteomics communitywasgivenaccess to state-
of-the art methods developed in order to computationally analyze the results of iso-
baric quantification in mass spectrometry experiments, with a particular emphasis
on o�-target proteomic analyses, which at the time of development was not covered
by any other tools. At the timeofwriting it is (knowingly) being used inmore than five
labsacross theworldand itsuse is referencedbymore than twentypublications178–202,
many of which perform the o�-target proteomic analysesmade possible through the
TPP experiments.

Its text-based outputs are simple and can be visualized without any additional
so�ware or tools. They contain only the data that is most relevant or required for
use with downstream analysis tools. However, all experimental and a great deal of
’meta’ data continues to be available within easy reach inside the .hdf5 files. Among
the papers cited to use isobarQuant one stated that it only used the peptides.txt out-
put of isobarQuant in a non-quantitative experiment: so the simplicity of the output
appeals not only to experimenters performing quantitative experiments. With amin-
imal amount of customization, isobarQuant was also successfully used to internalize
and re-analyze a very large data set that was no longer possible to view on a Mascot
server, probably because the large size of the dataset rendered this impossible.

4.1 Comparison to MaxQuant

The presence of human background in an E. coli dilution series leads to systematic
compression of E. coli signals in the direction of ratio 1:1. The situation is improved
by processing data with isobarQuant compared to processing with MaxQuant but is
still not completely resolved. Both so�wares perform equally when estimating fold
changes in the presence of no or low background. In this experiment a small un-
derestimation of the fold change ratios occurs in the background-free experiments,
but this is likely caused by increased signal in the baseline sample, probably due to
slight over-correction of reporter ions during isotope impurity correction or possibly
a small amount of ion coalescence from neighboring reporter ions during acquisi-
tion. The apparent compression of the fold change ratio in the 126 labeled sample
is surprisingly high, since no signal from E. coli was expected in that channel. Fold
changesdeterminedby isobarQuant show increasedaccuracyover thosedetermined
byMaxQuant for an identical set of peptides, demonstrating that the increased accu-
racywasnot solely brought aboutby theexclusionof peptideswith lower fold change
accuracies, but by the ratio-compression (S2I) correction. The numbers of peptides
identified byMaxQuant (Andromeda) and isobarQuant (Mascot) showeda goodover-
lapwithapproximately 10%more identifiedbyMascot at 1%FDR. In summary, isobar-
Quant o�ers a larger set of filter criteria to exclude peptides with less accurate quan-
tification signals thanMaxQuant and is able to correct for ratio compression which is
not currently possible within MaxQuant.
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4.2 Comparison to published dataset

The fold changes calculated by isobarQuant were more accurate than those pub-
lished by Keshishian and colleagues177 for spiked-in peptides across di�erent dilu-
tions in a complex background. The improvement was brought about not only by
more stringent filtering criteria but also by ratio compression correction. In all cases,
themedian peptide fold changes were shi�ed closer to their expected (pipetted) val-
ues. With increasing pipetted ratios, in-sample variability also increases. This appar-
ent drop in precision seems to be amplified upon both peptide filtering and ratio-
compression correction at higher fold change ratios. It was not removed by filtering
out peptides with overall lower reporter ion intensities and is likely a result of exper-
imental ’wobble’ associated with decreased pipetting accuracy at higher ratios. It
cannot be attributed to ratio compression correction since the decrease in precision
is also seen in the non-corrected, loosely-filtered data and appears to be inversely
proportional to higher expected ratios. Overall an improvement is brought about
compared to the fold changesoriginally calculatedwith results closer to theexpected
values resulting from the improved filtering and ratio compression correction.

4.3 General remarks

To the best of the author’s knowledge isobarQuant was the first freely-available, pro-
teomics so�ware tool that allowed the experimentalists to computationally correct
for ratio compression. Its simplicity of use was further demonstrated when the iso-
baric TMT tag was extended to fill all possible 11 channels in 2017. The only addition
needed for isobarQuant was the additionalmass for the ’heavy’ 131 reporter ion frag-
ment at m/z 131.144999 (more accurately termed the ’131C’ ion) along with the cor-
responding additional correction factors to perform the heavy isotope impurity cor-
rection); the identical situation occurred a second time in 2019 with the announce-
ment of new isobaric reagent, TMTpro, a sixteen-plex extended variant of TMT. iso-
barQuant worked as soon as the new mass values were added to the configuration
and it was immediately put to use in analyzing the new quantification tag. isobar-
Quant’s construction is generic enough that the new outputs simply had one (or six)
extra columns.

Theperformanceof isobarQuantwasdramatically improvedby adding themulti-
threading capability bringing the total processing time for 12 .raw files (the typical
number for a TPP single concentration o�line fractionated experiment) down to 10
hours from start to finish on a standard laptop. The pivotal role of the .hdf5 file and
PyTables in the speed and performance of isobarQuant cannot be underestimated.
It was an essential part of the investigation into peptide fragmentation in part IV and
enables the extraction of fragmentation data from many hundreds to thousands of
spectra stored throughoutmany files over a large SATA file system to amount to only
a few minutes. This under-explored functionality could really benefit scientists who
would like to create a spectral library or build transition lists for a target proteomics
approach but do not have the luxury of a large database to store the results of previ-
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ous experiments all the way down to the level of fragment ions fromMS/MS spectra.

5 Outlook

isobarQuant in its current format will continue to perform excellently for what it was
designed to do: isobaric quantification (and also MS1-based quantification; see fol-
lowing chapter III). It will continue to be able to process MS1, MS2, MSn spectra and
derive protein fold changes from filtered isobaric and reporter ions. However in the
years since its first publication, a couple of novel quantification methods have be-
come more established and could warrant investment to support them in isobar-
Quant. For example, Neucode203,204 which takes advantage of the mass defect be-
tween nitrogen and carbon atoms to open up a newmodemultiplexedmode of MS1-
based quantification using high resolution MS1 scans or the idea of using the series
of ions complementary to the reporter ions for quantification205,206or similarly EASI-
tag69.

Also, since the first release of isobarQuant a couple of new methods have been
published to reduce the e�ect of ratio compression207,208, how these compare to the
approach taken by isobarQuant would need to be investigated and the gain in value
of incorporating the methods would need to be assessed.

There are still a few specific sections of the code that could benefit from some
detailed profiling, such as the .mgf creation part which takes between five and ten
minutes tocreateasingle .mgf file, but since theoverall timespentondataprocessing
is still relatively low compared to the acquisition of the data this is not really a grave
issue; secondly, as is so o�en the case with modern so�ware development, it might
actually be more cost-e�ective to throw more hardware at the problem and simply
’buy a bigger server’ and run isobarQuant with more CPUs rather than spend time
refactoring code.

An evaluation of isobarQuant from a pure so�ware development sidemight con-
clude that a major reformat of isobarQuant to make it more modular would be ben-
eficial. This would make the functionality of key aspects of the so�ware available to
anyother applicationandcould thenbe implemented in theotherways suchas in the
processing of data from di�erent types of mass spectrometer. This would also make
it easier to use isobarQuant in concert with other computational mass spectrometry
so�ware such as Percolator124, Ursgal127 or pyQms209. There would also be benefit in
the integration of isobarQuantwith other search engines apart fromMascot. Since its
development there has been an increase in the number of published search engines
(or improvements to their underlying algorithms) for example MSFragger92, peppy78

or MS-GF+210 as well as alternativemethods of sequencematching involving de novo
or AI approaches107,108) that might o�er some advantage over Mascot in certain sce-
narios. The first requirement here would be to at least include all Mascot peptide
ranks.

The focus of themajority of the studies for which isobarQuant has been usedwas
changes in abundance between specific gene products under di�erential conditions
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(various temperatures, di�erent compound concentrations or other alternative set-
tings)where itwasnotnecessary toextend the level of granularity tobeyond thegene
level. Performing experiments to dissect and investigate changes at the level of alter-
native splice isoforms is currently possible with isobarQuant, but to really delve into
and make sense of peptides in this di�erent context will require a fresh look at the
protein inference part of the so�ware, even if the peptide and quantification parts
could in essence remain as they are now.

A more pressing need to be addressed will be the shi� in Python version. The
Python So�ware Foundation will cease to support Python 2x in January 2020211 and
a�er this point the Python community will only continue development of Python 3x.
This will not mean that isobarQuant will no longer work but, as with a large num-
ber of other systems running legacy code throughout the world, staying on Python
2x will mean that any new features brought out in Python 3x will not be accessi-
ble. The switch to Python 3x is not trivial and would require a new version of the
compiled library against the Thermo Fisher Scientific DLL. It could also be the trig-
ger to start looking into alternative ways of the accessing raw data in ways similar to
mzMine212 or the Thermo Fisher Scientific API for Linux or potentially using a Linux
machine running WINE (a free and open-source compatibility layer that aims to al-
low computer programs developed for Microso� Windows to run on Unix-like oper-
ating systems) as described at the UPWR (https://proteomicsresource.washington.
edu/protocols06/wine/). A less convenient approach would be to first convert .raw
files tomzML213 using a so�ware such as ThermoRawParser214 or theMSConvert util-
ity of ProteomeWizard215 and enable isobarQuant to use that as its starting point.
However, this has the primary disadvantage of adding quite some processing time to
the pre-Mascot workflow, since files need to be converted twice, once to mzML and
then a second time to .hdf5 format.Themain advantage of this would be to bring iso-
barQuant much more in line with the current community standards such as TPP141,
openMS216 and Galaxy217 which use mzML (or .mgf) as their input formats.

In this author’s opinion theproteomics community is currently in the first quartile
of thedevelopmentof quantitativeproteomics. Theopportunities o�eredbyDIA; tar-
getedmethods such as SRM /MRM and PRM; MS1 precursor glsm/zwindow selection
techniques such as Boxcar218; targeted quantitative approaches like TOMAHAQ37 and
of course the continued advances in label free quantification through ever improved
methods. isobarQuant is well placed to be part of it.

6 Author Contribution to project

The results of this project were published in ref.161, as part of the isobarQuant pack-
age, a constituent of the suite of so�ware for processing experiments in Thermal Pro-
teome Profiling mode.

TobyMathiesonco-designed the layoutand initial implementationof isobarQuant
and wrote the post-Mascot part of the pipeline, contributing significantly to the pre-
Mascot part of isobarQuant in terms of design, concept and coding. All data analyses
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presented in this section were conceptualized and performed by the author. The au-
thor implemented themulti-threading capability of both post- and pre-Mascot work-
flows and designed and coded all Mascot-server specific parts of the pipeline. All ex-
periments to assess and compare the results of mitigation of ratio compression to
the MaxQuant so�ware was conceptualized by the author and the laboratory exper-
iments were performed at Cellzome, a GSK company as part of a standard workflow
QC step. Since its publication, the author has been the first point of contact for all
external communications related to the project with several di�erent international
laboratories.

83



3 - isobarQuant for Protein Turnover

Part III

Systematic analysis of protein turnover in
primary cells - an extension to
isobarQuant to allow peptide ion
(MS1)-based quantification

1 Introduction

In its first implementation isobarQuant focused on the determination of relative pro-
tein abundance via fragment ion intensities from isobaric tags. This technique is well
suited to di�erential quantification experiments where changes between di�erent
conditions are sought, but it is not as accurate as peptide ion (MS1) intensity-based
methods. In the next project presented in this PhD thesis the intention was to use
SILAC to measure global protein turnover is several primary cell types in a pulsed
(dynamic) workflow. Here, precise and accurate MS1 quantification is paramount,
since even small deviations in the accuracy ofmeasured fold changes can have a pro-
nounced e�ect on the half-lifemeasurement219. This is particularly acute whenmea-
suring protein turnover in non-dividing cells220 since many proteins exhibit a very
slow turnover because the replication of the entire proteome, which normally oc-
curs in exponentially growing cells, is not taking place. In these cases missing quan-
tification values (the result of peptide ion signals dropping below the instrument-
determined noise thresholds173) can also become problematic. Secondly, primary
cells can only be kept in culture for a limited amount of time before adapting to the
cell culture conditions or going into senescence, hence protein turnover determina-
tionsmust be based on relatively short-term treatmentswith stable isotope-encoded
amino acids.

To enable reliable half-life determination from these very small changes in pro-
tein abundance the author developed methods based on a better utilization of the
isotopic distributions of ionized peptides and their associated features and incorpo-
rated these into isobarQuant. A great deal of time was spent in optimizing the al-
gorithms to ensure the highest quantified protein coverage but using only the most
accurate peptide fold changes. The resulting improvements in isobarQuant led to the
publication of a catalog ofmore than 9, 600protein half-lives across five di�erent pri-
mary cell types.

1.1 MS1-based quantification in other so�ware

At the time of development of this part of isobarQuant there was already some so�-
ware that couldperformMS1-basedquantificationavailable: MaxQuant138, PyQuant221

andProteomeDiscoverer (ThermoFisher Scientific, SanJose, CA,USA144) but their fo-
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cus had primarily been on higher ratio fold changes a�er label incorporation in grow-
ing cells and the precision and accuracy for quantification of very low protein ratios
had not been presented. Additionally, with the simple isobarQuant framework al-
ready in place, it wouldmake sense to be able to process data using isobarQuant and
to create outputs in a familiar, similar layout; not only for the ease of experimenters
but also for any downstream tools that might be reliant on a given structure.

Experiments would be performed in five di�erent primary cell types. Four from
human: B-cells; natural killer (NK) cells; undi�erentiated monocytes; and one non-
immune cell type hepatocytes; and from mouse came embryonic neurons. In these
non-dividingcells, the incorporationofheavy isotope labelswill bevery slow for some
proteins and will consequently be error prone particularly at the early time points.
Understandably this demands high confidence in the measurements we make but
equally this should not come at the cost of low coverage. The goal was therefore to
investigate and optimize the parameters leading to protein fold changes which are
as accurate, precise and reproducible as possible and also for the highest obtainable
number of proteins.

Most MS1matching so�ware uses an averaginemodel fitted to an XIC of acquired
values. The averagine model, making use of a virtual amino acid ’averagine’, con-
structed using the statistical occurrences of amino acids in the human proteome, is
o�en used to estimate a precursor’s isotopic envelope because the elemental com-
position of the precursor is not known until a�er the peptide identification step is
performed at a later stage in the workflow222. Consequently, any measure of fit be-
tween the intensities will be inaccurate compared to a model that is based on the
actual peptide being identified. This limitation is not likely to have a strong impact
whendealingwith large fold changesbut gains in importancewhen the intensity ratio
is very low. Equally important at these very low ratios is ameasure to detect overlap-
ping isotopic distributions from di�erent peptides which couldmask the true signal.
The di�erence of using an exact model versus an averagine model is illustrated for a
theoretical peptide in figure 1.

2 Methods and implementation

In order to determine half-lives of proteins in five di�erent types of non-dividing cells,
a pulsed-SILAC approach was applied. Themass spectrometry data was acquired on
a high resolution Thermo Fisher Scientific Q-Exactive instrument. In order to obtain
the most accurate and precise data, the isobarQuant so�ware package was adapted
and used to process the acquired data.

2.1 Preparation of samples
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Figure (1): Example of fitting two di�erent intensity models to a measured isotopic cluster. The averagine model,
here depicted by red bars is fitted to the acquired intensities with a worse least squares fit than the exact model,
here shown as blue bars. Following identification of a peptide and modification(s) by the Mascot search engine it is
possible to construct an exact model from its elemental composition. An intensity for the heavy or light peptide is
calculated by fitting the corresponding exact model of the peptide (here the SILAC-light form of peptide GPCMSE-
QAMGPCMSEQAMK) to the acquired data using a least-squares method.

Time point B-cell replicates NK cell replicates Monocytes replicates Hepatocytes-replicates Mouse Neurons
1 7 hours 7 hours 7 hours 9 hours 6 hours
2 11 hours 11 hours 12 hours 12 hours 12 hours
3 24 hours 25 hours 24 hours 27 hours 24 hours
4 34 hours 35 hours 36 hours 75 hours 35 hours*

* second replicate: 36 hours

Table (5): Times of pulse-in experiments

2.1.0.1 Primary cell isolation and treatment Primary humanhepatocytes (KaLy
Cell) and human monocytes, B-cells and NK cells, isolated from peripheral blood
mononuclear cell (PBMC)s derived from bu�y coats (German Red Cross, Mannheim)
bymagnetic-bead based negative selection (STEMCELL Technologies), were adapted
to the light (L) SILAC medium overnight at 37°C. Cells were then pulse-labeled with
heavy (H) isotope-labeled amino acids (lysine, (13C615N2, Sigma-Aldrich, 608041) and
arginine (13C615N4, Thermo Fisher Scientific, 88434)) for the indicated time periods:
Table (5), washed, pelleted, and snap-frozen in liquid N2. Cell pellets were lysed in
bu�er containing 4% SDS and digested with benzonase.

2.1.0.2 Primary neuron culture Cortical neuronal cells were isolated from pre-
natal embryos of CD-1 mouse at embryonic day 15 (E15). To dissociate the cortex tis-
sue, itwas finely choppedbyscalpel followedbydigestion inAccutase (ThermoFisher,
A1110501) for 12 mins. To prevent clumping due to DNA from dead cells, tissue was
treated with 250 unit/µl of benzonase (Millipore, 71206-3). Neurons were triturated
gentlywith a fire-polishedPasteur pipette andpassed through the 40µmcell strainer
(BD Falcon, 352340) before plating them onto 6 well plate at a density of 1x106 cells
perwell. Theplateswerecoatedwith0.1mg/mlofpoly-D-lysine (Sigma-Aldrich, P0899)
and 2.5 μg/ml of laminin (Sigma-Aldrich, 11243217001). Cultures were maintained in
Neurobasalmedium (ThermoFisherScientific, 21103) containing 1%penicillin / strep-
tomycin (ThermoFisher, 15140122), 1% GlutaMAX (ThermoFisher, 35050), and 2% B27
supplement (ThermoFisher, 12587) at 37°C with 5% carbon dioxide in the incubator.
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Figure (2): Workflow for determination of protein half-lives taken from ref.181. To label newly synthesized proteins,
the cells were exposed to heavy SILAC medium and collected at di�erent time points. A�er protein extraction, pro-
teolysis with trypsin, sample preparation, and subsequent LC-MS/MS analysis, the peptides were identified by the
Mascot search engine and quantified via isobarQuant. Peptides of pre-existing and newly synthesized proteins were
distinguished by their mass due to incorporation of light or heavy arginine and lysine. Protein fold changes at dif-
ferent time points were calculated using the intensity ratios of heavy vs. light SILAC peptides and were used for
subsequent protein half-life determination.
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Post-seeding a�er 1 day in vitro (DIV 1), half of the medium was replaced with fresh
pre-warmed Neurobasal medium with all the supplements (above). On DIV 4, neu-
rons were treated with 1.0 μM of cytosine arabinoside (Tocris, 4520/50). On DIV 5 dy-
namic SILAC experiments were started by exchanging one fi�h of themediumwith a
final 10x excess of heavy lysine (13C615N2, Sigma-Aldrich, 608041) and heavy arginine
(13C615N4, ThermoFisher, 88434). Cells were harvested 0 hours, 6 hours, 12 hours, 24
hours or 36 hours a�er pulse, washedwith PBS including protease inhibitors (Sigma-
Aldrich, CO-RO Roche) and lysed in 50mM Tris-HCl, pH7.4, supplemented with 4%
SDS and benzonase. Lysates were cleared by centrifugation at 20,000 xg at room
temperature, followed by protein concentration measurement (BCA assay, Thermo
Fisher Scientific, 23225). 20µg protein of each time point were used for MS analysis.

All animals were housed in the EMBL animal facilities under veterinarian super-
vision and are treated following the guidelines of the European Commission, revised
directive 2010/63/EU and AVMA guidelines 2007.

2.1.0.3 THP-1SILACcellmixtures formethodevaluation THP-1 cell cultures (ATCC
TIB-202)were established in RPMI-based SILACmedia and supplementedwith either
light or heavy isotope labeled-amino acids (as above, 2.1.0.2). For harvesting, the
cells were washed, pelleted, and snap-frozen in liquid N2. They were lysed with 4%
SDS in 50 mM Tris-HCl pH 7.4 and the DNA was digested with benzonase nuclease
(Sigma, E1014-25KU). Three independent dilution series (1:1, 1:9 and 1:49) were cre-
ated bymixing the 25 µl, 5 µl and 1 µl (respectively) of SILAC-H to SILAC-L medium to
a final volume of 50µl.

2.1.0.4 Samplepreparation formassspectrometry CellswerewashedwithPBS
and the supernatant was removed completely before cells were lysed in 2 % SDS for
3 min at 95 °C in a thermomixer (Thermo Fisher Scientific), followed by digestion of
DNA with benzonase at 37 °C for 1.5 hours. Lysate was cleared by centrifugation and
the protein concentration in the supernatant was determined by BCA assay. Pro-
teins were reduced by DTT and alkylated with iodacetamide, separated on 4−12%
NuPAGE (Invitrogen), and stained with colloidal co-omassie223 before proceeding to
trypsin digestion and mass spectrometry analysis (see 2.1.0.5). Gel lanes were cut
into three slices covering the entire separation range (~2 cm) and subjected to in-
gel digestion224. Peptide extracts were additionally fractionated on an Ultimate3000
(Dionex, Sunnyvale, CA)using reversed-phasechromatographyatpH12 [1mmXbridge
column (Waters, Milford, MA)], as described in ref.225.

2.1.0.5 LC-MS/MSanalysis Samplesweredried in vacuoandre-suspended in0.05
% TFA in water. Of the sample, 50% was injected into an Ultimate3000 nanoRLSC
(Dionex, Sunnyvale, CA) coupled to aQ-Exactive plus (Thermo Fisher Scientific). Pep-
tideswere trappedona5mmx300µmC18column (Pepmap100, 5µm,300Å, Thermo
Fisher Scientific) inwaterwith 0.05%TFA at 60 °C. Separationwas performedon cus-
tom 50 cm × 100 µM (ID) reversed-phase columns (Reprosil) at 55°C. Gradient elution
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was performed from2%acetonitrile to 40%acetonitrile in 0.1% formic acid and 3.5%
DMSO over two hours. Samples were online injected into Q-Exactive plusmass spec-
trometersoperatingwithadata-dependent top 10method. MSspectrawereacquired
using 70,000 resolution and an ion target of 3x106. HCD scans were performed with
25%nCEat 17 500 resolution (atm/z200), and the ion target settingwas fixedat 1x106.
The instruments were operated with Tune 2.3 and Xcalibur 3.0.63.

2.2 Post acquisition analysis

The isobarQuant suite of so�ware was adapted to perform peptide precursor inten-
sity based quantification by including a module that is triggered a�er the Mascot
parser step is finished. It is described below. The codewas adapted so that themeth-
ods associated with isobaric quantification were not invoked. The switch between
quantification modes is determined by the quantification method supplied on the
command line at the start of the pre-Mascot. workflow. The masses related to SILAC
quantification were added to the configuration file (QuantMethod.cfg) in the section
[’silac3’] (as it is possible to perform SILAC in three modes, although for this experi-
ment only two were used, heavy and light): for LIGHT (K+0, R+0), MEDIUM (K+13C6,
R+13C6) and HEAVY (K+13C6+15N2, R+13C6+15N4) SILAC modifications on lysine and
arginine. The quantification source was set to MS1.

2.2.0.1 Pre-Mascot workflow Data were processed using the pre-Mascot work-
flow as described in part II and then searched with Mascot 2.5 via the Mascot Dae-
mon version 2.5.1 against the October 2014 release of Human Uniprot Proteome ap-
pended with a reverse decoy version of the same with 10 ppm mass tolerance for
peptide precursors and a 20mDa tolerance for fragment ions (since high resolution
datawere acquired in HCDmode in theOrbitrap). Carbamidomethylation of cysteine
residueswas selected as a fixedmodification and the followingwere selected as vari-
able modifications: oxidation of methionine, acetylation of protein N-termini, SILAC
heavy label 13C(6) 15N(4) on arginine (+10.008269 Da), and SILAC heavy label 13C(6)
15N(2) on lysine (+8.014199Da).

2.2.0.2 Quantification of peptides and calculation of intensity fits This was
thepointwithin the existingworkflow that the first adaptationsweremade to include
MS1 based quantification. The post-Mascot workflow of isobarQuant was started in
‘mergeresults’ mode to merge data acquired from the multiple o�line fractionation
steps. The first part of theworkflowextracts the relevant data from theMascot results
files as described in 2.2.1 to ensure that the links were made between the identified
peptides and their precursor ions. Following this internalization, the algorithm pro-
ceeds as follows:

1. Peptides are selected from the peptides table in the .hdf5 file and filtered to
only include Mascot rank 1 peptides. Based on the peptide sequence, charge
state and any modifications [not related to quantification (e.g. heavy SILAC
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arginine)] all PSMs are condensed into groups, with the highest Mascot scoring
PSM representing each group as a single record. This single record is referred
to as a PCM. It is assumed here that the best Mascot score is a proxy for the
PSM present at highest abundance. Additional information is selected from
the msmsheader table in the .hdf5 file (precursor m/z), retention time, reten-
tion time apex, and survey scan ID)

2. The PCMs are processed in ascending order of RT. Later on this expedites the
selection of relevant precursor data. Based on the PCM’s monoisotopic mass,
theoretical isotope mass distributions and intensities are calculated for both
labels (H/L) and the charge associated with it. The theoretical masses and in-
tensities are derived either using the exact model (based on the atomic values
of the peptide and any modification) or on the averagine model using the av-
erage for atoms in 20 amino acids. The choice of model to use for quantifica-
tion can be configured to use the averagine. During the development phase
both values were kept and stored for use in the downstream calculations and
assessments.

3. The raw XICs present within a one-minute window around the PCM’s retention
time (andwithin an8mDa /8ppmtoleranceof recordedm/z) are extracted from
the raw data for each isotopemass.

4. Chromatographic peaks in each XIC were detected and grouped to form iso-
topic clusters for each label state. The grouping involved themapping of over-
lapping peaks identified from each isotope XIC to peaks identified from the
monoisotopic XIC. Peaks are only considered to be overlapping when the RT
spread between the two 50% apex intensity points of the peaks overlap. All
possible clusters are generated before removing anywhere the first 13C isotope
is missing. If switched ’on’ in the configuration, at this point the isotope clus-
ters are also generated from the preceding survey spectrum (PS) just prior to
theMS2 spectrumacquisition (of the PCM) and also from the survey scan at the
apex (AS).

5. According to the given PCM an exact model of the intensities of the theoretical
isotopic envelope, based on its elemental composition, was constructed. This
is depicted below (Fig. 3) and is carried out for all available labels (here: the
heavy and light SILAC versions of the PCM).

6. A least-squares method was used to find the isotopic cluster with the best fit
to the exact model from the list of candidates in the XIC data. This yields two
values: a fitted intensity used for quantification and ameasure of the quality of
the fit, calculated as the sum of the squares of the residual values. If the fit of
the best of the XIC clusters is greater than 0.1 it is compared to the fits obtained
from the AS and PS and the best fitted result of the three is selected.
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7. The quantification value, reported and stored in the .hdf5 file, is the sumof the
theoretical intensities calculated for the labelmultiplied by the fitted intensity.

2.3 Assessment of averagine and exact model

To test the assumption that a theoretical isotopic envelope based on the exactmodel
matches more accurately to the identified isotopic peaks than the averagine model,
the thirteen .raw filesoriginating fromthemonocytes sample, harvested7hours a�er
swapping to heavy medium were processed using isobarQuant. The peptides were
filtered for Mascot score > 15, passing 1 % FDR threshold and the values represent-
ing the quality of the least squares fits of the peptides (calculated as the sum of the
squares of the residual values, referred to as the least squares fits from here on) were
stored in the .hdf5 file. The values for either model were -log10transformed and plot-
ted for the same precursors, firstly for light and then for heavy peptides.

2.4 Calculation of prior ion ratio

The ‘prior ion’ is defined as the peak occurring at anm/z corresponding to the loss of
one neutron from the monoisotopic ion. This peak is not expected to be present in
light peptides and to have a low intensity for heavy peptides because it is usually the
result of incomplete incorporation of heavy atoms into the heavy SILAC label; this is
shown in le� panel, Fig. 3. If an intense peak is present at this position it indicates
that a co-eluting (interfering) isotope cluster is present and that the fitted intensity is
likely to be overestimated (right panel, Fig. 3).

2.5 Determination of optimal settings and implementation within iso-
barQuant

For this part of the analysis the same monocyte data from the early time point (7
hours a�er swapping to heavy medium) was assessed to see the e�ects of di�erent
cut o�s on the total number of peptides and proteins quantified using both the exact
and theaveraginemodel. Thee�ecton reproducibility /precisionwasalsoexamined.
The early time point was chosen as it would represent the most challenging setting
where the fold changes would still be very low. The relevant data was extracted from
the .hdf5 files and processed using R or Python and plotted in R, Python or GraphPad
Prism.

2.5.1 Assessment of least squares cut o�

isobarQuant which was adapted as described above to store the least squares fits
and calculated prior ion ratios to all PCMs (both heavy and light labels) was run once
using the averaginemodel and once using the exact model for each of themonocyte
datasets (both replicates) in ’merged results’ mode. Protein inference and FDR cal-
culations were performed as described above (2.2.2). Having then applied the ’stan-
dard’ filters for uniqueness, Mascot score > 15, peptide length≥6andFDR< 1% itwas
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Figure (3): Depiction of the least-squares fitting of the theoretical envelope to acquired isotopic clusters and calcula-
tion of its ’prior ion’ ratio. In this example, the theoretical isotopic envelope of the SILAC-heavy form of the peptide
GPCMSEQAMGPCMSEQAMK is fitted to the acquired intensities. A low intensity, ‘prior ion’ is observable prior to the
intensemonoisotopic peak. The ratio of the sumof the intensities fitted to the theoretical envelope by least squares
fitting (blue bars) divided by prior ion intensity is termed the ‘prior ion ratio’. In the first case this ratio is small be-
cause no overlapping isotope cluster is present (black sticks), but in the second, an indistinguishable interfering or
co-eluting cluster (red sticks) is shownwhich results in a high prior ion ratio despite a good fit from the least squares
method.
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possible to calculate themedian protein fold changes for a range of least squares cut
o�s starting at 1.0 and descending to 0 in 0.01 intervals. This was a straightforward
task because the protein data was also available directly in the .hdf5 file and it was
simple to link the peptides to their corresponding proteins. Themedian fold changes
of the di�erent replicates (on peptide and protein level) were then compared and
the IQR was plotted for the di�erence between the two replicates. In cases of repeat
peptides the best scoring PCM was used from both replicates. For this assessment
all data passing the described filters were included (i.e. no prior ion filter was ap-
plied). The number of quantified PCMs (peptides) passing the cut o�s and the least-
squares-fitted intensity was recorded as well as the total number of quantified pro-
teins yielded.

2.5.2 Assessment of prior ion ratio cut o�

The results of the first 7 hour monocyte data set were treated as described for the
least squares threshold (see 2.5.1) and the range of thresholds tested started at 0.5
and descended to 0 in intervals of 0.01. Density plots weremade of spread of the log2
deviation of each individual peptide fold change from the log2 fold change its protein
at the di�erent cut o�s.

2.5.3 Assessment of the exclusion ofmissing peptide fold changes in the calcu-
lation of the protein fold change

Following processing as described above and a�er filtering away peptides based on
the resulting optimized thresholds, the e�ect on protein fold change reproducibility
between the 7 hour monocyte replicates was assessed a�er removing all peptides
with indeterminable ratios (fold changes of zero resulting from one missing channel
butwhosepeptideotherwisepasses all quantification-dependent filters). The trigger
for this removal was di�erent total counts of positive peptide fold changes for each
protein starting at a minimum of one and going up to maximum tested value of ten.

2.6 Comparison between isobarQuant and MaxQuant

In order to compare quantification precision and accuracy to awidely used so�ware,
a THP-1 SILACmixture was analyzed with both isobarQuant andMaxQuant138. A dilu-
tionserieswassetupandacquireddatawereprocessedwithMaxQuant (Version1.5.8.0)
using thesettingsgenerally recommended forSILACquantification226. Searcheswere
performedusing the same search database (see paragraph 2.2.0.1) for both so�wares
using carbamidomethylation of cysteine as a fixedmodification and oxidation ofme-
thionine and acetyl (protein N terminus) as variable modifications. The mass toler-
ance for the precursor was 4.5 ppm and 20 ppm for the fragment ions, ‘re-quantify’
optionwasswitchedon, (a separateanalysiswasalsoperformedwith the ‘re-quantify’
option switchedo�), in the section ‘group-specific parameters’ amultiplicity of 2was
selected,withArg10andLys8chosenas the ‘Heavy labels’. Thesettingsused forquan-
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tification were the same as above (2.2.1), but implemented the optimal results from
the least squares, prior ion ratio and non-zero filtering investigations.

2.7 Protein half-life determination

Protein half-lives were determined according to amodified version of the protein de-
cay ratemethoddescribedbySchwanhäusseretal.51. Because thesearenon-dividing
cell types, the cell cycle time correction component was removed from the equation
to give the formula:

kdp =

∑m
i=1 loge(rti + 1) · ti∑m

i=1 t
2
i

where kdp is the rate constant of the protein decay,m is the number of time points
(ti) considered and rti is the fold change ratio (heavy / light) of a specific protein at
each time point. The half-life of a protein (T1/2) is then calculated by

T1/2 =
loge2

kdp

For each protein, a linear model was fitted to the time course of the logarithmic
protein fold changes loge(rti + 1) and the coe�icient of determination (R2) for the
linear regression was recorded. The QC value was set to ‘weak’ if it was possible to
determine a fold change in at least three out of the four time points, ‘good’ if the
protein fold changes at three out of the four time points were based on a minimum
of three quantified peptides and ‘poor’ for the remainder.

2.8 Assessments of protein half-lives in complexes

2.8.1 Analysis of half-life variability within protein complexes

All proteins identified in any of the cell types were mapped to complexes using the
hu.MAP complex database227. A Python script was used to filter the complexes to
contain at least five quantified proteinmembers in a given cell type and the standard
deviation of the log10 transformed half-lives among the complexmembers was com-
puted. In order to create a reference that indicated half-life variability as expected by
chance, random representativeswere drawn from the list of proteins associatedwith
the complexes in a given cell type and placed into groups representing the di�erent
numbers of true complexmembers. Thus, in the end, a random group of proteins as-
sociated with a complex will have the same number of proteins as the original, true
complex group. Once again the standard deviation of the log10 transformedhalf-lives
among the proteins within each group was computed. Di�erences in the log10 half-
lives of true protein complex members vs. the random draws of proteins in a given
cell type were assessed by Wilcoxon-rank test (significance levels were encoded as
*** p < 0.001, ** p < 0.01, * p < 0.05). The results were plotting using Python and its
visualization library, Matplotlib.
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2.8.2 Mapping of protein half-lives onto protein complex structures

For each cell type, the mean protein half-lives calculated from two replicates were
mapped onto protein complex structures as a linear three-color gradient. To avoid
distorting the gradient by outliers with exceptionally high or low half-lives, the gra-
dient midpoint was set to the median half-life of the subunits of the complex and
the lower and upper half-life values for the linear interpolation were set to the 15th
and 85th percentile, respectively. The half-lives outside this percentile range were
clipped. The median and percentiles were calculated as a mean of, respectively, the
medians and percentiles of each biological replicate. For coloring the Nup214 com-
plex, which is represented in the structure as a single density segment composed of
three subunits, themeanhalf-life of all three subunitswas used. All calculationswere
performed using half-lives with an R2 of at least 0.25.

3 Results

isobarQuant was adapted to perform MS1-based quantification as part of the first
stage of the post-Mascot workflow. Since the SILAC quantification values are linked
to the results of the Mascot search (basis for the exact model), the quantification val-
ues are stored in the .hdf5 file within the same group as the Mascot results. Together
with thedetermined least squares intensities, theprior ion ratios and least squares fit
values are recorded in the .hdf5 file. These are later used to filter the values taken for-
ward for the calculation of the protein group’s median fold change. The adaptations
also enable isobarQuant to handle other MS1 (precursor) intensity-based quantifi-
cation methods including dimethyl labeling58, mTRAQ228 and hyperplexed dimethyl
modes59,229.

3.1 Averagine versus exact ionmodel

Compared with averagine, the fits are on average better for the exact model. For the
light peptides the mean improvement in -log10 transformed least squares fits is 0.17
and 0.38 for the heavy peptides. The overall stronger improvement for the heavy
peptides is brought about by the inclusion ofmasses of themodified lysine and argi-
nine residueswhencalculating the theoretical isotopic envelope,while the averagine
modeldoesnotdistinguishbetweenheavyand lightpeptidesand thereforeperforms
worse for heavy peptides. However, the improvements are not universal. In some
cases, the least squares fits are poor for both models and no improvement is ob-
served indicating that the measured isotopic clusters do not fit well to either model.
For more than one third (32, 494) of all isotopic distributions determined for identi-
fied peptides (100, 938) a worse least squares fit was obtained with the exact model
compared to the averagine model and these generally correspond to identifications
with lower Mascot scores (mean ion score 39 vs. 46).
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Figure (4): The adapted isobarQuant workflow showing the location of the MS1 quantification step in purple, taken
from ref.181. The monoisotopic mass of the peptide (plus charge and modification(s)) is used to determine exact
mass and isotope distribution from its atomic composition which can then be matched to the observed precursor
data from the .raw file also stored within the .hdf5 file.

3.2 Optimization of filters for maximum coverage with highest preci-
sion and accuracy

The aim of this part of the investigation was to enable more peptides and proteins
to be quantified more accurately and with greater precision. The investigation into
the e�ect of using the averagine model was also extended. To this end, the adapted
isobarQuant was run in twomodes (once using the exact model and once with aver-
agine).

3.2.1 Assessment of peptide filters based on fit quality of isotopic distributions
and prior ion ratio for improving quantification accuracy.

A substantial improvement in reproducibility (measured by the interquartile range of
the delta log2 fold change between replicates) compared to all proteins is achieved
using the exact model when applying the filter at 0.1, with relatively low loss of pro-
teins. A similar trend is observed for the averaginemodel up to a least squares cut o�
of 0.1, however the protein fold changes are less reproducible throughout; a�er this
cut o� the reproducibility for the averagine model becomes more unstable.

Theexactmodel startswitharound300 (approximately5%) fewerquantifiedpep-
tides than the averagine model; these are all filtered away around the least-squares
threshold of 0.5. A�er this point the exact model consistently yields more peptides
than with averagine. The number of peptides retained at the di�erent least squares
thresholds above approximately 0.1 decreases slowly, Fig. 6a. A�er this point the de-
crease becomes more rapid with the increasingly stringent filtering. Only 5% of the
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(a) Le� side: Scatter plot of -log10 transformed least squares fits of the same light peptides for the exactmodel (x-axis)
versus the averagine model (y-axis). Right side: as previous but for the heavy SILAC peptides.

0 1 2 3 4 5 6
-log10(least squares)
[score>15, ls<0.25]

light exact model

light averagine model

0 1 2 3 4 5 6

-log10(least squares)
[score>15, ls<0.25]

heavy averagine

heavy exact model

(b) Density distribution of the –log10 transformed least squares fits where fit is less than 0.25 andMascot
score for underlying peptide is greater than 15. The dashed line represents the averagine model and the
solid line the exact model. Le�, light peptides; right, heavy. The improved performance for the exact
model indicated by the shi� to the right of the density is more marked for the heavy peptides

Figure (5): Data from thirteen .raw files fromone cell type (monocytes), harvested at a single timepoint (7 hours a�er
swapping to heavymedium)was analyzedwith isobarQuant, once using an exactmodel and oncewith an averagine
model.
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peptide spectramatched to the averaginemodel at themost stringent filter criterion
(0.01 least-squares fit cut o�) compared with 23% achieved using the exact model.
Themean signal abundanceofmatchedpeptides increases asmore stringent cut o�s
are applied, with the trend more pronounced for the exact model, Fig. 6c. This may
be accounted for by the fact that peptides with higher signal intensity have better
ion statistics and thereforemeasured isotope patternsmatch better with their corre-
sponding theoretical isotopic envelopes. The trend ismore pronounced for the exact
model than the averagine model and least squares fits for high abundance peptides
are markedly better than those achieved with the averagine model (Figs. 6a & 5a).
The reproducibility in peptide quantification,measured as the IQR of fold change dif-
ferences between identical peptides in the biological replicates, is better with more
stringent filters. A substantial improvement in reproducibility compared toall quanti-
fiedpeptides is achievedusing the exactmodel; with a least squares filter of 0.1which
retains 75% of all quantified data (Fig. 6e). The averagine model yields the same re-
producibility as the exactmodel at the 0.1 cut o�, but substantially fewer peptides are
quantified (40% are lost as compared to 25% with the exact model). Similar trends
were observed on the protein level (Figs. 6b, 6d & 6f) . At the least squares cut o�
at 0.1, where 87% of all proteins are still quantifiable but a�er this point the rate at
which proteins are filteredwith each least squares cut o� increases. At a cut o� of 0.1,
the reproducibility in protein quantification, IQR, using the exact model is improved
by 15% compared to the averaginemodel, Fig. 6d. The reproducibility of the proteins
that are kept a�er applying the 0.1 threshold using the exact model, and assessed by
calculating the standard deviation of the distribution of log2 protein fold change dif-
ferences between two biological replicates, is much better, (σ=1.21, Fig. 6f, blue line)
than the reproducibility of the proteins that are filtered away, (σ=2.15), Fig. 6f, red
line).

The influence of the prior ion ratio, the ratio between the ion intensity of a peak
corresponding to the loss of one neutron from the monoisotopic ion and the ion in-
tensity from the peptide of interest, on precision of quantification was investigated
for the exactmodel data. The number of quantified peptides decreases with increas-
ing prior ion ratio, 7a. The fitted intensity increases slightly withmore stringent prior
ion cut o�s up to a value of 0.08, a�er which it decreases rapidly as the most in-
tense ions are filtered out. This figure coincides with the maximum possible miss-
incorporation rate for atoms into the heavy label. At this threshold there is essentially
nodi�erencebetweenapotentially interfering cluster and the intensity expecteddue
to a prior ion, so a large number of peptides get filtered out (Fig. 7b). Reproducibility
was gauged by measuring the IQR between identical peptides in each of the biologi-
cal replicates. The improvement in reproducibility is steadyuntil a cut o�of 0.08a�er
which it rapidly worsens as the more intense data, which is typically more robust, is
filtered away, (Fig. 7c). The optimal cut o� for prior ion ratio appears to lie between
0.08 and 0.2. Since there is a di�erence of 17% in the number of quantified peptides
between these thresholds and no substantial di�erence in reproducibility, the value
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Figure (6): Assessing the impact of the least squares fits of labeled peptides The gray dashed line shows the selected
threshold: 0.1 for the quality of the least squares fits of peptide isotopic distributions calculated as the sum of the
squares of the residual values. Figure (a): Despite starting with 300 more quantified PCMs, the exact model consis-
tently yields more peptides than averagine with least-squares thresholds more stringent than 0.5. The number of
peptides retained for the both models decreases slowly above the cut o� of 0.1. Only 5% of the starting number of
PCMs are retained at themost stringent cut o� for the averaginemodel compared to 23% for the exactmodel. Figure
(b): The trends observed for PCMs (a) are reflected in the numbers of quantified proteins when di�ernt least squares
cut o�s are applied, with nearly double the number of quantified proteins being observed for the exact model com-
pared to the averagine model at the most stringent cut o�. Figure (c) The mean signal abundance of matched pep-
tides increases asmore stringent cut o�s are applied, with the trendmore pronounced for the exactmodel, which is
likely because higher signal intensities have better ion statistics and consequently better matches to the theoretical
isotopic envelope. Figure (d): Protein reproducibility is consistenly better for the exactmodel at all least-squares cut
o�s with a 15% improvement over the averagine model at the 0.1 threshold. Figure (e): PCM reproducibility is either
similar between the two models or better with the exact model at all least squares cut o�s. Figure (f): For the exact
model, the standard deviation of the distribution of reproducibility between the two biological replicates (defined
as the di�erence in log2 protein fold change) of proteins that are kept a�er applying the 0.1 threshold is 1.21; much
better compared to 2.15 for those proteins excluded at this threshold.
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Figure (7): The e�ect of di�erent prior ion thresholds on accuracy and precision of quantification. Figure (a): The
number of quantified peptides decreases uniformly with increasingly stringent cut o�s dropping slightly as the cut
o� approaches 0.01. Figure (b): The calculated fitted intensity of quantified peptides increases slightly with more
stringent prior ion cut o�s up to a value of 0.08, a�er which it decreases rapidly as themost intense ions are filtered
away. This figure coincides with the maximum possible miss-incorporation rate for atoms into the heavy label. At
this threshold there is essentially no di�erence between a potentially interfering cluster and the intensity expected
due to a prior ion. Figure (c): Reproducibility measured as the IQR of the delta of quantification values of identical
peptides in the two replicates.The IQR improves with increasingly stringent prior ion criteria until the threshold of
0.08, a�erwhich it rapidlyworsens. This is againdue to thehigher-intensity peptides (and their robust quantification
values) being filtered away.

of 0.2 was chosen for the prior ion ratio cut o� (show as gray dashed line in Fig. 7).
This retained approximately 80% of all quantified peptides and provided a substan-
tial improvement in reproducibility. The e�ect of prior ion filtering on reproducibility
is much less marked than that of least squares filtering, which can be explained by
the fact that two biologically-similar (here technical replicates) samples are likely to
produce the samepeptides eluting at a very similar time. Despite the data being rela-
tively reproducible between replicates it is still possible that the accuracy is impaired
by other interfering peptides.

Asdepicted in figure 3, thepresenceof an intense ‘prior ion’ shouldnotonly a�ect
precision but also the accuracy of the heavy to light ratio. The presence of interfer-
ing isotopic clusters can be partially mitigated by least squares filtering of peptides
as described above, but acceptablematchesmay still contain interfering signals and
inaccurate ratios. To investigate this, we estimated the accuracy of individual pep-
tide ratios by measuring the di�erence between their log2 fold change and the log2
median fold change of the corresponding protein group when di�erent prior ion ra-
tio thresholds were applied. Figure 8 shows that for peptides with a prior ion ratio
of greater than 0.2 there is a greater spread, corresponding to lower accuracy, in the
data and is summarized in figure 9. The asymmetric nature of the plots (the broader
le�shoulder) arisesbecauseof theunderestimationofpeptide fold changeswhich, in
this data set, occursmore o�enbecause the signal of the heavy channel ismore likely
to be increased due to the presence of interfering ions, while the interference in the
light channel ismuch less likely. This is becauseat theearly timepointof sevenhours,
the light signal ismore abundant than theheavy signal and is thus, inmost cases, less
susceptible to influence from prior ions that would lead to an overestimation of the
peptide’s heavy to light ratio. This phenomenon is analogous to the ratio compres-
sion observed with TMT and iTRAQ isobaric labeling169,171,230, where the reporter ion
fold changes are altered by contaminating reporter ion signals from co-eluting pep-
tides. Figures 10a and 10b showcase a couple of example proteins where the prior
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ion ratio is high and the peptide fold change is inaccurate. This fact, combined with
the modest gains in precision, means that using a filtering value of 0.2 for the prior
ion ratio is a good compromise between amodest loss in quantified peptides and the
improved accuracy and precision.

3.2.2 Impact of missing values on protein fold change determination

Protein fold changes based on precursor intensities are usually derived from theme-
dian value of the ratios of all peptides linked to that protein passing certain QC crite-
ria. The median should minimize the e�ect any extreme peptide fold changes have
on the result. However, there are caseswhere it is notpossible todetermineapeptide
fold change (for instance where the signal was not detected for one of the labels) but
where the peptide otherwise passes all QC criteria. When there are many such cases
it can incorrectly lead to a protein fold change of zero or infinity. Imputation, where
missing values are replaced with zeros (under the assumption that they are missing
because of low abundance), has been shown to perform sub-optimally and can lead
toabias in label-freequantificationexperiments formoderately andhighly abundant
proteins, an observation that also holds for SILAC basedMS1 quantification219. To cir-
cumvent this, isobarQuantwas adapted to be able to remove the peptideswith inde-
terminable ratios provided that at least a given number of finite ratios was present.
Figure 11a shows the e�ect of removing the peptides with indeterminable ratios on
the fold change reproducibility for proteins binned according to number of quanti-
fied peptides. Reproducibility was once again inferred using the IQR between identi-
cal protein groups in each of the two biological replicates in each bin. Removing in-
determinable ratios leads to greater reproducibility as indicated by smaller IQRs. The
fold change reproducibility is also more stable across all bins. Using one measured
peptide ratio as the trigger to remove indeterminable peptide ratios gives the most
reproducible results as seen by profiling di�erent trigger values (Fig. 11). The ben-
eficial e�ect of removing indeterminable peptide ratios was observed to positively
a�ect the numbers of proteins for which a half-life was determined, not just in the
test set, but for all cell types (Fig. 11b). In figures 11c & 11d we see specific examples of
the outcome of removing these indeterminable peptide ratios where the remainder
yield protein fold changes of 0.017 and 0.069 respectively, indicated by the slope of
the red line. In cases where the peptides with indeterminable ratios are le� in, a pro-
tein fold change cannot be established using the median. This setting of minimally
one finite fold change before removing all infinite values was chosen as a default for
peptide ion intensity based quantification in isobarQuant.
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Figure (8): E�ect of prior ion ratio on fold change accuracy: Density plots of the spread of peptide fold-change de-
viations (determined by subtracting the log2 fold change ratio of the peptide from the log2 fold change [median] of
the corresponding protein; x-axis: log2(fcProt)-log2(fcPep)) for data retained or filtered out at increasingly stringent
cut o�s. The plot is skewed for data filtered away at cut o�s greater than 0.15, indicating that there is a consistent
overestimation of peptide fold changes in these data. At a prior ion ratio cut o� of 0.15 and below, the spread of the
data is narrow, at higher cut o�s the spread is substantially wider.
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Figure (9): Summary of the e�ect
of prior ion ratio on fold change ac-
curacies confirms that the spread
is greater in data with a prior ion
ratio above 0.15. The ratio for
each peptide was calculated by
subtracting the log transformed
peptide fold change from the me-
dian log transformed fold change
of the corresonding protein. The
mean spreadof all deltas is plotted
against the di�erent prior ion ratio
cut o�s.
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(a) For ELMO2 the single outlying peptide (red cross)
has a fold change of 1.2 (compared to the median fold
change of 0.05) and a prior ion ratio of 3.002, with
all other peptides having a prior ion below 0.2 (blue
crosses)
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(b) For UFDL1 the outlying peptide (red cross) has a fold
change of 5.4 compared to the median fold change of
0.09 for the protein. It has a prior ion ratio of 1.194which
contrasts to all other peptides (blue crosses)whichhave
a prior ion ratio below 0.2.

Figure (10): E�ect of prior ion ratio on of fold change accuracies of peptides for two selected, individual proteins. A
prior ion ratio greater than 0.2 is a key indicator that the fold change of the given peptide is not in line with that of
other peptides in the same protein.
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tide fold changes and with increased number of PCMs
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(b) For every cell type thenumberof proteins forwhich
no half-life is determinable was summed for proteins
using all values and thosewhere the zero-imputed val-
ues are excluded. The is number is higher when pep-
tides with an imputed fold change of zero are le� in
for the median calculation (blue) compared to the sit-
uation when they are removed (red)
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(c) APEH protein for which the inclusion of peptides
with a measured fold change of zero results in an in-
determinable protein fold change (blue) compared
to the casewhen they are not used (red). Themedian
is represented by the slope of the line.
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(d) ZC3HAV1 protein for which the inclusion of pep-
tideswith ameasured fold change of zero results in an
indeterminable protein fold change (blue) compared
to the case when they are not used (red). The median
is represented by the slope of the line.

Figure (11): The e�ect of excluding peptideswith a ratio of imputed-zero on the protein fold change calculationwhen
there is at least one measured peptide ratio
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mixing ratio log2 fold change equivalent
1:1 0 log2 ratio
1:9 3.2 log2 ratio
1:49 5.6 log2 ratio

Table (6): Table giving mixing ratios for (heavy to light) SILAC-labeled cells for testing accurcy of isobarQuant and
MaxQuant.

3.3 Comparison to existing so�ware (MaxQuant)

With thenewly-adapted isobarQuant so�ware inplaceand theparametersoptimized,
thenext stepwas to test it againstanother so�warewhichperformspeptide ionbased
quantification – MaxQuant138, which uses the averagine model and inbuilt filter cri-
teria to exclude peptides from the protein fold change calculation.

Light and heavy SILAC labeled THP1 cells were mixed at di�erent ratios, and the
lysed, digested sample was measured without any pre-fractionation thus creating a
particularly demanding task for accurate quantification. The ratios are given in table
6, with the most demanding ratio being a 1:49 mix of light to heavy SILAC cells

The deviation in accuracy of themode (themost frequently occurring value in the
distribution) for the 1:1 mix is representative for the deviation due to pipetting preci-
sion. I compared the performance of isobarQuant toMaxQuant using both thewidely
used and recommended setting of re-quantify “on” as well as the re-quantify setting
turned o�. Re-quantify attempts to rescue and find new peptide signals by looking
in the relevant retention time window for peaks that would fit into the expected iso-
topic pattern. This function significantly increases the number of accurately quanti-
fied peptides, but comes at a cost of including a high amount of less well quantified
ones. The isobarQuant strategy for going back and quantifying peptides a�er pep-
tide identification, is conceptually similar to MaxQuant’s re-quantify function. This
strategy evaluates the quality of each theoretical and experimental isotope cluster
match and is able to extract then accurately quantify peptides significantly better
thanMaxQuantwhen large ratios aremeasured, which is apparent from themore ac-
curate median value for the 1:49 sample, the addition of filter criteria based on prior
ion and isotopic fit quality filters away the poorly quantified peptides and further im-
proves the median value.

In figure 12 row A we first of all see a comparison of the quantification perfor-
mance on the peptide level when using the MaxQuant ’re-quantify’ function (solid
line) andwhen this function is turned o� (dashed line). Without the re-quantify func-
tion MaxQuant is able to retrieve accurate quantification values but there is a signifi-
cantdrop inpeptidesquantified. While this reduces thenumberof inaccuratelyquan-
tifiedpeptides, a substantial portionof the accurately quantifiedpeptides is also lost.
In figure 12 row B we see that running isobarQuant without any filtering retrieves
as many accurately quantified peptides as MaxQuant but significantly fewer poorly-
quantified ones. This is immediately clear from themedian values of the 1:49 sample
(-4 for MaxQuant and – 4.8 for isobarQuant). Figure 12, row C: isobarQuant with the
filtering criteria established in this study (mean least squares fit < 0.1 and prior ion
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Figure (12): Assessment of peptide ratios obtained using isobarQuant and MaxQuant for three dilutions of heavy
SILAC in THP1 cells with decreasing amount of heavy signal from le� to right. Column 1: 0 log2 ratio; Column 2: 3.2
log2 ratio; Column 3: 5.6 log2 ratio. Panel (A) compares the performance of peptide level quantification in MaxQuant
using the ’re-quantify’ function (solid blue line) with the default setting (when it is switched o�, dashed blue line).
Not using the re-quantify function MaxQuant is able to retrieve accurate quantification values but at the cost of a
significant drop in quantified peptides. Panel (B): isobarQuant without any filtering steps (solid red line) retrieves as
manyaccuratelyquantifiedpeptidesasMaxQuantbut significantly fewerpoorlyquantifiedones. This is immediately
clear from themedian values of the 1:49 sample (-4 for MaxQuant and – 4.8 for isobarQuant). Panel (C): isobarQuant,
with the filtering steps used in this study (means least squares fit < 0.1 and prior ion ratio < 0.2) applied, retrieves
a large number of accurately quantified peptides and manages to discriminate and exclude the poorly quantified
peptides, which is reflected in a median value of -5.2 in the 1:49 sample.

ratio < 0.2) retrieves a large number of accurately quantified peptides and manages
to discriminate and exclude the poorly quantified peptides, which is reflected in a
median value of -5.2 in the 1:49 sample.

3.4 Protein half-lives in five primary cell types

All biological replicates from all five di�erent non-dividing cell types, human B-cells,
monocytes, NK cells, hepatocytes and mouse embryonic neurons (acquired in 569
.raw files) were now processed through the isobarQuant pipeline run using the opti-
mized parameters investigated above. Taken together across all five cell types, pro-
tein half-lives were determined for a total of 9,699 unique protein groups. The cov-
erage in individual cell types ranged from 4,667 protein groups identified in NK cells
to 6,534 protein groups identified in mouse neurons. To dig deeper into di�erences
between the di�erent cell types a high-quality subset of the data was created by se-
lecting protein half-lives where the regression line (the rate constant of the protein
degradation) fitted to fold changes at di�erent time points had a coe�icient of deter-
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mination R2 of >0.8551,231. This criterion was fulfilled by 8,804 proteins across all five
cell types. Themeanhalf lifewas calculatedwhenproteinswerepresent inboth repli-
cates for each cell type and these values were used to compare the protein half-lives
between cell types, Fig. 14. At the same time, protein half-lives between biological
replicates reveal excellent reproducibility with many proteins showing half-lives of
greater than 500 hours (Fig. 14). The R2 of the log10-transformed half-lives between
replicateswas0.94, 0.92, 0.91, 0.93, and0.93 forB-cells,monocytes, NKcells, hepato-
cytes, and mouse embryonic neurons, respectively. For 98% of all protein half-lives
in the high-quality data set, the replicates di�ered by less than two-fold. The pro-
tein turnover in NK cells was the slowest, with 210 proteins having high quality (R2

of >0.85) half-lives longer than 500 hours. The other cell types (monocytes, hepato-
cytes, B-cells, and mouse embryonic neurons) had, respectively, only 7, 17, 15, and
4 such proteins. Despite having an overall slower turnover rate, the relative log10
transformed half-lives between NK cells and B-cells, as well as NK cells and mono-
cytes were in good agreement: R2 of 0.65 and 0.63, respectively. The same holds
true for monocytes and B-cells: R2 of 0.56. In contrast, hepatocytes, which are not of
hematopoietic lineage, showed theweakest correlationamong thehumancells,R2 of
0.36, 0.41, and 0.36 compared to B-cells, NK cells and monocytes respectively. Half-
lives determined in themouse embryonic neurons agreed slightly betterwith B-cells,
NK cells, and monocytes than with hepatocytes (R2 of 0.422, 0.567, 0.413 compared
to 0.398). Among the fast turnover proteins, we find members of the Janus family of
kinases. In particular Janus kinase 3, which is predominantly expressed in the cells
of hematopoietic lineage has a very short half-life between 9 and 11 hours (Fig. 13g) in
B-cells. Within the longest-lived proteins that were reproducibility observed in more
than one cell type, we find the two histone family proteins: HIST1H1C and H2AFY. The
average half-life in B-cells is 2,242 and 971 hours, respectively (Fig. 13c & 13a). This
value goes up to 2,741 and 1,950 hours, respectively, in NK cells. Interestingly, these
histone proteins showed a very quick turnover in hepatocytes; their half-life was 18
and 61 hours, respectively. Lamin-B1 has an average half-life in B-cells of 1,552 hours
(Fig. 13e) and in NK cells of 3,215 hours, the half-life in hepatocytes was faster, 388
hours. Inmouse embryonic neurons histoneHIST1H1B has the slowest turnover, with
an average half-life of 1,736 hours, or 72 days. This agrees well with a previous study
that used radioactive labeling of the long-lived cerebral histone fractions inmice and
reported half-lives of 50–100 days232.

3.5 Protein half-lives in context – within di�erent complexes

Theextensivedata set thathadbeengeneratedusing isobarQuant consistedofnearly
10,000 protein half-lives. Since proteins o�en function within the context of a partic-
ular complex, this half life data o�ered an opportunity to assess the turnover of pro-
tein complexes on a proteome-wide scale and to look for coherent turnover behavior
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(a) H2AFY: half-life from replicate one / two: 945.9 /
995.9 hrs
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(b) NUP205 half-life from replicate one/two
103.3/138.9 hrs
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(c) HIST1H1C half-life from replicate one / two :
2168.8 / 2315.5 hrs
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(d) NUP153 half-life from replicate one/two 49.8/55.1
hrs
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(e) LMNB1 Half-life from replicate 1479.9 / 1623.5 hrs
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(f) NUP107 half-life from replicate one/two
91.2/104.5 hrs
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(g) JAK3 Half-life from replicate one / two: 9 / 11 hrs
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Figure (13): Plot of peptide fold changes changes for all time points in B-cell identified proteins. The median fold
changes are denoted by the slope of the line. The di�erent time points are encoded by the color - red: 7 hours;
gray: 11 hours; green: 24 hours, blue: 34 hours, with the individual replicates shown for in either dashed or solid
lines. Where displayed, the insets show the SILAC heavy and light intensities plotted on the same scale. H2AFY (13a),
HIST1H1C (13c) & LMNB1 (13e) are very long-lived proteins. Two quickly turned-over proteins JAK3 (13g) and SEMA7A
(13h) are displayed in the lowest two panels illustrating that a broad range of protein half-lives were recorded for the
cell type.
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Figure (14): Scatter plot of protein half-lives across and within the di�erent cell types. Plots on the diagonal are the
half-lives as determined in each biological replicate for the same cell type. Red dots aremembers of the nuclear core
complex and for the B-cells, green dots mark very long lived histone and lamin proteins, as detailed above (H2AFY:
Fig. 13a; LMNB1: Fig. 13e; and HISTH1C: Fig. 13c). The plots below the diagonal compare the mean protein half-lives
determined in one cell type against other cell types (as shown).

of proteins located within the same complex. To achieve this, the standard devia-
tion between the log10 half-lives of each complex was calculated and compared to
standard deviations calculated for the log10 half-lives of complexes of the same size
comprising of randomly allocated proteins. A clear and significant trend (p-value <
0.001, Wilcoxon-rank test) towards a more coherent half-life distribution of protein
subunits within individual complexes becomes apparent for all cell types (Fig. 15).
Themost coherent half-life behavior is observed globally for the nine-member chap-
eronin complex. Two other large complexes with a more intricate architecture, the
nuclear pore complex (NPC) and the 26S proteasome exhibit much less tightly con-
trolled turnover across all cell types, with the exception of the proteasome in mouse
neurons, where we see it is among the top 15 complexes with the most coherent be-
havior.

3.5.1 Proteasome

Looking in greater detail at the 26S proteasomewe see significantly di�erent half life
behavior between the 20S core complex subunits and the 19S regulatory complex
subunits in all cell types (Fig. 17a, 17b), again with the exception of embryonicmouse
neurons, which could explain the greater coherence of the protein complexmembers
observed above. Intriguingly, a significant trend for members of the 20S core com-
plex to bemore stable than the 19S regulatory complex in B-cells, monocytes and NK
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cells is observed but a clear and significant trend in the opposite direction is found
in hepatocytes (Fig. 17b). Using the root mean square error to estimate the similar-
ity betweenmean half-lives of all proteasome subunit proteins across all human cell
types reveals a distinct separation between the core and regulatory subunits (Fig. 16)
and uncovers that PSMD4 and a recently discovered regulatory subunit ADRM1 form
a distinct cluster.

3.5.2 Nucleoporins

Another large complex whose half-lives were determined by isobarQuant is the NPC
whichwas the focus of the next part of the investigation. Formost cell types, the pro-
tein half-lives of these nucleoporins (Nups) reside in themiddle of the distribution of
all half-lives for all cell types, with a turnover at least one order of magnitude faster
than thehistoneproteins (Fig. 14). Theexception is againmouseneurons, butdespite
showing a wider protein half-life distribution with more, slowly turned over nucleo-
porins, their overall turnover is still much faster than histones (Fig. 18). In this data
set we do not observe di�erences between the inner ring and Y-complex members;
in B-cells themajority of all members turn over just above 100 hours in both subcom-
plexes. In our comprehensive data set, we do, however, observe a general clustering
of half-lives into known subcomplexes (Fig. 19a). The half-lives of members of the
Nup358 proteins, and to some extent also the Nup214 proteins, are generally shorter
when compared to the inner ring and Y-complexes. The half-lives of members of the
Nup62 set, although spatially positioned inside the inner ring complex, appear to be
uncoupled from the latter. In hepatocytes andmonocytes it ismore short-lived but in
B-cells more long-lived when compared to other inner ring Nups (Fig. 19a). Interest-
ingly, the turnover of Nup188 is in line with those of the Nup214 complex and Nup98,
and an association of which has been proposed. Partitioning the nucleoporins into a
sca�oldandaperipheral groupandcomparing thehalf-life distributionsbetween the
two groups shows a statistically significant trend towards faster turnover of the nu-
cleoporins in the peripheral group for all cell types (Fig. 19b). In agreement with pre-
vious work233, we find that Nup98 turns over considerablymore quickly than Nup96,
although both proteins are synthesized as a single fusion protein prior to autoprote-
olytic cleavage. This might be explained by the existence of an additional transcript
encodingonlyNup98. Nup153, Nup50, and the transmembraneNupgp210havebeen
shown to have short mean residence times at the NPC234, although this does not
mean that they necessarily turn over once they dissociate. Interestingly, bothNup153
andNup50 have relatively short half-lives, e.g. 50–70 hours in B-cells. In striking con-
trast, gp210 generally persists at least as long as sca�old Nups, e.g. ~230 hours in
B-cells.
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Figure (15): Half-life variability amongmembersof protein complexes is smaller thancanbeexpectedbychance. Dis-
tributions of standard deviations (SD) of half-lives from proteins in complexes as annotated in the CORUM database
(red) compared to standard deviation (SD) of the half-lives of the same proteins shu�led across the di�erent com-
plexes, while preserving the number of proteins in each complex group (blue). Di�erences in the log10 half-lives of
true protein complexmembers vs. the randomdraws of proteins in a given cell typewere assessed byWilcoxon-rank
test (significance levels were encoded as *** p < 0.001, ** p < 0.01, * p < 0.05). Center line in box plots is the median,
the bounds of the boxes are the 75 and 25% percentiles i.e., the IQR and the whiskers correspond to the highest or
lowest respective value or if the lowest or highest value is an outlier (greater than 1.5 * IQR from the bounds of the
boxes) it is exactly 1.5 * IQR
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Figure (16): Heatmap showing the comparison for each pair of proteasome subunits by calculating the root mean
square error between the four log10 transformed half-lives in the four di�erent human cell types. Hierarchical clus-
tering leads to separation of the regulatory subunits from the non-exchangeable core subunits. The 19S proteasome
subunits PSMD4 and the recently discovered ADRM1 also form a distinct cluster



3 - isobarQuant for Protein Turnover

B cells NK cells Hepatocytes Monocytes Mouse neurons

Median
min, max

138h23h

105h

1098h106h

380h

724h56h

185h

164h39h

105h

104h60h

86h

(a) Protein half-livesmapped onto proteasome architecture. Half-lives are depicted by a color gradient ranging from
red (shorter half-life) to blue (longer half-life). Median,maximumandminimumhalf-lives are indicated above, to the
right and to the le� of the bar. The 20S core subunits stand out as containing more longer-lived proteins than the
19S regulatory complex in all cell types except hepatocytes where this trend is reversed and mouse neurons where
there is no significant di�erence between the two.
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(b) Di�erences in log10 mean protein half-lives for the proteasome in the di�erent cell types. A significant (Wilcoxon
rank-sum test - *** p < 0.001) di�erence in mean log10 half-lives between the 20S core subunit proteins (red) and
19S regulatory subunit proteins (blue) is observed in all human cell types. There is no significant di�erence in the
turnover of proteasome proteins in mouse neurons.

Figure (17): Half-lives and architecture of the proteasome
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Figure (18): Density distribution of log10 transformed protein half-lives for nucleoporins for each cell type within
distribution for all proteins. In all cases the protein turnover for these proteins was towards the middle of the range
for all proteins.

4 Discussion

isobarQuant was used to create a catalog of 9699 protein half-lives in five di�erent,
non-dividing cell types. This not only provides a high quality resource for the com-
munity but also themeans to carry outMS1-basedquantification. In order to perform
highly accurate and precise peptide and protein quantification several newmethod-
ologieswere developed, implemented andpublished as part of the isobarQuant so�-
ware. isobarQuantwasshowntoperformmoreaccurately than thepopularMaxQuant
so�ware for determining small fold changes. The first of the newmethods leading to
this improved performancewas the use of an exactmodel for construction of the iso-
tope envelop, the second was the use of the prior ion ratio for determination of iso-
tope purity. Extensive profiling of the thresholds leading to optimum coverage and
accuracy was performed and the e�ect of excluding zero-imputed fold changes was
investigated.

Among all the protein half-lives determined, histoneswere observed to have very
long half-lives, in line with previous in vivowork done in rat brain220. The determina-
tion of the proteasome turnover was in agreement with the values generated in an-
other in vivo study237. The half-lives recorded for the proteins of the NPC’s in all five
cell types were, however, much shorter than those recorded in an in vivo setting233,
both absolutely and relative to histones. This could, in part, be due to the very di�er-
ent ways in which these two studies were performed (biological context and techni-
cal details), but onemight expect the accuracy of half-livesmeasured in non-dividing
cells in vitro should be more accurate despite the loss of the endogenous setting.
Up to now, NPC turnover has been considered a relatively rare event238, but one of
high enough importance to be subject to a surveillance pathway for defective NPC-
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(a) First five columns: nucleoporinhalf-livesmappedonto the structureof thenuclearpore complex. Nupsare shown
color-coded as a gradient from red (short half-life) to blue (long life-life). An architectural model of the nuclear pore
(based on refs.235,236) is shown as seen from top (top panel), cut in half (middle panel), and a subcomplex scheme
(bottom panel). The nucleoplasmic side is at the bottom in all cases. For each cell type, half-lives were averaged
over two biological replicates, except for rare cases where only one half-life value was available, and converted
to a color gradient (see 2.8.2) Far right: same as for individual protein half-lives but color-coded according to nu-
cleoporin subcomplexes. Nucleoporins of the inner ring are colored blue, of the outer (Y-complex) rings—orange,
trans-membrane nucleoporins—brown, Nup205 and Nup188—green, nuclear basket nucleoporins—yellow, Nup62
subcomplex—magenta, Nup358 subcomplex—salmon, and Nup214 complex—red
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(b) Distributions of the reproducibly measured half-lives of the sca�old (blue) and peripheral (red) subunits of the
nuclear pore in the di�erent cell types. Di�erences in the distributions of log10 half-lives were assessed by Wilcoxon
rank-sum test (significance levels were encoded as *** p < 0.001, ** p < 0.01, * p < 0.05). Center line in box plots is
themedian, the bounds of the boxes are the 75 and 25% percentiles i.e., the IQR, and the whiskers correspond to the
highest or lowest respective value or if the lowest or highest value is an outlier (greater than 1.5 * IQR from the bounds
of the boxes) it is exactly 1.5 * IQR

Figure (19): Half-lives and architecture of nucleoporin proteins
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intermediates239. A recent publication by Fornasiero et al.240measured the turnover
in vivo of proteins in mouse brain over a longer time period than was performed in
this study.The authors showed that the situation in vivo is more complicated than in
vitro because of the paths that amino acids take in the body of an animal following
ingestion. The fate of a pulsed amino-acid depends on the metabolism of the en-
tire proteome, with amino acids being recycled following protein degradation, and
re-entering the amino acid pool available for protein neo-synthesis or being excreted
from thebody. To tackle this they introducedanewmathematicalmodelwhich takes
the incorporation of labeled amino acids into the di�erent pools (soluble i.e. blood,
solid i.e. proteins) into account. They made a comparison between in vitro deter-
mined half-lives of synaptic vesicle proteins and those they acquired in vivo to reveal
that the distribution of half-lives in vivo was much wider and on the whole longer
than in vitro. The authors attribute the di�erence to the fact that cultured neurons
may still be growing and developing axons and synapses at the time of themeasure-
ments. They also state that the half-lives of proteins determined in vitro and in vivo
do correlate, but not extremely well.

In thesehalf-lifedataweobserved that theproteasomeandtheNPCexhibit structure-
dependent turnover. The 26S proteasome is described as having entirely di�erent
pathways for its 19S regulatory and 20S core subunits241, which is mirrored in their
uncoupled turnover, indicating that the cap and core must only associate dynami-
cally. An interesting observation is that three beta-subunits of the 20S core protea-
some have a turnover much faster than the other members of the 20S core. Since it
is di�icult to conceive that these subunits dynamically exchangewith the assembled
20Score, onecould interpret this as representing twodi�erentpopulationsofprotea-
somes that sharemost, butnot all of their subunits andhavedi�erent turnover times.
Protein turnover evidencegatheredhere relating to theproteasomeand theNPCsug-
gest that peripheral complexmembers have shorter half-lives. This is exemplified by
the ADRM1 and PSMD4 members of the 19S regulatory particles whose turnover is
much quicker than the other members of the subcomplex and show a highly simi-
lar variation in their half-life patterns over all cell types studied here. They are both
ubiquitin receptor proteins located at thedistal part of the regulatory particle andbe-
lieved to have been recruited to the complex much later in its evolution241. It would
be interesting to investigate by looking at transcript information.

The methods developed and described above led to isobarQuant being able to
performbetter thanMaxQuant in thedeterminationof very small foldchanges. Shortly
a�er its development another tool for MS1-based quantification was published by
Mitchell et al.221 which, in a way very similar to isobarQuant, uses the results of a
search engine to go back and interrogate the raw spectral data. They use a Gaus-
sian mixture model to remove interference of individual isotope peaks and perform
integrated area under the curve (AUC) XIC quantification a�er multiple Bi-Gaussian
peak fitting overmany time points. PyQuant does not, however, provide anyQCmet-
ric to assess the goodness of fit of isotopic clusters to the measured data and does
not seem to take the presence of the prior ion ratio into account.
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During the development of isobarQuant and the assessment of optimal running
parameters, it was possible to demonstrate that including peptide fold changes im-
puted as zero negatively a�ects the accuracy of protein half-life determination. It
was shown that protein half-lives aremore accurate and precise when such zero fold
changesareexcluded, provided there isat leastoneotherpositive foldchangepresent
for the protein.

5 Outlook

The success of isobarQuant in the robust determination of protein half-lives has been
described and evidenced above. But, aswith any tool there are still a few avenues for
potential further development. It might be interesting to investigate the e�ect of the
incorporation of some of the features of other so�ware such as a Gaussian mixture
model for pure isotope peak determination or revisit the use of the full AUC for iso-
tope XICs rather than just the peak for use in the determination of the quantification
signal, but the impact on the overall protein fold change and in turn protein half-lives
is likely to be limited. Adaptations to the filtering of which peptides are used in the
calculation of protein fold change could includemoving away from the use of a rigid
least squares cut o�s in favor of weighting the median according to least squares fit
might result in more peptides ultimately being used for quantification and thereby
improving precision. Theremight also be somemerit in devising a scoring scheme to
actually score the goodness of fit, such as that presented in the pyQms209 so�ware,
or increase theweight (influence) of higher scoring or higher-confidence peptide fold
changes on the protein fold change.

It is debatable if there is anymerit in re-assessing the inclusion of indeterminable
peptide foldchanges (imputedzeros)by replacing themissingvaluewith the recorded
instrument noise value and using that to determine the fold change under the as-
sumption that the true signal is there but simply too low to be recorded by the Mass
Spectrometer. This approach would have to be rigorously tested and a thorough as-
sessment of the gains carried out before accepting this method.

One interesting and so far unexplored aspect would be to examine the potential
gains of using the peptide fold changes directly in the determination of protein half-
lives, rather than distilling this data to a single point and feeding it into a second al-
gorithm. The increase in number of data points would increase the statistical power.
This kind of approach is taken by so�ware tools like MSStats242.

6 Author contribution to project

The majority of data presented in this section was published in reference181. Toby
Mathieson designed and performed the processing of all experiments in this section
using isobarQuant; the laboratoryexperimentswereperformedasdescribed in ref.181.
The author carried out all steps of the data analysis and optimized the filtering pa-
rameters using the prior ion ratio and least squares fits. Toby Mathieson designed
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the layout and procedures of the code andwrote a substantial part of the implemen-
tation to performMS1 quantification. The author investigated the e�ect of excluding
indeterminable fold changes on the numbers of quantifiable protein half-lives for the
di�erent datasets and performed all MaxQuant analyses required for the compari-
son to isobarQuant. The author created all graphics and illustrations in this section
(where not separately referenced).
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Part IV

Investigation into the e�ect of TMT labels
on peptide fragmentation patterns

1 Introduction

Asmentioned above, isobarQuant’s approach to storing acquired data alongside the
interpreted search results inside the same .hdf5 file enables easy and rapid investi-
gations to be feasible. It is possible to query several tens of .hdf5 files at the same
time to enable researchers to look more deeply into any phenomena they might be
interested in. This made it the ideal tool for processing datasets to investigate the
di�erences in fragmentation patterns of peptides acquired with a TMT label versus
those acquired without any labeling. This is of course possible with other tools such
as MaxQuant but o�en only for one data set at a time. This exploratory study would
use several TMT-labeled, o�line fractionated datasets acquired with HCD and would
compare them to their equivalent unlabeled counterparts treated otherwise experi-
mentally identically.

Higher-energy collisional dissociation42 (HCD) (described in the main introduc-
tion 1.3.4.2) is a beam-typeCID inwhich fragmentation occurs in a dedicated collision
cell mitigating the one-third e�ect associated with traditional CID243 and is thus able
to generate abundant low mass fragments such as immonium ions, the a2, b2 pair,
and y1 and y2 ions, which also makes it well suited for use with low-mass, isobaric
tagging TMT and iTRAQ quantification. However the spectra derived from HCD have
been shown to bemore similar to those generated on a triple quadrupole instrument
(QqQ-CID) than to conventional CID244 and statistical characterization of the patterns
of HCD spectra compared to CID have shown thatHCD tends to generate smaller frag-
ment ionswhichare typifiedbymanyy-ionsanda singly-charged, high intensitypeak
of type b2 which has a high probability of being among the top five most intense in
thewhole spectrum245. The phenomenon of shorter, less abundant, b-ion fragments
compared to CID was also observed by Michalski et al. who reported extensive y-ion
series giving rise to higher peptide sequence coveragewithmuch greater continuous
ion series when compared with CID44.

This apparent b-ion instability and relative increase in y-ion fragments and cov-
erage can be explained if the process of fragmentation in the gas phase is assumed
to be similar to CID; such that it follows the ‘mobile proton’ theory246,247. This the-
ory states that the initial site of protonation in peptides is usually at the most basic
residues. As soon as theproton is ‘activated’ by energy from the system it canmigrate
along the peptide backbone to di�erent, energetically less favorable locations, such
as the carbonyl oxygenswhere it initiates fragmentation at the peptide bond. The ini-
tial number of protons in relation to the number of basic residues on apeptide a�ects
themobility of the ion(s) andcanbeused togroup thepeptides intooneof three cate-
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gories (mobile, partially-mobile, non-mobile)75. The increased collision energy used
for HCD means that mobile protons have greater potential to initiate cleavage at all
peptide bonds and as a consequence we see more degradation to a- and lower b-
ions in fragmentation pathways described by248. Less-mobile protons (such as those
in the vicinity of a basic [arginine / lysine / histidine] residue, the first two typically
present at the C-terminus of peptides generated by a trypsin digest) are less a�ected,
giving rise to y-ion series fragments similar to CID245. The introduction of another,
highly basic group at the N-terminus of the peptide in the form of the TMT label and
potentially also the C-terminus for lysine-terminating peptides is likely to a�ect the
mobile proton and in turn the peptide fragmentation.

Thepeaks in anMS/MS spectrumof aTMT-labeledpeptidewill alreadydi�er from
non-labeled spectra because of the reporter ions present in the lowmass region, but
Pichler and colleagues reported that other, non backbone fragments, due to unex-
pected cleavage within the TMT tag itself, may also be present249. This is accompa-
nied by a drop in score for both Mascot and SEQUEST search engines.

The purpose of this study was to investigate the e�ect of the TMT-tag on the frag-
mentation of peptides and then apply the results to potentially make improvements
to the H-score algorithm published in 2010165.

2 Materials and implementation

For this investigation two primary datasets collected from an analysis of an E. coli
digestion standard (Waters Corporation USA). The first was TMT-labeled, where the
tryptic peptideswere labeledwith TMT isobaric tags according to themanufacturer’s
instructions. The tryptic peptides of the second data set were not labeled. It should
be noted at this point that the TMT reagents were the original (six-plex) formulation.
Peptideswere firstly o�line-separated into 16 runs each for 130minutes using a 75µm
ID tip column.

Spectra were acquired on an LTQ-Orbitrap Velos (Thermo Fisher Scientific) cou-
pled to Eskigent nano LC system. The peptides eluted were detected in the LTQ Orbi-
trap at 30,000 resolution and were subjected to HCD fragmentation with the follow-
ing instrument settings: Target value FT, 1x105 ions;maximumFT fill time 50ms; isola-
tionwidth, 1.0DaFor the first eight runsacollisionenergyof 45%wasusedand for the
last eight, 35%. Fragment ions were detected in the Orbitrap at a resolution of 7,500.
Raw data were processed entirely using isobarQuant as described in Part II of this re-
port. The pre-Mascot workflow was run and .mgf files were created according to the
procedure described in 2.1. All eight runs acquired at the same normalized collision
energy (35%or 45%)weremergedduring thepost-Mascot (section 2.2.1)workflowaf-
ter being searched using Mascot 2.5.1 with the following parameters: 10 ppm precur-
sormass accuracy, 0.02 Da fragment ionmass accuracy. Variablemodifications used
were acetylation of protein (N-term), oxidation (M), TMT6plex (N-term); fixed modi-
fications were TMT6plex(K) and carbamidomethylation (C). The maximum number
of missed cleavages was set to 3. The instrument type chosen was ‘ESI-TRAP’ (this
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setting allows Mascot to match b and y fragment ions and was extended to also in-
clude immonium ions) and theenzymespecificity selectedwas ‘Trypsin/P’. Datawere
searched against Uniprot E. coli release November 2017) supplemented with protein
sequences of known contaminants (bovine serum albumin and dog, sheep and hu-
man keratins). The database contains a total of 12,158 sequences of which 50% are
target and 50% are decoy (reversed protein). During the study two further sets of
search parameters were used: One with the samemodifications as stated previously
but using TMT-modifications as ’fixed’ and a second one where the decoy sequences
were created using a shu�led approach rather than a reverse protein approach.

2.1 Investigation intodi�erencesbetweenTMTandnon labeledpeptides
in terms of precursor peptide, Mascot score, peptide length, reten-
tion time and fate of triggered MS/MS events

The di�erent tables of the .hdf5 files generated by isobarQuant were queried directly
using Python via PyTables in a way similar way to the example given in section 3.1
andplotswere createdusingMatplotlibwithin a Jupyter notebook. Wherenecessary,
precursor peptideswere combined to theirMascot identifications via theMS/MS scan
identifier. The origin of peptide identifications (all associated protein accessions and
whether these corresponded to target or decoy hits) was parsed from the .dat file
during theMascotparser stepof thepost-Mascotworkflow, internalized into the .hdf5
file and used to determine FDR. When peptides werematched between TMT-labeled
and unlabeled datasets, the highest scoring representative within the dataset for a
given peptide plus its parent chargewas used. Unless otherwise stated, all plotswere
made using Mascot rank1 peptides filtered to be below a 1 % FDR threshold.

2.1.1 Fragment-ion trend investigation

All rank 1peptidespassinga 1%FDR thresholdwereextracted fromthecorresponding
.hdf5 files generated during the post-Mascot workflow of isobarQuant. The Mascot-
suggested sequence, plus all assigned modifications was used to generate a theo-
retical MS/MS spectrum comprising of singly charged a-, b-, c- and y-ions against
which was compared data from each of the deconvoluted, experimentally-acquired
ions from the corresponding deconvoluted spectrum (’deconvions’ table in .hdf5 file,
’raw’ group). If an ion matched within 20 ppm, the position within the peptide (rel-
ative to both the N-and C-terminus) was recorded along with the series (a, b, c or
y) and the intensity of the peak, normalized against the most intense peak in the
spectrum. Where multiple ions matched within tolerance, the ion with the lowest
ppm to the theoretical fragment was selected. Should there still be a tie, the ion was
selected according to the hierarchy: y>b>a. The trends for the di�erent series were
plotted. This was repeated for all four datasets, considering only the target peptide
hits. Appropriate water and ammonia loses from the parent were ignored for this
calculation. However, neutral losses for specified modifications were included. In
a second step, theoretically generated internal fragment ions and immonium ions
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(lysine [101.1079], glutamine [101.0715], methionine [104.0534], oxidized methionine
[120.0483], histidine [110.0718], pheylalanine [120.0813], arginine [129.114], cysteine
(carbamidomethylated) [133.0436], tyrosine [136.0762] and tryptophan [159.0922],
taken from http://www.ionsource.com/Card/immon/more.htm) were also matched
to the deconvoluted ions stored in the .hdf5 file.

2.1.2 Median peptide coverage ratios for b- and y-ion series

The number of explained cleavage sites (backbone fragments providing evidence for
thegivenpeptidebondcleavageof thepeptide)was calculatedbasedon thematches
made above (2.1.1) for the b- and y-ion series of all peptides. The total proportion of
the peptides explained by the given series over the theoretical total, expressed as a
median for peptides less than length of 25 residues.

2.1.3 Matrices of cleavage bias for b- and y-ion series

Thedi�erent amino acid residues either side of all cleavage sites explained in the sec-
tion above (2.1.1) were recorded, along with the corresponding normalized fragment
intensity and series. To gain insight into any cleavage bias, the median normalized
intensity of ions explaining each combination of residues was plotted in a matrix for
each ion series of each dataset. Eachmedian intensity valuewas converted to a color
within a heat map using the Python Matplotlib package in a Jupyter notebook.

2.1.4 Calculation of complementary pairs

All deconvoluted ions were scanned and each complementary (MH2+– m/z of frag-
ment) mass was calculated. The fragment charge is assumed to be +1 as the list is
deisotoped and deconvoluted. This calculated, complementary mass was sought
within the corresponding table of deconvoluted ions for the given spectrum at a tol-
erance of 20ppm. Upon finding one or more matches, the fragment with the lowest
ppm error was recorded, along with the ion series it belonged to and peptide type
(target, decoy or none if not matched). Them/z of bothmembers of the pair are then
removed from the list to prevent duplicated matches.

2.1.5 Assessment of unassigned ions

A number of potential sources other than instrument ‘noise’ can result in a fragment
ionnotmatching to any of the theoretical backbone fragments. To investigate factors
leading to this, any unassigned ion (m/z and associated intensities) was recorded if
it was within the top 30 most intense ions of a spectrum which had been assigned
to a peptide by Mascot. Note that here unassigned means that it was not assignable
in the fragment matching step, and is not related to any Mascot fragment allocation.
Thedi�erence fromtheparentmass (MH2+)was calculatedand recorded. Thesedelta
values were then placed into bins of width 0.1 Da and plotted via Matplotlib.
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2.1.6 E�ect of removal of TMT label-derived ions

The fragmentation of the TMT label at unexpected points within the balancer group
can result in the creationof complementarypairs that couldbemistaken forb/ypairs.
These should be excluded from the complementary pair calculation. If a fragment
ion is present in the deconvoluted spectrum and matches within 20ppm to an ion
on the list of known TMT-label-derived ions (uncovered during the assessment of
unassigned ions above (2.1.5) it was excluded from the calculation of complemen-
tary pairs. This filtering step was also included in the creation of .mgf files. These
were submitted toMascotusingwith the sameparameters asabove. Thepost-Mascot
workflowwas then repeated using the updated search results. Score distributions for
the new searcheswere plotted and a scatter plot pivoting on the highest scoring PSM
per peptide for each search was plotted.

2.1.7 Relationship betweenunassigned complementary fragments andS2I Val-
ues

To investigate whether the number of unassigned complementary b/y ions is related
to the current proxy for co-eluting peptides, the S2I value, the counts of unassigned
complementary pairs for each spectrum (see section 2.1.5), and excluding those pairs
derived from TMT-balancer fragmentation) were plotted as a function of the calcu-
lated S2I of the peptide and summarized as a heatmapwith red denoting the highest
counts, blue the lowest.

2.1.8 Incorporation of contiguous explained sites into H-score

Cleavage sites (where a backbone fragmentation occurred and the corresponding b-
or y-ion had been identified) were calculated for all Mascot rank 1 hits (both target
and decoy) as described for the fragment ion trend investigation (2.1.1). These values
were then used to calculate themaximumnumber of adjacent cleavage sites for both
b- andy-ion ladders andcombined intoa single value. This value is the contiguousex-
plained sites and was recorded. It was divided by the maximum possible total cleav-
age sites (the peptide length minus one) to normalize for di�erent peptide lengths.
The H-score then proceeded as follows: if all possible cleavage sites were explained
an additional 3 points were awarded to the total number of explained cleavage sites
(as for the published H-score). If the ratio was greater than 0.1 then an additional two
points were awarded.

3 Results

Data were processed in the same way as described in the Methods section using the
isobarQuant pre- and post-Mascot workflows. A total of four di�erent conditions are
compared; + / - TMT label at twodi�erent collision energies. The resulting rawand in-
terpreted data stored in .hdf5 files by isobarQuant are readily extractable and can be
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Figure (1): The number ofMS/MSevents triggeredper file for TMT labeled andunlabeledpeptides. Figure (a) displays
the unlabeled peptides and figure (b) those labeled with TMT reagent. The higher collision energy yields a higher
number of MS/MS spectra irrespective of its label status. The count of MS/MS events does not di�er significantly
between the two label states nor does it between the individual files.
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Figure (2): Distribution of acquired precursor ions triggering MS/MS events for combined datasets at 35% and 45%
nCE. Precursor data were extracted directly from isobarQuant-generated .hdf5 files. A global increase in precursor
size can be observed for TMT labeled peptides (red / pink) compared to those lacking the TMT group (blue). It is also
possible to observe the instrument’s fixed lower-mass cut o� at around 375 Th.

easily combined to create the following summaries and facilitate this investigation.

Focus is first on the uninterpreted MS/MS data. Figure 1 displays the frequency
of triggered MS/MS events: there is no significant di�erence within or between the
individual files of labeled and unlabeled datasets. Whilst there is no significant in-
crease in the frequency of labeled precursormasses, the total count of MS/MS events
is around 8% higher for TMT labeled peptides at both collision energies (Fig. 2). In
the same figure (Fig. 2) we see that the number of MS/MS spectra acquired is 23%
higher at 45% nCE for combined labeled and unlabeled data [154,932 and 119,310 re-
spectively] and that the addition of the TMT tag shi�s the precursormasses (m/z’s) to
the right.

There is an increase in themean number of acquired fragment ions per spectrum
for peptides labeled with TMT at both collision energies, with the higher collision en-
ergy yielding more fragments. The reduction in mean number of ions per spectrum
resulting from deconvolution (isobarQuant removes TMT reporter ions at this stage,
see chapter 2.1.6) is around 12% for unlabeled samples and between 26 and 29% for
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Figure (3): Meannumberof fragment ioncountsperMS/MSspectrum for the fourdatasets. MS/MSdatawasextracted
directly from the isobarQuant-generated .hdf5 files. The mean number of fragment ions per spectrum is higher for
TMT labeled peptides (between 80 and 100 compared to 60 and 70 for unlabeled). Following deconvolution, the
countsdonot significantly di�er between the label states. During thedeconvolution stageof isobarQuantprocessing
the reporter ions are automatically removed from the spectra

TMT, 35% nCE and 45% nCE, respectively (Fig. 3). This increase is greater than can
be attributable to reporter ion removal alone. Overall, these results show that the
addition of the TMT tag results in a small increase in the number of triggered MS/MS
events, a general increase inprecursorm/zandan increase in thenumberof fragment
ions per spectrum.

In order to gain further insight into the e�ect of the addition of the TMT group
the investigation moved to looking at di�erences in search results, matched PSMs,
and peptide fragmentation. The isobarQuant-generated .mgf files were submitted to
Mascot for searching and the resultant peptide and fragment hits stored in the .hdf5
files were assessed.

The distribution of Mascot peptide target hits is loosely in line with the numbers
of the acquired spectra at the given m/z, with TMT labeled spectra yielding a larger
proportion of targets than unlabeled spectra. The maximum proportion of MS/MS
spectra explained by a target sequence, Fig. 4, yellow bars, is 25% (15,733 / 62,049)
for TMT, 35% nCE and the minimum (15% 10,831 / 74,175) is label-free, 45% nCE. The
increased number of Mascot-assigned target peptides for both TMT datasets is sub-
stantially larger (>20%) than can be accounted for by the apparent gain in triggered
MS/MS events. There is, however, also an increase in the number of decoy peptides
of around two-thirds. For 35% nCE the number increases from 1,143 to 3,426 and for
45%nCE from933 to 2,373 (an increase ofmore than two thirds of the TMT total). This
increase in decoy peptides (Fig. 4, green bars) results in a higher global false discov-
ery rate, and at 35% nCE leads a lower number of target peptides passing the 1% FDR
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Figure (4): Histograms describing the fate of triggered MS/MS events for all four datasets. The upper panel (A & B)
shows TMT labeled data and the lower (C & D) depicts unlabeled. Plots on the le� are acquired at 35% nCE and the
right, 45% nCE. MS/MS spectra unassigned by Mascot are shown in blue, spectra matching to target peptides are
shown in yellow and thosematchedwith a FDR lower than 1% are overlaid in red. All matches to decoy peptides are
shown in green.

filter (from 16% [9,406 / 57,261] to 13% [7,933 / 62,049]) (Fig. 4, red bars). However,
despite the increase in decoy peptides, this decrease is not observed for the 45%nCE
sample where the number of targets passing the 1% FDR cut o� is 9% [6,784 / 74,175]
in the non labeled sample compared to 13% in the labeled sample [10,066 / 80,757].
To ruleout that thepossibility that anyof these e�ects couldbe related to themethod
of decoy peptide creation (here using the reverse protein approach) all TMT searches
were repeated against a shu�led-peptide database. The results were almost identi-
cal with no substantial changes in numbers of decoys or frequency of target peptides
matched.

The change in score and peptide length distributions following TMT labeling is
shown in figure 5: the addition of the TMT label results in narrower score distribu-
tions with fewer peptides at either extreme. At 35% nCE, the average Mascot score
for a peptide with a TMT label is 45 compared to 51 for unlabeled, with themaximum
score for unlabeled peptides being 163 compared to 131 for TMT. The mean Mascot
score decreases to 35 and 36 for TMT and unlabeled peptides, respectively, acquired
at 45% nCE, with much lower maximum scores of 95 for TMT and 116 for unlabeled.
The number of peptides with a score >50 at 35% nCE is 2,550 compared to 4,569 for
the unlabeled data (1,094 and 1,366 for 45% nCE, TMT and unlabeled respectively).
The numbers of unfiltered target peptides for labeled and unlabeled data at 35%nCE
(Fig. 5A, dashed line) show similar trends but the counts associated with the labeled
peptides is around double that of the unlabeled peptides. This pattern is repeated at
the higher collision energy but to a much lesser extent (Fig. 5B)

The lower panel highlights that target TMT-boundpeptides are shorter compared
to thosewithout a tag at both collision energies, with an average length of 9 (10, < 1%
FDR ) and 11 (11, <1% FDR ) at both 35% nCE and 45% nCE respectively. The trends
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Figure (5): Distribution of score and peptide length for target peptides from all datasets. The solid bars represent
those peptides passing the 1% FDR criteria, the dashed lines outline for all. The upper panel (A&B) displays the score
distribution of TMT labeled peptides (blue) and unlabeled (red). The solid line represents the mean mascot score
for the high-confidence data with the dashed lines indicating the upper 25% and lower 75% bounds. On average,
label-free peptides achieve higher scores than those labeled with TMT. The spread is wider for unlabeled data. The
lower panel (C&D) summarizes the length of identified peptides for TMT labeled peptides (blue) and unlabeled (red).
The le� side is the lower collision energy (35% nCE) and the right side is 45% nCE) There are more target peptides
identified for TMT labeled data than for unlabeled and on average peptides are shorter (i.e. consist of fewer amino
acids).

are similar for both high quality and non-filtered target peptides, again with a higher
number of target peptides identified with a TMT label than without one.

The increase inmolecularmass and physico-chemical property changes brought
about by the presence of the 229 Da aromatic ring will have an e�ect on the be-
havior of the peptides in the LC column. To investigate this, isobarQuant-generated
.hdf5 files were queried and the RT of peptides passing the 1% FDR filter, which were
observed in both the labeled and label-free experiments were plotted against each
other. A linear fit wasmade to the data points to assess any shi� in retention time be-
tween the twomethods. The presence of the TMT tag increases the retention time by
between 11 and 12 minutes (Fig. 6) with no significant di�erence between the exper-
iments at di�erent collision energies (which underwent LC-separation on the same
column).

3.1 E�ect of tag on Mascot scoring

Extending the investigation of the e�ect of the TMT tag on Mascot score, a subset of
FDR -filtered (< 1%) peptides occurring in both labeled and unlabeled sets (35% and
45% nCE respectively) were compared. The trend in peptide scores reveals that at
the lower energy (35% nCE) a peptide generally scores better when not labeled with
TMT, Fig. 7a. However, for 45% nCE this trend is much less pronounced (Fig. 7b).
The spread of the data is quite large at both collision energies. Themean score delta
between TMT-labeled peptides and non-labeled is -5.1 for 35% nCE (with a σ of 20)
and –0.7 for 45% nCE (with a σ of 17) suggesting that, while a TMT tag is likely to lead
to a reduction in Mascot score, this is far from a universal phenomenon.
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Figure (6): Retention time alignments between (the best scoring) identical peptide sequences found in TMT and
label-free samples. The slope of the linearmodel fit shows that peptides elute between 11 and 12minutes later when
they are labeled with TMT. (35%: 10.98’, 45%: 12.15’)
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Figure (7): Two-dimensional density plots of Mascot score overlap between identical peptide sequences labeled or
unlabeledwith TMT. Non-labeled peptides generally obtain better scores in the 35%nCEdata set but not in all cases.
The e�ect was much less prominent in the scores of the 45% nCE.

With the investigation into the general trends of peptide di�erences between the
four samples complete, the .hdf5 outputs from isobarQuant were used to review the
di�erent fragment ionseriespresentwithin theMascot-assignedPSMspassing the 1%
FDR threshold. Theoreticalmasses for four series of backbone ion fragments likely to
occur in HCD fragmentation (a, b, y and, to a lesser extent, c) and all possible inter-
nal ion fragments were calculated. The fragments in these five theoretical fragment
categories were based on the peptide sequence assigned byMascot. The sixth and fi-
nal fragment ion category corresponded to themasses of ten known immonium ions
likely to be visible in HCD fragmentation. The deconvoluted and deisotoped peaks
of the MS2 spectrum stored in the .hdf5 file were then matched to all correspond-
ing generated fragments within a tolerance of 20ppm. In cases where one measured
ionmatched tomore than one theoretical fragmentwithin tolerance the lowest delta
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match was used. No intensity cut o� was applied and no false discovery rate was de-
termined. The intensity of each measured ion was normalized to the most intense
ion in the spectrum and recorded along with the intensity as a proportion of the TIC.
For each of the six fragment categories the mean count of corresponding fragments
per spectrum was tallied and the normalized and proportional fragment intensities
were summed.

These data show that use of higher collision energies results in just under dou-
ble the mean number of immonium ions per spectrum and the presence of a TMT
label reduces this mean number by about 30% (Fig. 8a). When translated to the pro-
portion of signal intensity per spectrum, less than 10% of total signal was generated
by immonium ions (Fig. 8b) with the highest mean proportion (9.2% of total signal)
coming from the label free data acquired at 45% nCE. The lowest mean proportion
was seen with TMT labeled peptides acquired at 35% nCEwith 2% of the total signal.
The trend seen for internal fragment ions is similar to that for immonium ions. The
higher collision energy, on average, yields the highest number of internal fragments
per spectrum 15 (unlabeled) and 9 (labeled) with six fewer fragments in each case for
the lower collision energy (9, unlabeled, and 3 labeled). Therefore the presence of a
TMT tag results in about one third fewer internal fragments (Fig. 3). The mean pro-
portion of total spectrum signal is similar to the counts per spectrum. TMT labeled
data acquired at 35% nCE shows only around 2% of total signal attributed to internal
fragments. This number rises to just below 10% for the label-free, 35% nCE and for
TMT labeled, 45% nCE. The greatest proportion of signal derived from internal frag-
ments is found in the unlabeled sample acquired with the highest collision energy
and represents over 20% of the total spectrum intensity (Fig. 8b). It is interesting
that the internal ion peak counts per spectrum represent the highest mean number
of fragments of all six fragment categories, with the exception of TMT labeled, 35%
nCE peptides. Of all the back-bone fragments, the y-ions are most prevalent in every
data set with an average count of between five and eight peaks per spectrum (Fig.
8a). The proportion of total intensity is always greater than 10%, with the highest
value (just under 40%) observedwith the unlabeled, 45%nCE data set. TMT labeled,
45%nCEshows the lowest total signalwhenexpressedasapercentageof theTIC. The
greatest di�erence between label free and TMT samples is seen in the similar trends
of the a- and b-ions. There are about twice asmany a- and b-ion fragment counts per
spectrum in TMT data than there are in unlabeled peptides; this trend is amplified
when looking at the proportion of total signal coming from b-ions (> 20%) compared
to only 5% for non-labeled samples. A-ions never representmore than 10%of the to-
tal signal in any data set and c-ion fragment counts are similar in all datasets and, as
would be expected, account for less than 2% of the total signal and, as such, are not
shown in Fig. 8b.

The most abundant internal fragments originate from the highest collision ener-
gies and are represented by the shortest versions, with di-peptides (fragments con-
sisting of two amino-acids) accounting for more than three times the signal of the
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next most abundant set of internal fragments (tri-peptides) in all cases (Fig. 9a). The
di�erence in abundance between themost (label free, 45% nCE) and least abundant
(TMT, 35% nCE) is around 60-fold for the di-peptides. The presence of the TMT tag
reduces the number of internal fragments for all lengths, and the abundance of in-
ternal fragments above five or six amino acid residues is extremely low and as seen
previously, label-free peptides yield more internal fragments.

Figure 9b shows that themost abundant immonium ionsoriginate fromhistidine,
phenylalanine, tyrosine and arginine and that the general trend observed for immo-
nium ions described above (Fig. 8a) is reflected in the summed normalized intensity
for each of the immonium ions; with two notable exceptions. Firstly, the abundance
of the histidine immonium ion is greater in samples with the addition of the TMT la-
bel (or, at least, is not substantially reduced) and secondly the TMT labeled samples
yield no, or very few, arginine immonium ions. Once again the higher collision ener-
gies yield a higher abundance of immonium ions.

The most striking di�erence in the summed normalized fragment ion intensities
of doubly charged TMT and label free samples is the abundance of b- and a-ions.
Rather thandisplaying the classic pattern ofweaker a- andb-ion series dominatedby
highlyabundantb2anda2 ionswhich isusuallyassociatedwithHCD fragmentation44,
a much more even distribution is evident (Fig. 10). At the lower collision energy, the
abundance of b- and y-ions is similar and higher than that of the a-ions. The b-ions
dominate the higher energy TMT labeled sample and overall there is higher inten-
sity observed for shorter fragment ions. The a- and y-ions follow a similar trend a�er
the y/a-1 ion. The trend in y-ions is similar for both labeled and non-labeled data
fragmented at 45% nCE; but for 35% nCE the classic CID / HCD pattern for a greater
prevalence of longer y-ions is missing in the TMT sample. The c-ions are present at
very lowabundance in all samples andhave a slight increase in the non-labeled data.
To assesswhether or not the increase in b-ions is linked to the sequestration of a pro-
ton at the N-terminal TMT group, the fragmentation patterns of +2 lysine and argi-
nine terminating peptides were compared. Figure 11 shows that the b-ion intensity
for arginine-terminating peptides is high and well distributed across many positions
on the peptide but the y-ion abundance is much lower, which would be expected if
the TMT group had greater a�inity for the proton(s) than the terminal arginine. The
distribution of b- and y-ions on the lysine terminating peptides is, however, much
more similar indicating that the b-ion stabilization is related to the N-terminal TMT
tag.

3.2 Peptide coverage by di�erent ion types

Thisbehavior translates intoahigherproportionofpeptidesbeing coveredbyboth (b
and y) ion types (b-ion coverage remains greater than 50% for peptides up to lengths
of 11 or 15 (35%nCE / 45%nCE, respectively), compared to unlabeled peptides, where
the b-ion coverage remains below 50% at all lengths of peptide, as depicted in figure
12. The pattern of coverage for the decoy peptides is similar to the target peptides but
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covers a much lower proportion of the total peptide at all di�erent peptide lengths.
This means that decoy peptides show a much higher coverage for b-ions in the la-
beled samples than the unlabeled and could be one explanation for the increased
number seen in figure 4.

The change in fragmentation patterns brought about by the TMT tag was further in-
vestigatedbymapping the local environment surrounding thebandybackbone frag-
ment ions. The amino-acids pairs between which the peptide fragmentation (cleav-
age) occurred were recorded and plotted in figure 14. The residue to the N-terminal
side (le�) of the cleavage corresponds to the amino acid given on the y-axis and the
residue on the C-terminal (right) side of the cleavage is given by the residue on the
x-axis. Looking first at the matrix representing b-ions, the increase in intensities of
b-ions for the TMT samples (fig. 13) is again evidenced by the overall increase in heat.
For the 35%nCE sample, the proline e�ect ismore pronounced than in all other sam-
ples: thecleavagex|P ( ’x’ denotinganyaminoacid)has thehighest intensity and, cor-
respondingly, those with proline at the N-terminal position are present at low abun-
dance and are lower for TMT-labeled samples than for the label free ones. Cleavages
involvingmethionineatboth theN-andC-terminal are rarer forTMTthan forunlabled
sample, but this e�ect is much less pronounced with 45% nCE, where the C-terminal
methionine does not seem a�ected at all. The intensities of the acidic residues at the
position N-terminal to the cleavage site show increased abundance in TMT-labeled
peptides, with aspartic acid being among themost intenseN-terminal residues in the
matrix. This is mirrored with a corresponding decrease in C-terminal acidic residues.
The intensity of histidine residues C-terminal (x|H) to the cleavage site flips from be-
ing low intensity in label-free peptides to being quite intense for TMT samples at both
lower and higher nCE samples. The di�erences described here seem to be greater
than can solely be attributed to the overall increase in b-ions.

The di�erence between the two datasets for the y-ions is much less pronounced
than for theb-ions,withanoverall decrease for ion intensity forTMT-labeledpeptides
(againdue to the relative increase in intensity of theb-ions). Themethionine residues
are largely absent for the lower collision energy TMT samples, as observed for the b-
ions. Apart from that, and the stronger decrease in P|x cleavages (proline flanked
C-terminally by any amino acid) also observedwith the b-ions, there are not asmany
di�erences between the labeled and unlabeled datasets for the y-ions.

3.2.1 Investigation into complementary b/y ions

The increased b-ion stability and their increased distribution in the TMT labeled pep-
tides led me to question whether this could be beneficial in the validation of PSM
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Figure (10): Sum of normalized intensities for backbone fragment ions for amino acids at their position within the
peptide relative to N- or C-terminus. Peptides precursors were all of charge state +2 . The upper panel displays the
values for TMT labeled peptides (35% nCE [A] and 45% nCE [B]) and the lower panel the values for the unlabeled
peptides (35% nCE [C] and 45% nCE [D]).
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Figure (11): Sum of normalized intensities for backbone fragment ions at their position within the peptide relative
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values for TMT labeled peptides (35% nCE [A] and 45% nCE [B]) and the lower panel the values for the unlabeled
peptides (35% nCE [C] and 45% nCE [D]). In label-free samples at both collision energies the b-ion peptide coverage
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Figure (13): Median
of normalized b-ion
intensities. The upper
panel displays the values
for TMT labeled peptides
(35% nCE [A] and 45%
nCE [B]) and the lower
panel the values for
the unlabeled peptides
(35% nCE [C] and 45%
nCE [D]). The increased
intensity for the b-ions in
TMT-labeled peptides is
seen in the greater overall
heat. The proline e�ect
seems more pronounced
in the labeled sample at
35% nCE and cleavages
involving methionine
appear rarer for TMT
than for the unlabeled
peptides. The intensities
of the acidic residues at
the position N-terminal
to the cleavage site show
increased abundance in
TMT-labeled peptides,
with aspartic acid being
among the most intense
N-terminal residues.
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Figure (14): Median
of normalized y-ion
intensities. The upper
panel displays the values
for TMT labeled peptides
(35% nCE [A] and 45%
nCE [B]) and the lower
panel the values for the
unlabeled peptides (35%
nCE [C] and 45% nCE [D]).
Di�erences between the
labeled and unlabeled
sets are less apparent for
y-ions than for b-ions.
Overall heat is reduced
for the y-ions for labeled
data and methionine
residues are largely
absent for the 35% nCE
set.

matches in a way similar to the method developed by Nielsen et al.250, where com-
plementary b- and y-ion pairs represent strong evidence for the existence of a given
cleavagesite. To investigate theco-occurrenceofpairsofb- andy-ionswhosesummed
deconvoluted mass equals that of the precursor (within the given tolerance), each
MS/MSspectrum linked toaMascot suggestedpeptidewas interrogatedand thecom-
plementary fragment for each of its deconvoluted ions was sought among the re-
maining ions. Each match within 20ppm tolerance was recorded. The type of match
(whether the matched ion corresponded to a member of the theoretical back-bone
fragment series or not) was also noted. In order to gauge the results against known
false positives, decoy peptides were included in the assessment.

The increase in b-ions for TMT labeledpeptidesdoes indeed lead to an increase in
the themean number of complementary b/y pairs per MS/MS spectrum compared to
non-labeled (Fig. 15a). This trend is reflected in the proportion of pairsmapping onto
assigned backbone fragments with a significantly higher number being identified in
TMT spectra than in the unlabeled. For both the unlabeled and the TMT samples the
numbers of pairs is highest at the lower collision energy. For all decoy peptides, the
overall count of assigned b/y pairs per spectrum is lower than for the targets. This
trend is repeated in the mean proportion of TIC for each MS/MS spectrum. The TMT
labeled data at 35% nCE has one third of the TIC for assigned complementary b/y
pairs, dropping to 15% of signal for 45% nCE (Fig. 15b). This value is lower for label
free data at both collision energies; substantially so for 45%. The assigned b/y pair
signal was lower for decoy peptides in all cases, but the ratio between target and
decoy peptides was the same in all datasets.

Examining unassigned complementary b/y pairs (fragments not attributable to
back bone cleavage of the given precursor but summing to its neutral mass) we see
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(a) Letter-value plot showing distribution of assigned complementary fragments per spectrum for target and decoy
peptides of all datasets. Target peptides labeled with TMT (red plots) have a higher number of complementary pairs
than thosewith no label (blue). The number of complementary pairs is reducedwith increased collision energy. The
number of complementary pairs in decoy peptides is lower in all datasets but is increased for TMT-labeled decoy
peptides.
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(b) Histogram of proportion of total TIC attributed to complementary pairs for the di�erent datasets. Bars in red
correspond to the summed proportion of total ion intensity for TMT-label complementary fragments, bars in blue
are the unlabeled samples. On the le� side data are shown for the lower (35% nCE) collision energy and on the right
side for the higher (45% nCE).

Figure (15): Overview of amount of fragment ion signal associated with complementary b/y pairs. In terms of both
number of fragments andproportionof total signal, the TMT label increases the amount of complementary b/y pairs.
This phenomenon is more prevalent at the lower collision energy.
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(a) Letter-value plot of distribution of unassigned b/y pairs for target and decoy peptides of both datasets
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Figure (16): Overview of amount of fragment ion signal associated with unassigned complementary b/y pairs. In
terms of both number of fragments and proportion of total signal, the TMT label increases the amount of comple-
mentary b/y pairs. This phenomenon is more prevalent at the lower collision energy
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Figure (17): Histogram of counts of fragment ions observed in all four datasets. The m/z value of the fragment is
given on the x-axis and the frequency on the y-axis. Shown in green are the counts for all fragment ions and in blue
(with counts descending from the origin) are the complementary fragments (parentmassminus givenm/z assuming
a +2 parent charge state). The upper panel shows the TMT labeled peptides (A, 35% nCE; B, 45% nCE), the lower
panel shows the unlabeled peptide fragments (C, 35% nCE; D, 45% nCE). The TMT labeled peptides yield a large
proportionof fragment ionswhicharecomplementary toa setof lowm/z fragmentswhichcorrespond tounexpected
cleavage of the TMT reporter group. Likely chemical structures are given for the complementary and lowm/z peaks,
originating from cleavage of the TMT-tag at unexpected positions. Low m/z ions with no complementary partners
that are present in both labeled and unlabeled datasets correspond to polydimethylcyclosiloxane ions (nominal
masses: 429 & 445; used for lock-mass determination), and immonium ions.

there is a much more pronounced di�erence between TMT and unlabeled spectra,
as seen in figure 16a. For target spectra at both collision energies the mean number
of unassigned pairs per spectrum is around 2.5 (slightly lower for 45% nCE), com-
pared to less than 0.5 for unlabeled data. Overall, the decoy spectra havemanymore
unassigned b/y pairs than the targets, but consistently show higher numbers of pairs
coming from TMT labeled sets. Viewing these data as a proportion of TIC (Fig. 16b)
we observe that the mean signal covered by unassigned pairs exhibits a four-fold in-
crease between the labeled and unlabeled samples for target peptides. This di�er-
ence is lower for decoy peptides. These observations suggest that the addition of the
TMT tag leads to unexpected complementary ions occurringduringpeptide fragmen-
tation.

The investigation now turned towards the unassigned (non-backbone) fragment
ions. All peptide matches with an FDR below 1% in both TMT and unlabeled data
sets were profiled - the unassigned fragment ions and also their charged-loss equiv-
alents (calculated by subtracting the mass of each fragment at charge state +1 from
an assumed parent mass of +2) were plotted for m/z 100 to 500 for each data set.
Figure 17, with the low mass ions counting up from the origin and the charged loss
m/z’s descending from the x-axis, shows that TMT labeled peptides yield many fre-
quently observed complementary ions compared to very few in the non-labeled data
set, in agreement with the increased complementary pairs seen in the previous sec-
tion. Three to four groups of these complementary ions are present. The higher colli-
sion energy also produces a larger number of frequently occurring, unmatched, low
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Figure (18): Depictionofpossible sitesof fragmentationwithin theTMTreporter group threeofwhichareunexpected.
The red line denotes the intended location of the HCD cleavage site. The blue line shows the location of fragmenta-
tion resulting in the addition of CO (the ’155 series’) to the reporter ions, green the addition of CNHO (the ’175 series’)
and C2NH3O (the ’186 series’). For ease of understanding only the original TMT6-plex is shown. The black diamonds
represent the heavy C or N atoms distributed across the moiety.

0

1000

2000

3000

4000

5000
A

20 40 60 80 100
0

20

40

60

80

100

120

140

B

Fr
eq

ue
nc

y 
of

 o
bs

er
va

ti
on

m/z

Figure (19): Zoom in on unassigned fragments (blue in Fig. 17) for them/z region up to 100. Upper panel (A) is 35%
nCE, lower (B) is 45% nCE. shown in blue are the TMT associated fragments in green are the unlabeled. TMT seems
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mass fragments than the lower energy with four or fivemaxima found in all datasets.
These can be attributed to immonium ions, the lock mass peptide polydimethylcy-
closiloxane (nominalmass: 429&445) and twounknownpeakswith nominalmasses
around 320& 340. Present in both the complementary and lowmass plotswe see the
m/z’s corresponding to the TMT tag itself at 230.17 and the parentmassminus 230.17,
a set of peaks corresponding to the reporter ion and themass of carbonmonoxide (as
reportedbyPichleretal.249), another set of peaks corresponding toa further cleavage
along the TMT balancer group aroundm/z 175. A third set of peaks at approximately
m/z 186 corresponds to a third break in the TMTbalancer group and is present almost
exclusively in the low mass ions. The deconvolution and deisotoping step of isobar-
Quant leads to the apparent disappearance of some of the reporter ion-associated
charged loss fragments. In the 35% nCE TMT sample there are a few more maxima
found: a series of peaks aroundm/z 202, 219 and 250. These correspond to the frag-
ments from a neutral loss of 63 Da from oxidized methionine plus CO from the TMT
balancer group, plus CHNO from the balancer group and lastly plus carbon monox-
ide from the balancer group with two oxidized methionines and two neutral losses.
This finding could explain the low abundance of ions associated with methionine in
the normalized intensity plots per cleavage site (Figs.13 & 14). Present only in the
charged loss fragment ions is a peak corresponding to the loss of TMT labeled lysine
from the parent ion (at both fragmentation energies) at around m/z 358. Focusing
solely on the lowm/z region of the complementary fragments (5-100m/z) we observe
a substantial increase in losses for TMT labeled peptides, mainly at 35% nCE. These
cluster around regions corresponding to neutral losses such as the mass of water (-
18), ammonia (-17) and from oxidizedmethionine (-64). We also find a peak at 45m/z
(corresponding to -COOH loss from the C-terminus of the peptide) and 30m/z (corre-
sponding to decarboxylation of aspartic acid or glutamic acid). There are also peaks
of unknownoriginpresent atm/z43, 82&91 seen solely in the lowest collision energy,
TMT-labeled data set.

The findings above further illustrate that the addition of a TMT reporter group
a�ects the fragmentation of peptides, and this e�ect is more striking at the lower
collisionenergy. Moreb-ionsaredetectedbecauseof the stabilizinge�ectof theTMT-
group itself. This in turn leads to fewer internal fragments. One might expect that
the increased presence of b-ions would translate into improved Mascot scores, but
in fact the opposite is o�en the case. One reason for this might indeed be the high
intensity peaks resulting from cleavage of the TMT label at unexpected points within
the balancer group outlined above. To investigate this, all ions associated with this
balancer cleavage were removed from the .mgf files created by isobarQuant and a
further round of Mascot searches was performed. Following filtering at 1% peptide
FDR, scores of shared TMT-labeled peptides increased to a level much more similar
to their label-free counterparts (Fig. 20). For the 35% nCE collision energy there was
a slight increase in mean overall score of 0.25 (Fig. 20a), and for the higher collision
energy the e�ect of removing the TMT contaminant peaks resulted in an increase in
Mascot ion score of 3.67 for TMT labeled peptides compared to the unlabeled ones
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Figure (20): Two-dimensional density plots of Mascot score shi�s on peptides shared between TMT labeled and
and unlabeled (label free (LF)) data following removal of fragments coming from unexpected cleavage of the TMT-
balancer group. On the le� panel (blue) data for the lower collision energy (35% nCE) and on the right panel (red)
data for the higher (45% nCE). On the x-axis the Mascot scores for peptides following TMT-contaminant fragment
removal, on the y-axis the equivalent scores for the unlabeled peptides. Comparing this to untreated data (Fig. 7)
we see scores nearly returned to the level of their unlabeled counterparts.

(Fig. 20b). It is worth noting at this point that the increase in Mascot score extended
to all peptide matches, for both target and decoy (see table 7), actually leading to a
derease in numbers of PSMs passing the 1% FDR filter.

The increase inMascot scores following removalofTMTcontaminantpeakspiqued
my interest to see if the stabilizing e�ect of the TMT tag on b-ions could in some way
be harnessed to improve general scoring of PSMs and in particular to improve on the
H-score algorithm published a few years before165 and to try to increase the sepa-
ration between target and decoy peptides. The first attempts were similar to those
of Nielsen et al.250 and tried to take advantage of the increased number of b-ions by
awarding additional points to PSMs where the number of complementary b/y pairs
was above a given threshold. This approach had no improvements over the standard
H-score, because any b/y pairs found had essentially already been utilized in frag-
ment cleavage sites included in the existing H-score. A second approach, this time
with a focus on penalizing spectra with one or more unassigned b/y pairs based on
the assumption that more unassigned b/y pairs are present in decoy peptides (Fig.
16a) was considered, but also rejected because the presence of one or more unas-
signed b/y pairs does not necessarily make any assertion about the correctness of
the given spectrum to the peptide match (particularly when the maximum H-score
has already been attained), but rather states the potential chimeracy of the MS/MS
spectrum. Whilst this information cannot be employed to improve the H-score algo-
rithm, it may be useful to give an indication of a peptide’s co-elution status.
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1% FDR
score
thresh-
old

PSMs <
1% FDR
thresh-
old

total
count
target
(decoy)

mean
score
target
(decoy)

35% standard
processing 28 7175 17092

(4370) 26 (7)

35% TMT-balancer
contaminants
removed

35 6252
(-13%)

18112
(5190) 27 (9)

45% standard
processing 24 9443 18343

(3138) 24 (7)

45% TMT-balancer
contaminants
removed

26 9067
(- 4%)

18863
(3473) 25 (7)

Table (7): The increase in Mascot score brought about by removal of fragments resulting from unexpected cleavage
of TMT-balancer groups can lead to a small increase in the number of PSMs passing 1% FDR

3.2.2 Chimeric spectrumestimationusingunassignedcomplementaryb/ypairs

As described above in section 1.3, TMT-based quantification can su�er when more
than one precursor (and consequently two or more sets of reporter ions) are pro-
duced and analyzed together. This has largely been solved by the S2I filtering and
correctionapproachdevelopedand included in isobarQuant (describedabove in sec-
tion 2.3.1), however, in cases where several precursor masses are very close or iden-
tical within the given tolerance, additional insight about the presence of potential
chimeric spectra could be gained by assessing the number of unassigned b/y pairs.
The sixteen TMT-labeled fileswere interrogated and the precursor S2I valuewas plot-
ted against the number of unassigned b/y pairs (any pairs originating from unex-
pected TMT-balancer group fragments were excluded for this analysis). There is no
correlated relationshipbetween theS2I valueand thenumberofunassignedb/ypairs,
rather the increased number of spectra with the given S2I value yields higher num-
bers of unassigned b/y pairs. The implication of this could be that a small number of
seemingly clean spectra (with high S2I values and therefore low assumed ratio com-
pression) still su�er from co-eluting peptides as evidenced by pairs of ions whose
sum equals that of the precursormass (within the given tolerance) but which are not
present in the backbone fragments of the given peptide. Using this kind of approach
touncover chimeric spectrawasalso suggestedbyGorshkovandco-workers251. Once
again it was relatively easy to find examples of this using the data stored in the .hdf5
files. From this we see that one spectrum with an S2I of 1.0 was actually pervaded
with co-eluted peaks as shown in figure 22. It is necessary to note that the values
calculated here reflect the search tolerance and not the isolation window of the se-
lectedprecursor used in the experiment. Applying this valuewould likely revealmore
complementary fragments.
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Figure (21): Thenumber of unassignedb/y pairs plotted against the S2I value for all sixteenTMT labeled sampleswith
at least one unassigned complementary pair. The number of unassigned b/y pairs is not correlated to the S2I value
itself but rather to the total number of spectra at a given S2I value. The second plot (right) shows the distribution of
all spectra with an S2I value greater than 0.75 and includes spectra with no unassigned b/y pairs.

3.2.3 H-score improvements using contiguous explained ratio

The attempts outlined above to try and improveH-score using the counts of b/y pairs
failed to increase the separation between decoy and target peptides despite higher
numbers of unassigned b/y pairs in decoy peptides. However, the increased number
of b (or y) ions can still be useful in scoring; not as pairs but in the form of a ladder of
contiguously explained cleavage sites. The original H-score took only the sum total
of explained cleavage sites into account, irrespective of their locationwithin the pep-
tide. For a target peptide, where a fragment ionmatch is not solely due to chance, we
would expect a greater proportion of ions to be located adjacent to one another. This
contrasts with situation in decoy peptides where matches to a non-existent decoy
peptide sequence can only occur by random chance and thus the likelihood of find-
ing several explained fragment ion sites adjacent to one another ismuch reduced. By
taking the maximum number of contiguous explained sites within the peptide and
dividing this by the total number of possible sites (to correct for di�erent length pep-
tides) one can obtain a ratio which should increase the separation between targets
and decoys better than using the total count alone. This calculated, ’contiguous’ ra-
tio for the decoy and target peptides acquired at the di�erent collision energies is
displayed in figure 23 and shows that, indeed, a higher proportion of decoy peptides
have a contiguous explained ratio of less than 0.6, in contrast to the large number
of target peptides with a ratio of 1.0. The overall increased number of both target
and decoy peptides present with the TMT-labeled is again evident (see also Fig. 4).
On the le� side of each graph we observe that in TMT-datasets the contiguous ra-
tio categories of 0 or 0.1 are made up almost entirely of decoy spectra. This fact was
incorporated into an adapted H-score with the aim of achieving a better separation
between decoy and target peptides thanwith the current implementation. The basis
for the H-score should still be the total number of explained cleavage sites and the
reward of three bonus points should still be given to peptides where all sites are ex-
plained (a contiguous ratio of 1.0) but the one-point bonus for peptides with all but
one site explained will be replaced by a bonus of two points for all peptides with an
explained contiguous ratio of greater than 0.1. Figure 24 shows the greater number
of peptides below the 1% FDR threshold for theTMT-datasets (an addition of around
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Figure (22): Graphical representation (generated directly from .hdf5 file) of a highly chimeric spectrum, matched
by Mascot to sequence AGQVVNQMNK, score 16, with an S2I value of 1.0 (no apparent co-elution). Gray bars are ac-
quired, deconvoluted anddeisotoped fragment ions. B-ions are overlaid in blue, y-ions in green and a-ions in red. All
TMT-derived fragments are shown in orange. The purple arrows show all 20 fragment peaks from possible chimeric
spectra. TheMascot ions score is not particularly good (presumably due to the chimeracy of the spectrum) but could
still be used for quantification. There is no indication from the S2I value that a co-elution event has occurred.

1,000 peptides over all eight TMT samples) with a much more modest improvement
for non-labeled peptides.

4 Discussion

By interrogating the .hdf5 files createdby isobarQuant (where the interpreted, searched
data are stored alongside the raw acquired spectra) it has been possible to see that
the addition of a TMT label to peptides a�ects the not only the size and number of
peptideswhich arematched, but also the actual fragmentation of the peptides inside
themass spectrometer. The addition of a TMT label not only changes the fragmenta-
tion pattern by yielding reporter ions in the lowm/z region of the spectrum (as per its
primary intent) but also leads to the stabilization of and resulting increase in b-type
fragment ions. This stabilization is also evidenced by a reduction in internal and im-
monium ions for labeled peptides and seems to result in an increase in numbers of
target peptides identified, but also an increase in the number of decoy peptides and
hence no significant change in FDR . On average the retention time of a TMT-labeled
peptide is increased by between 10 and 12 minutes.
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4.1 Increased b-ion stability and small changes in cleavage bias

The increased presence of the b-ions andmuch lower a-ion intensities suggests that
the labeledb-type fragmentsaremorestableand lessprone todegradation than their
non-labeled counterparts. This is likely due to sequestration of one proton on the ba-
sic TMT-label at the N-terminus of the peptide. This stabilization prevents themobile
proton from being able to initiate further fragmentation events, which in turn leads
tomuch less degradation to lower b- and a-ions248 and also to fewer internal and im-
monium ions. This e�ect is less pronounced in samples acquired at a higher collision
energy lending protons increased mobility. The increased b-ion stability leads to an
overall increase in coverage by b-ion ladders but not too great an increase in overall
coverage. It is tantalizing to state that the increased b-ion stability brought about by
the addition of an inexpensive TMT-zero group (i.e. a non-isotopically labeled TMT
group with no added heavy atoms) could be useful in studies to localize PTMs where
additional b-ion ladder information can be used. It may also be useful in studies of
themobile proton itself. The benefits of the TMT label in phospho-proteomic studies
has already been demonstrated by Jiang et al.252.

The overall increased number of decoy peptide identifications compared to the
increase in target peptides associated with TMT labeling was a source of quite some
frustration during this project. A large number of TMT decoy peptides have TMT-
reporter ions and thanks to the increased b-ion fragments a greater chance ofmatch-
ing to random PSMs in the search file.

4.2 Change in Mascot scores and unexpected TMT-balancer fragmenta-
tion

A swell in the number of b-ion fragments does translate into an increase in comple-
mentary b/y pairs, but this increase is by amplified by spurious b/y complementary
pairs resulting from the unexpected cleavage of the TMT tag. These tag-related con-
taminant peaks are present at relatively high abundances and have a deleterious ef-
fect on the Mascot peptide scoring (the algorithm penalizes high-intensity signals
which cannot be accounted for by any of the expected peptide fragments), leading
to a general reduction in Mascot scores. A�er investigating the source and nature of
these contaminant peaks and then removing them from the .mgf files prior to search-
ing, we observe that the Mascot scores for TMT peptides also identified in unlabeled
samples is returned to a level similar to that observed for theunlabeled counterparts.
Overall, Mascot scores increase on average by between four and eight points follow-
ing removal of TMT-contaminants, but this score increase is not accompanied by any
significant change in FDR , again because the proportion of targets to decoy peptides
remains more or less unchanged. This removal step would therefore only be neces-
sary in labs where peptides are excluded based on empirically-determined Mascot
score cut o�s derived from label-free experiments, otherwise exclusion by an FDR
threshold should su�ice.
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4.3 Identification of chimeric spectra and H-score improvements

The increased presence of complementary pairs in target peptides compared to de-
coys cannot be incorporated into the existing H-score. An additional reward for pres-
ence of complementary b/y pairs does not add any new information to that which
is already contained in the H-score (number of explained cleavage sites). Despite
the higher number of unassigned b/y pairs observed in decoy peptides, an attempt
to penalize these fragments does not improve the separation between decoy and
peptide matches. This is because the number of unassigned b/y pairs does not per-
form any assessment of the match between the suggested peptide and the identi-
fied fragments but rather evaluates the presence or absence of another, co-eluting
or chimeric, spectrum. There is potential to use this value to exclude highly-chimeric
peptides from being used for protein quantification in a way analogous to the S2I
filtering, since the co-eluting reporter ions can lead to dampening of the true quan-
tification signal, or ratio compression. This kind of approach has been proposed by
Gorshkov et al.251 who use it in the context of label-free quantification. However the
calculation of complementary fragments should take the isolation window into ac-
count rather than the search tolerance used.

The use of the contiguous explained ratio in the H-score algorithmwas shown to
increase the number of PSMs passing the 1% FDR threshold. The random nature of
fragment ion matches in decoy peptides means that explained sites adjacent to one
another are less likely, which is also valid for any incorrect PSM assignment. The in-
crease in b-ionswith TMT-labeled peptides leads to an increased likelihood of longer
contiguous explained ratios (from the N-terminus) and therefore an increase in the
potential to performbetter amino acid localization. This H-score improvement could
be implemented straight away and will be more beneficial for TMT-labeled peptides
than unlabeled but equally did not show any deterioration in performance for unla-
beled peptides.

Currently the future of scoring algorithms or peptide fragmentation prediction
seems to lie in the hands of AI andmachine learning. Whilewriting this thesis, several
publications cameoutwhere the authors aimed to predict retention times or peptide
fragmentation patterns usingmachine learning approaches on very large datasets of
acquired and searchedmass spectrometry data108–110,253. It will be interesting to see
how these methods perform and evolve, and if isobarQuant can be used in conjunc-
tionwithanyof them; since the identification, quantificationand rawdataareall kept
in a single file, indexed to allow fast access.

5 Author contribution to project

Toby Mathieson designed and performed the processing of all experiments in this
section using isobarQuant; the laboratory experiments were performed and mass
spectra were acquired at Cellzome GmbH, a GSK Company. The author carried out
all steps of the data analysis including extracting relevant data and visualizations.
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Part V

General discussion and outlook

1 isobarQuant: Discussion

This thesis presents and describes a stand-alone tool, isobarQuant, that is able to
process, manipulate and quantify raw mass spectrometry data originating from any
of the family of Thermo Fisher Scientific Orbitrap mass spectrometers. Its develop-
ment and application to di�erent problems has been thoroughly described and dis-
cussed in the three main parts of this thesis.

For a single .raw file its output comprises three text files (one protein-level, one
peptide-level and one summary) and one .hdf5 file. The quantification of isobari-
cally labeled or precursor labeled peptides is performed at the individual peptide
level and peptides and quantification values are then filtered, corrected and extrap-
olated to the protein level. The .hdf5 file allows raw data to be stored alongside the
interpretations made using it. This output is easy to access by many di�erent pro-
gramming languages. The text outputs follow a standardized format irrespective of
the method of quantification used. It is written in Python and would therefore be
platform-independent were it not for the requirement of the vendor so�ware to run
under the Windows operating system. This means that, at least, the pre-Mascot part
of the pipeline is tied to that platform, although several possible workarounds have
recently opened and would need to be further explored.

isobarQuant was the first so�ware tool to provide a method for the correction of
isobaric-label quantification values from the potential influence of co-eluting pep-
tides (ratio compression) and is, to the best of the author’s knowledge, the only tool
to employ a bootstrapping method to determine a level of confidence in the protein
fold changeswhenbasedonmore thana givennumber of (isobarically labeled) PSMs
(default value: four). It was shown to outperform MaxQuant in the determination of
accuratepeptide fold changeswhenahigh level of background interference (fromco-
elutingpeptides) ispresentand introducedasecond filter criterionP2T toexclude the
reporter ions of peptides whose signals are very close to the instrument noise level.
Other so�ware tools calculate a value similar to the S2I, (the PIF of MaxQuant, for ex-
ample), but isobarQuant is unique in that it interpolates between two MS/MS scans
to derive the value at the precursor selection, not just in the preceding one, amethod
that was later published in the realm of metabolites in 2017254. A relatively recent in-
vestigation into the e�ects of ratio compression using a set of ground-truth phospho
peptides255 showed that the S2I is not the only metric that one can use to measure
potential co-elution of peptides and that even peptides with high S2I values still suf-
fered from some ratio compression. They also stated that the Andromeda score was
(loosely) inversely proportional to the level of S2I, which makes sense and could ap-
ply to the Mascot search engine as well, since any evidence of co-eluting peptides
will be observable in the fragment ions of the MS/MS spectrum and thereby lower
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the score. This has been reflected in isobarQuant’s use of additional (peptide) filter
criteria (such as Mascot score or delta_to_next) since its inception.

isobarQuant is able toperformmultiple roundsofpeptide-andprotein-levelquan-
tification for optimization / investigation of di�erent parameters (e.g. using di�er-
ent filters and cuto�s) without having to re-perform the first (time consuming) raw
data extraction and processing steps. Each new round of quantification creates a
new, distinctly-named set of outputs. This was critical in the development of the
MS1-based quantification of SILAC labeled peptides in protein half-life determina-
tion where three additional filter criteria were investigated and optimized to exclude
peptideswith inaccurate fold changes. The first, the ’prior-ion ratio’ was a novelmet-
ric introduced to filter out peptide (pairs) with an unexpectedly high-intensity peak
present in light or heavy peptides at them/z corresponding to the loss of one neutron
fromthemonoisotopic ion. Thepresenceof suchapeakat this position indicates that
a co-eluting (interfering) isotope cluster is present and should not be used in down-
stream analyses. The second optimization was in the filtering procedure to gain the
highest number of quantified peptideswith the greatest accuracy based on the least-
squares fit of the exactmodel to the observed isotopic distribution. This was the first
so�ware to use an exact model, rather than averagine to determine SILAC peptide
fold changes. Thirdly, a minimum peptide count threshold used to exclude indeter-
minablepeptide ratios fromthecalculationofproteinquantificationwasestablished.
These additions to the so�ware led to the publication of several SILAC-pulse labeled
datasets cataloging the protein half-lives of four human and onemurine primary cell
lines. It has beendemonstrated in this report that isobarQuant is able to give a higher
number of accurate, very lowpeptide fold changeswhen compared toMaxQuant and
the resulting protein half-lives have given some valuable insights into the di�erences
in turnover of protein complexes and their components across these fivedi�erent cell
lines. The use of this resource as a source of non-perturbed protein half-lives will be
of great value inmanydi�erent typesof study; ranging fromthee�ects of compounds
on protein turnover to the assessment of the e�icacy (at the protein level) of CRISPR
gene knockdowns.

The .hdf5 output of isobarQuant was used directly to interrogate and analyze
spectra coming from TMT labeled reagents. The changes which the large protophilic
group brought about in terms of fragmentationwere readily extracted and visualized
using a Python API. This quick and easy data access allowed for the investigation into
the altered fragmentation properties of TMT-labeled peptides, an extension to the
work done by Pichler et al. regarding unexpected TMT balancer group fragmentation
and the e�ect onMascot scoring249. It also allowed an improvement in the existingH-
score algorithm aswell as providing a potential method to flag TMT labeled peptides
with a higher-than-estimated amount of co-elution (and ratio compression).

During the creation of this report, where the results of isobarQuant were com-
pared to those of MaxQuant a small weakness with the MaxQuant so�ware was un-
covered: namely that quantification was not possible with some more recently ac-
quired .raw files, possibly those with a slightly di�erent acquisition method. These
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did not pose a problem for isobarQuant and quantificationwas possible without any
intervention, but the fact that theMaxQuant so�ware is closed-source prevented the
author from being able to e�ectively troubleshoot the issue or establish where the
problem with the so�ware (or raw file) lay. Attempts were made with multiple ver-
sions of the so�ware, including the most recent. The issue was luckily solvable by
using files acquired on an earlier version of the ThermoFisher Scientific Xcalibur so�-
ware. isobarQuant’s code is fully open-source and were similar problems with pro-
cessing files to arise, it would be simple to pinpoint where exactly the issue was.

isobarQuant was the basis for several TMT-labeled, TPP experiments for elucida-
tion of potential o�-targets and has provided a straight-forward way to process TMT-
labeled data including S2I / ratio compression correction.

2 isobarQuant so�ware: Outlook

Asdescribed inchapter II, the so�warewouldbenefit fromsomerefactoring toenable
it to bemoremodular. Thismight alsomake its functionalitymore amenable to other
node-basedworkflow tools. It would be very desirable to support the results ofmore
than one search engine (Mascot) and to allow a more Ursgal127 / Percolator124-like
approach in order to derive themost from the results of di�erent search engines and
the acquired data at the highest accuracy. The direct incorporation of H-score, likely
with the improvements described above (4.3), could be envisioned in the very near
future.

A general concern for species that are not well annotated, for which the unique-
ness calculation is hampered by many overlapping proteins (which lack su�icient
annotation stating that proteins are translated from the same gene and are conse-
quently not grouped and quantified together), it might be beneficial to adapt isobar-
Quant to use a solution similar to that provided by Ursgal and assign the name of the
peptide group as a concatenation of the names of the constituent peptides. Groups
of peptides with the concatenated name could then be quantified together. This will
enable di�erent proteoforms to be separately quantified and could be extended to
allow quantification of individual peptides or peptide groups in a way similar to that
described by Zecha et al.256, which is essential if we consider that di�erent prote-
oforms of the same gene may be di�erently expressed and turned-over in di�erent
tissues or under di�erent conditions and that indeed all multi-exon genes have been
shown to undergo alternative splicing257.

There are currently two potential ways to remove isobarQuant’s dependency on
the Window operating system. The first, as mentioned above is to use the freely-
available Windows emulator so�ware layer for Linux, WINE. One would be then be
able to use isobarQuant on either Linux or Windows. There has also been a method
published (https://pypi.org/project/pythonnet) which provides a Python wrapper to
the .NETCommonLanguageRuntime that could interfacedirectlywithThermoFisher
Scientific’s Xcalibur library. It has already been used to visualize a chromatogram
from a Thermo Fisher Scientific instrument and could therefore represent an alter-
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native way to provide this.
One feature that isobarQuant is not currently benefiting from is the possibility to

perform MS1 and MS/MS re-calibration at the m/z and RT level. This capability has
actually been programmed, but has not yet been deployed because of issues asso-
ciated with connectivity to and interaction with the Mascot server / search engine
and the configuration of individual searches. This would need to be overcome if this
should take place without a good deal of manual user interaction. Whilst the lack
of re-calibration for poorly calibrated runs will a�ect the numbers of peptide iden-
tifications made within a narrow precursor search tolerance, the tolerance can be
increased without too high an increase in false positives and since isobarQuant uses
andabest-cohort selectionmethod todetermine the reporter ionsbasedon supplied
quantificationmasses, even a poorly-calibrated instrument run can still deliver accu-
rate quantification. As long as an adequate FDR cuto� is used, the data need not be
discarded.

2.1 Further improvements to S2I and isotope impurity corrections

A couple of recent reports have suggested newways to calculate amore accurate S2I
value. Iwasaki and co-workers suggest extending the scope of the S2I calculation to
include points farther along the XIC than just the preceding and succeeding MS/MS
event207, which could potentially mitigate some of the issues raised by by Hogrebe
et al. where even MS precursors with apparently high S2I values still yield co-eluting
reporter ions in their fragment spectra255. Searle and Yergey have published a new
method to carry out isotopic correction, using a linear algebra approach that is com-
mon inelectrical engineeringandan improvement to theS2I correction implemented
in isobarQuant (ref.171) by preventing over correction of interference when high re-
porter signal stems from a single channel208.

2.2 Support for new instrumentation

In mid-2019 Thermo Fischer Scientific released another instrument in the Orbitrap
family. The Orbitrap Exploris 480 boasts higher scan speeds and increased resolu-
tion, such as the addition of the ΦSDM258 capability. Because this instrument has a
slightly di�erent API, a small adaptation to isobarQuant will be required in order to
process files acquired form it. However, no fundamental alterations to how the so�-
ware operates will be needed and code changes should take no longer than one or
two days to implement. Another innovation recently applied in the arena of shotgun
proteomics is the addition of the high-field asymmetricwaveform ion mobility spec-
trometry (FAIMS) interface259, which employs a form of ionmobility separation using
alternative low and high electric fields before ions enter the orifice of the instrument.
Ions of di�erent mobilities are transmitted in turn by scanning the compensation
voltage. This allows the removal of singly charged ions, interfering isobaric precur-
sor species andworks in concert with any type of MS/MS acquisition. FAIMS has been
shown to improve quantification260,261 and to allow identification withmuch shorter
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gradients262. Support for these kinds of experimentswith isobarQuantmight require
more investment in time, since the nature of the acquisition is di�erent, scanning
through the alternative compensation voltages and creating a di�erent experiment
for each (eachofwhichwould require separate XIC , S2I andP2T extractionmethods).

2.3 isobarQuant and cohort analyses

The field of proteomics has transitioned over the last decade from being a largely
qualitative, with read-outs consisting of a list of protein identifications to beingquan-
titative within a single or short series of experiments where up to eleven di�erent
conditions are compared accurately and precisely. The challenge now facing mod-
ern proteomics is to shi� this ability to quantify relative protein abundance across
much larger cohorts, for example over hundreds or even thousands of samples in
a pharmaceutical or clinical research setting. Label-free methods, where unlimited
numbers of runs can be combined o�er some hope of a solution, but these are typi-
cally dogged by reproducibility issues, in part because of missing internal standards
to correct for quantitative variations arising from sample preparation and analytical
process. Such technical variations can lead to inaccurate measurements, especially
for low-abundance proteins, as well as high false-positives in discovering proteins
with altered states263. Labelingmethods o�er some hope in this regard and with the
extension of a TMT-like reagent to a 16plex capability (possibly multiplied by an MS1
label such as SILAC to further extend to 32plex) but having the possibility tomeasure
more than this order of magnitude in a single experiment is limited (Neucode203 en-
coding is also limited to 32plex). All these approaches will su�er from the stochastic
nature of DDA in precursor selection in the di�erent runs which can, in turn lead to
under-sampling of low-abundance proteins264. This is compounded by the instru-
ments’ dynamic exclusion settings, whichmean that the sameMS/MS spectrummay
not be selected in consecutive runs, also reducing reproducibility. The DIA approach
is attempting to overcome these issues and recently, a number of newpipelineswere
developed to support these e�orts. PECAN265, DIA-Umpire266, and DirectDIA in Spec-
tronaut™, Pulsar267. isobarQuant is not designed for that type of work flow, but it can
certainly help to provide a consensus spectral library with ease as demonstrated in
Part IV of this report.

The approach o�ering the most accurate and precise solution might actually lie
in being able to combine the results of isobarically labeled experiments. This is it-
self not without problems, as highlighted recently by Brenes et al.268when analyzing
and combining 24 TMT-10plex, MS3-quantified samples. The authors state that inte-
grating two or more runs already leads to an increase in missing values (from <2% to
~25%), which goes against one of the primary benefits of using a TMT labeling strat-
egy. They also note that using an MS2-based, TMT quantification method should re-
duce the batch e�ect, although in a DDA approach there is no guarantee thatmissing
valueswill not beencountered. Theygoon tounderline the importanceof includinga
common control samplewithin each TMTbatch againstwhich to normalize across all
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samples and reduce batch e�ects. Of course, if the proteins of critical interest to the
study are known a priori, a sensible approach might be to construct a targeted data
acquisition (TDA) list of precursorm/z’s , charge states and RTs for the instrument to
fragment and quantify over all runs, based on one or two path finding experiments.
isobarQuant could play a role in the creation of these lists, enabling the selection of
the best set of peptides for the given protein(s) in terms of ease of identification (or
so-called fly-ability) and also intensity of reporter ions generated. This could also be
extended to select themost intense fragment ions froma peptide for use in a PRM (or
SRM) approach.

Exactly how isobarQuant develops into the future remains to be seen. The di�er-
ent direct contributions that it has made so far to the Proteomics Community have
been outlined in the three main parts within this report.
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Part VII

Appendix

A Description of R-script output

Below is a description of the set of simple QC outputs from a single instrument run
generatedusing anR-scriptwhich is part of the isobarQuant suite. Thedata is entirely
found in the .hdf5 file name a�er the .raw file which was processed. The individual
plots are also described in table 4, on page 76

Acquisition date 2018−08−04 02:35:45
Instrument QExactive_01
Analysis time 115.00

Dat File name

F491812_dat

Unique

Peptides

25184

MS2

70416

Assigned

MS2

48508

number of hook peptides

29211

ppmerror

1.89

Search Database

uniprot2018_human−ecoli_20181212.fasta

Precusor Tolerance

10 ppm

Fragment Ion Tolerance

0.02 Da

Figure (1): Example of QC overview page created via an R-script for an example run. A small excerpt of the total
parameters andmetrics stored in the .hdf5 file are shown to give the user a basic idea of the performance of the run.
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(b) Top panel: Log10-transformed precursor inten-
sity and TIC is plotted for all MS1 and MS2 spectra.
Lower panel: deviation of precursor m/z from ex-
pected value.

Figure (2): QC plots relating to MS1 and MS2 intensities can help the experimenter determine problems in signal
transmission within and between mass spec runs. The parts-per-million (ppm) di�erence between measured and
theoretical precursorm/z can yield insight into howwell calibrated the instrument is.
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Figure (3): QC plots relating to charge state, frequency and success of triggered MS/MS events per precursor and a
profile of the chromatographic baseline peaks across the run.
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look into instrument performance.
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Figure (5): QC plots relating to Mascot scoring and FDRof the processed .raw data give immediate feedback to exper-
imenters about the performance of the instrument in terms of identified PSMs
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(a) Violin overlaid withe box plot (with IQR corresponding
to upper and lower box-edges) to display P2T distribution
for all precursor spectra. Median and total MS/MS counts
are also displayed.
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Figure (6): QC plots relating to distribution of calculated P2T noise level and precursor interference S2I for ions se-
lected for fragmentation to MS/MS spectra
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Figure (7): QC plots relating to LC performance and peak picking compared to chromatographic apex of precursors’
XIC for the given run
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Figure (8): Distributions of mean noise intensity measured for MS1 and MS2 scans at three di�erent m/z values at
time points throughout the entire run.

B Location of code

It would be impractical to append all code within the isobarQuant suite to the body
of this thesis. The code is freely available for download or inspection at the Github
repository seehttps://github.com/protcode/isobor for thezippeddownloadablebun-
dle https://github.com/protcode/isob/archive/master.zip

https://github.com/protcode/isob
https://github.com/protcode/isob/archive/master.zip

	List of Figures
	I Introduction & Objectives
	Principles of data acquisition by mass spectrometry
	Mass spectrometry-based proteomics
	Top-down proteomics
	Bottom-up proteomics
	Sample preparation & separation by chromatography
	Instrumentation and principles
	Tandem Mass Spectrometry Experiments
	Peptide fragmentation
	Two modes of peptide fragmentation

	Methods for quantifying proteins
	Absolute quantification
	Relative quantification

	Bioinformatic and computational methods employed in the processing of mass spectrometry data
	Extracting information from tandem MS spectra and peptide searching
	Estimating peptide false discovery rate
	Protein inference
	Determination of protein false discovery rates
	Degenerate peptides and spectra
	Data workflows.

	Mass spectrometry data repositories

	Objective and Aim

	II Creation of a stand-alone tool (isobarQuant) for processing and quantification of isobaric-tagged peptide data 
	Introduction & background
	.hdf5 file format and PyTables
	Data selection using PyTables

	Data extraction
	XIC trace extraction and reassignment of precursors masses
	Deisotoping and deconvolution
	Result file merging

	TMT-tagging of peptides and potential pitfalls
	Protein inference & protein annotations
	Protein quantification
	FDR estimation at protein and peptide level

	Methods and implementation
	Pre-Mascot workflow
	Creation of .hdf5 file
	MS2 smoothing and recording of ion intensities
	Signal-to-interference and noise threshold extraction
	Reporter ion extraction, correction and coalescence estimation
	MS1 signal processing 
	Fragment ion deisotoping and deconvolution and .mgf file creation
	Mascot search

	Post-Mascot workflow
	Mascot .dat file parsing 
	Protein Inference and peptide FDR calculation
	Gene level grouping
	Protein FDR calculation

	Protein quantification
	Peptide quantification: S2I correction
	Transfer of quantification data
	Performing protein quantification
	Output generation 
	Multi-threading
	Configuration

	Comparison to MaxQuant using E. coli dilution series spiked into human background
	Sample preparation
	Data Processing

	Mitigation of ratio-compression for published dataset

	Results
	isobarQuant for concomitant interrogation of multiple .hdf5 files
	Comparison between isobarQuant and MaxQuant
	Comparison using E. coli dilution series spiked into human background

	Ratio-compression mitigation for published dataset
	R-based graphical outputs

	Discussion
	Comparison to MaxQuant
	Comparison to published dataset
	General remarks

	Outlook
	Author Contribution to project

	III Systematic analysis of protein turnover in primary cells - an extension to isobarQuant to allow peptide ion (MS1)-based quantification 
	Introduction
	MS1-based quantification in other software

	Methods and implementation
	Preparation of samples
	Post acquisition analysis
	Assessment of averagine and exact model
	Calculation of prior ion ratio
	Determination of optimal settings and implementation within isobarQuant
	Assessment of least squares cut off
	Assessment of prior ion ratio cut off
	Assessment of the exclusion of missing peptide fold changes in the calculation of the protein fold change

	Comparison between isobarQuant and MaxQuant
	Protein half-life determination
	Assessments of protein half-lives in complexes
	Analysis of half-life variability within protein complexes
	Mapping of protein half-lives onto protein complex structures


	Results
	Averagine versus exact ion model
	Optimization of filters for maximum coverage with highest precision and accuracy
	Assessment of peptide filters based on fit quality of isotopic distributions and prior ion ratio for improving quantification accuracy.
	Impact of missing values on protein fold change determination

	Comparison to existing software (MaxQuant)
	Protein half-lives in five primary cell types
	Protein half-lives in context – within different complexes
	Proteasome
	Nucleoporins


	Discussion
	Outlook
	Author contribution to project

	IV Investigation into the effect of TMT labels on peptide fragmentation patterns
	Introduction
	Materials and implementation
	Investigation into differences between TMT and non labeled peptides in terms of precursor peptide, Mascot score, peptide length, retention time and fate of triggered MS/MS events
	Fragment-ion trend investigation
	Median peptide coverage ratios for b- and y-ion series
	Matrices of cleavage bias for b- and y-ion series
	Calculation of complementary pairs
	Assessment of unassigned ions
	Effect of removal of TMT label-derived ions
	Relationship between unassigned complementary fragments and S2I Values
	Incorporation of contiguous explained sites into H-score


	Results 
	Effect of tag on Mascot scoring
	Peptide coverage by different ion types
	Investigation into complementary b/y ions
	Chimeric spectrum estimation using unassigned complementary b/y pairs
	H-score improvements using contiguous explained ratio


	Discussion
	Increased b-ion stability and small changes in cleavage bias
	Change in Mascot scores and unexpected TMT-balancer fragmentation
	Identification of chimeric spectra and H-score improvements

	Author contribution to project

	V General discussion and outlook
	isobarQuant: Discussion
	isobarQuant software: Outlook
	Further improvements to S2I and isotope impurity corrections
	Support for new instrumentation
	isobarQuant and cohort analyses


	VI Acknowledgment
	VII Appendix
	Description of R-script output
	Location of code


